WO2022178765A1 - Rotatable fluent shelf and robot system - Google Patents

Rotatable fluent shelf and robot system Download PDF

Info

Publication number
WO2022178765A1
WO2022178765A1 PCT/CN2021/077914 CN2021077914W WO2022178765A1 WO 2022178765 A1 WO2022178765 A1 WO 2022178765A1 CN 2021077914 W CN2021077914 W CN 2021077914W WO 2022178765 A1 WO2022178765 A1 WO 2022178765A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluent
storage
rotatable
assembly
objects
Prior art date
Application number
PCT/CN2021/077914
Other languages
French (fr)
Inventor
Sheng Wang
Wenyong ZHOU
Jianqiang JIA
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to CN202180092246.4A priority Critical patent/CN116801772A/en
Priority to PCT/CN2021/077914 priority patent/WO2022178765A1/en
Publication of WO2022178765A1 publication Critical patent/WO2022178765A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F1/00Racks for dispensing merchandise; Containers for dispensing merchandise
    • A47F1/04Racks or containers with arrangements for dispensing articles, e.g. by means of gravity or springs
    • A47F1/12Racks or containers with arrangements for dispensing articles, e.g. by means of gravity or springs dispensing from the side of an approximately horizontal stack
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F5/00Show stands, hangers, or shelves characterised by their constructional features
    • A47F5/02Rotary display stands
    • A47F5/025Rotary display stands having mechanical drive, e.g. turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H3/00Storage means or arrangements for workshops facilitating access to, or handling of, work tools or instruments
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B49/00Revolving cabinets or racks; Cabinets or racks with revolving parts
    • A47B49/004Cabinets with compartments provided with trays revolving on a vertical axis
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F5/00Show stands, hangers, or shelves characterised by their constructional features
    • A47F5/0081Show stands or display racks with movable parts
    • A47F5/0087Show stands or display racks with movable parts movable around an axis

Definitions

  • Embodiments of the present disclosure generally relate to a rotatable fluent shelf for storing objects and a robot system.
  • Fluent shelves also known as sliding type shelves or gravity flow shelves, belong to a storage system that relies on gravity flow to load, organize, and retrieve stored goods or objects. Maximizing space and efficiency, fluent shelves can improve racking productivity, and increase safety for employees.
  • Fluent shelves act as non-powered, downward-sloped storage conveyors, which allow for all subsequent objects or goods to move to the forefront, once the preceding item has been removed, otherwise known as first in first out (FIFO) racking. Items are loaded into the high end of the shelf, one by one. Within a confined lane, the objects or goods then travel forward over a deck of wheels or rollers, down the shelf, filling the structure from loading to picking end. In utilizing gravitational forces, objects or goods naturally find their path, filing in an orderly fashion, while consistently refilling the forward-most position for easy retrieval.
  • FIFO first in first out
  • Fluent shelves can benefit a number of industries including, e.g., food and beverage industry and automotive supplies.
  • fluent shelf systems provide the fast paced and readily available turnover of perishable and date sensitive food and beverage products. They are also especially effective in the meat packing industry, as large quantities of product must be stored and retrieved with speed, maintaining a frozen state.
  • Embodiments of the present disclosure provide a rotatable fluent shelf for storing objects and a robot system.
  • a rotatable fluent shelf for storing objects.
  • the rotatable fluent shelf comprises a fluent storage assembly comprising at least one inclined storage rack adapted to support the objects and each comprising: a loading port and a picking port arranged on opposite ends of the at least one inclined storage rack in an inclined direction; and a sliding mechanism arranged between the loading port and the picking port and configured to reduce a friction between the at least one inclined storage rack and the objects to enable the objects to move from the loading port to the picking port by gravity; and a rotation assembly coupled to the fluent storage assembly and adapted to drive the at least one inclined storage rack to rotate about a longitudinal axis of the fluent storage assembly.
  • positions of the loading port and the picking port can be adjusted or interchanged by rotating the inclined storage rack about the longitudinal axis.
  • an operator can load and/or pick objects more flexibly.
  • the flexible operation can reduce the operating space, and thus save floor space such as in storage locations.
  • the fluent storage assembly further comprises: a storage frame adapted to obliquely support the at least one inclined storage rack; and a coupling portion fixed on the storage frame and centered on the longitudinal axis. In this way, the fluent storage assembly can be manufactured in a cost-efficient way.
  • the rotation assembly comprises a driving component, and a transmission assembly coupled to the driving component and the coupling portion of the fluent storage assembly, so that the fluent storage assembly is driven by the driving component.
  • the fluent storage assembly can be easily driven to rotate at an appreciable speed.
  • the rotation assembly further comprises a locking component adapted to be coupled to the transmission assembly to lock the fluent storage assembly in at least one predetermined orientation. In this way, the fluent storage assembly can be locked in at least one predetermined orientation, thereby improving the stability of the fluent storage shelf.
  • the transmission assembly comprises a driving member coupled to the driving component; and a driven member engaged with the driving member and coupled to the coupling portion of the fluent storage assembly.
  • the locking component comprises a plurality of locking blocks arranged in a circumferential direction of the driven member, each of the plurality of locking blocks comprising a locking hole; and an extensible rod adapted to be extensible to insert into the corresponding locking hole when the fluent storage assembly is in one of the at least one predetermined orientations.
  • the locking component further comprises a rod driver coupled to the extensible rod and adapted to drive the extensible rod to extend and/or retract.
  • the at least one inclined storage rack comprises a plurality of inclined storage racks, and each of the plurality of inclined storage racks is adapted to be coupled to different portions of the storage frame to allow the at least one of following to be adjustable: a distance between the corresponding adjacent two of the plurality of inclined storage racks or an inclination angle of the corresponding inclined storage rack. In this way, the fluent storage shelf may be adjusted more flexibly according to different types of objects to be stored or supported.
  • the at least one inclined storage rack comprises at least one stop component arranged at the picking port to stop the objects. This arrangement can effectively prevent objects from sliding down to further improve the stability of the fluent storage shelf.
  • the at least one inclined storage rack comprises a plurality of channels separated by moveable dividers, so that a width of each of the plurality of channels is adjustable. This allows more flexible adjustment of the fluent storage shelf according to different types of objects to be stored or supported.
  • a robot system comprises a rotatable fluent shelf according to the first aspect as mentioned above; and a robot adapted to control a rotation of a fluent storage assembly of the rotatable fluent shelf to facilitate loading and/or picking of objects on the fluent storage assembly.
  • FIG. 1 shows a perspective view of a rotatable fluent shelf without a housing according to embodiments of the present disclosure
  • FIG. 2 shows a perspective view of a rotatable fluent shelf with a housing according to embodiments of the present disclosure
  • FIG. 3 shows a perspective view of a rotatable assembly according to embodiments of the present disclosure
  • FIG. 4 shows a top view of a rotatable assembly according to embodiments of the present disclosure
  • FIG. 5 shows a side view of a rotatable assembly according to embodiments of the present disclosure.
  • FIGs. 6 and 7 show perspective views, from different perspectives, of internal parts of a rotatable assembly according to embodiments of the present disclosure.
  • the term “comprises” and its variants are to be read as open terms that mean “comprises, but is not limited to. ”
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be comprised below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • Fluent shelf systems are ideal for supplying goods or objects of common stock keeping units (SKUs) in sorting and distribution operations. For example, when they are used in the food and beverage industry, fluent shelf systems provide the fast paced and readily available turnover of perishable and date sensitive food and beverage products. They also are a great option where high throughput is required or in a warehouse storage situation that calls for large volumes of each SKU.
  • SKUs stock keeping units
  • Fluent shelves act like a conveyor within a rack structure. Goods or objects are deposited at a loading port and then flow down an incline to be picked at the opposite end, i.e., a picking port. Using gravity to gently keep goods or objects staged for picking operations, fluent shelves are an economical first-in first-out storage rack solution.
  • the loading port and pickup port of conventional fluent shelves are fixed and cannot be interchanged.
  • the problem that follows is that, especially for the food and beverage industry, the space required for the operation of objects such as dishes is large. Furthermore, an inclination angle, a height and a width of the storage rack of a conventional fluent shelf cannot be flexibly adjusted according to the changes of the dishes.
  • embodiments of the present disclosure provide a rotatable fluent shelf 100 for storing objects such as dishes. Now some example embodiments will be described with reference to FIGs. 1-7.
  • FIG. 1 shows a perspective view of a rotatable fluent shelf 100 without a housing
  • FIG. 2 shows a perspective view of a rotatable fluent shelf 100 with a housing according to embodiments of the present disclosure
  • the rotatable fluent shelf 100 for storing objects 200 comprises a fluent storage assembly 101 and a rotation assembly 102.
  • Both of fluent storage assembly 101 and the rotation assembly 102 may be modularized into various specifications and models, which may be interchangeable, thereby improving the modularity and applicability of the fluent shelf.
  • the rotation assembly 102 may be coupled to different fluent storage assemblies with different sizes to meet various needs.
  • the fluent storage assembly 101 comprises at least one inclined storage rack 1011 adapted to support or store objects 200.
  • the fluent storage assembly 101 comprises eighteen inclined storage racks 1011 arranged in a longitudinal axis X1. It is to be understood that the number of inclined storage racks 1011 as shown in FIGs. 1 and 2 is merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. Other suitable number of the inclined storage racks 1011 is also possible according to the amount and size of objects 200 such as dishes to be stored.
  • the fluent storage assembly 101 may further comprise a storage frame 1017 to obliquely support the at least one inclined storage rack 1011.
  • a relatively higher end of the inclined storage rack 1011 is for objects 200 to be loaded on the inclined storage rack 1011 and thus called a loading port 1012.
  • the relatively lower end is for the objects 200 to be picked up from the inclined storage rack 1011 and thus called a picking port 1013.
  • the loading port 1012 and the picking port 1013 are arranged on opposite ends of the inclined storage rack 1011 in an inclined direction.
  • the objects 200 loaded from the loading port 1012 can move from the loading port 1012 to the picking port 1013 by gravity.
  • the fluent storage assembly 101 may further comprise a housing arranged outside of the storage frame 1017.
  • the housing may reduce a risk of contamination of the objects 200 such as dishes supported by the inclined storage rack 1011.
  • the housing can increase the strength and aesthetics of the fluent storage assembly 101.
  • each of the inclined storage racks 1011 may be coupled to different portions of the storage frame 1017.
  • the storage frame 1017 may comprise four vertical supporting rods and a plurality of positioning structures formed on each of the vertical supporting rods.
  • Each of the inclined storage racks 1011 may be fixed on storage frame 1017 by coupling corners thereof to the positioning structures. For example, by coupling corners of the inclined storage rack 1011 at the same end, e.g., the loading port or the picking port, to the positioning structures at different heights, the inclination angle of the corresponding inclined storage rack 1011 may be adjusted. Furthermore, by coupling all of the corners of the inclined storage rack 1011 to the positioning structures at different heights, the distance between the corresponding adjacent two inclined storage racks 1011 may be adjusted.
  • the inclination angle of the inclined storage rack 1011 and a distance between the two adjacent inclined storage racks 1011 may be flexibly adjusted according to the objects 200 to be stored or supported, thereby improving the applicability of the rotatable fluent shelf 100.
  • the positioning structure may be a positioning wedge protruding obliquely upward.
  • the edge of the inclined storage rack 1011 may be arranged between the positioning wedge and a main body of the vertical supporting rod to fix the inclined storage rack 1011 to the storage frame 1017.
  • the positioning structure may also be a positioning hole formed on the vertical supporting rod. In this way, the inclined storage rack 1011 may be fixed to the storage frame 1017 by inserting a pin into the corresponding positioning hole.
  • the positioning structure may also be a positioning pin inwardly formed on the vertical supporting rod. In this way, the inclined storage rack 1011 may be coupled to the storage frame 1017 by being supported by the positioning pins.
  • the inclined storage rack 1011 further comprises a sliding mechanism 1014 arranged between the loading port 1012 and the picking port 1013.
  • the sliding mechanism 1014 may be any suitable means to reduce a friction between the inclined storage rack 1011 and the objects 200 to enable the objects 200 to slide from the loading port 1012 to the picking port 1013 by gravity.
  • the sliding mechanism 1014 may comprise a plurality of rollers with axes thereof perpendicular to the inclined direction.
  • the sliding mechanism 1014 may also be called a fluent bar with rollers. In this way, by properly setting the inclination angle of the inclined storage rack 1011, various objects 200 can move from the loading port 1012 to the picking port 1013 by gravity.
  • the sliding mechanism 1014 may be any suitable means to reduce a friction between the inclined storage rack 1011 and the objects 200.
  • the sliding mechanism 1014 may also comprise a board or a plate whose surface is treated to reduce the friction.
  • the sliding mechanism 1014 may also be a plate with particles or lubricating oil arranged on the surface.
  • the sliding mechanism 1014 may also be a plate with a structure that reduces friction or the plate is made of a material that reduces friction.
  • each of the inclined storage racks 1011 may comprise a plurality of channels separated by moveable dividers which are arranged along the inclined direction of the incline storage rack 1011.
  • the moveable dividers can prevent the objects 200 from moving to other channels, thus making the rotatable fluent shelf 100 more reliable.
  • the moveable dividers may also move in a direction perpendicular to the inclined direction. In this way, a width of each channel may be flexibly adjusted by moving the moveable dividers, thereby further improving the applicability of the rotatable fluent shelf 100.
  • the inclined storage rack 1011 may further comprise at least one stop component 1015 arranged at the picking port 1013 to stop the objects 200 supported by the inclined storage rack 1011.
  • the stop component 1015 may be a stop plate arranged at the picking port 1013.
  • the number of the stop component 1015 may correspond to the number of the channels arranged on the inclined storage rack 1011. In some alternative embodiments, all or at least some of the channels may share one common stop component 1015.
  • the stop component 1015 may be extensible and/or rotatable. For example, when a robot or an operator is to pick the objects 200 adjacent to the picking port 1013, the stop component 1015 may retract automatically or manually to facilitate picking of the objects 200. In some alternative embodiments, the stop component 1015 may also be rotated to form an obtuse angle with the inclined surface of the inclined storage rack 1011 to facilitate picking of the objects 200. In this way, the rotatable storage shelf can be more convenient to pick objects 200.
  • the rotatable fluent shelf comprises the rotation assembly 102 to allow the fluent shelf to be rotatable.
  • the rotation assembly 102 is coupled to the fluent storage assembly 101 to drive the at least one inclined storage rack 1011 to rotate about the longitudinal axis X1 of the fluent storage assembly 101.
  • positions of the loading port 1012 and the picking port 1013 can be adjusted or interchanged by rotating the inclined storage rack 1011 about the longitudinal axis X1.
  • an operator or a robot can load and/or pick objects 200 more flexibly.
  • the flexible operation can reduce the operating space, and thus save the floor space such as the storage locations.
  • the fluent storage assembly 101 may further comprise a coupling portion, for example, fixed on a bottom of the storage frame 1017.
  • the coupling portion may be coupled to the rotation assembly 102 in any suitable way.
  • the coupling portion may be fixed to the rotation assembly 102 by fasteners, which makes the connection between the coupling portion and the rotation assembly 102 more reliable and detachable.
  • the coupling portion may be fixed to the rotation assembly 102 by a snap connection, bonding or welding, etc.
  • FIGs. 3-7 show example structures of the rotation assembly 102 according to embodiments of the present disclosure.
  • the rotation assembly 102 may comprise a driving component 1021 and a transmission assembly 1022 coupled to the driving component 1021 and the coupling portion.
  • the driving component 1021 and the transmission assembly 1022 may be at least partially arranged in a shell.
  • the shell may be welded from profiles or may be assembled by fasteners or snap connection.
  • the driving component 1021 may be an ordinary motor, a servo motor or a hydraulic pneumatic system such as a hydraulic cylinder or an air cylinder, etc.
  • the transmission assembly 1022 may comprise a driving member 1024 and a driven member 1025.
  • the transmission assembly 1022 may be a gear transmission system, as shown in FIGs 3-5.
  • the driving member 1024 may be a driving gear
  • the driven member 1025 may be a driven ring gear.
  • the driven ring gear may be provided with a plurality of through holes or threaded holes arranged in a circumferential direction of the driven ring gear.
  • fasteners may comprise bolts and nuts. The bolts may pass through the through holes to be engaged with the nuts to fix the coupling portion and the rotation assembly 102.
  • the fasteners may also comprise screws adapted to be screwed into the threaded holes to fix the coupling portion and the rotation assembly 102.
  • the driven member 1025 may also comprise an output shaft with a key.
  • the coupling portion of the fluent storage assembly 101 may comprise a hole, comprising a key slot formed on its inner circumference, for the output shaft to pass through. By inserting the output shaft in the hole, the fluent storage assembly 101 can be driven by the driving component 1021.
  • the transmission assembly 1022 comprises a gear transmission system are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. Any other suitable mechanism is also possible.
  • the transmission assembly 1022 may further comprise a belt transmission system or any other suitable transmission system.
  • the fluent storage assembly 101 When the fluent storage assembly 101 is rotated to a predetermined angle, i.e., when the fluent storage assembly is in a predetermined orientation, the fluent storage assembly 101 may be locked to facilitate the loading and picking of objects 200.
  • the rotation assembly 102 may further comprise a locking component 1023, as shown in FIGs. 6 and 7.
  • the locking component 1023 can be coupled to the transmission assembly 1022, for example, to the driven member 1025, to lock the fluent storage assembly 101 in at least one predetermined orientation.
  • the locking component 1023 may comprise a plurality of locking blocks 1026 and an extensible rod 1028.
  • the plurality of locking blocks 1026 are arranged in a circumferential direction of the driven member 1025.
  • the number of the locking blocks 1026 may correspond to the number of the at least one predetermined orientation of the fluent storage assembly 101 to be locked.
  • four corresponding locking blocks 1026 arranged in the circumferential direction of the driven member 1025 may be provided.
  • the four locking blocks 1026 arranged evenly in the circumferential direction will cause every two adjacent orientations of the fluent storage assembly to differ by 90°.
  • locking blocks 1026 are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. According to the determined orientations, any other appropriate number, such as 2, 3, 5, etc., of locking blocks is also possible.
  • Each of the locking blocks 1026 may be provided with a locking hole 1027.
  • the extensible rod 1028 can be extensible to insert into the corresponding locking hole 1027. In this way, the fluent storage assembly 101 can be more stable in the predetermined orientation, thereby improving the stability of the rotatable fluent shelf 100.
  • the locking component 1023 may further comprise a rod driver 1029 coupled to the extensible rod 1028.
  • the rod driver 1029 can drive the extensible rod 1028 to extend and/or retract.
  • the rod driver 1029 may only drive the extensible rod 1028 to extend to be inserted into the locking hole 1027 while the extensible rod 1028 may retract from the locking hole by means of a restoring force of a spring.
  • the rod driver 1029 may stop driving the extensible rod 1028, and thus the extensible rod 1028 may retract from the locking hole 1027 by means of a restoring force of the spring.
  • the rod driver 1029 may only drive the extensible rod 1028 to retract from the locking hole 1027 while the extensible rod 1028 may extend to be inserted into the locking hole by means of a restoring force of a spring. In some alternative embodiments, the rod driver 1029 may also drive the extensible rod 1028 to both extend and retract. Furthermore, in some embodiments, the rod driver 1029 may be a cylinder or an electric cylinder.
  • the locking component 1023 comprises the locking hole 1027 and the extensible rod 1028 are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. Any other suitable arrangement is also possible.
  • the locking component 1023 may also lock the fluent storage assembly 101 by means of friction locking or the like.
  • a robot system comprises a rotatable fluent shelf 100 as recited above and a robot.
  • the robot can control a rotation of the fluent storage assembly 101 of the rotatable fluent shelf 100.
  • the robot can load and/or pick objects 200 on the fluent storage assembly 101 from the same side with a small movement range, to thereby facilitate loading and/or picking of objects 200 on the fluent storage assembly 101.
  • the rotatable fluent shelves 100 according to embodiments of the present disclosure can be used not only in robot systems, but also in warehouses, kitchens, logistics centers, etc. that manually load and pick goods or objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

Embodiments of the present disclosure provide a rotatable fluent storage shelf and a robot system. The rotatable fluent storage shelf comprises a fluent storage assembly comprising at least one inclined storage rack adapted to support the objects and each comprising: a loading port and a picking port arranged on opposite ends of the at least one inclined storage rack in an inclined direction; and a sliding mechanism arranged between the loading port and the picking port and configured to reduce a friction between the at least one inclined storage rack and the objects to enable the objects to move from the loading port to the picking port by gravity; and a rotation assembly coupled to the fluent storage assembly and adapted to drive the at least one inclined storage rack to rotate about a longitudinal axis of the fluent storage assembly. With the rotatable fluent shelf according to embodiments of the present disclosure, positions of the loading port and the picking port can be adjusted or interchanged by rotating the inclined storage rack about the longitudinal axis. As a result, an operator can load and/or pick objects more flexibly. In addition, the flexible operation can reduce operating space, and thus save floor space such as in storage locations.

Description

ROTATABLE FLUENT SHELF AND ROBOT SYSTEM FIELD
Embodiments of the present disclosure generally relate to a rotatable fluent shelf for storing objects and a robot system.
BACKGROUND
Fluent shelves, also known as sliding type shelves or gravity flow shelves, belong to a storage system that relies on gravity flow to load, organize, and retrieve stored goods or objects. Maximizing space and efficiency, fluent shelves can improve racking productivity, and increase safety for employees.
Fluent shelves act as non-powered, downward-sloped storage conveyors, which allow for all subsequent objects or goods to move to the forefront, once the preceding item has been removed, otherwise known as first in first out (FIFO) racking. Items are loaded into the high end of the shelf, one by one. Within a confined lane, the objects or goods then travel forward over a deck of wheels or rollers, down the shelf, filling the structure from loading to picking end. In utilizing gravitational forces, objects or goods naturally find their path, filing in an orderly fashion, while consistently refilling the forward-most position for easy retrieval.
Fluent shelves can benefit a number of industries including, e.g., food and beverage industry and automotive supplies. For example, fluent shelf systems provide the fast paced and readily available turnover of perishable and date sensitive food and beverage products. They are also especially effective in the meat packing industry, as large quantities of product must be stored and retrieved with speed, maintaining a frozen state.
SUMMARY
Embodiments of the present disclosure provide a rotatable fluent shelf for storing objects and a robot system.
In a first aspect, a rotatable fluent shelf for storing objects is provided. The rotatable fluent shelf comprises a fluent storage assembly comprising at least one inclined  storage rack adapted to support the objects and each comprising: a loading port and a picking port arranged on opposite ends of the at least one inclined storage rack in an inclined direction; and a sliding mechanism arranged between the loading port and the picking port and configured to reduce a friction between the at least one inclined storage rack and the objects to enable the objects to move from the loading port to the picking port by gravity; and a rotation assembly coupled to the fluent storage assembly and adapted to drive the at least one inclined storage rack to rotate about a longitudinal axis of the fluent storage assembly.
With the rotatable fluent shelf according to embodiments of the present disclosure, positions of the loading port and the picking port can be adjusted or interchanged by rotating the inclined storage rack about the longitudinal axis. As a result, an operator can load and/or pick objects more flexibly. In addition, the flexible operation can reduce the operating space, and thus save floor space such as in storage locations.
In some embodiments, the fluent storage assembly further comprises: a storage frame adapted to obliquely support the at least one inclined storage rack; and a coupling portion fixed on the storage frame and centered on the longitudinal axis. In this way, the fluent storage assembly can be manufactured in a cost-efficient way.
In some embodiments, the rotation assembly comprises a driving component, and a transmission assembly coupled to the driving component and the coupling portion of the fluent storage assembly, so that the fluent storage assembly is driven by the driving component. As a result, the fluent storage assembly can be easily driven to rotate at an appreciable speed.
In some embodiments, the rotation assembly further comprises a locking component adapted to be coupled to the transmission assembly to lock the fluent storage assembly in at least one predetermined orientation. In this way, the fluent storage assembly can be locked in at least one predetermined orientation, thereby improving the stability of the fluent storage shelf.
In some embodiments, the transmission assembly comprises a driving member coupled to the driving component; and a driven member engaged with the driving member and coupled to the coupling portion of the fluent storage assembly. This arrangement facilitates assembling of the transmission assembly, thereby reducing the manufacturing cost of the fluent storage shelf.
In some embodiments, the locking component comprises a plurality of locking blocks arranged in a circumferential direction of the driven member, each of the plurality of locking blocks comprising a locking hole; and an extensible rod adapted to be extensible to insert into the corresponding locking hole when the fluent storage assembly is in one of the at least one predetermined orientations. As a result, this arrangement can stably lock the fluent storage assembly in the desired orientation, thereby further improving the stability of the fluent storage shelf.
In some embodiments, the locking component further comprises a rod driver coupled to the extensible rod and adapted to drive the extensible rod to extend and/or retract.
In some embodiments, the at least one inclined storage rack comprises a plurality of inclined storage racks, and each of the plurality of inclined storage racks is adapted to be coupled to different portions of the storage frame to allow the at least one of following to be adjustable: a distance between the corresponding adjacent two of the plurality of inclined storage racks or an inclination angle of the corresponding inclined storage rack. In this way, the fluent storage shelf may be adjusted more flexibly according to different types of objects to be stored or supported.
In some embodiments, the at least one inclined storage rack comprises at least one stop component arranged at the picking port to stop the objects. This arrangement can effectively prevent objects from sliding down to further improve the stability of the fluent storage shelf.
In some embodiments, the at least one inclined storage rack comprises a plurality of channels separated by moveable dividers, so that a width of each of the plurality of channels is adjustable. This allows more flexible adjustment of the fluent storage shelf according to different types of objects to be stored or supported.
In a second aspect of the present disclosure, a robot system is provided. The robot system comprises a rotatable fluent shelf according to the first aspect as mentioned above; and a robot adapted to control a rotation of a fluent storage assembly of the rotatable fluent shelf to facilitate loading and/or picking of objects on the fluent storage assembly.
It is to be understood that the Summary is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the  scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the description below.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objectives, features and advantages of the present disclosure will become more apparent through more detailed depiction of example embodiments of the present disclosure in conjunction with the accompanying drawings, wherein in the example embodiments of the present disclosure, same reference numerals usually represent the same components.
FIG. 1 shows a perspective view of a rotatable fluent shelf without a housing according to embodiments of the present disclosure;
FIG. 2 shows a perspective view of a rotatable fluent shelf with a housing according to embodiments of the present disclosure;
FIG. 3 shows a perspective view of a rotatable assembly according to embodiments of the present disclosure;
FIG. 4 shows a top view of a rotatable assembly according to embodiments of the present disclosure;
FIG. 5 shows a side view of a rotatable assembly according to embodiments of the present disclosure; and
FIGs. 6 and 7 show perspective views, from different perspectives, of internal parts of a rotatable assembly according to embodiments of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example embodiments. It is to be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the subject matter.
As used herein, the term “comprises” and its variants are to be read as open terms that mean “comprises, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be comprised below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
Fluent shelf systems are ideal for supplying goods or objects of common stock keeping units (SKUs) in sorting and distribution operations. For example, when they are used in the food and beverage industry, fluent shelf systems provide the fast paced and readily available turnover of perishable and date sensitive food and beverage products. They also are a great option where high throughput is required or in a warehouse storage situation that calls for large volumes of each SKU.
Fluent shelves act like a conveyor within a rack structure. Goods or objects are deposited at a loading port and then flow down an incline to be picked at the opposite end, i.e., a picking port. Using gravity to gently keep goods or objects staged for picking operations, fluent shelves are an economical first-in first-out storage rack solution.
The loading port and pickup port of conventional fluent shelves are fixed and cannot be interchanged. The problem that follows is that, especially for the food and beverage industry, the space required for the operation of objects such as dishes is large. Furthermore, an inclination angle, a height and a width of the storage rack of a conventional fluent shelf cannot be flexibly adjusted according to the changes of the dishes.
In order to at least partially address the above and other potential problems, embodiments of the present disclosure provide a rotatable fluent shelf 100 for storing objects such as dishes. Now some example embodiments will be described with reference to FIGs. 1-7.
FIG. 1 shows a perspective view of a rotatable fluent shelf 100 without a housing, and FIG. 2 shows a perspective view of a rotatable fluent shelf 100 with a housing according to embodiments of the present disclosure. As shown, generally, the rotatable fluent shelf 100 for storing objects 200 comprises a fluent storage assembly 101 and a rotation assembly 102. Both of fluent storage assembly 101 and the rotation assembly 102  may be modularized into various specifications and models, which may be interchangeable, thereby improving the modularity and applicability of the fluent shelf. For example, the rotation assembly 102 may be coupled to different fluent storage assemblies with different sizes to meet various needs.
The fluent storage assembly 101 comprises at least one inclined storage rack 1011 adapted to support or store objects 200. As shown in FIG. 1 which illustrates example embodiments of the present disclosure, the fluent storage assembly 101 comprises eighteen inclined storage racks 1011 arranged in a longitudinal axis X1. It is to be understood that the number of inclined storage racks 1011 as shown in FIGs. 1 and 2 is merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. Other suitable number of the inclined storage racks 1011 is also possible according to the amount and size of objects 200 such as dishes to be stored.
In some embodiments, the fluent storage assembly 101 may further comprise a storage frame 1017 to obliquely support the at least one inclined storage rack 1011. A relatively higher end of the inclined storage rack 1011 is for objects 200 to be loaded on the inclined storage rack 1011 and thus called a loading port 1012. The relatively lower end is for the objects 200 to be picked up from the inclined storage rack 1011 and thus called a picking port 1013. The loading port 1012 and the picking port 1013 are arranged on opposite ends of the inclined storage rack 1011 in an inclined direction. The objects 200 loaded from the loading port 1012 can move from the loading port 1012 to the picking port 1013 by gravity. Furthermore, when the object 200 nearby the picking port 1013 is picked up from the inclined storage rack 1011, the subsequent objects 200 will move toward the picking port 1013 to finally occupy the position of the picked object 200. In this way, first in first out (FIFO) racking is achieved.
In some embodiments, as shown in FIG. 2, the fluent storage assembly 101 may further comprise a housing arranged outside of the storage frame 1017. On the one hand, the housing may reduce a risk of contamination of the objects 200 such as dishes supported by the inclined storage rack 1011. On the other hand, the housing can increase the strength and aesthetics of the fluent storage assembly 101.
In some embodiments, each of the inclined storage racks 1011 may be coupled to different portions of the storage frame 1017. For example, in some embodiments, the storage frame 1017 may comprise four vertical supporting rods and a plurality of  positioning structures formed on each of the vertical supporting rods. Each of the inclined storage racks 1011 may be fixed on storage frame 1017 by coupling corners thereof to the positioning structures. For example, by coupling corners of the inclined storage rack 1011 at the same end, e.g., the loading port or the picking port, to the positioning structures at different heights, the inclination angle of the corresponding inclined storage rack 1011 may be adjusted. Furthermore, by coupling all of the corners of the inclined storage rack 1011 to the positioning structures at different heights, the distance between the corresponding adjacent two inclined storage racks 1011 may be adjusted.
In this way, the inclination angle of the inclined storage rack 1011 and a distance between the two adjacent inclined storage racks 1011 may be flexibly adjusted according to the objects 200 to be stored or supported, thereby improving the applicability of the rotatable fluent shelf 100.
In some embodiments, the positioning structure may be a positioning wedge protruding obliquely upward. The edge of the inclined storage rack 1011 may be arranged between the positioning wedge and a main body of the vertical supporting rod to fix the inclined storage rack 1011 to the storage frame 1017. In some alternative embodiments, the positioning structure may also be a positioning hole formed on the vertical supporting rod. In this way, the inclined storage rack 1011 may be fixed to the storage frame 1017 by inserting a pin into the corresponding positioning hole. In some further alternative embodiments, the positioning structure may also be a positioning pin inwardly formed on the vertical supporting rod. In this way, the inclined storage rack 1011 may be coupled to the storage frame 1017 by being supported by the positioning pins.
To facilitate the movement of the objects 200 supported by the inclined storage rack 1011, the inclined storage rack 1011 further comprises a sliding mechanism 1014 arranged between the loading port 1012 and the picking port 1013. The sliding mechanism 1014 may be any suitable means to reduce a friction between the inclined storage rack 1011 and the objects 200 to enable the objects 200 to slide from the loading port 1012 to the picking port 1013 by gravity. For example, in some embodiments, the sliding mechanism 1014 may comprise a plurality of rollers with axes thereof perpendicular to the inclined direction. In those embodiments, the sliding mechanism 1014 may also be called a fluent bar with rollers. In this way, by properly setting the inclination angle of the inclined storage rack 1011, various objects 200 can move from the loading port 1012 to the  picking port 1013 by gravity.
It is to be understood that the above embodiments where the sliding mechanism 1014 comprises a plurality of rollers are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. As mentioned above, the sliding mechanism 1014 may be any suitable means to reduce a friction between the inclined storage rack 1011 and the objects 200. For example, in some alternative embodiments, the sliding mechanism 1014 may also comprise a board or a plate whose surface is treated to reduce the friction. For example, in some embodiments, the sliding mechanism 1014 may also be a plate with particles or lubricating oil arranged on the surface. In some alternative embodiments, the sliding mechanism 1014 may also be a plate with a structure that reduces friction or the plate is made of a material that reduces friction.
In some embodiments, each of the inclined storage racks 1011 may comprise a plurality of channels separated by moveable dividers which are arranged along the inclined direction of the incline storage rack 1011. The moveable dividers can prevent the objects 200 from moving to other channels, thus making the rotatable fluent shelf 100 more reliable. Furthermore, the moveable dividers may also move in a direction perpendicular to the inclined direction. In this way, a width of each channel may be flexibly adjusted by moving the moveable dividers, thereby further improving the applicability of the rotatable fluent shelf 100.
In some embodiments, the inclined storage rack 1011 may further comprise at least one stop component 1015 arranged at the picking port 1013 to stop the objects 200 supported by the inclined storage rack 1011. For example, in some embodiments, the stop component 1015 may be a stop plate arranged at the picking port 1013. In some embodiments, the number of the stop component 1015 may correspond to the number of the channels arranged on the inclined storage rack 1011. In some alternative embodiments, all or at least some of the channels may share one common stop component 1015.
In some embodiments, the stop component 1015 may be extensible and/or rotatable. For example, when a robot or an operator is to pick the objects 200 adjacent to the picking port 1013, the stop component 1015 may retract automatically or manually to facilitate picking of the objects 200. In some alternative embodiments, the stop component 1015 may also be rotated to form an obtuse angle with the inclined surface of  the inclined storage rack 1011 to facilitate picking of the objects 200. In this way, the rotatable storage shelf can be more convenient to pick objects 200.
In comparison to the conventional fluent shelf, the rotatable fluent shelf according to embodiments of the present disclosure comprises the rotation assembly 102 to allow the fluent shelf to be rotatable. The rotation assembly 102 is coupled to the fluent storage assembly 101 to drive the at least one inclined storage rack 1011 to rotate about the longitudinal axis X1 of the fluent storage assembly 101.
In this way, positions of the loading port 1012 and the picking port 1013 can be adjusted or interchanged by rotating the inclined storage rack 1011 about the longitudinal axis X1. As a result, an operator or a robot can load and/or pick objects 200 more flexibly. In addition, the flexible operation can reduce the operating space, and thus save the floor space such as the storage locations.
To achieve the coupling of the rotation assembly 102 with the fluent storage assembly 101, in some embodiments, the fluent storage assembly 101 may further comprise a coupling portion, for example, fixed on a bottom of the storage frame 1017. The coupling portion may be coupled to the rotation assembly 102 in any suitable way. For example, in some embodiments, the coupling portion may be fixed to the rotation assembly 102 by fasteners, which makes the connection between the coupling portion and the rotation assembly 102 more reliable and detachable. In some alternative embodiments, the coupling portion may be fixed to the rotation assembly 102 by a snap connection, bonding or welding, etc.
FIGs. 3-7 show example structures of the rotation assembly 102 according to embodiments of the present disclosure. As shown in FIG. 3, in some embodiments, the rotation assembly 102 may comprise a driving component 1021 and a transmission assembly 1022 coupled to the driving component 1021 and the coupling portion. The driving component 1021 and the transmission assembly 1022 may be at least partially arranged in a shell. The shell may be welded from profiles or may be assembled by fasteners or snap connection. In some embodiments, the driving component 1021 may be an ordinary motor, a servo motor or a hydraulic pneumatic system such as a hydraulic cylinder or an air cylinder, etc.
In some embodiments, the transmission assembly 1022 may comprise a driving member 1024 and a driven member 1025. For example, the transmission assembly 1022  may be a gear transmission system, as shown in FIGs 3-5. In this case, the driving member 1024 may be a driving gear and the driven member 1025 may be a driven ring gear. The driven ring gear may be provided with a plurality of through holes or threaded holes arranged in a circumferential direction of the driven ring gear. In some embodiments, fasteners may comprise bolts and nuts. The bolts may pass through the through holes to be engaged with the nuts to fix the coupling portion and the rotation assembly 102. In some alternative embodiments, the fasteners may also comprise screws adapted to be screwed into the threaded holes to fix the coupling portion and the rotation assembly 102.
In some alternative embodiments, the driven member 1025 may also comprise an output shaft with a key. Correspondingly, the coupling portion of the fluent storage assembly 101 may comprise a hole, comprising a key slot formed on its inner circumference, for the output shaft to pass through. By inserting the output shaft in the hole, the fluent storage assembly 101 can be driven by the driving component 1021.
It is to be understood that the above embodiments where the transmission assembly 1022 comprises a gear transmission system are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. Any other suitable mechanism is also possible. For example, in some alternative embodiments, the transmission assembly 1022 may further comprise a belt transmission system or any other suitable transmission system.
When the fluent storage assembly 101 is rotated to a predetermined angle, i.e., when the fluent storage assembly is in a predetermined orientation, the fluent storage assembly 101 may be locked to facilitate the loading and picking of objects 200. To achieve this end, in some embodiments, the rotation assembly 102 may further comprise a locking component 1023, as shown in FIGs. 6 and 7. The locking component 1023 can be coupled to the transmission assembly 1022, for example, to the driven member 1025, to lock the fluent storage assembly 101 in at least one predetermined orientation.
For example, in some embodiments, the locking component 1023 may comprise a plurality of locking blocks 1026 and an extensible rod 1028. The plurality of locking blocks 1026 are arranged in a circumferential direction of the driven member 1025. The number of the locking blocks 1026 may correspond to the number of the at least one predetermined orientation of the fluent storage assembly 101 to be locked. For example, in a case where the fluent storage assembly 101 will be locked in four predetermined  orientations, four corresponding locking blocks 1026 arranged in the circumferential direction of the driven member 1025 may be provided. The four locking blocks 1026 arranged evenly in the circumferential direction will cause every two adjacent orientations of the fluent storage assembly to differ by 90°.
It is to be understood that the above embodiments where there are four locking blocks 1026 are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. According to the determined orientations, any other appropriate number, such as 2, 3, 5, etc., of locking blocks is also possible. For example, in some alternative embodiments, there are two locking blocks 1026 arranged evenly in the circumferential direction, so that the loading port and the picking port are exchangeable by rotating the fluent storage assembly. In this way, the loading and picking of objects can be performed on the same side of the rotatable fluent shelf 100.
Each of the locking blocks 1026 may be provided with a locking hole 1027. When the fluent storage assembly 101 is in one predetermined orientation, the extensible rod 1028 can be extensible to insert into the corresponding locking hole 1027. In this way, the fluent storage assembly 101 can be more stable in the predetermined orientation, thereby improving the stability of the rotatable fluent shelf 100.
In some embodiments, the locking component 1023 may further comprise a rod driver 1029 coupled to the extensible rod 1028. The rod driver 1029 can drive the extensible rod 1028 to extend and/or retract. For example, in some embodiments, the rod driver 1029 may only drive the extensible rod 1028 to extend to be inserted into the locking hole 1027 while the extensible rod 1028 may retract from the locking hole by means of a restoring force of a spring. Specifically, when the extensible rod 1028 is driven by the rod driver 1029 to extend, the spring coupled to the extensible rod 1028 is extended. If an orientation of the fluent storage assembly 101 needs to be adjusted, the rod driver 1029 may stop driving the extensible rod 1028, and thus the extensible rod 1028 may retract from the locking hole 1027 by means of a restoring force of the spring.
In some embodiments, similar to the above embodiments, the rod driver 1029 may only drive the extensible rod 1028 to retract from the locking hole 1027 while the extensible rod 1028 may extend to be inserted into the locking hole by means of a restoring force of a spring. In some alternative embodiments, the rod driver 1029 may also drive the extensible rod 1028 to both extend and retract. Furthermore, in some embodiments,  the rod driver 1029 may be a cylinder or an electric cylinder.
It is to be understood that the above embodiments where the locking component 1023 comprises the locking hole 1027 and the extensible rod 1028 are merely for illustrative purposes, without suggesting any limitation as to the scope of the present disclosure. Any other suitable arrangement is also possible. For example, in some alternative embodiments, the locking component 1023 may also lock the fluent storage assembly 101 by means of friction locking or the like.
According to other aspects of the present disclosure, a robot system is provided. The robot system comprises a rotatable fluent shelf 100 as recited above and a robot. The robot can control a rotation of the fluent storage assembly 101 of the rotatable fluent shelf 100. In this way, the robot can load and/or pick objects 200 on the fluent storage assembly 101 from the same side with a small movement range, to thereby facilitate loading and/or picking of objects 200 on the fluent storage assembly 101. In addition, the rotatable fluent shelves 100 according to embodiments of the present disclosure can be used not only in robot systems, but also in warehouses, kitchens, logistics centers, etc. that manually load and pick goods or objects.
It should be appreciated that the above detailed embodiments of the present disclosure are only for exemplifying or explaining principles of the present disclosure and do not limit the present disclosure. Therefore, any modifications, equivalent alternatives and improvements, etc. without departing from the spirit and scope of the present disclosure shall be comprised in the scope of protection of the present disclosure. Meanwhile, appended claims of the present disclosure aim to cover all the variations and modifications falling under the scope and boundary of the claims or equivalents of the scope and boundary.

Claims (11)

  1. A rotatable fluent shelf (100) for storing objects (200) , comprising:
    a fluent storage assembly (101) comprising at least one inclined storage rack (1011) adapted to support the objects (200) and each comprising:
    a loading port (1012) and a picking port (1013) arranged on opposite ends of the at least one inclined storage rack (1011) in an inclined direction; and
    a sliding mechanism (1014) arranged between the loading port (1012) and the picking port (1013) and configured to reduce a friction between the at least one inclined storage rack (1011) and the objects (200) to enable the objects (200) to move from the loading port (1012) to the picking port (1013) by gravity; and
    a rotation assembly (102) coupled to the fluent storage assembly (101) and adapted to drive the at least one inclined storage rack (1011) to rotate about a longitudinal axis (X1) of the fluent storage assembly (101) .
  2. The rotatable fluent shelf (100) of claim 1, wherein the fluent storage assembly (101) further comprises:
    a storage frame (1017) adapted to obliquely support the at least one inclined storage rack (1011) ; and
    a coupling portion fixed on the storage frame (1017) and centered on the longitudinal axis (X1) .
  3. The rotatable fluent shelf (100) of claim 2, wherein the rotation assembly (102) comprises:
    a driving component (1021) , and
    a transmission assembly (1022) coupled to the driving component (1021) and the coupling portion of the fluent storage assembly (101) , so that the fluent storage assembly (101) is driven by the driving component (1021) .
  4. The rotatable fluent shelf (100) of claim 3, wherein the rotation assembly (102) further comprises:
    a locking component (1023) adapted to be coupled to the transmission assembly (1022) to lock the fluent storage assembly (101) in at least one predetermined orientation.
  5. The rotatable fluent shelf (100) of claim 4, wherein the transmission assembly (1022) comprises:
    a driving member (1024) coupled to the driving component (1021) ; and
    a driven member (1025) engaged with the driving member (1024) and coupled to the coupling portion of the fluent storage assembly (101) .
  6. The rotatable fluent shelf (100) of claim 5, wherein the locking component (1023) comprises:
    a plurality of locking blocks (1026) arranged in a circumferential direction of the driven member (1025) , each of the plurality of locking blocks (1026) comprising a locking hole (1027) ; and
    an extensible rod (1028) adapted to be extensible to insert into the corresponding locking hole (1027) when the fluent storage assembly (101) is in one of the at least one predetermined orientations.
  7. The rotatable fluent shelf (100) of claim 6, wherein the locking component (1023) further comprises:
    a rod driver (1029) coupled to the extensible rod (1028) and adapted to drive the extensible rod (1028) to extend and/or retract.
  8. The rotatable fluent shelf (100) of claim 2, wherein the at least one inclined storage rack (1011) comprises a plurality of inclined storage racks, and each of the plurality of inclined storage racks is adapted to be coupled to different portions of the storage frame (1017) to allow at least one of following to be adjustable:
    a distance between the corresponding adjacent two of the plurality of inclined storage racks (1011) or an inclination angle of the corresponding inclined storage rack.
  9. The rotatable fluent shelf (100) of claim 1, wherein the at least one inclined storage rack (1011) comprises:
    at least one stop component (1015) arranged at the picking port (1013) to stop the objects (200) .
  10. The rotatable fluent shelf (100) of claim 1, wherein the at least one inclined  storage rack (1011) comprises:
    a plurality of channels separated by moveable dividers (1016) , so that a width of each of the plurality of channels is adjustable.
  11. A robot system, comprising:
    a rotatable fluent shelf (100) of any of claims 1-10; and
    a robot adapted to control a rotation of a fluent storage assembly (101) of the rotatable fluent shelf (100) to facilitate loading and/or picking of objects (200) on the fluent storage assembly (101) .
PCT/CN2021/077914 2021-02-25 2021-02-25 Rotatable fluent shelf and robot system WO2022178765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180092246.4A CN116801772A (en) 2021-02-25 2021-02-25 Rotatable fluent pallet and robotic system
PCT/CN2021/077914 WO2022178765A1 (en) 2021-02-25 2021-02-25 Rotatable fluent shelf and robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077914 WO2022178765A1 (en) 2021-02-25 2021-02-25 Rotatable fluent shelf and robot system

Publications (1)

Publication Number Publication Date
WO2022178765A1 true WO2022178765A1 (en) 2022-09-01

Family

ID=83047659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077914 WO2022178765A1 (en) 2021-02-25 2021-02-25 Rotatable fluent shelf and robot system

Country Status (2)

Country Link
CN (1) CN116801772A (en)
WO (1) WO2022178765A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415953B1 (en) * 2000-10-03 2002-07-09 Vendtronics Inc First-in first-out vending machine
CN1390101A (en) * 1999-11-12 2003-01-08 可口可乐公司 Oscillating cooler
US20040090158A1 (en) * 2002-11-13 2004-05-13 Moshe Horowitz Front-loading product storage cabinet for FIFO dispensing
CN106490889A (en) * 2015-09-07 2017-03-15 厦门威可锐贸易有限公司 A kind of adjustable beverage shelf of shelf height
CN206714466U (en) * 2016-12-26 2017-12-08 重庆建设医院 A kind of medicine tank bracket of first in first out
CN109330291A (en) * 2018-10-17 2019-02-15 深圳达芬奇创新科技有限公司 A kind of rotation storage rack of workpiece
CN211515760U (en) * 2019-12-30 2020-09-18 苏州加联亚工业有限公司 Hole distance adjustable punch assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390101A (en) * 1999-11-12 2003-01-08 可口可乐公司 Oscillating cooler
US6415953B1 (en) * 2000-10-03 2002-07-09 Vendtronics Inc First-in first-out vending machine
US20040090158A1 (en) * 2002-11-13 2004-05-13 Moshe Horowitz Front-loading product storage cabinet for FIFO dispensing
CN106490889A (en) * 2015-09-07 2017-03-15 厦门威可锐贸易有限公司 A kind of adjustable beverage shelf of shelf height
CN206714466U (en) * 2016-12-26 2017-12-08 重庆建设医院 A kind of medicine tank bracket of first in first out
CN109330291A (en) * 2018-10-17 2019-02-15 深圳达芬奇创新科技有限公司 A kind of rotation storage rack of workpiece
CN211515760U (en) * 2019-12-30 2020-09-18 苏州加联亚工业有限公司 Hole distance adjustable punch assembly

Also Published As

Publication number Publication date
CN116801772A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
US11718474B2 (en) Object handling system and method
US10513394B2 (en) Method of use of a robotic frame and power transfer device
US8956099B2 (en) Rack-serving unit and order-picking warehouse
US10661696B2 (en) Vehicle insert and method of vehicle loading and unloading
US20200207546A1 (en) Shelving system and power transfer device
WO2001042111A1 (en) Automated storage and retrieval system
US11479408B2 (en) Storage system and associated platform feeder
CN210823886U (en) Flexible warehousing system
WO2022178765A1 (en) Rotatable fluent shelf and robot system
US20170313558A1 (en) Pallet Rack Moving System
US10745199B2 (en) Material placement device
US20070267271A1 (en) Conveyor Roller Assembly
US20080240900A1 (en) System for storage and retrieval
KR20230128838A (en) Cargo transfer apparatus
CN214376750U (en) Conveyer and boxed meal machine
CN220722308U (en) Sorting device and storage equipment
CN212373435U (en) Adjustable goods-picking trolley
KR101955578B1 (en) Outward delivery device connected to pallet sliding rack
CN214569160U (en) Packing box stacking mechanism
CN112207042B (en) Automatic sorting system and method for small bulk goods
CN220411647U (en) Industrial goods shelf with goods placing function
JP2019127347A (en) Case transfer system and case transfer method
JP2000247441A (en) Method and device for conveying object for loading and unloading facility
US20240308760A1 (en) Integrated storage sequencing and delivery system and method of use
US20240182244A1 (en) Modular vertical lift system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092246.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927205

Country of ref document: EP

Kind code of ref document: A1