WO2022178799A1 - 触觉反馈基板、触觉反馈装置及触觉反馈方法 - Google Patents

触觉反馈基板、触觉反馈装置及触觉反馈方法 Download PDF

Info

Publication number
WO2022178799A1
WO2022178799A1 PCT/CN2021/078018 CN2021078018W WO2022178799A1 WO 2022178799 A1 WO2022178799 A1 WO 2022178799A1 CN 2021078018 W CN2021078018 W CN 2021078018W WO 2022178799 A1 WO2022178799 A1 WO 2022178799A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
haptic feedback
vibration
actuator
substrate according
Prior art date
Application number
PCT/CN2021/078018
Other languages
English (en)
French (fr)
Inventor
刘晓彤
陈右儒
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/620,546 priority Critical patent/US20230154293A1/en
Priority to CN202180000353.XA priority patent/CN115250632A/zh
Priority to PCT/CN2021/078018 priority patent/WO2022178799A1/zh
Publication of WO2022178799A1 publication Critical patent/WO2022178799A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • G06F3/021Arrangements integrating additional peripherals in a keyboard, e.g. card or barcode reader, optical scanner

Definitions

  • the present application relates to the technical field of haptic feedback, and in particular, to a haptic feedback substrate, a haptic feedback device, and a haptic feedback method.
  • haptic feedback there are two main forms of haptic feedback.
  • the first is the full vibration form. In this form, the entire screen vibrates as a whole, and the voltage pulse signal is adjusted by chasing fingers to achieve different tactile sensations in different areas.
  • the second is the local vibration form, in which resonance occurs only at the designated part. For applications such as wristbands, local vibration is mainly used.
  • the realization of the form of local vibration is mainly to use multiple actuators (such as vibration motors) to drive the vibration of the base in different areas, thereby generating different sensing signals.
  • the arrangement of multiple actuators results in a larger space occupation and high cost, which is not conducive to the development of lightweight haptic feedback devices.
  • the present application discloses a haptic feedback substrate, the haptic feedback substrate includes an actuator and a plurality of vibration units connected to the actuator, each of the vibration units has a different natural frequency, and the actuator is used to generate a vibration signal, And drive the vibration unit whose natural frequency is a target natural frequency to resonate, and the difference between the target natural frequency and the frequency of the vibration signal is less than or equal to a preset threshold.
  • the vibration unit includes a base, a cantilever beam, and a mass block, the mass block is disposed at the center of the vibration unit, and the base is disposed around the mass block.
  • the mass block and the base are connected by the cantilever beam, and the actuator is arranged on one side of the base.
  • the base, the cantilever beam, and the mass are integral structures.
  • the cantilever beam is in the shape of a helix, the inner circle of the helix is connected to the mass block, and the outer circle of the helix is connected to the base.
  • the spiral is an Archimedes spiral.
  • the cantilever beam is in the shape of an L-shaped arm, the long arm of the L-shaped arm is connected to the base, and the short arm of the L-shaped arm is connected to the mass block .
  • the shape of the mass block is a polygon, and the connection point of the L-shaped arm and the mass block is located at the vertex of the polygon.
  • the shape of the base is a polygon
  • the connection point between the cantilever beam and the base is an apex or a midpoint of a side of the polygon.
  • the vibration unit further includes an annular structure disposed between the mass block and the base, the annular structure is disposed around the mass block, and the annular structure is disposed around the mass block.
  • the structure and the mass are connected by the cantilever beam.
  • the width of the annular structure is greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the distance between two adjacent annular structures is greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the number of the annular structures is less than or equal to 20.
  • the diameter of the mass block is greater than or equal to 1 mm and less than or equal to 50 mm.
  • a first filling layer is provided at the gap between the base, the cantilever beam and the mass block in the vibration unit, and the Young's modulus of the first filling layer is smaller than all the The Young's modulus of the susceptor, the thickness of the first filling layer is less than or equal to the thickness of the susceptor.
  • a second filling layer is provided between the bases of two adjacent vibration units, and the Young's modulus of the second filling layer is smaller than the Young's modulus of the bases modulus, the thickness of the second filling layer is less than or equal to the thickness of the base.
  • a first fixing layer is disposed on a side of the base close to the actuator, the first fixing layer is disposed close to a first edge of the base, and the first fixing layer is disposed near the first edge of the base.
  • An edge is the edge of the base away from the mass block, the first fixed layer forms an escape area on the base, the actuator is located in the escape area, and the poplar of the first fixed layer.
  • the Young's modulus is greater than the Young's modulus of the base.
  • a second fixing layer is provided on the side of the base away from the actuator, the second fixing layer is arranged close to the first edge of the base, and the first An edge is the edge of the base away from the proof block, and the Young's modulus of the second fixed layer is greater than the Young's modulus of the base.
  • the actuator is at least one of a piezoelectric motor, a flat motor and a linear motor.
  • the present application discloses a haptic feedback device, the haptic feedback device comprising any one of the haptic feedback substrates.
  • the present application discloses a haptic feedback method, which is characterized in that, applied to any one of the haptic feedback substrates, the method includes:
  • the actuator is controlled to generate a vibration signal, and the vibration unit whose natural frequency is a target natural frequency is driven to resonate, and the difference between the target natural frequency and the frequency of the vibration signal is less than or equal to a preset threshold.
  • FIG. 1 shows a schematic structural diagram of a haptic feedback device in the related art
  • Fig. 2a shows a schematic plan view of the first haptic feedback substrate provided by the embodiment of the present application
  • Fig. 2b shows a schematic plan view of the second haptic feedback substrate provided by the embodiment of the present application
  • Fig. 2c shows a schematic plan view of a third haptic feedback substrate provided by an embodiment of the present application
  • FIG. 2d shows a schematic plan view of the fourth haptic feedback substrate provided by the embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a control process of a haptic feedback substrate provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a first vibration unit provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a second vibration unit provided by an embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a third vibration unit provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a fourth vibration unit provided by an embodiment of the present application.
  • FIG. 8 shows the amplitude comparison between the microstructure substrate provided by the embodiment of the present application and the non-microstructure substrate
  • FIG. 9 shows a schematic structural diagram of a first haptic feedback substrate provided by an embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of a second haptic feedback substrate provided by an embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a third haptic feedback substrate provided by an embodiment of the present application.
  • FIG. 12 shows a schematic structural diagram of a haptic feedback device provided by an embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a positional relationship between an actuator and a keyboard key provided by an embodiment of the present application
  • FIG. 14 shows another schematic diagram of the positional relationship between the actuator and the keyboard keys provided by the embodiment of the present application.
  • FIG. 15 shows a schematic structural diagram of a haptic feedback substrate attached with a flexible film according to an embodiment of the present application.
  • local tactile sensing technologies such as wristbands
  • multiple vibration motors to drive different substrate regions to vibrate, thereby generating local sensing signals.
  • four vibration motors respectively control the vibration of four regions, thereby generating different tactile sensing signals.
  • the existing local tactile sensing technology has the problems of occupying a large space, high cost, and not conducive to the lightweight development of intelligent bracelets. Therefore, how to use one actuator to realize local tactile perception is an urgent problem to be solved by those skilled in the art.
  • the haptic feedback substrate includes an actuator 21 and a plurality of vibration units 22 connected to the actuator 21 , and each vibration unit 22 has different inherent characteristics.
  • the actuator 21 is used to generate a vibration signal, and drive the vibration unit 22 whose natural frequency is the target natural frequency to resonate, and the difference between the target natural frequency and the frequency of the vibration signal is less than or equal to a preset threshold.
  • the actuator 21 is a device capable of generating vibration signals, such as a motor.
  • the actuator 21 may be at least one of a piezoelectric motor, a flat motor, and a linear motor, which is not specifically limited in this embodiment. Using a piezoelectric motor as the actuator 21 contributes to the reduction in thickness of the haptic feedback substrate.
  • a plurality of vibration units 22 may be located in different regions of the haptic feedback substrate, and each vibration unit 22 is in contact and connection with the actuator 21 respectively, that is, one actuator 21 may be used to drive multiple units in contact and connection with the actuator 21 .
  • the haptic feedback substrate shown in FIG. 2 a includes four vibration units 22 , that is, one actuator 21 is respectively connected to the four vibration units 22 , and one actuator 21 is used to drive the four vibration units 22 .
  • the shape of the haptic feedback substrate in this embodiment may be rectangular, as shown in FIGS. 2 a and 2 b .
  • the haptic feedback substrate includes 2*2 vibration units 22 arranged in an array, and an actuator 21 is arranged at the center of the rectangle.
  • the haptic feedback substrate includes 3*3 vibration units 22 arranged in an array, and one actuator 21 can be arranged between two adjacent vibration units 22 on the diagonal of the rectangle, and a total of four actuators can be arranged.
  • the size of the four actuators 21 can be the same or different, the types of the four actuators 21 can be the same or different, and the size and type of the actuators 21 can be determined according to actual needs.
  • this embodiment is also applicable to m*n vibration units 22, and the specific data of m and n are not limited in this application. It should be noted that the arrangement of the plurality of vibration units 22 is not necessarily an array arrangement, and the specific arrangement of the plurality of vibration units 22 can be designed according to actual needs, which is not limited in this embodiment.
  • the shape of the tactile feedback substrate in this embodiment can also be circular. As shown in FIGS. 2c and 2d, a plurality of vibration units 22 form a circle and are arranged around the center of the circle, and can be set at the center of the circle.
  • An actuator 21 In FIG. 2 c , one actuator 21 corresponds to four vibration units 22 ; in FIG. 2 d , one actuator 21 corresponds to eight vibration units 22 .
  • the actuator 21 is placed at the center of the circle, and one actuator 21 can be used to drive more vibration units 22, which can further reduce the volume of the touch feedback module.
  • the number of vibration units 22 corresponding to one actuator 21 may be set according to actual conditions, which is not limited in this embodiment.
  • the shape of the haptic feedback substrate in this embodiment is not limited to the above-mentioned circle and rectangle, and the shape of the haptic feedback substrate can also be an ellipse, a pentagon, a hexagon, etc. Not limited.
  • the vibration unit 22 with a specific natural frequency can be fabricated by etching a pattern with specific rules on the surface of glass, metal, plastic and other materials, and the specific structure of the vibration unit 22 will be described in detail in subsequent embodiments. .
  • a plurality of vibration units 22 share one actuator 21, and by controlling the actuator 21 to generate a vibration signal, the vibration unit 22 whose natural frequency is close to or equal to the frequency of the vibration signal among the plurality of vibration units 22 resonates with the actuator 21, At the same time, since the natural frequency of other vibration units 22 is quite different from the vibration signal frequency, resonance will not occur, and the amplitude will be weakened, so that independent control of each vibration unit 22 can be realized, and local tactile feedback can be realized.
  • each vibration unit 22 has different natural frequencies
  • the actuator 21 by controlling the actuators to sequentially generate vibration signals of different frequencies, the vibrations of multiple vibration units can be locally controlled and switched to achieve different tactile perception signals.
  • the actuator 21 generates vibration signals with frequencies f3 ⁇ f2 ⁇ f4 ⁇ f1 ⁇ f2 ⁇ f3 in sequence, and the vibration units on the haptic feedback substrate resonate in turn in the directions indicated by the arrows, thereby generating haptic feedback Signal.
  • f1 is the natural frequency of vibration unit 1 in FIG. 3
  • f2 is the natural frequency of vibration unit 2
  • f3 is the natural frequency of vibration unit 3
  • f4 is the natural frequency of vibration unit 4 . Therefore, the actuator 21 sequentially generates vibration signals of different frequencies according to time, and the tactile feedback substrate can generate different tactile sensing signals.
  • the tactile feedback substrate controls the actuator to generate a vibration signal, and then drives the vibration unit whose natural frequency is close to or equal to the frequency of the vibration signal to resonate, and the amplitude is enhanced, so as to realize independent control of each vibration unit and realize local Haptic feedback. Since the resonance can increase the amplitude, the present application can also enhance the tactile sensation of the haptic feedback substrate.
  • each vibration unit has different natural frequencies, by controlling the actuator to generate vibration signals of different frequencies in turn, the vibration of multiple vibration units can be locally controlled and switched to realize different tactile perception signals.
  • Each vibration unit is equipped with an actuator to realize local control. Therefore, the structural design of the haptic feedback substrate can be simplified, the volume and cost of the touch feedback module can be reduced, and the touch feedback device can be made lighter and smarter.
  • the difference between the natural frequencies of any two vibration units 22 in the haptic feedback substrate may be greater than the aforementioned preset threshold.
  • the difference between the natural frequencies of the vibration unit 22 and the specific value of the preset threshold can be set according to actual needs, which is not limited in this application.
  • the vibration unit 22 may include a base 41 , a cantilever beam 42 and a mass 43 , the mass 43 is arranged at the center of the vibration unit 22 , and the base 41 surrounds It is arranged around the mass block 43 , the mass block 43 and the base 41 are connected by a cantilever beam 42 , and the actuator 21 is arranged on one side of the base 41 .
  • the cantilever beam 42 and the mass 43 , as well as the annular structure 71 shown in FIG. 7 , etc. constitute the microstructure of the vibration unit 22 .
  • the position of the actuator 21 on the vibration unit 22 is located on the base 41. In order to avoid signal interference, the actuator 21 can avoid contact with the microstructure, as shown in FIG. 2a.
  • the base 41 , the cantilever beam 42 and the mass 43 may be an integral structure.
  • a laser, an etching solution, etc. can be used to process the substrate to prepare the base 41 and a microstructure with a specific pattern.
  • the material of the substrate may be, for example, polycarbonate, glass, acrylic plate, copper beryllium, stainless steel, etc., which is not limited in this embodiment.
  • the inventor found that some specific patterns are etched on the surface of the substrate, and by changing the parameters such as the line width, spacing, and rotation number of the microstructures, these microstructures can correspond to different natural frequencies, and then pass the actuator 21.
  • the haptic feedback substrate can be controlled to vibrate locally, thereby realizing local haptic feedback.
  • FIG. 8 a schematic diagram of the amplitude comparison between the substrates with two microstructures (microstructure 1 and microstructure 2) and the substrate without microstructures, when the substrate material is the same and the driving signal frequency is the same, is shown by It can be seen from Fig. 8 that the amplitude of the substrates fabricated with microstructures is enhanced (both greater than 1 ⁇ m), while the amplitudes of substrates without microstructures are weaker (less than 0.1 ⁇ m). Therefore, the substrate (resonator) can be etched into some specific shapes, and by adjusting the frequency of the vibration signal generated by the actuator 21, the effect of local vibration can be formed, and different tactile perception signals can be realized, thereby reducing the The volume of the haptic feedback device reduces the cost.
  • the size of the mass 43 may be greater than or equal to 1 mm and less than or equal to 50 mm.
  • the shape of the mass block 43 may be, for example, a circle, a polygon (such as a triangle, a quadrilateral, a pentagon, a hexagon, etc.), an ellipse, or the like, which is not limited in this embodiment.
  • the outer contour shape of the base 41 may be a circle, a polygon (such as a triangle, a quadrilateral, a pentagon, a hexagon, etc.), an ellipse, etc., which is not limited in this embodiment.
  • the outer contour shapes of the bases 41 shown in FIGS. 4 to 7 are all square.
  • the cantilever beam 42 may be in the shape of a spiral, wherein the inner circle of the spiral is connected to the mass 43 , and the outer circle of the spiral is connected to the base 41 .
  • the spirals shown with reference to a, b and c in FIG. 4 are Archimedes spirals.
  • m is the etching
  • the distance from the starting point to the polar coordinate origin, m, n are both preset real numbers, and the polar coordinate origin is the center point of the mass block 43 .
  • the shape of the cantilever beam 42 may be an L-shaped arm, the long arm of the L-shaped arm is connected to the base 41 , and the short arm of the L-shaped arm is connected to the mass 43 .
  • the shape of the mass 43 may be a polygon, the connection point of the L-shaped arm and the mass 43 may be located at the vertex of the polygon.
  • the shape of the mass 43 is square, the short arms of the four L-shaped arms are respectively connected to the four vertices of the mass mass 43 , and the long arms of the four L-shaped arms are respectively connected to the base 41 .
  • the cantilever beam 42 can be in the shape of an inline shape, one end of the inline shape is connected to the mass block 43 , and the other end is connected to the base 41 .
  • the connection point between the cantilever beam 42 and the base 41 can be the vertex of the polygon (b and c, and a and b in Figure 7) or the midpoint of a side edge (a in Figure 6, and c and d in Figure 7).
  • the vibration unit 22 may further include an annular structure 71 disposed between the mass block 43 and the base 41 , the annular structure 71 is disposed around the mass block 43 , and a cantilever beam is passed between the annular structure 71 and the mass block 43 . 42 connections.
  • the annular structure 71 may be a closed structure with the mass block 43 as the center and surrounding the mass block 43 .
  • the shape of the annular structure 71 can be consistent with the shape of the mass 43. As shown in a, b and c in FIG. 7, the shape of the mass 43 is a square, and the shape of the annular structure 71 is a square surrounding the mass 43, As shown in d in FIG. 7 , the shape of the mass 43 is a circle, and the shape of the annular structure 71 is a circle surrounding the mass 43 .
  • the width of the annular structure 71 may be greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the distance between two adjacent annular structures 71 may be greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the centers of the plurality of annular structures 71 may be the same, for example, the centers of the plurality of annular structures 71 are all centered on the mass block 43 .
  • the number of annular structures 71 may be less than or equal to 20, which is not limited in this embodiment.
  • the number of ring structures 71 of the three vibration units shown with reference to FIG. 6 is 0, the number of ring structures 71 of the vibration units shown with reference to a, b and c in FIG.
  • the number of ring structures 71 of the vibration unit shown in d is four.
  • the width of the annular structure 71 is 0.5 mm, and the number of annular structures 71 is 2 and 3, respectively, the corresponding natural frequencies are 3308 Hz and 2667 Hz, respectively.
  • the corresponding natural frequencies are 3607 Hz and 2980 Hz, respectively.
  • the natural frequency corresponding to the vibration unit 22 ranges from 1 to 5 kHz. It should be noted that the widths of the plurality of annular structures 71 may be the same or different; the distances between the plurality of annular structures 71 may be the same or different, which are not limited in this embodiment.
  • the microstructure in the vibration unit 22 may be a hollow structure that penetrates through the substrate, or may be a non-hollow structure that is only etched to a certain depth, which is not limited in this application.
  • the vibration unit 22 is not limited to the structures shown in FIG. 4 to FIG. 7 , the specific structure of the vibration unit 22 can be determined according to actual needs, and the specific structure of the vibration unit 22 is not limited in this embodiment.
  • a first filling layer may be provided at the gap 44 in the vibration unit 22, and the Young's modulus of the first filling layer is smaller than the Young's modulus of the base 41.
  • the thickness of a filling layer is less than or equal to the thickness of the base 41 .
  • the hollow part when pattern etching is performed on the substrate, if the gap 44 is a completely hollow structure, the hollow part can be compared with Young's modulus such as polydimethylsiloxane (PDMS) or rubber. Fill with low material; if only the slit 44 is etched to a certain depth, and a completely penetrating hollow structure is not formed, the actuator 21 can be arranged on the side with the microstructure, and the side of the haptic feedback substrate facing away from the actuator faces External settings (such as contact with the wrist skin) can also prevent foreign objects, dust, etc. from entering the haptic feedback substrate.
  • Young's modulus such as polydimethylsiloxane (PDMS) or rubber.
  • a second filling layer 91 is provided between the bases 41 of two adjacent vibrating units 22,
  • the Young's modulus of the second filling layer 91 is smaller than the Young's modulus of the susceptor 41
  • the thickness of the second filling layer 91 is smaller than or equal to the thickness of the susceptor 41 .
  • a in FIG. 9 is a schematic plan view of the tactile feedback substrate provided in this embodiment, and a cross-sectional structure at the position of the dotted line is shown in b in FIG. 9 .
  • materials with lower Young's modulus such as PDMS or soft rubber can be used to fill between the bases 41 of two adjacent vibration units 22 , because the second filling layer 91 has a lower Young's modulus.
  • disposed between two adjacent vibration units 22 can play a buffering role, thereby reducing vibration interference between adjacent vibration units 22 and isolating the vibration of adjacent vibration units 22 .
  • a first fixed layer 101 is provided on the side of the base 41 close to the actuator 21 , and the first fixed layer 101 is disposed close to the first edge of the base 41 , and the first edge is the position of the base 41 away from the mass 43 .
  • the first fixed layer 101 forms an escape area on the base 41
  • the actuator 21 is located in the escape area
  • the Young's modulus of the first fixed layer 101 is greater than that of the base 41 .
  • a in FIG. 10 is a schematic plan view of the haptic feedback substrate provided in this embodiment, and a cross-sectional structure schematic at the position of the dotted line is shown in b in FIG. 10 .
  • the first fixed layer 101 is close to the first edge of the base 41 and is arranged around the microstructure (including the mass, annular structure, cantilever beam, etc.), since the first fixed layer 101 is on the same side as the actuator 21 Therefore, the first fixing layer 101 forms an escape area at the position of the actuator 21 on the surface of the base 41 , and the escape area is used for placing the actuator 21 .
  • the material of the first fixed layer 101 is a rigid material with high Young's modulus, by disposing the first fixed layer 101 on the surface of the base 41 close to the first edge, the amplitude of the first edge of the base 41 can be reduced , so that the vibration interference to the adjacent vibration units 22 can be reduced.
  • a second fixed layer 111 is provided on the side of the base 41 away from the actuator 21 , and the second fixed layer 111 is disposed close to the first edge of the base 41 , and the first edge is the position of the base 41 away from the mass 43 .
  • the Young's modulus of the second pinned layer 111 is greater than the Young's modulus of the base 41 .
  • the second fixed layer 111 may be a closed structure surrounding the proof mass 43 .
  • a in FIG. 11 is a schematic plan view of the haptic feedback substrate provided in this embodiment, and a cross-sectional structure diagram at the position of the dotted line is shown in b in FIG. 11 .
  • the second fixed layer 111 is close to the first edge of the base 41 and is arranged around the microstructure (including the mass, annular structure, cantilever beam, etc.), since the second fixed layer 111 is on the opposite side of the actuator 21 Arranged, therefore, the second fixed layer 111 forms a closed mechanism around the microstructure on the surface of the base 41 . Since the material of the second fixed layer 111 is a rigid material with high Young's modulus, by disposing the second fixed layer 111 on the surface of the base 41 close to the first edge, the amplitude of the first edge of the base 41 can be reduced , so that the vibration interference to the adjacent vibration units 22 can be reduced.
  • the inventors simulated the haptic feedback substrates shown in FIGS. 9 to 11.
  • the actuator 21 When the actuator 21 generates vibration signals of different frequencies in sequence, the vibration signals of each frequency drive different vibration units to vibrate, and adjacent vibration units interact with each other. No interference or interference can be ignored.
  • An embodiment of the present application further provides a haptic feedback device, where the haptic feedback device includes the haptic feedback substrate described in any embodiment.
  • the haptic feedback device may be a wearable device such as a wristband, a wristband, a watch, etc., or a keyboard such as a virtual keyboard or a physical keyboard, which is not limited in this embodiment.
  • a schematic structural diagram of a haptic feedback device is shown, and the haptic feedback device is a keyboard.
  • different vibration units may be respectively set at the positions of each key 121 on the keyboard.
  • the position of the actuator can be set according to the relative position of the multiple vibration units.
  • the first vibration unit group 122 including three keys 121
  • three vibration units may be correspondingly provided.
  • the relative positional relationship between the three vibration units 22 in the first vibration unit group 122 and the actuator 21 is shown in FIG. 13 .
  • the second vibration unit group 123 including four keys 121
  • four vibration units may be correspondingly provided.
  • the relative positional relationship between the four vibration units 22 in the second vibration unit group 123 and the actuator 21 is shown in FIG. 14 .
  • the actuator 21 is disposed on the side of the haptic feedback substrate away from the touch surface.
  • each vibration unit 22 may be the same or different, and the specific size may be determined according to actual needs.
  • the shape of the actuator 21 may be a circle, a rectangle, a square or the like, which is not limited in this embodiment.
  • a layer of flexible film 151 may be provided on the surface of the haptic feedback substrate away from the actuator 21 .
  • the flexible film 151 can protect the haptic feedback substrate from being worn and prevent foreign objects from entering.
  • the material of the flexible film 151 can be a flexible film such as polyimide (PolyimideFilm, PI), polyester resin (Polyethylene terephthalate, PET), polycarbonate (Polycarbonate, PC), and the thickness can be greater than or equal to 1um and less than or equal to 1 mm, and the material and thickness of the flexible film 151 are not specifically limited in this embodiment.
  • the flexible film 151 can be attached to the operation surface of the haptic feedback substrate, such as the touch surface of a finger.
  • An embodiment of the present application further provides a haptic feedback method, which is applied to the haptic feedback substrate described in any of the embodiments.
  • the method includes: controlling an actuator to generate a vibration signal, and driving a vibration unit whose natural frequency is a target natural frequency to resonate , the difference between the target natural frequency and the frequency of the vibration signal is less than or equal to the preset threshold.
  • the actuators can be controlled to generate vibration signals of different frequencies in sequence, so as to locally control and switch the vibrations of multiple vibration units to realize different tactile sensing signals.
  • Embodiments of the present application provide a haptic feedback substrate, a haptic feedback device, and a haptic feedback method, wherein the haptic feedback substrate includes an actuator and a plurality of vibration units connected to the actuator, each vibration unit has a different natural frequency, and the actuator is used for A vibration signal is generated, and a vibration unit whose natural frequency is the target natural frequency is driven to resonate, and the difference between the target natural frequency and the frequency of the vibration signal is less than or equal to a preset threshold.
  • the vibration signal is generated by controlling the actuator, and then the vibration unit whose natural frequency is close to or equal to the frequency of the vibration signal is driven to resonate, and the amplitude is enhanced, thereby realizing the local control of the vibration unit and realizing local tactile feedback.
  • each vibration unit has different natural frequencies, by controlling the actuators to generate vibration signals of different frequencies in turn, the vibrations of multiple vibration units can be locally controlled and switched to realize different tactile perception signals.
  • the vibration unit is equipped with an actuator to realize local control. Therefore, the structural design of the haptic feedback substrate can be simplified, the volume of the touch feedback module can be reduced, the cost can be reduced, and the touch feedback device can be made lighter and smarter.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请提供了一种触觉反馈基板、触觉反馈装置及触觉反馈方法,其中,触觉反馈基板包括执行器以及连接执行器的多个振动单元,各振动单元具有不同的固有频率,执行器用于产生振动信号,并驱动固有频率为目标固有频率的振动单元发生共振,目标固有频率与振动信号的频率之间的差值小于或等于预设阈值。通过控制执行器产生振动信号,进而驱动固有频率与振动信号的频率接近或相等的振动单元发生共振,从而实现局部触觉反馈。由于各振动单元具有不同的固有频率,通过控制执行器依次产生不同频率的振动信号,就可以对多个振动单元的振动进行局部控制和切换,实现不同的触觉感知信号。本申请可以减小触控反馈模组的体积,使触控反馈设备更加轻便智能。

Description

触觉反馈基板、触觉反馈装置及触觉反馈方法 技术领域
本申请涉及触觉反馈技术领域,特别是涉及触觉反馈基板、触觉反馈装置及触觉反馈方法。
背景技术
目前,触觉反馈主要有两种呈现形式,第一种为全振动形式,这种形式下,整个屏幕作为一个整体进行振动,通过手指追击的方式调节电压脉冲信号,实现不同区域的不同触感。第二种为局部振动形式,这种形式下,仅指定部位发生共振。对于腕带等场景的应用主要是采用局部振动形式。
相关技术中,局部振动形式的实现主要是采用多个执行器(如振动马达)驱动不同区域基座振动,从而产生不同的感知信号。多个执行器的设置导致占据空间较大且成本高,不利于触觉反馈设备轻便化的发展。
发明内容
本申请公开了一种触觉反馈基板,所述触觉反馈基板包括执行器以及连接所述执行器的多个振动单元,各所述振动单元具有不同的固有频率,所述执行器用于产生振动信号,并驱动所述固有频率为目标固有频率的振动单元发生共振,所述目标固有频率与所述振动信号的频率之间的差值小于或等于预设阈值。
在一种可选的实现方式中,所述振动单元包括基座、悬臂梁以及质量块,所述质量块设置在所述振动单元的中心位置,所述基座环绕设置在所述质量块的四周,所述质量块与所述基座之间通过所述悬臂梁连接,所述执行器设置在所述基座的一侧。
在一种可选的实现方式中,所述基座、所述悬臂梁以及所述质量块为一体结构。
在一种可选的实现方式中,所述悬臂梁的形状为螺旋线,所述螺旋线 的内圈与所述质量块连接,所述螺旋线的外圈与所述基座连接。
在一种可选的实现方式中,所述螺旋线为阿基米德螺线。
在一种可选的实现方式中,所述悬臂梁的形状为L型臂,所述L型臂的长臂与所述基座连接,所述L型臂的短臂与所述质量块连接。
在一种可选的实现方式中,所述质量块的形状为多边形,所述L型臂与所述质量块的连接点位于所述多边形的顶点。
在一种可选的实现方式中,所述基座的形状为多边形,所述悬臂梁与所述基座的连接点为所述多边形的顶点或侧边中点。
在一种可选的实现方式中,所述振动单元还包括设置在所述质量块与所述基座之间的环状结构,所述环状结构环绕所述质量块设置,所述环状结构与所述质量块之间通过所述悬臂梁连接。
在一种可选的实现方式中,在所述环状结构环绕所述质量块的法线方向上,所述环状结构的宽度大于或等于0.1mm,且小于或等于1mm。
在一种可选的实现方式中,当所述环状结构的数量为多个时,相邻的两个所述环状结构之间的间距大于或等于0.1mm,且小于或等于1mm。
在一种可选的实现方式中,所述环状结构的数量小于或等于20。
在一种可选的实现方式中,在平行于所述触觉反馈基板所在平面的方向上,所述质量块的直径尺寸大于或等于1mm,且小于或等于50mm。
在一种可选的实现方式中,在所述振动单元内的基座、悬臂梁以及质量块之间的缝隙处设置有第一填充层,所述第一填充层的杨氏模量小于所述基座的杨氏模量,所述第一填充层的厚度小于或等于所述基座的厚度。
在一种可选的实现方式中,相邻的两个所述振动单元的基座之间设置有第二填充层,所述第二填充层的杨氏模量小于所述基座的杨氏模量,所述第二填充层的厚度小于或等于所述基座的厚度。
在一种可选的实现方式中,在所述基座靠近所述执行器的一侧设置有第一固定层,所述第一固定层靠近所述基座的第一边缘设置,所述第一边缘为所述基座远离所述质量块的边缘,所述第一固定层在所述基座上形成避让区域,所述执行器位于所述避让区域内,所述第一固定层的杨氏模量大于所述基座的杨氏模量。
在一种可选的实现方式中,在所述基座背离所述执行器的一侧设置有第二固定层,所述第二固定层靠近所述基座的第一边缘设置,所述第一边缘为所述基座远离所述质量块的边缘,所述第二固定层的杨氏模量大于所述基座的杨氏模量。
在一种可选的实现方式中,所述执行器为压电马达,扁平马达和线性马达中的至少一种。
本申请公开了一种触觉反馈装置,所述触觉反馈装置包括任一项所述的触觉反馈基板。
本申请公开了一种触觉反馈方法,其特征在于,应用于任一项所述的触觉反馈基板,所述方法包括:
控制所述执行器产生振动信号,并驱动所述固有频率为目标固有频率的振动单元发生共振,所述目标固有频率与所述振动信号的频率之间的差值小于或等于预设阈值。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了相关技术中一种触觉反馈设备的结构示意图;
图2a示出了本申请实施例提供的第一种触觉反馈基板的平面结构示意图;
图2b示出了本申请实施例提供的第二种触觉反馈基板的平面结构示意图;
图2c示出了本申请实施例提供的第三种触觉反馈基板的平面结构示意 图;
图2d示出了本申请实施例提供的第四种触觉反馈基板的平面结构示意图;
图3示出了本申请实施例提供的一种触觉反馈基板的控制过程示意图;
图4示出了本申请实施例提供的第一种振动单元的结构示意图;
图5示出了本申请实施例提供的第二种振动单元的结构示意图;
图6示出了本申请实施例提供的第三种振动单元的结构示意图;
图7示出了本申请实施例提供的第四种振动单元的结构示意图;
图8示出了本申请实施例提供的微结构衬底与无微结构衬底的振幅对比;
图9示出了本申请实施例提供的第一种触觉反馈基板的结构示意图;
图10示出了本申请实施例提供的第二种触觉反馈基板的结构示意图;
图11示出了本申请实施例提供的第三种触觉反馈基板的结构示意图;
图12示出了本申请实施例提供的一种触觉反馈装置的结构示意图;
图13示出了本申请实施例提供的执行器与键盘按键之间的一种位置关系示意图;
图14示出了本申请实施例提供的执行器与键盘按键之间的另一种位置关系示意图;
图15示出了本申请实施例提供的一种贴附有柔性薄膜的触觉反馈基板的结构示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,局部触觉感知技术(例如腕带)通常是采用多个振动马达驱动不同衬底区域振动,从而产生局部的感知信号。参照图1,四个振动马达分别 控制四个区域的振动,从而产生不同的触觉感知信号。现有的局部触觉感知技术具有占据空间较大,成本高,且不利于智能化手环轻便化发展等问题。因此,如何采用一个执行器实现局部触觉感知是本领域技术人员亟待解决的问题。
为了解决上述问题,本申请一实施例提供了一种触觉反馈基板,参照图2a,该触觉反馈基板包括执行器21以及连接执行器21的多个振动单元22,各振动单元22具有不同的固有频率,执行器21用于产生振动信号,并驱动固有频率为目标固有频率的振动单元22发生共振,目标固有频率与振动信号的频率之间的差值小于或等于预设阈值。
本实施例中,执行器21为能够产生振动信号的器件如马达等。执行器21可以为压电马达,扁平马达和线性马达等马达中的至少一种,本实施例对此不作具体限定。采用压电马达作为执行器21,有助于实现触觉反馈基板的轻薄化。
本实施例中,多个振动单元22可以分别位于触觉反馈基板的不同区域,各振动单元22分别与执行器21接触连接,即一个执行器21可以用于驱动与该执行器21接触连接的多个振动单元22,从而可以减小触控反馈模组的体积。如图2a所示的触觉反馈基板包括四个振动单元22,即一个执行器21分别与四个振动单元22接触连接,一个执行器21用于驱动四个振动单元22。
需要说明的是,本实施例中的触觉反馈基板的形状可以是矩形的,如图2a和2b所示出的。参照图2a,触觉反馈基板包括阵列排布的2*2个振动单元22,在矩形的中心位置设置有一个执行器21。参照图2b,触觉反馈基板包括阵列排布的3*3个振动单元22,可以在矩形的对角线上相邻的两个振动单元22之间设置一个执行器21,共可以设置四个执行器21,四个执行器21的大小可以相同或不同,四个执行器21的类型可以相同或不同,执行器21的大小和类型可以根据实际需求确定。另外,本实施例还适用于m*n个振动单元22,本申请对m和n的具体数据不作限定。需要说明的是,多个振动单元22的排布方式为阵列排布不是必须的,多个振动单元22的具体排布方式可以根据实际需求进行设计,本实施例对此不作限定。
本实施例中的触觉反馈基板的形状还可以是圆形的,如图2c和2d所示 出的,多个振动单元22围成一圈,环绕设置在圆心的四周,在圆心位置处可以设置一个执行器21。在图2c中,一个执行器21对应四个振动单元22;在图2d中,一个执行器21对应八个振动单元22。当触觉反馈基板的形状为圆形时,执行器21放置在圆心位置处,一个执行器21可以用于驱动更多的振动单元22,可以进一步减小触控反馈模组的体积。其中,一个执行器21对应的振动单元22的数量可以根据实际情况设定,本实施例对此不作限定。
需要说明的是,本实施例中触觉反馈基板的形状并不仅限于上述的圆形和矩形,触觉反馈基板的形状还可以为椭圆形、五边形、六边形等等,本实施例对此不作限定。
在具体实现中,可以通过在玻璃、金属、塑料等材质表面刻蚀出具有特定规则的图案,来制作具有特定固有频率的振动单元22,振动单元22的具体结构在后续实施例中会详细描述。
本实施例中,多个振动单元22共用一个执行器21,通过控制执行器21产生振动信号,多个振动单元22中固有频率接近或等于振动信号频率的振动单元22与执行器21发生共振,振幅增强,同时由于其它振动单元22的固有频率与振动信号频率相差较大,不会发生共振,振幅减弱,这样就可以实现对各振动单元22的独立控制,实现局部触觉反馈。
在具体应用中,由于各振动单元22具有不同的固有频率,通过控制执行器依次产生不同频率的振动信号,就可以对多个振动单元的振动进行局部控制和切换,实现不同的触觉感知信号。如图3所示,执行器21依次产生频率为f3→f2→f4→f1→f2→f3的振动信号,该触觉反馈基板上的振动单元按照箭头所示的方向依次发生共振,从而产生触觉反馈信号。其中,f1为图3中振动单元1的固有频率,f2为振动单元2的固有频率,f3为振动单元3的固有频率,f4为振动单元4的固有频率。因此,执行器21按照时间依次产生不同频率的振动信号,触觉反馈基板就可以产生不同的触觉感知信号。
本实施例提供的触觉反馈基板,通过控制执行器产生振动信号,进而驱动固有频率与振动信号的频率接近或相等的振动单元发生共振,振幅增强,从而实现对各振动单元的独立控制,实现局部触觉反馈。由于共振可以提高振幅,因此本申请还可以增强触觉反馈基板的触感。另外,由于各 振动单元具有不同的固有频率,通过控制执行器依次产生不同频率的振动信号,就可以对多个振动单元的振动进行局部控制和切换,实现不同的触觉感知信号,本申请无需为每个振动单元都配置一个执行器即可实现局部控制,因此,可以简化触觉反馈基板的结构设计,减小触控反馈模组的体积,降低成本,使触控反馈设备更加轻便智能。
需要说明的是,为了能够更好地对各振动单元22进行独立、局部地控制,触觉反馈基板中的任意两个振动单元22的固有频率之间的差值可以大于上述的预设阈值。在实际应用中,振动单元22的固有频率之差以及预设阈值的具体数值可以根据实际需求设定,本申请对此不作限定。
在一种可选的实现方式中,参照图4至图7,振动单元22可以包括基座41、悬臂梁42以及质量块43,质量块43设置在振动单元22的中心位置,基座41环绕设置在质量块43的四周,质量块43与基座41之间通过悬臂梁42连接,执行器21设置在基座41的一侧。
本实施例中,悬臂梁42和质量块43,以及图7中所示的环状结构71等构成振动单元22的微结构。在实际应用中,执行器21在振动单元22上的位置位于基座41上,为了避免信号干扰,执行器21可以避免与微结构有接触,如图2a所示。
本实施例中,基座41、悬臂梁42以及质量块43可以为一体结构。在具体实现中,可以使用激光、刻蚀液等对衬底进行加工,制备出基座41以及具有特定图案的微结构。其中,衬底的材质例如可以为聚碳酸酯、玻璃、亚克力板、铜铍以及不锈钢等,本实施例对此不作限定。
发明人根据仿真结果发现,在衬底表面刻蚀出一些特定的图案,通过改变微结构的线宽、间距以及转数等参数,可以使这些微结构对应不同的固有频率,进而通过执行器21对具备这些微结构的振动单元22施加不同频率的振动信号,可以控制触觉反馈基板发生局部振动,实现局部触觉反馈。
参照图8示出了两种微结构(微结构1和微结构2)的衬底与未做微结构的衬底,在衬底材质相同且驱动信号频率相同的情况下的振幅对比示意图,由图8可以看出,制作微结构的衬底振幅增强(均大于1μm),而无微结构衬底的振幅较弱(小于0.1μm)。因此,可以将衬底(共振体)进行刻蚀出一些特定形状的图形,通过调节执行器21产生的振动信号的频率, 可形成局部振动的效果,实现不同的触觉感知信号,从而可以减小触觉反馈装置的体积,降低成本。
在具体实现中,在平行于触觉反馈基板所在平面的方向上,质量块43的尺寸可以大于或等于1mm,且小于或等于50mm。质量块43的形状例如可以为圆形、多边形(如三角形、四边形、五边形、六边形等)以及椭圆形等,本实施例对不作限定。
本实施例中,基座41的外轮廓形状可以为圆形、多边形(如三角形、四边形、五边形、六边形等)以及椭圆形等,本实施例对不作限定。图4至图7示出的基座41的外轮廓形状均为正方形。
参照图4,悬臂梁42的形状可以为螺旋线,其中,螺旋线的内圈与质量块43连接,螺旋线的外圈与基座41连接。
在具体实现中,参照图4中的a、b以及c示出的螺旋线为阿基米德螺线。对于图4中的a和b,悬臂梁42的图形或者被刻蚀掉的图形上各点的坐标满足阿基米德螺线的极坐标方程:r=m+nΘ,其中,m为刻蚀起点到极坐标原点的距离,m,n均为预设实数,极坐标原点为质量块43的中心点。对于图4中的c,悬臂梁42的图形或者被刻蚀掉的图形可以划分为k段线段,其中每段线段的中心点都位于阿基米德螺线上,每段线段的中心点坐标满足阿基米德螺线的极坐标方程:r=m+nΘ,其中,m为刻蚀起点到极坐标原点的距离,m,n均为预设实数,极坐标原点为质量块43的中心点。将螺旋线划分为k段线段时,可以简化制备工艺。其中,k的数值可以根据实际需求确定,本申请对其不作限定。
参照图5,悬臂梁42的形状可以为L型臂,L型臂的长臂与基座41连接,L型臂的短臂与质量块43连接。当质量块43的形状可以为多边形时,L型臂与质量块43的连接点可以位于多边形的顶点。
如图5所示,质量块43的形状为正方形,四个L型臂的短臂分别连接质量块43的四个顶点,四个L型臂的长臂分别与基座41连接。
参照图6和图7,悬臂梁42的形状可以为一字型,一字型的一端连接质量块43,另一端连接基座41。当基座41的形状为多边形时(如图6和图7示出的基座41形状为正方形),悬臂梁42与基座41的连接点可以为多边形的顶点(如图6中的b和c,以及图7中的a和b所示)或侧边中点(如 图6中的a,以及图7中的c和d所示)。
参照图7,振动单元22还可以包括设置在质量块43与基座41之间的环状结构71,环状结构71环绕质量块43设置,环状结构71与质量块43之间通过悬臂梁42连接。其中,环状结构71可以为以质量块43为中心,环绕在质量块43四周的闭合结构。
环状结构71的形状可以与质量块43的形状一致,如图7中的a、b和c所示,质量块43的形状为正方形,环状结构71的形状为环绕质量块43的正方形,如图7中的d所示,质量块43的形状为圆形,环状结构71的形状为环绕质量块43的圆形。
在具体实现中,在环状结构71环绕质量块43的法线方向上,环状结构71的宽度可以大于或等于0.1mm,且小于或等于1mm。
当环状结构71的数量为多个时,相邻的两个环状结构71之间的间距可以大于或等于0.1mm,且小于或等于1mm。其中,多个环状结构71的中心可以相同,例如多个环状结构71均以质量块43为中心。
环状结构71的数量可以小于或等于20,本实施例对此不作限定。参照图6示出的三种振动单元的环状结构71的数量为0,参照图7中的a、b和c示出的振动单元的环状结构71的数量均为3,图7中的d示出的振动单元的环状结构71的数量为4。
发明人通过仿真发现,随着环状结构71的数量增加,振动单元22对应的固有频率降低;随着环状结构71的宽度增加,振动单元22对应的固有频率升高;随着环状结构71的间距增加,振动单元22对应的固有频率降低。例如,当环状结构71的宽度为0.5mm,环状结构71的数量分别为2和3时,对应的固有频率分别为3308Hz和2667Hz。当环状结构71的宽度为0.3mm,环状结构71的数量分别为2和5时,对应的固有频率分别为3607Hz和2980Hz。
当环状结构71的宽度以及间距的范围为0.1mm~1mm,环状结构71的数量为0~20时,振动单元22对应的固有频率范围为1~5kHz。需要说明的是,多个环状结构71的宽度可以相同或不相同;多个环状结构71之间的间距可以相同或不相同,本实施例对此不作限定。
需要说明的是,上述振动单元22中的微结构可以是贯穿衬底的镂空结 构,也可以是仅刻蚀一定深度的非镂空结构,本申请对此不作限定。另外,振动单元22并不仅限于图4至图7所示出的几种结构,振动单元22的具体结构可以根据实际需求确定,本实施例对振动单元22的具体结构不作限定。
本实施中,由于振动单元22内的基座41、悬臂梁42、质量块43以及环状结构71之间均设置有缝隙,为了防止异物、灰尘等通过缝隙进入触觉反馈基板,在一种可选的实现方式中,参照图4至图7,可以在振动单元22内的缝隙44处设置有第一填充层,第一填充层的杨氏模量小于基座41的杨氏模量,第一填充层的厚度小于或等于基座41的厚度。
在具体实现中,对衬底进行图案刻蚀时,若缝隙44处为完全镂空的结构,则可以在镂空部分用聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)或橡胶等杨氏模量较低的物质进行填充;若仅对缝隙44刻蚀了一定深度,未形成完全贯穿的镂空结构,则可以将执行器21设置在有微结构的一侧,触觉反馈基板背离执行器的一侧朝外设置(如与手腕皮肤接触),这样也能防止异物、灰尘等进入触觉反馈基板。
为了防止相邻的振动单元在振动的时候互相干扰,在一种可选的实现方式中,参照图9,相邻的两个振动单元22的基座41之间设置有第二填充层91,第二填充层91的杨氏模量小于基座41的杨氏模量,第二填充层91的厚度小于或等于基座41的厚度。其中,图9中的a为本实施例提供的触觉反馈基板的平面结构示意图,虚线位置处的剖面结构示意图如图9中的b所示。
在具体实现中,可以用PDMS或者软橡胶等杨氏模量较低的物质填充在相邻的两个振动单元22的基座41之间,由于第二填充层91的杨氏模量较低,设置在相邻的两个振动单元22之间可以起到缓冲作用,从而可以减小相邻的振动单元22之间的振动干扰,对相邻振动单元22的振动进行隔离。
参照图10,在基座41靠近执行器21的一侧设置有第一固定层101,第一固定层101靠近基座41的第一边缘设置,第一边缘为基座41远离质量块43的边缘,第一固定层101在基座41上形成避让区域,执行器21位于避让区域内,第一固定层101的杨氏模量大于基座41的杨氏模量。其中,图10中的a为本实施例提供的触觉反馈基板的平面结构示意图,虚线位置处 的剖面结构示意图如图10中的b所示。
如图10所示,第一固定层101靠近基座41的第一边缘且围绕微结构(包括质量块、环状结构、悬臂梁等)设置,由于第一固定层101与执行器21同侧设置,因此,第一固定层101在基座41表面的执行器21位置处形成避让区域,该避让区域用于放置执行器21。
由于第一固定层101的材料为杨氏模量较高的刚性材料,因此,通过在基座41靠近第一边缘的表面上设置第一固定层101,可以减少基座41第一边缘的振幅,从而可以减小对相邻的振动单元22的振动干扰。
参照图11,在基座41背离执行器21的一侧设置有第二固定层111,第二固定层111靠近基座41的第一边缘设置,第一边缘为基座41远离质量块43的边缘,第二固定层111的杨氏模量大于基座41的杨氏模量。其中,第二固定层111可以为环绕质量块43的闭合结构。其中,图11中的a为本实施例提供的触觉反馈基板的平面结构示意图,虚线位置处的剖面结构示意图如图11中的b所示。
如图11所示,第二固定层111靠近基座41的第一边缘且围绕微结构(包括质量块、环状结构、悬臂梁等)设置,由于第二固定层111与执行器21异侧设置,因此,第二固定层111在基座41的表面形成环绕微结构的闭合机构。由于第二固定层111的材料为杨氏模量较高的刚性材料,因此,通过在基座41靠近第一边缘的表面上设置第二固定层111,可以减少基座41第一边缘的振幅,从而可以减小对相邻的振动单元22的振动干扰。
发明人对图9至图11的触觉反馈基板进行了仿真,当执行器21依次产生不同频率的振动信号时,各频率的振动信号分别驱动不同的振动单元振动,相邻的振动单元之间互不干扰或者干扰可以忽略不计。
本申请一实施例还提供了一种触觉反馈装置,触觉反馈装置包括任一实施例所述的触觉反馈基板。
其中,触觉反馈装置可以为可穿戴设备如手环、腕带、手表等,还可以为键盘如虚拟键盘或实体键盘等,本实施例对此不作限定。
参照图12示出了一种触觉反馈装置的结构示意图,该触觉反馈装置为键盘。在具体实现中,键盘上的各个按键121的位置处可以分别设置不同的 振动单元。执行器的位置可以根据多个振动单元的相对位置进行设置。例如,对于第一振动单元组122,包括三个按键121,可以对应设置三个振动单元。第一振动单元组122中三个振动单元22与执行器21之间的相对位置关系如图13所示。对于第二振动单元组123,包括四个按键121,可以对应设置四个振动单元。第二振动单元组123中四个振动单元22与执行器21之间的相对位置关系如图14所示。其中,执行器21设置在触觉反馈基板背离触控表面的一侧。
由图13和图14可以看出,各振动单元22的大小可以相同或不相同,具体大小可以根据实际需求确定。另外,执行器21的形状可以为圆形、长方形、正方形等形状,本实施例对此不作限定。
在具体实现中,参照图15,在触觉反馈基板背离执行器21的一侧表面还可以设置一层柔性薄膜151,柔性薄膜151可以保护触觉反馈基板不被磨损,同时可以防止异物进入。其中,柔性薄膜151的材质可以为聚酰亚胺(PolyimideFilm,PI)、涤纶树脂(Polyethylene terephthalate,PET)、聚碳酸酯(Polycarbonate,PC)等柔性膜,厚度可以大于或等于1um且小于或等于1mm,本实施例对柔性薄膜151的材质和厚度不作具体限定。
需要说明的是,柔性薄膜151可以贴附在触觉反馈基板的操作表面,如手指的触控表面。
本申请一实施例还提供了一种触觉反馈方法,应用于任一实施例所述的触觉反馈基板,方法包括:控制执行器产生振动信号,并驱动固有频率为目标固有频率的振动单元发生共振,目标固有频率与振动信号的频率之间的差值小于或等于预设阈值。
在具体实现中,可以控制执行器依次产生不同频率的振动信号,从而对多个振动单元的振动进行局部控制和切换,实现不同的触觉感知信号。
本申请实施例提供了一种触觉反馈基板、触觉反馈装置及触觉反馈方法,其中,触觉反馈基板包括执行器以及连接执行器的多个振动单元,各振动单元具有不同的固有频率,执行器用于产生振动信号,并驱动固有频率为目标固有频率的振动单元发生共振,目标固有频率与振动信号的频率之间的差值小于或等于预设阈值。本申请技术方案中,通过控制执行器产生振动信号,进而驱动固有频率与振动信号的频率接近或相等的振动单元 发生共振,振幅增强,从而实现对振动单元的局部控制,实现局部触觉反馈。由于各振动单元具有不同的固有频率,通过控制执行器依次产生不同频率的振动信号,就可以对多个振动单元的振动进行局部控制和切换,实现不同的触觉感知信号,本申请无需为每个振动单元都配置一个执行器即可实现局部控制,因此,可以简化触觉反馈基板的结构设计,减小触控反馈模组的体积,降低成本,使触控反馈设备更加轻便智能。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本申请所提供的一种触觉反馈基板、触觉反馈装置及触觉反馈方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中, 并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种触觉反馈基板,其特征在于,所述触觉反馈基板包括执行器以及连接所述执行器的多个振动单元,各所述振动单元具有不同的固有频率,所述执行器用于产生振动信号,并驱动所述固有频率为目标固有频率的振动单元发生共振,所述目标固有频率与所述振动信号的频率之间的差值小于或等于预设阈值。
  2. 根据权利要求1所述的触觉反馈基板,其特征在于,所述振动单元包括基座、悬臂梁以及质量块,所述质量块设置在所述振动单元的中心位置,所述基座环绕设置在所述质量块的四周,所述质量块与所述基座之间通过所述悬臂梁连接,所述执行器设置在所述基座的一侧。
  3. 根据权利要求2所述的触觉反馈基板,其特征在于,所述基座、所述悬臂梁以及所述质量块为一体结构。
  4. 根据权利要求2或3所述的触觉反馈基板,其特征在于,所述悬臂梁的形状为螺旋线,所述螺旋线的内圈与所述质量块连接,所述螺旋线的外圈与所述基座连接。
  5. 根据权利要求4所述的触觉反馈基板,其特征在于,所述螺旋线为阿基米德螺线。
  6. 根据权利要求2或3所述的触觉反馈基板,其特征在于,所述悬臂梁的形状为L型臂,所述L型臂的长臂与所述基座连接,所述L型臂的短臂与所述质量块连接。
  7. 根据权利要求6所述的触觉反馈基板,其特征在于,所述质量块的形状为多边形,所述L型臂与所述质量块的连接点位于所述多边形的顶点。
  8. 根据权利要求2至7任一项所述的触觉反馈基板,其特征在于,所述基座的形状为多边形,所述悬臂梁与所述基座的连接点为所述多边形的顶点或侧边中点。
  9. 根据权利要求8所述的触觉反馈基板,其特征在于,所述振动单元还包括设置在所述质量块与所述基座之间的环状结构,所述环状结构环绕所述质量块设置,所述环状结构与所述质量块之间通过所述悬臂梁连接。
  10. 根据权利要求9所述的触觉反馈基板,其特征在于,在所述环状结 构环绕所述质量块的法线方向上,所述环状结构的宽度大于或等于0.1mm,且小于或等于1mm。
  11. 根据权利要求9或10所述的触觉反馈基板,其特征在于,当所述环状结构的数量为多个时,相邻的两个所述环状结构之间的间距大于或等于0.1mm,且小于或等于1mm。
  12. 根据权利要求9至11任一项所述的触觉反馈基板,其特征在于,所述环状结构的数量小于或等于20。
  13. 根据权利要求2至12任一项所述的触觉反馈基板,其特征在于,在平行于所述触觉反馈基板所在平面的方向上,所述质量块的直径尺寸大于或等于1mm,且小于或等于50mm。
  14. 根据权利要求2至13任一项所述的触觉反馈基板,其特征在于,在所述振动单元内的基座、悬臂梁以及质量块之间的缝隙处设置有第一填充层,所述第一填充层的杨氏模量小于所述基座的杨氏模量,所述第一填充层的厚度小于或等于所述基座的厚度。
  15. 根据权利要求2至14任一项所述的触觉反馈基板,其特征在于,相邻的两个所述振动单元的基座之间设置有第二填充层,所述第二填充层的杨氏模量小于所述基座的杨氏模量,所述第二填充层的厚度小于或等于所述基座的厚度。
  16. 根据权利要求2至15任一项所述的触觉反馈基板,其特征在于,在所述基座靠近所述执行器的一侧设置有第一固定层,所述第一固定层靠近所述基座的第一边缘设置,所述第一边缘为所述基座远离所述质量块的边缘,所述第一固定层在所述基座上形成避让区域,所述执行器位于所述避让区域内,所述第一固定层的杨氏模量大于所述基座的杨氏模量。
  17. 根据权利要求2至16任一项所述的触觉反馈基板,其特征在于,在所述基座背离所述执行器的一侧设置有第二固定层,所述第二固定层靠近所述基座的第一边缘设置,所述第一边缘为所述基座远离所述质量块的边缘,所述第二固定层的杨氏模量大于所述基座的杨氏模量。
  18. 根据权利要求1至17任一项所述的触觉反馈基板,其特征在于,所述执行器为压电马达,扁平马达和线性马达中的至少一种。
  19. 一种触觉反馈装置,其特征在于,所述触觉反馈装置包括权利要 求1至18任一项所述的触觉反馈基板。
  20. 一种触觉反馈方法,其特征在于,应用于权利要求1至18任一项所述的触觉反馈基板,所述方法包括:
    控制所述执行器产生振动信号,并驱动所述固有频率为目标固有频率的振动单元发生共振,所述目标固有频率与所述振动信号的频率之间的差值小于或等于预设阈值。
PCT/CN2021/078018 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法 WO2022178799A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/620,546 US20230154293A1 (en) 2021-02-26 2021-02-26 Haptic feedback substrate, haptic feedback apparatus and haptic feedback method
CN202180000353.XA CN115250632A (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法
PCT/CN2021/078018 WO2022178799A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078018 WO2022178799A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法

Publications (1)

Publication Number Publication Date
WO2022178799A1 true WO2022178799A1 (zh) 2022-09-01

Family

ID=83047685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078018 WO2022178799A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法

Country Status (3)

Country Link
US (1) US20230154293A1 (zh)
CN (1) CN115250632A (zh)
WO (1) WO2022178799A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350485A1 (de) * 2022-10-07 2024-04-10 Preh GmbH Bedienelement mit einem verbessert auf die betätigungsfläche beschränkten haptischen feedback

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195514A (zh) * 2010-03-04 2011-09-21 三星电机株式会社 触觉反馈装置和电子装置
CN102762265A (zh) * 2009-10-16 2012-10-31 伊梅森公司 用于以多个共振频率来提供触觉反馈的系统和方法
CN105204687A (zh) * 2015-09-28 2015-12-30 京东方科技集团股份有限公司 触觉反馈元件、触摸面板及显示装置、工作方法
US20190318590A1 (en) * 2018-04-17 2019-10-17 California Institute Of Technology Haptic devices using structured metasurfaces

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523329A (zh) * 2006-10-05 2009-09-02 英默森公司 多模触觉反馈系统
US7843277B2 (en) * 2008-12-16 2010-11-30 Immersion Corporation Haptic feedback generation based on resonant frequency
EP2508963A1 (en) * 2011-04-08 2012-10-10 Research In Motion Limited Tactile feedback method and apparatus
KR101391710B1 (ko) * 2012-03-16 2014-05-30 한국표준과학연구원 햅틱피드백 제공모듈, 그 제공모듈을 이용한 햅틱 감성 피드백 제공장치, 그 제공장치가 부착된 휴대용 단말기, 그 제공장치가 부착된 방향제시장치 및 그 제공장치를 이용한 햅틱 감성 피드백 제공방법
CN103916050B (zh) * 2013-01-07 2016-08-10 北京嘉岳同乐极电子有限公司 多频谐振压电振动发电装置
CN110413099A (zh) * 2018-04-28 2019-11-05 北京钛方科技有限责任公司 触觉反馈系统及方法
CN111324204A (zh) * 2020-02-25 2020-06-23 南昌欧菲生物识别技术有限公司 压电马达反馈模组、触控面板及电子装置
CN112099667B (zh) * 2020-09-11 2024-03-08 京东方科技集团股份有限公司 一种触觉传感及反馈基板及其驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762265A (zh) * 2009-10-16 2012-10-31 伊梅森公司 用于以多个共振频率来提供触觉反馈的系统和方法
CN102195514A (zh) * 2010-03-04 2011-09-21 三星电机株式会社 触觉反馈装置和电子装置
CN105204687A (zh) * 2015-09-28 2015-12-30 京东方科技集团股份有限公司 触觉反馈元件、触摸面板及显示装置、工作方法
US20190318590A1 (en) * 2018-04-17 2019-10-17 California Institute Of Technology Haptic devices using structured metasurfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350485A1 (de) * 2022-10-07 2024-04-10 Preh GmbH Bedienelement mit einem verbessert auf die betätigungsfläche beschränkten haptischen feedback

Also Published As

Publication number Publication date
US20230154293A1 (en) 2023-05-18
CN115250632A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US9820055B2 (en) Transducer system
TWI631494B (zh) 接觸敏感裝置、包含所述接觸敏感裝置的顯示設備及顯示設備製造方法
WO2015059887A1 (ja) 電子機器
WO2022178799A1 (zh) 触觉反馈基板、触觉反馈装置及触觉反馈方法
US10556252B2 (en) Electronic device having a tuned resonance haptic actuation system
US20150169060A1 (en) Time-reversal tactile stimulation interface
KR20150102942A (ko) 가변 렌즈의 압전 액츄에이터 구조의 최적화 방법
CN110839195A (zh) 发声装置与阀
TW202002672A (zh) 喇叭結構層及顯示器
US20160014521A1 (en) Transducer and electronic device including the same
US20210041954A1 (en) Display device
US20210072861A1 (en) Areal device offering improved localized deformation
FI128874B (en) Piezoelectric device for haptic feedback with an integrated support
KR20140080038A (ko) 터치패널 및 그 제조방법
EP3843426B1 (en) Sound producing device
JP2005033989A (ja) 多自由度振動型アクチュエータ
KR20150026501A (ko) 터치센서 모듈
KR20160075019A (ko) 표시 장치
Kuroda et al. How to fix an ultrasonic variable-focus liquid crystal lens for substrate-mountable applications
KR20180041981A (ko) 오디오 출력 장치
WO2023176563A1 (ja) 配線回路基板
KR20160074375A (ko) 접촉 감응 소자 및 접촉 감응 소자를 포함하는 표시 장치
TWI767727B (zh) 觸覺板系統及其之形成方法
US11875000B2 (en) Haptic feedback device provided with stiffeners
WO2022224573A1 (ja) 駆動素子および光偏向素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/01/2024)