WO2022178667A1 - 一种激光雷达系统、调整方法及相关设备 - Google Patents

一种激光雷达系统、调整方法及相关设备 Download PDF

Info

Publication number
WO2022178667A1
WO2022178667A1 PCT/CN2021/077469 CN2021077469W WO2022178667A1 WO 2022178667 A1 WO2022178667 A1 WO 2022178667A1 CN 2021077469 W CN2021077469 W CN 2021077469W WO 2022178667 A1 WO2022178667 A1 WO 2022178667A1
Authority
WO
WIPO (PCT)
Prior art keywords
devices
temperature
lidar
thresholds
operating parameters
Prior art date
Application number
PCT/CN2021/077469
Other languages
English (en)
French (fr)
Inventor
王文昌
朱琦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/077469 priority Critical patent/WO2022178667A1/zh
Priority to CN202180093760.XA priority patent/CN116888505A/zh
Publication of WO2022178667A1 publication Critical patent/WO2022178667A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the embodiments of the present application relate to the technical field of lidar, and in particular, to a lidar system, an adjustment method, and related equipment.
  • LiDAR light detection and ranging, LiDAR
  • LiDAR can calculate the relative distance between the target and itself according to the return time after the laser encounters an obstacle.
  • the laser beam emitted by the lidar can accurately measure the relative distance between the edge of the object contour and the device in the field of view.
  • These contour information form a so-called point cloud, so that a three-dimensional (3dimensions, 3D) environment map can be drawn.
  • the accuracy of the 3D environment map can reach the centimeter level.
  • lidar As the core component of autonomous vehicles, lidar has attracted more and more attention from the industry in recent years, and various manufacturers have successively launched a variety of lidar products. However, due to the complexity of in-vehicle applications and high requirements for safety and reliability, there are very few LiDAR products that truly meet vehicle-level standards.
  • the ambient temperature range required by current automotive-grade lidars is about -40°C-85°C, while the ambient temperature supported by most of the lidars in the industry can only reach a maximum of about 60°C-65°C.
  • the commercial vehicle-grade lidar SCALA1 on the market only supports 4-wire laser beams, and the output rate is also limited to 43kp/s, which greatly reduces the measurement accuracy. In this way, it can only support Autonomous driving at lower levels (e.g. L3).
  • lidar As the modern society has higher and higher requirements for lidar, the performance of lidar is also stronger (such as ranging range, out-point rate and frame rate improvement), and at the same time, the power consumption of lidar will increase, and the problem of over temperature will be increased. getting more serious. Especially when the vehicle is slow or parked, the wind speed decreases and the heat dissipation conditions deteriorate, and the temperature of the lidar's outer casing will rise rapidly, and there is a risk of over-temperature, which will cause the lidar to malfunction, cause serious traffic accidents, endanger driving safety, and cause damage. Private and public property.
  • Embodiments of the present application provide a lidar system, an adjustment method, and related equipment, which can effectively control the temperature of the lidar within a safe range during operation, thereby ensuring driving safety.
  • an embodiment of the present application provides a lidar system, where the lidar system includes a lidar and a sensor system; the lidar includes N devices, and the sensor system includes M temperature sensors, N and M are all integers greater than or equal to 1;
  • the M temperature sensors for monitoring one or more first temperatures of the N devices
  • the lidar configured to determine the second temperature of the N devices based on one or more first temperatures of the N devices
  • the lidar is further configured to adjust one or more operating parameters of one or more of the N devices based on the second temperature of the N devices and a preset adjustment rule;
  • Each of the N devices corresponds to K device temperature thresholds, and the preset adjustment rule includes that when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds When the temperature threshold is set, one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any one of the devices;
  • K is an integer greater than or equal to 1;
  • the lidar is also used to detect the driving environment of the intelligent vehicle through the adjusted N devices.
  • multiple devices such as lasers, detectors, scanners, and housings, etc.
  • the lidar in order to control the temperature of the lidar during operation and avoid the hidden danger of driving caused by over-temperature, multiple devices (such as lasers, detectors, scanners, and housings, etc.) in the lidar may be set in advance for multiple devices. temperature threshold.
  • the real-time temperature of multiple devices in the lidar is monitored by multiple temperature sensors in the vehicle, and when the temperature of any one of the devices exceeds any temperature threshold, the lidar can be based on any one of the temperature thresholds.
  • the operating parameters of the plurality of devices are adjusted to values that match any one of the temperature thresholds.
  • the lidar when the temperature sensor detects that the case temperature of the lidar exceeds 80°C, the lidar can reduce the frame rate corresponding to the scanner from the default 25F/s to 20F/s; for another example, when the case temperature exceeds 90°C , the frame rate corresponding to the scanner can be lowered from the current 20F/s to 15F/s again; for another example, after the frame rate is lowered, when the housing temperature gradually drops to 82°C, the lidar can again match the scanner to The frame rate has been increased from the current 15F/s to 20F/s, and so on.
  • the working parameters can be quickly and effectively adjusted in real time according to the real-time temperature of each device in the lidar, and the measurement accuracy (that is, the power consumption) can be reduced when the temperature is too high, so as to avoid the hidden danger of driving caused by the over-temperature of the device.
  • the measurement accuracy can be restored, the safety and comfort of autonomous driving can be improved, and so on.
  • the lidar in the embodiment of the present application can be adjusted according to the temperature of its multiple devices.
  • the real-time changes of the laser radar can adaptively adjust various working parameters in the laser radar, effectively control the temperature of the laser radar during operation, avoid driving accidents caused by overheating of the device, and ensure driving safety.
  • the embodiments of the present application can actively reduce the measurement accuracy of the lidar when the device temperature is high, that is, reduce the workload of the lidar, so that the lidar does not always work with high precision and high load state, which can further effectively extend the service life of the lidar.
  • the N devices include one or more of a laser, a detector, an optical system, a scanner, a control chip and a housing; the M temperature sensors are specifically used for:
  • One or more first temperatures corresponding to one or more positions of the i-th device among the N devices are monitored by one or more temperature sensors of the M temperature sensors, and the second temperature is the is the highest temperature among the one or more first temperatures; i is an integer greater than or equal to 1 and less than or equal to N.
  • the lidar may include multiple devices such as lasers, detectors, optical systems, scanners, control chips, and housings.
  • the temperature difference of each position is large, which easily leads to the fact that the temperature of one position is low, and other positions may have been seriously overheated, affecting the operation of the device.
  • multiple temperature sensors can be used to monitor the temperatures at multiple locations of a device (eg, the first temperature), and the highest temperature among them can be selected as the actual reference temperature (eg, the second temperature), and the temperature can be compared with the preset temperature.
  • the temperature thresholds of the devices are compared with each other, so as to more comprehensively and rigorously grasp the over-temperature situation of the current lidar.
  • the working parameters can be quickly and effectively adjusted in real time according to the real-time temperature of each device in the lidar, and the measurement accuracy (that is, the power consumption) can be reduced when the temperature is too high, so as to avoid the hidden danger of driving caused by the over-temperature of the device.
  • the measurement accuracy can be restored, the safety and comfort of autonomous driving can be improved, and so on.
  • the one or more working parameters include one or more of frame rate, out-point rate, ranging range, angular resolution, field of view FOV, and region of interest ROI;
  • One or more devices in the N devices are devices associated with any one device;
  • one or more operating parameters of one or more devices in the N devices are associated with any one device. working parameters.
  • the lidar may, according to the temperature changes of multiple devices, determine one or more of the frame rate, out-point rate, ranging range, angular resolution, field of view FOV, and ROI of the device. Adjust the working parameters accordingly, and so on.
  • the device associated with the device (which may include the device itself) can be The corresponding parameters are adjusted, so that the power consumption of the lidar can be adjusted more flexibly, so as to control the temperature of each device in the lidar within a safe range, ensure the normal operation and life of the lidar, and improve the safety and reliability of autonomous driving. comfort, etc.
  • the one or more operating parameters correspond to K set values respectively;
  • the K device temperature thresholds are in one-to-one correspondence with the K set values;
  • the Lidar specifically for:
  • the second temperature of any one of the N devices is greater than the jth device temperature threshold of the K device temperature thresholds, then one or more of the one or more devices of the N devices is set to Adjusting a plurality of working parameters to the jth set value corresponding to the jth device temperature threshold;
  • the temperature threshold of one or more of the N devices is set to One or more operating parameters are adjusted to the j+1th set value corresponding to the j+1th device temperature threshold; wherein the jth device temperature threshold is smaller than the j+1th device temperature Threshold, the jth set value is greater than the j+1th set value; j is an integer greater than or equal to 1 and less than or equal to K.
  • multiple temperature thresholds may be set for multiple devices in the lidar in advance, and operating parameters corresponding to the multiple temperature thresholds may be set setting value.
  • the default value of the frame rate can be 25F/s.
  • the frame rate can be lowered to 20F/s.
  • the frame rate can be further adjusted to Frame rate down to 15F/s, etc.
  • the lidar can again increase the frame rate corresponding to the scanner from the current 15F/s to 20F/s, and so on.
  • the frame rate can be lowered to 20F/s, and when the temperature of the control chip exceeds 105°C, the frame rate can be further lowered to 15F/s, etc. etc., and will not be repeated here.
  • the working parameters can be quickly and effectively adjusted in real time according to the real-time temperature of each device in the lidar, and the measurement accuracy (that is, the power consumption) can be reduced when the temperature is too high, so as to avoid the hidden danger of driving caused by the over-temperature of the device.
  • the measurement accuracy can be restored, the safety and comfort of autonomous driving can be improved, and so on.
  • control chip includes a laser control module and a scanner control module; the laser control module is connected to one or more lasers, and the scanner control module is connected to the scanner;
  • the laser control module configured to control the transmission frequency and/or the transmission power of the one or more lasers based on one or more operating parameters in the point out rate, the ranging range and the ROI;
  • the scanner control module is configured to control a scan rate and/or a scan angle of the scanner based on one or more operating parameters of the frame rate, the angular resolution and the FOV.
  • the control chip of the lidar may include a laser control module and a scanner control module, the laser control module may be connected to one or more lasers, and the scanner control module may be connected to a scanner.
  • the laser control module can control the transmission frequency and/or transmission power of the one or more lasers based on one or more working parameters in the above-mentioned point-out rate, ranging range and ROI; wherein, the scanner control module can Based on one or more operating parameters of frame rate, angular resolution, and FOV described above, the scan rate and/or scan angle of the scanner is controlled, among other things.
  • the real-time control of the laser and the scanner can be realized to ensure that the lidar can operate under various temperature conditions. (that is, under various parameter settings) normal operation.
  • the sensor system further includes a speed sensor
  • the speed sensor is used to monitor the traveling speed of the intelligent vehicle; the traveling speed corresponds to K speed thresholds;
  • the lidar is specifically used for:
  • any one of the N devices When the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the travel speed is less than any one of the K speed thresholds , one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any device and the speed threshold of any one of the devices.
  • the above sensor system may further include a speed sensor, and the speed sensor can monitor the running speed of the intelligent vehicle.
  • the external heat dissipation conditions of lidar are complex, especially the wide variation range of wind speed. In the case of low-speed driving or parking, the external wind speed is greatly reduced, the heat dissipation conditions are deteriorated, and the internal components of the lidar are at risk of overheating, which will seriously affect the normal use and life of the lidar. Moreover, in actual situations such as low-speed driving or parking, the performance requirements of lidar are also lower.
  • the lidar range can be required to measure 200m and the frame rate is at least 25F/s; while in the case of low-speed driving or parking, when the heat dissipation conditions deteriorate, the range of the lidar can be shortened. (eg 100m), the frame rate can also be reduced to 5F/s ⁇ 10F/s, and so on.
  • the embodiments of the present application can not only adaptively adjust working parameters such as the frame rate and the output rate according to the temperature of each device in the lidar, but also further refer to the current driving speed of the vehicle to reduce the measurement accuracy when the temperature is high and the speed is low. , reducing the power consumption of the lidar, thereby effectively controlling the temperature of each device in the lidar within a safe range, which not only satisfies the application of automatic driving, but also improves the reliability of lidar products and ensures driving safety.
  • the M temperature sensors are further used to monitor the ambient temperature of the smart vehicle; the ambient temperature corresponds to K ambient temperature thresholds;
  • the lidar is specifically used for:
  • any one of the N devices reaches any one of the K device temperature thresholds, and the ambient temperature is greater than any one of the K ambient temperature thresholds
  • one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any device and the ambient temperature threshold.
  • the above-mentioned multiple temperature sensors can also monitor the ambient temperature around the smart vehicle, so that the temperature of each device and the ambient temperature can be referenced at the same time, the working parameters can be adjusted more accurately and reliably, and the temperature of the lidar can be effectively controlled. Ensure driving safety. For example, when the temperature of any device and the ambient temperature exceed a certain temperature threshold, the frame rate, output rate, and ranging range can be further reduced to quickly reduce the temperature of the lidar and ensure driving safety.
  • the lidar is specifically used for:
  • any one of the N devices When the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the travel speed is less than any one of the K speed thresholds, And when the ambient temperature is greater than any one of the K ambient temperature thresholds, one or more operating parameters of one or more of the N devices are adjusted to be the same as the one of the K ambient temperature thresholds.
  • the working parameters such as frame rate and out-point rate be adaptively adjusted according to the temperature of each device in the lidar, but also can further refer to the current driving speed of the vehicle and the ambient temperature around the vehicle.
  • the measurement accuracy is reduced and the power consumption of the lidar is reduced, thereby effectively controlling the temperature of each device in the lidar within a safe range, which not only satisfies the application of automatic driving, but also improves the reliability of lidar products. Ensure driving safety.
  • the lidar is further used for:
  • the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle;
  • the target condition includes any one of the N devices
  • One or more operating parameters are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the maximum value among the K device temperature thresholds, and all The travel speed is less than the minimum value of the K speed thresholds.
  • the temperature of any device in the lidar is still high, and the current vehicle speed is low (that is, the heat dissipation conditions are poor).
  • the lidar is further used for:
  • the lidar is controlled to stop working, and an abnormal warning is reported to the smart vehicle;
  • the target condition includes any one of the N devices
  • One or more operating parameters are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the maximum value among the K device temperature thresholds, and all The ambient temperature is greater than the maximum value among the K ambient temperature thresholds.
  • the temperature of any device in the lidar is still high, and the current ambient temperature is high (that is, the heat dissipation condition In the case of severe)
  • you can directly control the lidar to stop working that is, downtime
  • an abnormal alarm to the smart vehicle, so as to avoid damage to various components in the lidar under the condition of continuous high temperature, prolong the lidar long service life to ensure driving safety.
  • the lidar is controlled to stop working, and an abnormal warning is reported to the smart vehicle;
  • the target conditions include the N devices
  • One or more operating parameters of any one of the devices are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K device temperature thresholds. maximum value, and the travel speed is less than the minimum value of the K speed thresholds, and the ambient temperature is greater than the maximum value of the K ambient temperature thresholds.
  • the temperature of any device in the lidar is still high, and the current vehicle speed is low and the ambient temperature is high ( That is, if the heat dissipation conditions are extremely bad), you can directly control the lidar to stop working (that is, downtime), and report an abnormal alarm to the smart vehicle, so as to prevent the various devices in the lidar from receiving the laser radar under the condition of continuous high temperature. damage, prolong the service life of lidar, and ensure driving safety.
  • the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle;
  • the target condition includes one or more of any one of the N devices
  • the operating parameter is the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the maximum value among the K device temperature thresholds.
  • the lidar can be directly controlled to stop working (ie downtime), and report abnormal alarms to the smart vehicle, so as to avoid damage to various components in the lidar under continuous high temperature, prolong the service life of the lidar, and ensure driving safety.
  • an embodiment of the present application provides an adjustment method, which is applied to a lidar system; the lidar system includes a lidar and a sensor system; the lidar includes N devices, and the sensor system includes M temperature sensor, N and M are integers greater than or equal to 1; the method includes:
  • the lidar based on the second temperature of the N devices and a preset adjustment rule, one or more operating parameters of one or more of the N devices are adjusted respectively; the Each of the N devices corresponds to K device temperature thresholds, and the preset adjustment rule includes that when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds When , one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any one of the devices; K is an integer greater than or equal to 1;
  • the adjusted N devices are used to detect the driving environment of the intelligent vehicle.
  • the N devices include one or more of lasers, detectors, optical methods, scanners, control chips and housings; the M temperature sensors are used to monitor the One or more first temperatures for each of the N devices, including:
  • One or more first temperatures corresponding to one or more positions of the i-th device among the N devices are monitored by one or more temperature sensors of the M temperature sensors, and the second temperature is the is the highest temperature among the one or more first temperatures; i is an integer greater than or equal to 1 and less than or equal to N.
  • the one or more working parameters include one or more of frame rate, out-point rate, ranging range, angular resolution, field of view FOV, and region of interest ROI;
  • One or more devices in the N devices are devices associated with any one device;
  • one or more operating parameters of one or more devices in the N devices are associated with any one device. working parameters.
  • the one or more operating parameters correspond to K set values respectively; the K device temperature thresholds are in one-to-one correspondence with the K set values; the Through the lidar, based on the second temperature of the N devices and a preset adjustment rule, one or more operating parameters of one or more of the N devices are adjusted respectively, including:
  • the second temperature of any one of the N devices is greater than the jth device temperature threshold of the K device temperature thresholds, then one or more of the one or more devices of the N devices is set to Adjusting a plurality of working parameters to the jth set value corresponding to the jth device temperature threshold;
  • the temperature threshold of one or more of the N devices is set to One or more operating parameters are adjusted to the j+1th set value corresponding to the j+1th device temperature threshold; wherein the jth device temperature threshold is smaller than the j+1th device temperature Threshold, the jth set value is greater than the j+1th set value; j is an integer greater than or equal to 1 and less than or equal to K.
  • control chip includes a laser control module and a scanner control module; the laser control module is connected to one or more lasers, and the scanner control module is connected to the scanner; the The method also includes:
  • the laser control module Controlling, by the laser control module, the emission frequency and/or emission power of the one or more lasers based on one or more operating parameters in the point-out rate, the ranging range and the ROI;
  • a scan rate and/or scan angle of the scanner is controlled by the scanner control module based on one or more operating parameters of the frame rate, the angular resolution and the FOV.
  • the sensor method further includes a speed sensor; the method further includes:
  • the driving speed of the intelligent vehicle is monitored; the driving speed corresponds to K speed thresholds;
  • the laser radar is used to adjust one or more operating parameters of one or more of the N devices based on the second temperature of the N devices and a preset adjustment rule, respectively, Including: when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the traveling speed is less than any one of the K speed thresholds When the threshold is reached, one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any device and the speed threshold of any one of the devices.
  • the method further includes:
  • the ambient temperature corresponds to K ambient temperature thresholds
  • the laser radar is used to adjust one or more operating parameters of one or more of the N devices based on the second temperature of the N devices and a preset adjustment rule, respectively, Including: when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the ambient temperature is greater than any one of the K ambient temperature thresholds When the ambient temperature threshold is reached, one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any device and the ambient temperature threshold.
  • the respective control parameters of one or more of the N devices are respectively adjusted.
  • One or more operating parameters are adjusted, including: when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the travel speed is lower than the When any one of the K speed thresholds is a speed threshold, and the ambient temperature is greater than any one of the K ambient temperature thresholds, then one or more of the N devices is set to One or more operating parameters are adjusted to values that match the any one of the device temperature thresholds, the any one of the speed thresholds, and the any one of the ambient temperature thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices and the driving speed meet the target condition, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle; the target condition includes the N
  • One or more operating parameters of any one of the devices are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K device temperature thresholds The maximum value of , and the travel speed is less than the minimum value of the K speed thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices and the ambient temperature meet the target conditions, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle; the target conditions include the N One or more operating parameters of any one of the devices are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K device temperature thresholds The maximum value of , and the ambient temperature is greater than the maximum value of the K ambient temperature thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices, the driving speed and the ambient temperature meet the target conditions, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle;
  • the target conditions include , one or more operating parameters of any one of the N devices is the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K The maximum value of device temperature thresholds, and the travel speed is less than the minimum value of the K speed thresholds, and the ambient temperature is greater than the maximum value of the K ambient temperature thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices meet the target condition, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle; the target condition includes any one of the N devices
  • One or more operating parameters of the device are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the maximum value among the K device temperature thresholds.
  • an embodiment of the present application provides an intelligent vehicle, and the intelligent vehicle may include the lidar system according to any one of the above first aspects, so as to realize the adjustment according to any one of the above second aspects The functions involved in the method flow.
  • an embodiment of the present application provides a lidar system
  • the computing device includes a processor
  • the processor is configured to support the lidar system to implement corresponding functions in the adjustment method provided in the second aspect.
  • the lidar system may also include a memory for coupling with the processor that holds program instructions and data necessary for the lidar system.
  • the lidar system may also include a communication interface for the lidar system to communicate with other devices or a communication network.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements any one of the above-mentioned second aspects. Adjust method flow.
  • the processor may be one or more processors.
  • an embodiment of the present application provides a computer program, where the computer program includes instructions, when the computer program is executed by a computer, the computer can execute the adjustment method flow described in any one of the second aspects above.
  • an embodiment of the present application provides a chip system, and the chip system may include the lidar system according to any one of the above-mentioned first aspect, which is used to realize the adjustment described in any one of the above-mentioned second aspect.
  • the chip system further includes a memory for storing necessary program instructions and data for the adjustment method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Figure 1 is a schematic structural diagram of a lidar system.
  • FIG. 2 is a schematic diagram of a case temperature road test result of a lidar provided by an embodiment of the present application.
  • FIG. 3 is a functional block diagram of an intelligent vehicle provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a lidar system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an adaptive adjustment process provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another lidar system provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a case temperature road test result of another lidar provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an adjustment method provided by an embodiment of the present application.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • LiDAR light detection and ranging
  • LiDAR is a radar system that emits a laser beam to detect the position, velocity and other characteristic quantities of the target.
  • the working principle of lidar is to transmit a detection signal (laser beam) to the target, and then compare the received signal (target echo) reflected from the target with the transmitted signal, and then obtain relevant information about the target after proper processing. , such as target distance, orientation, height, speed, attitude, and even shape and other parameters, so as to detect, track and identify targets such as vehicles, pedestrians, and buildings ahead, with a wide detection range and high accuracy.
  • the lidar system may include an optical system 101 (which may include a corrective lens group, a collimating lens group and a receiving lens, etc., not shown in FIG. 1 ), a plurality of lasers (eg, laser 102a and laser 102b, etc.), scanner 103, multiple detectors (eg detector 104a and detector 104b), driver 105, scanning motor 106, laser control module 107, scanner control module 108, data The receiving module 109 , the data processing module 110 and the communication interface 111 .
  • an optical system 101 which may include a corrective lens group, a collimating lens group and a receiving lens, etc., not shown in FIG. 1
  • a plurality of lasers eg, laser 102a and laser 102b, etc.
  • scanner 103 multiple detectors (eg detector 104a and detector 104b)
  • driver 105 eg. detector 104a and detector 104b)
  • scanning motor 106 e.g., laser control module 107
  • the lidar system can be mainly composed of transmitting system, receiving system and information processing and other parts.
  • the transmitting system may include the above-mentioned lasers 102a, 102b, a driver 105, a scanner 103, a scanning motor 106, and the like.
  • the lasers 102a and 102b can be connected to the driver 105, and the laser control module 107 can be connected to the driver 105 to control a plurality of lasers for laser emission.
  • the lasers 102a and 102b may be, for example, carbon dioxide lasers, neodymium-doped yttrium aluminum garnet lasers, semiconductor lasers, wavelength-tunable solid-state lasers, and other types of lasers.
  • the scanner 103 is located in the light-emitting direction of the lasers 102a and 102b. As shown in FIG. 1, the scanner 103 can be connected with the scanning motor 106, and the scanner control module 108 can be connected with the scanning motor 106 to control the scanner 103 to rotate , thereby changing the angle of the laser beams emitted by the lasers 102a and 102b.
  • the receiving system may include the above-mentioned detectors 104a and 104b, etc.
  • the detectors 104a and 104b may be, for example, various combinations of photomultiplier tubes, semiconductor photodiodes, avalanche photodiodes, infrared and visible light multi-element detection devices, etc. form of detectors.
  • the data receiving module 109 may include a receiving algorithm, which may be used to receive signals received by multiple detectors and perform certain processing, wherein the data processing module 110 may perform point cloud preprocessing and reporting.
  • the communication interface 111 may establish a communication connection with other devices, so as to send the point cloud data collected by the lidar to other devices, etc., which will not be described in detail here.
  • the main performance parameters of lidar are laser wavelength, detection distance, field of view (FOV), ranging extreme, angular resolution, frame rate, output rate, wiring harness, safety level, output parameters, Ingress protection (IP) level, power, supply voltage, laser emission method and service life, etc.
  • FOV field of view
  • IP Ingress protection
  • Laser wavelength The most commonly used wavelengths for 3D imaging lidars on the market are 905nm and 1550nm. Lidar with a wavelength of 1550nm can operate at higher power to improve the detection range, and at the same time, it is more penetrating to rain and fog and has higher measurement accuracy.
  • Safety level Whether the safety level of the lidar meets the requirements, it is necessary to consider the laser output power of a laser product with a specific wavelength during the full working time, that is, the safety of laser radiation is the result of the combined effect of wavelength, output power, and laser radiation time. .
  • Detection distance (or called ranging range): In general, the higher the power of the laser, the farther the detectable distance will be. In addition, the ranging of lidar is related to the reflectivity of the target. The higher the reflectivity of the target, the farther the measured distance is, and the lower the reflectivity of the target, the closer the measured distance. Therefore, when checking the detection distance of the lidar, it is usually necessary to know the detection distance when the measured distance is the reflectivity of the target.
  • Field of view The field of view of the lidar includes a horizontal field of view and a vertical field of view.
  • the horizontal field of view is generally 360 degrees.
  • Angular resolution including vertical resolution and horizontal resolution. It should be noted that, since the motor is driven in the horizontal direction, the horizontal resolution can achieve high precision, generally reaching the level of 0.01 degrees.
  • the vertical resolution is generally related to the geometric size and arrangement of the emitter (that is, the laser). The smaller the interval between two adjacent emitters, the smaller the vertical resolution.
  • the vertical resolution is generally 0.1 ⁇ 1 degree level.
  • Frame rate (that is, frame rate): A point cloud image represents one frame, which corresponds to the inside of the lidar, where the motor rotates once to complete a scan.
  • the frame rate represents the number of revolutions the lidar motor rotates per second, which is the number of times the lidar completes one scan per second.
  • Point-out rate (or sampling rate): The number of laser points (or laser pulses) emitted by the lidar per second, that is, the number of effective acquisitions per second by the lidar, which can be intuitively understood as the points generated in one second number of clouds.
  • the output rate of lidar is generally from tens of thousands to hundreds of thousands of points per second, which can be calculated from the above frame rate and angular resolution, and will not be described in detail here.
  • Multi-line LiDAR is the scanning of multiple wire beams formed by the rotation of the motor through the distribution of multiple laser transmitters in the vertical direction. It is understandable that the more and denser the laser beams are, the more sufficient the description of the environment will be, and the requirements of the algorithm can be further reduced. Common LiDAR wiring harnesses are: 4 lines, 8 lines, 16 lines, 32 lines, 64 lines, etc., which will not be described in detail here.
  • Output parameters position, speed, direction, timestamp and reflectivity of obstacles (e.g. vehicles, pedestrians, buildings, etc. in the driving environment), etc.
  • obstacles e.g. vehicles, pedestrians, buildings, etc. in the driving environment
  • Service life The service life of mechanical rotating lidar is generally several thousand hours; the service life of solid-state lidar can be as high as 100,000 hours.
  • Laser emission method The more common ones on the market include traditional mechanical rotating lidar and solid-state lidar.
  • the mechanical rotating lidar adopts the structure of mechanical rotation, and the mechanical rotation easily leads to wear and tear, which makes the service life of the lidar limited.
  • Solid-state lidar such as flash lidar, can cover the entire field of view with pulses once as long as there is a light source, and then use the time of flight (T0F) method to receive relevant data and draw targets around the lidar , etc., which will not be described in detail here.
  • T0F time of flight
  • the performance of lidar is also continuously improved. Getting higher and higher, etc., the power consumption of the lidar will also increase, which will cause the temperature of the lidar to get higher and higher.
  • the scale and volume of the lidar are also required to be as small as possible, which further leads to more intensive heat during the operation of the lidar, and the problem of over-temperature becomes more and more serious.
  • the lidar during driving, with the continuous operation of the vehicle lidar, when the temperature of the lidar's casing or the various devices in the lidar (such as the multiple lasers, scanners, and multiple detectors in Figure 1 above) When the temperature is greater than the specified safe temperature range, the lidar will often fail and cannot continue to work, etc., seriously endangering driving safety, and even causing serious traffic accidents, damaging the personal safety and property safety of drivers or passengers.
  • the temperature of the lidar's casing or the various devices in the lidar such as the multiple lasers, scanners, and multiple detectors in Figure 1 above
  • FIG. 2 is a schematic diagram of a case temperature road test result of a lidar provided by an embodiment of the present application. As shown in Figure 2, during the normal driving process of the vehicle, due to the high vehicle speed and high wind speed, the heat dissipation conditions are better. In this way, the outer shell temperature of the lidar can be stabilized within a safe range of 30°C.
  • the technical problems to be solved by the present invention are further analyzed and proposed.
  • the cooling technology of lidar includes a variety of technical solutions. The following is an example of a commonly used solution.
  • Option 1 Cool the lidar with a liquid cooling device.
  • the liquid cooling device may include a heat dissipation module and a heat absorption module.
  • the heat sink module can engage with and absorb heat from the lidar.
  • the liquid cooling device may further include a circulation pipeline, and the heat absorption module may be connected to the heat dissipation module through the circulation pipeline.
  • the cooling liquid can circulate between the heat dissipation module and the heat absorption module through the above-mentioned circulation pipeline, so as to absorb heat in the heat absorption module and dissipate heat in the heat dissipation module. In this way, by applying the liquid cooling device to the lidar, the lidar can be effectively cooled, and then the working temperature of the lidar can be controlled.
  • the liquid cooling method not only has a large heat capacity and a slow temperature rise, but also is quieter than the fan cooling method.
  • the liquid cooling device can reduce the temperature of the lidar to a certain extent
  • the liquid cooling device contains many components (such as the above-mentioned heat dissipation module, heat absorption module and circulation pipeline, etc.) It is convenient to be loaded on the vehicle, and it increases the production cost and consumes a lot of energy.
  • the temperature of the lidar is reduced by external auxiliary methods such as liquid cooling, the lidar is always working under high load, and its power consumption is not reduced. Over time, it will seriously damage the service life of the lidar and cannot effectively guarantee driving. Safety.
  • Option 2 Through the adaptive technology of lidar, the power consumption of lidar is reduced to achieve cooling.
  • the existing LiDAR adaptive technology is mainly an adaptive technology for post-level perception applications, which is actually a scanning technology. It is understandable that since the targets all enter the field of view from the boundary of the point cloud, and the perception algorithm is more concerned about the targets within the field of view and the boundary of the field of view.
  • the adaptive technology in scheme 2 can adaptively adjust to increase lighting in the region of interest (ROI) and boundary areas, so that the point cloud is dense, while reducing lighting in areas without targets, making the point cloud Sparse. Thereby, the power consumption of the lidar can be reduced to a certain extent, so as to reduce the temperature of the lidar.
  • ROI region of interest
  • the second solution focuses on the adaptive scanning of targets in the field of view of the lidar or the possible target area, and does not involve the vehicle specifications and reliability of each device in the lidar, that is, it cannot be considered in the actual operation process.
  • Overtemperature of LiDAR in China In this way, when the temperature of the lidar is high, the second solution will not further perform adaptive adjustment with reference to its temperature to reduce power consumption. Lidar still has a great risk of overheating, which cannot guarantee driving safety and even cause serious traffic accidents.
  • the first solution in the above-mentioned prior art reduces the temperature of the lidar to a certain extent by adding a liquid cooling device, it also brings about the problems of increasing the volume and cost; and although the above-mentioned solution 2 adjusts the ROI by adaptive adjustment , the power consumption of the lidar can be reduced at individual moments, but its adaptive adjustment is aimed at the ROI and does not take into account the actual over-temperature situation, so it cannot quickly and effectively reduce the temperature of the lidar when the temperature is high. In this way, the existing technology does not really solve the over-temperature problem faced by the lidar, and it is impossible to reduce the temperature of the lidar.
  • the technical problems to be solved by the present invention include the following aspects: based on the existing laser radar and sensor technology, through adaptive adjustment under different temperature conditions The various working parameters of the lidar can quickly and effectively reduce the temperature of the lidar's casing and various components, avoid the risk of over-temperature, and ensure driving safety.
  • FIG. 3 is a functional block diagram of an intelligent vehicle provided by an embodiment of the present application.
  • the lidar system and the corresponding adjustment method provided by the embodiments of the present application may be applied to the smart vehicle 200 as shown in FIG. 3 .
  • the smart vehicle 200 may be configured in a fully or partially automatic driving mode.
  • the intelligent vehicle 200 may be set to operate without human interaction.
  • Intelligent vehicle 200 may include various subsystems, such as travel system 202 , sensing system 204 , control system 206 , one or more peripherals 208 and power supply 210 , computer system 212 , and user interface 216 .
  • intelligent vehicle 200 may include more or fewer subsystems, and each subsystem may include multiple elements. Additionally, each of the subsystems and elements of the intelligent vehicle 200 may be wired or wirelessly interconnected.
  • the travel system 202 may include components that provide powered motion for the intelligent vehicle 200 .
  • travel system 202 may include engine 218 , energy source 219 , transmission 220 , and wheels 221 .
  • Engine 218 may be an internal combustion engine, an electric motor, an air compression engine, or other types of engine combinations, such as a gasoline engine and electric motor hybrid engine, an internal combustion engine and an air compression engine hybrid engine.
  • Engine 218 may convert energy source 219 into mechanical energy.
  • Examples of energy sources 219 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity. Energy source 219 may also provide energy to other systems of intelligent vehicle 200 .
  • Transmission 220 may transmit mechanical power from engine 218 to wheels 221 .
  • Transmission 220 may include a gearbox, a differential, and a driveshaft.
  • transmission 220 may also include other devices, such as clutches.
  • the drive shafts may include one or more axles that may be coupled to one or more wheels 221 .
  • the sensing system 204 may include several sensors that may be used to collect environmental information about the surroundings of the intelligent vehicle 200 (eg, may include terrain, roads, motor vehicles, non-motor vehicles, pedestrians, roadblocks, traffic signs, traffic lights, animals, buildings and plants, etc.).
  • the sensing system 204 may include a positioning system 222 (the positioning system may be a global positioning system (GPS) system, a Beidou system or other positioning systems), an inertial measurement unit (inertial measurement unit) , IMU) 224, lidar system 226, laser rangefinder 228, camera 230, and computer vision system 232, among others.
  • the lidar system 226 may include a lidar and a plurality of temperature sensors.
  • the lidar may include one or more lasers, scanners, one or more detectors, control chips, optical systems, and housings (for details, please refer to the lidar shown in FIG. 1 above) and other devices.
  • the multiple temperature sensors can monitor the temperature of the multiple devices in real time.
  • the lidar can monitor one or more operating parameters (such as frame rate, point-out rate, ranging range, etc.) based on the temperature change of each device. Make adjustments to control the temperature of multiple devices in the lidar within a safe range, ensure the normal operation of the lidar, and further ensure driving safety.
  • the lidar system 226 may further include a speed sensor, which can monitor the driving speed of the smart vehicle 200 in real time.
  • the lidar can monitor one or more of the driving speeds of the smart vehicle 200 based on the temperature change of each device and the driving speed of the smart vehicle 200 . to adjust each working parameter, etc., which are not specifically limited in this embodiment of the present application.
  • the sensor system 204 may also include a millimeter-wave radar (not shown in FIG. 3 ), etc., which may be used to sense objects in the surrounding environment of the intelligent vehicle 200 . The embodiment does not specifically limit this.
  • the positioning system 222 may be used to estimate the geographic location of the intelligent vehicle 200 .
  • the IMU 224 is used to sense position and orientation changes of the intelligent vehicle 200 based on inertial acceleration.
  • IMU 224 may be a combination of an accelerometer and a gyroscope.
  • the lidar system 226 may utilize radio signals to sense objects within the surrounding environment of the intelligent vehicle 200 .
  • the lidar system 226 may also be used to sense the speed and/or direction of travel of vehicles surrounding the smart vehicle 200 , and the like.
  • the lidar system 226 may be used to collect point cloud data of the surrounding environment, etc., which will not be described in detail here.
  • the laser rangefinder 228 may utilize laser light to sense objects in the environment in which the intelligent vehicle 200 is located.
  • laser rangefinder 228 may include one or more laser sources, one or more laser scanners, and one or more detectors, among other system components.
  • Camera 230 may be used to capture multiple images of the surrounding environment of intelligent vehicle 200 .
  • camera 230 may be a still camera or a video camera.
  • Computer vision system 232 is operable to process and analyze images captured by camera 230 in order to identify objects and/or features in the environment surrounding intelligent vehicle 200 .
  • the objects and/or features may include terrain, motor vehicles, non-motor vehicles, pedestrians, buildings, traffic signals, road boundaries and obstacles, and the like.
  • Computer vision system 232 may use object recognition algorithms, structure from motion (SFM) algorithms, video tracking, and other computer vision techniques.
  • SFM structure from motion
  • Control system 206 controls the operation of the intelligent vehicle 200 and its components.
  • Control system 206 may include various components, including accelerator 235, braking unit 236, and steering system 234.
  • the throttle 235 is used to control the operating speed of the engine 218 and thus the speed of the intelligent vehicle 200 .
  • the braking unit 236 is used to control the deceleration of the intelligent vehicle 200 .
  • the braking unit 236 may use friction to slow the wheels 221 .
  • the braking unit 236 may convert the kinetic energy of the wheels 221 into electrical current.
  • the braking unit 236 may also take other forms to slow down the wheels 221 to control the speed of the smart vehicle 200 .
  • Steering system 234 is operable to adjust the heading of intelligent vehicle 200 .
  • control system 206 may additionally or alternatively include components other than those shown and described. Alternatively, some of the components shown above may be reduced.
  • the intelligent vehicle 200 interacts with external sensors, other vehicles, other computer systems, or users through peripheral devices 208 .
  • Peripherals 208 may include a wireless communication system 246 , an onboard computer 248 , a microphone 250 and/or a speaker 252 .
  • the point cloud data collected by the lidar system 226 during the driving process of the smart vehicle 200 can also be uploaded to the server or computing device through the wireless communication system 246, so as to draw the data from the point cloud.
  • the formed high-precision 3D environment map, etc., are not specifically limited in this embodiment of the present application.
  • the above-mentioned server may be a server, a server cluster composed of multiple servers, or a cloud computing service center, etc., which are not specifically limited in this embodiment of the present application.
  • the above computing device may be a smart wearable device, a smart phone, a tablet computer, a notebook computer, a desktop computer, or a server with a display screen, etc., which are not specifically limited in this embodiment of the present application.
  • peripherals 208 provide a means for a user of intelligent vehicle 200 to interact with user interface 216 .
  • the onboard computer 248 may provide information to the user of the smart vehicle 200 .
  • User interface 216 may also operate on-board computer 248 to receive user input.
  • the onboard computer 248 can be operated via a touch screen.
  • peripheral devices 208 may provide a means for intelligent vehicle 200 to communicate with other devices located within the vehicle.
  • microphone 250 may receive audio (eg, voice commands or other audio input) from a user of intelligent vehicle 200 .
  • speaker 252 may output audio to a user of intelligent vehicle 200 .
  • Wireless communication system 246 may wirelessly communicate with one or more devices, either directly or via a communication network.
  • wireless communication system 246 may use 3rd generation mobile networks (3G) cellular communications, such as code division multiple access (CDMA), global system for mobile communications, GSM)/General Packet Radio Service (GPRS), or 4th Generation Mobile Networks (4G) cellular communications, such as Long Term Evolution (LTE). Or 5th generation mobile networks (5G) cellular communications.
  • the wireless communication system 246 may also utilize wireless-fidelity (WIFI) to communicate with a wireless local area network (WLAN).
  • WIFI wireless-fidelity
  • WLAN wireless local area network
  • the wireless communication system 246 may communicate directly with the device using an infrared link, Bluetooth, or the like.
  • Other wireless protocols, such as various vehicle communication systems, for example, wireless communication system 246 may include one or more dedicated short range communications (DSRC) devices, which may include a combination of vehicle and/or roadside stations. public and/or private data communications between them.
  • DSRC dedicated short
  • Power supply 210 may provide power to various components of intelligent vehicle 200 .
  • the power source 210 may be a rechargeable lithium-ion or lead-acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the intelligent vehicle 200 .
  • power source 210 and energy source 219 may be implemented together, such as in some all-electric vehicles.
  • Computer system 212 may include at least one processor 213 that executes instructions 215 stored in a non-transitory computer readable medium such as memory 214.
  • Computer system 212 may also be multiple computing devices that control individual components or subsystems of intelligent vehicle 200 in a distributed fashion.
  • the processor 213 may be any conventional processor, such as a commercially available central processing unit (CPU). Alternatively, the processor may be a dedicated device such as an application-specific integrated circuit (ASIC) or other hardware-based processor.
  • FIG. 3 functionally illustrates the processor, memory, and other elements of the computer system 212 in the same block, one of ordinary skill in the art will understand that the processor or memory may actually include a processor or memory that is not stored in the same physical enclosure multiple processors or memories within.
  • the memory may be a hard drive or other storage medium located within an enclosure other than computer system 212 .
  • a reference to a processor or memory will be understood to include a reference to a collection of processors or memories that may or may not operate in parallel. Rather than using a single processor to perform the steps described herein, for example, some of the components in sensing system 204 may each have its own processor that only performs computations related to component-specific functions .
  • the processor 213 may be located remotely from the vehicle and in wireless communication with the vehicle. In other aspects, some of the processes described herein are performed on a processor disposed within the vehicle while others are performed by a remote processor.
  • memory 214 may include instructions 215 (eg, program logic) executable by processor 213 to perform various functions of intelligent vehicle 200, including those described above.
  • Memory 214 may also contain additional instructions, including sending data to, receiving data from, interacting with and/or controlling one or more of travel system 202 , sensing system 204 , control system 206 and peripherals 208 instruction.
  • the memory 214 can also store data, such as a large amount of sensor data collected by the sensor system 204 during driving, such as image data captured by the camera 230 in the sensor system 204 and data collected by the lidar system 226 . Point cloud data, etc.
  • the memory 214 may also store a plurality of temperature thresholds for adjusting the operating parameters according to temperature changes and a plurality of respective set values of the plurality of operating parameters (eg, the housing) matching the plurality of temperature thresholds.
  • One of the temperature thresholds is 80° C., then the temperature threshold corresponds to adjusting the frame rate to 20F/s), etc., which is not specifically limited in this embodiment of the present application.
  • the memory 214 may also store, for example, road maps, route information, the vehicle's position, direction, speed, and other such vehicle data, as well as other information, among others. Such information may be used by the wireless communication system 246 or the computer system 212 or the like in the intelligent vehicle 200 during travel of the intelligent vehicle 200 .
  • User interface 216 for providing information to or receiving information from a user of intelligent vehicle 200 .
  • user interface 216 may include one or more input/output devices within the set of peripheral devices 208 , such as wireless communication system 246 , onboard computer 248 , microphone 250 and speaker 252 .
  • one or more of these components described above may be installed or associated with the intelligent vehicle 200 separately.
  • memory 214 may exist partially or completely separate from intelligent vehicle 200 .
  • the above-described components may be communicatively coupled together in a wired and/or wireless manner.
  • the smart vehicle 200 can be a car, a truck, a motorcycle, a bus, a boat, a drone, a robot, an airplane, a helicopter, a lawn mower, an amusement vehicle, an amusement park vehicle, construction equipment, a tram, Golf carts, trains, trolleys, etc., which are not specifically limited in the embodiments of the present application.
  • FIG. 3 the functional block diagram of the smart vehicle in FIG. 3 is only an exemplary implementation in the embodiments of the present application, and the smart vehicles in the embodiments of the present application include but are not limited to the above structures.
  • FIG. 4 is a schematic structural diagram of a lidar system provided by an embodiment of the present application.
  • the lidar system 300 may be applied to the smart vehicle 200 shown in FIG. 3 , and the lidar system 300 may be the lidar system 226 shown in FIG. 3 , which is not specifically described in this embodiment of the present application. limited.
  • the lidar system 300 may include a sensor system 301 and a lidar 302 .
  • the sensor system 301 may include M temperature sensors, where M is an integer greater than or equal to 1.
  • the lidar 302 may include N devices, where N is an integer greater than or equal to 1.
  • the N devices may include one or more of lasers, detectors, optical systems, scanners, control chips, and housings.
  • the control chip may include a data processing module as shown in FIG. 1 and the like, which may be used to preprocess the point cloud.
  • the M temperature sensors may be arranged around the above N devices to monitor the temperature of the N devices in real time. It should be noted that due to the different temperatures of different parts of the device, especially the larger device, the temperature of each position varies greatly, which may easily lead to a low temperature in one position, other positions may have been seriously overheated, affecting the device. run. As such, optionally, one or more first temperatures corresponding to one or more positions of a device may be monitored by one or more of the temperature sensors.
  • the lidar can determine a second temperature corresponding to the device (that is, a temperature that can actually be used as a reference) based on one or more first temperatures of the device, and the second temperature can be the above-mentioned one or more first temperatures the highest temperature in .
  • the second temperature can be the above-mentioned one or more first temperatures the highest temperature in .
  • there are 3 temperature sensors around the control chip and the monitored first temperatures are 90°C, 95°C, and 105°C, respectively, then 105°C can be used as the second temperature of the control chip, and then the second temperature can be used according to the second temperature.
  • the temperature is used for over-temperature judgment to improve safety.
  • a method such as fitting can also be used to calculate the corresponding second temperature according to the first temperature at one or more different positions of the device, and so on.
  • This is not specifically limited.
  • the temperature may be a junction temperature, such as the junction temperature of the control chip in the above-mentioned lidar 302 (the junction temperature is the highest temperature of the actual semiconductor chip in the electronic device, usually higher than the case temperature).
  • the lidar 302 may adjust one or more working parameters of one or more of the N devices respectively based on the second temperature of the N devices and a preset adjustment rule.
  • the N devices may each correspond to K device temperature thresholds, where K is an integer greater than or equal to 1.
  • the preset adjustment rule may include, when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, then one or more of the N devices One or more respective operating parameters of the devices are adjusted to values that match the temperature threshold of any one of the devices.
  • one or more of the N devices to be adjusted may be a device associated with any one of the over-temperature devices (which may include the over-temperature device itself), and each of the one or more devices may be The operating parameter or parameters may also be operating parameters associated with the any one of the over-temperature devices.
  • the one or more working parameters may include one or more of frame rate, point out rate, ranging range, angular resolution, FOV, ROI, and point cloud resolution, and may also include laser beams, etc. Other possible working parameters are not specifically limited in this embodiment of the present application. It should be noted that the value of K corresponding to each device can be different.
  • the N devices are four devices: laser, detector, housing and control chip, wherein the laser can correspond to 90°C, 95°C and 3 device temperature thresholds of 100°C, the detector can correspond to 3 device temperature thresholds of 90°C, 95°C and 100°C, and the case can correspond to 4 device temperature thresholds of 80°C, 90°C, 100°C and 105°C , the control chip may correspond to five device temperature thresholds of 100° C., 105° C., 110° C., 115° C. and 120° C., etc., which are not specifically limited in this embodiment of the present application.
  • K set values corresponding to the above one or more operating parameters may be set in advance; wherein, the K device temperature thresholds may correspond to the K set values one-to-one.
  • the K device temperature thresholds may correspond to the K set values one-to-one.
  • the operating parameters are adjusted to the jth set value corresponding to the jth device temperature threshold; further, if the second temperature of any one of the N devices is greater than the jth temperature threshold of the K devices +1 device temperature threshold, then one or more operating parameters of one or more of the N devices can be adjusted to the j+1th setting corresponding to the j+1th device temperature threshold value.
  • the jth device temperature threshold is less than the j+1th device temperature threshold, and the jth set value is greater than the j+1th set value; j is greater than or equal to 1, and an integer less than or equal to K.
  • the set values of the working parameters can be adjusted adaptively and continuously (for example, the frame rate of the lidar 302 is continuously reduced, and the ranging range of the lidar 302 is shortened). etc.) to reduce the power consumption of the lidar 302, thereby reducing the temperature of each device in the lidar 302, and to ensure the normal operation of the lidar 302 and driving safety.
  • the value of K in the K set values and the K device temperature thresholds may be different. The corresponding relationship can be shown in Table 1 and Table 2 below.
  • FIG. 5 is a schematic diagram of an adaptive adjustment process provided by an embodiment of the present application.
  • the lidar 302 can start to work with default settings, such as the frame rate of 25F/s and the ranging range of 200m as shown in Tables 1 and 2 above. Wait to start working.
  • a plurality of sensors in it start to monitor the temperature of each of the above-mentioned devices in real time.
  • the lidar 302 can reduce the frame rate corresponding to the scanner to 20F/s (the first device temperature threshold). a setpoint) to reduce the scanner temperature.
  • the lidar 302 can reduce the frame rate corresponding to the scanner to 20F/s to reduce the casing temperature. It is understandable that there will be correlations between different working parameters. For example, the output rate is calculated based on the frame rate and angular resolution, and the frame rate will decrease, but when the angular resolution remains unchanged, the output rate will be followed by a drop.
  • adjusting the frame rate of the scanner is also equivalent to adjusting the output rate of the laser at the same time.
  • the laser light in the non-target area is greatly reduced, and the point cloud is sparse, which is equivalent to reducing the overall laser. rate, etc.
  • the ranging range corresponding to the laser can also be lowered to 150m (the first setting value) at the same time, so as to achieve a large
  • the power consumption of the lidar 302 can be effectively reduced, thereby reducing the housing temperature more quickly and effectively, avoiding damage to the lidar 302 caused by continuous high temperature, etc., which are not specifically limited in this embodiment of the present application.
  • the housing temperature is still rising.
  • the lidar 302 can Further down the frame rate to 15F/s (the second setting).
  • the ranging range corresponding to the laser can also be lowered to 100m (the second set value) again at the same time, and so on, which will not be repeated here.
  • multiple devices in the lidar 302 are often related to each other and affect each other. For example, in the case of reducing the frame rate and the output rate as described above, the number of signals received by the detector will also vary. If it decreases, the workload of the detector will decrease, and its temperature will also decrease. Further, the workload of point cloud processing in the control chip will also decrease accordingly, resulting in a decrease in the temperature of the control chip.
  • the lidar 302 can reduce the frame rate corresponding to the scanner to 20F/s, thereby reducing the temperature of the control chip.
  • the lidar 302 can reduce the frame rate corresponding to the scanner to 20F/s, thereby reducing the temperature of the control chip.
  • the second temperature of the control chip exceeds its corresponding first device temperature threshold (100°C)
  • the frequency of the processor decreases, the workload of its data processing will also decrease.
  • the temperature of devices such as lasers and scanners is not too high, it can also be The point-out rate of the laser and the frame rate of the scanner are lowered, etc., which are not specifically limited in this embodiment of the present application. Therefore, by adjusting one or more of the working parameters, it is possible to effectively and comprehensively ensure that the temperature of the lidar 302 when working is within a safe range.
  • the laser radar 302 can be controlled to stop working (that is, the shutdown shown in FIG. 5 ), and an abnormal warning can be reported to the intelligent vehicle.
  • the abnormal warning can include making Users or testers can grasp the current abnormal overtemperature condition of the lidar 302 in time to ensure driving safety.
  • the lidar 302 can be directly controlled to stop working , so as to protect the internal devices of the lidar 302 , avoid over-temperature damage of the devices, and prolong the service life of the lidar 302 .
  • the lidar 302 can also be directly controlled to stop working at this time to avoid damage to the device due to prolonged high temperature, etc., which is not specifically limited in this embodiment of the present application.
  • the multiple temperature sensors in the sensor system 301 can still continuously monitor the temperature of each device in the lidar 302, so that when the temperature of each device returns to a certain temperature range (for example, the temperature threshold of the first device or the temperature threshold of the second device, or other possible temperature ranges, which are not specifically limited in this embodiment of the present application), the lidar 302 can be restarted and start to work to ensure automatic driving. safety.
  • a certain temperature range For example, the temperature threshold of the first device or the temperature threshold of the second device, or other possible temperature ranges, which are not specifically limited in this embodiment of the present application
  • the lidar 302 may also detect the driving environment of the smart vehicle 200 based on the adjusted N devices, etc., which will not be described in detail here.
  • the lidar shown in Figure 1 Please refer to the lidar shown in Figure 1 together. It should be noted that there are two main parts that affect the power consumption of the entire lidar, including the firing frequency (that is, the laser emission frequency), power, and receiving frequency of the laser at the transmitter end.
  • the data processing part of the terminal when the temperature of each device is high, the embodiments of the present application can adaptively lower the frame rate, out-point rate, ranging range, FOV and other working parameters, which actually directly reduces the lighting frequency of the laser, Power, reducing the density of point cloud data collection, thereby indirectly reducing the workload of data processing at the receiving end. In this way, the overall power consumption of the lidar can be effectively reduced, and ultimately the temperature of each device in the lidar can be controlled within a safe range. within (or within the specification range) to ensure driving safety.
  • FIG. 6 is a schematic structural diagram of another lidar system provided by an embodiment of the present application.
  • the sensor system 301 may further include a speed sensor 3014, and the lidar 302 may further include a laser 3021, a control chip 3022, a scanner 3023, etc.
  • the control chip 3022 may include a laser control module and a scanner control module, the laser control module may be connected to one or more lasers 3021 , and the scanner control module may be connected to the scanner 3023 .
  • the laser control module can control the transmission frequency and/or transmission power of the one or more lasers based on one or more working parameters in the above-mentioned point-out rate, ranging range and ROI; wherein, the scanner control module can Based on one or more operating parameters of frame rate, angular resolution, and FOV described above, the scan rate and/or scan angle of the scanner is controlled, among other things. Therefore, by controlling the laser control module and the scanner control module in the chip, based on the temperature change of each device and the numerical adjustment of the corresponding working parameters, the real-time control of the laser and the scanner can be realized to ensure that the lidar can operate under various temperature conditions. of normal operation.
  • the speed sensor 3014 can monitor the driving speed of the intelligent vehicle 200 in real time.
  • the traveling speed may also correspond to K speed thresholds, and the value of K may be different from the K corresponding to the aforementioned device temperature threshold and the set value of the working parameter. It can be understood that the lower the vehicle speed, the lower the wind speed and the worse the heat dissipation condition.
  • the lidar 302 may adjust one or more working parameters of one or more of the N devices to match the one or more of the K speed thresholds.
  • the lidar can reduce the frame rate to 20F/s, etc., which is not specifically limited in the embodiment of the present application.
  • the lidar 302 can further Reduce the frame rate, out-point rate and ranging range, etc., or directly control the lidar to stop working (that is, downtime) to minimize the power of lidar while ensuring driving safety and meeting the needs of autonomous driving. power consumption, and control the temperature of the lidar within a safe range.
  • the lidar 302 can be controlled to stop working, and an abnormal warning is reported to the intelligent vehicle 200, etc., which will not be repeated here.
  • the speed sensor 3014 can also continuously monitor the driving speed of the smart vehicle 200. When the monitored driving speed gradually returns to a certain speed range, and the temperature of each device returns to a certain temperature. When within range, the lidar can restart and start working to ensure the safety of autonomous driving.
  • the temperature sensor in the sensor system 301 can also be used to monitor the ambient temperature of the smart vehicle 200 .
  • the ambient temperature may also correspond to K ambient temperature thresholds, and the value of K may be different from the K corresponding to the aforementioned speed thresholds, device temperature thresholds, and set values of operating parameters.
  • the higher the ambient temperature the higher the temperature of the lidar.
  • the lidar 302 can adjust one or more operating parameters of one or more of the N devices to a value matching the temperature threshold of any device and the ambient temperature threshold.
  • the lidar can reduce the frame rate to 20 F/s, etc., which is not specifically limited in this embodiment of the present application.
  • the frame rate can be lowered more significantly, for example, directly lowered to 10F/s to reduce the laser rate more quickly.
  • the temperature of the radar ensures driving safety.
  • the lidar 302 can be controlled to stop working, and an abnormal warning is reported to the intelligent vehicle 200, etc., which will not be repeated here.
  • the device temperature, the driving speed and the ambient temperature may also be referenced at the same time to make adaptive adjustment to the operating parameters.
  • the lidar 302 can adjust one or more operating parameters of one or more of the N devices to be consistent with any one of the devices.
  • the temperature threshold, the value matching any one of the speed thresholds and the any one of the ambient temperature thresholds, etc., are not specifically limited in this application.
  • the lidar can reduce the frame rate to 20F/s, etc., which is not specifically limited in this embodiment of the present application .
  • the working parameters can also be adjusted, so as to prevent the device from overheating faster and more effectively in advance, etc., which are not specifically limited in this embodiment of the present application.
  • the lidar 302 can be directly shut down and report an abnormal alarm to the intelligent vehicle, so as to avoid damage to various components in the lidar under the condition of continuous high temperature, prolong the service life of the lidar, and ensure Drive safely.
  • FIG. 7a is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario may include a multi-lane road, and a running smart vehicle 200 (taking a car as an example in Fig. 7a), vehicle 1 (taking a bus as an example in Fig. 7a), and vehicle 2 (Fig. 7a).
  • 7a a car is taken as an example
  • vehicle 3 a car is taken as an example in Fig. 7a).
  • the intelligent vehicle 200 may be the intelligent vehicle 200 shown in the above-mentioned FIG. 3 , loaded with a lidar system, for example, the lidar system 300 shown in the above-mentioned FIG. 4 or FIG. 6 .
  • FIG. 7b is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • the application scenario may also include an intelligent vehicle 200 loaded with a lidar system, which will not be repeated here.
  • the intelligent vehicle 200 in front of the sidewalk, the intelligent vehicle 200 may be in a parked state.
  • the smart vehicle 200 can be in an automatic driving mode.
  • the lidar system in the smart vehicle 200 can detect the driving environment, such as the current road The contour, speed, etc. of vehicle 1 and vehicle 3 are detected.
  • the lidar system in the intelligent vehicle 200 can also adaptively adjust the specific values of one or more working parameters according to the temperature change of each device in the lidar, and so on. Referring to the description of the embodiment corresponding to FIG. 4 or FIG. 6 , details are not repeated here. In this way, the temperature of each device inside the lidar can be effectively controlled within a safe range to ensure the normal operation and driving safety of the lidar. Please refer to FIG. 8 .
  • FIG. 8 is a schematic diagram of a case temperature road test result of another lidar provided by an embodiment of the present application.
  • the adjustment process of the frame rate can be: 25F/s ⁇ 20F/s ⁇ 15F/s ⁇ 10F/s ⁇ 5F/s, which gradually increases, the heat dissipation condition improves, and the case temperature also gradually decreases.
  • the frame rate of the radar can also be adaptively adjusted according to this decreasing shell temperature.
  • the adjustment process of the frame rate may be: 5F/s ⁇ 10F/s ⁇ 5F/s ⁇ 20F/s ⁇ 25F/s.
  • the embodiments of the present application set the temperature threshold, speed threshold, and ambient temperature threshold of the above-mentioned devices when setting A certain margin can be left.
  • the maximum temperature supported by the laser radar enclosure is about 100°C
  • the corresponding first device temperature threshold can be set to a lower 80°C
  • the corresponding maximum device temperature threshold can be set to 105°C , so as to more strictly and effectively ensure that its temperature does not exceed the safe range, and ensure the safety of the lidar system and driving safety.
  • the embodiments of the present application may allow the lidar to perform over-temperature operation within a certain period of time.
  • the lidar when the case temperature exceeds 80°C, in order to ensure the measurement accuracy, the lidar can still perform over-temperature operation at a frame rate of 25F/s for a certain period of time. If the case temperature exceeds 80°C for a long time, or even If it exceeds 90°C, then reduce the frame rate to 20F/s, and so on.
  • the lidar when the case temperature exceeds 105°C, in order to ensure the measurement accuracy, the lidar can still perform over-temperature operation at a frame rate of 10F/s for a certain period of time. If the case temperature exceeds 105°C for a long time °C, or if it exceeds 110 °C, the frame rate is further lowered or the machine is directly shut down, etc., which is not specifically limited in this embodiment of the present application.
  • a user or tester can flexibly set the above-mentioned device temperature threshold, speed threshold, and ambient temperature threshold according to actual conditions through software applications, which are not specifically limited in this embodiment of the present application.
  • the embodiment of the present application can also support the manual configuration mode.
  • the lidar can send over-temperature information to the smart vehicle.
  • the user or tester can Manually set working parameters such as frame rate, out-point rate and ranging range in case of over temperature.
  • the priority of manual mode can be higher than that of automatic mode.
  • the embodiments of the present application can be applied to various lidar products, including but not limited to mechanical rotating mirror lidar, semi-solid microelectromechanical system (MEMS) lidar and all-solid-state flash Lidar and more.
  • MEMS microelectromechanical system
  • the method for adaptively adjusting working parameters according to temperature and the like provided in the embodiment of the present application can also be applied to other sensors, such as radar (radar), etc., which is not specifically limited in the embodiment of the present application. .
  • FIG. 9 is a schematic flowchart of an adjustment method provided by an embodiment of the present application.
  • the adjustment method can be applied to a lidar system (eg, the lidar system 300 described in FIGS. 4 and 6 above).
  • the lidar system may include a lidar and a sensor system; the lidar includes N devices, the sensor system includes M temperature sensors, and both N and M are integers greater than or equal to 1.
  • the method may be applied to the application scenario described in FIG. 7a or FIG. 7b, and the method may include the following steps S901-S904.
  • Step S901 monitor one or more first temperatures of the N devices through the M temperature sensors.
  • Step S902 through the lidar, determine the second temperature of the N devices based on one or more first temperatures of the N devices.
  • Step S903 through the lidar, based on the second temperature of the N devices and a preset adjustment rule, respectively adjust one or more operating parameters of one or more of the N devices.
  • the N devices correspond to K device temperature thresholds respectively, and the preset adjustment rule includes that when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds When the device temperature threshold is set, one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any one of the devices; K is an integer greater than or equal to 1.
  • step S904 the driving environment of the intelligent vehicle is detected by the adjusted N devices through the laser radar.
  • the N devices include one or more of lasers, detectors, optical methods, scanners, control chips and housings; the M temperature sensors are used to monitor the One or more first temperatures for each of the N devices, including:
  • One or more first temperatures corresponding to one or more positions of the i-th device among the N devices are monitored by one or more temperature sensors of the M temperature sensors, and the second temperature is the is the highest temperature among the one or more first temperatures; i is an integer greater than or equal to 1 and less than or equal to N.
  • the one or more working parameters include one or more of frame rate, out-point rate, ranging range, angular resolution, field of view FOV, and region of interest ROI;
  • One or more devices in the N devices are devices associated with any one device;
  • one or more operating parameters of one or more devices in the N devices are associated with any one device. working parameters.
  • the one or more operating parameters correspond to K set values respectively; the K device temperature thresholds are in one-to-one correspondence with the K set values; the Through the lidar, based on the second temperature of the N devices and a preset adjustment rule, one or more operating parameters of one or more of the N devices are adjusted respectively, including:
  • the second temperature of any one of the N devices is greater than the jth device temperature threshold of the K device temperature thresholds, then one or more of the one or more devices of the N devices is set to Adjusting a plurality of working parameters to the jth set value corresponding to the jth device temperature threshold;
  • the temperature threshold of one or more of the N devices is set to One or more operating parameters are adjusted to the j+1th set value corresponding to the j+1th device temperature threshold; wherein the jth device temperature threshold is smaller than the j+1th device temperature Threshold, the jth set value is greater than the j+1th set value; j is an integer greater than or equal to 1 and less than or equal to K.
  • control chip includes a laser control module and a scanner control module; the laser control module is connected to one or more lasers, and the scanner control module is connected to the scanner; the The method also includes:
  • the laser control module Controlling, by the laser control module, the emission frequency and/or emission power of the one or more lasers based on one or more operating parameters in the point-out rate, the ranging range and the ROI;
  • a scan rate and/or scan angle of the scanner is controlled by the scanner control module based on one or more operating parameters of the frame rate, the angular resolution and the FOV.
  • the sensor method further includes a speed sensor; the method further includes:
  • the driving speed of the intelligent vehicle is monitored; the driving speed corresponds to K speed thresholds;
  • the laser radar is used to adjust one or more operating parameters of one or more of the N devices based on the second temperature of the N devices and a preset adjustment rule, respectively, Including: when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the traveling speed is less than any one of the K speed thresholds When the threshold is reached, one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any device and the speed threshold of any one of the devices.
  • the method further includes:
  • the ambient temperature corresponds to K ambient temperature thresholds
  • the laser radar is used to adjust one or more operating parameters of one or more of the N devices based on the second temperature of the N devices and a preset adjustment rule, respectively, Including: when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the ambient temperature is greater than any one of the K ambient temperature thresholds When the ambient temperature threshold is reached, one or more operating parameters of one or more of the N devices are adjusted to a value matching the temperature threshold of any device and the ambient temperature threshold.
  • the respective control parameters of one or more of the N devices are respectively adjusted.
  • One or more operating parameters are adjusted, including: when the second temperature of any one of the N devices reaches any one of the K device temperature thresholds, and the travel speed is lower than the When any one of the K speed thresholds is a speed threshold, and the ambient temperature is greater than any one of the K ambient temperature thresholds, then one or more of the N devices is set to One or more operating parameters are adjusted to values that match the any one of the device temperature thresholds, the any one of the speed thresholds, and the any one of the ambient temperature thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices and the driving speed meet the target condition, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle; the target condition includes the N
  • One or more operating parameters of any one of the devices are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K device temperature thresholds The maximum value of , and the travel speed is less than the minimum value of the K speed thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices and the ambient temperature meet the target conditions, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle; the target conditions include the N One or more operating parameters of any one of the devices are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K device temperature thresholds The maximum value of , and the ambient temperature is greater than the maximum value among the K ambient temperature thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices, the driving speed and the ambient temperature meet the target conditions, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle;
  • the target conditions include , one or more operating parameters of any one of the N devices is the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the K The maximum value of device temperature thresholds, and the travel speed is less than the minimum value of the K speed thresholds, and the ambient temperature is greater than the maximum value of the K ambient temperature thresholds.
  • the method further includes:
  • the lidar Through the lidar, if the N devices meet the target condition, the lidar is controlled to stop working, and an abnormal warning is reported to the intelligent vehicle; the target condition includes any one of the N devices
  • One or more operating parameters of the device are the minimum value among the K set values, and the second temperature of any one of the N devices is greater than the maximum value among the K device temperature thresholds.
  • An embodiment of the present invention further provides a computer-readable storage medium, where the computer-readable storage medium may store a program, and when the program is executed by a processor, the processor may execute any of the methods described in the foregoing method embodiments. Some or all of the steps of a kind.
  • Embodiments of the present invention further provide a computer program, where the computer program includes instructions, when the computer program is executed by a multi-core processor, the processor can perform some or all of the steps of any one of the above method embodiments .
  • the disclosed apparatus may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc., specifically a processor in the computer device) to execute all or part of the steps of the above methods in various embodiments of the present invention.
  • a computer device which may be a personal computer, a server, or a network device, etc., specifically a processor in the computer device
  • the aforementioned storage medium may include: U disk, mobile hard disk, magnetic disk, optical disk, read-only memory (read-only memory, ROM), double-rate synchronous dynamic random access memory (double data rate, DDR), flash memory ( Flash) or random access memory (random access memory, RAM) and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种激光雷达系统(300)、调整方法及相关设备,其中,该激光雷达系统(300)可应用于智能车辆(200)。激光雷达系统(300)包括激光雷达(302)和传感器系统(301);激光雷达(302)包括N个器件,传感器系统(301)包括M个温度传感器(3011,3012,3013,…);M个温度传感器(3011,3012,3013,…),用于监测N个器件各自的一个或多个第一温度(S901);激光雷达(302),用于基于N个器件各自的一个或多个第一温度,确定N个器件的第二温度(S902);激光雷达(302),还用于基于N个器件的第二温度和预设的调整规则,分别对N个器件中的一个或多个器件各自的一个或多个工作参数进行调整(S903);激光雷达(302),还用于通过调整后的N个器件对智能车辆(200)的行车环境进行探测(S904)。采用该实施例可以有效控制激光雷达(302)工作时的温度,保障驾驶安全。

Description

一种激光雷达系统、调整方法及相关设备 技术领域
本申请实施例涉及激光雷达技术领域,尤其涉及一种激光雷达系统、调整方法及相关设备。
背景技术
激光雷达(light detection and ranging,LiDAR)可以根据激光遇到障碍物后的折返时间,计算目标与自己的相对距离。其中,激光雷达发射出的激光光束可以准确测量视场中的物体轮廓边沿与设备间的相对距离,这些轮廓信息组成所谓的点云,从而可以绘制出三维(3dimensions,3D)环境地图,通常情况下,该3D环境地图的精度可以达到厘米级别。
激光雷达作为自动驾驶汽车的核心部件,近年越来越受到业界重视,各个厂家陆续推出了多款激光雷达产品。然而,由于车载应用复杂,对安全性和可靠性要求较高,真正满足车规级标准的激光雷达产品少之又少。当前车规级激光雷达所要求支持的环境温度范围为-40℃-85℃左右,而业界大部分的激光雷达所支持的环境温度最高只能达到60℃-65℃左右。如此,为了避免因超温引发激光雷达故障从而危害驾驶安全的情况,往往需要限制激光雷达的功耗,保证其散热,从而降低激光雷达的内部器件温度和外壳温度等。例如,市面上的商用车规级激光雷达SCALA1为了降低功耗,保证散热,仅支持4线的激光线束,出点率也限制在43kp/s,使得测量精度大大降低,如此,也仅能支持较低级别(例如L3级)的自动驾驶。随着现代社会对激光雷达的要求越来越高,激光雷达的性能也越强(比如测距范围、出点率和帧率提升),同时激光雷达的功耗就会越大,超温问题越来越严重。尤其在车速较慢或者停车的时候,风速降低,散热条件恶化,激光雷达的外壳温会迅速升高,存在超温风险,从而导致激光雷达发生故障,引发严重的交通事故,危害驾驶安全,损伤私人和公共财产。
因此,如何有效控制激光雷达工作时的温度在安全范围内,以确保驾驶安全是亟待解决的问题。
发明内容
本申请实施例提供一种激光雷达系统、调整方法及相关设备,可以有效控制激光雷达工作时的温度在安全范围内,从而确保驾驶安全。
第一方面,本申请实施例提供了一种激光雷达系统,所述激光雷达系统包括激光雷达和传感器系统;所述激光雷达包括N个器件,所述传感器系统包括M个温度传感器,N和M均为大于或者等于1的整数;
所述M个温度传感器,用于监测所述N个器件各自的一个或多个第一温度;
所述激光雷达,用于基于所述N个器件各自的一个或多个第一温度,确定所述N个器件的第二温度;
所述激光雷达,还用于基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整;所述N个器件各自对应K个器件温度阈值,所述预设的调整规则包括,当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值匹配的值;K为大于 或者等于1的整数;
所述激光雷达,还用于通过调整后的所述N个器件对所述智能车辆的行车环境进行探测。
本申请实施例中,为了控制激光雷达在工作时的温度,避免超温带来的驾驶隐患,可以事先针对激光雷达内的多个器件(例如激光器、探测器、扫描器和外壳等)设置多个温度阈值。如此,通过车辆内的多个温度传感器监测激光雷达中多个器件的实时温度,当其中任意一个器件的温度超过任意一个温度阈值时,激光雷达都可以根据该任意一个温度阈值,将其中一个或多个器件的工作参数调整至与该任意一个温度阈值所匹配的值。例如,当温度传感器监测到激光雷达的外壳温度超过80℃时,激光雷达可以将扫描器对应的帧率从默认的25F/s,下调至20F/s;又例如,当外壳温度超过90℃时,可以将扫描器对应的帧率从当前的20F/s,再次下调至15F/s;又例如,在帧率下调后,当外壳温度逐渐下降至82℃时,激光雷达可以再次将扫描器对应的帧率从当前的15F/s,上调至20F/s,等等。从而可以快速有效地根据激光雷达中各个器件的实时温度实时调节工作参数,在温度过高时降低测量精度(也即降低了功耗),避免器件超温带来的驾驶隐患,而在温度降低至安全范围内时又可以恢复测量精度,提高自动驾驶的安全性和舒适性,等等。如此,对比现有技术中通过液冷装置等外部辅助方式降低激光雷达的温度,从而导致设备体积增加、生产成本增加的方案而言,本申请实施例中的激光雷达可以根据其多个器件温度的实时变化,自适应调整激光雷达中的各个工作参数,有效控制激光雷达工作时的温度,避免因器件超温引发的驾驶事故,保证驾驶安全。并且,如上所述,本申请实施例可以在器件温度较高时,主动降低激光雷达的测量精度,也即降低了激光雷达的工作负荷,使得激光雷达不会一直处于高精度、高负荷的工作状态,从而进一步还可以有效延长激光雷达的使用寿命。
在一种可能的实施方式中,所述N个器件包括激光器、探测器、光学系统、扫描器、控制芯片和外壳中的一个或多个;所述M个温度传感器,具体用于:
通过所述M个温度传感器中的一个或多个温度传感器监测所述N个器件中第i个器件的一个或多个位置上对应的一个或多个第一温度,所述第二温度为所述一个或多个第一温度中的最高温度;i为大于或者等于1,且小于或者等于N的整数。
本申请实施例中,激光雷达可以包括激光器、探测器、光学系统、扫描器、控制芯片和外壳等等多个器件。如上所述,由于器件不同位置的温度不同,尤其体积较大的器件其各个位置温度的差异较大,容易导致某一位置温度较低的情况下,其他位置可能已经严重超温,影响器件运行。如此,可以通过多个温度传感器监测一个器件多个位置上的温度(例如第一温度),并选取其中最高的温度作为实际可参考的温度(例如第二温度),再将该温度与预设的器件温度阈值进行比较,从而更加全面、严谨地掌握当前激光雷达的超温情况。如此,可以快速有效地根据激光雷达中各个器件的实时温度实时调节工作参数,在温度过高时降低测量精度(也即降低了功耗),避免器件超温带来的驾驶隐患,而在温度降低至安全范围内时又可以恢复测量精度,提高自动驾驶的安全性和舒适性,等等。
在一种可能的实施方式中,所述一个或多个工作参数包括帧率、出点率、测距范围、角分辨率、视场角FOV和感兴趣区域ROI中的一个或多个;所述N个器件中的一个或多个器件为与所述任意一个器件关联的器件;所述N个器件中的一个或多个器件各自的一个或多个工作参数为与所述任意一个器件关联的工作参数。
本申请实施例中,激光雷达可以根据其中多个器件的温度变化,对器件的帧率、出点率、测距范围、角分辨率、视场角FOV和感兴趣区域ROI中的一个或多个工作参数进行相应的 调整,等等。如此,基于器件的实时温度变化以及各个器件之间的关联性和大量可调的工作参数,在某一器件超温的情况下,可以对该器件相关联的器件(可以包括该器件本身)的相应参数进行调整,从而可以更加灵活的对激光雷达的功耗进行调整,以控制激光雷达中的各个器件的温度在安全范围内,保证激光雷达的正常运作和寿命,提高自动驾驶的安全性和舒适性,等等。
在一种可能的实施方式中,其特征在于,所述一个或多个工作参数各自对应K个设定值;所述K个器件温度阈值与所述K个设定值一一对应;所述激光雷达,具体用于:
若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j个器件温度阈值对应的第j个设定值;
若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j+1个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j+1个器件温度阈值对应的第j+1个设定值;其中,所述第j个器件温度阈值小于所述第j+1个器件温度阈值,所述第j个设定值大于所述第j+1个设定值;j为大于或者等于1,且小于或者等于K的整数。
本申请实施例中,为了控制激光雷达在工作时的温度,避免超温带来的驾驶隐患,可以事先针对激光雷达内的多个器件设置多个温度阈值,并设置多个温度阈值对应的工作参数的设定值。例如,帧率的默认值可以为25F/s,当激光雷达的外壳温度超过80℃时,则可以将帧率下调至20F/s,当激光雷达的外壳温度超过90℃时,则可以进一步将帧率下调至15F/s,等等。又例如,在帧率下调后,当外壳温度逐渐下降至82℃时,激光雷达可以再次将扫描器对应的帧率从当前的15F/s,上调至20F/s,等等。又例如,当激光雷达的控制芯片的温度超过100℃时,则可以将帧率下调至20F/s,当控制芯片的温度超过105℃时,则可以进一步将帧率下调至15F/s,等等,此处不再进行赘述。从而可以快速有效地根据激光雷达中各个器件的实时温度实时调节工作参数,在温度过高时降低测量精度(也即降低了功耗),避免器件超温带来的驾驶隐患,而在温度降低至安全范围内时又可以恢复测量精度,提高自动驾驶的安全性和舒适性,等等。
在一种可能的实施方式中,所述控制芯片包括激光器控制模块和扫描器控制模块;所述激光器控制模块与一个或多个激光器连接,所述扫描器控制模块与所述扫描器连接;
所述激光器控制模块,用于基于所述出点率、所述测距范围和所述ROI中的一个或多个工作参数,控制所述一个或多个激光器的发射频率和/或发射功率;
所述扫描器控制模块,用于基于所述帧率、所述角分辨率和所述FOV中的一个或多个工作参数,控制所述扫描器的扫描速率和/或扫描角度。
本申请实施例中,激光雷达的控制芯片可以包括激光器控制模块和扫描器控制模块,激光器控制模块可以与一个或多个激光器连接,扫描器控制模块可以与扫描器连接。其中,激光器控制模块可以基于上述的出点率、测距范围和ROI中的一个或多个工作参数,控制该一个或多个激光器的发射频率和/或发射功率;其中,扫描器控制模块可以基于上述的帧率、角分辨率和FOV中的一个或多个工作参数,控制该扫描器的扫描速率和/或扫描角度,等等。从而可以通过控制芯片中的激光器控制模块和扫描器控制模块,基于各个器件的温度变化以及相应的工作参数的数值调整,实现对激光器和扫描器的实时控制,保证激光雷达在各种温度状况下(也即各种参数设定下)的正常运作。
在一种可能的实施方式中,所述传感器系统还包括速度传感器;
所述速度传感器,用于监测所述智能车辆的行驶速度;所述行驶速度对应K个速度阈值;
所述激光雷达,具体用于:
当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述行驶速度小于所述K个速度阈值中的任意一个速度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个速度阈值匹配的值。
本申请实施例中,上述传感器系统中还可以包括速度传感器,该速度传感器可以监测智能车辆的行驶速度。需要说明的是,激光雷达的外部散热条件复杂,特别是风速的变化范围很宽。在低速行驶或者停车等情况下,外部风速大大降低,散热条件恶化,激光雷达内部器件存在超温的风险,将会严重影响激光雷达的正常使用和寿命。而且,实际在低速行驶或者停车等场景下,对激光雷达性能的要求也较低,比如以120km/s的速度行驶时,由于速度较快,对激光雷达的测量精度要求就越高,并且此时风速高,散热条件良好,可以要求激光雷达测距200m,帧速率至少25F/s;而在低速行驶或停车等情况下,此时散热条件劣化时,则可以要求激光雷达的测距范围缩短(例如100m),帧速率也可降低至5F/s~10F/s,等等。如此本申请实施例不仅可以根据激光雷达中各个器件的温度自适应调整帧率和出点率等工作参数,还可以进一步参考当前车辆的行驶速度,在温度较高且低速行驶时,降低测量精度,减少激光雷达的功耗,从而有效控制激光雷达中的各个器件的温度在安全范围内,既满足自动驾驶应用,也提升了激光雷达产品的可靠性,保证驾驶安全。
在一种可能的实施方式中,所述M个温度传感器,还用于监测所述智能车辆的环境温度;所述环境温度对应K个环境温度阈值;
所述激光雷达,具体用于:
当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个环境温度阈值匹配的值。
本申请实施例中,上述多个温度传感器还可以监测智能车辆周围的环境温度,从而可以同时参考各个器件的温度和环境温度,更加精确可靠地对工作参数进行调整,有效控制激光雷达的温度,保证驾驶安全。例如,在任意一个器件温度和环境温度均超过一定温度阈值时,可以更大幅度地下调帧率、出点率和测距范围等等,以快速降低激光雷达的温度,保障驾驶安全。
在一种可能的实施方式中,所述激光雷达,具体用于:
当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,以及所述行驶速度小于所述K个速度阈值中的任意一个速度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值、所述任意一个速度阈值和所述任意一个环境温度阈值匹配的值。
本申请实施例中,不仅可以根据激光雷达中各个器件的温度自适应调整帧率和出点率等工作参数,还可以进一步参考当前车辆的行驶速度以及车辆周围的环境温度,在器件和环境温度较高且低速行驶时,降低测量精度,减少激光雷达的功耗,从而有效控制激光雷达中的 各个器件的温度在安全范围内,既满足自动驾驶应用,也提升了激光雷达产品的可靠性,保证驾驶安全。
在一种可能的实施方式中,所述激光雷达,还用于:
若所述N个器件和所述行驶速度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述行驶速度小于所述K个速度阈值中的最小值。
本申请实施例中,在多次下调帧率和出点率等工作参数至最低设定值后,激光雷达内的任意一个器件的温度仍然较高,并且当前车速较低(也即散热条件恶劣)的情况下,则可以直接控制激光雷达停止工作(也即宕机),并上报异常警报至智能车辆,从而避免激光雷达内的各个器件在持续高温的状态下收到损伤,延长激光雷达的使用寿命,保障驾驶安全。
在一种可能的实施方式中,所述激光雷达,还用于:
若所述N个器件和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
本申请实施例中,在多次下调帧率和出点率等工作参数至最低设定值后,激光雷达内的任意一个器件的温度仍然较高,并且当前环境温度较高(也即散热条件恶劣)的情况下,则可以直接控制激光雷达停止工作(也即宕机),并上报异常警报至智能车辆,从而避免激光雷达内的各个器件在持续高温的状态下收到损伤,延长激光雷达的使用寿命,保障驾驶安全。
在一种可能的实施方式中,
若所述N个器件、所述行驶速度和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,并且所述行驶速度小于所述K个速度阈值中的最小值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
本申请实施例中,在多次下调帧率和出点率等工作参数至最低设定值后,激光雷达内的任意一个器件的温度仍然较高,并且当前车速较低、环境温度较高(也即散热条件极为恶劣)的情况下,则可以直接控制激光雷达停止工作(也即宕机),并上报异常警报至智能车辆,从而避免激光雷达内的各个器件在持续高温的状态下收到损伤,延长激光雷达的使用寿命,保障驾驶安全。
在一种可能的实施方式中,
若所述N个器件满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值。
本申请实施例中,在多次下调帧率和出点率等工作参数至最低设定值后,激光雷达内的任意一个器件的温度仍然较高的情况下,则可以直接控制激光雷达停止工作(也即宕机),并 上报异常警报至智能车辆,从而避免激光雷达内的各个器件在持续高温的状态下收到损伤,延长激光雷达的使用寿命,保障驾驶安全。
第二方面,本申请实施例提供了一种调整方法,应用于激光雷达系统;所述激光雷达系统包括激光雷达和传感器系统;所述激光雷达包括N个器件,所述传感器系统包括M个温度传感器,N和M均为大于或者等于1的整数;所述方法包括:
通过所述M个温度传感器,监测所述N个器件各自的一个或多个第一温度;
通过所述激光雷达,基于所述N个器件各自的一个或多个第一温度,确定所述N个器件的第二温度;
通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整;所述N个器件各自对应K个器件温度阈值,所述预设的调整规则包括,当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值匹配的值;K为大于或者等于1的整数;
通过所述激光雷达,通过调整后的所述N个器件对所述智能车辆的行车环境进行探测。
在一种可能的实施方式中,所述N个器件包括激光器、探测器、光学方法、扫描器、控制芯片和外壳中的一个或多个;所述通过所述M个温度传感器,监测所述N个器件各自的一个或多个第一温度,包括:
通过所述M个温度传感器中的一个或多个温度传感器监测所述N个器件中第i个器件的一个或多个位置上对应的一个或多个第一温度,所述第二温度为所述一个或多个第一温度中的最高温度;i为大于或者等于1,且小于或者等于N的整数。
在一种可能的实施方式中,所述一个或多个工作参数包括帧率、出点率、测距范围、角分辨率、视场角FOV和感兴趣区域ROI中的一个或多个;所述N个器件中的一个或多个器件为与所述任意一个器件关联的器件;所述N个器件中的一个或多个器件各自的一个或多个工作参数为与所述任意一个器件关联的工作参数。
在一种可能的实施方式中,其特征在于,所述一个或多个工作参数各自对应K个设定值;所述K个器件温度阈值与所述K个设定值一一对应;所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:
若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j个器件温度阈值对应的第j个设定值;
若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j+1个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j+1个器件温度阈值对应的第j+1个设定值;其中,所述第j个器件温度阈值小于所述第j+1个器件温度阈值,所述第j个设定值大于所述第j+1个设定值;j为大于或者等于1,且小于或者等于K的整数。
在一种可能的实施方式中,所述控制芯片包括激光器控制模块和扫描器控制模块;所述激光器控制模块与一个或多个激光器连接,所述扫描器控制模块与所述扫描器连接;所述方 法还包括:
通过所述激光器控制模块,基于所述出点率、所述测距范围和所述ROI中的一个或多个工作参数,控制所述一个或多个激光器的发射频率和/或发射功率;
通过所述扫描器控制模块,基于所述帧率、所述角分辨率和所述FOV中的一个或多个工作参数,控制所述扫描器的扫描速率和/或扫描角度。
在一种可能的实施方式中,所述传感器方法还包括速度传感器;所述方法还包括:
通过所述速度传感器,监测所述智能车辆的行驶速度;所述行驶速度对应K个速度阈值;
所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述行驶速度小于所述K个速度阈值中的任意一个速度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个速度阈值匹配的值。
在一种可能的实施方式中,所述方法还包括:
通过所述M个温度传感器,监测所述智能车辆的环境温度;所述环境温度对应K个环境温度阈值;
所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个环境温度阈值匹配的值。
在一种可能的实施方式中,所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,以及所述行驶速度小于所述K个速度阈值中的任意一个速度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值、所述任意一个速度阈值和所述任意一个环境温度阈值匹配的值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件和所述行驶速度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述行驶速度小于所述K个速度阈值中的最小值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述环境温度大于所述K 个环境温度阈值中的最大值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件、所述行驶速度和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,并且所述行驶速度小于所述K个速度阈值中的最小值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值。
第三方面,本申请实施例提供了一种智能车辆,该智能车辆可以包括上述第一方面中任意一项所述的激光雷达系统,用于实现上述第二方面中任意一项所述的调整方法流程所涉及的功能。
第四方面,本申请实施例提供了一种激光雷达系统,该计算设备中包括处理器,处理器被配置为支持该激光雷达系统实现第二方面提供的调整方法中相应的功能。该激光雷达系统还可以包括存储器,存储器用于与处理器耦合,其保存该激光雷达系统必要的程序指令和数据。该激光雷达系统还可以包括通信接口,用于该激光雷达系统与其他设备或者通信网络通信。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述第二方面中任意一项所述的调整方法流程。其中,该处理器可以为一个或多个处理器。
第六方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第二方面中任意一项所述的调整方法流程。
第七方面,本本申请实施例提供了一种芯片系统,该芯片系统可以包括上述第一方面中任意一项所述的激光雷达系统,用于实现上述第二方面中任意一项所述的调整方法流程所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存调整方法必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是一种激光雷达系统的结构示意图。
图2是本申请实施例提供的一种激光雷达的壳温路测结果示意图。
图3是本申请实施例提供的一种智能车辆的功能框图。
图4是本申请实施例提供的一种激光雷达系统的结构示意图。
图5是本申请实施例提供的一种自适应调整流程的示意图。
图6是本申请实施例提供的另一种激光雷达系统的结构示意图。
图7a是本申请实施例提供的一种应用场景的示意图。
图7b是本申请实施例提供的另一种应用场景的示意图。
图8是本申请实施例提供的另一种激光雷达的壳温路测结果示意图。
图9是本申请实施例提供的一种调整方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
首先,对本发明中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)激光雷达(light detection and ranging,LiDAR)是以发射激光束探测目标的位置、速度等特征量的雷达系统。激光雷达的工作原理是通过向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对前方车辆、行人和建筑等目标进行探测、跟踪和识别,其探测范围广,精度高。
请参阅图1,图1是一种激光雷达系统的结构示意图。如图1所示,该激光雷达系统可以包括光学系统101(其中可以包括矫正镜组、准直镜组和接收透镜,等等,图1中未示出)、多个激光器(例如激光器102a和激光器102b等)、扫描器103、多个探测器(例如探测器104a和探测器104b)、驱动(driver)105、扫描电动机(scanning motor)106、激光器控制模块107、扫描器控制模块108、数据接收模块109、数据处理模块110和通信接口111。
其中,激光雷达系统主要可以由发射系统、接收系统和信息处理等部分组成。其中,发射系统可以包括上述的激光器102a、102b、驱动(driver)105、扫描器103和扫描电动机106 等。如图1所示,激光器102a和102b可以与驱动105连接,激光器控制模块107可以与驱动105连接,以控制多个激光器进行激光发射。可选地,激光器102a、102b例如可以为二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等等各种形式的激光器。其中,扫描器103位于激光器102a和102b的出光方向,如图1所示,扫描器103可以与扫描电动机106连接,扫描器控制模块108可以与扫描电动机106连接,以控制该扫描器103进行旋转,从而改变激光器102a和102b发射出的激光光束的角度。其中,接收系统可以包括上述探测器104a和104b等,可选地,探测器104a和104b例如可以为包括光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合的各种形式的探测器。如图1所示,数据接收模块109可以包括接收算法,可以用于接收多个探测器接收到的信号并进行一定的处理,其中,数据处理模块110可进行点云预处理以及上报等等。通信接口111可以与其他设备建立通信连接,以将激光雷达采集到的点云数据发送至其他设备,等等,此处不再进行详述。
其中,激光雷达的主要性能参数有激光的波长、探测距离、视场角(field of view,FOV)、测距极度、角分辨率、帧率、出点率、线束、安全等级、输出参数、入口保护(ingress protection,IP)等级、功率、供电电压、激光发射方式和使用寿命等。
激光的波长:目前市场上三维成像激光雷达最常用的波长是905nm和1550nm。1550nm波长的激光雷达可以以更高的功率运行,以提高探测范围,同时对于雨雾的穿透力更强,测量精度更高。
安全等级:激光雷达的安全等级是否满足要求,需要考虑特定波长的激光产品在完全工作时间内的激光输出功率,即激光辐射的安全性是波长、输出功率,和激光辐射时间的综合作用的结果。
探测距离(或者称之为测距范围):一般情况下,激光器的功率越高,可探测的距离就越远。此外,激光雷达的测距与目标的反射率相关,目标的反射率越高则测量的距离越远,目标的反射率越低则测量的距离越近。因此,在查看激光雷达的探测距离时,通常需要知道该测量距离是目标反射率为多少时的探测距离。
视场角(field of view,FOV):激光雷达的视场角包括水平视场角和垂直视场角。例如,针对机械旋转激光雷达,其水平视场角一般为360度。
角分辨率:包括垂直分辨率和水平分辨率。需要说明的是,由于水平方向上是由电机带动的,因此水平分辨率可以达到较高的精度,一般可以达到0.01度级别。而垂直分辨率一般与发射器(也即激光器)的几何大小以及排布有关系,相邻两个发射器的间隔做得越小,垂直分辨率也就会越小,垂直分辨率一般为0.1~1度的级别。
帧率(也即帧速率):一幅点云图像代表一帧,对应到激光雷达内部就是电机旋转一圈完成一次扫描。帧率即代表每秒激光雷达电机旋转的圈数,也就是每秒激光雷达完成一圈扫描的次数。
出点率(或者称之为采样率):每秒激光雷达发射的激光点数(或者说激光脉冲数),也即每秒激光雷达进行有效采集的次数,可直观理解为一秒内产生的点云数目。激光雷达的出点率一般从几万点至几十万点每秒左右,可以通过上述帧率和角分辨率计算得到,此处不再进行详述。
线束:多线激光雷达,就是通过多个激光发射器在垂直方向上的分布,通过电机的旋转 形成多条线束的扫描。可以理解的是,激光线束越多、越密,对环境描述就更加充分,进一步还可以降低算法的要求。常见的激光雷达的线束有:4线、8线、16线、32线、64线等等,此处不再进行详述。
输出参数:障碍物(例如行车环境中的车辆、行人和建筑等)的位置、速度、方向、时间戳和反射率,等等。
使用寿命:机械旋转式激光雷达的使用寿命一般在几千小时;固态激光雷达的使用寿命可高达10万小时。
激光发射方式:市面上较为常见的包括传统的机械旋转式激光雷达和固态激光雷达。其中,机械旋转式激光雷达采用机械旋转的结构,机械旋转容易导致磨损,从而使得激光雷达的使用寿命有限。固态激光雷达,例如flash(闪光)激光雷达,只要有光源,就能用脉冲一次覆盖整个视场,随后再用飞行时间(time of flight,T0F)方法接收相关数据并绘制出激光雷达周围的目标,等等,此处不再进行详述。
如上所述,随着现代社会对于激光雷达的要求越来越高,激光雷达的性能也不断提升,例如上述的激光线束越来越多、测距范围越来越大、出点率和帧率越来越高,等等,激光雷达的功耗也会随之增大,如此便导致激光雷达的温度越来越高。并且,为了满足装配要求,激光雷达的规模体积也要求越小越好,从而进一步导致了激光雷达工作时的热量更加密集,超温问题越来越严重。例如,在行车过程中,随着车载激光雷达的不断工作,当激光雷达的外壳温度或者激光雷达内的各个器件(例如上述图1中的多个激光器、扫描器和多个探测器等)的温度大于规定的安全温度范围时,激光雷达往往会产生故障从而无法继续工作等等,严重危害驾驶安全,甚至引发严重的交通事故,损伤驾驶员或者乘客的人身安全和财产安全。
请参阅图2,图2是本申请实施例提供的一种激光雷达的壳温路测结果示意图。如图2所示,车辆在正常行驶过程中,由于车速较高,风速较高,使得散热条件也就越好,如此,激光雷达的外壳温度可以稳定在30℃的安全范围内。然而,在车辆低速行驶或者停车的过程中(例如在高速收费站停车或者等待红灯时停车等情况),由于自然风速降低,散热条件随之变差,激光雷达的外壳温度会急速上升,如图2所示,在停车过程中,壳温甚至会高达115℃,严重超温,从而带来极大的驾驶隐患。
综上,为了便于理解本发明实施例,进一步分析并提出本发明所具体要解决的技术问题。在现有技术中,关于激光雷达的降温技术,包括多种技术方案,以下示例性的列举如下常用的一种方案。
方案一:通过液冷装置,对激光雷达进行降温。
其中,液冷装置可以包括散热模块和吸热模块。该吸热模块可与激光雷达接合并从该激光雷达吸收热量。该液冷装置还可以包括循环管路,上述吸热模块可以通过该循环管路与上述散热模块连接。其中,冷却液可通过上述循环管路在散热模块与吸热模块之间循环流动,从而在该吸热模块内吸热,在该散热模块内散热。如此,通过将液冷装置应用在激光雷达上,可以实现对激光雷达的有效降温,进而可以控制激光雷达的工作温度。液冷散热方式不仅热容量大,温升慢,而且相对风扇散热方式更静音。
该方案一的缺点:
如上所述,液冷装置的添加虽然可以一定程度上降低激光雷达的温度,但是液冷装置包 含较多组件(例如上述的散热模块、吸热模块和循环管路等),体积较大,比利于装载在车辆上,并且增加了生产成本,消耗了大量能源。与此同时,虽然通过液冷此类外部辅助方式降低了激光雷达的温度,但激光雷达始终处于高负荷工作,其功耗没有降低,久而久之也会严重损害激光雷达的使用寿命,无法有效保证驾驶安全。
方案二:通过激光雷达的自适应技术,降低激光雷达的功耗,从而实现降温。
现有的激光雷达自适应技术主要是针对后级感知应用的自适应技术,该自适应技术实际上是一种扫描技术。可以理解的是,由于目标都是从点云边界进入视场,且感知算法更关心视场内的目标和视场边界。由此,方案二中的自适应技术可以自适应调整在感兴趣区域(region of interest,ROI)和边界区域增加打光,使得点云密集,而在没有目标的区域减少打光,使得点云稀疏。从而可以一定程度上降低激光雷达的功耗,以降低激光雷达的温度。
该方案二的缺点:
如上所述,该方案二重点解决光雷达视场内的目标或可能出现目标区域的自适应扫描,并不涉及激光雷达中各个器件的车规和可靠性,也即并不可考虑在实际运行过程中激光雷达的超温情况。如此,在激光雷达温度较高的情况下,该方案二并不会参考其温度而进一步进行自适应调整以降低功耗。激光雷达仍然存在极大程度的超温风险,从而无法保证驾驶安全,甚至引发严重的交通事故。
综上,上述现有技术中的方案一虽然通过增加液冷装置,一定程度上降低了激光雷达的温度,但是也带来了增加体积、成本的问题;以及上述方案二虽然通过自适应调整ROI,在个别时刻可以降低激光雷达功耗,但是其自适应调整经针对ROI,没有考虑到实际的超温情况,从而无法在温度较高时快速有效地降低激光雷达的温度。如此,现有技术中并没有真正很好地解决激光雷达面临的超温问题,无法有降低激光雷达的温度。因此,为了解决当前激光雷达的降温技术中不满足实际业务需求的问题,本发明实际要解决的技术问题包括如下方面:基于现有的激光雷达以及传感器技术,通过在不同温度情况下自适应调整激光雷达的各个工作参数,实现快速有效地降低激光雷达的外壳和各个器件的温度,避免超温风险,保证驾驶安全。
请参阅图3,图3是本申请实施例提供的一种智能车辆的功能框图。本申请实施例提供的一种激光雷达系统和相应的调整方法可以应用于如图3所示的智能车辆200中,在一个实施例中,智能车辆200可以配置为完全或部分地自动驾驶模式。在智能车辆200处于自动驾驶模式中时,可以将智能车辆200置为在没有和人交互的情况下操作。
智能车辆200可以包括各种子系统,例如行进系统202、传感系统204、控制系统206、一个或多个外围设备208以及电源210、计算机系统212和用户接口216。可选地,智能车辆200可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,智能车辆200的每个子系统和元件可以通过有线或者无线互连。
行进系统202可包括为智能车辆200提供动力运动的组件。在一个实施例中,行进系统202可包括引擎218、能量源219、传动装置220和车轮221。引擎218可以是内燃引擎、电动机、空气压缩引擎或者其他类型的引擎组合,例如汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎218可以将能量源219转换成机械能量。
能量源219的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源219也可以为智能车辆200的其他系统提供能量。
传动装置220可以将来自引擎218的机械动力传送到车轮221。传动装置220可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置220还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮221的一个或多个轴。
传感系统204可包括若干个传感器,该若干个传感器可以用于采集关于智能车辆200周边的环境信息(例如可以包括智能车辆200周围的地形、道路、机动车辆、非机动车辆、行人、路障、交通标志、交通信号灯、动物、建筑和植物等等)。如图3所示,传感系统204可以包括定位系统222(定位系统可以是全球定位系统(global positioning system,GPS)系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)224、激光雷达系统226、激光测距仪228、相机230以及计算机视觉系统232等等。可选地,在一些可能的实施方式中,该激光雷达系统226可以包括激光雷达和多个温度传感器。其中,该激光雷达可以包括一个或多个激光器、扫描器、一个或多个探测器、控制芯片、光学系统以及外壳(具体可参考上述图1所示的激光雷达)等等器件。其中,该多个温度传感器可以实时监测该多个器件的温度,如此,激光雷达可以基于各个器件的温度变化对其一个或多个工作参数(例如帧率、出点率和测距范围等)进行调整,从而控制激光雷达中的多个器件的温度在安全范围内,保证激光雷达的正常工作,进一步保证驾驶安全。可选地,该激光雷达系统226中还可以包括速度传感器,可以实时监测该智能车辆200的行驶速度,如此,激光雷达可以基于各个器件的温度变化以及智能车辆200的行驶速度对其一个或多个工作参数进行调整,等等,本申请实施例对此不作具体限定。可选地,在一些可能的实施方式中,该传感器系统204还可以包括毫米波雷达(图3中未示出)等等,可以用于感测智能车辆200的周边环境内的物体,本申请实施例对此不作具体限定。
定位系统222可用于估计智能车辆200的地理位置。IMU 224用于基于惯性加速度来感测智能车辆200的位置和朝向变化。在一个实施例中,IMU 224可以是加速度计和陀螺仪的组合。
激光雷达系统226可利用无线电信号来感测智能车辆200的周边环境内的物体。在一些可能的实施例中,激光雷达系统226还可以用于感测智能车辆200周边车辆的速度和/或行进方向等等。其中,该激光雷达系统226可以用于采集周围环境的点云数据,等等,此处不再进行详述。
激光测距仪228可利用激光来感测智能车辆200所位于的环境中的物体。在一些可能的实施例中,激光测距仪228可包括一个或多个激光源、一个或多个激光扫描器以及一个或多个检测器,以及其他系统组件。
相机230可用于捕捉智能车辆200的周边环境的多个图像。在一些可能的实施例中,相机230可以是静态相机或者视频相机。
计算机视觉系统232可以操作来处理和分析由相机230捕捉的图像以便识别智能车辆200周边环境中的物体和/或特征。所述物体和/或特征可包括地形、机动车辆、非机动车辆、行人、建筑、交通信号、道路边界和障碍物等等。计算机视觉系统232可使用物体识别算法、运动中恢复结构(structure from motion,SFM)算法、视频跟踪和其他计算机视觉技术。
控制系统206为控制智能车辆200及其组件的操作。控制系统206可包括各种元件,其 中包括油门235、制动单元236和转向系统234。
油门235用于控制引擎218的操作速度并进而控制智能车辆200的速度。
制动单元236用于控制智能车辆200减速。制动单元236可使用摩擦力来减慢车轮221。在其他实施例中,制动单元236可将车轮221的动能转换为电流。制动单元236也可采取其他形式来减慢车轮221转速从而控制智能车辆200的速度。
转向系统234可操作来调整智能车辆200的前进方向。
当然,在一个实例中,控制系统206可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
智能车辆200通过外围设备208与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备208可包括无线通信系统246、车载电脑248、麦克风250和/或扬声器252。在一些实施例中,也可以通过无线通信系统246将在智能车辆200行车过程中,激光雷达系统226采集到的点云数据上传至服务端或者计算设备,等等,从而绘制出由点云数据构成的高精度3D环境地图等等,本申请实施例对此不作具体限定。
其中,上述服务端可以为一个服务器,也可以为由多个服务器构成的服务器集群,或者还可以是一个云计算服务中心,等等,本申请实施例对此不作具体限定。其中,上述计算设备可以为智能可穿戴设备、智能手机、平板电脑、笔记本电脑、台式电脑或者带显示屏的服务器,等等,本申请实施例对此不作具体限定。
在一些实施例中,外围设备208提供智能车辆200的用户与用户接口216交互的手段。例如,车载电脑248可向智能车辆200的用户提供信息。用户接口216还可操作车载电脑248来接收用户的输入。车载电脑248可以通过触摸屏进行操作。在其他情况中,外围设备208可提供用于智能车辆200与位于车内的其它设备通信的手段。例如,麦克风250可从智能车辆200的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器252可向智能车辆200的用户输出音频。
无线通信系统246可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统246可使用第三代移动通信网络(3rd generation mobile networks,3G)蜂窝通信,例如码分多址(code division multiple access,CDMA)、全球移动通讯系统(global system for mobile communications,GSM)/通用分组无线业务(general packet radio service,GPRS),或者第四代移动通信网络(4th generation mobile networks,4G)蜂窝通信,例如长期演进技术(long term evolution,LTE)。或者第三代移动通信网络(5th generation mobile networks,5G)蜂窝通信。无线通信系统246还可以利用无线保真技术(wireless-fidelity,WIFI)与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统246可利用红外链路、蓝牙等与设备直接通信。其他无线协议,例如:各种车辆通信系统,例如,无线通信系统246可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源210可向智能车辆200的各种组件提供电力。在一个实施例中,电源210可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为智能车辆200的各种组件提供电力。在一些实施例中,电源210和能量源219可一起实现,例如一些全电动车中那样。
智能车辆200的部分或所有功能受计算机系统212控制。计算机系统212可包括至少一个处理器213,处理器213执行存储在例如存储器214这样的非暂态计算机可读介质中的指 令215。计算机系统212还可以是采用分布式方式控制智能车辆200的个体组件或子系统的多个计算设备。
处理器213可以是任何常规的处理器,诸如商业可获得的中央处理器(central processing unit,CPU)。可选地,该处理器可以是诸如特定应用集成电路(application-specific integrated circuit,ASIC)或其它基于硬件的处理器的专用设备。尽管图3功能性地图示了处理器、存储器和在相同块中的计算机系统212的其它元件,但是本领域的普通技术人员应该理解该处理器或存储器实际上可以包括不存储在相同的物理外壳内的多个处理器或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机系统212的外壳内的其它存储介质。因此,对处理器或存储器的引用将被理解为包括对可以或者可以不并行操作的处理器或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,例如传感系统204中的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器213可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行。
在一些实施例中,存储器214可包含指令215(例如,程序逻辑),指令215可被处理器213执行来执行智能车辆200的各种功能,包括以上描述的那些功能。存储器214也可包含额外的指令,包括向行进系统202、传感系统204、控制系统206和外围设备208中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令215以外,存储器214还可存储数据,例如传感器系统204在行驶过程中采集到的大量传感器数据,比如可以包括传感器系统204内的相机230拍摄到的图像数据以及激光雷达系统226采集到的点云数据,等等。在一些可能的实施例中,存储器214还可以存储用于根据温度变化进行工作参数调整的多个温度阈值以及与该多个温度阈值匹配的多个工作参数各自的多个设定值(例如外壳的其中一个温度阈值为80℃,则该温度阈值对应于调整帧率至20F/s),等等,本申请实施例对此不作具体限定。在一些可能的实施例中,存储器214还可存储例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息,等等。这种信息可在智能车辆200行驶期间被智能车辆200中的无线通信系统246或者计算机系统212等使用。
用户接口216,用于向智能车辆200的用户提供信息或从其接收信息。可选地,用户接口216可包括在外围设备208的集合内的一个或多个输入/输出设备,例如无线通信系统246、车载电脑248、麦克风250和扬声器252。
可选地,上述这些组件中的一个或多个可与智能车辆200分开安装或关联。例如,存储器214可以部分或完全地与智能车辆200分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
综上所述,智能车辆200可以为轿车、卡车、摩托车、公共汽车、船、无人机、机器人、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车和手推车,等等,本申请实施例对此不作具体限定。
可以理解的是,图3中的智能车辆的功能框图只是本申请实施例中的一种示例性的实施方式,本申请实施例中的智能车辆包括但不仅限于以上结构。
请参阅图4,图4是本申请实施例提供的一种激光雷达系统的结构示意图。如图4所示, 该激光雷达系统300可以应用于如图3所示的智能车辆200,该激光雷达系统300可以为上述图3所示的激光雷达系统226,本申请实施例对此不作具体限定。
如图4所示,该激光雷达系统300可以包括传感器系统301和激光雷达302。其中,该传感器系统301可以包括M个温度传感器,M为大于或者等于1的整数。其中,该激光雷达302可以包括N个器件,N为大于或者等于1的整数。可选地,该N个器件可以包括激光器、探测器、光学系统、扫描器、控制芯片和外壳中的一个或多个。可选地,该控制芯片中可以包括如图1所示的数据处理模块等,可以用于对点云进行预处理。
其中,该M个温度传感器可以设置在上述N个器件的周围,以实时监测N个器件的温度。需要说明的是,由于器件不同位置的温度不同,尤其体积较大的器件其各个位置温度的差异较大,容易导致某一位置温度较低的情况下,其他位置可能已经严重超温,影响器件运行。如此,可选地,可以通过其中一个或多个温度传感器监测一个器件的一个或多个位置上对应的一个或多个第一温度。然后,激光雷达可以基于该器件的一个或多个第一温度,确定该器件对应的第二温度(也即实际可做参考的温度),该第二温度可以为上述一个或多个第一温度中的最高温度。例如,控制芯片周围共设置有3个温度传感器,监测到的第一温度分别为90℃、95℃和105℃,则可以将105℃作为该控制芯片的第二温度,后续可以依据该第二温度来进行超温判断,提高安全性。可选地,在一些可能的实施方式中,也可以通过拟合等方法,根据器件的一个或多个不同位置的第一温度计算得到其对应的第二温度,等等,本申请实施例对此不作具体限定。例如,以上述控制芯片为例,其第一温度分别为90℃、95℃和105℃,则通过拟合计算,该控制芯片实际达到的温度可以为112℃(也即第二温度),则后续可以依据该第二温度来进行超温判断,提高安全性。可选地,该温度可以为结温,例如上述激光雷达302中的控制芯片的结温(结温为处于电子设备中实际半导体芯片的最高温度,通常高于外壳温度)。
其中,该激光雷达302可以基于该N个器件的第二温度和预设的调整规则,分别对该N个器件中的一个或多个器件各自的一个或多个工作参数进行调整。可选地,该N个器件可以各自对应K个器件温度阈值,K为大于或者等于1的整数。该预设的调整规则可以包括,当N个器件中的任意一个器件的第二温度到达该K个器件温度阈值中的任意一个器件温度阈值时,则将该N个器件中的一个或多个器件各自的一个或多个工作参数调整至与该任意一个器件温度阈值匹配的值。可选地,上述进行调整的该N个器件中的一个或多个器件可以为与该任意一个超温器件关联的器件(可以包括该超温器件本身),该一个或多个器件各自的一个或多个工作参数也可以为与该任意一个超温器件关联的工作参数。可选地,该一个或多个工作参数可以包括帧率、出点率、测距范围、角分辨率、FOV、ROI和点云分辨率中的一个或多个,还可以包括激光线束等等其他可能的工作参数,本申请实施例对此不作具体限定。需要说明的是,每个器件对应的K的取值可以不同,例如,该N个器件为激光器、探测器、外壳和控制芯片这4个器件,其中,激光器可以对应有90℃、95℃和100℃这3个器件温度阈值,探测器可以对应有90℃、95℃和100℃这3个器件温度阈值,外壳可以对应有80℃、90℃、100℃和105℃这4个器件温度阈值,控制芯片可以对应有100℃、105℃、110℃、115℃和120℃这5个器件温度阈值,等等,本申请实施例对此不作具体限定。
可选地,可以事先设置上述一个或多个工作参数各自对应的K个设定值;其中,K个器件温度阈值可以与该K个设定值一一对应。如此,若N个器件中的任意一个器件的第二温度大于该K个器件温度阈值中的第j个器件温度阈值,则可以将该N个器件中的一个或多个器 件各自的一个或多个工作参数调整至与该第j个器件温度阈值对应的第j个设定值;进一步地,若该N个器件中的任意一个器件的第二温度大于该K个器件温度阈值中的第j+1个器件温度阈值,则可以将该N个器件中的一个或多个器件各自的一个或多个工作参数调整至与该第j+1个器件温度阈值对应的第j+1个设定值。需要说明的是,其中,该第j个器件温度阈值小于该第j+1个器件温度阈值,该第j个设定值大于该第j+1个设定值;j为大于或者等于1,且小于或者等于K的整数。如此,在激光雷达302中的各个器件的温度不断上升的情况下,可以自适应地不断地下调工作参数的设定值(例如不断降低激光雷达302的帧率、缩短激光雷达302的测距范围等),以降低激光雷达302的功耗,从而降低激光雷达302内各个器件的温度,保证激光雷达302的正常工作以及驾驶安全。可以理解的是,K个设定值与K个器件温度阈值中K的取值可以不同。其对应关系可以如下表1和表2所示。
表1
Figure PCTCN2021077469-appb-000001
表2
Figure PCTCN2021077469-appb-000002
可以理解的是,上述上表1和表2仅做示例性说明,可调的工作参数包括但不限于上述的帧率和测距范围,并且各个工作参数的设定值以及各个器件的器件温度阈值可以根据实际需求进行增加和删减,等等,本申请实施例对此不做具体限定。请一并参阅图5,图5是本申请实施例提供的一种自适应调整流程的示意图。如图5所示,在激光雷达系统300启动后,激光雷达302可以先以默认设定值开始工作,例如上述表1和表2所示的25F/s的帧率和200m的测距范围等等开始工作。激光雷达系统300启动后,其中的多个传感器开始实时监测上述各个器件的温度。
如上所述,例如,当监测到扫描器的第二温度超过其对应的第一个器件温度阈值(90℃)时,则激光雷达302可以将扫描器对应的帧率下调至20F/s(第一个设定值),以降低扫描器 温度。又例如,当监测到外壳的第二温度超过其对应的第一个器件温度阈值(80℃)时,则激光雷达302可以将扫描器对应的帧率下调至20F/s,以降低外壳温度。可以理解的是,不同的工作参数之间会存在关联,例如出点率是根据帧率和角分辨率计算得到的,则帧率下降,而角分辨率不变的情况下,出点率会随之下降。如此,调整扫描器的帧率,也相当于同时调整了激光器的出点率。又例如,当通过ROI技术,仅对视场中的目标或者可能出现目标的区域进行扫描探测时,激光器在非目标区域的打光大大减少,点云稀疏,也即相当于降低了激光器整体的出点率,等等。可选地,如上所述,在将扫描器对应的帧率下调至20F/s的情况下,还可以同时将激光器对应的测距范围下调至150m(第一个设定值),以大幅度地降低激光雷达302的功耗,从而更加快速、有效地降低外壳温度,避免持续高温给激光雷达302带来的损伤,等等,本申请实施例对此不作具体限定。又例如,在下调了帧率和测距范围后,外壳温度仍然在不断上升,当检测到外壳的第二温度超过其对应的第二个器件温度阈值(90℃)时,则激光雷达302可以进一步将帧率下调至15F/s(第二个设定值)。可选地,如上所述,也可以同时将激光器对应的测距范围再次下调至100m(第二个设定值),等等,此处不再进行赘述。可以理解的是,如上所述,激光雷达302中的多个器件往往是互相关联,彼此影响的,例如在上述降低帧率、出点率的情况下,探测器接收到的信号数量也会随之降低,则探测器的工作负荷降低,其温度也会降低,进一步地,控制芯片中进行点云处理的工作量也会随之降低,从而导致控制芯片的温度降低。如此,例如当监测到控制芯片的第二温度超过其对应的第一个器件温度阈值(100℃)时,则激光雷达302可以将扫描器对应的帧率下调至20F/s,从而降低控制芯片中数据处理的工作负荷,以降低控制芯片的温度。又例如,当监测到控制芯片的第二温度超过其对应的第一个器件温度阈值(100℃)时,也即可以认为当处理器的温度过高的情况下,可以首先选择降低处理器的频率以实现降温,同时,可以理解的是,由于处理器的频率下降,其数据处理的工作量也会随之下降,因此,虽然激光器和扫描器等器件的温度没有过高,但是也可以把激光器的出点率和扫描器的帧率等进行下调,等等,本申请实施例对此不作具体限定。由此,可以通过其中一个或多个工作参数的调整,有效、全面地保证激光雷达302工作时的温度都在安全范围内。
可选地,如图5所示,当激光雷达302中的任意一个器件的第二温度超过最高器件温度阈值(例如为第K个器件温度阈值),且当前一个或多个工作参数为最小设定值(例如为第K个设定值),则可以控制激光雷302达停止工作(也即图5所示的宕机),进一步还可以上报异常警告至智能车辆,该异常警告可以包括使得用户或者测试人员可以及时掌握当前激光雷达302的异常超温情况,保证驾驶安全。例如,如上述表1所示,若当前帧率已下调至最低设定值5F/s,但外壳温度仍持续上升,甚至超过了最高器件温度阈值110℃,则可以直接控制激光雷达302停止工作,以保护激光雷达302的内部器件,避免器件超温受损,延长激光雷达302的使用寿命。可选地,如上所述,若当前帧率已下调至最低设定值5F/s,但外壳温度仍然长时间(例如为1分钟、2分钟或者5分钟等等)保持在105℃左右,无法下降,则此时也可以直接控制激光雷达302停止工作,以避免器件因长时间高温而受损,等等,本申请实施例对此不作具体限定。可选地,在激光雷达302宕机之后,传感器系统301中的多个温度传感器仍然可以持续监测激光雷达302中的各个器件的温度,如此,当各个器件的温度恢复至一定的温度范围内(例如为上述的第一器件温度阈值或者第二器件温度阈值,或者其他可能的温度范围,本申请实施例对此不作具体限定)时,激光雷达302便可以重新启动,开始工作,保障自动驾驶的安全性。
进一步地,该激光雷达302还可以基于调整后的N个器件对智能车辆200的行车环境进行探测等等,此处不再进行详述。
请一并参考图1所示的激光雷达,需要说明的是,影响整个激光雷达功耗的主要有两个部分,包括发射端的激光器的打光频率(也即激光发射频率)、功率,以及接收端的数据处理部分。因此,如上所述,本申请实施例可以在各个器件温度较高时,自适应下调帧率、出点率、测距范围和FOV等工作参数,实际上是直接降低了激光器的打光频率、功率,减少了点云数据采集的密度,从而间接降低了接收端数据处理的工作负荷,如此,有效降低了激光雷达的整体功耗,最终可以实现控制激光雷达内的各个器件的温度在安全范围内(或者称之为规格范围内),保障驾驶安全。
请参阅图6,图6是本申请实施例提供的另一种激光雷达系统的结构示意图。如图6所示,该传感器系统301还可以包括速度传感器3014,该激光雷达302还可以包括激光器3021、控制芯片3022和扫描器3023等等,具体可以参考上述图1所示的激光雷达,此处不再进行赘述。可选地,控制芯片3022可以包括激光器控制模块和扫描器控制模块,激光器控制模块可以与一个或多个激光器3021连接,扫描器控制模块可以与扫描器3023连接。其中,激光器控制模块可以基于上述的出点率、测距范围和ROI中的一个或多个工作参数,控制该一个或多个激光器的发射频率和/或发射功率;其中,扫描器控制模块可以基于上述的帧率、角分辨率和FOV中的一个或多个工作参数,控制该扫描器的扫描速率和/或扫描角度,等等。从而可以通过控制芯片中的激光器控制模块和扫描器控制模块,基于各个器件的温度变化以及相应的工作参数的数值调整,实现对激光器和扫描器的实时控制,保证激光雷达在各种温度状况下的正常运作。
可选地,该速度传感器3014可以实时监测智能车辆200的行驶速度。相应的,该行驶速度也可以对应有K个速度阈值,K的取值可以不同于前述器件温度阈值和工作参数的设定值对应的K。可以理解的是,车速越小,风速就越小,散热条件也越差,如此,当上述N个器件中的任意一个器件的第二温度到达该K个器件温度阈值中的任意一个器件温度阈值,并且该行驶速度小于该K个速度阈值中的任意一个速度阈值时,则激光雷达302可以将该N个器件中的一个或多个器件各自的一个或多个工作参数调整至与该任意一个器件温度阈值和该任意一个速度阈值匹配的值。例如,当壳温大于80℃,并且车速小于50km/h时,则激光雷达可以将帧率下调至20F/s,等等,本申请实施例对此不作具体限定。可选地,当检测到智能车辆200的行驶速度为0(也即智能车辆200处于停车状态),并且停车时间大于设定门限(例如为10分钟或者30分钟等)时,激光雷达302可以进一步降低帧率、出点率和测距范围等等,或者直接控制激光雷达停止工作(也即宕机),以在保证驾驶安全,满足自动驾驶需求的情况下,最大程度的降低激光雷达的功耗,控制激光雷达的温度在安全范围内。
相应的,如上所述,为了保护器件不因持续高温而受损,当该N个器件中的任意一个器件的一个或多个工作参数为K个设定值中的最小值,并且该N个器件中的任意一个器件的第二温度大于该K个器件温度阈值中的最大值,以及该行驶速度小于该K个速度阈值中的最小值时(也即散热条件较差,基本无法降温的情况下),可以控制该激光雷达302停止工作,并上报异常警告至该智能车辆200,等等,此处不再进行赘述。可选地,在激光雷达302停止工作后,速度传感器3014还可以持续监测智能车辆200的行驶速度,当监测到行驶速度逐渐恢复至一定的速度范围内,并且各个器件的温度恢复至一定的温度范围内时,激光雷达便可 以重新启动,开始工作,保障自动驾驶的安全性。
可选地,传感器系统301内的温度传感器还可以用于监测该智能车辆200的环境温度。相应的,该环境温度也可以对应有K个环境温度阈值,K的取值可以不同于前述速度阈值、器件温度阈值和工作参数的设定值对应的K。可以理解的是,一般情况下,环境温度越高,激光雷达的温度也就越高。如此,当该N个器件中的任意一个器件的第二温度到达该K个器件温度阈值中的任意一个器件温度阈值,并且该环境温度大于该K个环境温度阈值中的任意一个环境温度阈值时,则激光雷达302可以将该N个器件中的一个或多个器件各自的一个或多个工作参数调整至与该任意一个器件温度阈值和该任意一个环境温度阈值匹配的值。例如,当壳温大于80℃,并且环境温度大于60℃时,则激光雷达可以将帧率下调至20F/s,等等,本申请实施例对此不作具体限定。又例如,当壳温大于80℃,并且环境温度大于60℃时(也即降温条件较差时),可以更大幅度地下调帧率,比如直接下调至10F/s,以更加快速地降低激光雷达的温度,保障驾驶安全。
相应的,如上所述,为了保护器件不因持续高温而受损,当该N个器件中的任意一个器件的一个或多个工作参数为K个设定值中的最小值,并且该N个器件中的任意一个器件的第二温度大于该K个器件温度阈值中的最大值,以及该环境大于该K个环境温度阈值中的最大值时(也即散热条件较差,基本无法降温的情况下),可以控制该激光雷达302停止工作,并上报异常警告至该智能车辆200,等等,此处不再进行赘述。
可选地,如上所述,还可以同时参考器件温度、行驶速度和环境温度,以对工作参数进行自适应调整。例如,当该N个器件中的任意一个器件的第二温度到达该K个器件温度阈值中的任意一个器件温度阈值,以及该行驶速度小于该K个速度阈值中的任意一个速度阈值,并且该环境温度大于该K个环境温度阈值中的任意一个环境温度阈值时,则激光雷达302可以将该N个器件中的一个或多个器件各自的一个或多个工作参数调整至与该任意一个器件温度阈值、该任意一个速度阈值和该任意一个环境温度阈值匹配的值,等等,本申请对此不作具体限定。例如,当壳温大于80℃,并且行驶速度小于50km/s,以及环境温度大于60℃时,则激光雷达可以将帧率下调至20F/s,等等,本申请实施例对此不作具体限定。
可以理解的是,器件温度、行驶速度和环境温度之间是相互联系、影响的关系,因此,当环境温度超过某个环境温度阈值,或者当行驶速度小于某个速度阈值,但器件温度还未到达最低的器件温度阈值时,也可以对工作参数进行调整,从而更快更有效地提前防止器件超温,等等,本申请实施例对此不作具体限定。
相应的,如上所述,当该N个器件中的任意一个器件的一个或多个工作参数为该K个设定值中的最小值,并且该N个器件中的任意一个器件的第二温度大于该K个器件温度阈值中的最大值,并且该行驶速度小于该K个速度阈值中的最小值,以及该环境温度大于该K个环境温度阈值中的最大值时(也即在散热条件极为恶劣的情况下),则该激光雷达302可以直接宕机,并上报异常警报至智能车辆,从而避免激光雷达内的各个器件在持续高温的状态下收到损伤,延长激光雷达的使用寿命,保障驾驶安全。
请参阅图7a,图7a是本申请实施例提供的一种应用场景的示意图。如图7a所示,该应用场景可以包括多车道路面,以及正在行驶的智能车辆200(图7a中以小轿车为例)、车辆1(图7a中以公交车为例)、车辆2(图7a中以小轿车为例)和车辆3(图7a中以小轿车为例)。其中,该智能车辆200可以为上述图3所示的智能车辆200,装载有激光雷达系统,例如可 以为上述图4或者图6所示的激光雷达系统300。请一并参阅图7b,图7b是本申请实施例提供的另一种应用场景的示意图。如图7b所示,该应用场景也可以包括装载有激光雷达系统的智能车辆200,此处不再进行赘述。如图7b所示,在人行道前,该智能车辆200可以处于停车状态。如上图7a和图7b所示,智能车辆200均可以处于自动驾驶模式,在其行驶或者停车过程中,智能车辆200内的激光雷达系统可以对行车环境进行探测,例如对当前的道路状况、前方的车辆1和车辆3的轮廓、速度等等进行探测。并且,在探测过程中,智能车辆200内的激光雷达系统还可以根据激光雷达中的各个器件的温度变化等对其中的一个或多个工作参数的具体数值进行自适应调整,等等,具体可以参考上述图4或者图6对应实施例的描述,此处不再进行赘述。从而可以有效控制激光雷达内部的各个器件的温度在安全范围内,保证激光雷达的正常运行和驾驶安全。请参阅图8,图8是本申请实施例提供的另一种激光雷达的壳温路测结果示意图。如图8所示,以典型的32线转镜激光雷达以及帧速率调整为例,在环境温度25℃,车速60km/s,帧速率25F/s的条件下,由于车辆行驶过程中风速较大,散热条件良好,激光雷达的壳温在30℃以内。然而,当车辆停止时,由于风速急剧下降,散热条件恶化,激光雷达的壳温不断上升,如此,激光雷达的帧速率可以根据该不断上升的壳温进行自适应调整。例如,该帧速率的调整过程可以为:25F/s→20F/s→15F/s→10F/s→5F/s,逐渐变大,散热条件转好,壳温也逐渐下降,由此,激光雷达的帧速率还可以根据该不断下降的壳温进行自适应调整。例如,该帧速率的调整过程可以为:5F/s→10F/s→5F/s→20F/s→25F/s。综上,本申请实施例提供的一种激光雷达系统可以在保证自动驾驶基本需求的情况下,有效控制车载激光雷达的温度和例如帧速率等工作参数之间的平衡,极大程度上提升了激光雷达的可靠性和温度适应性,整个调整过程对自动驾驶基本无影响。
需要说明的是,一方面,考虑到激光雷达系统以及驾驶车辆的安全性,并且各个器件质量存在不确定性的情况下,本申请实施例在设置上述器件温度阈值、速度阈值以及环境温度阈值时可以留有一定的margin(余裕)。例如,通常情况下,激光器雷达外壳所支持的最高温度为100℃左右,则其对应的第一个器件温度阈值可以设置为较低的80℃,其对应的最高器件温度阈值可以设置为105℃,从而更加严格、有效地确保其温度不会超过安全范围,保证激光雷达系统的安全和驾驶安全。
另一方面,考虑到在自动驾驶场景中,激光雷达的测量精度十分重要,因此,为了保证自动驾驶的准确和安全性,尤其是在高速行驶或者路况复杂等对测量精度要求较高的特定场景下,本申请实施例可以允许激光雷达在一定时间内进行超温工作。以上述表1为例,当外壳温度超过80℃时,为了保证测量精度,激光雷达仍然可以以25F/s的帧率进行一定时间的超温工作,若外壳温度长时间超过80℃,或者甚至超过了90℃,则再下调帧率至20F/s,等等。又例如,仍以上述表1为例,当外壳温度超过105℃时,为了保证测量精度,激光雷达仍然可以以10F/s的帧率进行一定时间的超温工作,若外壳温度长时间超过105℃,或者超过了110℃,则再下调帧率或者直接宕机,等等,本申请实施例对此不作具体限定。综上,用户或者测试人员可以通过软件应用,根据实际情况对上述的器件温度阈值、速度阈值以及环境温度阈值进行灵活设置,本申请实施例对此不作具体限定。
除此之外,本申请实施例还可以支持手动配置模式,在激光雷达中的任意一个器件超温时,激光雷达可以发送超温信息至智能车辆,此时,用户或者测试人员可以根据当前的超温情况手动设置帧率、出点率和测距范围等工作参数。其中,手动模式的优先级可以高于自动 模式。
需要说明的是,本申请实施例可以应用于各类激光雷达产品,包括但不限于机械式转镜激光雷达、半固态微机电系统微机电系统(microelectro mechanical system,MEMS)激光雷达和全固态flash激光雷达等等。除此之外,本申请实施例所提供的根据温度等对工作参数进行自适应调整的方法还可以推广应用于其他的传感器,例如radar(雷达)等等,本申请实施例对此不作具体限定。
请参阅图9,图9是本申请实施例提供的一种调整方法的流程示意图,该调整方法可以应用于激光雷达系统(例如上述图4和图6所述的激光雷达系统300)。该激光雷达系统可以包括激光雷达和传感器系统;该激光雷达包括N个器件,该传感器系统包括M个温度传感器,N和M均为大于或者等于1的整数。可选地,该方法可以应用于上述图7a或者图7b所述的应用场景中,该方法可以包括以下步骤S901-步骤S904。
步骤S901,通过所述M个温度传感器,监测所述N个器件各自的一个或多个第一温度。
步骤S902,通过所述激光雷达,基于所述N个器件各自的一个或多个第一温度,确定所述N个器件的第二温度。
步骤S903,通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整;所述N个器件各自对应K个器件温度阈值,所述预设的调整规则包括,当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值匹配的值;K为大于或者等于1的整数。
步骤S904,通过所述激光雷达,通过调整后的所述N个器件对所述智能车辆的行车环境进行探测。
可选地,步骤S901-步骤S904具体可以参考上述图4和图6对应实施例的描述。
在一种可能的实施方式中,所述N个器件包括激光器、探测器、光学方法、扫描器、控制芯片和外壳中的一个或多个;所述通过所述M个温度传感器,监测所述N个器件各自的一个或多个第一温度,包括:
通过所述M个温度传感器中的一个或多个温度传感器监测所述N个器件中第i个器件的一个或多个位置上对应的一个或多个第一温度,所述第二温度为所述一个或多个第一温度中的最高温度;i为大于或者等于1,且小于或者等于N的整数。
在一种可能的实施方式中,所述一个或多个工作参数包括帧率、出点率、测距范围、角分辨率、视场角FOV和感兴趣区域ROI中的一个或多个;所述N个器件中的一个或多个器件为与所述任意一个器件关联的器件;所述N个器件中的一个或多个器件各自的一个或多个工作参数为与所述任意一个器件关联的工作参数。
在一种可能的实施方式中,其特征在于,所述一个或多个工作参数各自对应K个设定值;所述K个器件温度阈值与所述K个设定值一一对应;所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:
若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所 述第j个器件温度阈值对应的第j个设定值;
若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j+1个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j+1个器件温度阈值对应的第j+1个设定值;其中,所述第j个器件温度阈值小于所述第j+1个器件温度阈值,所述第j个设定值大于所述第j+1个设定值;j为大于或者等于1,且小于或者等于K的整数。
在一种可能的实施方式中,所述控制芯片包括激光器控制模块和扫描器控制模块;所述激光器控制模块与一个或多个激光器连接,所述扫描器控制模块与所述扫描器连接;所述方法还包括:
通过所述激光器控制模块,基于所述出点率、所述测距范围和所述ROI中的一个或多个工作参数,控制所述一个或多个激光器的发射频率和/或发射功率;
通过所述扫描器控制模块,基于所述帧率、所述角分辨率和所述FOV中的一个或多个工作参数,控制所述扫描器的扫描速率和/或扫描角度。
在一种可能的实施方式中,所述传感器方法还包括速度传感器;所述方法还包括:
通过所述速度传感器,监测所述智能车辆的行驶速度;所述行驶速度对应K个速度阈值;
所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述行驶速度小于所述K个速度阈值中的任意一个速度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个速度阈值匹配的值。
在一种可能的实施方式中,所述方法还包括:
通过所述M个温度传感器,监测所述智能车辆的环境温度;所述环境温度对应K个环境温度阈值;
所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个环境温度阈值匹配的值。
在一种可能的实施方式中,所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,以及所述行驶速度小于所述K个速度阈值中的任意一个速度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值、所述任意一个速度阈值和所述任意一个环境温度阈值匹配的值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件和所述行驶速度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意 一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述行驶速度小于所述K个速度阈值中的最小值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件、所述行驶速度和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,并且所述行驶速度小于所述K个速度阈值中的最小值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
在一种可能的实施方式中,所述方法还包括:
通过所述激光雷达,若所述N个器件满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值。
本发明实施例还提供一种计算机可读存储介质,其中,该计算机可读存储介质可存储有程序,该程序被处理器执行时,使得所述处理器可以执行上述方法实施例中记载的任意一种的部分或全部步骤。
本发明实施例还提供一种计算机程序,该计算机程序包括指令,当该计算机程序被多核处理器执行时,使得所述处理器可以执行上述方法实施例中记载的任意一种的部分或全部步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可能可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本发明各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(read-only memory,ROM)、双倍速率同步动态随机存储器(double data rate,DDR)、闪存(flash)或者随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (21)

  1. 一种激光雷达系统,其特征在于,所述激光雷达系统包括激光雷达和传感器系统;所述激光雷达包括N个器件,所述传感器系统包括M个温度传感器,N和M均为大于或者等于1的整数;
    所述M个温度传感器,用于监测所述N个器件各自的一个或多个第一温度;
    所述激光雷达,用于基于所述N个器件各自的一个或多个第一温度,确定所述N个器件的第二温度;
    所述激光雷达,还用于基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整;所述N个器件各自对应K个器件温度阈值,所述预设的调整规则包括,当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值匹配的值;K为大于或者等于1的整数;
    所述激光雷达,还用于通过调整后的所述N个器件对所述智能车辆的行车环境进行探测。
  2. 根据权利要求1所述的系统,其特征在于,所述N个器件包括激光器、探测器、光学系统、扫描器、控制芯片和外壳中的一个或多个;所述M个温度传感器,具体用于:
    通过所述M个温度传感器中的一个或多个温度传感器监测所述N个器件中第i个器件的一个或多个位置上对应的一个或多个第一温度,所述第二温度为所述一个或多个第一温度中的最高温度;i为大于或者等于1,且小于或者等于N的整数。
  3. 根据权利要求2所述的系统,其特征在于,所述一个或多个工作参数包括帧率、出点率、测距范围、角分辨率、视场角FOV和感兴趣区域ROI中的一个或多个;所述N个器件中的一个或多个器件为与所述任意一个器件关联的器件;所述N个器件中的一个或多个器件各自的一个或多个工作参数为与所述任意一个器件关联的工作参数。
  4. 根据权利要求1-3任意一项所述的系统,其特征在于,所述一个或多个工作参数各自对应K个设定值;所述K个器件温度阈值与所述K个设定值一一对应;所述激光雷达,具体用于:
    若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j个器件温度阈值对应的第j个设定值;
    若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j+1个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j+1个器件温度阈值对应的第j+1个设定值;其中,所述第j个器件温度阈值小于所述第j+1个器件温度阈值,所述第j个设定值大于所述第j+1个设定值;j为大于或者等于1,且小于或者等于K的整数。
  5. 根据权利要求3所述的系统,其特征在于,所述控制芯片包括激光器控制模块和扫描 器控制模块;所述激光器控制模块与一个或多个激光器连接,所述扫描器控制模块与所述扫描器连接;
    所述激光器控制模块,用于基于所述出点率、所述测距范围和所述ROI中的一个或多个工作参数,控制所述一个或多个激光器的发射频率和/或发射功率;
    所述扫描器控制模块,用于基于所述帧率、所述角分辨率和所述FOV中的一个或多个工作参数,控制所述扫描器的扫描速率和/或扫描角度。
  6. 根据权利要求1-3任意一项所述的系统,其特征在于,所述传感器系统还包括速度传感器;
    所述速度传感器,用于监测所述智能车辆的行驶速度;所述行驶速度对应K个速度阈值;
    所述激光雷达,具体用于:
    当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述行驶速度小于所述K个速度阈值中的任意一个速度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个速度阈值匹配的值。
  7. 根据权利要求1-3任意一项所述的系统,其特征在于,
    所述M个温度传感器,还用于监测所述智能车辆的环境温度;所述环境温度对应K个环境温度阈值;
    所述激光雷达,具体用于:
    当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个环境温度阈值匹配的值。
  8. 根据权利要求6所述的系统,其特征在于,所述激光雷达,还用于:
    若所述N个器件和所述行驶速度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述行驶速度小于所述K个速度阈值中的最小值。
  9. 根据权利要求7所述的系统,其特征在于,所述激光雷达,还用于:
    若所述N个器件和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
  10. 一种调整方法,其特征在于,应用于智能车辆,所述智能车辆包括激光雷达系统;所 述激光雷达系统包括激光雷达和传感器系统;所述激光雷达包括N个器件,所述传感器系统包括M个温度传感器,N和M均为大于或者等于1的整数;所述方法包括:
    通过所述M个温度传感器,监测所述N个器件各自的一个或多个第一温度;
    通过所述激光雷达,基于所述N个器件各自的一个或多个第一温度,确定所述N个器件的第二温度;
    通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整;所述N个器件各自对应K个器件温度阈值,所述预设的调整规则包括,当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值匹配的值;K为大于或者等于1的整数;
    通过所述激光雷达,通过调整后的所述N个器件对所述智能车辆的行车环境进行探测。
  11. 根据权利要求1所述的方法,其特征在于,所述N个器件包括激光器、探测器、光学方法、扫描器、控制芯片和外壳中的一个或多个;所述通过所述M个温度传感器,监测所述N个器件各自的一个或多个第一温度,包括:
    通过所述M个温度传感器中的一个或多个温度传感器监测所述N个器件中第i个器件的一个或多个位置上对应的一个或多个第一温度,所述第二温度为所述一个或多个第一温度中的最高温度;i为大于或者等于1,且小于或者等于N的整数。
  12. 根据权利要求11所述的方法,其特征在于,所述一个或多个工作参数包括帧率、出点率、测距范围、角分辨率、视场角FOV和感兴趣区域ROI中的一个或多个;所述N个器件中的一个或多个器件为与所述任意一个器件关联的器件;所述N个器件中的一个或多个器件各自的一个或多个工作参数为与所述任意一个器件关联的工作参数。
  13. 根据权利要求10-12任意一项所述的方法,其特征在于,所述一个或多个工作参数各自对应K个设定值;所述K个器件温度阈值与所述K个设定值一一对应;所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:
    若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j个器件温度阈值对应的第j个设定值;
    若所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的第j+1个器件温度阈值,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述第j+1个器件温度阈值对应的第j+1个设定值;其中,所述第j个器件温度阈值小于所述第j+1个器件温度阈值,所述第j个设定值大于所述第j+1个设定值;j为大于或者等于1,且小于或者等于K的整数。
  14. 根据权利要求12所述的方法,其特征在于,所述控制芯片包括激光器控制模块和扫描器控制模块;所述激光器控制模块与一个或多个激光器连接,所述扫描器控制模块与所述 扫描器连接;所述方法还包括:
    通过所述激光器控制模块,基于所述出点率、所述测距范围和所述ROI中的一个或多个工作参数,控制所述一个或多个激光器的发射频率和/或发射功率;
    通过所述扫描器控制模块,基于所述帧率、所述角分辨率和所述FOV中的一个或多个工作参数,控制所述扫描器的扫描速率和/或扫描角度。
  15. 根据权利要求10-12任意一项所述的方法,其特征在于,所述传感器方法还包括速度传感器;所述方法还包括:
    通过所述速度传感器,监测所述智能车辆的行驶速度;所述行驶速度对应K个速度阈值;
    所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:
    当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述行驶速度小于所述K个速度阈值中的任意一个速度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个速度阈值匹配的值。
  16. 根据权利要求10-12任意一项所述的方法,其特征在于,所述方法还包括:
    通过所述M个温度传感器,监测所述智能车辆的环境温度;所述环境温度对应K个环境温度阈值;
    所述通过所述激光雷达,基于所述N个器件的第二温度和预设的调整规则,分别对所述N个器件中的一个或多个器件各自的一个或多个工作参数进行调整,包括:
    当所述N个器件中的任意一个器件的第二温度到达所述K个器件温度阈值中的任意一个器件温度阈值,并且所述环境温度大于所述K个环境温度阈值中的任意一个环境温度阈值时,则将所述N个器件中的一个或多个器件各自的一个或多个工作参数调整至与所述任意一个器件温度阈值和所述任意一个环境温度阈值匹配的值。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    通过所述激光雷达,若所述N个器件和所述行驶速度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述行驶速度小于所述K个速度阈值中的最小值。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    通过所述激光雷达,若所述N个器件和所述环境温度满足目标条件,则控制所述激光雷达停止工作,并上报异常警告至所述智能车辆;所述目标条件包括,所述N个器件中的任意一个器件的一个或多个工作参数为所述K个设定值中的最小值,并且所述N个器件中的任意一个器件的第二温度大于所述K个器件温度阈值中的最大值,以及所述环境温度大于所述K个环境温度阈值中的最大值。
  19. 一种智能车辆,其特征在于,包括如权利要求1-9任意一项所述的激光雷达系统。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述权利要求10-18中任意一项所述的方法。
  21. 一种计算机程序,其特征在于,所述计算机可读程序包括指令,当所述计算机程序被处理器执行时,使得所述处理器执行如上述权利要求10-18中任意一项所述的方法。
PCT/CN2021/077469 2021-02-23 2021-02-23 一种激光雷达系统、调整方法及相关设备 WO2022178667A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/077469 WO2022178667A1 (zh) 2021-02-23 2021-02-23 一种激光雷达系统、调整方法及相关设备
CN202180093760.XA CN116888505A (zh) 2021-02-23 2021-02-23 一种激光雷达系统、调整方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077469 WO2022178667A1 (zh) 2021-02-23 2021-02-23 一种激光雷达系统、调整方法及相关设备

Publications (1)

Publication Number Publication Date
WO2022178667A1 true WO2022178667A1 (zh) 2022-09-01

Family

ID=83048578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077469 WO2022178667A1 (zh) 2021-02-23 2021-02-23 一种激光雷达系统、调整方法及相关设备

Country Status (2)

Country Link
CN (1) CN116888505A (zh)
WO (1) WO2022178667A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173123A (ja) * 2008-01-23 2009-08-06 Toyota Motor Corp 車載装置
CN108603927A (zh) * 2016-02-12 2018-09-28 罗伯特·博世有限公司 用于机动车中的驾驶员辅助系统的雷达传感器
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
CN110881261A (zh) * 2018-09-05 2020-03-13 通用汽车环球科技运作有限责任公司 管理传感器模块温度的装置和方法
CN112363181A (zh) * 2019-07-26 2021-02-12 现代摩比斯株式会社 车辆的激光雷达装置、激光雷达传感器控制装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173123A (ja) * 2008-01-23 2009-08-06 Toyota Motor Corp 車載装置
CN108603927A (zh) * 2016-02-12 2018-09-28 罗伯特·博世有限公司 用于机动车中的驾驶员辅助系统的雷达传感器
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
CN110881261A (zh) * 2018-09-05 2020-03-13 通用汽车环球科技运作有限责任公司 管理传感器模块温度的装置和方法
CN112363181A (zh) * 2019-07-26 2021-02-12 现代摩比斯株式会社 车辆的激光雷达装置、激光雷达传感器控制装置及方法

Also Published As

Publication number Publication date
CN116888505A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
US11915492B2 (en) Traffic light recognition method and apparatus
US20220289252A1 (en) Operational Design Domain Odd Determining Method and Apparatus and Related Device
US10712556B2 (en) Image information processing method and augmented reality AR device
US20220017014A1 (en) Adaptive Rearview Mirror Adjustment Method and Apparatus
EP4187283A1 (en) Laser radar and smart vehicle
US20220018943A1 (en) Ranging Method, Radar, and Vehicle-Mounted Radar
CN112512887B (zh) 一种行驶决策选择方法以及装置
CN114902305A (zh) 用于载具队伍的代理校准目标的识别
US20240017719A1 (en) Mapping method and apparatus, vehicle, readable storage medium, and chip
US20230136798A1 (en) Method and apparatus for detecting lane line
EP3933439A1 (en) Localization method and localization device
US20230266440A1 (en) Sensor Unit with Rotating Housing and Spoiler for Enhanced Airflow
CN112810603B (zh) 定位方法和相关产品
CN115147796A (zh) 评测目标识别算法的方法、装置、存储介质及车辆
US20220082660A1 (en) Light Detection and Ranging (Lidar) Device having a Light-Guide Manifold
WO2021217575A1 (zh) 用户感兴趣对象的识别方法以及识别装置
WO2022178667A1 (zh) 一种激光雷达系统、调整方法及相关设备
WO2021217646A1 (zh) 检测车辆可通行区域的方法及装置
CN115221151B (zh) 车辆数据的传输方法、装置、车辆、存储介质及芯片
CN115100630B (zh) 障碍物检测方法、装置、车辆、介质及芯片
EP4254320A1 (en) Image processing method and apparatus, and storage medium
US12001517B2 (en) Positioning method and apparatus
JP2022528382A (ja) 検出信号に基づくレンジング方法及び装置
WO2023050058A1 (zh) 控制车载摄像头的视角的方法、装置以及车辆
CN115082886B (zh) 目标检测的方法、装置、存储介质、芯片及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093760.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927114

Country of ref document: EP

Kind code of ref document: A1