WO2022176711A1 - Air purifier - Google Patents

Air purifier Download PDF

Info

Publication number
WO2022176711A1
WO2022176711A1 PCT/JP2022/004924 JP2022004924W WO2022176711A1 WO 2022176711 A1 WO2022176711 A1 WO 2022176711A1 JP 2022004924 W JP2022004924 W JP 2022004924W WO 2022176711 A1 WO2022176711 A1 WO 2022176711A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
discharge
charging device
outlet
internal space
Prior art date
Application number
PCT/JP2022/004924
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 山城
規 浅田
伸 松本
延章 大栗
章朝 瑞慶覧
裕俊 杉山
翔 寺沢
Original Assignee
富士電機株式会社
学校法人幾徳学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 学校法人幾徳学園 filed Critical 富士電機株式会社
Publication of WO2022176711A1 publication Critical patent/WO2022176711A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • F24F8/98Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes for removing ozone

Definitions

  • the present disclosure relates to air purifiers.
  • Patent Document 1 an electric dust collection type air cleaner that charges dust particles contained in the air and collects the charged dust particles by electrostatic adsorption is known (see Patent Document 1, for example).
  • the electrostatic precipitator function alone can collect fine particles (viruses or bacteria. Microscopic substances such as dust containing viruses or bacteria can also be collected), the collected viruses or bacteria cannot be inactivated.
  • the present disclosure provides an air purifier capable of inactivating captured viruses or bacteria.
  • This disclosure is an internal space interposed between the inlet and the outlet; a charging device that charges fine particles contained in the air flowing from the suction port into the internal space; a humidifying device for humidifying the air; a collection device that collects charged fine particles from the air by electrostatic force; and a discharging device for discharging the air from the collecting device to the outlet.
  • an air cleaner capable of inactivating the collected viruses or bacteria.
  • FIG. 1 is a schematic diagram showing a first configuration example of a charging device in an air cleaner of one embodiment
  • FIG. FIG. 4 is a schematic diagram showing a second configuration example of the charging device in the air cleaner of one embodiment
  • It is a schematic diagram which shows the structural example of the collection apparatus in the air cleaner of one Embodiment.
  • It is a schematic diagram which shows the 1st structural example of the air cleaner of one Embodiment.
  • FIG. 10 is a diagram showing an example of verification results of the survival rate of Staphylococcus aureus before humidification at each position in the internal space.
  • FIG. 10 is a diagram showing an example of verification results of the survival rate of Staphylococcus aureus before humidification at each position in the internal space.
  • FIG. 10 is a diagram showing an example of verification results of the survival rate of Staphylococcus aureus after humidification at each position in the internal space.
  • FIG. 10 is a diagram showing an example of the results of verification of virus viability before humidification at each position in the internal space.
  • FIG. 10 is a diagram showing an example of the verification result of virus viability after humidification at each position in the internal space.
  • FIG. 5 is a diagram showing an example of the relationship between the applied voltage and the discharge current depending on the difference in the polarity of the discharge electrodes in the charging device;
  • FIG. 5 is a diagram showing an example of the relationship between discharge current and ozone concentration depending on the difference in polarity of discharge electrodes in a charging device;
  • FIG. 1 is a diagram showing an example of an air purifier according to one embodiment.
  • An air purifier 100 shown in FIG. 1 is a device for purifying air.
  • the air purifier 100 includes a housing 10 that houses devices for purifying air.
  • the housing 10 has an intake port 11 for sucking air from the outside of the air cleaner 100 and an outlet port 12 for blowing out the air cleaned by devices inside the housing 10 to the outside of the air cleaner 100 .
  • the suction port 11 is provided at one end (eg, lower portion) of the housing 10, and the outlet 12 is provided at the other end (eg, upper portion) of the housing 10. .
  • the respective positions of the suction port 11 and the blowing port 12 are not limited to this, and may be other locations.
  • the installation number of each of the suction port 11 and the blowing port 12 may be one or more.
  • the air cleaner 100 includes an internal space 20, a charging device 30, a humidifying device 40, a collecting device 50, a discharging device 60 and a control device 80.
  • the positional relationship of each device shown in FIG. 1 is merely an example, and is not limited to this as long as the desired effect of inactivating viruses or bacteria is achieved.
  • the internal space 20 is a space that exists inside the housing 10 and is interposed between the inlet 11 and the outlet 12 .
  • the internal space 20 is a flow path that connects the suction port 11 to the blowout port 12, and the air flowing in from the suction port 11 flows.
  • the charging device 30 is a device that charges fine particles contained in the air flowing from the suction port 11 into the internal space 20 (hereinafter also referred to as "air A").
  • Microparticles are viruses or bacteria, but may also be minute substances such as dust containing viruses or bacteria.
  • Particulates may include microparticulate matter (PM2.5).
  • PM2.5 refers to particles with a size of 2.5 ⁇ m or less among particles floating in the air.
  • the collection device 50 collects charged fine particles from the air A flowing in the internal space 20 by electrostatic force. For example, when the collection device 50 has the ability to collect fine particles with a size of 10 nm or more and 100 ⁇ m or less, a small virus of about 30 nm, a novel coronavirus (COVID-19) of about 100 nm, or virus droplets of several ⁇ m. It can collect pathogenic bacteria.
  • the size of fine particles that can be collected by the collecting device 50 is not particularly limited.
  • the discharge device 60 discharges the air A from the collection device 50 to the outlet 12 .
  • the discharge device 60 introduces the air outside the air cleaner 100 into the internal space 20 through the suction port 11 and discharges the air A that has passed through the collection device 50 to the discharge port 12 .
  • the discharge device 60 has, for example, a fan and a motor, and discharges the air A to the outlet 12 by rotating the fan with the motor.
  • the control device 80 operates or stops the charging device 30, the humidifying device 40, the collecting device 50, and the discharging device 60 according to the contents of the operation instruction from the user.
  • the air cleaner 100 includes the humidifying device 40 that humidifies the air A flowing in the internal space 20 .
  • the humidifying device 40 that humidifies the air A flowing in the internal space 20 .
  • ozone (O 3 ) contained in air A and moisture (H 2 O) contained in air A are mixed, hydroxyl radicals (OH radicals) that inactivate viruses or bacteria are generated. Therefore, by humidifying the air A with the humidifier 40, OH radicals can be generated, so viruses or bacteria contained in the air A and viruses or bacteria collected by the collection device 50 can be inactivated.
  • the air purifier 100 of the present embodiment can efficiently generate OH radicals that inactivate viruses or bacteria by humidifying the air A with the humidifier 40 even with a relatively small amount of ozone. Therefore, the air cleaner 100 can inactivate viruses or bacteria contained in the air A and viruses or bacteria collected by the collecting device 50 .
  • the charging device 30 may charge fine particles contained in the air A by corona discharge. Moisture contained in the air A humidified by the humidifier 40 readily reacts with ozone generated in the air A by corona discharge. Therefore, the air cleaner 100 can efficiently generate OH radicals that inactivate viruses or bacteria. As a result, the effect of inactivating the viruses or bacteria contained in the air A and the viruses or bacteria collected by the collecting device 50 is enhanced.
  • the ozone contained in the air A (which may include ozone generated by corona discharge) reacts with the moisture contained in the air A humidified by the humidifier 40 and is easily decomposed. As a result, the concentration of ozone contained in the air A is reduced, so that the discharge device 60 can discharge air having an ozone concentration of 0.1 ppm or less from the outlet 12 .
  • the humidifier 40 humidifies the air A to a humidity of 67% or higher, the moisture contained in the humidified air A reacts with the ozone contained in the air A (which may include ozone generated by corona discharge). promotes. This increases the efficiency of generating OH radicals and further improves the effect of inactivating viruses or bacteria.
  • the humidifier 40 preferably humidifies the air A to a humidity of 70% or more, more preferably 75% or more, in terms of increasing the efficiency of generating OH radicals (increasing the effect of inactivating viruses or bacteria). It is preferable, and it is more preferable to humidify to 80% or more.
  • the position of the humidifying device 40 is not particularly limited as long as it satisfies the desired humidifying function.
  • the humidifying device 40 humidifies the gas A between the suction port 11 and the charging device 30 .
  • the air A humidified by the humidifying device 40 is easily supplied to the charging device 30, so that the reaction between the moisture contained in the air A and ozone (which may include ozone generated by corona discharge) is further enhanced.
  • the efficiency of generating OH radicals is increased, and the effect of inactivating viruses or bacteria is further improved.
  • the humidifying device 40 may humidify the air A passing through the charging device 30 . This further promotes the reaction between the moisture contained in the air A and ozone (which may include ozone generated by corona discharge). As a result, the efficiency of generating OH radicals is increased, and the effect of inactivating viruses is further improved.
  • the arrangement position of the collection device 50 is not particularly limited as long as it satisfies the desired collection function.
  • the collecting device 50 collects charged fine particles from the air A by electrostatic force between the charging device 30 and the outlet 12 .
  • the particles charged in the charging device 30 are more likely to be supplied to the collecting device 50, so that the capability of collecting the charged particles is improved.
  • the discharging device 60 is interposed between the charging device 30 and the outlet 12, the collecting device 50 collects the charged fine particles from the air A by electrostatic force between the charging device 30 and the discharging device 60. is preferred. This improves the ability to collect charged fine particles.
  • the placement position of the ejection device 60 is not particularly limited as long as it satisfies the desired ejection function.
  • the discharge device 60 is arranged between the collection device 50 and the outlet 12 . Since the fine particles contained in the air A are collected by the collecting device 50, the discharging device 60 is disposed between the collecting device 50 and the blowout port 12, so that the discharging device 60 can collect the dirty air A. less likely to be polluted. As a result, for example, safety in maintenance such as replacement and cleaning of the discharging device 60 is improved.
  • the air purifier 100 may include a filter 90 for filtering ozone between the collecting device 50 and the outlet 12 .
  • a filter 90 for filtering ozone between the collecting device 50 and the outlet 12 .
  • the filter 90 is preferably interposed between the discharge device 60 and the outlet 12 .
  • the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced.
  • manganese oxide as the catalyst of the filter 90, the effect of reducing the ozone concentration is improved.
  • FIG. 2 is a schematic diagram showing a first configuration example of the charging device in the air cleaner of one embodiment.
  • a charging device 30A shown in FIG. 2 is an example of the charging device 30 described above.
  • the charging device 30A has a discharge section 31 that generates corona discharge.
  • the discharge part 31 has a discharge wire 32 arranged in the internal space 20 and ground electrodes 33 and 34 facing the discharge wire 32 .
  • the discharge wire 32 is an example of a discharge electrode.
  • the ground electrode 34 is grounded at the same potential as the ground electrode 33 .
  • the charging device 30A applies a high voltage HV1 between the discharge wire 32 and the ground electrodes 33, 34 to generate corona discharge between the discharge wire 32 and the ground electrodes 33, 34.
  • FIG. 1 high voltage
  • FIG. 3 is a schematic diagram showing a second configuration example of the charging device in the air cleaner of one embodiment.
  • a charging device 30B shown in FIG. 3 is an example of the charging device 30 described above.
  • the charging device 30B has a discharge section 36 that generates corona discharge.
  • the discharge section 36 has a discharge electrode 37 arranged in the internal space 20, a ground electrode 38 facing the discharge electrode 37, and an insulator 39 for insulating between the discharge electrode 37 and a support section (inner wall, etc.).
  • the discharge electrode 37 is a disk-shaped electrode with a plurality of sharp projections extending radially.
  • the discharge section 36 has a discharge electrode group 35 in which a plurality of discharge electrodes 37 are laminated with a space therebetween.
  • a plurality of discharge electrode groups 35 are arranged in a plurality of spaces partitioned by grid-like ground electrodes 38 .
  • the charging device 30B applies a high voltage HV1 between the discharge electrode 37 (the plurality of discharge electrode groups 35) and the ground electrode 38, thereby causing the discharge electrodes 37 (the plurality of discharge electrode groups 35) and the ground electrode 38 to A corona discharge is generated between
  • the discharge electrode of the charging device 30 may have a positive polarity or a negative polarity.
  • the positive discharge electrode is an electrode to which a positive high voltage is applied with respect to the ground electrode
  • the negative discharge electrode is an electrode to which a negative high voltage is applied with respect to the ground electrode.
  • the charging device 30 applies a positive high voltage HV1 between the ground electrode and the positive discharge electrode to generate corona discharge between the two electrodes, thereby suppressing the concentration of ozone in the internal space 20 and trapping the ozone. It is possible to improve the collection rate of fine particles in the collection device 50 .
  • FIG. 4 is a schematic diagram showing a configuration example of a collecting device in an air purifier according to one embodiment.
  • a collection device 50A shown in FIG. 4 is an example of the collection device 50 described above.
  • 50 A of collection apparatuses have the electric field generation part 51 which generates an electrostatic field.
  • the electric field generator 51 has a high voltage electrode 54 arranged in the internal space 20 and collection electrodes 52 and 53 facing the high voltage electrode 54 .
  • High voltage electrode 54 is, for example, a conductive plate.
  • the collection electrode 53 is grounded at the same potential as the collection electrode 53 .
  • the collection device 50A applies a high voltage HV2 between the high voltage electrode 54 and the collection electrodes 52, 53 to generate an electrostatic field between the high voltage electrode 54 and the collection electrodes 52, 53. .
  • the charged fine particles are attracted to the collecting electrodes 52 and 53 by electrostatic force and adhere to the collecting electrodes 52 and 53 .
  • FIG. 5 is a schematic diagram showing a first structural example of the air purifier of one embodiment.
  • An air cleaner 100A shown in FIG. 5 is an example of the air cleaner 100 described above.
  • the air cleaner 100A has a structure in which the discharge section 31 of the charging device and the electric field generation section 51 of the collection device are separated.
  • the discharge line 32 and the high voltage electrode 54 are arranged in the air flow direction within the internal space 20 .
  • the discharge device 60 discharges the air A in the internal space 20 to the outlet by rotating the fan 61 with a motor.
  • FIG. 6 is a schematic diagram showing a second structural example of the air purifier of one embodiment.
  • An air cleaner 100B shown in FIG. 6 is an example of the air cleaner 100 described above.
  • the air cleaner 100B has a structure in which the discharge section 31 of the charging device and the electric field generation section 51 of the collection device are integrated.
  • the plurality of discharge lines 32 are arranged in the air flow direction within the internal space 20 .
  • the discharge device 60 discharges the air A in the internal space 20 to the outlet by rotating the fan 61 with a motor.
  • FIG. 7 is a diagram showing an example of the verification result of the survival rate of bacteria before humidification (humidity of air A: 38% to 66%) at each position B1 to B6 in the internal space 20.
  • FIG. FIG. 8 is a diagram showing an example of the verification result of the survival rate of bacteria after humidification (humidity of air A: 75% to 90%) at positions B1 to B6 in internal space 20.
  • FIG. 7 and 8 show an example of the verification result of the survival rate of bacteria arranged in the same number at positions B1 to B6 in the internal space 20 in the air purifier 100A (see FIG. 5). The survival rate on the vertical axis in FIGS.
  • FIG. 7 and 8 indicates the ratio of the survival number of bacteria arranged at each position to the survival number of bacteria arranged at the position B0 on the most upstream side in the internal space 20.
  • FIG. 7 and 8 “with electric field” indicates the case where the electric field generator 51 generates an electric field, and "without electric field” indicates the case where the electric field generator 51 does not generate the electric field.
  • the bacterium placed at each position B1 to B6 is Staphylococcus aureus NBRC13276.
  • the processing conditions at the time of verification were as follows: flow velocity (wind speed) of air A in internal space 20: 0.5 m/s; processing time: 1 hour; humidity of air A: 90%; HV1 is -8.5 kV to 9.5 kV, and the high voltage HV2 applied in the electric field generator 51 is -5 kV.
  • the results shown in FIGS. 7 and 8 are examples when the ozone concentration in the internal space 20 is 1 ppm. and the same results as those with an electric field were obtained.
  • the above results were about the inactivation effect on Staphylococcus aureus, but the inactivation effect of corona discharge was also confirmed for viruses.
  • the experimental apparatus is the same as in FIG. Escherichia coli phage MS2 was applied to each position B1 to B6 on the ground electrode and subjected to corona discharge treatment.
  • FIG. 9 shows the survival rate of MS2 at each application position after 5 hours of operation at a normal humidity of 22% to 28% and an ozone concentration of 8 ppm. Viability at each position B1-B6 was 70%-100% and could hardly be inactivated.
  • FIG. 10 shows the survival rate when the relative humidity of the flowing gas is humidified to 75 to 90% and the corona discharge treatment is performed for 1 hour. The survival rate at each position B2 to B6 was 11 to 39%, and the virus could be inactivated at a low ozone concentration in a short period of time compared to the case of normal humidity in FIG.
  • the position B1 is located upstream of the discharge line 32, and ozone and OH radicals do not reach it, so no deactivation effect is obtained.
  • the MS2 used in the test is Escherichia coli phage, which is recommended by the Japan Electrical Manufacturers' Association standard JEM1467 and is known as a virus often used for alternative evaluation.
  • FIG. 11 is a diagram showing an example of the relationship between the applied voltage and the discharge current due to the different polarities of the discharge electrodes in the charging device.
  • FIG. 12 is a diagram showing an example of the relationship between the discharge current and the ozone concentration depending on the difference in the polarity of the discharge electrode in the charging device.
  • 11 and 12 show an example of the result of verifying the characteristic change due to the difference in polarity of the discharge wire 32 in the air cleaner 100A (see FIG. 5).
  • 11 and 12 illustrate the case where the flow velocity (wind velocity) of the air A inside the internal space 20 is 9 m/s.
  • the voltage on the horizontal axis indicates the high voltage HV1 applied to the discharge wire 32
  • the current on the vertical axis indicates the discharge current flowing through the discharge wire 32.
  • the high voltage HV1 applied to the discharge wire 32 is higher when the polarity of the discharge wire 32 is positive than when the polarity of the discharge wire 32 is negative.
  • the higher the high voltage HV1 applied to the discharge wire 32 the higher the fine particle collection efficiency of the collection device 50. Therefore, by setting the polarity of the discharge wire 32 to the positive polarity, it is possible to improve the collection rate of fine particles in the collection device 50 .
  • the current on the horizontal axis indicates the discharge current flowing through the discharge wire 32
  • the ozone concentration on the horizontal axis indicates the ozone concentration in the internal space 20 .
  • the ozone concentration at positive polarity was about 1/8 of the ozone concentration at negative polarity. Therefore, by making the polarity of the discharge wire 32 positive, the ozone concentration in the internal space 20 was suppressed.
  • the air cleaner may further include an irradiation device that irradiates the internal space 20 with ultraviolet rays that inactivate viruses. This further improves the effect of inactivating viruses.
  • REFERENCE SIGNS LIST 10 housing 11 suction port 12 outlet 20 internal space 30, 30A, 30B charging device 31 discharge section 32 discharge wire 33, 34 ground electrode 35 discharge electrode group 36 discharge section 37 discharge electrode 38 ground electrode 39 insulator 40 humidifier 50, 50A collection device 51 electric field generator 52, 53 collection electrode 54 high voltage electrode 60 discharge device 61 fan 80 control device 90 filter 100, 100A, 100B air cleaner

Abstract

Provided is an air purifier comprising: an interior space that is interposed between a suction port and a blow port; a charging device that charges microparticles contained in air that flows into the interior space from the suction port; a humidifying device that humidifies the air; a collection device that uses electrostatic force to collect the charged microparticles from the air; and an ejection device that ejects air from the collection device to the blow port. The charging device charges the microparticles by using corona discharge, for example.

Description

空気清浄機Air cleaner
 本開示は、空気清浄機に関する。 The present disclosure relates to air purifiers.
 従来、空気中に含まれる塵埃粒子を帯電させ、帯電した塵埃粒子を静電吸着によって捕集する電気集塵式の空気清浄機が知られている(例えば、特許文献1参照)。 Conventionally, an electric dust collection type air cleaner that charges dust particles contained in the air and collects the charged dust particles by electrostatic adsorption is known (see Patent Document 1, for example).
特開2001-79077号公報JP-A-2001-79077
 病院、映画館、各種交通機関、船など、罹患者や多くの人がいる環境では、新型コロナウィルス感染症やインフルエンザの対策のニーズが急激に高まっている。そのため、空気に含まれるウイルス又は病原性細菌を不活化する手段が求められている。  The need for countermeasures against new coronavirus infections and influenza is rapidly increasing in environments where there are many sick people and people, such as hospitals, movie theaters, various transportation facilities, and ships. Therefore, there is a need for a means of inactivating airborne viruses or pathogenic bacteria.
 しかしながら、電気集塵機能だけでは、微粒子(ウイルス又は細菌。ウイルス又は細菌を含む塵埃などの微小物質でもよい)を捕集できるものの、その捕集したウイルス又は細菌を不活化できない。 However, although the electrostatic precipitator function alone can collect fine particles (viruses or bacteria. Microscopic substances such as dust containing viruses or bacteria can also be collected), the collected viruses or bacteria cannot be inactivated.
 本開示は、捕集したウイルス又は細菌を不活化可能な空気清浄機を提供する。 The present disclosure provides an air purifier capable of inactivating captured viruses or bacteria.
 本開示は、
 吸い込み口と吹き出し口との間に介在する内部空間と、
 前記吸い込み口から前記内部空間に流れる空気に含まれる微粒子を帯電させる帯電装置と、
 前記空気を加湿する加湿装置と、
 前記空気から、帯電した微粒子を静電気力により捕集する捕集装置と、
 前記捕集装置から前記吹き出し口に前記空気を排出する排出装置と、を備える、空気清浄機を提供する。
This disclosure is
an internal space interposed between the inlet and the outlet;
a charging device that charges fine particles contained in the air flowing from the suction port into the internal space;
a humidifying device for humidifying the air;
a collection device that collects charged fine particles from the air by electrostatic force;
and a discharging device for discharging the air from the collecting device to the outlet.
 本開示の技術によれば、捕集したウイルス又は細菌を不活化可能な空気清浄機を提供できる。 According to the technology of the present disclosure, it is possible to provide an air cleaner capable of inactivating the collected viruses or bacteria.
一実施形態の空気清浄機の一例を示す図である。It is a figure which shows an example of the air cleaner of one Embodiment. 一実施形態の空気清浄機における帯電装置の第1構成例を示す模式図である。1 is a schematic diagram showing a first configuration example of a charging device in an air cleaner of one embodiment; FIG. 一実施形態の空気清浄機における帯電装置の第2構成例を示す模式図である。FIG. 4 is a schematic diagram showing a second configuration example of the charging device in the air cleaner of one embodiment; 一実施形態の空気清浄機における捕集装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the collection apparatus in the air cleaner of one Embodiment. 一実施形態の空気清浄機の第1構造例を示す模式図である。It is a schematic diagram which shows the 1st structural example of the air cleaner of one Embodiment. 一実施形態の空気清浄機の第2構造例を示す模式図である。It is a schematic diagram which shows the 2nd structural example of the air cleaner of one Embodiment. 内部空間内の各位置における、加湿前の黄色ブドウ球菌の生存率の検証結果の一例を示す図である。FIG. 10 is a diagram showing an example of verification results of the survival rate of Staphylococcus aureus before humidification at each position in the internal space. 内部空間内の各位置における、加湿後の黄色ブドウ球菌の生存率の検証結果の一例を示す図である。FIG. 10 is a diagram showing an example of verification results of the survival rate of Staphylococcus aureus after humidification at each position in the internal space. 内部空間内の各位置における、加湿前のウイルスの生存率の検証結果の一例を示す図である。FIG. 10 is a diagram showing an example of the results of verification of virus viability before humidification at each position in the internal space. 内部空間内の各位置における、加湿後のウイルスの生存率の検証結果の一例を示す図である。FIG. 10 is a diagram showing an example of the verification result of virus viability after humidification at each position in the internal space. 帯電装置における放電電極の極性の違いによる、印加電圧と放電電流との関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the applied voltage and the discharge current depending on the difference in the polarity of the discharge electrodes in the charging device; 帯電装置における放電電極の極性の違いによる、放電電流とオゾン濃度との関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between discharge current and ozone concentration depending on the difference in polarity of discharge electrodes in a charging device;
 以下、本開示の技術を実施するための形態について図面を参照して説明する。 Hereinafter, embodiments for implementing the technology of the present disclosure will be described with reference to the drawings.
 図1は、一実施形態の空気清浄機の一例を示す図である。図1に示す空気清浄機100は、空気を清浄化するための機器である。空気清浄機100は、空気を清浄化するための装置類を収納する筐体10を備える。筐体10は、空気清浄機100の外部の空気を吸い込む吸い込み口11と、筐体10内の装置類により清浄化された空気を空気清浄機100の外部に吹き出す吹き出し口12とを有する。 FIG. 1 is a diagram showing an example of an air purifier according to one embodiment. An air purifier 100 shown in FIG. 1 is a device for purifying air. The air purifier 100 includes a housing 10 that houses devices for purifying air. The housing 10 has an intake port 11 for sucking air from the outside of the air cleaner 100 and an outlet port 12 for blowing out the air cleaned by devices inside the housing 10 to the outside of the air cleaner 100 .
 図1に示す例では、吸い込み口11は、筐体10の一方の端部(例えば、下部)に設けられ、吹き出し口12は、筐体10の他方の端部(例えば、上部)に設けられる。吸い込み口11及び吹き出し口12の各々の位置は、これに限られず、他の箇所でもよい。吸い込み口11及び吹き出し口12の各々の設置数は、一つでも複数でもよい。 In the example shown in FIG. 1, the suction port 11 is provided at one end (eg, lower portion) of the housing 10, and the outlet 12 is provided at the other end (eg, upper portion) of the housing 10. . The respective positions of the suction port 11 and the blowing port 12 are not limited to this, and may be other locations. The installation number of each of the suction port 11 and the blowing port 12 may be one or more.
 空気清浄機100は、内部空間20、帯電装置30、加湿装置40、捕集装置50、排出装置60及び制御装置80を備える。図1に示す各装置の位置関係は、単なる一例であり、ウイルス又は細菌を不活化する所望の効果を奏すれば、これに限定されない。 The air cleaner 100 includes an internal space 20, a charging device 30, a humidifying device 40, a collecting device 50, a discharging device 60 and a control device 80. The positional relationship of each device shown in FIG. 1 is merely an example, and is not limited to this as long as the desired effect of inactivating viruses or bacteria is achieved.
 内部空間20は、吸い込み口11と吹き出し口12との間に介在し、筐体10の内部に存在する空間である。図1に示す例では、内部空間20は、吸い込み口11から吹き出し口12まで接続される流路であり、吸い込み口11から流入する空気が流れる。 The internal space 20 is a space that exists inside the housing 10 and is interposed between the inlet 11 and the outlet 12 . In the example shown in FIG. 1, the internal space 20 is a flow path that connects the suction port 11 to the blowout port 12, and the air flowing in from the suction port 11 flows.
 帯電装置30は、吸い込み口11から内部空間20に流れる空気(以下、"空気A"とも称する)に含まれる微粒子を帯電させる装置である。微粒子とは、ウイルス又は細菌であるが、ウイルス又は細菌を含む塵埃などの微小物質でもよい。微粒子には、微小粒子状物質(PM2.5)が含まれてもよい。PM2.5とは、空気中に浮遊する粒子のうち、大きさが2.5μm以下の粒子をいう。 The charging device 30 is a device that charges fine particles contained in the air flowing from the suction port 11 into the internal space 20 (hereinafter also referred to as "air A"). Microparticles are viruses or bacteria, but may also be minute substances such as dust containing viruses or bacteria. Particulates may include microparticulate matter (PM2.5). PM2.5 refers to particles with a size of 2.5 μm or less among particles floating in the air.
 加湿装置40は、内部空間20に流れる空気Aを加湿する機構であり、空気Aの湿度を上昇させる。加湿装置40の加湿方式の具体例として、スチーム式(加熱式)、気化式、ハイブリッド式(加熱気化式)、超音波式などが挙げられるが、加湿方式は、これらに限られない。 The humidifier 40 is a mechanism that humidifies the air A flowing in the internal space 20, and increases the humidity of the air A. Specific examples of the humidification method of the humidifier 40 include a steam method (heating method), a vaporization method, a hybrid method (heating vaporization method), and an ultrasonic method, but the humidification method is not limited to these.
 捕集装置50は、内部空間20に流れる空気Aから、帯電した微粒子を静電気力により捕集する。捕集装置50は、例えば10nm以上100μm以下の大きさの微粒子を捕集する能力を有する場合、30nm程度の小さなウイルス、100nm程度の新型コロナウィルス(COVID-19)、又は数μmのウイルス飛沫や病原性細菌を捕集できる。なお、捕集装置50が捕集可能な微粒子の大きさは、特に制限されない。 The collection device 50 collects charged fine particles from the air A flowing in the internal space 20 by electrostatic force. For example, when the collection device 50 has the ability to collect fine particles with a size of 10 nm or more and 100 μm or less, a small virus of about 30 nm, a novel coronavirus (COVID-19) of about 100 nm, or virus droplets of several μm. It can collect pathogenic bacteria. The size of fine particles that can be collected by the collecting device 50 is not particularly limited.
 排出装置60は、捕集装置50から吹き出し口12に空気Aを排出する。排出装置60は、空気清浄機100の外部の空気を吸い込み口11から内部空間20に導入し、捕集装置50を通過した空気Aを吹き出し口12に排出する。排出装置60は、例えば、ファン及びモータを有し、ファンをモータによって回転させることで、空気Aを吹き出し口12に排出する。 The discharge device 60 discharges the air A from the collection device 50 to the outlet 12 . The discharge device 60 introduces the air outside the air cleaner 100 into the internal space 20 through the suction port 11 and discharges the air A that has passed through the collection device 50 to the discharge port 12 . The discharge device 60 has, for example, a fan and a motor, and discharges the air A to the outlet 12 by rotating the fan with the motor.
 制御装置80は、ユーザからの操作指示内容に応じて、帯電装置30、加湿装置40、捕集装置50及び排出装置60を作動又は停止させる。 The control device 80 operates or stops the charging device 30, the humidifying device 40, the collecting device 50, and the discharging device 60 according to the contents of the operation instruction from the user.
 このように、空気清浄機100は、内部空間20に流れる空気Aを加湿する加湿装置40を備える。空気Aに含まれるオゾン(O)と空気Aに含まれる水分(HO)とが混ざると、ウイルス又は細菌を不活化させるヒドロキシルラジカル(OHラジカル)が生成される。したがって、加湿装置40が空気Aを加湿することで、OHラジカルを生成できるので、空気Aに含まれるウイルス又は細菌や捕集装置50により捕集されたウイルス又は細菌を不活化できる。 Thus, the air cleaner 100 includes the humidifying device 40 that humidifies the air A flowing in the internal space 20 . When ozone (O 3 ) contained in air A and moisture (H 2 O) contained in air A are mixed, hydroxyl radicals (OH radicals) that inactivate viruses or bacteria are generated. Therefore, by humidifying the air A with the humidifier 40, OH radicals can be generated, so viruses or bacteria contained in the air A and viruses or bacteria collected by the collection device 50 can be inactivated.
 ウイルス又は細菌は、オゾンでも不活化するが、過多なオゾンは、人体に有害である。そのため、オゾン濃度は、できるだけ微小にすることが好ましい。本実施形態の空気清浄機100は、加湿装置40が空気Aを加湿することで、オゾンが比較的少量でも、ウイルス又は細菌を不活化させるOHラジカルを効率的に生成できる。よって、空気清浄機100は、空気Aに含まれるウイルス又は細菌や捕集装置50により捕集されたウイルス又は細菌を不活化できる。 Viruses and bacteria are inactivated by ozone, but excessive ozone is harmful to the human body. Therefore, it is preferable to make the ozone concentration as small as possible. The air purifier 100 of the present embodiment can efficiently generate OH radicals that inactivate viruses or bacteria by humidifying the air A with the humidifier 40 even with a relatively small amount of ozone. Therefore, the air cleaner 100 can inactivate viruses or bacteria contained in the air A and viruses or bacteria collected by the collecting device 50 .
 帯電装置30は、空気Aに含まれる微粒子をコロナ放電によって帯電させてもよい。加湿装置40により加湿された空気Aに含まれる水分は、コロナ放電によって空気A中に生成されたオゾンと反応しやすくなる。よって、空気清浄機100は、ウイルス又は細菌を不活化させるOHラジカルを効率的に生成できる。その結果、空気Aに含まれるウイルス又は細菌や捕集装置50により捕集されたウイルス又は細菌を不活化する効果が高まる。 The charging device 30 may charge fine particles contained in the air A by corona discharge. Moisture contained in the air A humidified by the humidifier 40 readily reacts with ozone generated in the air A by corona discharge. Therefore, the air cleaner 100 can efficiently generate OH radicals that inactivate viruses or bacteria. As a result, the effect of inactivating the viruses or bacteria contained in the air A and the viruses or bacteria collected by the collecting device 50 is enhanced.
 空気Aに含まれるオゾン(コロナ放電によって生成されたオゾンを含んでよい)は、加湿装置40により加湿された空気Aに含まれる水分と反応することで分解されやすくなる。これにより、空気Aに含まれるオゾン濃度は低減するので、排出装置60は、オゾン濃度が0.1ppm以下の空気を吹き出し口12から排出できる。 The ozone contained in the air A (which may include ozone generated by corona discharge) reacts with the moisture contained in the air A humidified by the humidifier 40 and is easily decomposed. As a result, the concentration of ozone contained in the air A is reduced, so that the discharge device 60 can discharge air having an ozone concentration of 0.1 ppm or less from the outlet 12 .
 加湿装置40は、空気Aの湿度を67%以上に加湿すると、加湿された空気Aに含まれる水分は、空気Aに含まれるオゾン(コロナ放電によって生成されたオゾンを含んでよい)との反応が促進する。これにより、OHラジカルの生成効率が高まり、ウイルス又は細菌を不活化させる効果がより向上する。OHラジカルの生成効率がアップする点(ウイルス又は細菌の不活化効果がアップする点)で、加湿装置40は、空気Aの湿度を、70%以上に加湿すると好ましく、75%以上に加湿するとより好ましく、80%以上に加湿するとさらに好ましい。 When the humidifier 40 humidifies the air A to a humidity of 67% or higher, the moisture contained in the humidified air A reacts with the ozone contained in the air A (which may include ozone generated by corona discharge). promotes. This increases the efficiency of generating OH radicals and further improves the effect of inactivating viruses or bacteria. The humidifier 40 preferably humidifies the air A to a humidity of 70% or more, more preferably 75% or more, in terms of increasing the efficiency of generating OH radicals (increasing the effect of inactivating viruses or bacteria). It is preferable, and it is more preferable to humidify to 80% or more.
 加湿装置40は、所望の加湿機能を満たせば、その配置位置は、特に限定されない。図1に示す例では、加湿装置40は、吸い込み口11と帯電装置30との間で気体Aを加湿する。これにより、加湿装置40により加湿された空気Aが帯電装置30に供給されやすくなるので、空気Aに含まれる水分とオゾン(コロナ放電によって生成されたオゾンを含んでよい)との反応は、より促進する。その結果、OHラジカルの生成効率が高まり、ウイルス又は細菌を不活化させる効果がより向上する。 The position of the humidifying device 40 is not particularly limited as long as it satisfies the desired humidifying function. In the example shown in FIG. 1 , the humidifying device 40 humidifies the gas A between the suction port 11 and the charging device 30 . As a result, the air A humidified by the humidifying device 40 is easily supplied to the charging device 30, so that the reaction between the moisture contained in the air A and ozone (which may include ozone generated by corona discharge) is further enhanced. Facilitate. As a result, the efficiency of generating OH radicals is increased, and the effect of inactivating viruses or bacteria is further improved.
 加湿装置40は、帯電装置30を通過中の空気Aを加湿してもよい。これにより、空気Aに含まれる水分とオゾン(コロナ放電によって生成されたオゾンを含んでよい)との反応は、より促進する。その結果、OHラジカルの生成効率が高まり、ウイルスを不活化させる効果がより向上する。 The humidifying device 40 may humidify the air A passing through the charging device 30 . This further promotes the reaction between the moisture contained in the air A and ozone (which may include ozone generated by corona discharge). As a result, the efficiency of generating OH radicals is increased, and the effect of inactivating viruses is further improved.
 捕集装置50は、所望の捕集機能を満たせば、その配置位置は、特に限定されない。図1に示す例では、捕集装置50は、帯電装置30と吹き出し口12との間で、帯電した微粒子を空気Aから静電気力により捕集する。これにより、帯電装置30において帯電した微粒子が捕集装置50に供給されやすくなるので、帯電した微粒子の捕集能力が向上する。排出装置60が帯電装置30と吹き出し口12との間に介在する場合、捕集装置50は、帯電装置30と排出装置60との間で、帯電した微粒子を空気Aから静電気力により捕集するのが好ましい。これにより、帯電した微粒子の捕集能力が向上する。 The arrangement position of the collection device 50 is not particularly limited as long as it satisfies the desired collection function. In the example shown in FIG. 1 , the collecting device 50 collects charged fine particles from the air A by electrostatic force between the charging device 30 and the outlet 12 . As a result, the particles charged in the charging device 30 are more likely to be supplied to the collecting device 50, so that the capability of collecting the charged particles is improved. When the discharging device 60 is interposed between the charging device 30 and the outlet 12, the collecting device 50 collects the charged fine particles from the air A by electrostatic force between the charging device 30 and the discharging device 60. is preferred. This improves the ability to collect charged fine particles.
 排出装置60は、所望の排出機能を満たせば、その配置位置は、特に限定されない。図1に示す例では、排出装置60は、捕集装置50と吹き出し口12との間に配置されている。空気Aに含まれる微粒子は、捕集装置50において捕集されるので、排出装置60が捕集装置50と吹き出し口12との間に配置されることで、排出装置60が汚れた空気Aで汚染し難くなる。その結果、例えば、排出装置60の交換や洗浄などのメンテナンスにおける安全性が向上する。 The placement position of the ejection device 60 is not particularly limited as long as it satisfies the desired ejection function. In the example shown in FIG. 1 , the discharge device 60 is arranged between the collection device 50 and the outlet 12 . Since the fine particles contained in the air A are collected by the collecting device 50, the discharging device 60 is disposed between the collecting device 50 and the blowout port 12, so that the discharging device 60 can collect the dirty air A. less likely to be polluted. As a result, for example, safety in maintenance such as replacement and cleaning of the discharging device 60 is improved.
 空気清浄機100は、オゾンをろ過するフィルタ90を、捕集装置50と吹き出し口12との間に備えてもよい。これにより、吹き出し口12から吹き出す空気に含まれるオゾンの濃度を低減する効果が高まる。排出装置60が捕集装置50と吹き出し口12との間に介在する場合、フィルタ90は、排出装置60と吹き出し口12との間に介在するのが好ましい。これにより、吹き出し口12から吹き出す空気に含まれるオゾンの濃度を低減する効果が高まる。フィルタ90の触媒として、例えば、酸化マンガンを使用することで、オゾン濃度の低減効果は向上する。 The air purifier 100 may include a filter 90 for filtering ozone between the collecting device 50 and the outlet 12 . As a result, the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced. If the discharge device 60 is interposed between the collection device 50 and the outlet 12 , the filter 90 is preferably interposed between the discharge device 60 and the outlet 12 . As a result, the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced. By using, for example, manganese oxide as the catalyst of the filter 90, the effect of reducing the ozone concentration is improved.
 図2は、一実施形態の空気清浄機における帯電装置の第1構成例を示す模式図である。図2に示す帯電装置30Aは、上記の帯電装置30の一例である。帯電装置30Aは、コロナ放電を発生させる放電部31を有する。放電部31は、内部空間20に配置された放電線32と、放電線32に対向する接地電極33,34とを有する。放電線32は、放電電極の一例である。接地電極34は、接地電極33と同じ電位で接地されている。帯電装置30Aは、放電線32と接地電極33,34との間に高電圧HV1を印加することで、放電線32と接地電極33,34との間にコロナ放電を発生させる。 FIG. 2 is a schematic diagram showing a first configuration example of the charging device in the air cleaner of one embodiment. A charging device 30A shown in FIG. 2 is an example of the charging device 30 described above. The charging device 30A has a discharge section 31 that generates corona discharge. The discharge part 31 has a discharge wire 32 arranged in the internal space 20 and ground electrodes 33 and 34 facing the discharge wire 32 . The discharge wire 32 is an example of a discharge electrode. The ground electrode 34 is grounded at the same potential as the ground electrode 33 . The charging device 30A applies a high voltage HV1 between the discharge wire 32 and the ground electrodes 33, 34 to generate corona discharge between the discharge wire 32 and the ground electrodes 33, 34. FIG.
 図3は、一実施形態の空気清浄機における帯電装置の第2構成例を示す模式図である。図3に示す帯電装置30Bは、上記の帯電装置30の一例である。帯電装置30Bは、コロナ放電を発生させる放電部36を有する。放電部36は、内部空間20に配置される放電電極37と、放電電極37に対向する接地電極38と、放電電極37と支持部(内壁など)との間を絶縁する碍子39とを有する。 FIG. 3 is a schematic diagram showing a second configuration example of the charging device in the air cleaner of one embodiment. A charging device 30B shown in FIG. 3 is an example of the charging device 30 described above. The charging device 30B has a discharge section 36 that generates corona discharge. The discharge section 36 has a discharge electrode 37 arranged in the internal space 20, a ground electrode 38 facing the discharge electrode 37, and an insulator 39 for insulating between the discharge electrode 37 and a support section (inner wall, etc.).
 放電電極37は、複数の尖鋭な突起が放射状に延びる円盤状電極である。放電部36は、複数の放電電極37が間隔を空けて積層する放電電極群35を有する。複数の放電電極群35は、格子状の接地電極38で仕切られた複数の空間に配置されている。帯電装置30Bは、放電電極37(複数の放電電極群35)と接地電極38との間に高電圧HV1を印加することで、放電電極37(複数の放電電極群35)と接地電極38との間にコロナ放電を発生させる。 The discharge electrode 37 is a disk-shaped electrode with a plurality of sharp projections extending radially. The discharge section 36 has a discharge electrode group 35 in which a plurality of discharge electrodes 37 are laminated with a space therebetween. A plurality of discharge electrode groups 35 are arranged in a plurality of spaces partitioned by grid-like ground electrodes 38 . The charging device 30B applies a high voltage HV1 between the discharge electrode 37 (the plurality of discharge electrode groups 35) and the ground electrode 38, thereby causing the discharge electrodes 37 (the plurality of discharge electrode groups 35) and the ground electrode 38 to A corona discharge is generated between
 帯電装置30の放電電極(図2の場合、放電線32、図3の場合、放電電極37)は、正極性でも負極性でもよい。正極性の放電電極とは、接地電極に対してプラスの高電圧が印加される電極であり、負極性の放電電極とは、接地電極に対してマイナスの高電圧が印加される電極である。 The discharge electrode of the charging device 30 (the discharge wire 32 in the case of FIG. 2, the discharge electrode 37 in the case of FIG. 3) may have a positive polarity or a negative polarity. The positive discharge electrode is an electrode to which a positive high voltage is applied with respect to the ground electrode, and the negative discharge electrode is an electrode to which a negative high voltage is applied with respect to the ground electrode.
 帯電装置30は、接地電極と正極性の放電電極との間にプラスの高電圧HV1を印加して両電極間にコロナ放電を発生させることで、内部空間20内のオゾン濃度の抑制と、捕集装置50での微粒子の捕集率の向上とが可能となる。 The charging device 30 applies a positive high voltage HV1 between the ground electrode and the positive discharge electrode to generate corona discharge between the two electrodes, thereby suppressing the concentration of ozone in the internal space 20 and trapping the ozone. It is possible to improve the collection rate of fine particles in the collection device 50 .
 図4は、一実施形態における空気清浄機における捕集装置の構成例を示す模式図である。図4に示す捕集装置50Aは、上記の捕集装置50の一例である。捕集装置50Aは、静電界を発生させる電界発生部51を有する。電界発生部51は、内部空間20に配置された高電圧電極54と、高電圧電極54に対向する捕集電極52,53とを有する。高電圧電極54は、例えば、導電性のプレートである。捕集電極53は、捕集電極53と同電位で接地されている。捕集装置50Aは、高電圧電極54と捕集電極52,53との間に高電圧HV2を印加することで、高電圧電極54と捕集電極52,53との間に静電界を発生させる。これにより、帯電した微粒子は、静電気力によって捕集電極52,53に吸い寄せられ、捕集電極52,53に付着する。 FIG. 4 is a schematic diagram showing a configuration example of a collecting device in an air purifier according to one embodiment. A collection device 50A shown in FIG. 4 is an example of the collection device 50 described above. 50 A of collection apparatuses have the electric field generation part 51 which generates an electrostatic field. The electric field generator 51 has a high voltage electrode 54 arranged in the internal space 20 and collection electrodes 52 and 53 facing the high voltage electrode 54 . High voltage electrode 54 is, for example, a conductive plate. The collection electrode 53 is grounded at the same potential as the collection electrode 53 . The collection device 50A applies a high voltage HV2 between the high voltage electrode 54 and the collection electrodes 52, 53 to generate an electrostatic field between the high voltage electrode 54 and the collection electrodes 52, 53. . As a result, the charged fine particles are attracted to the collecting electrodes 52 and 53 by electrostatic force and adhere to the collecting electrodes 52 and 53 .
 図5は、一実施形態の空気清浄機の第1構造例を示す模式図である。図5に示す空気清浄機100Aは、上記の空気清浄機100の一例である。空気清浄機100Aは、帯電装置の放電部31と捕集装置の電界発生部51とが分離した構造を有する。放電線32及び高電圧電極54は、内部空間20内で空気の流れる方向に配列されている。排出装置60は、ファン61をモータによって回転させることで、内部空間20内の空気Aを吹き出し口に排出する。 FIG. 5 is a schematic diagram showing a first structural example of the air purifier of one embodiment. An air cleaner 100A shown in FIG. 5 is an example of the air cleaner 100 described above. The air cleaner 100A has a structure in which the discharge section 31 of the charging device and the electric field generation section 51 of the collection device are separated. The discharge line 32 and the high voltage electrode 54 are arranged in the air flow direction within the internal space 20 . The discharge device 60 discharges the air A in the internal space 20 to the outlet by rotating the fan 61 with a motor.
 図6は、一実施形態の空気清浄機の第2構造例を示す模式図である。図6に示す空気清浄機100Bは、上記の空気清浄機100の一例である。空気清浄機100Bは、帯電装置の放電部31と捕集装置の電界発生部51とが一体化した構造を有する。複数の放電線32は、内部空間20内で空気の流れる方向に配列されている。排出装置60は、ファン61をモータによって回転させることで、内部空間20内の空気Aを吹き出し口に排出する。 FIG. 6 is a schematic diagram showing a second structural example of the air purifier of one embodiment. An air cleaner 100B shown in FIG. 6 is an example of the air cleaner 100 described above. The air cleaner 100B has a structure in which the discharge section 31 of the charging device and the electric field generation section 51 of the collection device are integrated. The plurality of discharge lines 32 are arranged in the air flow direction within the internal space 20 . The discharge device 60 discharges the air A in the internal space 20 to the outlet by rotating the fan 61 with a motor.
 次に、本開示に係る一実施形態の空気清浄機について、捕集した微粒子が不活化したかどうかを検証した結果の一例について説明する。 Next, an example of the result of verifying whether or not the collected fine particles were inactivated for the air cleaner of one embodiment according to the present disclosure will be described.
 図7は、内部空間20内の各位置B1~B6における、加湿前(空気Aの湿度:38%~66%)の細菌の生存率の検証結果の一例を示す図である。図8は、内部空間20内の各位置B1~B6における、加湿後(空気Aの湿度:75%~90%)の細菌の生存率の検証結果の一例を示す図である。図7及び図8は、空気清浄機100A(図5参照)において、内部空間20内の各位置B1~B6に同数配置した細菌の生存率の検証結果の一例を示す。図7及び図8の縦軸の生存率は、内部空間20内の最も上流側の位置B0に配置した細菌の生存数に対して、各位置に配置した細菌の生存数の割合を示す。また、図7及び図8において、"電界あり"は、電界発生部51で電界を発生させた場合を示し、"電界なし"は、電界発生部51で電界を発生させない場合を示す。 FIG. 7 is a diagram showing an example of the verification result of the survival rate of bacteria before humidification (humidity of air A: 38% to 66%) at each position B1 to B6 in the internal space 20. FIG. FIG. 8 is a diagram showing an example of the verification result of the survival rate of bacteria after humidification (humidity of air A: 75% to 90%) at positions B1 to B6 in internal space 20. In FIG. 7 and 8 show an example of the verification result of the survival rate of bacteria arranged in the same number at positions B1 to B6 in the internal space 20 in the air purifier 100A (see FIG. 5). The survival rate on the vertical axis in FIGS. 7 and 8 indicates the ratio of the survival number of bacteria arranged at each position to the survival number of bacteria arranged at the position B0 on the most upstream side in the internal space 20. FIG. 7 and 8, "with electric field" indicates the case where the electric field generator 51 generates an electric field, and "without electric field" indicates the case where the electric field generator 51 does not generate the electric field.
 各位置B1~B6に配置した細菌は、黄色ブドウ球菌(Staphylococcus aureus NBRC13276)である。検証時の処理条件については、内部空間20内の空気Aの流速(風速)を0.5m/s、処理時間を1時間、空気Aの湿度を90%、放電部31において印加される高電圧HV1を-8.5kV~9.5kV、電界発生部51において印加される高電圧HV2を-5kVとした。 The bacterium placed at each position B1 to B6 is Staphylococcus aureus NBRC13276. The processing conditions at the time of verification were as follows: flow velocity (wind speed) of air A in internal space 20: 0.5 m/s; processing time: 1 hour; humidity of air A: 90%; HV1 is -8.5 kV to 9.5 kV, and the high voltage HV2 applied in the electric field generator 51 is -5 kV.
 図7及び図8によれば、加湿時の黄色ブドウ球菌は、加湿前の黄色ブドウ球菌よりも不活化する割合が高い結果が得られた。このように、空気Aを加湿することで、捕集した細菌を不活化する効果が高まる結果が得られた。 According to Figures 7 and 8, a higher rate of inactivation of Staphylococcus aureus during humidification was obtained than Staphylococcus aureus before humidification. Thus, by humidifying the air A, the effect of inactivating the trapped bacteria was enhanced.
 また、図8に示すように、加湿を施すことによって、電界発生部51の壁面において電界を発生させなくても、電界を発生させた場合と同程度の不活化の効果が得られた。よって、コロナ放電処理した加湿空気を室内に放出することで、高電界を発生させなくても、壁面、机上又はドアノブなどの表面に付着したウイルス又は細菌を不活化できるといえる。 In addition, as shown in FIG. 8, by applying humidification, even without generating an electric field on the wall surface of the electric field generating section 51, the same degree of deactivation effect as when an electric field is generated was obtained. Therefore, it can be said that, by discharging corona discharge-treated humidified air indoors, viruses or bacteria adhering to surfaces such as walls, desks, or doorknobs can be inactivated without generating a high electric field.
 なお、図7及び図8に示す結果は、内部空間20内のオゾン濃度が1ppmの場合の例示であるが、オゾンの外部への放出上限0.1ppmの場合でも、図7,8に示す加湿及び電界あり時と同様の結果が得られた。 The results shown in FIGS. 7 and 8 are examples when the ozone concentration in the internal space 20 is 1 ppm. and the same results as those with an electric field were obtained.
 以上の結果は,黄色ブドウ球菌に対する不活性化効果に関する説明であったが、ウイルスに対しても、コロナ放電による不活性化の効果が確認できた。実験装置は、図5と同様である。接地電極上の各位置B1~B6に大腸菌ファージであるMS2を塗布し、コロナ放電処理を行った。 The above results were about the inactivation effect on Staphylococcus aureus, but the inactivation effect of corona discharge was also confirmed for viruses. The experimental apparatus is the same as in FIG. Escherichia coli phage MS2 was applied to each position B1 to B6 on the ground electrode and subjected to corona discharge treatment.
 常湿22%~28%、オゾン濃度8ppmにおいて、5時間運転後の各塗布位置のMS2の生存率を図9に示す。各位置B1~B6における生存率は、70%~100%であり、ほとんど不活性化できなかった。一方、流通ガスの相対湿度を75~90%に加湿し,コロナ放電処理を1時間としたときの生存率を図10に示す。各位置B2~B6における生存率は、11~39%であり、図9の常湿時と比べると、低オゾン濃度かつ短時間でウイルスを不活性化できた。 Fig. 9 shows the survival rate of MS2 at each application position after 5 hours of operation at a normal humidity of 22% to 28% and an ozone concentration of 8 ppm. Viability at each position B1-B6 was 70%-100% and could hardly be inactivated. On the other hand, FIG. 10 shows the survival rate when the relative humidity of the flowing gas is humidified to 75 to 90% and the corona discharge treatment is performed for 1 hour. The survival rate at each position B2 to B6 was 11 to 39%, and the virus could be inactivated at a low ozone concentration in a short period of time compared to the case of normal humidity in FIG.
 なお,位置B1は、放電線32よりも上流に位置し、オゾンやOHラジカルが到達しないため、不活性化効果は得られていない。しかしながら、位置B1は放電線32よりも上流に位置するので、位置B1には、そもそも、浮遊する微粒子は、ほとんど捕集されない。そのため、実用上は、問題とならない。なお、試験に用いたMS2は、日本電機工業会規格JEM1467で推奨され、代替評価に多く活用されるウイルスとして知られる大腸菌ファージである。 Note that the position B1 is located upstream of the discharge line 32, and ozone and OH radicals do not reach it, so no deactivation effect is obtained. However, since the position B1 is located upstream of the discharge line 32, almost no floating fine particles are collected at the position B1 in the first place. Therefore, it does not pose a problem in practice. The MS2 used in the test is Escherichia coli phage, which is recommended by the Japan Electrical Manufacturers' Association standard JEM1467 and is known as a virus often used for alternative evaluation.
 次に、本開示に係る一実施形態の空気清浄機について、帯電装置における放電電極の極性の違いによる特性変化を検証した結果の一例について説明する。 Next, for the air cleaner of one embodiment according to the present disclosure, an example of the result of verifying the characteristic change due to the difference in the polarity of the discharge electrode in the charging device will be described.
 図11は、帯電装置における放電電極の極性の違いによる、印加電圧と放電電流との関係の一例を示す図である。図12は、帯電装置における放電電極の極性の違いによる、放電電流とオゾン濃度との関係の一例を示す図である。図11及び図12は、空気清浄機100A(図5参照)において、放電線32の極性の違いによる特性変化を検証した結果の一例を示す。図11及び図12は、内部空間20内の空気Aの流速(風速)が9m/sの場合を例示する。 FIG. 11 is a diagram showing an example of the relationship between the applied voltage and the discharge current due to the different polarities of the discharge electrodes in the charging device. FIG. 12 is a diagram showing an example of the relationship between the discharge current and the ozone concentration depending on the difference in the polarity of the discharge electrode in the charging device. 11 and 12 show an example of the result of verifying the characteristic change due to the difference in polarity of the discharge wire 32 in the air cleaner 100A (see FIG. 5). 11 and 12 illustrate the case where the flow velocity (wind velocity) of the air A inside the internal space 20 is 9 m/s.
 図11において、横軸の電圧は、放電線32に印加する高電圧HV1を示し、縦軸の電流は、放電線32に流れる放電電流を示す。図11によれば、放電線32の極性が負極性に比べて正極性の方が、同一電流で比較すると、放電線32に印加する高電圧HV1が高くなる結果が得られた。放電線32に印加する高電圧HV1が高いほど、捕集装置50での微粒子の捕集率が高くなる。よって、放電線32の極性を正極性にすることで、捕集装置50での微粒子の捕集率の向上が可能となった。 In FIG. 11, the voltage on the horizontal axis indicates the high voltage HV1 applied to the discharge wire 32, and the current on the vertical axis indicates the discharge current flowing through the discharge wire 32. According to FIG. 11, the high voltage HV1 applied to the discharge wire 32 is higher when the polarity of the discharge wire 32 is positive than when the polarity of the discharge wire 32 is negative. The higher the high voltage HV1 applied to the discharge wire 32, the higher the fine particle collection efficiency of the collection device 50. Therefore, by setting the polarity of the discharge wire 32 to the positive polarity, it is possible to improve the collection rate of fine particles in the collection device 50 .
 一方、図12において、横軸の電流は、放電線32に流れる放電電流を示し、横軸のオゾン濃度は、内部空間20内のオゾン濃度を示す。図12によれば、放電線32の極性が負極性に比べて正極性の方が、同一電流で比較すると、オゾン濃度が低くなる結果が得られた。例えば、放電電流200mAで比較すると、正極性のときのオゾン濃度は、負極性のときのオゾン濃度の約1/8であった。よって、放電線32の極性を正極性にすることで、内部空間20内のオゾン濃度が抑制された。 On the other hand, in FIG. 12 , the current on the horizontal axis indicates the discharge current flowing through the discharge wire 32 , and the ozone concentration on the horizontal axis indicates the ozone concentration in the internal space 20 . According to FIG. 12, when the polarity of the discharge wire 32 is positive compared to negative, the ozone concentration is lower when compared with the same current. For example, when compared at a discharge current of 200 mA, the ozone concentration at positive polarity was about 1/8 of the ozone concentration at negative polarity. Therefore, by making the polarity of the discharge wire 32 positive, the ozone concentration in the internal space 20 was suppressed.
 以上のように、オゾン濃度は放電電流が大きいほど多く発生するのに対し、微粒子を捕集するための集塵率は、放電線に印加する電圧が大きいほど高くなる。そのため、オゾン濃度は抑制しつつ高い集塵率を確保する為には、放電電流が小さく印加電圧が高い条件が有効となる。したがって、図11及び図12によれば、帯電装置における放電電極の極性を正極性にすることで、内部空間20内のオゾン濃度の抑制と、捕集装置50での微粒子の捕集率の向上とが可能となる。 As described above, the higher the discharge current, the higher the ozone concentration, while the higher the voltage applied to the discharge wire, the higher the dust collection rate for collecting fine particles. Therefore, in order to secure a high dust collection rate while suppressing the ozone concentration, conditions of a small discharge current and a high applied voltage are effective. Therefore, according to FIGS. 11 and 12, by making the polarity of the discharge electrode in the charging device positive, the concentration of ozone in the internal space 20 is suppressed and the fine particle collection efficiency of the collection device 50 is improved. and becomes possible.
 以上、実施形態を説明したが、本発明は上記実施形態に限定されない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が可能である。 Although the embodiments have been described above, the present invention is not limited to the above embodiments. Various modifications and improvements such as combination or replacement with part or all of other embodiments are possible.
 例えば、空気清浄機は、ウイルスを不活化させる紫外線を内部空間20に照射する照射装置を更に備えてもよい。これにより、ウイルスを不活化する効果が更に向上する。 For example, the air cleaner may further include an irradiation device that irradiates the internal space 20 with ultraviolet rays that inactivate viruses. This further improves the effect of inactivating viruses.
 本国際出願は、2021年2月17日に出願した日本国特許出願第2021-023166号に基づく優先権を主張するものであり、日本国特許出願第2021-023166号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-023166 filed on February 17, 2021, and the entire content of Japanese Patent Application No. 2021-023166 is to refer to.
 10 筐体
 11 吸い込み口
 12 吹き出し口
 20 内部空間
 30,30A,30B 帯電装置
 31 放電部
 32 放電線
 33,34 接地電極
 35 放電電極群
 36 放電部
 37 放電電極
 38 接地電極
 39 碍子
 40 加湿装置
 50,50A 捕集装置
 51 電界発生部
 52,53 捕集電極
 54 高電圧電極
 60 排出装置
 61 ファン
 80 制御装置
 90 フィルタ
 100,100A,100B 空気清浄機
REFERENCE SIGNS LIST 10 housing 11 suction port 12 outlet 20 internal space 30, 30A, 30B charging device 31 discharge section 32 discharge wire 33, 34 ground electrode 35 discharge electrode group 36 discharge section 37 discharge electrode 38 ground electrode 39 insulator 40 humidifier 50, 50A collection device 51 electric field generator 52, 53 collection electrode 54 high voltage electrode 60 discharge device 61 fan 80 control device 90 filter 100, 100A, 100B air cleaner

Claims (9)

  1.  吸い込み口と吹き出し口との間に介在する内部空間と、
     前記吸い込み口から前記内部空間に流れる空気に含まれる微粒子を帯電させる帯電装置と、
     前記空気を加湿する加湿装置と、
     前記空気から、帯電した微粒子を静電気力により捕集する捕集装置と、
     前記捕集装置から前記吹き出し口に前記空気を排出する排出装置と、を備える、空気清浄機。
    an internal space interposed between the inlet and the outlet;
    a charging device that charges fine particles contained in the air flowing from the suction port into the internal space;
    a humidifying device for humidifying the air;
    a collection device that collects charged fine particles from the air by electrostatic force;
    and a discharge device that discharges the air from the collection device to the outlet.
  2.  前記帯電装置は、前記微粒子をコロナ放電により帯電させる、請求項1に記載の空気清浄機。 The air purifier according to claim 1, wherein the charging device charges the fine particles by corona discharge.
  3.  前記帯電装置は、接地電極と正極性の放電電極とを有し、前記接地電極と前記放電電極との間にコロナ放電を発生させる、請求項2に記載の空気清浄機。 The air cleaner according to claim 2, wherein the charging device has a ground electrode and a positive discharge electrode, and generates corona discharge between the ground electrode and the discharge electrode.
  4.  前記加湿装置は、前記空気の湿度を67%以上に加湿する、請求項1から3のいずれか一項に記載の空気清浄機。 The air purifier according to any one of claims 1 to 3, wherein the humidifier humidifies the air to a humidity of 67% or higher.
  5.  前記加湿装置は、前記吸い込み口と前記帯電装置との間で前記空気を加湿する、請求項1から4のいずれか一項に記載の空気清浄機。 The air cleaner according to any one of claims 1 to 4, wherein the humidifying device humidifies the air between the suction port and the charging device.
  6.  前記加湿装置は、前記帯電装置を通過中の前記空気を加湿する、請求項1から4のいずれか一項に記載の空気清浄機。 The air cleaner according to any one of claims 1 to 4, wherein the humidifying device humidifies the air passing through the charging device.
  7.  前記捕集装置は、前記帯電装置と前記吹き出し口との間で前記微粒子を捕集する、請求項1から6のいずれか一項に記載の空気清浄機。 The air cleaner according to any one of claims 1 to 6, wherein the collecting device collects the fine particles between the charging device and the outlet.
  8.  前記排出装置は、オゾン濃度が0.1ppm以下の空気を前記吹き出し口から排出する、請求項1から7のいずれか一項に記載の空気清浄機。 The air purifier according to any one of claims 1 to 7, wherein the discharge device discharges air having an ozone concentration of 0.1 ppm or less from the outlet.
  9.  オゾンをろ過するフィルタを、前記捕集装置と前記吹き出し口との間に備える、請求項1から8のいずれか一項に記載の空気清浄機。 The air purifier according to any one of claims 1 to 8, comprising a filter for filtering ozone between said collection device and said outlet.
PCT/JP2022/004924 2021-02-17 2022-02-08 Air purifier WO2022176711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021023166A JP7041930B1 (en) 2021-02-17 2021-02-17 Air cleaner
JP2021-023166 2021-10-25

Publications (1)

Publication Number Publication Date
WO2022176711A1 true WO2022176711A1 (en) 2022-08-25

Family

ID=81214388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004924 WO2022176711A1 (en) 2021-02-17 2022-02-08 Air purifier

Country Status (2)

Country Link
JP (1) JP7041930B1 (en)
WO (1) WO2022176711A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257662A (en) * 1985-09-05 1987-03-13 Nippon Denso Co Ltd Air cleaner
JPH01194922A (en) * 1988-01-29 1989-08-04 Nippon Light Metal Co Ltd Method and equipment for cleaning air
JPH04317753A (en) * 1991-04-17 1992-11-09 Sawafuji Electric Co Ltd Air cleaning system with humidifier
JPH0544959A (en) * 1991-08-09 1993-02-23 Takasago Thermal Eng Co Ltd Air purifying conditioning device
JPH1015333A (en) * 1996-06-28 1998-01-20 Geochto:Kk Air cleaning method and device therefor
JPH10202144A (en) * 1997-01-23 1998-08-04 Fuji Electric Co Ltd Electrostatic dust precipitator for tunnel
JP2001137741A (en) * 1999-11-15 2001-05-22 Ooden:Kk Electric dust collecting unit
JP2005125070A (en) * 2003-10-03 2005-05-19 Daikin Ind Ltd Air purifier
JP2009125653A (en) * 2007-11-22 2009-06-11 Daikin Ind Ltd Air cleaner
JP2012075485A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Air cleaner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104476A (en) * 1975-03-13 1976-09-16 Kochiwa Seisakusho Kk KIEKISETSUSHOKUHOHOOYOBISOCHI
JPH01274852A (en) * 1988-04-27 1989-11-02 Mitsubishi Heavy Ind Ltd Duct-type electrostatic precipitator
JP3393270B2 (en) * 1994-10-17 2003-04-07 増田 佳子 Corona discharge unit
JPH10113577A (en) * 1996-10-10 1998-05-06 Yasukawa Control Kk Charging part of air cleaning device
JP2003275291A (en) 2002-03-27 2003-09-30 Mitsubishi Electric Corp Air cleaner
JP2005021736A (en) 2003-06-30 2005-01-27 Erudekku:Kk Wet type crossflow electric precipitator
JP2007330898A (en) 2006-06-15 2007-12-27 Daikin Ind Ltd Dust collector
EP2431681A1 (en) 2007-10-30 2012-03-21 Büchi Labortechnik AG Heating, method for heating and laminating and spray drier
JP5714955B2 (en) 2011-03-25 2015-05-07 大阪瓦斯株式会社 Air conditioner
KR101233390B1 (en) 2012-03-12 2013-02-19 주식회사 지홈 Electrostatic precipitator and its method
CN102692043B (en) 2012-05-08 2013-09-11 广东德塑科技有限公司 Smoke purifier free of being detached and washed

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257662A (en) * 1985-09-05 1987-03-13 Nippon Denso Co Ltd Air cleaner
JPH01194922A (en) * 1988-01-29 1989-08-04 Nippon Light Metal Co Ltd Method and equipment for cleaning air
JPH04317753A (en) * 1991-04-17 1992-11-09 Sawafuji Electric Co Ltd Air cleaning system with humidifier
JPH0544959A (en) * 1991-08-09 1993-02-23 Takasago Thermal Eng Co Ltd Air purifying conditioning device
JPH1015333A (en) * 1996-06-28 1998-01-20 Geochto:Kk Air cleaning method and device therefor
JPH10202144A (en) * 1997-01-23 1998-08-04 Fuji Electric Co Ltd Electrostatic dust precipitator for tunnel
JP2001137741A (en) * 1999-11-15 2001-05-22 Ooden:Kk Electric dust collecting unit
JP2005125070A (en) * 2003-10-03 2005-05-19 Daikin Ind Ltd Air purifier
JP2009125653A (en) * 2007-11-22 2009-06-11 Daikin Ind Ltd Air cleaner
JP2012075485A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Air cleaner

Also Published As

Publication number Publication date
JP7041930B1 (en) 2022-03-25
JP2022125531A (en) 2022-08-29

Similar Documents

Publication Publication Date Title
JP3852429B2 (en) Air cleaner
CN104501313B (en) A kind of air purifier that need not change filter screen
JP2003035445A (en) Air cleaner
WO2016024419A1 (en) Bacteria eliminating function-equipped humidifying air-purifying device
US7803213B2 (en) Apparatus and method for enhancing filtration
CN104819519A (en) Compound type cross static electric field air purification device
WO2013065205A1 (en) Device and method for trapping and inactivating micro-organisms and viruses
US10744515B2 (en) Gas purifying apparatus
KR20200067380A (en) Air purifier using automatically irradiatable x-rays
JP2008034220A (en) Discharge electrode element and ionizer
US11117138B2 (en) Systems and methods for gas cleaning using electrostatic precipitation and photoionization
WO2022176711A1 (en) Air purifier
CN209726377U (en) A kind of plasma air-sterilizing machine
KR101942658B1 (en) Fine Dust Trap With Plasma Discharge Source For Charging Particles
WO2022176700A1 (en) Air cleaner
JP2011092897A (en) High performance labyrinth type air treatment apparatus
JP3520137B2 (en) Dust collector
JP2002319471A (en) Ion generating element and equipment provided with it
WO2022014110A1 (en) Air purification device and air conditioning device
CN116697512A (en) Water mist washing device
RU2790421C1 (en) Electrostatic air cleaning device and method for its application
JP7196550B2 (en) air purifier
JP3159313U (en) High efficiency maze type air treatment device
JP2004251497A (en) Air conditioner
KR20030075703A (en) Dust collecting filter of air cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756032

Country of ref document: EP

Kind code of ref document: A1