WO2022176826A1 - Stent - Google Patents

Stent Download PDF

Info

Publication number
WO2022176826A1
WO2022176826A1 PCT/JP2022/005809 JP2022005809W WO2022176826A1 WO 2022176826 A1 WO2022176826 A1 WO 2022176826A1 JP 2022005809 W JP2022005809 W JP 2022005809W WO 2022176826 A1 WO2022176826 A1 WO 2022176826A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear portion
small
stent
length
annular body
Prior art date
Application number
PCT/JP2022/005809
Other languages
French (fr)
Japanese (ja)
Inventor
智哉 小松
翔平 海田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022176826A1 publication Critical patent/WO2022176826A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other

Definitions

  • the present invention relates to stents.
  • stents are delivered to lesions in biological lumens by a stent delivery system and left in place. It is a medical device that expands lesions such as ulcers and secures the lumen.
  • the stent is formed by linear components, struts, into a cylindrical body with gaps that can be radially expanded and contracted.
  • Stents are classified into balloon-expandable and self-expandable according to the expansion method.
  • the balloon-expandable stent is attached to a balloon catheter in a crimped state, delivered to a target lesion, and left in a living body lumen. Stents must be prevented from falling out of the balloon during delivery. Therefore, the stent is crimped (pressure crimped) while inflating the balloon at a low pressure so that the balloon protrudes outside the inner surface of the stent through the gaps between the struts when crimped. Prior to pressure crimping, the balloon is pre-expanded to form wrinkles on the outer surface of the balloon to facilitate ejection of the balloon through the interstices of the struts.
  • the characteristics required for a stent include, for example, suppressing changes in the axial length of the stent before and after expansion, flexibly following the shape of the biological lumen, and achieving peripheral reach during delivery.
  • the outer diameter (profile) of the stent-mounted portion of the catheter is small.
  • a high retention force between the stent and the balloon is required so that the stent does not fall off the balloon during delivery.
  • the shape of wrinkles generated during pre-expansion of the balloon is random, and it is difficult to project the balloon from the desired position between the struts during pressure crimping. Since the protrusion of the balloon affects the stent retention force, there will be individual differences in the stent retention force when mass-producing stent delivery systems with crimped stents.
  • a stent disclosed in Patent Document 1 below has been proposed as a stent that can solve the problem of stent retention force as described above.
  • the struts forming the wavy annular body are not uniformly spaced in the circumferential direction.
  • the interval between the inclined curved portion and the first inclined linear portion and the interval between the inclined curved portion and the second inclined linear portion are larger than the interval of .
  • the stent of Patent Document 1 As described above, in the stent of Patent Document 1, small gaps and large gaps are formed in the circumferential direction of the struts. In the gap where the strut spacing is small, the balloon is less likely to protrude, while in the gap where the strut spacing is large, the balloon tends to protrude. For this reason, the stent of Patent Document 1 has less variation in the number of gaps that cause balloon protrusion when mass-produced than a stent with uniform strut intervals in the circumferential direction, and the stent retention force is reduced. the difference becomes smaller. Therefore, the stent of Patent Document 1 can exhibit a stable stent holding force.
  • Patent Document 1 As described above, a stent with a smaller profile is desired in order to improve peripheral reachability. deformation can occur.
  • the stent of Patent Document 1 also has the same possibility.
  • One embodiment of the present invention has been made in view of the above-mentioned circumstances, and even if the profile is reduced, a clear difference in the circumferential spacing of the struts is generated, and the stent retention force to the balloon is stabilized.
  • the purpose is to provide a stent.
  • the stent according to this embodiment is a stent formed in a cylindrical shape extending in the longitudinal direction, having a proximal end and a distal end, an axis-parallel linear portion extending parallel to the longitudinal direction, and a proximal end.
  • a first slightly inclined linear portion having a tip end and extending obliquely with respect to the major axis direction
  • a second small inclined linear portion having a base end and a tip end and extending obliquely with respect to the major axis direction.
  • a large inclined linear portion having a proximal end and a distal end, extending obliquely with respect to the longitudinal direction and disposed between the first small inclined linear portion and the second small inclined linear portion; a first small curved portion connecting the distal end of the axis-parallel linear portion and the distal end of the first small inclined linear portion; a base end of the first small inclined linear portion and a proximal end of the large inclined linear portion; a second large curved portion connecting the distal end of the large inclined linear portion and the distal end of the second small inclined linear portion; and the proximal end of the second small inclined linear portion.
  • a first angle formed between the small inclined linear portions or between the large inclined linear portion and the second small inclined linear portion is defined between the axis-parallel linear portion and the first small inclined linear portion.
  • an angle ratio obtained by dividing the second angle between the axis-parallel linear portion and the second small-inclined linear portion satisfies a relationship of 2.17 or more and 2.96 or less
  • the length ratio obtained by dividing the length of the portion by the length of the first small-slanted linear portion or the length of the second small-slanted linear portion satisfies the relationship of 1.24 or more and 1.51 or less.
  • FIG. 1 is a schematic plan view of a stent delivery system according to this embodiment
  • FIG. FIG. 2 is a developed view obtained by linearly cutting a portion of the outer circumference of the stent according to the present embodiment along the long axis direction and developing the stent. It is a figure which expands and shows the broken line part A of FIG.
  • FIG. 4 is an enlarged view of the dashed line portion B in FIG. 3, showing the basic unit of the stent according to the present embodiment.
  • FIG. 2 is an enlarged schematic perspective view of a portion of the stent according to the present embodiment in a state crimped to a balloon
  • 6A is an orthogonal cross-sectional view of a portion of the stent in the direction indicated by arrows 6A-6A in FIG. 5;
  • the longitudinal direction of the cylindrical stent 100 formed by struts, which are linear structural elements, is the longitudinal direction of the stent 100.
  • FIG. X is simply referred to as the "longitudinal direction”.
  • the circumferential direction around the long axis of the stent 100 (annular body 10) shown in FIG. 2 is simply referred to as the "circumferential direction.”
  • the radial direction of the stent 100 (annular body 10) is simply referred to as "radial direction”.
  • distal side the side where the medical device is inserted into the living body
  • proximal side the side opposite to the distal side where the medical device is operated by the operator
  • the distal side is indicated by an arrow X1 in the drawing
  • the proximal side is indicated by an arrow X2 in the drawing.
  • the stent 100 is used to treat constrictions and obstructions in blood vessels, bile ducts, trachea, esophagus, urethra, or other body lumens.
  • the stent 100 is a so-called balloon-expandable stent that is attached to the balloon 220 in a crimped state, delivered to the lesion site, and then expanded and retained at the lesion site.
  • a stent delivery system 300 includes a stent 100 and a balloon catheter 200, as shown in FIG.
  • the balloon catheter 200 is used to deliver the stent 100 in a contracted state to the lesion site, expand it and leave it in the lesion site.
  • the balloon catheter 200 includes an elongated catheter main body 210 , a balloon 220 provided at the distal end of the catheter main body 210 , and a hub 230 fixed to the proximal end of the catheter main body 210 .
  • the catheter main body 210 includes an outer tube and an inner tube arranged inside the outer tube.
  • An expansion lumen through which an expansion fluid for expanding the balloon 220 flows is formed inside the outer tube.
  • the distal end of the outer tube is fixed to the proximal end of balloon 220 .
  • the proximal end of the outer tube is fixed to hub 230 .
  • a guide wire lumen into which a guide wire is inserted is formed inside the inner tube.
  • the distal end of the inner tube passes through the inside of the balloon 220 and is open on the distal side of the balloon 220 .
  • the proximal end of the inner tube penetrates the side wall of the outer tube on the proximal side of the balloon 220 and is fixed to the outer tube.
  • the constituent material of the catheter main body 210 is preferably a material having a certain degree of flexibility, and examples thereof include polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or two of these.
  • examples include polyolefins such as mixtures of the above, thermoplastic resins such as polyvinyl chloride resins, polyamides, polyamide elastomers, polyesters, polyester elastomers, polyurethanes, fluororesins, silicone rubbers, and latex rubbers.
  • the balloon 220 is, for example, a member that expands the narrowed portion by expanding inside the narrowed portion.
  • the distal end side of the balloon 220 is fixed to the outer wall surface of the inner tube.
  • the proximal end side of the balloon 220 is fixed to the outer wall surface of the distal end portion of the outer tube. Therefore, the inside of the balloon 220 communicates with the expansion lumen formed in the outer tube.
  • the balloon 220 is capable of receiving inflation fluid from the proximal opening 231 via the inflation lumen.
  • the balloon 220 is expanded by the inflow of the expansion fluid, and is contracted and folded by discharging the expansion fluid.
  • the constituent material of the balloon 220 is preferably a flexible material that expands and contracts with the inflow and outflow of the expansion fluid.
  • examples include polyolefin, crosslinked polyolefin, polyester, polyester elastomer, polyvinyl chloride, polyurethane, polyurethane elastomer, Polymeric materials such as polyphenylene sulfide, polyamide, polyamide elastomer, fluororesin, silicone rubber, latex rubber, and the like.
  • the constituent material of the balloon 220 is not limited to the form in which the above polymer material is used alone, and a film obtained by appropriately laminating the above polymer materials may be applied.
  • the expansion fluid may be gas or liquid, and examples thereof include gases such as helium gas, CO2 gas, and O2 gas, and liquids such as physiological saline and X-ray contrast medium.
  • the hub 230 has a proximal opening 231 that communicates with the expansion lumen of the outer tube.
  • Proximal opening 231 functions as a port for inflow and outflow of dilation fluid.
  • the constituent material of the hub 230 is not particularly limited, but examples include thermoplastic resins such as polyethylene, polyurethane, polyester, polypropylene, polycarbonate, polyamide, polysulfone, polyarylate, and methacrylate-butylene-styrene copolymer.
  • thermoplastic resins such as polyethylene, polyurethane, polyester, polypropylene, polycarbonate, polyamide, polysulfone, polyarylate, and methacrylate-butylene-styrene copolymer.
  • FIG. 2-4 show stent 100 prior to being crimped to balloon 220
  • FIGS. 5 and 6 show stent 100 crimped to balloon 220.
  • FIG. 2-4 show stent 100 prior to being crimped to balloon 220
  • FIGS. 5 and 6 show stent 100 crimped to balloon 220.
  • the stent 100 has a cylindrical shape in which a plurality of annular bodies 10 are arranged in the longitudinal direction. Each annular body 10 is arranged with the phases in the circumferential direction aligned (in the same phase).
  • the stent 100 has a plurality of link portions 20A, 20B connecting annular bodies 10 adjacent in the longitudinal direction.
  • one annular body 10 includes four basic units 30 arranged in the circumferential direction.
  • each basic unit 30 is called a first basic unit 30A, a second basic unit 30B, a third basic unit 30C, and a fourth basic unit 30D in order along the circumferential direction.
  • the four basic units 30 are composed of struts that are zigzag folded back along the circumferential direction.
  • the basic unit 30 includes an axis-parallel linear portion 31a, a first small inclined linear portion 32a, a second small inclined linear portion 32b, a large inclined linear portion 33, and a first It has a small curved portion 34a, a first large curved portion 35a, a second large curved portion 35b, and a second small curved portion 34b.
  • the detailed structure of the first basic unit 30A among the four basic units 30 will be described below as an example.
  • the axis-parallel line portion 31a has a proximal end and a distal end and extends parallel to the longitudinal direction.
  • the first small inclined linear portion 32a has a proximal end and a distal end, and extends obliquely with respect to the longitudinal direction.
  • the second small-slanted linear portion 32b has a base end and a tip, and extends obliquely with respect to the longitudinal direction.
  • the large inclined linear portion 33 has a base end and a distal end, and is arranged between the first small inclined linear portion 32a and the second small inclined linear portion 32b.
  • the first small curved portion 34a connects the tip of the axis-parallel linear portion 31a and the tip of the first small inclined linear portion 32a.
  • the first large curved portion 35a connects the base end of the first small slanted linear portion 32a and the base end of the large slanted linear portion 33 .
  • the second large curved portion 35b connects the tip of the large inclined linear portion 33 and the tip of the second small inclined linear portion 32b.
  • the second small curved portion 34b is connected to the proximal end of the second small inclined linear portion 32b.
  • the second small curved portion 34b connects the base end of the second small inclined linear portion 32b to the base end of the axis-parallel linear portion 31b of the second basic unit 30B adjacent to the first basic unit 30A.
  • the tip of the first small inclined linear portion 32a is formed with a first bent portion 36a that protrudes toward the axis-parallel linear portion 31a in the first basic unit 30A.
  • the first bent portion 36a can be formed, for example, in a convex shape gently curved toward the axis-parallel linear portion 31a.
  • the specific shape of the first bent portion 36a is not limited as long as it protrudes toward the axis-parallel linear portion 31a.
  • the first bent portion 36a may have a convex shape or a rectangular convex shape projecting at an acute angle toward the axis-parallel linear portion 31a.
  • a second basic unit 30B (another basic unit) adjacent to the first basic unit 30A (one basic unit) in the circumferential direction is provided.
  • a second bent portion 36b is formed so as to protrude toward the axis-parallel linear portion 31b.
  • the second bent portion 36b can be formed, for example, in a convex shape gently curved toward the axis-parallel linear portion 31b.
  • the specific shape of the second bent portion 36b is not particularly limited, similarly to the first bent portion 36a.
  • the stent 100 has nine annular bodies 10, as shown in FIG.
  • each of the nine annular bodies 10 includes a first annular body 10A, a second annular body 10B, a third annular body 10C, and a fourth annular body in order from the proximal side to the distal side in the longitudinal direction.
  • 10D fifth annular body 10E, sixth annular body 10F, seventh annular body 10G, eighth annular body 10H and ninth annular body 10I.
  • Two annular bodies 10 adjacent in the longitudinal direction are connected via two link portions 20A and 20B.
  • the second small curved portion 34b is connected via one link portion 20A.
  • first small curved portion 34a of the fourth basic unit 30D of the first annular body 10A and the second small curved portion 34b of the third basic unit 30C of the second annular body 10B are connected via another link portion 20B. is doing.
  • first annular body 10A and the second annular body 10B are connected by two link portions 20A and 20B that face each other in the radial direction on an axis-perpendicular cross-section perpendicular to the longitudinal direction.
  • the one link portion 20A and the other link portion 20B are arranged at an angle of 180 degrees in the circumferential direction on the axis-perpendicular cross-section of the stent 100 .
  • the angular difference in the circumferential direction provided between the link portions 20A and 20B is the same for the link portions other than the link portion connecting the first annular body 10A and the second annular body 10B.
  • the first small curved portion 34a of the first basic unit 30A of the second annular body 10B and the second small curved portion 34b of the fourth basic unit 30D of the third annular body 10C form one link. It is connected via the part 20A.
  • first small curved portion 34a of the third basic unit 30C of the second annular body 10B and the second small curved portion 34b of the second basic unit 30B of the third annular body 10C are connected via another link portion 20B. Connected.
  • the link portions 20A and 20B are circumferentially connected as the annular body 10 to be connected is displaced from the base end side to the tip end side along the long axis direction. Alternating 90 degrees in each direction. Therefore, the circumferential positions of the link portions 20A and 20B connecting the first ring-shaped body 10A and the second ring-shaped body 10B are different from those of the link portions 20A and 20B connecting the third ring-shaped body 10C and the fourth ring-shaped body 10D. It becomes substantially the same as the position in the circumferential direction.
  • the circumferential positions of the link portions 20A and 20B connecting the second annular body 10B and the third annular body 10C are the same as those of the link portions 20A and 20B connecting the fourth annular body 10D and the fifth annular body 10E. is substantially the same as the position in the circumferential direction of
  • the link portions 20A and 20B are arranged as described above, as shown in FIG.
  • the axis-parallel linear portions 31a and 31b of the four basic units 30A, 30B, 30C, and 30D arranged in the circumferential direction are connected to adjacent other annular bodies 10.
  • the annular bodies 10A and 10I located at both ends in the long axis direction have axis-parallel linear portions 31a and 31b that are not connected to other annular bodies 10 adjacent in the long axis direction. For example, as shown in FIG.
  • the axis-parallel line portion 31a of the first basic unit 30A and the axis-parallel line portion 31a of the third basic unit 30C are adjacent to each other in the longitudinal direction. It is not connected with the annular body 10B.
  • the first gap g1 formed between the axis-parallel linear portion 31a and the first small inclined linear portion 32a, the large inclined linear portion 33 and the first gap g1 are formed. It has a second gap g2 formed between it and the one small inclined linear portion 32a.
  • the angle range ( ⁇ 1) and the angle range ( ⁇ 1) and Angular range ( ⁇ 2) is used.
  • ⁇ 1 is defined on the axis-perpendicular cross-section at the base end position of the axis-parallel linear portion 31a shown in FIG. shall be defined.
  • the angle range ( ⁇ 1) of the first gap g1 is more preferably, for example, 2° or more and 7° or less.
  • the angle range ( ⁇ 2) of the second gap g2 is more preferably 15° or more and 30° or less, for example.
  • the second small inclined linear portion 32b of the first basic unit 30A and the axis of the second basic unit 30B adjacent to the first basic unit 30A in the circumferential direction A gap g1 is also formed between it and the parallel linear portion 31b.
  • This gap g1 has substantially the same circumferential interval (size) as the gap g1 formed between the axis-parallel linear portion 31a and the first small inclined linear portion 32a of the first basic unit 30A.
  • a gap g2 is also formed between the large inclined linear portion 33 and the second small inclined linear portion 32b of the first basic unit 30A.
  • This gap g2 has substantially the same circumferential interval (size) as the gap g2 formed between the large inclined linear portion 33 and the first small inclined linear portion 32a of the first basic unit 30A.
  • Materials forming each part of the stent 100 include, for example, stainless steel, cobalt-based alloys such as chromium alloys (eg, CoCrWNi alloys), platinum-chromium alloys ( metal materials such as PtFeCrNi alloy), nickel-titanium alloys, and raw materials such as polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polycaprolactone, lactic acid-caprolactone copolymer, glycolic acid-caprolactone copolymer. Examples include degradable polymeric materials.
  • cobalt-based alloys such as chromium alloys (eg, CoCrWNi alloys), platinum-chromium alloys ( metal materials such as PtFeCrNi alloy), nickel-titanium alloys
  • raw materials such as polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polycaprolactone, lactic acid-caprolactone copo
  • the stent 100 can be manufactured, for example, by irradiating a tubular member (hollow pipe member) made of the above material with a laser to form a desired stent design.
  • the stent 100 may be manufactured by a method such as etching, and the manufacturing method is not limited to the method using a laser.
  • the outer surface of the stent 100 may be provided with a coating containing a drug.
  • the covering is preferably formed on the outer surface facing the inner peripheral surface of the biological lumen, but is not limited to this.
  • the covering may contain a drug capable of suppressing neointimal proliferation and a drug carrier for carrying the drug.
  • the covering may be composed only of the drug.
  • the drug contained in the coating is, for example, at least one selected from the group consisting of sirolimus, everolimus, zotarolimus, paclitaxel, and the like.
  • the constituent material of the drug carrier is not particularly limited, but biodegradable materials are preferred.
  • the 1st basic unit 30A of the 2nd annular body 10B is made into an example, and is demonstrated.
  • the angle ratio (a/b) and length ratio (t/s1 and t/s2) described below are applied to at least one basic unit 30 included in the annular body 10. As long as this is the case, the effects of the present invention, which will be described later, can be suitably exhibited.
  • the first angle (a), the second angle (b), etc. are parameters that change depending on the outer diameter of the stent.
  • Each dimension example described below is the value at the outer diameter before the stent 100 is crimped to the balloon 220 (outer diameter of the tubular member from which the stent 100 is based), here the value at the stent outer diameter of 2 mm. .
  • the outer diameter can be obtained from information described in pharmaceutical application documents and the like.
  • the first angle (a) is the angle formed between the large inclined linear portion 33 and the first small inclined linear portion 32a or between the large inclined linear portion 33 and the second small inclined linear portion 32b. defined as Hereinafter, this angle is simply referred to as "first angle (a)".
  • the first angle (a) is defined by an imaginary straight line H1 connecting the innermost curved point p1 of the first small curved portion 34a and the outermost curved point p2 of the first large curved portion 35a, and the outermost curved portion of the first large curved portion 35a.
  • the angle formed by the imaginary straight line H2 connecting the point p2 and the outermost bending point p3 of the second large bending portion 35b, or the innermost bending point p4 of the second small bending portion 34b and the outermost bending point p3 of the second large bending portion 35b can be defined by an angle formed by a virtual straight line H3 and a virtual straight line H2 connecting
  • the second angle (b) is the angle formed between the axis-parallel linear portion 31a and the first small-slanted linear portion 32a or between the axial-parallel linear portion 31b and the second small-slanted linear portion 32b. defined as Hereinafter, this angle is simply referred to as "second angle (b)".
  • the second angle (b) can be defined by the angle formed by the axis-parallel linear portion 31a and the virtual straight line H1, or by the angle formed by the axial-parallel linear portion 31b and the virtual straight line H3. Since the axis-parallel linear portions 31a and 31b are parallel to the central axis X, either the axis-parallel linear portion 31a or the axis-parallel linear portion 31b is used when defining the second angle (b). good too.
  • the first angle formed between the large inclined linear portion 33 and the first small inclined linear portion 32a and the first angle formed between the large inclined linear portion 33 and the second small inclined linear portion 32b are approximately
  • the second angle formed between the axis-parallel linear portion 31a and the first small inclined linear portion 32a and the second angle formed between the axial-parallel linear portion 31b and the second small inclined linear portion 32b are the same. are also substantially the same.
  • the length (s1) of the first small-slanted linear portion 32a and the length (s2) of the second small-slanted linear portion 32b, which will be described later, are also substantially the same.
  • the stent 100 can be formed such that the angle ratio (a/b) obtained by dividing the first angle (a) by the second angle (b) is 2.17 or more and 2.96 or less. More preferably, the stent 100 is formed with an angular ratio (a/b) of 2.37 or more and 2.62 or less.
  • the first angle (a) is preferably 60.10° or more and 62.74° or less, more preferably 61.08° or more and 61.97° or less.
  • the second angle (b) is preferably 20.30° or more and 28.94° or less, more preferably 23.28° or more and 26.16° or less.
  • the length (t) of the large inclined linear portion 33 is divided by the length (s1) of the first small inclined linear portion 32a or the length (s2) of the second small inclined linear portion 32b.
  • the length ratio (t/s1 or t/s2) can be 1.24 or more and 1.51 or less. More preferably, the stent 100 is formed with a length ratio (t/s1 or t/s2) of 1.33 or more and 1.42 or less.
  • the length (t) of the highly inclined linear portion 33 can be defined by the length of the imaginary straight line H2. Also, the length (s1) of the first small inclined linear portion 32a can be defined by the length of the imaginary straight line H1. Also, the length (s2) of the second small slope linear portion 32b can be defined by the length of the imaginary straight line H3.
  • the length (t) of the large inclined linear portion 33 is, for example, preferably 0.995 mm or more and 1.313 mm or less, more preferably 1.064 mm or more and 1.234 mm or less.
  • the length (s1) of the first small inclined linear portion 32a and the length (s2) of the second small inclined linear portion 32b are, for example, 0.800 mm or more and 0.870 mm or less (measured value in the embodiment: 0 .832 mm only) is preferable, and 0.810 mm or more and 0.850 mm or less is more preferable.
  • the length (L) of one link portion 20A is the length (s1) of the first small inclined linear portion 32a or the length of the second small inclined linear portion 32b.
  • the link length ratio (L/s1 or L/s2) divided by the length (s2) can be 0.35 or more and 0.44 or less. More preferably, the stent 100 is formed with a link length ratio (L/s1 or L/s2) of 0.35 or more and 0.38 or less.
  • the extending direction of the link portion 20A is the direction from the innermost curved point p1 of the first small curved portion 34a to the innermost curved point p4 of the second small curved portion 34b.
  • the length L of the link portion 20A is defined as the distance parallel to the longitudinal direction from one end to the other end in the extending direction of the link portion 20A, as shown in FIG.
  • the length of the link portion 20A is, for example, preferably 0.20 mm or more and 0.35 mm or less (measured value in the example: only 0.295 mm is described), and more preferably 0.22 mm or more and 0.30 mm or less.
  • the first bent portion 36a formed at the tip of the first small inclined linear portion 32a can be formed, for example, at a position 0.1825 mm away from the innermost bending point p1 of the first small curved portion 34a.
  • the distance between the first bent portion 36a and the innermost curved point p1 is the length of the longitudinal direction between the position of the first bent portion 36a that protrudes most toward the axis-parallel linear portion 31a and the innermost curved point p1. can be defined by length.
  • the second bent portion 36b formed at the proximal end of the second small inclined linear portion 32b can be formed, for example, at a position 0.1825 mm away from the innermost bending point p4 of the second small curved portion 34b.
  • the distance between the second bent portion 36b and the innermost curved point p4 is the length of the longitudinal direction between the position of the second bent portion 36b that protrudes most toward the axis-parallel linear portion 31b and the innermost curved point p4. can be defined by length.
  • the length (total length) along the longitudinal direction of the stent 100 can be set to, for example, 3.9 mm to 51.6 mm.
  • the profile of the stent 100 crimped to the balloon 220 can be, for example, 0.80 mm to 1.26 mm when the outer diameter of the tubular member forming the stent 100 is 2.0 mm. More preferably, stent 100 has a profile of 1.0 mm.
  • the angle ratio (a/b) is 2.17 or more and 2.96 or less
  • the length ratio (t/s1 or t/s2) is 1.24 or more and 1.51 or less. It is Therefore, the following effects are obtained.
  • the first gap g1 Since the relationship in which the first gap g1 is smaller than the second gap g2 is maintained even when the stent 100 is reduced in diameter by a large amount, when the stent 100 is press-crimped to the balloon 220, the first gap g1 The balloon 220 is less likely to protrude from the second gap g2, and the balloon 220 is more likely to protrude from the second gap g2. Therefore, when the stent delivery system 300 is mass-produced, even if the profile is small, variations in the number of gaps in the stent 100 at which the balloon 220 protrudes are reduced, and the stent retention force is stabilized.
  • the first loop 10A (one loop) and the second loop 10B (the other loop) are perpendicular to the longitudinal direction within the gap between the respective loops 10A, 10B. They are connected by two link portions 20A and 20B that face each other in the radial direction on a cross section perpendicular to the axis (see FIG. 2).
  • the circumferential phase of the link portions 20A and 20B arranged in one gap and the circumferential direction phase of the link portions 20A and 20B arranged in another gap adjacent in the longitudinal direction are out of phase by 90°. .
  • the positions in the circumferential direction where the link portions 20A and 20B are placed are distributed over the entire length of the stent 100, and the flexibility of the stent 100 at the circumferential positions is made uniform.
  • the relationship that the first gap g1 is smaller than the second gap g2 is maintained even when the diameter reduction amount of the stent 100 is large.
  • a first bent portion 36a is formed at the distal end of the first small inclined linear portion 32a so as to protrude toward the axis-parallel linear portion 31a in the first basic unit 30A.
  • a second bent portion 36b is formed at the proximal end of the second small inclined linear portion 32b so as to protrude toward the axis-parallel linear portion 31b in the second basic unit 30B.
  • the concave portion of the first small curved portion 34a located near the distal end of the first small inclined linear portion 32a and the inner curved portion located near the proximal end of the second small inclined linear portion 32b Since the arc length of the inner curved portion of the second small curved portion 34b is longer, stress concentration in these portions is reduced, and the risk of stent fracture occurring in the first small curved portion 34a and the second small curved portion 34b is reduced. be.
  • the link length obtained by dividing the length (L) of the link portions 20A and 20B by the length (s1) of the first small inclined linear portion 32a or the length (s2) of the second small inclined linear portion 32b The thickness ratio (L/s1 or L/s2) is 0.35 or more and 0.44 or less.
  • the first large curved portion 35a of one annular body 10 for example, the second annular body 10B
  • other adjacent annular bodies 10 It is possible to prevent the contact of the first small curved portion 34a of the annular body (eg, the first annular body 10A) (see FIG. 5).
  • the risk of the balloon 220 being excessively sandwiched between the first large curved portion 35a of one annular body 10 and the first small curved portion 34a of the other annular body 10 to cause pinholes in the balloon 220 is reduced. be done.
  • the angle ratio (a/b) between the basic units 30A and 30C in one annular body 10 and the basic units 30B and 30D in another adjacent annular body 10 is 2.17. 2.96 or less, and the length ratio (t/s1 or t/s2) is 1.24 or more and 1.51 or less.
  • the circumferential positions of the basic units 30A and 30C in one annular body 10 are shifted by 90° from the circumferential positions of the basic units 30B and 30D in the other adjacent annular body 10 .
  • all the basic units 30A, 30B, 30C, and 30D have an angle ratio (a/b) of 2.17 or more and 2.96 or less, and a length ratio (t/s1 or t/s2) of 1.5. 24 or more and 1.51 or less.
  • the variation in the number of gaps in the stent 100 at which the balloon 220 protrudes further decreases among individuals, and the stent retention force is stabilized.
  • the length ratio (t/s1 or t/s2) of the stent 100 according to the present embodiment is 1.24 or more and 1.51 or less. s2) is preferably large.
  • the minimum line width of the link portion and the maximum line width of the link portion are the minimum and maximum values in the line width direction within the range in the extending direction of the link portion.
  • the line width direction of the link portion is a direction perpendicular to the extending direction of the link portion.
  • the position of the bent portion is the length in the longitudinal direction between the position where the first bent portion 36a protrudes most toward the axis-parallel linear portion 31a and the innermost bending point p1 of the first small curved portion 34a, or the second It is defined as the length in the longitudinal direction between the position of the bending portion 36b that protrudes most toward the axially parallel linear portion 31b and the innermost bending point p4 of the second small curved portion 34b.
  • the second angle (b) is large, that is, if the angle of the small slant linear portions 32a and 32b with respect to the central axis X is large, the external force received by the small slant linear portions 32a and 32b will be The contribution in the line width direction when decomposed into the extending direction of 32b and the line width direction is reduced. Since the external force in the line width direction component promotes the decrease of the second angle (b), the first angle (a) is relatively large with respect to the second angle (b), that is, the angle ratio (a/b) is The smaller the value, the less likely the second angle (b) will decrease. Therefore, in Comparative Example 2, ⁇ 1 is assumed to be a relatively large value of 9.5°.
  • the balloon 220 can protrude from the first gap g1. This suggests that forming the angle ratio (a/b) at 2.17 or more as shown in Example 5 promotes the reduction of the second angle (b) at an early stage when diameter reduction is started. be.
  • the axial-parallel linear portions 31a, 31b and the small-slanted linear portions 32a, 32b abut against each other, the axial-parallel linear portions 31a, 31b absorb the external force in the tangential direction of the circumference of the cross section of the stent, which is caused by the diameter reduction, into the small-slanted linear portions. It is received from the side of the large curved portions 35a, 35b of the portions 32a, 32b. As a result, the axis-parallel linear portions 31 a and 31 b receive a moment in a direction parallel to the extending direction of the large inclined linear portion 33 .
  • the link portions 20A and 20B connected to the axis-parallel portions 31a and 31b have the effect of supporting the axis-parallel portions 31a and 31b so that they do not rotate on the outer peripheral surface of the stent 100.
  • the axial parallel linear portions 31a and 31b that are not connected to the link portions 20A and 20B rotate more easily than the axial parallel linear portions 31a and 31b that are connected to the link portions 20A and 20B.
  • the length ratio (t/s1 or t/s2) is large, but this moment increases as the length of the large inclined linear portion 33 increases.
  • the parallel linear portions 31a and 31b become easier to rotate.
  • ⁇ 2 is assumed to be a relatively small value of 5.2°. At this value of ⁇ 2, the balloon 220 can protrude from the second gap g2. This suggests that the length ratio (t/s1 or t/s2) of 1.51 or less as shown in Example 4 can prevent the first angle (a) from decreasing.
  • the stents 100 of Examples 1 to 5 are formed with an angle ratio (a/b) of 2.17 or more and 2.96 or less, and a length ratio (t/s1 or t/s2) of 1.24. 1.51 or less.
  • a clear difference was confirmed between the circumferential spacing of the first gap g1 and the circumferential spacing of the second gap g2 after diameter reduction.
  • the angle range ( ⁇ 1) of the first gap g1 is 2.5° to 5.2°
  • the angle range ( ⁇ 2) of the second gap g2 is 2.5° to 5.2°. was 18.0° to 27.7°.
  • the angle range ( ⁇ 2) of the second gap g2 is formed sufficiently larger than the angle range ( ⁇ 1) of the first gap g1.
  • the balloon 220 is less likely to protrude from the second gap g2, and the balloon 220 is more likely to protrude from the second gap g2. Therefore, when the stent delivery system 300 is mass-produced using the stent 100, the number of inter-individual variability in the number of gaps in which balloon protrusion occurs in the stent is reduced, and the stent retention force is stabilized.
  • the angle ratio (a/b) is 2.17 or more and 2.96 or less
  • the length ratio (t/s1 or t/s2) is 1.24 or more and 1.51 or less.
  • the link length ratio (L/s1 or L/s2) is 0.35 or more, the first large curved portion 35a and the first small curved portion of the adjacent annular body 10 It was confirmed that the abutment of 34a could be suitably prevented, and the risk of pinhole occurrence could be reduced.
  • 10 toroids 10A first annular body, 10B second annular body, 10C third annular body, 10D fourth annular body, 10E fifth annular body, 10F sixth annular body, 10G 7th annulus, 10H eighth annular body, 10I ninth annulus, 20A one link part (link part), 20B another link part (link part), 30 basic units, 30A first basic unit, 30B second basic unit, 30C third basic unit, 30D fourth basic unit, 31a axis-parallel linear portion, 31b axis-parallel linear portion, 32a first small inclined linear portion, 32b second small inclined linear portion, 33 large inclined linear part, 34a first small curved portion, 34b second small curved portion, 35a first large curved portion, 35b second large curved portion, 36a first bent portion, 36b second bend, 100 stents, 200 balloon catheter, 220 balloon, 300 stent delivery system, g1 first gap; g2 second gap, a first angle, b second angle, t the length of the linear portion with

Abstract

[Problem] To provide a stent that, even with a reduced profile, affords a stable stent-retaining force with respect to a balloon due to the generation of a distinct difference in strut spacing in the circumferential direction. [Solution] A stent 100 is configured such that, in at least one of four basic units 30A, 30B, 30C, and 30D included in one annular body 10, an angle ratio (a/b), which is obtained by dividing a first angle (a) formed between a major oblique linear section 33 and a first minor oblique linear section 32a, or between the major oblique linear section 33 and a second minor oblique linear section 32b, by a second angle formed between an axial parallel linear section 31a and the first minor oblique linear section, or between the axial parallel linear section and the second minor oblique linear section, satisfies the relationship of 2.17-2.96, and a length ratio (t/s1 or t/s2), which is obtained by dividing a length (t) of the major oblique linear section by a length (s1) of the first minor oblique linear section or by a length (s2) of the second minor oblique linear section, satisfies the relationship of 1.24-1.51.

Description

ステントstent
 本発明は、ステントに関する。 The present invention relates to stents.
 ステントは、血管などの生体管腔が狭窄もしくは閉塞することによって生じる様々な疾患を治療するために、ステントデリバリーシステムによって生体管腔内の病変部まで送達された後に留置され、狭窄部や閉塞部などの病変部を拡張し、内腔を確保する医療用具である。ステントは、半径方向に拡径及び縮径可能な隙間を有する円筒形状体となるように、線状の構成要素であるストラットによって形成される。 In order to treat various diseases caused by stenosis or blockage of biological lumens such as blood vessels, stents are delivered to lesions in biological lumens by a stent delivery system and left in place. It is a medical device that expands lesions such as ulcers and secures the lumen. The stent is formed by linear components, struts, into a cylindrical body with gaps that can be radially expanded and contracted.
 ステントは、拡張方法によって、バルーン拡張型と自己拡張型とに区分けされる。このうち、バルーン拡張型のステントは、クリンプされた状態でバルーンカテーテルに装着され、目的の病変部まで送達(デリバリー)した後、生体管腔内に留置される。ステントは、デリバリー時のバルーンからの脱落を防ぐ必要がある。そのため、ステントは、クリンプした際にストラットの間の隙間からバルーンがステント内面よりも外側に突出されるように、バルーンを低圧で膨張させながらクリンプ(加圧クリンプ)される。加圧クリンプの前には、バルーンがストラットの隙間から突出されやすくなるように、バルーンの外表面に皺を形成させるための前拡張がバルーンに対して行われる。 Stents are classified into balloon-expandable and self-expandable according to the expansion method. Among them, the balloon-expandable stent is attached to a balloon catheter in a crimped state, delivered to a target lesion, and left in a living body lumen. Stents must be prevented from falling out of the balloon during delivery. Therefore, the stent is crimped (pressure crimped) while inflating the balloon at a low pressure so that the balloon protrudes outside the inner surface of the stent through the gaps between the struts when crimped. Prior to pressure crimping, the balloon is pre-expanded to form wrinkles on the outer surface of the balloon to facilitate ejection of the balloon through the interstices of the struts.
 ステントに求められる特性としては、例えば、拡張前後においてステントの軸方向の長さの変化が抑えられること、生体管腔の形状に柔軟に追従すること、末梢到達性が得られるようにデリバリー中のステント装着部のカテーテル外径(プロファイル)が小さいこと等が挙げられる。バルーン拡張型ステントの場合は、上記の各特性に加えて、デリバリー中にステントがバルーンから脱落しないように、ステントとバルーンの間の保持力(ステント保持力)が高い、という特性も求められる。 The characteristics required for a stent include, for example, suppressing changes in the axial length of the stent before and after expansion, flexibly following the shape of the biological lumen, and achieving peripheral reach during delivery. For example, the outer diameter (profile) of the stent-mounted portion of the catheter is small. In the case of a balloon-expandable stent, in addition to the above characteristics, a high retention force between the stent and the balloon (stent retention force) is required so that the stent does not fall off the balloon during delivery.
 しかし、バルーンの前拡張時に生じる皺の形状はランダムであり、加圧クリンプの際にストラットの間の目的とする位置からバルーンを突出させることが難しい。バルーンの突出はステント保持力に影響するため、ステントがクリンプされたステントデリバリーシステムを大量生産した際は、ステント保持力に個体差が生じる。 However, the shape of wrinkles generated during pre-expansion of the balloon is random, and it is difficult to project the balloon from the desired position between the struts during pressure crimping. Since the protrusion of the balloon affects the stent retention force, there will be individual differences in the stent retention force when mass-producing stent delivery systems with crimped stents.
 上記のようなステント保持力の課題を解決し得るステントとして、下記特許文献1に開示されるステントが提案されている。下記特許文献1のステントは、波状環状体を形成するストラットの周方向の間隔が均一ではなく、平行直線状部と第1傾斜直線状部の間隔及び平行直線状部と第2傾斜直線状部の間隔よりも、傾斜曲線状部と第1傾斜直線状部の間隔及び傾斜曲線状部と第2の傾斜直線状部の間隔の方が大きくなるように形成されている。 A stent disclosed in Patent Document 1 below has been proposed as a stent that can solve the problem of stent retention force as described above. In the stent of Patent Document 1 below, the struts forming the wavy annular body are not uniformly spaced in the circumferential direction. The interval between the inclined curved portion and the first inclined linear portion and the interval between the inclined curved portion and the second inclined linear portion are larger than the interval of .
 上記のように、特許文献1のステントには、ストラットの周方向の間隔が小さい隙間と大きい隙間が形成される。ストラットの間隔が小さい隙間ではバルーンの突出が起きにくくなる一方、ストラットの間隔が大きい隙間ではバルーンの突出が起きやすくなる。このため、特許文献1のステントは、周方向のストラットの間隔が均一なステントよりも、大量生産した際のバルーンの突出が起きる隙間の数の個体間のバラつきが減少し、ステント保持力の個体差が小さくなる。従って、特許文献1のステントは安定したステント保持力を発揮することが可能になる。 As described above, in the stent of Patent Document 1, small gaps and large gaps are formed in the circumferential direction of the struts. In the gap where the strut spacing is small, the balloon is less likely to protrude, while in the gap where the strut spacing is large, the balloon tends to protrude. For this reason, the stent of Patent Document 1 has less variation in the number of gaps that cause balloon protrusion when mass-produced than a stent with uniform strut intervals in the circumferential direction, and the stent retention force is reduced. the difference becomes smaller. Therefore, the stent of Patent Document 1 can exhibit a stable stent holding force.
特開2008-86463号公報JP 2008-86463 A
 前述したように、ステントは、末梢到達性の向上を図るために、ステントのプロファイルの小径化が望まれるが、プロファイルが小さくなるほど、クリンプ前のステントが本来持つステントデザインの特徴を損なうような過度な変形が生じ得る。特許文献1のステントについても、同様の可能性があった。 As described above, a stent with a smaller profile is desired in order to improve peripheral reachability. deformation can occur. The stent of Patent Document 1 also has the same possibility.
 本発明の一実施形態は、上述の事情に鑑みてなされたものであり、プロファイルを小さくしても、ストラットの周方向の間隔に明瞭な差が生じて、バルーンに対するステント保持力が安定化するステントを提供することを目的とする。 One embodiment of the present invention has been made in view of the above-mentioned circumstances, and even if the profile is reduced, a clear difference in the circumferential spacing of the struts is generated, and the stent retention force to the balloon is stabilized. The purpose is to provide a stent.
 本実施形態に係るステントは、長軸方向に延びる円筒形状に形作られたステントであって、基端と先端を有し、前記長軸方向と平行に延びる軸平行線状部と、基端と先端を有し、前記長軸方向に対して傾いて延びる第1小傾斜線状部と、基端と先端を有し、前記長軸方向に対して傾いて延びる第2小傾斜線状部と、基端と先端を有し、前記長軸方向に対して傾いて延びるとともに前記第1小傾斜線状部と前記第2小傾斜線状部の間に配置された大傾斜線状部と、前記軸平行線状部の先端と前記第1小傾斜線状部の先端を接続する第1小湾曲部と、前記第1小傾斜線状部の基端と前記大傾斜線状部の基端を接続する第1大湾曲部と、前記大傾斜線状部の先端と前記第2小傾斜線状部の先端を接続する第2大湾曲部と、前記第2小傾斜線状部の基端に接続された第2小湾曲部と、を有する基本ユニットが前記長軸方向周りの周方向に4つ配列されており、一の前記基本ユニット内の前記第2小湾曲部と、前記一の基本ユニットと前記周方向において隣接する他の前記基本ユニット内の前記軸平行線状部の基端と、を接続することで形成される環状体が、前記長軸方向において同位相で複数配列されており、一の前記環状体の前記第1小湾曲部又は前記第2小湾曲部と、前記一の環状体と前記長軸方向において隣接する他の前記環状体の前記第2小湾曲部又は前記第1小湾曲部と、を接続するリンク部を少なくとも一つ以上有し、1つの前記環状体に含まれる4つの前記基本ユニットの少なくとも一つにおいて、前記大傾斜線状部と前記第1小傾斜線状部の間、又は前記大傾斜線状部と前記第2小傾斜線状部の間の成す第1角度を、前記軸平行線状部と前記第1小傾斜線状部の間、又は前記軸平行線状部と前記第2小傾斜線状部の間の成す第2角度で除した角度比が2.17以上2.96以下の関係を満たし、かつ、前記大傾斜線状部の長さを、前記第1小傾斜線状部の長さ又は前記第2小傾斜線状部の長さで除した長さ比が1.24以上1.51以下の関係を満たす。 The stent according to this embodiment is a stent formed in a cylindrical shape extending in the longitudinal direction, having a proximal end and a distal end, an axis-parallel linear portion extending parallel to the longitudinal direction, and a proximal end. A first slightly inclined linear portion having a tip end and extending obliquely with respect to the major axis direction, and a second small inclined linear portion having a base end and a tip end and extending obliquely with respect to the major axis direction. a large inclined linear portion having a proximal end and a distal end, extending obliquely with respect to the longitudinal direction and disposed between the first small inclined linear portion and the second small inclined linear portion; a first small curved portion connecting the distal end of the axis-parallel linear portion and the distal end of the first small inclined linear portion; a base end of the first small inclined linear portion and a proximal end of the large inclined linear portion; a second large curved portion connecting the distal end of the large inclined linear portion and the distal end of the second small inclined linear portion; and the proximal end of the second small inclined linear portion. are arranged in the circumferential direction around the longitudinal direction, and the second small curved portion in one of the basic units and the one of the A plurality of annular bodies formed by connecting a basic unit to the proximal end of the axially parallel linear portion in the other basic unit adjacent in the circumferential direction are arranged in the same phase in the longitudinal direction. The first small curved portion or the second small curved portion of one of the annular bodies, and the second small curved portion of the other annular body adjacent to the one annular body in the longitudinal direction, or At least one of the four basic units included in one annular body has at least one link portion connecting the first small curved portion and the large inclined linear portion and the first linear portion. A first angle formed between the small inclined linear portions or between the large inclined linear portion and the second small inclined linear portion is defined between the axis-parallel linear portion and the first small inclined linear portion. , or an angle ratio obtained by dividing the second angle between the axis-parallel linear portion and the second small-inclined linear portion satisfies a relationship of 2.17 or more and 2.96 or less, and the large-inclined linear portion The length ratio obtained by dividing the length of the portion by the length of the first small-slanted linear portion or the length of the second small-slanted linear portion satisfies the relationship of 1.24 or more and 1.51 or less.
 本発明の一実施形態によれば、プロファイルを小さくしても、ストラットの周方向の間隔に明瞭な差が生じて、バルーンに対するステント保持力が安定化するステントを提供することができる。 According to one embodiment of the present invention, even if the profile is made small, a clear difference occurs in the spacing of the struts in the circumferential direction, making it possible to provide a stent that stabilizes the stent holding force with respect to the balloon.
本実施形態に係るステントデリバリーシステムの概略平面図である。1 is a schematic plan view of a stent delivery system according to this embodiment; FIG. 本実施形態に係るステントの外周の一部を長軸方向に沿って直線状に切断して展開した展開図である。FIG. 2 is a developed view obtained by linearly cutting a portion of the outer circumference of the stent according to the present embodiment along the long axis direction and developing the stent. 図2の破線部Aを拡大して示す図である。It is a figure which expands and shows the broken line part A of FIG. 図3の破線部Bを拡大して示す図であり、本実施形態に係るステントの基本ユニットを示す図である。FIG. 4 is an enlarged view of the dashed line portion B in FIG. 3, showing the basic unit of the stent according to the present embodiment. バルーンにクリンプした状態における本実施形態に係るステントの一部を拡大して示す概観斜視図である。FIG. 2 is an enlarged schematic perspective view of a portion of the stent according to the present embodiment in a state crimped to a balloon; 図5の矢印6A-6Aで示す方向のステントの一部の軸直交断面図である。6A is an orthogonal cross-sectional view of a portion of the stent in the direction indicated by arrows 6A-6A in FIG. 5; FIG.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。ここで示す実施形態は、本発明の技術的思想を具体化するために例示するものであって、本発明を限定するものではない。また、本発明の要旨を逸脱しない範囲で当業者などにより考え得る実施可能な他の形態、実施例及び運用技術などは全て本発明の範囲、要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. The embodiment shown here is an example for embodying the technical idea of the present invention, and does not limit the present invention. In addition, other practicable modes, embodiments, operation techniques, etc. that can be conceived by those skilled in the art without departing from the gist of the present invention are all included in the scope and gist of the present invention, and are described in the scope of claims. included within the scope of the claimed invention and its equivalents.
 さらに、本明細書に添付する図面は、図示と理解のしやすさの便宜上、適宜縮尺、縦横の寸法比、形状などについて、実物から変更し模式的に表現される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Furthermore, the drawings attached to this specification may be represented schematically by appropriately changing the scale, length-to-width ratio, shape, etc. from the actual thing for the convenience of illustration and ease of understanding. and does not limit the interpretation of the present invention.
 本明細書では、線状の構成要素であるストラットによって形成された円筒形状のステント100の長軸方向(ステント100の長手方向である。図2において、二点鎖線で示したステント100の中心軸Xに沿う方向)は、単に「長軸方向」とする。また、図2に示すステント100(環状体10)の長軸周りの周方向(図2において、二点鎖線で示したステント100の中心軸Xに垂直な方向)は、単に「周方向」とし、ステント100(環状体10)の径方向は、単に「径方向」とする。また、生体内に挿入される側を「先端側」とし、先端側と反対側であって術者が医療デバイスを操作する側を「基端側」とする。先端側は図中の矢印X1で示し、基端側は図中の矢印X2で示す。 In this specification, the longitudinal direction of the cylindrical stent 100 formed by struts, which are linear structural elements, is the longitudinal direction of the stent 100. In FIG. X) is simply referred to as the "longitudinal direction". In addition, the circumferential direction around the long axis of the stent 100 (annular body 10) shown in FIG. 2 (the direction perpendicular to the central axis X of the stent 100 indicated by the two-dot chain line in FIG. 2) is simply referred to as the "circumferential direction." , the radial direction of the stent 100 (annular body 10) is simply referred to as "radial direction". In addition, the side where the medical device is inserted into the living body is defined as the "distal side", and the side opposite to the distal side where the medical device is operated by the operator is defined as the "proximal side". The distal side is indicated by an arrow X1 in the drawing, and the proximal side is indicated by an arrow X2 in the drawing.
 なお、以下の説明において、「第1」、「第2」のような序数詞を付して説明する場合は、特に言及しない限り、便宜上用いるものであって何らかの順序を規定するものではない。 It should be noted that, in the following description, when describing with ordinal numbers such as "first" and "second", unless otherwise specified, it is used for convenience and does not prescribe any order.
 本実施形態に係るステント100は、血管、胆管、気管、食道、尿道、又はその他の生体管腔内に生じた狭窄部や閉塞部を治療するために用いられる。ステント100は、クリンプされた状態でバルーン220に装着され、病変部まで送達された後に拡張されて病変部に留置される、いわゆるバルーン拡張型ステントである。 The stent 100 according to this embodiment is used to treat constrictions and obstructions in blood vessels, bile ducts, trachea, esophagus, urethra, or other body lumens. The stent 100 is a so-called balloon-expandable stent that is attached to the balloon 220 in a crimped state, delivered to the lesion site, and then expanded and retained at the lesion site.
 図1に示すように、ステントデリバリーシステム300は、ステント100と、バルーンカテーテル200とを備える。バルーンカテーテル200は、ステント100を収縮した状態で病変部まで送達し、拡張させて病変部に留置するために利用される。 A stent delivery system 300 includes a stent 100 and a balloon catheter 200, as shown in FIG. The balloon catheter 200 is used to deliver the stent 100 in a contracted state to the lesion site, expand it and leave it in the lesion site.
 バルーンカテーテル200は、長尺なカテーテル本体部210と、カテーテル本体部210の先端に設けられるバルーン220と、カテーテル本体部210の基端に固着されるハブ230とを備えている。 The balloon catheter 200 includes an elongated catheter main body 210 , a balloon 220 provided at the distal end of the catheter main body 210 , and a hub 230 fixed to the proximal end of the catheter main body 210 .
 カテーテル本体部210は、外管と、外管の内部に配置される内管とを備えている。 The catheter main body 210 includes an outer tube and an inner tube arranged inside the outer tube.
 外管の内部には、バルーン220を拡張するための拡張用流体が流通する拡張用ルーメンが形成されている。外管の先端部は、バルーン220の基端部に固着されている。外管の基端部は、ハブ230に固定されている。 An expansion lumen through which an expansion fluid for expanding the balloon 220 flows is formed inside the outer tube. The distal end of the outer tube is fixed to the proximal end of balloon 220 . The proximal end of the outer tube is fixed to hub 230 .
 内管の内部には、ガイドワイヤが挿入されるガイドワイヤルーメンが形成されている。内管の先端部は、バルーン220の内部を貫通し、バルーン220よりも先端側で開口している。内管の基端部は、バルーン220よりも基端側で外管の側壁を貫通して、外管に固着されている。 A guide wire lumen into which a guide wire is inserted is formed inside the inner tube. The distal end of the inner tube passes through the inside of the balloon 220 and is open on the distal side of the balloon 220 . The proximal end of the inner tube penetrates the side wall of the outer tube on the proximal side of the balloon 220 and is fixed to the outer tube.
 カテーテル本体部210の構成材料は、ある程度の可撓性を有する材料が好ましく、一例として、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら2種以上の混合物などのポリオレフィンや、ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴムなどが挙げられる。 The constituent material of the catheter main body 210 is preferably a material having a certain degree of flexibility, and examples thereof include polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or two of these. Examples include polyolefins such as mixtures of the above, thermoplastic resins such as polyvinyl chloride resins, polyamides, polyamide elastomers, polyesters, polyester elastomers, polyurethanes, fluororesins, silicone rubbers, and latex rubbers.
 バルーン220は、例えば狭窄部の内部で拡張することで、狭窄部を押し広げる部材である。バルーン220の先端側は、内管の外壁面に固着されている。バルーン220の基端側は、外管の先端部の外壁面に固着されている。そのため、バルーン220の内部は、外管に形成される拡張用ルーメンと連通する。バルーン220は、拡張用ルーメンを介して基端開口部231から拡張用流体が流入可能となっている。バルーン220は、拡張用流体の流入により拡張し、流入した拡張用流体を排出することにより収縮して折り畳まれた状態となる。 The balloon 220 is, for example, a member that expands the narrowed portion by expanding inside the narrowed portion. The distal end side of the balloon 220 is fixed to the outer wall surface of the inner tube. The proximal end side of the balloon 220 is fixed to the outer wall surface of the distal end portion of the outer tube. Therefore, the inside of the balloon 220 communicates with the expansion lumen formed in the outer tube. The balloon 220 is capable of receiving inflation fluid from the proximal opening 231 via the inflation lumen. The balloon 220 is expanded by the inflow of the expansion fluid, and is contracted and folded by discharging the expansion fluid.
 バルーン220の構成材料は、拡張用流体の流入出により拡張及び収縮する可撓性を有する材料が好ましく、一例としてポリオレフィン、ポリオレフィンの架橋体、ポリエステル、ポリエステルエラストマー、ポリ塩化ビニル、ポリウレタン、ポリウレタンエラストマー、ポリフェニレンサルファイド、ポリアミド、ポリアミドエラストマー、フッ素樹脂などの高分子材料、シリコーンゴム、ラテックスゴムなどが挙げられる。バルーン220の構成材料は、上記高分子材料を単独で利用する形態に限定されず、上記高分子材料を適宜積層したフィルムを適用してもよい。また、拡張用流体は、気体でも液体でもよく、例えば、ヘリウムガス、CO2ガス、O2ガスなどの気体や、生理食塩水、X線造影剤などの液体が挙げられる。 The constituent material of the balloon 220 is preferably a flexible material that expands and contracts with the inflow and outflow of the expansion fluid. Examples include polyolefin, crosslinked polyolefin, polyester, polyester elastomer, polyvinyl chloride, polyurethane, polyurethane elastomer, Polymeric materials such as polyphenylene sulfide, polyamide, polyamide elastomer, fluororesin, silicone rubber, latex rubber, and the like. The constituent material of the balloon 220 is not limited to the form in which the above polymer material is used alone, and a film obtained by appropriately laminating the above polymer materials may be applied. Further, the expansion fluid may be gas or liquid, and examples thereof include gases such as helium gas, CO2 gas, and O2 gas, and liquids such as physiological saline and X-ray contrast medium.
 ハブ230は、外管の拡張用ルーメンと連通する基端開口部231を備えている。基端開口部231は、拡張用流体を流入出させるポートとして機能する。 The hub 230 has a proximal opening 231 that communicates with the expansion lumen of the outer tube. Proximal opening 231 functions as a port for inflow and outflow of dilation fluid.
 ハブ230の構成材料は、特に限定されないが、一例として、ポリエチレン、ポリウレタン、ポリエステル、ポリプロピレン、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート-ブチレン-スチレン共重合体などの熱可塑性樹脂が挙げられる。 The constituent material of the hub 230 is not particularly limited, but examples include thermoplastic resins such as polyethylene, polyurethane, polyester, polypropylene, polycarbonate, polyamide, polysulfone, polyarylate, and methacrylate-butylene-styrene copolymer.
 次に、図2~図6を適宜参照しながら、ステント100について説明する。図2~図4にはバルーン220にクリンプする前の状態のステント100を示し、図5、図6にはバルーン220にクリンプした状態のステント100を示す。 Next, the stent 100 will be described with appropriate reference to FIGS. 2 to 6. FIG. 2-4 show stent 100 prior to being crimped to balloon 220, and FIGS. 5 and 6 show stent 100 crimped to balloon 220. FIG.
 ステント100は、図2、図3に示すように、複数の環状体10が長軸方向において複数配列された円筒形状を有する。各環状体10は周方向の位相を揃えて(同位相で)配置されている。 As shown in FIGS. 2 and 3, the stent 100 has a cylindrical shape in which a plurality of annular bodies 10 are arranged in the longitudinal direction. Each annular body 10 is arranged with the phases in the circumferential direction aligned (in the same phase).
 ステント100は、長軸方向において隣接する環状体10同士を接続する複数のリンク部20A、20Bを有する。 The stent 100 has a plurality of link portions 20A, 20B connecting annular bodies 10 adjacent in the longitudinal direction.
 図3、図4に示すように、1つの環状体10には、周方向に4つ配列された基本ユニット30が含まれる。明細書の説明では、各基本ユニット30は、周方向に沿って順に、第1基本ユニット30A、第2基本ユニット30B、第3基本ユニット30C、第4基本ユニット30Dと称する。 As shown in FIGS. 3 and 4, one annular body 10 includes four basic units 30 arranged in the circumferential direction. In the description of the specification, each basic unit 30 is called a first basic unit 30A, a second basic unit 30B, a third basic unit 30C, and a fourth basic unit 30D in order along the circumferential direction.
 4つの基本ユニット30は、周方向に沿ってジグザグに折り返したストラットにより構成されている。 The four basic units 30 are composed of struts that are zigzag folded back along the circumferential direction.
 基本ユニット30は、図4に示すように、軸平行線状部31aと、第1小傾斜線状部32aと、第2小傾斜線状部32bと、大傾斜線状部33と、第1小湾曲部34aと、第1大湾曲部35aと、第2大湾曲部35bと、第2小湾曲部34bと、を有する。以下では、4つの基本ユニット30のうち、第1基本ユニット30Aを例にして詳細な構造を説明する。 As shown in FIG. 4, the basic unit 30 includes an axis-parallel linear portion 31a, a first small inclined linear portion 32a, a second small inclined linear portion 32b, a large inclined linear portion 33, and a first It has a small curved portion 34a, a first large curved portion 35a, a second large curved portion 35b, and a second small curved portion 34b. The detailed structure of the first basic unit 30A among the four basic units 30 will be described below as an example.
 軸平行線状部31aは、基端と先端を有し、長軸方向と平行に延びている。 The axis-parallel line portion 31a has a proximal end and a distal end and extends parallel to the longitudinal direction.
 第1小傾斜線状部32aは、基端と先端を有し、長軸方向に対して傾いて延びている。 The first small inclined linear portion 32a has a proximal end and a distal end, and extends obliquely with respect to the longitudinal direction.
 第2小傾斜線状部32bは、基端と先端を有し、長軸方向に対して傾いて延びている。 The second small-slanted linear portion 32b has a base end and a tip, and extends obliquely with respect to the longitudinal direction.
 大傾斜線状部33は、基端と先端を有するとともに第1小傾斜線状部32aと第2小傾斜線状部32bの間に配置されている。 The large inclined linear portion 33 has a base end and a distal end, and is arranged between the first small inclined linear portion 32a and the second small inclined linear portion 32b.
 第1小湾曲部34aは、軸平行線状部31aの先端と第1小傾斜線状部32aの先端を接続する。 The first small curved portion 34a connects the tip of the axis-parallel linear portion 31a and the tip of the first small inclined linear portion 32a.
 第1大湾曲部35aは、第1小傾斜線状部32aの基端と大傾斜線状部33の基端を接続する。 The first large curved portion 35a connects the base end of the first small slanted linear portion 32a and the base end of the large slanted linear portion 33 .
 第2大湾曲部35bは、大傾斜線状部33の先端と第2小傾斜線状部32bの先端を接続する。 The second large curved portion 35b connects the tip of the large inclined linear portion 33 and the tip of the second small inclined linear portion 32b.
 第2小湾曲部34bは、第2小傾斜線状部32bの基端に接続されている。また、第2小湾曲部34bは、第2小傾斜線状部32bの基端と第1基本ユニット30Aに隣接する第2基本ユニット30Bの軸平行線状部31bの基端を接続する。 The second small curved portion 34b is connected to the proximal end of the second small inclined linear portion 32b. The second small curved portion 34b connects the base end of the second small inclined linear portion 32b to the base end of the axis-parallel linear portion 31b of the second basic unit 30B adjacent to the first basic unit 30A.
 なお、周方向において互いに隣接する第2基本ユニット30Bと第3基本ユニット30C、及び第3基本ユニット30Cと第4基本ユニット30Dの各々は、第2小湾曲部34b及び各軸平行線状部31a、31bを介して相互に接続されている(図3を参照)。 The second basic unit 30B and the third basic unit 30C, and the third basic unit 30C and the fourth basic unit 30D, which are adjacent to each other in the circumferential direction, each have a second small curved portion 34b and an axis-parallel linear portion 31a. , 31b (see FIG. 3).
 図4に示すように、第1小傾斜線状部32aの先端には、第1基本ユニット30A内の軸平行線状部31aに向かって突出した形状となる第1屈曲部36aが形成されている。 As shown in FIG. 4, the tip of the first small inclined linear portion 32a is formed with a first bent portion 36a that protrudes toward the axis-parallel linear portion 31a in the first basic unit 30A. there is
 第1屈曲部36aは、例えば、軸平行線状部31aに向けて緩やかに湾曲した凸形状に形成することができる。なお、第1屈曲部36aは、軸平行線状部31aに向かって突出した形状である限り、具体的な形状は限定されない。例えば、第1屈曲部36aは、軸平行線状部31aに向かって鋭角に突出する凸形状や矩形の凸形状を有していてもよい。 The first bent portion 36a can be formed, for example, in a convex shape gently curved toward the axis-parallel linear portion 31a. The specific shape of the first bent portion 36a is not limited as long as it protrudes toward the axis-parallel linear portion 31a. For example, the first bent portion 36a may have a convex shape or a rectangular convex shape projecting at an acute angle toward the axis-parallel linear portion 31a.
 図4に示すように、第2小傾斜線状部32bの基端には、第1基本ユニット30A(一の基本ユニット)の周方向に隣接する第2基本ユニット30B(他の基本ユニット)内の軸平行線状部31bに向かって突出した形状となる第2屈曲部36bが形成されている。 As shown in FIG. 4, at the proximal end of the second small inclined linear portion 32b, a second basic unit 30B (another basic unit) adjacent to the first basic unit 30A (one basic unit) in the circumferential direction is provided. A second bent portion 36b is formed so as to protrude toward the axis-parallel linear portion 31b.
 第2屈曲部36bは、例えば、軸平行線状部31bに向けて緩やかに湾曲した凸形状に形成することができる。なお、第2屈曲部36bは、第1屈曲部36aと同様に、具体的な形状は特に限定されない。 The second bent portion 36b can be formed, for example, in a convex shape gently curved toward the axis-parallel linear portion 31b. The specific shape of the second bent portion 36b is not particularly limited, similarly to the first bent portion 36a.
 本実施形態に係るステント100は、図2に示すように、9つの環状体10を有する。明細書の説明では、9つの各環状体10は、長軸方向の基端側から先端側に向かって順に第1環状体10A、第2環状体10B、第3環状体10C、第4環状体10D、第5環状体10E、第6環状体10F、第7環状体10G、第8環状体10H、第9環状体10Iと称する。 The stent 100 according to this embodiment has nine annular bodies 10, as shown in FIG. In the description of the specification, each of the nine annular bodies 10 includes a first annular body 10A, a second annular body 10B, a third annular body 10C, and a fourth annular body in order from the proximal side to the distal side in the longitudinal direction. 10D, fifth annular body 10E, sixth annular body 10F, seventh annular body 10G, eighth annular body 10H and ninth annular body 10I.
 長軸方向に隣接する二つの環状体10は、二つのリンク部20A、20Bを介して接続されている。 Two annular bodies 10 adjacent in the longitudinal direction are connected via two link portions 20A and 20B.
 図3に示すように、第1環状体10A(一の環状体)の第2基本ユニット30Bの第1小湾曲部34aと、第2環状体10B(他の環状体)の第1基本ユニット30Aの第2小湾曲部34bは、一のリンク部20Aを介して接続している。 As shown in FIG. 3, the first small curved portion 34a of the second basic unit 30B of the first annular body 10A (one annular body) and the first basic unit 30A of the second annular body 10B (other annular body) The second small curved portion 34b is connected via one link portion 20A.
 また、第1環状体10Aの第4基本ユニット30Dの第1小湾曲部34aと第2環状体10Bの第3基本ユニット30Cの第2小湾曲部34bは、他のリンク部20Bを介して接続している。 Also, the first small curved portion 34a of the fourth basic unit 30D of the first annular body 10A and the second small curved portion 34b of the third basic unit 30C of the second annular body 10B are connected via another link portion 20B. is doing.
 本実施形態では、第1環状体10Aと第2環状体10Bとは、長軸方向と直交する軸直交断面上において、径方向で対向する2つのリンク部20A、20Bで接続されている。つまり、一のリンク部20Aと他のリンク部20Bは、ステント100の軸直交断面上において周方向に180度の角度を空けて配置されている。各リンク部20A、20Bの間に設けられる周方向の角度差は、第1環状体10Aと第2環状体10Bを接続するリンク部以外のリンク部でも同様としている。 In this embodiment, the first annular body 10A and the second annular body 10B are connected by two link portions 20A and 20B that face each other in the radial direction on an axis-perpendicular cross-section perpendicular to the longitudinal direction. In other words, the one link portion 20A and the other link portion 20B are arranged at an angle of 180 degrees in the circumferential direction on the axis-perpendicular cross-section of the stent 100 . The angular difference in the circumferential direction provided between the link portions 20A and 20B is the same for the link portions other than the link portion connecting the first annular body 10A and the second annular body 10B.
 図3に示すように、第2環状体10Bの第1基本ユニット30Aの第1小湾曲部34aと、第3環状体10Cの第4基本ユニット30Dの第2小湾曲部34bは、一のリンク部20Aを介して接続している。 As shown in FIG. 3, the first small curved portion 34a of the first basic unit 30A of the second annular body 10B and the second small curved portion 34b of the fourth basic unit 30D of the third annular body 10C form one link. It is connected via the part 20A.
 また、第2環状体10Bの第3基本ユニット30Cの第1小湾曲部34aと、第3環状体10Cの第2基本ユニット30Bの第2小湾曲部34bは、他のリンク部20Bを介して接続している。 Also, the first small curved portion 34a of the third basic unit 30C of the second annular body 10B and the second small curved portion 34b of the second basic unit 30B of the third annular body 10C are connected via another link portion 20B. Connected.
 各リンク部20A、20Bは、図2、図3に示すように、接続対象となる環状体10が長軸方向に沿って基端側から先端側に向かって一組ずれるのに伴って、周方向に90度ずつ互い違いにずれる。そのため、第1環状体10Aと第2環状体10Bを接続する各リンク部20A、20Bの周方向の位置は、第3環状体10Cと第4環状体10Dを接続する各リンク部20A、20Bの周方向の位置と略同一となる。一方で、第2環状体10Bと第3環状体10Cを接続する各リンク部20A、20Bの周方向の位置は、第4環状体10Dと第5環状体10Eを接続する各リンク部20A、20Bの周方向の位置と略同一となる。 As shown in FIGS. 2 and 3, the link portions 20A and 20B are circumferentially connected as the annular body 10 to be connected is displaced from the base end side to the tip end side along the long axis direction. Alternating 90 degrees in each direction. Therefore, the circumferential positions of the link portions 20A and 20B connecting the first ring-shaped body 10A and the second ring-shaped body 10B are different from those of the link portions 20A and 20B connecting the third ring-shaped body 10C and the fourth ring-shaped body 10D. It becomes substantially the same as the position in the circumferential direction. On the other hand, the circumferential positions of the link portions 20A and 20B connecting the second annular body 10B and the third annular body 10C are the same as those of the link portions 20A and 20B connecting the fourth annular body 10D and the fifth annular body 10E. is substantially the same as the position in the circumferential direction of
 ステント100では、上記のように各リンク部20A、20Bが配置されているため、図2に示すように、長軸方向の両端部に位置する第1環状体10A及び第9環状体10I以外の環状体10では、周方向に配列された4つの基本ユニット30A、30B、30C、30Dの各軸平行線状部31a、31bが隣接する他の環状体10と接続される。一方で、長軸方向の両端部に位置する各環状体10A、10Iには、長軸方向に隣接する他の環状体10と接続されていない軸平行線状部31a、31bが存在する。例えば、図3に示すように、第1環状体10Aでは、第1基本ユニット30Aの軸平行線状部31aと第3基本ユニット30Cの軸平行線状部31aが長軸方向に隣接する第2環状体10Bと接続されていない。 In the stent 100, since the link portions 20A and 20B are arranged as described above, as shown in FIG. In the annular body 10, the axis-parallel linear portions 31a and 31b of the four basic units 30A, 30B, 30C, and 30D arranged in the circumferential direction are connected to adjacent other annular bodies 10. As shown in FIG. On the other hand, the annular bodies 10A and 10I located at both ends in the long axis direction have axis-parallel linear portions 31a and 31b that are not connected to other annular bodies 10 adjacent in the long axis direction. For example, as shown in FIG. 3, in the first annular body 10A, the axis-parallel line portion 31a of the first basic unit 30A and the axis-parallel line portion 31a of the third basic unit 30C are adjacent to each other in the longitudinal direction. It is not connected with the annular body 10B.
 ステント100は、バルーン220にクリンプされた状態において、軸平行線状部31aと第1小傾斜線状部32aとの間に形成された第1の隙間g1と、大傾斜線状部33と第1小傾斜線状部32aとの間に形成された第2の隙間g2を有する。 When the stent 100 is crimped to the balloon 220, the first gap g1 formed between the axis-parallel linear portion 31a and the first small inclined linear portion 32a, the large inclined linear portion 33 and the first gap g1 are formed. It has a second gap g2 formed between it and the one small inclined linear portion 32a.
 第1の隙間g1及び第2の隙間g2の大きさを表す目安として、図6に示す長軸方向と直交する軸直交断面における中心軸Xを基準とした角度範囲において、角度範囲(θ1)及び角度範囲(θ2)を用いる。θ1は図4に示す軸平行線状部31aの基端の位置における軸直交断面上で定義し、θ2は図4に示す第1小傾斜線状部32aの先端の位置における軸直交断面上で定義することとする。 As a measure of the sizes of the first gap g1 and the second gap g2, the angle range (θ1) and the angle range (θ1) and Angular range (θ2) is used. θ1 is defined on the axis-perpendicular cross-section at the base end position of the axis-parallel linear portion 31a shown in FIG. shall be defined.
 ステント外径が1mmの状態で、第1の隙間g1の角度範囲(θ1)は、例えば、2°以上7°以下がより好ましい。 When the stent outer diameter is 1 mm, the angle range (θ1) of the first gap g1 is more preferably, for example, 2° or more and 7° or less.
 ステント外径が1mmの状態で、第2の隙間g2の角度範囲(θ2)は、例えば、15°以上30°以下がより好ましい。 When the stent outer diameter is 1 mm, the angle range (θ2) of the second gap g2 is more preferably 15° or more and 30° or less, for example.
 なお、ステント100では、図5、図6に示すように、第1基本ユニット30Aの第2小傾斜線状部32bと、第1基本ユニット30Aと周方向で隣接する第2基本ユニット30Bの軸平行線状部31bとの間にも隙間g1が形成されている。この隙間g1は、第1基本ユニット30Aの軸平行線状部31aと第1小傾斜線状部32aとの間に形成される隙間g1と周方向の間隔(大きさ)が略同一である。 In the stent 100, as shown in FIGS. 5 and 6, the second small inclined linear portion 32b of the first basic unit 30A and the axis of the second basic unit 30B adjacent to the first basic unit 30A in the circumferential direction A gap g1 is also formed between it and the parallel linear portion 31b. This gap g1 has substantially the same circumferential interval (size) as the gap g1 formed between the axis-parallel linear portion 31a and the first small inclined linear portion 32a of the first basic unit 30A.
 同様に、ステント100では、図5、図6に示すように、第1基本ユニット30Aの大傾斜線状部33と第2小傾斜線状部32bとの間にも隙間g2が形成されている。この隙間g2は、第1基本ユニット30Aの大傾斜線状部33と第1小傾斜線状部32aとの間に形成される隙間g2と周方向の間隔(大きさ)が略同一である。 Similarly, in the stent 100, as shown in FIGS. 5 and 6, a gap g2 is also formed between the large inclined linear portion 33 and the second small inclined linear portion 32b of the first basic unit 30A. . This gap g2 has substantially the same circumferential interval (size) as the gap g2 formed between the large inclined linear portion 33 and the first small inclined linear portion 32a of the first basic unit 30A.
 ステント100の各部(環状体10、リンク部20A、20B、基本ユニット30)を形成する材料は、例えば、ステンレス鋼、コバルト-クロム合金(例えばCoCrWNi合金)等のコバルト系合金、プラチナ-クロム合金(例えばPtFeCrNi合金)、ニッケル-チタン合金などの金属材料や、ポリ乳酸、ポリグリコール酸、乳酸-グリコール酸共重合体、ポリカプロラクトン、乳酸-カプロラクトン共重合体、グリコール酸-カプロラクトン共重合体などの生分解性高分子材料が挙げられる。 Materials forming each part of the stent 100 (annular body 10, link parts 20A and 20B, basic unit 30) include, for example, stainless steel, cobalt-based alloys such as chromium alloys (eg, CoCrWNi alloys), platinum-chromium alloys ( metal materials such as PtFeCrNi alloy), nickel-titanium alloys, and raw materials such as polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polycaprolactone, lactic acid-caprolactone copolymer, glycolic acid-caprolactone copolymer. Examples include degradable polymeric materials.
 ステント100は、例えば、上記材料で構成される管状部材(中空のパイプ材)に対してレーザーを照射し、所望のステントデザインを形成することで製造できる。なお、例えば、エッチング等の方法によりステント100を製造してもよく、製造方法はレーザーを利用した方法のみに限定されない。 The stent 100 can be manufactured, for example, by irradiating a tubular member (hollow pipe member) made of the above material with a laser to form a desired stent design. In addition, for example, the stent 100 may be manufactured by a method such as etching, and the manufacturing method is not limited to the method using a laser.
 ステント100の外表面には、薬剤を含む被覆体を備えてもよい。被覆体は、ステント100の外表面のうち、好ましくは、生体管腔の内周面と対向する側の外表面に形成されるが、これに限定されない。被覆体は、新生内膜の増殖を抑制可能な薬剤と、薬剤を担持するための薬剤担持体と、を含んでいてよい。被覆体は、薬剤のみによって構成されていてもよい。被覆体に含まれる薬剤は、例えば、シロリムス、エベロリムス、ゾタロリムス、パクリタキセルなどからなる群より選択される少なくとも1種である。薬剤担持体の構成材料としては、特に限定されないが、生分解性材料が好ましい。 The outer surface of the stent 100 may be provided with a coating containing a drug. Of the outer surfaces of the stent 100, the covering is preferably formed on the outer surface facing the inner peripheral surface of the biological lumen, but is not limited to this. The covering may contain a drug capable of suppressing neointimal proliferation and a drug carrier for carrying the drug. The covering may be composed only of the drug. The drug contained in the coating is, for example, at least one selected from the group consisting of sirolimus, everolimus, zotarolimus, paclitaxel, and the like. The constituent material of the drug carrier is not particularly limited, but biodegradable materials are preferred.
 次に、図4を参照しつつ、基本ユニット30の各部の寸法例を説明する。以下では、第2環状体10Bの第1基本ユニット30Aを例にして説明する。なお、ステント100は、環状体10に含まれる少なくとも1つの基本ユニット30に対して以下に説明する角度比(a/b)及び長さ比(t/s1及びt/s2)が適用されている限り、後述する本願発明の効果を好適に発揮することができる。 Next, an example of dimensions of each part of the basic unit 30 will be described with reference to FIG. Below, the 1st basic unit 30A of the 2nd annular body 10B is made into an example, and is demonstrated. In the stent 100, the angle ratio (a/b) and length ratio (t/s1 and t/s2) described below are applied to at least one basic unit 30 included in the annular body 10. As long as this is the case, the effects of the present invention, which will be described later, can be suitably exhibited.
 なお、第1角度(a)や第2角度(b)などは、ステント外径に依存して変化するパラメータである。以下に説明する各寸法例は、ステント100をバルーン220にクリンプする前の外径(ステント100の元となる管状部材の外径)における値であり、ここではステント外径が2mmにおける値である。その外径は、薬事申請書類などに記載の情報から取得可能である。 The first angle (a), the second angle (b), etc. are parameters that change depending on the outer diameter of the stent. Each dimension example described below is the value at the outer diameter before the stent 100 is crimped to the balloon 220 (outer diameter of the tubular member from which the stent 100 is based), here the value at the stent outer diameter of 2 mm. . The outer diameter can be obtained from information described in pharmaceutical application documents and the like.
 <角度比(a/b)について>
 ステント100では、大傾斜線状部33と第1小傾斜線状部32aの間、又は大傾斜線状部33と第2小傾斜線状部32bの間の成す角度を第1角度(a)と定義する。以下、単に「第1角度(a)」と称する。
<Regarding the angle ratio (a/b)>
In the stent 100, the first angle (a) is the angle formed between the large inclined linear portion 33 and the first small inclined linear portion 32a or between the large inclined linear portion 33 and the second small inclined linear portion 32b. defined as Hereinafter, this angle is simply referred to as "first angle (a)".
 第1角度(a)は、第1小湾曲部34aの最内湾曲点p1と第1大湾曲部35aの最外湾曲点p2を結ぶ仮想直線H1と、第1大湾曲部35aの最外湾曲点p2と第2大湾曲部35bの最外湾曲点p3を結ぶ仮想直線H2が成す角度、又は第2小湾曲部34bの最内湾曲点p4と第2大湾曲部35bの最外湾曲点p3を結ぶ仮想直線H3と仮想直線H2が成す角度で定義することができる。 The first angle (a) is defined by an imaginary straight line H1 connecting the innermost curved point p1 of the first small curved portion 34a and the outermost curved point p2 of the first large curved portion 35a, and the outermost curved portion of the first large curved portion 35a. The angle formed by the imaginary straight line H2 connecting the point p2 and the outermost bending point p3 of the second large bending portion 35b, or the innermost bending point p4 of the second small bending portion 34b and the outermost bending point p3 of the second large bending portion 35b can be defined by an angle formed by a virtual straight line H3 and a virtual straight line H2 connecting
 ステント100では、軸平行線状部31aと第1小傾斜線状部32aの間、又は軸平行線状部31bと第2小傾斜線状部32bの間の成す角度を第2角度(b)と定義する。以下、単に「第2角度(b)」と称する。 In the stent 100, the second angle (b) is the angle formed between the axis-parallel linear portion 31a and the first small-slanted linear portion 32a or between the axial-parallel linear portion 31b and the second small-slanted linear portion 32b. defined as Hereinafter, this angle is simply referred to as "second angle (b)".
 第2角度(b)は、軸平行線状部31aと仮想直線H1が成す角度、又は軸平行線状部31bと仮想直線H3が成す角度で定義することができる。なお、各軸平行線状部31a、31bは中心軸Xに平行であるため、第2角度(b)を定義する際、軸平行線状部31a及び軸平行線状部31bのいずれを用いてもよい。 The second angle (b) can be defined by the angle formed by the axis-parallel linear portion 31a and the virtual straight line H1, or by the angle formed by the axial-parallel linear portion 31b and the virtual straight line H3. Since the axis-parallel linear portions 31a and 31b are parallel to the central axis X, either the axis-parallel linear portion 31a or the axis-parallel linear portion 31b is used when defining the second angle (b). good too.
 ステント100の第1基本ユニット30Aでは、図4に示す平面視上の幾何学的な中心位置Oを基準とし、周方向において各小傾斜線状部32a、32b、各小湾曲部34a、34b、及び各大湾曲部35a、35bの各々が対称な形状を有する。そのため、大傾斜線状部33と第1小傾斜線状部32aの間の成す第1角度と、大傾斜線状部33と第2小傾斜線状部32bの間の成す第1角度は略同一であり、軸平行線状部31aと第1小傾斜線状部32aの間の成す第2角度と、軸平行線状部31bと第2小傾斜線状部32bの間の成す第2角度も略同一である。また、後述する第1小傾斜線状部32aの長さ(s1)と第2小傾斜線状部32bの長さ(s2)も略同一である。 In the first basic unit 30A of the stent 100, with the geometric center position O in plan view shown in FIG. And each of the large curved portions 35a and 35b has a symmetrical shape. Therefore, the first angle formed between the large inclined linear portion 33 and the first small inclined linear portion 32a and the first angle formed between the large inclined linear portion 33 and the second small inclined linear portion 32b are approximately The second angle formed between the axis-parallel linear portion 31a and the first small inclined linear portion 32a and the second angle formed between the axial-parallel linear portion 31b and the second small inclined linear portion 32b are the same. are also substantially the same. Further, the length (s1) of the first small-slanted linear portion 32a and the length (s2) of the second small-slanted linear portion 32b, which will be described later, are also substantially the same.
 ステント100は、第1角度(a)を第2角度(b)で除した角度比(a/b)を2.17以上2.96以下で形成することができる。ステント100は、角度比(a/b)が2.37以上2.62以下で形成されていることがより好ましい。 The stent 100 can be formed such that the angle ratio (a/b) obtained by dividing the first angle (a) by the second angle (b) is 2.17 or more and 2.96 or less. More preferably, the stent 100 is formed with an angular ratio (a/b) of 2.37 or more and 2.62 or less.
 第1角度(a)は、例えば、60.10°以上62.74°以下が好ましく、61.08°以上61.97°以下がより好ましい。 For example, the first angle (a) is preferably 60.10° or more and 62.74° or less, more preferably 61.08° or more and 61.97° or less.
 第2角度(b)は、例えば、20.30°以上28.94°以下が好ましく、23.28°以上26.16°以下がより好ましい。 For example, the second angle (b) is preferably 20.30° or more and 28.94° or less, more preferably 23.28° or more and 26.16° or less.
 <長さ比(t/s1及びt/s2)について>
 ステント100は、大傾斜線状部33の長さ(t)を第1小傾斜線状部32aの長さ(s1)、又は第2小傾斜線状部32bの長さ(s2)で除した長さ比(t/s1又はt/s2)を1.24以上1.51以下で形成することができる。ステント100は、長さ比(t/s1又はt/s2)が1.33以上1.42以下で形成されていることがより好ましい。
<Length ratio (t/s1 and t/s2)>
In the stent 100, the length (t) of the large inclined linear portion 33 is divided by the length (s1) of the first small inclined linear portion 32a or the length (s2) of the second small inclined linear portion 32b. The length ratio (t/s1 or t/s2) can be 1.24 or more and 1.51 or less. More preferably, the stent 100 is formed with a length ratio (t/s1 or t/s2) of 1.33 or more and 1.42 or less.
 大傾斜線状部33の長さ(t)は、仮想直線H2の長さで定義することができる。また、第1小傾斜線状部32aの長さ(s1)は、仮想直線H1の長さで定義することができる。また、第2小傾斜線状部32bの長さ(s2)は、仮想直線H3の長さで定義することができる。 The length (t) of the highly inclined linear portion 33 can be defined by the length of the imaginary straight line H2. Also, the length (s1) of the first small inclined linear portion 32a can be defined by the length of the imaginary straight line H1. Also, the length (s2) of the second small slope linear portion 32b can be defined by the length of the imaginary straight line H3.
 大傾斜線状部33の長さ(t)は、例えば、0.995mm以上1.313mm以下が好ましく、1.064mm以上1.234mm以下がより好ましい。 The length (t) of the large inclined linear portion 33 is, for example, preferably 0.995 mm or more and 1.313 mm or less, more preferably 1.064 mm or more and 1.234 mm or less.
 第1小傾斜線状部32aの長さ(s1)及び第2小傾斜線状部32bの長さ(s2)は、例えば、0.800mm以上0.870mm以下(実施例での計測値:0.832mmのみ記載)が好ましく、0.810mm以上0.850mm以下がより好ましい。 The length (s1) of the first small inclined linear portion 32a and the length (s2) of the second small inclined linear portion 32b are, for example, 0.800 mm or more and 0.870 mm or less (measured value in the embodiment: 0 .832 mm only) is preferable, and 0.810 mm or more and 0.850 mm or less is more preferable.
 <その他の寸法例>
 ステント100は、一のリンク部20A(又は他のリンク部20B)の長さ(L)を第1小傾斜線状部32aの長さ(s1)、又は第2小傾斜線状部32bの長さ(s2)で除したリンク部長さ比(L/s1又はL/s2)を0.35以上0.44以下で形成することができる。ステント100は、リンク部長さ比(L/s1又はL/s2)が0.35以上0.38以下で形成されていることがより好ましい。
<Other dimension examples>
In the stent 100, the length (L) of one link portion 20A (or the other link portion 20B) is the length (s1) of the first small inclined linear portion 32a or the length of the second small inclined linear portion 32b. The link length ratio (L/s1 or L/s2) divided by the length (s2) can be 0.35 or more and 0.44 or less. More preferably, the stent 100 is formed with a link length ratio (L/s1 or L/s2) of 0.35 or more and 0.38 or less.
 なお、リンク部20Aの延在方向は、第1小湾曲部34aの最内湾曲点p1から第2小湾曲部34bの最内湾曲点p4に向かう方向とし、その両端は、軸平行線状部31aの第2小傾斜線状部32b側の縁線と第1小傾斜線状部32aの大傾斜線状部33側の縁線に内接する円弧、及び軸平行線状部31bの第1小傾斜線状部32a側の縁線と第2小傾斜線状部32bの大傾斜線状部33側の縁線に内接する円弧と定義する。リンク部20Aの長さLは、図3に示すように、リンク部20Aの延在方向の一端から他端までの長軸方向に平行な距離と定義する。 The extending direction of the link portion 20A is the direction from the innermost curved point p1 of the first small curved portion 34a to the innermost curved point p4 of the second small curved portion 34b. A circular arc inscribed in the edge line of the second small inclination linear portion 32b side of the first small inclination linear portion 32a and the edge line of the large inclination linear portion 33 side of the first small inclination linear portion 32a, and the first small inclination linear portion 31b of the axis-parallel linear portion 31b. It is defined as an arc inscribed in the edge line of the inclined linear portion 32a and the edge line of the second small inclined linear portion 32b on the large inclined linear portion 33 side. The length L of the link portion 20A is defined as the distance parallel to the longitudinal direction from one end to the other end in the extending direction of the link portion 20A, as shown in FIG.
 リンク部20Aの長さは、例えば、0.20mm以上0.35mm以下(実施例での計測値:0.295mmのみ記載)が好ましく、0.22mm以上0.30mm以下がより好ましい。 The length of the link portion 20A is, for example, preferably 0.20 mm or more and 0.35 mm or less (measured value in the example: only 0.295 mm is described), and more preferably 0.22 mm or more and 0.30 mm or less.
 第1小傾斜線状部32aの先端に形成された第1屈曲部36aは、例えば、第1小湾曲部34aの最内湾曲点p1から0.1825mm離れた位置に形成することができる。第1屈曲部36aと最内湾曲点p1との間の上記距離は、第1屈曲部36aの軸平行線状部31a側に最も突出した位置と最内湾曲点p1の間の長軸方向の長さで定義することができる。 The first bent portion 36a formed at the tip of the first small inclined linear portion 32a can be formed, for example, at a position 0.1825 mm away from the innermost bending point p1 of the first small curved portion 34a. The distance between the first bent portion 36a and the innermost curved point p1 is the length of the longitudinal direction between the position of the first bent portion 36a that protrudes most toward the axis-parallel linear portion 31a and the innermost curved point p1. can be defined by length.
 第2小傾斜線状部32bの基端に形成された第2屈曲部36bは、例えば、第2小湾曲部34bの最内湾曲点p4から0.1825mm離れた位置に形成することができる。第2屈曲部36bと最内湾曲点p4との間の上記距離は、第2屈曲部36bの軸平行線状部31b側に最も突出した位置と最内湾曲点p4の間の長軸方向の長さで定義することができる。 The second bent portion 36b formed at the proximal end of the second small inclined linear portion 32b can be formed, for example, at a position 0.1825 mm away from the innermost bending point p4 of the second small curved portion 34b. The distance between the second bent portion 36b and the innermost curved point p4 is the length of the longitudinal direction between the position of the second bent portion 36b that protrudes most toward the axis-parallel linear portion 31b and the innermost curved point p4. can be defined by length.
 ステント100の長軸方向に沿う長さ(全長)は、例えば、3.9mm~51.6mmに形成することができる。 The length (total length) along the longitudinal direction of the stent 100 can be set to, for example, 3.9 mm to 51.6 mm.
 バルーン220にステント100をクリンプした状態でのプロファイルは、ステント100を構成する管状部材の外径が2.0mmである場合、例えば、0.80mm~1.26mmとすることができる。ステント100は、上記プロファイルが1.0mmであることがより好ましい。 The profile of the stent 100 crimped to the balloon 220 can be, for example, 0.80 mm to 1.26 mm when the outer diameter of the tubular member forming the stent 100 is 2.0 mm. More preferably, stent 100 has a profile of 1.0 mm.
 [作用効果]
 ステント100では、上述したように角度比(a/b)が2.17以上2.96以下、かつ、長さ比(t/s1又はt/s2)が1.24以上1.51以下で形成されている。そのため、次のような効果を奏する。
[Effect]
In the stent 100, as described above, the angle ratio (a/b) is 2.17 or more and 2.96 or less, and the length ratio (t/s1 or t/s2) is 1.24 or more and 1.51 or less. It is Therefore, the following effects are obtained.
 第1の隙間g1が第2の隙間g2よりも小さい関係は、ステント100の縮径量が大きい場合でも維持されるため、ステント100をバルーン220に加圧クリンプする際に、第1の隙間g1からのバルーン220の突出が起きにくくなり、第2の隙間g2からのバルーン220の突出が起きやすくなる。従って、ステントデリバリーシステム300を大量生産した際、プロファイルが小さくても、ステント100内のバルーン220の突出が起きる隙間の数の個体間のバラつきが減少し、ステント保持力が安定化する。 Since the relationship in which the first gap g1 is smaller than the second gap g2 is maintained even when the stent 100 is reduced in diameter by a large amount, when the stent 100 is press-crimped to the balloon 220, the first gap g1 The balloon 220 is less likely to protrude from the second gap g2, and the balloon 220 is more likely to protrude from the second gap g2. Therefore, when the stent delivery system 300 is mass-produced, even if the profile is small, variations in the number of gaps in the stent 100 at which the balloon 220 protrudes are reduced, and the stent retention force is stabilized.
 ステント100では、第1環状体10A(一の環状体)と第2環状体10B(他の環状体)は、それぞれの環状体10A、10Bの間である間隙の範囲内の長軸方向と直交する軸直交断面上において、径方向で対向する2つのリンク部20A、20Bにより接続されている(図2を参照)。また、一の間隙に配置されるリンク部20A、20Bの周方向の位相と、長軸方向に隣接する他の間隙に配置されるリンク部20A、20Bの周方向の位相が90°ずれている。 In the stent 100, the first loop 10A (one loop) and the second loop 10B (the other loop) are perpendicular to the longitudinal direction within the gap between the respective loops 10A, 10B. They are connected by two link portions 20A and 20B that face each other in the radial direction on a cross section perpendicular to the axis (see FIG. 2). In addition, the circumferential phase of the link portions 20A and 20B arranged in one gap and the circumferential direction phase of the link portions 20A and 20B arranged in another gap adjacent in the longitudinal direction are out of phase by 90°. .
 このような構成とすることにより、ステント100の全長に対してリンク部20A、20Bの置かれる周方向上の位置が分散され、ステント100の周方向位置における柔軟性が均一化した上で、第1の隙間g1が第2の隙間g2よりも小さい関係が、ステント100の縮径量が大きい場合でも維持される。 With such a configuration, the positions in the circumferential direction where the link portions 20A and 20B are placed are distributed over the entire length of the stent 100, and the flexibility of the stent 100 at the circumferential positions is made uniform. The relationship that the first gap g1 is smaller than the second gap g2 is maintained even when the diameter reduction amount of the stent 100 is large.
 ステント100では、第1小傾斜線状部32aの先端には、第1基本ユニット30A内の軸平行線状部31aに向かって突出した形状となる第1屈曲部36aが形成されている。また、第2小傾斜線状部32bの基端には、第2基本ユニット30B内の軸平行線状部31bに向かって突出した形状となる第2屈曲部36bが形成されている。 In the stent 100, a first bent portion 36a is formed at the distal end of the first small inclined linear portion 32a so as to protrude toward the axis-parallel linear portion 31a in the first basic unit 30A. A second bent portion 36b is formed at the proximal end of the second small inclined linear portion 32b so as to protrude toward the axis-parallel linear portion 31b in the second basic unit 30B.
 このような構成とすることにより、第1小傾斜線状部32aの先端近傍に位置する第1小湾曲部34aの内湾部分及び、第2小傾斜線状部32bの基端近傍に位置する第2小湾曲部34bの内湾部分の円弧長が長くなるため、これらの部分の応力集中が緩和され、第1小湾曲部34a及び第2小湾曲部34bでのステントフラクチャーが発生するリスクが低減される。 With such a configuration, the concave portion of the first small curved portion 34a located near the distal end of the first small inclined linear portion 32a and the inner curved portion located near the proximal end of the second small inclined linear portion 32b. Since the arc length of the inner curved portion of the second small curved portion 34b is longer, stress concentration in these portions is reduced, and the risk of stent fracture occurring in the first small curved portion 34a and the second small curved portion 34b is reduced. be.
 ステント100では、リンク部20A、20Bの長さ(L)を第1小傾斜線状部32aの長さ(s1)又は第2小傾斜線状部32bの長さ(s2)で除したリンク部長さ比(L/s1又はL/s2)が0.35以上0.44以下である。 In the stent 100, the link length obtained by dividing the length (L) of the link portions 20A and 20B by the length (s1) of the first small inclined linear portion 32a or the length (s2) of the second small inclined linear portion 32b The thickness ratio (L/s1 or L/s2) is 0.35 or more and 0.44 or less.
 このような構成とすることにより、ステント100を縮径させても、一の環状体10(例えば、第2環状体10B)の第1大湾曲部35aと一の環状体10に隣接する他の環状体(例えば、第1環状体10A)の第1小湾曲部34aが当接することを防止できる(図5を参照)。それにより、一の環状体10の第1大湾曲部35aと他の環状体10の第1小湾曲部34aの間にバルーン220が過剰に挟み込まれてバルーン220にピンホールが発生するリスクが低減される。 With such a configuration, even if the diameter of the stent 100 is reduced, the first large curved portion 35a of one annular body 10 (for example, the second annular body 10B) and other adjacent annular bodies 10 It is possible to prevent the contact of the first small curved portion 34a of the annular body (eg, the first annular body 10A) (see FIG. 5). As a result, the risk of the balloon 220 being excessively sandwiched between the first large curved portion 35a of one annular body 10 and the first small curved portion 34a of the other annular body 10 to cause pinholes in the balloon 220 is reduced. be done.
 ステント100では、全ての環状体10において、1つの環状体10内の基本ユニット30A、30C及び隣り合う他の環状体10内の基本ユニット30B、30Dの角度比(a/b)が2.17以上2.96以下、かつ、長さ比(t/s1又はt/s2)が1.24以上1.51以下で形成されている。1つの環状体10内の基本ユニット30A、30Cの周方向の位置は、隣り合う他の環状体10内の基本ユニット30B、30Dの周方向の位置に対して90°ずれている。 In the stent 100, in all annular bodies 10, the angle ratio (a/b) between the basic units 30A and 30C in one annular body 10 and the basic units 30B and 30D in another adjacent annular body 10 is 2.17. 2.96 or less, and the length ratio (t/s1 or t/s2) is 1.24 or more and 1.51 or less. The circumferential positions of the basic units 30A and 30C in one annular body 10 are shifted by 90° from the circumferential positions of the basic units 30B and 30D in the other adjacent annular body 10 .
 このような構成にすることにより、ステント100内のバルーン220の突出が起きる隙間の数の個体間のバラつきがより減少し、ステント保持力が安定化する。 By adopting such a configuration, the variation in the number of gaps in the stent 100 at which the balloon 220 protrudes is further reduced, and the stent retention force is stabilized.
 ステント100では、全ての基本ユニット30A、30B、30C、30Dの角度比(a/b)が2.17以上2.96以下、かつ、長さ比(t/s1又はt/s2)が1.24以上1.51以下で形成されている。 In the stent 100, all the basic units 30A, 30B, 30C, and 30D have an angle ratio (a/b) of 2.17 or more and 2.96 or less, and a length ratio (t/s1 or t/s2) of 1.5. 24 or more and 1.51 or less.
 このような構成にすることにより、ステント100内のバルーン220の突出が起きる隙間の数の個体間のバラつきがさらに減少し、ステント保持力が安定化する。 By adopting such a configuration, the variation in the number of gaps in the stent 100 at which the balloon 220 protrudes further decreases among individuals, and the stent retention force is stabilized.
 なお、長さ比(t/s1又はt/s2)が大きいほど、第1角度(a)及び/又は第2角度(b)の単位角度あたりのステント外径の変化量が増加するため、拡張限界径が大きくなる。本実施形態に係るステント100の長さ比(t/s1又はt/s2)は1.24以上1.51以下であるが、拡張限界径の観点より、長さ比(t/s1又はt/s2)は大きい方が好ましい。 Note that the larger the length ratio (t/s1 or t/s2), the greater the amount of change in the outer diameter of the stent per unit angle of the first angle (a) and/or the second angle (b). Larger limit diameter. The length ratio (t/s1 or t/s2) of the stent 100 according to the present embodiment is 1.24 or more and 1.51 or less. s2) is preferably large.
 以下、本発明を実施例により具体的に説明するが、本発明の範囲は下記の実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to the following examples.
 [評価試験]
 評価試験は、FEM解析アプリケーションソフト「Abaqus(Dassault Systems社製)」を用いて外径2mmのステント100をモデリングし、外径1mmになるまでの縮径挙動をシミュレートした後、ステント100の中心軸Xを基準とした角度範囲において、第1の隙間g1の角度範囲(θ1)及び第2の隙間g2の角度範囲(θ2)を解析した。θ1は図4に示す軸平行線状部31aの基端の位置における軸直交断面上で測定し、θ2は図4に示す第1小傾斜線状部32aの先端の位置における軸直交断面上で測定した。
[Evaluation test]
In the evaluation test, FEM analysis application software "Abaqus (manufactured by Dassault Systems)" was used to model the stent 100 with an outer diameter of 2 mm, and after simulating the diameter reduction behavior until the outer diameter became 1 mm, the center of the stent 100 In the angular range with respect to the axis X, the angular range (θ1) of the first gap g1 and the angular range (θ2) of the second gap g2 were analyzed. θ1 is measured on the axis-perpendicular cross-section at the base end position of the axis-parallel linear portion 31a shown in FIG. It was measured.
 当解析を実施する上で使用した条件を以下に示す。
・材料特性:原材料となるCoCr合金の引張試験により得られた真応力と真ひずみの相関関係を有する材料とした。
・要素特性:弾塑性体とした。
・要素の大きさ:ストラットの厚さ方向に4分割した高さと、ストラットの線幅方向及び延在方向に同程度の大きさの横幅及び縦幅を有する大きさとした。
・要素タイプ:3次元低減積分要素に3次元低減要素をラップしたC3D8R+M3D4Mを利用した。
・境界条件:ステントの外径より大きな内径を有する円筒形のパートをステントの周囲に配置し、ステント外径が1mmになるまでパートを収縮させた。パートの材料特性は超弾性特性とした。
The conditions used in conducting this analysis are shown below.
- Material properties: A material having a correlation between true stress and true strain obtained by a tensile test of a CoCr alloy as a raw material was used.
・Element properties: Elastoplastic.
- Size of the element: The height of the strut divided into four in the thickness direction, and the width and length of the strut in the line width direction and the extension direction of the same size.
- Element type: C3D8R+M3D4M, which is a three-dimensional reduction integral element wrapped with a three-dimensional reduction element, is used.
• Boundary conditions: A cylindrical part with an inner diameter greater than the outer diameter of the stent was placed around the stent and the part was contracted until the stent outer diameter was 1 mm. The material properties of the parts were superelastic properties.
 当解析を実施する上で、実施例1~5、比較例1~2の計7つのステント100をモデリングした。角度比(a/b)、長さ比(t/s1又はt/s2)、リンク部長さ比(L/s1又はL/s2)、角度比(θ1/θ2)と、これらに関わる寸法を表1に示す。この中で、第1の隙間g1の角度範囲(θ1)及び第2の隙間g2の角度範囲(θ2)は縮径後の数値であり、その他の比率及び寸法は縮径前の数値である。実施例1~5と比較例1~2の間で共通する縮径前のその他の寸法を表2に示す。なお、全ての環状体10において、環状体10内の2つの基本ユニット30A、30C、又は基本ユニット30B、30Dが表1及び表2に示す寸法を有している。表1及び表2に示す寸法が適用される基本ユニットのそれぞれの周方向の位置は、一の環状体10と隣り合う他の環状体10で90°ずれている。 In carrying out this analysis, a total of seven stents 100 of Examples 1-5 and Comparative Examples 1-2 were modeled. Angle ratio (a/b), length ratio (t/s1 or t/s2), link length ratio (L/s1 or L/s2), angle ratio (θ1/θ2), and related dimensions are shown. 1. Among these, the angle range (θ1) of the first gap g1 and the angle range (θ2) of the second gap g2 are the values after diameter reduction, and the other ratios and dimensions are the values before diameter reduction. Table 2 shows other dimensions before diameter reduction common between Examples 1-5 and Comparative Examples 1-2. In all annular bodies 10, two basic units 30A, 30C or basic units 30B, 30D in the annular body 10 have dimensions shown in Tables 1 and 2. The circumferential positions of the basic units to which the dimensions shown in Tables 1 and 2 are applied are shifted by 90° between one annular body 10 and another adjacent annular body 10 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2において、※1は次の意味である。リンク部の最小線幅及びリンク部の最大線幅は、リンク部の延在方向の範囲内における線幅方向の最小値及び最大値としている。リンク部の線幅方向は、リンク部の延在方向に垂直な方向としている。 In Table 2 above, *1 means the following. The minimum line width of the link portion and the maximum line width of the link portion are the minimum and maximum values in the line width direction within the range in the extending direction of the link portion. The line width direction of the link portion is a direction perpendicular to the extending direction of the link portion.
 上記表2において、※2は次の意味である。屈曲部の位置は、第1屈曲部36aの軸平行線状部31a側に最も突出した位置と第1小湾曲部34aの最内湾曲点p1の間の長軸方向の長さ、又は第2屈曲部36bの軸平行線状部31b側に最も突出した位置と第2小湾曲部34bの最内湾曲点p4の間の長軸方向の長さとしている。 In Table 2 above, *2 means the following. The position of the bent portion is the length in the longitudinal direction between the position where the first bent portion 36a protrudes most toward the axis-parallel linear portion 31a and the innermost bending point p1 of the first small curved portion 34a, or the second It is defined as the length in the longitudinal direction between the position of the bending portion 36b that protrudes most toward the axially parallel linear portion 31b and the innermost bending point p4 of the second small curved portion 34b.
 [評価結果]
 比較例2はθ1が9.5°であった。これは角度比(a/b)が2.17より小さいため、第2角度(b)が減少しにくかったためと推測される。ステント100を縮径する際、軸平行線状部31a、31bと小傾斜線状部32a、32bは、ステント断面(軸直交断面と同義)の円周の接線方向に互いに逆向きとなるような外力を受ける。この際、第2角度(b)が大きい、つまり中心軸Xに対する小傾斜線状部32a、32bの角度が大きいと、小傾斜線状部32a、32bの受ける外力を小傾斜線状部32a、32bの延在方向と線幅方向に分解した際の線幅方向の寄与が減る。線幅方向成分の外力は、第2角度(b)の減少を促すため、第2角度(b)に対して第1角度(a)が相対的に大きい、つまり角度比(a/b)が小さいほど、第2角度(b)が減少しにくい。従って、比較例2ではθ1が9.5°と比較的大きな値になったものと推測される。θ1がこの値においては、第1の隙間g1からバルーン220の突出が起こり得る。これより、実施例5で示すように角度比(a/b)を2.17以上で形成することにより、縮径を開始した早い段階で第2角度(b)の減少を促すことが示唆される。
[Evaluation results]
In Comparative Example 2, θ1 was 9.5°. It is presumed that this is because the angle ratio (a/b) is less than 2.17, and thus the second angle (b) is difficult to decrease. When the diameter of the stent 100 is reduced, the axis-parallel linear portions 31a, 31b and the slightly inclined linear portions 32a, 32b are arranged in opposite directions in the tangential direction of the circumference of the cross section of the stent (synonymous with the cross section orthogonal to the axis). receive an external force. At this time, if the second angle (b) is large, that is, if the angle of the small slant linear portions 32a and 32b with respect to the central axis X is large, the external force received by the small slant linear portions 32a and 32b will be The contribution in the line width direction when decomposed into the extending direction of 32b and the line width direction is reduced. Since the external force in the line width direction component promotes the decrease of the second angle (b), the first angle (a) is relatively large with respect to the second angle (b), that is, the angle ratio (a/b) is The smaller the value, the less likely the second angle (b) will decrease. Therefore, in Comparative Example 2, θ1 is assumed to be a relatively large value of 9.5°. At this value of θ1, the balloon 220 can protrude from the first gap g1. This suggests that forming the angle ratio (a/b) at 2.17 or more as shown in Example 5 promotes the reduction of the second angle (b) at an early stage when diameter reduction is started. be.
 比較例1はθ1が3.1°であり、θ2が5.2°であった。これは角度比(a/b)が2.96より大きいため、第2角度(b)が減少しやすく、長さ比(t/s1又はt/s2)が1.51より大きいため、第1角度(a)が減少しやすかったためと推測される。比較例1では、角度比(a/b)が大きいことからステント100の縮径を開始した早い段階で第2角度(b)が減少し、軸平行線状部31a、31bと小傾斜線状部32a、32bが当接したものと推測される。軸平行線状部31a、31bと小傾斜線状部32a、32bが当接すると、軸平行線状部31a、31bは縮径により生じるステント断面の円周の接線方向の外力を小傾斜線状部32a、32bの大湾曲部35a、35b側から受ける。それにより、軸平行線状部31a、31bは大傾斜線状部33の延在方向と平行な方向に向かうモーメントを受ける。軸平行線状部31a、31bと接続されたリンク部20A、20Bは、軸平行線状部31a、31bがステント100の外周面上で回転しないようにこれらを支持する効果を持つが、リンク部20A、20Bと接続されていない軸平行線状部31a、31bは、リンク部20A、20Bと接続されている軸平行線状部31a、31bよりも、縮径時に回転し易い。比較例1では、長さ比(t/s1又はt/s2)が大きいが、このモーメントは大傾斜線状部33が長いほど大きくなり、それに伴ってリンク部20A、20Bと接続されていない軸平行線状部31a、31bは回転しやすくなる。そして、軸平行線状部31a、31bが回転すると、その回転に連動して小傾斜線状部32a、32bも回転し、第1角度(a)が減少したものと推測される。従って、比較例1ではθ2が5.2°と比較的小さな値になったものと推測される。θ2がこの値においては、第2の隙間g2からバルーン220の突出が起こり得る。これより、実施例4で示すように長さ比(t/s1又はt/s2)が1.51以下であることで第1角度(a)の減少が防止できる
ことが示唆される。
In Comparative Example 1, θ1 was 3.1° and θ2 was 5.2°. This is because the angle ratio (a/b) is greater than 2.96, so the second angle (b) tends to decrease, and the length ratio (t/s1 or t/s2) is greater than 1.51, so the first It is presumed that this is because the angle (a) tends to decrease. In Comparative Example 1, since the angle ratio (a/b) is large, the second angle (b) decreases at an early stage when the diameter reduction of the stent 100 is started. It is presumed that the portions 32a and 32b are in contact with each other. When the axis-parallel linear portions 31a, 31b and the small-slanted linear portions 32a, 32b abut against each other, the axial-parallel linear portions 31a, 31b absorb the external force in the tangential direction of the circumference of the cross section of the stent, which is caused by the diameter reduction, into the small-slanted linear portions. It is received from the side of the large curved portions 35a, 35b of the portions 32a, 32b. As a result, the axis-parallel linear portions 31 a and 31 b receive a moment in a direction parallel to the extending direction of the large inclined linear portion 33 . The link portions 20A and 20B connected to the axis- parallel portions 31a and 31b have the effect of supporting the axis- parallel portions 31a and 31b so that they do not rotate on the outer peripheral surface of the stent 100. The axial parallel linear portions 31a and 31b that are not connected to the link portions 20A and 20B rotate more easily than the axial parallel linear portions 31a and 31b that are connected to the link portions 20A and 20B. In Comparative Example 1, the length ratio (t/s1 or t/s2) is large, but this moment increases as the length of the large inclined linear portion 33 increases. The parallel linear portions 31a and 31b become easier to rotate. Then, when the axis-parallel linear portions 31a and 31b rotate, the small inclined linear portions 32a and 32b also rotate in conjunction with the rotation, and it is presumed that the first angle (a) decreases. Therefore, in Comparative Example 1, θ2 is assumed to be a relatively small value of 5.2°. At this value of θ2, the balloon 220 can protrude from the second gap g2. This suggests that the length ratio (t/s1 or t/s2) of 1.51 or less as shown in Example 4 can prevent the first angle (a) from decreasing.
 実施例1~5のステント100は、角度比(a/b)が2.17以上2.96以下で形成されており、かつ、長さ比(t/s1又はt/s2)が1.24以上1.51以下で形成されている。実施例1~5のステント100では、縮径後に、第1の隙間g1の周方向の間隔と第2の隙間g2の周方向の間隔の間に明瞭な差が確認された。具体的には、実施例1~5のステント100では、第1の隙間g1の角度範囲(θ1)が2.5°~5.2°であり、第2の隙間g2の角度範囲(θ2)が18.0°~27.7°であった。実施例1~5のステント100は、第2の隙間g2の角度範囲(θ2)が第1の隙間g1の角度範囲(θ1)よりも十分に大きく形成されていることにより、第1の隙間g1からのバルーン220の突出が起きにくくなり、第2の隙間g2からのバルーン220の突出が起きやすくなる。従って、ステント100を使用してステントデリバリーシステム300を大量生産した際、ステント内のバルーンの突出が起きる隙間の数の個体間のバラつきが減少し、ステント保持力が安定化する。 The stents 100 of Examples 1 to 5 are formed with an angle ratio (a/b) of 2.17 or more and 2.96 or less, and a length ratio (t/s1 or t/s2) of 1.24. 1.51 or less. In the stents 100 of Examples 1 to 5, a clear difference was confirmed between the circumferential spacing of the first gap g1 and the circumferential spacing of the second gap g2 after diameter reduction. Specifically, in the stents 100 of Examples 1 to 5, the angle range (θ1) of the first gap g1 is 2.5° to 5.2°, and the angle range (θ2) of the second gap g2 is 2.5° to 5.2°. was 18.0° to 27.7°. In the stents 100 of Examples 1 to 5, the angle range (θ2) of the second gap g2 is formed sufficiently larger than the angle range (θ1) of the first gap g1. The balloon 220 is less likely to protrude from the second gap g2, and the balloon 220 is more likely to protrude from the second gap g2. Therefore, when the stent delivery system 300 is mass-produced using the stent 100, the number of inter-individual variability in the number of gaps in which balloon protrusion occurs in the stent is reduced, and the stent retention force is stabilized.
 また、実施例1~5のステント100では、縮径後に第2環状体10Bの第1大湾曲部35aと第1環状体10Aの第1小湾曲部34aの当接が確認されなかった。このように、角度比(a/b)が2.17以上2.96以下で形成されており、かつ、長さ比(t/s1又はt/s2)が1.24以上1.51以下で形成されているステント100においては、リンク部長さ比(L/s1又はL/s2)が0.35以上である場合に、隣接する環状体10の第1大湾曲部35aと第1小湾曲部34aの当接を好適に防止することができ、ピンホールが発生するリスクを低減することが可能であることを確認できた。 Further, in the stents 100 of Examples 1 to 5, contact between the first large curved portion 35a of the second annular body 10B and the first small curved portion 34a of the first annular body 10A was not confirmed after the diameter was reduced. Thus, the angle ratio (a/b) is 2.17 or more and 2.96 or less, and the length ratio (t/s1 or t/s2) is 1.24 or more and 1.51 or less. In the formed stent 100, when the link length ratio (L/s1 or L/s2) is 0.35 or more, the first large curved portion 35a and the first small curved portion of the adjacent annular body 10 It was confirmed that the abutment of 34a could be suitably prevented, and the risk of pinhole occurrence could be reduced.
 本出願は、2021年2月19日に出願された日本国特許出願第2021-024888号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2021-024888 filed on February 19, 2021, the disclosure of which is incorporated by reference in its entirety.
  10  環状体、
  10A 第1環状体、
  10B 第2環状体、
  10C 第3環状体、
  10D 第4環状体、
  10E 第5環状体、
  10F 第6環状体、
  10G 第7環状体、
  10H 第8環状体、
  10I 第9環状体、
  20A 一のリンク部(リンク部)、
  20B 他のリンク部(リンク部)、
  30  基本ユニット、
  30A 第1基本ユニット、
  30B 第2基本ユニット、
  30C 第3基本ユニット、
  30D 第4基本ユニット、
  31a 軸平行線状部、
  31b 軸平行線状部、
  32a 第1小傾斜線状部、
  32b 第2小傾斜線状部、
  33  大傾斜線状部、
  34a 第1小湾曲部、
  34b 第2小湾曲部、
  35a 第1大湾曲部、
  35b 第2大湾曲部、
  36a 第1屈曲部、
  36b 第2屈曲部、
  100 ステント、
  200 バルーンカテーテル、
  220 バルーン、
  300 ステントデリバリーシステム、
  g1  第1の隙間、
  g2  第2の隙間、
  a   第1角度、
  b   第2角度、
  t   大傾斜線状部の長さ、
  s1  第1小傾斜線状部の長さ、
  s2  第2小傾斜線状部の長さ、
  θ1  第1の隙間の角度範囲、
  θ2  第2の隙間の角度範囲、
  L   リンク部の長さ。
10 toroids,
10A first annular body,
10B second annular body,
10C third annular body,
10D fourth annular body,
10E fifth annular body,
10F sixth annular body,
10G 7th annulus,
10H eighth annular body,
10I ninth annulus,
20A one link part (link part),
20B another link part (link part),
30 basic units,
30A first basic unit,
30B second basic unit,
30C third basic unit,
30D fourth basic unit,
31a axis-parallel linear portion,
31b axis-parallel linear portion,
32a first small inclined linear portion,
32b second small inclined linear portion,
33 large inclined linear part,
34a first small curved portion,
34b second small curved portion,
35a first large curved portion,
35b second large curved portion,
36a first bent portion,
36b second bend,
100 stents,
200 balloon catheter,
220 balloon,
300 stent delivery system,
g1 first gap;
g2 second gap,
a first angle,
b second angle,
t the length of the linear portion with a large inclination;
s1 length of the first small inclined linear portion,
s2 the length of the second small inclined linear portion;
θ1 angle range of the first gap,
θ2 angle range of the second gap;
Length of L link part.

Claims (6)

  1.  長軸方向に延びる円筒形状に形作られたステントであって、
     基端と先端を有し、前記長軸方向と平行に延びる軸平行線状部と、
     基端と先端を有し、前記長軸方向に対して傾いて延びる第1小傾斜線状部と、
     基端と先端を有し、前記長軸方向に対して傾いて延びる第2小傾斜線状部と、
     基端と先端を有し、前記長軸方向に対して傾いて延びるとともに前記第1小傾斜線状部と前記第2小傾斜線状部の間に配置された大傾斜線状部と、
     前記軸平行線状部の先端と前記第1小傾斜線状部の先端を接続する第1小湾曲部と、
     前記第1小傾斜線状部の基端と前記大傾斜線状部の基端を接続する第1大湾曲部と、
     前記大傾斜線状部の先端と前記第2小傾斜線状部の先端を接続する第2大湾曲部と、
     前記第2小傾斜線状部の基端に接続された第2小湾曲部と、を有する基本ユニットが前記長軸方向周りの周方向に4つ配列されており、
     一の前記基本ユニット内の前記第2小湾曲部と、前記一の基本ユニットと前記周方向において隣接する他の前記基本ユニット内の前記軸平行線状部の基端と、を接続することで形成される環状体が、前記長軸方向において同位相で複数配列されており、
     一の前記環状体の前記第1小湾曲部又は前記第2小湾曲部と、前記一の環状体と前記長軸方向において隣接する他の前記環状体の前記第2小湾曲部又は前記第1小湾曲部と、を接続するリンク部を少なくとも一つ以上有し、
     1つの前記環状体に含まれる4つの前記基本ユニットの少なくとも一つにおいて、
     前記大傾斜線状部と前記第1小傾斜線状部の間、又は前記大傾斜線状部と前記第2小傾斜線状部の間の成す第1角度を、前記軸平行線状部と前記第1小傾斜線状部の間、又は前記軸平行線状部と前記第2小傾斜線状部の間の成す第2角度で除した角度比が2.17以上2.96以下の関係を満たし、かつ、
     前記大傾斜線状部の長さを、前記第1小傾斜線状部の長さ又は前記第2小傾斜線状部の長さで除した長さ比が1.24以上1.51以下の関係を満たす、ことを特徴とするステント。
    A longitudinally extending cylindrically shaped stent comprising:
    an axis-parallel linear portion having a proximal end and a distal end and extending parallel to the longitudinal direction;
    a first slightly inclined linear portion having a proximal end and a distal end and extending obliquely with respect to the longitudinal direction;
    a second slightly inclined linear portion having a proximal end and a distal end and extending obliquely with respect to the longitudinal direction;
    a large inclined linear portion having a proximal end and a distal end, extending obliquely with respect to the longitudinal direction, and disposed between the first small inclined linear portion and the second small inclined linear portion;
    a first small curved portion connecting the tip of the axis-parallel linear portion and the tip of the first small inclined linear portion;
    a first large curved portion connecting the base end of the first small slope linear portion and the base end of the large slope linear portion;
    a second large curved portion connecting the tip of the large inclination linear portion and the tip of the second small inclination linear portion;
    and a second small curved portion connected to the base end of the second small inclined linear portion, four basic units are arranged in a circumferential direction around the longitudinal direction,
    By connecting the second small curved portion in one of the basic units to the base end of the axis-parallel linear portion in the other basic unit adjacent to the one basic unit in the circumferential direction A plurality of annular bodies to be formed are arranged in the same phase in the longitudinal direction,
    The first small curved portion or the second small curved portion of the one annular body, and the second small curved portion or the first small curved portion of the other annular body adjacent to the one annular body in the longitudinal direction. Having at least one or more link portions connecting the small curved portion,
    In at least one of the four basic units contained in one annular body,
    A first angle formed between the large inclined linear portion and the first small inclined linear portion or between the large inclined linear portion and the second small inclined linear portion is defined as the axis-parallel linear portion. A relationship in which an angle ratio divided by a second angle formed between the first small-slanted linear portions or between the axis-parallel linear portion and the second small-slanted linear portion is 2.17 or more and 2.96 or less. and
    The length ratio obtained by dividing the length of the large inclined linear portion by the length of the first small inclined linear portion or the length of the second small inclined linear portion is 1.24 or more and 1.51 or less. A stent, characterized in that it satisfies a relationship.
  2.  前記リンク部は、前記長軸方向において隣接する前記環状体の間である間隙の範囲内の前記長軸方向と直交する軸直交断面上において、径方向で対向する2つの位置に配置されており、
     一の前記間隙に配置されるそれぞれの前記リンク部の前記周方向の位相と、前記一の間隙と前記長軸方向において隣接する他の前記間隙に配置されるそれぞれの前記リンク部の前記周方向の位相が90°ずれている、請求項1に記載のステント。
    The link portions are arranged at two positions facing each other in the radial direction on an axis-perpendicular cross-section perpendicular to the longitudinal direction within the gap between the annular bodies adjacent in the longitudinal direction. ,
    The circumferential phase of each of the link portions arranged in one of the gaps, and the circumferential direction of each of the link portions arranged in the other gap adjacent to the one gap in the longitudinal direction. are 90 degrees out of phase.
  3.  前記第1小傾斜線状部の前記先端には、前記一の基本ユニット内の前記軸平行線状部に向かって突出した形状となる第1屈曲部が形成されており、
     前記第2小傾斜線状部の前記基端には、前記他の基本ユニット内の前記軸平行線状部に向かって突出した形状となる第2屈曲部が形成されている、請求項1又は請求項2に記載のステント。
    A first bent portion having a shape projecting toward the axis-parallel linear portion in the one basic unit is formed at the tip of the first small inclined linear portion,
    2. The base end of the second slightly inclined linear portion is formed with a second bent portion projecting toward the axis-parallel linear portion in the other basic unit. 3. The stent of claim 2.
  4.  前記リンク部の長さを前記第1小傾斜線状部の長さ又は前記第2小傾斜線状部の長さで除したリンク部長さ比が0.35以上である、請求項1~3のいずれか1項に記載のステント。 Claims 1 to 3, wherein a link portion length ratio obtained by dividing the length of the link portion by the length of the first small-slanted linear portion or the length of the second small-slanted linear portion is 0.35 or more. The stent according to any one of Claims 1 to 3.
  5.  前記4つの基本ユニットの前記周方向の位相はそれぞれ90°ずれており、
     前記一の環状体内の前記径方向で対向する2つの前記基本ユニット内、及び前記一の環状体と前記長軸方向において隣接する前記他の環状体内の前記基本ユニットであって、前記周方向の位相が前記一の環状体内の前記2つの基本ユニットの前記周方向の位相と90°ずれた位置にある2つの前記基本ユニット内において、
     前記角度比が2.17以上2.96以下の関係を満し、かつ、
     前記長さ比が1.24以上1.51以下の関係を満す、請求項1~4のいずれか1項に記載のステント。
    The four basic units are out of phase with each other in the circumferential direction by 90°,
    in the two basic units in the one annular body that face each other in the radial direction and in the other annular body that is adjacent to the one annular body in the longitudinal direction, In the two basic units whose phases are 90° out of phase with the circumferential phases of the two basic units in the one annular body,
    The angle ratio satisfies the relationship of 2.17 or more and 2.96 or less, and
    The stent according to any one of claims 1 to 4, wherein the length ratio satisfies the relationship of 1.24 or more and 1.51 or less.
  6.  全ての前記基本ユニット内において、
     前記角度比が2.17以上2.96以下の関係を満し、かつ、
     前記長さ比が1.24以上1.51以下の関係を満す、請求項5に記載のステント。
    Within all said basic units,
    The angle ratio satisfies the relationship of 2.17 or more and 2.96 or less, and
    6. The stent according to claim 5, wherein the length ratio satisfies the relationship of 1.24 or more and 1.51 or less.
PCT/JP2022/005809 2021-02-19 2022-02-15 Stent WO2022176826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-024888 2021-02-19
JP2021024888 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176826A1 true WO2022176826A1 (en) 2022-08-25

Family

ID=82931735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005809 WO2022176826A1 (en) 2021-02-19 2022-02-15 Stent

Country Status (1)

Country Link
WO (1) WO2022176826A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086463A (en) * 2006-09-29 2008-04-17 Terumo Corp In-vivo indwelling stent and biological organ expander
JP2010525903A (en) * 2007-05-04 2010-07-29 アボット カルディオバスキュラー システムズ インコーポレーテッド Stent having high radial strength and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086463A (en) * 2006-09-29 2008-04-17 Terumo Corp In-vivo indwelling stent and biological organ expander
JP2010525903A (en) * 2007-05-04 2010-07-29 アボット カルディオバスキュラー システムズ インコーポレーテッド Stent having high radial strength and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6479493B2 (en) High flexibility stent
ES2369568T3 (en) STENT CONFIGURATIONS
US8118859B2 (en) Occlusion device combination of stent and mesh having offset parallelogram porosity
ES2208886T3 (en) AN EXPANDABLE STENT.
JP4844394B2 (en) Stent
EP1786358B1 (en) Flap-cover aneurysm stent
US20100268326A1 (en) Expandable Framework with Overlapping Connectors
US7988720B2 (en) Longitudinally flexible expandable stent
JP2008515538A (en) Non-shortened helical stent
JP2008500134A (en) Stent having contoured bridging elements
EP1715811B1 (en) Stent with nested flexible connectors for flexibility and crimpability
JP4518609B2 (en) Indwelling stent
JP2004121342A (en) In vivo indwelling stent and living body organ dilator
WO2022176826A1 (en) Stent
JP6120373B2 (en) Stent and stent delivery system
JP4373599B2 (en) Biological organ dilator
JP4351802B2 (en) In vivo indwelling stent and biological organ dilator
WO2022176934A1 (en) Stent and stent delivery system
JP4373456B2 (en) In vivo indwelling stent and biological organ dilator
JP5401148B2 (en) In vivo indwelling stent and biological organ dilator
US20170304094A1 (en) Stent and method for producing stent
WO2016103940A1 (en) Stent
US20170273811A1 (en) Stent
JP2019122556A (en) Stent
JP5847160B2 (en) Stent and stent delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756144

Country of ref document: EP

Kind code of ref document: A1