WO2022176519A1 - Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode - Google Patents

Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode Download PDF

Info

Publication number
WO2022176519A1
WO2022176519A1 PCT/JP2022/002478 JP2022002478W WO2022176519A1 WO 2022176519 A1 WO2022176519 A1 WO 2022176519A1 JP 2022002478 W JP2022002478 W JP 2022002478W WO 2022176519 A1 WO2022176519 A1 WO 2022176519A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
particles
mass
aluminum
silver
Prior art date
Application number
PCT/JP2022/002478
Other languages
French (fr)
Japanese (ja)
Inventor
剛 早坂
剛 野尻
修一郎 足立
研耶 守谷
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023500664A priority Critical patent/JPWO2022176519A1/ja
Publication of WO2022176519A1 publication Critical patent/WO2022176519A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the present disclosure relates to electrode-forming compositions, solar cell elements, and aluminum/silver laminated electrodes.
  • renewable energy includes solar, geothermal, wind, wave, tidal, and biomass.
  • photovoltaic power generation which utilizes inexhaustible solar energy, is attracting attention as a clean natural energy that does not emit carbon dioxide during power generation, and is expected to be an effective solution to the increasingly serious energy problem.
  • a crystalline silicon solar cell using a silicon (Si) substrate as a semiconductor substrate is common.
  • a silicon (Si) substrate On each of the light receiving surface and the back surface (the surface opposite to the light receiving surface) of a solar cell (solar cell element) using a Si substrate, there are current collecting electrodes for recovering carriers and an electrode for extracting carriers as an output. Output extraction electrodes (busbar electrodes) are formed.
  • the current-collecting electrodes on the light-receiving surface are particularly called finger electrodes.
  • a silver (Ag) electrode-forming composition is used to form the light-receiving surface electrodes, and the finger electrodes and busbar electrode portions are printed individually or collectively.
  • a silver electrode-forming composition is used to form the busbar electrodes, and an aluminum (Al) electrode-forming composition is used to form the current-collecting electrodes.
  • Al electrode-forming composition contains conductive metal particles, glass particles, various additives, and the like.
  • Silver particles are generally used as the conductive metal particles in a silver electrode-forming composition for forming light-receiving surface electrodes and back surface bus bar electrodes.
  • the reasons for this are that the volume resistivity of silver is low (1.47 ⁇ 10 ⁇ 6 ⁇ cm), that the silver particles are self-reduced and sintered under the above heat treatment conditions, and that the silver particles and the silicon substrate are in good ohmic contact. and that the electrode formed from silver particles has excellent wettability with a solder material, and can preferably adhere wiring materials (such as tab wires) that electrically connect solar cell elements.
  • the aluminum electrode-forming composition When the aluminum electrode-forming composition is used to form the current-collecting electrode on the back surface, aluminum in the aluminum electrode-forming composition undergoes a eutectic reaction with silicon to form a high-concentration diffusion layer (p + - forming a Si layer, Back Surface Field (BSF); Thereby, a structure is provided in which electrons, which are minority carriers in the p-type silicon substrate, are repelled to the light receiving surface side, and the probability of carrier recombination can be reduced.
  • the minority carrier recombination rate on the back surface is as high as about 3 ⁇ 10 3 cm/s, which is a factor in lowering the power generation performance of the solar cell element. can be.
  • a PERC (Passivated Emitter, Rear Cell) structure is attracting attention as a measure for reducing backside recombination loss (see, for example, Patent Document 1).
  • the PERC structure is characterized by limiting the ohmic contact portion between the back electrode and the Si substrate, which is one of the causes of back recombination, in a point or line shape.
  • Backside passivation films that can be used in PERC structures include amorphous aluminum oxide (AlO x ) films by Atomic Layer Deposition (ALD) or CVD (Chemical Vapor Deposition).
  • ALD Atomic Layer Deposition
  • CVD Chemical Vapor Deposition
  • An AlO X film formed by the ALD method or the CVD method is known to have a large negative fixed charge, and a PERC structure solar cell element to which this film is applied is known to exhibit high power generation performance.
  • a bifacial solar cell element can be realized.
  • Advantages of the bifacial-PERC structure include the ability to utilize the light that enters the rear surface.
  • PERC structure including the bifacial-PERC structure, MBB (Multi Busbar)-bifacial-PERC structure, etc.
  • an electrode-forming composition containing silver and an electrode containing aluminum are used.
  • Each of the forming compositions is printed on a predetermined region of the substrate, dried, and then subjected to a heat treatment at once.
  • the wettability between the aluminum oxide (Al 2 O 3 ) film formed on the surface of the aluminum electrode and the solder coating the wiring material is poor, so the wiring material cannot be directly bonded to the aluminum electrode.
  • the silver electrode as an output extraction electrode is not formed continuously along the connection direction of the wiring material, but is formed in the connection direction of the wiring material from the viewpoint of reducing the amount of the silver electrode-forming composition used.
  • an aluminum electrode may be formed between the silver electrodes.
  • the thickness of the aluminum electrode after heat treatment (after baking) is generally 20 ⁇ m to 40 ⁇ m, and the thickness of the silver electrode as the rear output extraction electrode is generally 2 ⁇ m to 5 ⁇ m. In such a case, part of the wiring material is placed on the aluminum electrode. It is conceivable that the connection of the wiring material becomes insufficient.
  • the wiring material can be connected to the silver electrode, the wiring material is deformed while forming irregularities according to the steps, so stress other than the internal stress due to heat is thought to be applied. Under such circumstances, during a test or an environment (for example, a temperature cycle test) in which temperature changes are applied to solar cell members, cracks or the like occur in the joints, resulting in a large decrease in power generation performance. .
  • an aluminum electrode formed on a substrate and a silver electrode formed thereon are laminated. (hereinafter also referred to as an aluminum/silver laminated electrode).
  • an electrode-forming composition containing aluminum particles is applied to the back surface of a substrate in a desired pattern to form an aluminum particle-containing film, and then an electrode-forming composition containing silver is applied. It is conceivable to print the composition in a desired pattern on the aluminum particle-containing film and heat-treat it all at once.
  • the passivation film When forming the aluminum/silver laminated electrode, the passivation film may be etched, and the power generation performance of the PERC structure solar cell element may be lowered. Therefore, there is a demand for an electrode-forming composition that suppresses etching of a passivation film when forming an aluminum/silver laminated electrode.
  • the present disclosure has been made in view of the above-described conventional circumstances, and an embodiment of the present disclosure provides an electrode-forming composition that suppresses etching of a passivation film, and an electrode-forming composition obtained using this electrode-forming composition.
  • An object of the present invention is to provide a solar cell element and an aluminum/silver laminated electrode.
  • Composition for electrode formation of. ⁇ 5> The electrode-forming composition according to any one of ⁇ 1> to ⁇ 4>, wherein the glass particles further contain phosphorus-containing glass particles.
  • ⁇ 6> The electrode-forming composition according to ⁇ 5>, wherein in the composition of the glass constituting the phosphorus-containing glass particles, the content of phosphorus oxide is 20.0% by mass to 50.0% by mass.
  • ⁇ 7> The electrode-forming composition according to ⁇ 5> or ⁇ 6>, wherein the phosphorus-containing glass particles account for 40.0% by mass or less of the entire glass particles.
  • ⁇ 8> The electrode-forming material according to any one of ⁇ 1> to ⁇ 7>, wherein the bismuth-containing particles include at least one selected from the group consisting of metal bismuth particles, bismuth alloy particles, and bismuth oxide particles.
  • ⁇ 10> Any one of ⁇ 1> to ⁇ 9>, wherein the mass ratio of the content of the bismuth-containing particles to the content of the glass particles (Bi/G ratio) is 0.5 to 15.0
  • ⁇ 11> The electrode-forming composition according to any one of ⁇ 1> to ⁇ 10>, wherein the content of the glass particles is 1.0% by mass to 15.0% by mass of the entire electrode-forming composition.
  • Composition. ⁇ 12> The electrode-forming composition according to any one of ⁇ 1> to ⁇ 11>, further comprising at least one selected from the group consisting of a solvent and a resin.
  • ⁇ 14> A semiconductor substrate, a passivation film provided on the semiconductor substrate, and a heat-treated product of the electrode-forming composition according to any one of ⁇ 1> to ⁇ 13> provided on the passivation film. and an aluminum/silver laminated electrode.
  • an electrode-forming composition in which etching of a passivation film is suppressed, and a solar cell element and an aluminum/silver laminated electrode obtained using this electrode-forming composition are provided. .
  • FIG. 2 is a diagram showing an example of a cross section of an aluminum electrode and an aluminum/silver laminated electrode on the back surface of a solar cell element; It is a cross-sectional schematic diagram which shows an example of the manufacturing method of an aluminum/silver laminated electrode. It is a cross-sectional schematic diagram which shows an example of the manufacturing method of an aluminum/silver laminated electrode. It is a cross-sectional schematic diagram which shows an example of the manufacturing method of an aluminum/silver laminated electrode. It is a cross-sectional schematic diagram of an aluminum/silver laminated electrode.
  • FIG. 2 is a schematic plan view showing an example of a light receiving surface of a solar cell element; FIG.
  • FIG. 2 is a schematic plan view showing an example of the back surface of a solar cell element
  • FIG. 2 is a schematic plan view showing an example of the back surface of a solar cell element
  • FIG. 5B is a schematic cross-sectional view showing an example of a solar cell element (a cross-sectional view taken along line A-A' in FIG. 5A).
  • FIG. 5B is a schematic cross-sectional view showing an example of a solar cell element (a cross-sectional view taken along the line B-B' in FIG. 5B).
  • FIG. 5B is a schematic cross-sectional view showing an example of a solar cell element (a cross-sectional view taken along line C-C' in FIG. 5B).
  • the term "process” includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • the particles corresponding to each component may include multiple types of particles.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
  • the term “laminate” indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
  • the average thickness of a layer or film is a value obtained by measuring the thickness of the target layer or film at five points and giving the arithmetic mean value.
  • the term “cross section” means a plane obtained by cutting the solar cell element perpendicularly to the surface direction of the semiconductor substrate.
  • the term “heat treatment” includes heating (firing, etc.) under conditions that sinter or melt the particles contained in the subject of the heat treatment. The thickness of a layer or film can be measured using a micrometer or the like.
  • the thickness of a layer or film when the thickness of a layer or film can be measured directly, it is measured using a micrometer.
  • the thickness when measuring the thickness of one layer or the total thickness of a plurality of layers, the thickness may be measured by observing the cross section of the object to be measured using an electron microscope.
  • the electrode-forming composition of the present disclosure contains silver-containing particles, bismuth-containing particles, and glass particles, wherein the glass particles contain vanadium and tellurium.
  • glass particles containing vanadium and tellurium are sometimes referred to as vanadium-tellurium-containing glass particles.
  • An electrode-forming composition containing silver-containing particles, bismuth-containing particles, and vanadium-tellurium-containing glass particles as glass particles is an electrode that contains silver-containing particles and bismuth-containing particles but does not contain vanadium-tellurium-containing glass particles as glass particles. Etching of the passivation film is suppressed compared to the forming composition. The reason for this is not necessarily clear, but is presumed as follows.
  • An electrode-forming composition containing silver-containing particles and bismuth-containing particles is applied to a desired region on an aluminum particle-containing film formed on a substrate, dried as necessary, and then heat-treated. Thereby, a silver electrode is formed on the aluminum electrode.
  • the silver-containing particles contained in the electrode-forming composition are sintered to form a silver electrode
  • the aluminum particles contained in the aluminum particle-containing film are sintered to form an aluminum electrode.
  • the bismuth oxide phase formed by oxidizing the bismuth contained in the bismuth-containing particles develops a property (hereinafter also referred to as a diffusion barrier property) to suppress interdiffusion at the interface between the silver electrode and the aluminum electrode.
  • bismuth has the property of etching the passivation film.
  • the molten vanadium-tellurium-containing glass particles have a property of being difficult to permeate between the aluminum particles contained in the aluminum particle-containing film. Therefore, the use of the vanadium-tellurium-containing glass particles prevents bismuth from reaching the passivation film through the aluminum particle-containing film as the molten glass particle component permeates between the aluminum particles. There is a tendency. Also, the vanadium-tellurium-containing glass particles hardly etch the passivation film.
  • the electrode-forming composition of the present disclosure suppresses etching of the passivation film.
  • the electrode-forming composition of the present disclosure contains silver-containing particles, bismuth-containing particles, and glass particles, and may contain other components.
  • the electrode-forming composition of the present disclosure contains vanadium-tellurium-containing glass particles as glass particles, and may contain other glass particles.
  • the electrode-forming composition contains silver-containing particles.
  • the silver-containing particles contained in the electrode-forming composition may be of one type or two or more types.
  • the silver-containing particles are not particularly limited as long as they contain silver. Among them, it is preferably at least one selected from the group consisting of silver particles and silver alloy particles, and at least one selected from the group consisting of silver particles and silver alloy particles having a silver content of 50.0% by mass or more. One type is more preferable.
  • the content of silver in silver particles is not particularly limited. For example, it can be 95.0% by mass or more, preferably 97.0% by mass or more, more preferably 99.0% by mass or more, of the entire silver particles.
  • the silver alloy particles are not particularly limited as long as they are alloy particles containing silver.
  • the silver content is preferably 50.0% by mass or more, more preferably 60.0% by mass or more, based on the total amount of the particles. It is more preferably 0% by mass or more, and particularly preferably 80.0% by mass or more. The content may be 95.0% by mass or less.
  • the silver-containing particles may or may not contain components not applicable to silver and silver alloys.
  • the content of the silver-containing particles can be 3.0% by mass or less, preferably 1.0% by mass or less. .
  • the particle diameter of the silver-containing particles is not particularly limited, but in the volume-based particle size distribution obtained by the laser diffraction/scattering method, the particle diameter (volume average particle diameter) when the accumulation from the small diameter side is 50% is 0.1 ⁇ m. It is preferably up to 50.0 ⁇ m, more preferably 0.15 ⁇ m to 40.0 ⁇ m, even more preferably 0.2 ⁇ m to 30.0 ⁇ m.
  • the volume average particle diameter of the silver-containing particles is 0.1 ⁇ m or more, the concentration of silver on the surface of the aluminum/silver laminated electrode can be sufficiently increased, and the connection strength of the wiring material is improved.
  • the volume average particle size of the silver-containing particles is 50.0 ⁇ m or less, the resistance in the aluminum/silver laminated electrode tends to decrease.
  • the particle size of the silver-containing particles is measured by a laser diffraction particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13 320 laser scattering diffraction particle size distribution measuring device). Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) within a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is injected into the cell and measured at 25°C. Particle size distribution is measured assuming the refractive index of the solvent to be 1.48.
  • a laser diffraction particle size distribution analyzer for example, Beckman Coulter, Inc., LS 13 320 laser scattering diffraction particle size distribution measuring device. Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) within a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is injected into the
  • the shape of the silver-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of sinterability between the silver-containing particles, it is preferably substantially spherical, flat, or tabular.
  • the electrode-forming composition includes bismuth-containing particles.
  • the bismuth-containing particles contained in the electrode-forming composition may be of one type or two or more types.
  • the bismuth-containing particles are not particularly limited as long as they contain bismuth. Among them, at least one selected from the group consisting of metal bismuth particles, bismuth alloy particles and bismuth oxide particles is preferable, and metal bismuth particles, bismuth alloy particles having a bismuth content of 40.0% by mass or more and oxide More preferably, it is at least one selected from the group consisting of bismuth particles.
  • the bismuth-containing particles are glassy (glass particles containing bismuth), they do not correspond to bismuth-containing particles.
  • the content of bismuth in the metal bismuth particles is not particularly limited. For example, it can be 95.0% by mass or more, preferably 97.0% by mass or more, and more preferably 99.0% by mass or more of the entire metal bismuth particles.
  • the bismuth alloy particles are not particularly limited as long as they are alloy particles containing bismuth.
  • the bismuth content of the bismuth alloy particles is preferably 40.0% by mass or more, more preferably 50.0% by mass or more. It is preferably 60.0% by mass or more, and particularly preferably 70.0% by mass or more.
  • the bismuth content of the bismuth alloy particles may be 95.0% by mass or less.
  • Bismuth alloys include Bi-Sn alloys, Bi-Sn-Cu alloys, Bi-Pb-Sn alloys, and Bi-Cd alloys.
  • Bismuth oxide particles include particles of bismuth trioxide (Bi 2 O 3 ). Bismuth oxide particles are preferably used in combination with metal bismuth particles from the viewpoint of exhibiting sufficient diffusion barrier properties and low resistance of the aluminum/silver laminated electrode itself.
  • the bismuth-containing particles may or may not contain components that are not metal bismuth, bismuth alloys, and bismuth oxide.
  • the content is 3.0% by mass or less in the bismuth-containing particles from the viewpoint of formation of the bismuth oxide phase and diffusion barrier properties. and preferably 1.0% by mass or less.
  • the particle diameter of the bismuth-containing particles is not particularly limited, but the volume average particle diameter is preferably 0.1 ⁇ m to 50.0 ⁇ m, more preferably 0.15 ⁇ m to 40.0 ⁇ m, and more preferably 0.2 ⁇ m to 30.0 ⁇ m. 0 ⁇ m is even more preferable.
  • the particle diameter of the bismuth-containing particles is 0.1 ⁇ m or more, the transition to the aluminum particle-containing film and the formation of the bismuth oxide phase are promoted.
  • the particle diameter of the bismuth-containing particles is 50.0 ⁇ m or less, diffusion barrier properties are effectively exhibited.
  • the volume average particle size of the bismuth-containing particles is measured in the same manner as the volume average particle size of the silver-containing particles.
  • the shape of the bismuth-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of diffusion barrier properties, it is preferably substantially spherical, flat or plate-shaped.
  • the mass ratio of the content of bismuth-containing particles to the content of silver-containing particles in the electrode-forming composition is preferably 0.30 to 1.40, more preferably 0.35 to 1.30. is more preferably 0.40 to 1.20, and particularly preferably 0.45 to 1.10.
  • a Bi/Ag ratio of 0.30 or more tends to effectively suppress interdiffusion between aluminum and silver.
  • the electrode-forming composition contains glass particles, and the glass particles contain vanadium-tellurium-containing glass particles.
  • Vanadium-tellurium containing glass particles include glass particles comprising vanadium oxide (V 2 O 5 ) and tellurium oxide (TeO 2 ).
  • the content of vanadium oxide is preferably 20.0% by mass to 50.0% by mass, more preferably 25.0% by mass to 45.0% by mass. more preferably 30.0% by mass to 40.0% by mass.
  • the content of tellurium oxide is preferably 35.0% by mass to 65.0% by mass, more preferably 40.0% by mass to 60.0% by mass. more preferably 45.0% by mass to 55.0% by mass.
  • the mass-based ratio of vanadium oxide to tellurium oxide (vanadium oxide/tellurium oxide) constituting the vanadium-tellurium-containing glass particles is preferably 20/80 to 60/40, and preferably 25/75 to 55/45. more preferably 30/70 to 50/50.
  • the vanadium-tellurium-containing glass particles may include vanadium oxide, tellurium oxide, and oxides other than vanadium oxide and tellurium oxide.
  • Other oxides contained in the glass constituting the vanadium-tellurium-containing glass particles include, for example, silicon dioxide (SiO 2 ), phosphorus oxide (P 2 O 5 ), aluminum oxide (Al 2 O 3 ), boron oxide ( B2O3 ), potassium oxide ( K2O), bismuth oxide (Bi2O3), sodium oxide ( Na2O ) , lithium oxide ( Li2O), barium oxide ( BaO), strontium oxide (SrO) , calcium oxide (CaO), magnesium oxide (MgO), beryllium oxide (BeO), zinc oxide (ZnO), cadmium oxide (CdO), tin oxide (SnO), zirconium oxide ( ZrO2), tungsten oxide ( WO3) , molybdenum oxide ( MoO3 ), lanthanum oxide (La2O3)
  • other oxides include zinc oxide (ZnO), copper oxide (CuO), lithium oxide (Li 2 O), and the like.
  • the proportion of other oxides in the entire glass constituting the vanadium-tellurium-containing glass particles is preferably 5.0% by mass to 25.0% by mass, more preferably 7.0% by mass to 23.0% by mass. more preferably 10.0% by mass to 20.0% by mass.
  • the number of glass particles contained in the electrode-forming composition may be one or two or more.
  • the electrode-forming composition may contain only vanadium-tellurium-containing glass particles as glass particles, or may contain glass particles other than vanadium-tellurium-containing glass particles.
  • Other glass particles contain at least one selected from the group consisting of SiO 2 , Al 2 O 3 , ZnO, B 2 O 3 , Bi 2 O 3 , CuO, SnO, Li 2 O and P 2 O 5 It may be something to do.
  • the proportion of vanadium-tellurium-containing glass particles in the total glass particles is preferably 50.0% by mass to 100.0% by mass, more preferably 60.0% by mass to 90.0% by mass. is more preferable, and 70.0% by mass to 85.0% by mass is even more preferable. In other aspects, it is preferably 60.0% by mass to 100.0% by mass, more preferably 65.0% by mass to 100.0% by mass, and 70.0% by mass to 100.0% by mass. % is more preferred.
  • Glass particles containing phosphorus are preferable as other glass particles.
  • glass particles containing phosphorus may be referred to as phosphorus-containing glass particles.
  • Glass containing phosphorus includes glass containing phosphorus oxide (P 2 O 5 ), and phosphate glass is preferred.
  • Phosphate glass in the present disclosure means glass containing phosphorus oxide ( P2O5) as a network - forming oxide.
  • the content of phosphorus oxide is preferably 20.0% by mass to 50.0% by mass, more preferably 30.0% by mass to 50.0% by mass, from the viewpoint of the functionality of the glass. It is more preferably 45.0% by mass, and even more preferably 35.0% to 40.0% by mass.
  • the phosphorus-containing glass particles may contain phosphorus oxide and oxides other than phosphorus oxide. Specific examples of other oxides include the oxides mentioned as other oxides contained in the glass constituting the vanadium-tellurium-containing glass particles.
  • the phosphorus-containing glass particles preferably contain at least one selected from the group consisting of aluminum oxide, tin oxide and zinc oxide. The use of glass with such a composition tends to further improve the reliability of the aluminum/silver laminated electrode in a high-temperature, high-humidity environment.
  • the tin oxide content is preferably 20.0% by mass to 80.0% by mass, more preferably 30.0% by mass to 70.0% by mass. and more preferably 40.0% by mass to 60.0% by mass.
  • the phosphorus-containing glass particles do not contain boron oxide or contain less boron oxide than phosphorus oxide.
  • the proportion of phosphorus-containing glass particles in the total glass particles may be 40.0% by mass or less, preferably 0.0% by mass to 40.0% by mass, and more preferably 0.0% by mass to 35.0% by mass. It is more preferably 0% by mass, and even more preferably 0.0% by mass to 30.0% by mass.
  • lead-free glass that does not substantially contain lead.
  • lead-free glass include lead-free glasses described in paragraphs 0024 to 0025 of JP-A-2006-313744, lead-free glasses described in JP-A-2009-188281, and the like.
  • the softening point of the glass constituting each glass particle is not particularly limited, but is preferably 650°C or lower, more preferably 500°C or lower.
  • the softening point of the glass can be obtained from a differential thermal (DTA) curve measured using a simultaneous differential thermal/thermogravimetric analyzer.
  • the shape of the glass particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of wettability with silver-containing particles and bismuth-containing particles, the shape of the glass particles is preferably substantially spherical, flat, or plate-like.
  • the volume average particle diameter of each glass particle is preferably 0.5 ⁇ m to 15.0 ⁇ m, more preferably 0.7 ⁇ m to 12.0 ⁇ m, and further preferably 0.9 ⁇ m to 10.0 ⁇ m. preferable.
  • the volume-average particle size of the glass particles is 0.5 ⁇ m or more, unevenness due to the glass particles tends to be formed on the surface of the silver electrode obtained by heat-treating the electrode-forming composition. As a result, since the contact between the wiring material and the silver electrode becomes a point contact, the stress is relieved, and the reliability tends to be improved in a high-temperature and high-humidity environment.
  • volume average particle diameter of the glass particles is 15.0 ⁇ m or less, the dispersibility of the glass particles in the electrode-forming composition is good, and uneven distribution of the irregularities formed on the surface of the silver electrode is minimized. tend to be suppressed.
  • the volume average particle size of the glass particles is measured in the same manner as the volume average particle size of the silver-containing particles.
  • the content of the glass particles contained in the electrode-forming composition is preferably 1.0% by mass to 15.0% by mass, more preferably 3.5% by mass to 14.0% by mass, based on the entire electrode-forming composition. and more preferably 4.0% by mass to 12.0% by mass.
  • the content of the glass particles is preferably 1.0% by mass to 15.0% by mass, more preferably 3.5% by mass to 14.0% by mass, based on the entire electrode-forming composition. and more preferably 4.0% by mass to 12.0% by mass.
  • the mass ratio of the content of the bismuth-containing particles to the content of the glass particles contained in the electrode-forming composition is preferably 0.5 to 15.0, more preferably 1.0 to 12.0. It is more preferably 0, more preferably 1.5 to 10.0.
  • the electrode-forming composition may contain at least one selected from the group consisting of solvents and resins.
  • a method for imparting the liquid properties (viscosity, surface tension, etc.) of the electrode-forming composition to a substrate or the like by including at least one selected from the group consisting of a solvent and a resin in the electrode-forming composition. can be adjusted within a suitable range.
  • the solvent or resin contained in the electrode-forming composition may be of one type or two or more types.
  • Solvents include hydrocarbon solvents such as hexane, cyclohexane and toluene; halogenated hydrocarbon solvents such as dichloroethylene, dichloroethane and dichlorobenzene; Ether solvents, amide solvents such as N,N-dimethylformamide and N,N-dimethylacetamide, sulfoxide solvents such as dimethylsulfoxide and diethylsulfoxide, ketone solvents such as acetone, methylethylketone, diethylketone and cyclohexanone, ethanol, 2-propanol, 1-butanol, alcohol solvents such as diacetone alcohol, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-trimethyl-1,3-pentanediol monopropionate, 2, Ester solvents of polyhydric alcohols such as 2,4-trimethyl-1,3-pentanediol monobuty
  • the solvent is at least one solvent selected from the group consisting of polyhydric alcohol ester solvents, terpene solvents, and polyhydric alcohol ether solvents, from the viewpoint of imparting properties (e.g., coatability or printability) of the electrode-forming composition. It preferably contains seeds, and more preferably contains at least one selected from the group consisting of polyhydric alcohol ester solvents and terpene solvents.
  • the resin is not particularly limited as long as it can be thermally decomposed by heat treatment, and may be a natural polymer or a synthetic polymer.
  • cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and nitrocellulose
  • polyvinyl alcohol compounds such as polyvinyl alcohol compounds
  • polyvinylpyrrolidone compounds acrylic resins
  • vinyl acetate-acrylic acid ester copolymers such as polyvinyl butyral
  • phenol-modified alkyds Resins, alkyd resins such as castor oil fatty acid-modified alkyd resins, epoxy resins, phenol resins, rosin ester resins, and the like.
  • the resin preferably contains at least one selected from the group consisting of cellulose resins and acrylic resins.
  • the weight average molecular weight of the resin is not particularly limited. Among them, the weight average molecular weight of the resin is preferably 5,000 to 500,000, more preferably 10,000 to 300,000. When the weight-average molecular weight of the resin is 5,000 or more, the increase in the viscosity of the electrode-forming composition tends to be suppressed. It can be considered that this is because, for example, when the resin is adsorbed to the particles, the steric repulsive action becomes sufficient, and the cohesion of these resins is suppressed.
  • the weight-average molecular weight of the resin is 500,000 or less, aggregation of the resins in the solvent is suppressed, and an increase in the viscosity of the electrode-forming composition tends to be suppressed.
  • the weight-average molecular weight of the resin is 500,000 or less, the combustion temperature of the resin is too high and the electrode-forming composition is not burned and remains as a foreign matter during the heat treatment, which results in a lower resistivity. electrode can be formed.
  • the weight-average molecular weight is obtained by converting the molecular weight distribution measured by GPC (gel permeation chromatography) using a standard polystyrene calibration curve. A standard curve is approximated in three dimensions using a set of 5 standard polystyrene samples (PStQuick MP-H, PStQuick B, Tosoh Corporation).
  • the measurement conditions of GPC are as follows. ⁇ Apparatus: (Pump: L-2130 [Hitachi High-Technologies Co., Ltd.]), (Detector: L-2490 RI [Hitachi High-Technologies Co., Ltd.]), (Column Oven: L-2350 [Co., Ltd.
  • the contents of the solvent and the resin can be selected depending on the desired liquid properties of the electrode-forming composition, the types of the solvent and the resin used, and the like.
  • the total content of the solvent and the resin is preferably 3.0% by mass to 70.0% by mass, more preferably 20.0% by mass to 55.0% by mass, of the entire electrode-forming composition. More preferably, it is 30.0% by mass to 50.0% by mass.
  • the content ratio of the solvent and the resin should be appropriately selected according to the types of the solvent and resin used so that the electrode-forming composition has desired liquid physical properties. can be done.
  • the electrode-forming composition contains silver-containing particles, bismuth-containing particles and glass from the viewpoint of the sinterability of silver-containing particles, the diffusion barrier properties of bismuth-containing particles, and the effect of improving the strength and adhesion of aluminum electrodes by glass particles.
  • the total content of particles is preferably 30.0% by mass to 97.0% by mass, more preferably 45.0% by mass to 80.0% by mass, based on the entire electrode-forming composition. It is more preferably 0.0% by mass to 70.0% by mass.
  • the electrode-forming composition may further contain other components commonly used in the art.
  • Other components include plasticizers, dispersants, surfactants, thickeners, inorganic binders, metal oxides (except bismuth oxide), ceramics, organometallic compounds, and the like.
  • the method for producing the electrode-forming composition is not particularly limited. For example, it can be produced by dispersing and mixing silver-containing particles, bismuth-containing particles, glass particles, and optionally other components. Dispersion and mixing methods are not particularly limited, and can be applied by selecting from commonly used methods.
  • the aluminum/silver laminated electrode of the present disclosure includes a heat-treated product of the electrode-forming composition of the present disclosure described above, and includes a first electrode containing aluminum and silver disposed on the first electrode. and a second electrode comprising: the first electrode further comprising a bismuth oxide phase and a glass phase.
  • the first electrode contains the bismuth oxide phase and the glass phase can be confirmed using a transmission electron microscope.
  • the existence of a bismuth oxide phase can be confirmed by the presence of lattice fringes (atomic arrangement) of crystalline Bi 2 O 3
  • the existence of a glass phase can be confirmed by the existence of a structure peculiar to amorphous.
  • the magnification of the transmission electron microscope is set, for example, at several hundred thousand times.
  • the aluminum/silver laminated electrode having the above structure is preferably arranged on the substrate constituting the solar cell element, and more preferably arranged on the side corresponding to the back surface of the solar cell element.
  • “on the substrate” includes a film formed on the surface of the substrate, such as a passivation film and a protective film for the passivation film.
  • the thickness (minimum thickness if the thickness is not uniform) of the first electrode containing aluminum may be, for example, in the range of 0.5 ⁇ m to 50.0 ⁇ m.
  • the thickness (minimum thickness if the thickness is not uniform) of the second electrode containing silver may range, for example, from 0.5 ⁇ m to 30.0 ⁇ m.
  • FIG. 1 is a schematic cross-sectional view of a back electrode of a solar cell element having a PERC structure produced using an electrode-forming composition. As shown in FIG.
  • a passivation film 18 and a protective film 19 are formed in this order on the surface of a semiconductor substrate 1, and an aluminum electrode (also referred to as an aluminum particle sintered portion) 5 and an aluminum electrode are formed thereon.
  • /A silver laminated electrode 8 is formed.
  • the aluminum/silver laminated electrode 8 includes a portion where an aluminum electrode and a silver electrode (also referred to as a silver particle sintered portion) are laminated.
  • a silver particle sintered portion may be formed on the outermost surface of the aluminum/silver laminated electrode 8 .
  • the aluminum electrode 5 and the aluminum electrode constituting the aluminum/silver laminated electrode 8 may be formed at the same time.
  • Manufacturing method of aluminum/silver laminated electrode There is no particular limitation on the method of producing the aluminum/silver laminated electrode using the electrode-forming composition. For example, a step of forming an aluminum particle-containing film on a semiconductor substrate, a step of applying an electrode-forming composition onto the aluminum particle-containing film and drying if necessary, and a step of forming the aluminum particle-containing film and the electrode. and a step of heat-treating the composition for use in this order.
  • the aluminum particle-containing film may be formed on a semiconductor substrate on which a passivation film and a protective film (SiN x ) are formed. Also, the aluminum particle-containing film may be formed by drying the aluminum electrode-forming composition that has been applied onto the semiconductor substrate.
  • the semiconductor substrate may be a silicon (Si) substrate.
  • the method for applying the composition for forming an aluminum electrode includes a screen printing method, an inkjet method, a dispenser method, and the like. screen printing method is preferable from the viewpoint of productivity.
  • drying conditions after application of the composition for forming an aluminum electrode heat treatment conditions commonly used in the technical field can be applied.
  • Examples of the method for applying the electrode-forming composition onto the aluminum particle-containing film include a screen printing method, an inkjet method, a dispenser method, and the like, and the screen printing method is preferable from the viewpoint of productivity.
  • the electrode-forming composition When the electrode-forming composition is applied onto the aluminum particle-containing film by screen printing, the electrode-forming composition is preferably in the form of a paste.
  • the paste-like electrode-forming composition preferably has a viscosity in the range of 20 Pa ⁇ s to 1000 Pa ⁇ s. The viscosity of the electrode-forming composition is measured at 25° C. using a Brookfield HBT viscometer.
  • the amount of the electrode-forming composition to be applied to the aluminum particle-containing film can be appropriately selected according to the size of the electrode to be formed.
  • the amount of the electrode-forming composition applied can be 1.0 mg/cm 2 to 20.0 mg/cm 2 , preferably 2.0 mg/cm 2 to 15.0 mg/cm 2 . .
  • heat treatment conditions for forming the aluminum/silver laminated electrode using the electrode-forming composition heat treatment conditions that are commonly used in the relevant technical field can be applied.
  • the heat treatment temperature a range of 700° C. to 900° C., which is used when manufacturing a general crystalline silicon solar cell element, can be suitably used.
  • the heat treatment time can be appropriately selected according to the heat treatment temperature, and can be, for example, 1 second to 20 seconds.
  • any device capable of heating to the above temperature can be appropriately adopted, and examples thereof include infrared heating furnaces and tunnel furnaces.
  • An infrared heating furnace is highly efficient because electric energy is applied to the heating material in the form of electromagnetic waves and converted into thermal energy, and rapid heating in a shorter time is possible. Furthermore, since there are few combustion products and non-contact heating, it is possible to suppress contamination of the generated electrodes.
  • the tunnel furnace automatically and continuously transports the sample from the entrance to the exit for heat treatment, more uniform heat treatment is possible by dividing the furnace body and controlling the transport speed. From the viewpoint of the power generation performance of the solar cell element, heat treatment in a tunnel furnace is preferable.
  • FIGS. 2A-2C An example of a method of manufacturing a typical aluminum/silver laminated electrode is shown in FIGS. 2A-2C.
  • a paste-like aluminum electrode forming composition 2 is applied by screen printing to one surface of a semiconductor substrate 1 on which a passivation film 18 and a protective film (SiN x ) 19 are formed. do. This is heated at a temperature of about 150° C. to remove the solvent in the aluminum electrode forming composition 2 .
  • the aluminum particle-containing film 3 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN x ) 19 are formed.
  • the electrode-forming composition 4 is applied to a desired region on the aluminum particle-containing film 3, and is dried by heating at a temperature of about 150°C.
  • the electrode-forming composition 4 When the electrode-forming composition 4 is in the form of a paste, it is applied by screen printing as in the case of the aluminum electrode-forming composition 2 . After that, it is heat-treated under the conditions described above. Thereby, as shown in FIG. 2C, the aluminum/silver laminated electrode 8 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN x ) 19 are formed.
  • the aluminum/silver layered electrode 8 has a silver particle sintered portion 7 disposed on the outermost surface, and a space between the silver particle sintered portion 7 and the semiconductor substrate 1 on which a passivation film 18 and a protective film (SiN x ) 19 are formed. , an aluminum particle sintered portion/bismuth oxide phase mixed portion 6 is arranged.
  • FIG. 3 is an enlarged view of the portion where the aluminum/silver laminated electrode is formed in FIG. 2C.
  • the aluminum particle sintered portion/bismuth oxide phase mixed portion 6 includes the aluminum particle sintered portion 5 and the bismuth oxide phase 9 filled in the voids of the aluminum particle sintered portion 5 .
  • the aluminum particle sintered portion/bismuth oxide phase mixed portion 6 has such a configuration because, as described above, part or all of the bismuth-containing particles in the electrode-forming composition 4 are heat-treated to form an aluminum particle-containing film. This is for transitioning to 3.
  • the bismuth oxide phase 9 may be arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5, and the aluminum particles in the aluminum particle sintered portion 5 and the silver particle sintered portion 7 may be partially formed.
  • the bismuth oxide phase 9 is arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5 to the extent that excessive mutual diffusion between the aluminum particles and the silver particles is suppressed. preferable.
  • the aluminum particle sintered portion/bismuth oxide phase mixed portion 6 corresponds to the first electrode containing aluminum
  • the silver particle sintered portion 7 corresponds to the second electrode containing silver.
  • the bismuth oxide phase 9 also includes a glass phase.
  • a solar cell element of the present disclosure includes a semiconductor substrate, a passivation film provided on the semiconductor substrate, and an aluminum/silver laminated electrode comprising a heat-treated product of the electrode-forming composition of the present disclosure provided on the passivation film.
  • the solar cell element may include a protective film for protecting a passivation film provided on the semiconductor substrate.
  • a specific example of the passivation film is an aluminum oxide film (AlO x ).
  • a specific example of the protective film is a silicon nitride film (SiN x ).
  • the aluminum/silver laminated electrode of the solar cell element may be provided on the back surface of the semiconductor substrate.
  • the solar cell element may have a PERC structure.
  • FIGS. 4, 5A, 5B, 6A, 6B and 6C An example of a typical solar cell element is shown in FIGS. 4, 5A, 5B, 6A, 6B and 6C.
  • FIG. 4 is a schematic plan view of the light receiving surface side of the solar cell element.
  • the light-receiving surface electrode 14 shown in FIG. 4 is generally formed using a silver electrode paste. Specifically, a silver electrode paste is applied in a desired pattern on the antireflection film 13, dried, and then heat treated at about 700° C. to 900° C. in the atmosphere to form the light receiving surface electrode 14.
  • FIG. 5A is a schematic plan view of the back surface of the solar cell element.
  • An aluminum electrode 5 is formed on the entire back surface of the solar cell element shown in FIG. 5A.
  • FIG. 5B is a schematic plan view when the aluminum finger electrodes 20 and the aluminum busbar electrodes 21 are formed on part of the back surface of the solar cell element.
  • the electrode-forming composition of the present disclosure is applied in a desired pattern and dried. Next, this is heat-treated in the air at about 700° C. to 900° C. to form an aluminum/silver laminated electrode. The heat treatment may be performed together with the heat treatment for forming the light-receiving surface electrode 14 described above.
  • an n + -type diffusion layer 12 is formed near the surface of one surface of the semiconductor substrate 1, and an output extraction electrode 14 and a reflector are formed on the n + -type diffusion layer 12.
  • a protective film 13 is formed.
  • FIG. 6A is a cross section along A-A' in FIG. 5A. If the A-A' section does not cross the opening of the backside passivation film, the backside has the structure shown in FIG. 6A.
  • FIG. 6B is a cross section along line B-B' in FIG. 5B. If the BB' section does not cross the opening of the backside passivation film, the backside has the structure shown in FIG. 6B.
  • FIG. 6C is a cross section along line C-C' in FIG. 5B. When the C-C' cross section crosses the openings (aluminum finger electrodes 20) of the back surface passivation film, the back surface has the structure shown in FIG. 6C.
  • the glass particles contained in the silver electrode paste forming the light-receiving surface electrode 14 react (fire through) with the antireflection film 13 by heat treatment, and the light-receiving surface
  • the electrode 14 and the n + -type diffusion layer 12 are electrically connected (ohmic contact).
  • heat treatment causes the aluminum in the aluminum electrodes 5, the aluminum finger electrodes 20, or the aluminum bus bar electrodes 21 to diffuse into a portion of the back surface of the semiconductor substrate 1 (the portion where the back surface passivation film is removed by laser or the like).
  • p + -type diffusion layers 15 partially form an ohmic contact between the semiconductor substrate 1 and the aluminum electrode 5 .
  • the shape of the glass particles was observed and determined using a scanning electron microscope (Hitachi High-Technologies Corporation, TM-1000).
  • the volume average particle diameter of the glass particles was calculated using a laser scattering diffraction method particle size distribution analyzer (Beckman Coulter, LS 13 320 type, measurement wavelength: 632 nm).
  • the softening point of the glass particles was obtained from a differential thermal (DTA) curve measured using a simultaneous differential thermal/thermogravimetric analyzer (Shimadzu Corporation, DT-60H). Specifically, the softening point can be estimated from the endothermic part in the DTA curve.
  • Vanadium-tellurium-containing glass particles Vanadium consisting of 13.2% by mass of zinc oxide (ZnO), 1.9% by mass of copper oxide (CuO), 35.6% by mass of vanadium oxide ( V2O5 ) and 49.3% by mass of tellurium oxide ( TeO2 ) - A tellurium-containing glass was obtained. The softening point of the resulting vanadium-tellurium-containing glass was 290°C. Vanadium-tellurium-containing glass was used to obtain vanadium-tellurium-containing glass particles having a volume average particle size of 1.4 ⁇ m. The shape of the particles was approximately spherical.
  • Bi silver particles (volume average particle size: 0.6 ⁇ m, silver content: 99.9% by mass)
  • Bi metal bismuth particles (volume average particle size: 1.5 ⁇ m, bismuth content: 99.5% by mass)
  • Bi 2 O 3 Bismuth oxide particles (volume average particle size: 2.2 ⁇ m)
  • B glass Boron-containing glass particles as described above
  • V-Te glass Vanadium-tellurium-containing glass particles as described above
  • P glass Phosphorus-containing glass particles as described above
  • TPO Terpineol Ethyl cellulose: Nisshin Kasei Co., Ltd., STD-10
  • a solar cell element was produced by the following method.
  • An n + -type diffusion layer, a texture and an antireflection (SiN x ) film are formed on the light receiving surface, and aluminum oxide (AlO x ) as a passivation film is formed on the surface opposite to the light receiving surface (hereinafter also referred to as “back surface”).
  • portions of the passivation film/protective film on the back surface were removed by laser at portions where aluminum finger electrodes were to be formed, exposing the silicon substrate.
  • a composition for forming a silver electrode (PV20, manufactured by DuPont) containing silver particles and lead glass particles was applied to the light-receiving surface by screen printing so as to form an electrode pattern as shown in FIG. Actually, the number of the light-receiving surface output extraction electrodes 14 is nine. This was heated in a heated tunnel furnace (Despatch Co.) at a set temperature of 250° C. and a conveying speed of 240 inches/minute to remove the solvent by evaporation.
  • an aluminum electrode-forming composition (RX8401 by Ruxing) and the electrode-forming composition obtained above were applied to the back surface of the silicon substrate by screen printing to form an electrode pattern as shown in FIG. 5B. given the shape.
  • the number of aluminum busbar electrodes 21 was set to nine, and the number of aluminum/silver laminated electrodes formed on each aluminum busbar electrode 21 was set to six.
  • the composition for forming an aluminum electrode was printed in the shape of fine line patterns of the aluminum finger electrodes 20 and the aluminum busbar electrodes 21, and dried to form an aluminum particle-containing film. Thereafter, an electrode-forming composition was printed on the aluminum particle-containing film. The positions where the aluminum finger electrodes were formed were aligned with the exposed portions of the silicon substrate.
  • the conditions for printing the aluminum electrode-forming composition were adjusted so that the thickness of the aluminum electrode after heat treatment was 30 ⁇ m.
  • the electrode-forming composition was printed using a pattern in which pad shapes each having a size of 1.6 mm ⁇ 8.0 mm were arranged so that the coating amount was 8.0 mg/cm 2 .
  • -PL contrast ratio- The defect of the obtained solar cell element was mapped by the photoluminescence method and numerically processed to calculate the PL contrast ratio. Specifically, a PL image was photographed using an EL/PL image observation system (manufactured by Aites PVX100 and optional unit POPLI V2R) with the light-receiving surface side of the solar cell element as the upper surface. In the PL image, 28 arbitrarily selected positions of aluminum/silver laminated electrode formation and non-electrode formation were derived using image processing software (Developed by National Institutes of Health, ImageJ). The value obtained from the following formula (A) was taken as the PL contrast ratio of each solar cell element.
  • the PL ratio of the solar cell element of each example is improved with respect to the solar cell element of the comparative example.
  • the results of the PL ratio suggest that the etching of the passivation layer provided on the back surface of the solar cell element of each example is suppressed compared to the solar cell element of the comparative example.

Abstract

This composition for forming electrodes comprises silver-containing particles, bismuth-containing particles, and glass particles that include glass particles containing vanadium and tellurium.

Description

電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極Electrode-forming composition, solar cell element, and aluminum/silver laminated electrode
 本開示は、電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極に関する。 The present disclosure relates to electrode-forming compositions, solar cell elements, and aluminum/silver laminated electrodes.
 近年、地球温暖化、大気汚染等をはじめとする環境問題への関心が高まっている。中でも地球温暖化問題の対策としては、化石燃料に替わる再生可能エネルギーの需要が高まっている。再生可能エネルギーとしては、太陽光、地熱、風力、波力、潮力、バイオマス等が挙げられる。特に太陽光発電は、無尽蔵な太陽光エネルギーを活用すると同時に、発電の際に二酸化炭素を排出しないクリーンな自然エネルギーとして注目を集め、深刻化するエネルギー問題の有効な解決策として期待されている。 In recent years, there has been growing interest in environmental issues such as global warming and air pollution. Above all, as a countermeasure against the problem of global warming, there is an increasing demand for renewable energy to replace fossil fuels. Renewable energy includes solar, geothermal, wind, wave, tidal, and biomass. In particular, photovoltaic power generation, which utilizes inexhaustible solar energy, is attracting attention as a clean natural energy that does not emit carbon dioxide during power generation, and is expected to be an effective solution to the increasingly serious energy problem.
 太陽電池としては、半導体基板としてシリコン(Si)基板を用いた結晶シリコン系太陽電池が一般的である。Si基板を用いた太陽電池セル(太陽電池素子)の受光面及び裏面(受光面と逆の面)のそれぞれには、キャリアを回収するための集電用電極と、キャリアを出力として取り出すための出力取出し電極(バスバー電極)とが形成される。受光面の集電用電極は特に、フィンガー電極と呼ばれる。受光面電極の形成には、銀(Ag)電極形成用組成物が用いられ、フィンガー電極及びバスバー電極部の印刷は、個別又は一括で行われる。裏面については、バスバー電極の形成は銀電極形成用組成物が、集電用電極にはアルミニウム(Al)電極形成用組成物がそれぞれ用いられる。各電極形成用組成物には、導電性金属粒子、ガラス粒子、種々の添加剤等が含有される。 As a solar cell, a crystalline silicon solar cell using a silicon (Si) substrate as a semiconductor substrate is common. On each of the light receiving surface and the back surface (the surface opposite to the light receiving surface) of a solar cell (solar cell element) using a Si substrate, there are current collecting electrodes for recovering carriers and an electrode for extracting carriers as an output. Output extraction electrodes (busbar electrodes) are formed. The current-collecting electrodes on the light-receiving surface are particularly called finger electrodes. A silver (Ag) electrode-forming composition is used to form the light-receiving surface electrodes, and the finger electrodes and busbar electrode portions are printed individually or collectively. As for the back surface, a silver electrode-forming composition is used to form the busbar electrodes, and an aluminum (Al) electrode-forming composition is used to form the current-collecting electrodes. Each electrode-forming composition contains conductive metal particles, glass particles, various additives, and the like.
 受光面電極及び裏面バスバー電極を形成するための銀電極形成用組成物には、前記導電性金属粒子として、銀粒子が一般的に用いられている。この理由として、銀の体積抵抗率が低い(1.47×10-6Ωcm)こと、上記熱処理条件において銀粒子が自己還元して焼結すること、銀粒子とシリコン基板が良好なオーミックコンタクトを形成すること及び銀粒子から形成された電極がはんだ材料の濡れ性に優れ、太陽電池素子間を電気的に接続する配線材料(タブ線等)を好適に接着可能であることが挙げられる。 Silver particles are generally used as the conductive metal particles in a silver electrode-forming composition for forming light-receiving surface electrodes and back surface bus bar electrodes. The reasons for this are that the volume resistivity of silver is low (1.47×10 −6 Ωcm), that the silver particles are self-reduced and sintered under the above heat treatment conditions, and that the silver particles and the silicon substrate are in good ohmic contact. and that the electrode formed from silver particles has excellent wettability with a solder material, and can preferably adhere wiring materials (such as tab wires) that electrically connect solar cell elements.
 アルミニウム電極形成用組成物を用いて裏面の集電用電極を形成する際、アルミニウム電極形成用組成物中のアルミニウムが、シリコンとの共晶反応を経て裏面の表面に高濃度拡散層(p-Si層、Back Surface Field;BSF)を形成する。これにより、p型シリコン基板中の少数キャリアである電子を受光面側に追い返す構造が付与され、キャリア再結合の確率を低減することができる。
 しかしながら、従来のアルミニウム電極形成用組成物を用いた裏面電極/BSF構造では、裏面の少数キャリア再結合速度は3×10cm/s程度と速く、太陽電池素子の発電性能を低下させる要因になり得る。
When the aluminum electrode-forming composition is used to form the current-collecting electrode on the back surface, aluminum in the aluminum electrode-forming composition undergoes a eutectic reaction with silicon to form a high-concentration diffusion layer (p + - forming a Si layer, Back Surface Field (BSF); Thereby, a structure is provided in which electrons, which are minority carriers in the p-type silicon substrate, are repelled to the light receiving surface side, and the probability of carrier recombination can be reduced.
However, in the back electrode/BSF structure using a conventional composition for forming an aluminum electrode, the minority carrier recombination rate on the back surface is as high as about 3×10 3 cm/s, which is a factor in lowering the power generation performance of the solar cell element. can be.
 裏面再結合損失の低減策として、PERC(Passivated Emitter, Rear Cell)構造が注目されている(例えば、特許文献1参照)。PERC構造は、裏面再結合の一因である裏面電極とSi基板間のオーミックコンタクト部をポイント状又はライン状に制限しているのが特徴で、裏面電極のコンタクト部以外はすべてパッシベーション膜で覆われている。PERC構造に用いることができる裏面パッシベーション膜としては、原子層堆積法(Atomic Layer Deposition;ALD)又はCVD法(Chemical Vapor Deposition)によるアモルファス酸化アルミニウム(AlO)膜が挙げられる。ALD法又はCVD法によるAlO膜は、大きな負の固定電荷をもつことが知られ、これを適用したPERC構造太陽電池素子は高い発電性能を示すことが知られている。 A PERC (Passivated Emitter, Rear Cell) structure is attracting attention as a measure for reducing backside recombination loss (see, for example, Patent Document 1). The PERC structure is characterized by limiting the ohmic contact portion between the back electrode and the Si substrate, which is one of the causes of back recombination, in a point or line shape. It is Backside passivation films that can be used in PERC structures include amorphous aluminum oxide (AlO x ) films by Atomic Layer Deposition (ALD) or CVD (Chemical Vapor Deposition). An AlO X film formed by the ALD method or the CVD method is known to have a large negative fixed charge, and a PERC structure solar cell element to which this film is applied is known to exhibit high power generation performance.
 PERC構造では、裏面電極とシリコン基板のコンタクト部が限られていることから、両面受光(bifacial)型の太陽電池素子が実現できる。bifacial-PERC構造の利点として、裏面に差し込んだ光を活用できること等が挙げられる。 In the PERC structure, since the contact portion between the back electrode and the silicon substrate is limited, a bifacial solar cell element can be realized. Advantages of the bifacial-PERC structure include the ability to utilize the light that enters the rear surface.
 上述した、bifacial-PERC構造、MBB(Multi Busbar)-bifacial-PERC構造等を含むPERC構造において、裏面電極を形成する際は、一般的に銀を含む電極形成用組成物と、アルミニウムを含む電極形成用組成物とを、基板の所定の領域にそれぞれ印刷し、乾燥した後、一括して熱処理する。
 上記構造では、アルミニウム電極の表面に形成されている酸化アルミニウム(Al)皮膜と配線材料を被覆しているはんだとの濡れ性が悪いため、アルミニウム電極には配線材料を直接接合できない。また、裏面においては、受光面側と同様、配線材料を接続する箇所には出力取出し電極としての銀電極を形成する必要があるため、裏面電極プロセスにおいては、成膜したパッシベーション膜の上にまず銀電極形成用組成物を塗布する。このとき、従来のプロセスで形成された裏面電極では、アルミニウム電極と、裏面出力取出し電極としての銀電極との段差(厚みの差)によって、配線材料の接続不良が生じたり、太陽電池としての信頼性が損なわれる可能性がある。
In the above PERC structure including the bifacial-PERC structure, MBB (Multi Busbar)-bifacial-PERC structure, etc., when forming the back electrode, generally an electrode-forming composition containing silver and an electrode containing aluminum are used. Each of the forming compositions is printed on a predetermined region of the substrate, dried, and then subjected to a heat treatment at once.
In the above structure, the wettability between the aluminum oxide (Al 2 O 3 ) film formed on the surface of the aluminum electrode and the solder coating the wiring material is poor, so the wiring material cannot be directly bonded to the aluminum electrode. On the back surface, as with the light-receiving surface side, it is necessary to form a silver electrode as an output extraction electrode at the location where the wiring material is connected. A composition for forming a silver electrode is applied. At this time, with the backside electrode formed by the conventional process, the step (difference in thickness) between the aluminum electrode and the silver electrode as the backside output extraction electrode causes poor connection of the wiring material and reduces the reliability of the solar cell. sexuality may be compromised.
 これは、例えば、以下のようにして考えることができる。裏面電極のうち、出力取出し電極としての銀電極は、銀電極形成用組成物の使用量低減等の観点から、配線材料の接続方向に沿って連続的に形成されず、配線材料の接続方向に沿って、銀電極と銀電極との間にアルミニウム電極が形成されることがある。熱処理(焼成後)のアルミニウム電極の厚みは一般的に20μm~40μmであり、裏面出力取出し電極としての銀電極の厚みは一般的に2μm~5μmである。このような場合、配線材料の一部がアルミニウム電極上に配置されることになるが、アルミニウム電極と銀電極との段差が大きいと、配線材料の変形が段差に追従できず、銀電極での配線材料の接続が不十分になることが考えられる。また、銀電極において配線材料の接続ができたとしても、配線材料が段差に応じて凹凸を形成しながら変形するため、熱による内部応力以外の応力が加わると考えられる。このような中で、太陽電池部材に温度変化が与えられるような試験又は環境(例えば、温度サイクル試験)中に、接続部に亀裂等が生じることで、発電性能の低下率が大きくなってしまう。 This can be considered, for example, as follows. Of the backside electrodes, the silver electrode as an output extraction electrode is not formed continuously along the connection direction of the wiring material, but is formed in the connection direction of the wiring material from the viewpoint of reducing the amount of the silver electrode-forming composition used. Along the way, an aluminum electrode may be formed between the silver electrodes. The thickness of the aluminum electrode after heat treatment (after baking) is generally 20 μm to 40 μm, and the thickness of the silver electrode as the rear output extraction electrode is generally 2 μm to 5 μm. In such a case, part of the wiring material is placed on the aluminum electrode. It is conceivable that the connection of the wiring material becomes insufficient. Moreover, even if the wiring material can be connected to the silver electrode, the wiring material is deformed while forming irregularities according to the steps, so stress other than the internal stress due to heat is thought to be applied. Under such circumstances, during a test or an environment (for example, a temperature cycle test) in which temperature changes are applied to solar cell members, cracks or the like occur in the joints, resulting in a large decrease in power generation performance. .
 上述したような課題を解決する方法として、アルミニウム電極と銀電極とをそれぞれ基板上に形成するのではなく、基板上に形成したアルミニウム電極と、その上に形成される銀電極とが積層した状態の電極(以下、アルミニウム/銀積層電極ともいう)を形成することが有効と考えられる。
 アルミニウム/銀積層電極を形成する方法としては、例えば、アルミニウム粒子を含む電極形成用組成物を所望のパターンで基板の裏面に塗布し、アルミニウム粒子含有膜を形成した後に、銀を含む電極形成用組成物を所望のパターンでアルミニウム粒子含有膜の上に印刷し、一括して熱処理することが考えられる。
As a method for solving the above-described problems, instead of forming an aluminum electrode and a silver electrode on a substrate, an aluminum electrode formed on a substrate and a silver electrode formed thereon are laminated. (hereinafter also referred to as an aluminum/silver laminated electrode).
As a method for forming an aluminum/silver laminated electrode, for example, an electrode-forming composition containing aluminum particles is applied to the back surface of a substrate in a desired pattern to form an aluminum particle-containing film, and then an electrode-forming composition containing silver is applied. It is conceivable to print the composition in a desired pattern on the aluminum particle-containing film and heat-treat it all at once.
特許第6203990号公報Japanese Patent No. 6203990
 アルミニウム/銀積層電極を形成する際に、パッシベーション膜がエッチングされてしまい、PERC構造の太陽電池素子の発電性能が低下することがある。そのため、アルミニウム/銀積層電極を形成する際に、パッシベーション膜のエッチングが抑制される電極形成用組成物が求められている。
 本開示は上記従来の事情に鑑みてなされたものであり、本開示の一実施形態は、パッシベーション膜のエッチングが抑制される電極形成用組成物、並びにこの電極形成用組成物を用いて得られた太陽電池素子及びアルミニウム/銀積層電極を提供することを課題とする。
When forming the aluminum/silver laminated electrode, the passivation film may be etched, and the power generation performance of the PERC structure solar cell element may be lowered. Therefore, there is a demand for an electrode-forming composition that suppresses etching of a passivation film when forming an aluminum/silver laminated electrode.
The present disclosure has been made in view of the above-described conventional circumstances, and an embodiment of the present disclosure provides an electrode-forming composition that suppresses etching of a passivation film, and an electrode-forming composition obtained using this electrode-forming composition. An object of the present invention is to provide a solar cell element and an aluminum/silver laminated electrode.
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 銀含有粒子と、ビスマス含有粒子と、ガラス粒子と、を含み、
 前記ガラス粒子が、バナジウムとテルルとを含有するガラス粒子を含む電極形成用組成物。
  <2> 前記バナジウムとテルルとを含有するガラス粒子を構成するガラスの組成において、酸化バナジウムの含有率が、20.0質量%~50.0質量%である<1>に記載の電極形成用組成物。
  <3> 前記バナジウムとテルルとを含有するガラス粒子を構成するガラスの組成において、酸化テルルの含有率が、35.0質量%~65.0質量%である<1>又は<2>に記載の電極形成用組成物。
  <4> 前記ガラス粒子全体に占める前記バナジウムとテルルとを含有するガラス粒子の割合が、50.0質量%~100.0質量%である<1>~<3>のいずれか1項に記載の電極形成用組成物。
  <5> 前記ガラス粒子が、リンを含有するガラス粒子をさらに含む<1>~<4>のいずれか1項に記載の電極形成用組成物。
  <6> 前記リンを含有するガラス粒子を構成するガラスの組成において、酸化リンの含有率が、20.0質量%~50.0質量%である<5>に記載の電極形成用組成物。
  <7> 前記ガラス粒子全体に占める前記リンを含有するガラス粒子の割合が、40.0質量%以下である<5>又は<6>に記載の電極形成用組成物。
  <8> 前記ビスマス含有粒子が、金属ビスマス粒子、ビスマス合金粒子及び酸化ビスマス粒子からなる群より選択される少なくとも1種を含む<1>~<7>のいずれか1項に記載の電極形成用組成物。
  <9> 前記銀含有粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/Ag比)が、0.30~1.40である<1>~<8>のいずれか1項に記載の電極形成用組成物。
  <10> 前記ガラス粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/G比)が、0.5~15.0である<1>~<9>のいずれか1項に記載の電極形成用組成物。
  <11> 前記ガラス粒子の含有率が、前記電極形成用組成物全体の1.0質量%~15.0質量%である<1>~<10>のいずれか1項に記載の電極形成用組成物。
  <12> 溶剤及び樹脂からなる群より選択される少なくとも1種をさらに含む<1>~<11>のいずれか1項に記載の電極形成用組成物。
  <13> アルミニウム/銀積層電極を形成するための<1>~<12>のいずれか1項に記載の電極形成用組成物。
  <14> 半導体基板と、前記半導体基板上に設けられるパッシベーション膜と、前記パッシベーション膜上に設けられる<1>~<13>のいずれか1項に記載の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極と、を有する太陽電池素子。
  <15> <1>~<13>のいずれか1項に記載の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極であって、
 アルミニウムを含む第1電極と、前記第1電極の上に配置される銀を含む第2電極とを備え、前記第1電極は酸化ビスマス相及びガラス相をさらに含む、アルミニウム/銀積層電極。
Specific means for achieving the above object are as follows.
<1> containing silver-containing particles, bismuth-containing particles, and glass particles,
The composition for forming an electrode, wherein the glass particles contain glass particles containing vanadium and tellurium.
<2> The electrode-forming material according to <1>, wherein in the composition of the glass constituting the glass particles containing vanadium and tellurium, the content of vanadium oxide is 20.0% by mass to 50.0% by mass. Composition.
<3> According to <1> or <2>, the content of tellurium oxide in the composition of the glass constituting the glass particles containing vanadium and tellurium is 35.0% by mass to 65.0% by mass. Composition for electrode formation of.
<4> Any one of <1> to <3>, wherein the proportion of the glass particles containing vanadium and tellurium in the total glass particles is 50.0% by mass to 100.0% by mass. Composition for electrode formation of.
<5> The electrode-forming composition according to any one of <1> to <4>, wherein the glass particles further contain phosphorus-containing glass particles.
<6> The electrode-forming composition according to <5>, wherein in the composition of the glass constituting the phosphorus-containing glass particles, the content of phosphorus oxide is 20.0% by mass to 50.0% by mass.
<7> The electrode-forming composition according to <5> or <6>, wherein the phosphorus-containing glass particles account for 40.0% by mass or less of the entire glass particles.
<8> The electrode-forming material according to any one of <1> to <7>, wherein the bismuth-containing particles include at least one selected from the group consisting of metal bismuth particles, bismuth alloy particles, and bismuth oxide particles. Composition.
<9> Any one of <1> to <8>, wherein the mass ratio of the content of the bismuth-containing particles to the content of the silver-containing particles (Bi/Ag ratio) is 0.30 to 1.40 The electrode-forming composition according to 1.
<10> Any one of <1> to <9>, wherein the mass ratio of the content of the bismuth-containing particles to the content of the glass particles (Bi/G ratio) is 0.5 to 15.0 The electrode-forming composition as described.
<11> The electrode-forming composition according to any one of <1> to <10>, wherein the content of the glass particles is 1.0% by mass to 15.0% by mass of the entire electrode-forming composition. Composition.
<12> The electrode-forming composition according to any one of <1> to <11>, further comprising at least one selected from the group consisting of a solvent and a resin.
<13> The electrode-forming composition according to any one of <1> to <12>, for forming an aluminum/silver laminated electrode.
<14> A semiconductor substrate, a passivation film provided on the semiconductor substrate, and a heat-treated product of the electrode-forming composition according to any one of <1> to <13> provided on the passivation film. and an aluminum/silver laminated electrode.
<15> An aluminum/silver laminated electrode containing the heat-treated electrode-forming composition according to any one of <1> to <13>,
An aluminum/silver laminated electrode comprising a first electrode comprising aluminum and a second electrode comprising silver disposed over said first electrode, said first electrode further comprising a bismuth oxide phase and a glass phase.
 本開示の一実施形態によれば、パッシベーション膜のエッチングが抑制される電極形成用組成物、並びにこの電極形成用組成物を用いて得られた太陽電池素子及びアルミニウム/銀積層電極が提供される。 According to one embodiment of the present disclosure, an electrode-forming composition in which etching of a passivation film is suppressed, and a solar cell element and an aluminum/silver laminated electrode obtained using this electrode-forming composition are provided. .
太陽電池素子の裏面におけるアルミニウム電極及びアルミニウム/銀積層電極の断面の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section of an aluminum electrode and an aluminum/silver laminated electrode on the back surface of a solar cell element; アルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the manufacturing method of an aluminum/silver laminated electrode. アルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the manufacturing method of an aluminum/silver laminated electrode. アルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the manufacturing method of an aluminum/silver laminated electrode. アルミニウム/銀積層電極の断面模式図である。It is a cross-sectional schematic diagram of an aluminum/silver laminated electrode. 太陽電池素子の受光面の一例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of a light receiving surface of a solar cell element; 太陽電池素子の裏面の一例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of the back surface of a solar cell element; 太陽電池素子の裏面の一例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of the back surface of a solar cell element; 太陽電池素子の一例を示す断面模式図(図5AのA-A’部の切断面)である。FIG. 5B is a schematic cross-sectional view showing an example of a solar cell element (a cross-sectional view taken along line A-A' in FIG. 5A). 太陽電池素子の一例を示す断面模式図(図5BのB-B’部の切断面)である。FIG. 5B is a schematic cross-sectional view showing an example of a solar cell element (a cross-sectional view taken along the line B-B' in FIG. 5B). 太陽電池素子の一例を示す断面模式図(図5BのC-C’部の切断面)である。FIG. 5B is a schematic cross-sectional view showing an example of a solar cell element (a cross-sectional view taken along line C-C' in FIG. 5B).
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 A detailed description will be given below of the embodiment for implementing the present disclosure. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において、各成分に該当する粒子には、複数種の粒子が含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において、層又は膜の平均厚みは、対象となる層又は膜の5点の厚みを測定し、その算術平均値として与えられる値とする。
 本開示において「断面」との語は、太陽電池素子を半導体基板の面方向に対して垂直に切断して得られる面を意味する。
 本開示において「熱処理」との語には、熱処理の対象物に含まれる粒子が焼結又は溶融する条件で行う加熱(焼成等)を含む。
 層又は膜の厚みは、マイクロメーター等を用いて測定することができる。本開示において、層又は膜の厚みを直接測定可能な場合には、マイクロメーターを用いて測定する。一方、1つの層の厚み又は複数の層の総厚みを測定する場合には、電子顕微鏡を用いて、測定対象の断面を観察することで測定してもよい。
In the present disclosure, the term "process" includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
In the present disclosure, the particles corresponding to each component may include multiple types of particles. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
In the present disclosure, the term "laminate" indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
In the present disclosure, the average thickness of a layer or film is a value obtained by measuring the thickness of the target layer or film at five points and giving the arithmetic mean value.
In the present disclosure, the term “cross section” means a plane obtained by cutting the solar cell element perpendicularly to the surface direction of the semiconductor substrate.
In the present disclosure, the term "heat treatment" includes heating (firing, etc.) under conditions that sinter or melt the particles contained in the subject of the heat treatment.
The thickness of a layer or film can be measured using a micrometer or the like. In this disclosure, when the thickness of a layer or film can be measured directly, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer or the total thickness of a plurality of layers, the thickness may be measured by observing the cross section of the object to be measured using an electron microscope.
<電極形成用組成物>
 本開示の電極形成用組成物は、銀含有粒子と、ビスマス含有粒子と、ガラス粒子と、を含み、前記ガラス粒子が、バナジウムとテルルとを含有するガラス粒子を含む。以下、バナジウムとテルルとを含有するガラス粒子を、バナジウム-テルル含有ガラス粒子と称することがある。
 銀含有粒子とビスマス含有粒子とガラス粒子としてバナジウム-テルル含有ガラス粒子を含む電極形成用組成物は、銀含有粒子とビスマス含有粒子とを含むもののガラス粒子としてバナジウム-テルル含有ガラス粒子を含まない電極形成用組成物に比較して、パッシベーション膜のエッチングが抑制される。その理由は必ずしも明らかではないが、下記のように推察される。
<Composition for electrode formation>
The electrode-forming composition of the present disclosure contains silver-containing particles, bismuth-containing particles, and glass particles, wherein the glass particles contain vanadium and tellurium. Hereinafter, glass particles containing vanadium and tellurium are sometimes referred to as vanadium-tellurium-containing glass particles.
An electrode-forming composition containing silver-containing particles, bismuth-containing particles, and vanadium-tellurium-containing glass particles as glass particles is an electrode that contains silver-containing particles and bismuth-containing particles but does not contain vanadium-tellurium-containing glass particles as glass particles. Etching of the passivation film is suppressed compared to the forming composition. The reason for this is not necessarily clear, but is presumed as follows.
 銀含有粒子とビスマス含有粒子とを含む電極形成用組成物は、基板上に形成されたアルミニウム粒子含有膜上の所望の領域に付与され、必要に応じて乾燥した後に、熱処理される。これにより、アルミニウム電極の上に銀電極が形成される。
 熱処理により、電極形成用組成物に含まれる銀含有粒子は焼結して銀電極を、アルミニウム粒子含有膜に含まれるアルミニウム粒子は焼結してアルミニウム電極をそれぞれ形成する。このとき、ビスマス含有粒子に含まれるビスマスが酸化して形成する酸化ビスマス相が、銀電極とアルミニウム電極との界面における相互拡散を抑制する性質(以下、拡散バリア性ともいう)を発現する。一方、ビスマスはパッシベーション膜をエッチングする性質を有する。
 電極形成用組成物を熱処理した際に、溶融したバナジウム-テルル含有ガラス粒子は、アルミニウム粒子含有膜に含まれるアルミニウム粒子間に浸透しにくい性質を有する。そのため、溶融したガラス粒子成分がアルミニウム粒子間に浸透するのに伴って、アルミニウム粒子含有膜を透過してビスマスがパッシベーション膜に到達する現象が、バナジウム-テルル含有ガラス粒子を用いることで防止される傾向にある。また、バナジウム-テルル含有ガラス粒子は、パッシベーション膜をほとんどエッチングしない。そのため、溶融したバナジウム-テルル含有ガラス粒子の一部がアルミニウム粒子間に浸透してパッシベーション膜に到達しても、パッシベーション膜はほとんどエッチングされることがない。
 以上のことから、本開示の電極形成用組成物によれば、パッシベーション膜のエッチングが抑制されると推察される。
An electrode-forming composition containing silver-containing particles and bismuth-containing particles is applied to a desired region on an aluminum particle-containing film formed on a substrate, dried as necessary, and then heat-treated. Thereby, a silver electrode is formed on the aluminum electrode.
By heat treatment, the silver-containing particles contained in the electrode-forming composition are sintered to form a silver electrode, and the aluminum particles contained in the aluminum particle-containing film are sintered to form an aluminum electrode. At this time, the bismuth oxide phase formed by oxidizing the bismuth contained in the bismuth-containing particles develops a property (hereinafter also referred to as a diffusion barrier property) to suppress interdiffusion at the interface between the silver electrode and the aluminum electrode. On the other hand, bismuth has the property of etching the passivation film.
When the electrode-forming composition is heat-treated, the molten vanadium-tellurium-containing glass particles have a property of being difficult to permeate between the aluminum particles contained in the aluminum particle-containing film. Therefore, the use of the vanadium-tellurium-containing glass particles prevents bismuth from reaching the passivation film through the aluminum particle-containing film as the molten glass particle component permeates between the aluminum particles. There is a tendency. Also, the vanadium-tellurium-containing glass particles hardly etch the passivation film. Therefore, even if some of the molten vanadium-tellurium-containing glass particles penetrate between the aluminum particles and reach the passivation film, the passivation film is hardly etched.
From the above, it is inferred that the electrode-forming composition of the present disclosure suppresses etching of the passivation film.
 以下、本開示の電極形成用組成物に含有される各成分について説明する。本開示の電極形成用組成物は、銀含有粒子とビスマス含有粒子とガラス粒子とを含み、その他の成分を含んでもよい。また、本開示の電極形成用組成物は、ガラス粒子として、バナジウム-テルル含有ガラス粒子を含み、その他のガラス粒子を含んでもよい。 Each component contained in the electrode-forming composition of the present disclosure will be described below. The electrode-forming composition of the present disclosure contains silver-containing particles, bismuth-containing particles, and glass particles, and may contain other components. In addition, the electrode-forming composition of the present disclosure contains vanadium-tellurium-containing glass particles as glass particles, and may contain other glass particles.
(銀含有粒子)
 電極形成用組成物は、銀含有粒子を含む。電極形成用組成物に含まれる銀含有粒子は、1種のみでも2種以上であってもよい。
(Silver-containing particles)
The electrode-forming composition contains silver-containing particles. The silver-containing particles contained in the electrode-forming composition may be of one type or two or more types.
 銀含有粒子は、銀を含む粒子であれば特に制限されない。中でも、銀粒子及び銀合金粒子からなる群より選択される少なくとも1種であることが好ましく、銀粒子及び銀含有率が50.0質量%以上である銀合金粒子からなる群より選択される少なくとも1種であることがより好ましい。 The silver-containing particles are not particularly limited as long as they contain silver. Among them, it is preferably at least one selected from the group consisting of silver particles and silver alloy particles, and at least one selected from the group consisting of silver particles and silver alloy particles having a silver content of 50.0% by mass or more. One type is more preferable.
 銀粒子における銀の含有率は特に制限されない。例えば、銀粒子全体の95.0質量%以上とすることができ、97.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。 The content of silver in silver particles is not particularly limited. For example, it can be 95.0% by mass or more, preferably 97.0% by mass or more, more preferably 99.0% by mass or more, of the entire silver particles.
 銀合金粒子は、銀を含む合金の粒子であれば特に制限されない。中でも、銀合金粒子の融点及び焼結性の観点から、銀の含有率は粒子全体の50.0質量%以上であることが好ましく、60.0質量%以上であることがより好ましく、70.0質量%以上であることがさらに好ましく、80.0質量%以上であることが特に好ましい。上記含有率は、95.0質量%以下であってもよい。 The silver alloy particles are not particularly limited as long as they are alloy particles containing silver. Above all, from the viewpoint of the melting point and sinterability of the silver alloy particles, the silver content is preferably 50.0% by mass or more, more preferably 60.0% by mass or more, based on the total amount of the particles. It is more preferably 0% by mass or more, and particularly preferably 80.0% by mass or more. The content may be 95.0% by mass or less.
 銀合金としては、Ag-Pd系合金、Ag-Pd-Au系合金、Ag-Pd-Cu系合金、Ag-Pd-In系合金、Ag-In系合金、Ag-Sn系合金、Ag-Zn系合金、Ag-Sn-Zn系合金等が挙げられる。
 銀含有粒子は、銀及び銀合金に該当しない成分を含まなくても、含んでいてもよい。
 銀含有粒子は、銀及び銀合金に該当しない成分を含む場合、その含有率は、銀含有粒子中に3.0質量%以下とすることができ、1.0質量%以下であることが好ましい。
Ag-Pd-based alloys, Ag-Pd-Au-based alloys, Ag-Pd-Cu-based alloys, Ag-Pd-In-based alloys, Ag-In-based alloys, Ag-Sn-based alloys, Ag-Zn system alloys, Ag--Sn--Zn system alloys, and the like.
The silver-containing particles may or may not contain components not applicable to silver and silver alloys.
When the silver-containing particles contain a component that does not correspond to silver or a silver alloy, the content of the silver-containing particles can be 3.0% by mass or less, preferably 1.0% by mass or less. .
 銀含有粒子の粒子径は特に制限されないが、レーザー回折・散乱法により得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(体積平均粒子径)として0.1μm~50.0μmであることが好ましく、0.15μm~40.0μmであることがより好ましく、0.2μm~30.0μmであることがさらに好ましい。銀含有粒子の体積平均粒子径が0.1μm以上であると、アルミニウム/銀積層電極の表面における銀の濃度を充分に高くでき、配線材料の接続強度が向上する。銀含有粒子の体積平均粒子径が50.0μm以下であると、アルミニウム/銀積層電極内の抵抗が低減する傾向にある。 The particle diameter of the silver-containing particles is not particularly limited, but in the volume-based particle size distribution obtained by the laser diffraction/scattering method, the particle diameter (volume average particle diameter) when the accumulation from the small diameter side is 50% is 0.1 μm. It is preferably up to 50.0 μm, more preferably 0.15 μm to 40.0 μm, even more preferably 0.2 μm to 30.0 μm. When the volume average particle diameter of the silver-containing particles is 0.1 μm or more, the concentration of silver on the surface of the aluminum/silver laminated electrode can be sufficiently increased, and the connection strength of the wiring material is improved. When the volume average particle size of the silver-containing particles is 50.0 μm or less, the resistance in the aluminum/silver laminated electrode tends to decrease.
 銀含有粒子の粒子径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター(株)、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される。具体的には、溶剤(テルピネオール)125gに、銀含有粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶媒の屈折率を1.48として測定する。 The particle size of the silver-containing particles is measured by a laser diffraction particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13 320 laser scattering diffraction particle size distribution measuring device). Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) within a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is injected into the cell and measured at 25°C. Particle size distribution is measured assuming the refractive index of the solvent to be 1.48.
 銀含有粒子の形状は特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。銀含有粒子同士の焼結性の観点からは、略球状、扁平状又は板状であることが好ましい。 The shape of the silver-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of sinterability between the silver-containing particles, it is preferably substantially spherical, flat, or tabular.
(ビスマス含有粒子)
 電極形成用組成物は、ビスマス含有粒子を含む。電極形成用組成物に含まれるビスマス含有粒子は、1種のみでも2種以上であってもよい。
(Bismuth-containing particles)
The electrode-forming composition includes bismuth-containing particles. The bismuth-containing particles contained in the electrode-forming composition may be of one type or two or more types.
 ビスマス含有粒子は、ビスマスを含む粒子であれば特に制限はない。中でも、金属ビスマス粒子、ビスマス合金粒子及び酸化ビスマス粒子からなる群より選択される少なくとも1種であることが好ましく、金属ビスマス粒子、ビスマス含有率が40.0質量%以上であるビスマス合金粒子及び酸化ビスマス粒子からなる群より選択される少なくとも1種であることがより好ましい。
 本開示において、ビスマス含有粒子がガラス状である場合(ビスマスを含むガラス粒子)は、ビスマス含有粒子に該当しないものとする。
The bismuth-containing particles are not particularly limited as long as they contain bismuth. Among them, at least one selected from the group consisting of metal bismuth particles, bismuth alloy particles and bismuth oxide particles is preferable, and metal bismuth particles, bismuth alloy particles having a bismuth content of 40.0% by mass or more and oxide More preferably, it is at least one selected from the group consisting of bismuth particles.
In the present disclosure, when the bismuth-containing particles are glassy (glass particles containing bismuth), they do not correspond to bismuth-containing particles.
 金属ビスマス粒子におけるビスマスの含有率は特に制限されない。例えば、金属ビスマス粒子全体の95.0質量%以上とすることができ、97.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。 The content of bismuth in the metal bismuth particles is not particularly limited. For example, it can be 95.0% by mass or more, preferably 97.0% by mass or more, and more preferably 99.0% by mass or more of the entire metal bismuth particles.
 ビスマス合金粒子は、ビスマスを含む合金の粒子であれば特に制限されない。中でも、ビスマス合金粒子の融点及び拡散バリア性の観点から、ビスマス合金粒子のビスマスの含有率は粒子全体の40.0質量%以上であることが好ましく、50.0質量%以上であることがより好ましく、60.0質量%以上であることがさらに好ましく、70.0質量%以上であることが特に好ましい。ビスマス合金粒子のビスマスの含有率は95.0質量%以下であってもよい。 The bismuth alloy particles are not particularly limited as long as they are alloy particles containing bismuth. Above all, from the viewpoint of the melting point and diffusion barrier properties of the bismuth alloy particles, the bismuth content of the bismuth alloy particles is preferably 40.0% by mass or more, more preferably 50.0% by mass or more. It is preferably 60.0% by mass or more, and particularly preferably 70.0% by mass or more. The bismuth content of the bismuth alloy particles may be 95.0% by mass or less.
 ビスマス合金としては、Bi-Sn系合金、Bi-Sn-Cu系合金、Bi-Pb-Sn系合金、Bi-Cd系合金等が挙げられる。 Bismuth alloys include Bi-Sn alloys, Bi-Sn-Cu alloys, Bi-Pb-Sn alloys, and Bi-Cd alloys.
 酸化ビスマス粒子としては、三酸化ビスマス(Bi)の粒子が挙げられる。充分な拡散バリア性及びアルミニウム/銀積層電極自身の低抵抗化を発揮する観点からは、酸化ビスマス粒子は金属ビスマス粒子と併用することが好ましい。
 ビスマス含有粒子は、金属ビスマス、ビスマス合金及び酸化ビスマスに該当しない成分を含まなくても、含んでいてもよい。
 ビスマス含有粒子が金属ビスマス、ビスマス合金及び酸化ビスマスに該当しない成分を含む場合、酸化ビスマス相の形成及び拡散バリア性の観点からは、その含有率は、ビスマス含有粒子中に3.0質量%以下とすることができ、1.0質量%以下であることが好ましい。
Bismuth oxide particles include particles of bismuth trioxide (Bi 2 O 3 ). Bismuth oxide particles are preferably used in combination with metal bismuth particles from the viewpoint of exhibiting sufficient diffusion barrier properties and low resistance of the aluminum/silver laminated electrode itself.
The bismuth-containing particles may or may not contain components that are not metal bismuth, bismuth alloys, and bismuth oxide.
When the bismuth-containing particles contain components that do not correspond to metal bismuth, bismuth alloys, and bismuth oxide, the content is 3.0% by mass or less in the bismuth-containing particles from the viewpoint of formation of the bismuth oxide phase and diffusion barrier properties. and preferably 1.0% by mass or less.
 ビスマス含有粒子の粒子径は特に制限されないが、体積平均粒子径が0.1μm~50.0μmであることが好ましく、0.15μm~40.0μmであることがより好ましく、0.2μm~30.0μmであることがさらに好ましい。ビスマス含有粒子の粒子径が0.1μm以上であると、アルミニウム粒子含有膜への移行及び酸化ビスマス相の形成が促進される。ビスマス含有粒子の粒子径が50.0μm以下であると、拡散バリア性が効果的に発揮される。
 ビスマス含有粒子の体積平均粒子径は、銀含有粒子の体積平均粒子径と同様にして測定される。
The particle diameter of the bismuth-containing particles is not particularly limited, but the volume average particle diameter is preferably 0.1 μm to 50.0 μm, more preferably 0.15 μm to 40.0 μm, and more preferably 0.2 μm to 30.0 μm. 0 μm is even more preferable. When the particle diameter of the bismuth-containing particles is 0.1 μm or more, the transition to the aluminum particle-containing film and the formation of the bismuth oxide phase are promoted. When the particle diameter of the bismuth-containing particles is 50.0 μm or less, diffusion barrier properties are effectively exhibited.
The volume average particle size of the bismuth-containing particles is measured in the same manner as the volume average particle size of the silver-containing particles.
 ビスマス含有粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。拡散バリア性の観点からは、略球状、扁平状又は板状であることが好ましい。 The shape of the bismuth-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of diffusion barrier properties, it is preferably substantially spherical, flat or plate-shaped.
 電極形成用組成物における銀含有粒子の含有量に対するビスマス含有粒子の含有量の質量比(Bi/Ag比)は、0.30~1.40であることが好ましく、0.35~1.30であることがより好ましく、0.40~1.20であることがさらに好ましく、0.45~1.10であることが特に好ましい。Bi/Ag比を0.30以上とすることで、アルミニウムと銀との相互拡散が効果的に抑制される傾向にある。Bi/Ag比を1.40以下とすることで、アルミニウム/銀積層電極表面の銀濃度が充分に確保され、接続材料の接続強度(はんだの濡れ性)が良好に維持される傾向にある。 The mass ratio of the content of bismuth-containing particles to the content of silver-containing particles in the electrode-forming composition (Bi/Ag ratio) is preferably 0.30 to 1.40, more preferably 0.35 to 1.30. is more preferably 0.40 to 1.20, and particularly preferably 0.45 to 1.10. A Bi/Ag ratio of 0.30 or more tends to effectively suppress interdiffusion between aluminum and silver. By setting the Bi/Ag ratio to 1.40 or less, a sufficient silver concentration is ensured on the surface of the aluminum/silver laminated electrode, and the connection strength (solder wettability) of the connection material tends to be maintained satisfactorily.
(ガラス粒子)
 電極形成用組成物はガラス粒子を含み、ガラス粒子としてバナジウム-テルル含有ガラス粒子を含む。バナジウム-テルル含有ガラス粒子としては、酸化バナジウム(V)及び酸化テルル(TeO)を含むガラス粒子が挙げられる。
(glass particles)
The electrode-forming composition contains glass particles, and the glass particles contain vanadium-tellurium-containing glass particles. Vanadium-tellurium containing glass particles include glass particles comprising vanadium oxide (V 2 O 5 ) and tellurium oxide (TeO 2 ).
 バナジウム-テルル含有ガラス粒子を構成するガラスの組成において、酸化バナジウムの含有率は、20.0質量%~50.0質量%であることが好ましく、25.0質量%~45.0質量%であることがより好ましく、30.0質量%~40.0質量%であることがさらに好ましい。
 バナジウム-テルル含有ガラス粒子を構成するガラスの組成において、酸化テルルの含有率は、35.0質量%~65.0質量%であることが好ましく、40.0質量%~60.0質量%であることがより好ましく、45.0質量%~55.0質量%であることがさらに好ましい。
 バナジウム-テルル含有ガラス粒子を構成する酸化バナジウムと酸化テルルとの質量基準の比率(酸化バナジウム/酸化テルル)は、20/80~60/40であることが好ましく、25/75~55/45であることがより好ましく、30/70~50/50であることがさらに好ましい。
In the composition of the glass constituting the vanadium-tellurium-containing glass particles, the content of vanadium oxide is preferably 20.0% by mass to 50.0% by mass, more preferably 25.0% by mass to 45.0% by mass. more preferably 30.0% by mass to 40.0% by mass.
In the composition of the glass constituting the vanadium-tellurium-containing glass particles, the content of tellurium oxide is preferably 35.0% by mass to 65.0% by mass, more preferably 40.0% by mass to 60.0% by mass. more preferably 45.0% by mass to 55.0% by mass.
The mass-based ratio of vanadium oxide to tellurium oxide (vanadium oxide/tellurium oxide) constituting the vanadium-tellurium-containing glass particles is preferably 20/80 to 60/40, and preferably 25/75 to 55/45. more preferably 30/70 to 50/50.
 バナジウム-テルル含有ガラス粒子は、酸化バナジウムと、酸化テルルと、酸化バナジウム及び酸化テルル以外のその他の酸化物とを含んでもよい。
 バナジウム-テルル含有ガラス粒子を構成するガラスに含まれるその他の酸化物としては、例えば、二酸化ケイ素(SiO)、酸化リン(P)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化カリウム(KO)、酸化ビスマス(Bi)、酸化ナトリウム(NaO)、酸化リチウム(LiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化錫(SnO)、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化ゲルマニウム(GeO)、酸化ルテチウム(Lu)、酸化アンチモン(Sb)、酸化銅(CuO)、酸化鉄(Fe)、酸化銀(AgO)及び酸化マンガン(MnO)が挙げられる。
 これらの中でも、その他の酸化物としては、酸化亜鉛(ZnO)、酸化銅(CuO)、酸化リチウム(LiO)等が挙げられる。
 バナジウム-テルル含有ガラス粒子を構成するガラス全体に占めるその他の酸化物の割合は、5.0質量%~25.0質量%であることが好ましく、7.0質量%~23.0質量%であることがより好ましく、10.0質量%~20.0質量%であることがさらに好ましい。
The vanadium-tellurium-containing glass particles may include vanadium oxide, tellurium oxide, and oxides other than vanadium oxide and tellurium oxide.
Other oxides contained in the glass constituting the vanadium-tellurium-containing glass particles include, for example, silicon dioxide (SiO 2 ), phosphorus oxide (P 2 O 5 ), aluminum oxide (Al 2 O 3 ), boron oxide ( B2O3 ), potassium oxide ( K2O), bismuth oxide (Bi2O3), sodium oxide ( Na2O ) , lithium oxide ( Li2O), barium oxide ( BaO), strontium oxide (SrO) , calcium oxide (CaO), magnesium oxide (MgO), beryllium oxide (BeO), zinc oxide (ZnO), cadmium oxide (CdO), tin oxide (SnO), zirconium oxide ( ZrO2), tungsten oxide ( WO3) , molybdenum oxide ( MoO3 ), lanthanum oxide (La2O3) , niobium oxide ( Nb2O3 ) , tantalum oxide ( Ta2O5) , yttrium oxide ( Y2O3 ), titanium oxide ( TiO2 ) , germanium oxide ( GeO2 ), lutetium oxide ( Lu2O3 ), antimony oxide (Sb2O3), copper oxide ( CuO ), iron oxide ( Fe2O3 ) , silver oxide ( Ag2O ) and oxide Manganese (MnO) is included.
Among these, other oxides include zinc oxide (ZnO), copper oxide (CuO), lithium oxide (Li 2 O), and the like.
The proportion of other oxides in the entire glass constituting the vanadium-tellurium-containing glass particles is preferably 5.0% by mass to 25.0% by mass, more preferably 7.0% by mass to 23.0% by mass. more preferably 10.0% by mass to 20.0% by mass.
 電極形成用組成物に含まれるガラス粒子は、1種のみでも2種以上であってもよい。 The number of glass particles contained in the electrode-forming composition may be one or two or more.
 電極形成用組成物は、ガラス粒子としてバナジウム-テルル含有ガラス粒子を単独で含んでも、バナジウム-テルル含有ガラス粒子以外のその他のガラス粒子を含んでもよい。その他のガラス粒子は、SiO、Al、ZnO、B、Bi、CuO、SnO、LiO及びPからなる群より選択される少なくとも1種を含有するものであってもよい。
 ガラス粒子全体に占めるバナジウム-テルル含有ガラス粒子の割合は、ある態様では、50.0質量%~100.0質量%であることが好ましく、60.0質量%~90.0質量%であることがより好ましく、70.0質量%~85.0質量%であることがさらに好ましい。その他の態様では、60.0質量%~100.0質量%であることが好ましく、65.0質量%~100.0質量%であることがより好ましく、70.0質量%~100.0質量%であることがさらに好ましい。
The electrode-forming composition may contain only vanadium-tellurium-containing glass particles as glass particles, or may contain glass particles other than vanadium-tellurium-containing glass particles. Other glass particles contain at least one selected from the group consisting of SiO 2 , Al 2 O 3 , ZnO, B 2 O 3 , Bi 2 O 3 , CuO, SnO, Li 2 O and P 2 O 5 It may be something to do.
The proportion of vanadium-tellurium-containing glass particles in the total glass particles is preferably 50.0% by mass to 100.0% by mass, more preferably 60.0% by mass to 90.0% by mass. is more preferable, and 70.0% by mass to 85.0% by mass is even more preferable. In other aspects, it is preferably 60.0% by mass to 100.0% by mass, more preferably 65.0% by mass to 100.0% by mass, and 70.0% by mass to 100.0% by mass. % is more preferred.
 その他のガラス粒子としては、リンを含有するガラス粒子が好ましい。以下、リンを含有するガラス粒子をリン含有ガラス粒子と称することがある。リンを含有するガラスとしては、酸化リン(P)を含むガラスが挙げられ、リン酸塩ガラスが好ましい。
 本開示においてリン酸塩ガラスとは、酸化リン(P)を網目形成酸化物として含むガラスを意味する。
Glass particles containing phosphorus are preferable as other glass particles. Hereinafter, glass particles containing phosphorus may be referred to as phosphorus-containing glass particles. Glass containing phosphorus includes glass containing phosphorus oxide (P 2 O 5 ), and phosphate glass is preferred.
Phosphate glass in the present disclosure means glass containing phosphorus oxide ( P2O5) as a network - forming oxide.
 リン含有ガラス粒子を構成するガラスの組成においては、ガラスの機能上の観点から、酸化リンの含有率が20.0質量%~50.0質量%であることが好ましく、30.0質量%~45.0質量%であることがより好ましく、35.0質量%~40.0質量%であることがさらに好ましい。 In the composition of the glass constituting the phosphorus-containing glass particles, the content of phosphorus oxide is preferably 20.0% by mass to 50.0% by mass, more preferably 30.0% by mass to 50.0% by mass, from the viewpoint of the functionality of the glass. It is more preferably 45.0% by mass, and even more preferably 35.0% to 40.0% by mass.
 リン含有ガラス粒子は、酸化リンと、酸化リン以外のその他の酸化物を含んでもよい。その他の酸化物の具体例としては、バナジウム-テルル含有ガラス粒子を構成するガラスに含まれるその他の酸化物として挙げられた酸化物が挙げられる。
 リン含有ガラス粒子は、酸化アルミニウム、酸化錫及び酸化亜鉛からなる群より選択される少なくとも1種を含むことが好ましい。このような組成のガラスを用いることで、アルミニウム/銀積層電極の高温高湿環境下での信頼性がより向上する傾向にある。
The phosphorus-containing glass particles may contain phosphorus oxide and oxides other than phosphorus oxide. Specific examples of other oxides include the oxides mentioned as other oxides contained in the glass constituting the vanadium-tellurium-containing glass particles.
The phosphorus-containing glass particles preferably contain at least one selected from the group consisting of aluminum oxide, tin oxide and zinc oxide. The use of glass with such a composition tends to further improve the reliability of the aluminum/silver laminated electrode in a high-temperature, high-humidity environment.
 リン含有ガラス粒子を構成するガラスが酸化錫を含む場合、酸化錫の含有率は、20.0質量%~80.0質量%であることが好ましく、30.0質量%~70.0質量%であることがより好ましく、40.0質量%~60.0質量%であることがさらに好ましい。
 リン含有ガラス粒子は酸化ホウ素を含まないか、又は酸化ホウ素の含有率が酸化リンの含有率よりも低いことが好ましい。
When the glass constituting the phosphorus-containing glass particles contains tin oxide, the tin oxide content is preferably 20.0% by mass to 80.0% by mass, more preferably 30.0% by mass to 70.0% by mass. and more preferably 40.0% by mass to 60.0% by mass.
Preferably, the phosphorus-containing glass particles do not contain boron oxide or contain less boron oxide than phosphorus oxide.
 ガラス粒子全体に占めるリン含有ガラス粒子の割合は、40.0質量%以下であってもよく、0.0質量%~40.0質量%であることが好ましく、0.0質量%~35.0質量%であることがより好ましく、0.0質量%~30.0質量%であることがさらに好ましい。 The proportion of phosphorus-containing glass particles in the total glass particles may be 40.0% by mass or less, preferably 0.0% by mass to 40.0% by mass, and more preferably 0.0% by mass to 35.0% by mass. It is more preferably 0% by mass, and even more preferably 0.0% by mass to 30.0% by mass.
 SiN膜の上にアルミニウム/銀積層電極を形成する場合は、鉛を実質的に含まない鉛フリーガラスを用いることが好ましい。鉛フリーガラスとしては、特開2006-313744号公報の段落番号0024~0025に記載の鉛フリーガラス、特開2009-188281号公報等に記載の鉛フリーガラス等が挙げられる。 When forming an aluminum/silver laminated electrode on a SiN X film, it is preferable to use lead-free glass that does not substantially contain lead. Examples of lead-free glass include lead-free glasses described in paragraphs 0024 to 0025 of JP-A-2006-313744, lead-free glasses described in JP-A-2009-188281, and the like.
 各ガラス粒子を構成するガラスの軟化点は特に制限されないが、650℃以下であることが好ましく、500℃以下であることがより好ましい。ガラスの軟化点は、示差熱・熱重量同時測定装置を用いて測定される示差熱(DTA)曲線から求めることができる。 The softening point of the glass constituting each glass particle is not particularly limited, but is preferably 650°C or lower, more preferably 500°C or lower. The softening point of the glass can be obtained from a differential thermal (DTA) curve measured using a simultaneous differential thermal/thermogravimetric analyzer.
 ガラス粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。銀含有粒子及びビスマス含有粒子との濡れ性の観点からは、ガラス粒子の形状は略球状、扁平状又は板状であることが好ましい。 The shape of the glass particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of wettability with silver-containing particles and bismuth-containing particles, the shape of the glass particles is preferably substantially spherical, flat, or plate-like.
 各ガラス粒子の体積平均粒子径は、各々0.5μm~15.0μmであることが好ましく、0.7μm~12.0μmであることがより好ましく、0.9μm~10.0μmであることがさらに好ましい。
 ガラス粒子の体積平均粒子径が0.5μm以上であることで、電極形成用組成物を熱処理して得られる銀電極の表面にガラス粒子に起因する凹凸形状が形成される傾向にある。その結果、配線材料と銀電極との接触が点接触になるために応力が緩和され、高温高湿環境下における信頼性が向上する傾向にある。
 ガラス粒子の体積平均粒子径が15.0μm以下であることで、電極形成用組成物中でのガラス粒子の分散性が良好であり、銀電極の表面に形成される凹凸形状の分布の偏りが抑制される傾向にある。
 ガラス粒子の体積平均粒子径は、銀含有粒子の体積平均粒子径と同様にして測定される。
The volume average particle diameter of each glass particle is preferably 0.5 μm to 15.0 μm, more preferably 0.7 μm to 12.0 μm, and further preferably 0.9 μm to 10.0 μm. preferable.
When the volume-average particle size of the glass particles is 0.5 μm or more, unevenness due to the glass particles tends to be formed on the surface of the silver electrode obtained by heat-treating the electrode-forming composition. As a result, since the contact between the wiring material and the silver electrode becomes a point contact, the stress is relieved, and the reliability tends to be improved in a high-temperature and high-humidity environment.
When the volume average particle diameter of the glass particles is 15.0 μm or less, the dispersibility of the glass particles in the electrode-forming composition is good, and uneven distribution of the irregularities formed on the surface of the silver electrode is minimized. tend to be suppressed.
The volume average particle size of the glass particles is measured in the same manner as the volume average particle size of the silver-containing particles.
 電極形成用組成物に含まれるガラス粒子の含有率は、電極形成用組成物全体の1.0質量%~15.0質量%であることが好ましく、3.5質量%~14.0質量%であることがより好ましく、4.0質量%~12.0質量%であることがさらに好ましい。
 ガラス粒子の含有率を1.0質量%以上とすることで、高温高湿環境下における良好な信頼性が維持される傾向にある。ガラス粒子の含有率を15.0質量%以下とすることで、アルミニウム電極の上に形成される銀電極の表面の銀濃度が充分に確保され、接続材料の接続強度(はんだの濡れ性)が良好に維持される傾向にある。
The content of the glass particles contained in the electrode-forming composition is preferably 1.0% by mass to 15.0% by mass, more preferably 3.5% by mass to 14.0% by mass, based on the entire electrode-forming composition. and more preferably 4.0% by mass to 12.0% by mass.
By setting the content of the glass particles to 1.0% by mass or more, good reliability tends to be maintained in a high-temperature, high-humidity environment. By setting the glass particle content to 15.0% by mass or less, the silver concentration on the surface of the silver electrode formed on the aluminum electrode is sufficiently ensured, and the connection strength (solder wettability) of the connection material is improved. It tends to be well maintained.
 電極形成用組成物に含まれるガラス粒子の含有量に対するビスマス含有粒子の含有量の質量比(Bi/G比)は、0.5~15.0であることが好ましく、1.0~12.0であることがより好ましく、1.5~10.0であることがさらに好ましい。Bi/G比を0.5以上とすることで、酸化ビスマス相の拡散バリア性が効果的に発現する傾向にある。Bi/G比を15.0以下とすることで、高温高湿環境下における信頼性が効果的に向上する傾向にある。 The mass ratio of the content of the bismuth-containing particles to the content of the glass particles contained in the electrode-forming composition (Bi/G ratio) is preferably 0.5 to 15.0, more preferably 1.0 to 12.0. It is more preferably 0, more preferably 1.5 to 10.0. By setting the Bi/G ratio to 0.5 or more, the diffusion barrier property of the bismuth oxide phase tends to be effectively exhibited. By setting the Bi/G ratio to 15.0 or less, the reliability tends to be effectively improved in a high temperature and high humidity environment.
(溶剤及び樹脂)
 電極形成用組成物は、溶剤及び樹脂からなる群より選択される少なくとも1種を含んでいてもよい。
 電極形成用組成物が溶剤及び樹脂からなる群より選択される少なくとも1種を含むことで、電極形成用組成物の液状性(粘度、表面張力等)を、基板等に付与する際の付与方法に適した範囲内に調整することができる。
 電極形成用組成物に含まれる溶剤又は樹脂は、それぞれ1種のみでも2種以上であってもよい。
(solvent and resin)
The electrode-forming composition may contain at least one selected from the group consisting of solvents and resins.
A method for imparting the liquid properties (viscosity, surface tension, etc.) of the electrode-forming composition to a substrate or the like by including at least one selected from the group consisting of a solvent and a resin in the electrode-forming composition. can be adjusted within a suitable range.
The solvent or resin contained in the electrode-forming composition may be of one type or two or more types.
 溶剤としては、ヘキサン、シクロヘキサン、トルエン等の炭化水素溶剤、ジクロロエチレン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶剤、テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3-ジオキソラン、トリオキサン等の環状エーテル溶剤、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶剤、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド溶剤、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン溶剤、エタノール、2-プロパノール、1-ブタノール、ジアセトンアルコール等のアルコール溶剤、2,2,4-トリメチル-1,3-ペンタンジオールモノアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノプロピオネート、2,2,4-トリメチル-1,3-ペンタンジオールモノブチレート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価アルコールのエステル溶剤、ブチルセルソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールのエーテル溶剤、α-テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤などが挙げられる。 Solvents include hydrocarbon solvents such as hexane, cyclohexane and toluene; halogenated hydrocarbon solvents such as dichloroethylene, dichloroethane and dichlorobenzene; Ether solvents, amide solvents such as N,N-dimethylformamide and N,N-dimethylacetamide, sulfoxide solvents such as dimethylsulfoxide and diethylsulfoxide, ketone solvents such as acetone, methylethylketone, diethylketone and cyclohexanone, ethanol, 2-propanol, 1-butanol, alcohol solvents such as diacetone alcohol, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-trimethyl-1,3-pentanediol monopropionate, 2, Ester solvents of polyhydric alcohols such as 2,4-trimethyl-1,3-pentanediol monobutyrate, ethylene glycol monobutyl ether acetate and diethylene glycol monobutyl ether acetate, polyvalent solvents such as butyl cellosolve, diethylene glycol monobutyl ether and diethylene glycol diethyl ether Ether solvents of alcohols, and terpene solvents such as α-terpinene, terpineol, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, carvone, ocimene, and phellandrene.
 溶剤は、電極形成用組成物の付与性(例えば、塗布性又は印刷性)の観点からは、多価アルコールのエステル溶剤、テルペン溶剤及び多価アルコールのエーテル溶剤からなる群より選択される少なくとも1種を含むことが好ましく、多価アルコールのエステル溶剤及びテルペン溶剤からなる群より選択される少なくとも1種を含むことがより好ましい。 The solvent is at least one solvent selected from the group consisting of polyhydric alcohol ester solvents, terpene solvents, and polyhydric alcohol ether solvents, from the viewpoint of imparting properties (e.g., coatability or printability) of the electrode-forming composition. It preferably contains seeds, and more preferably contains at least one selected from the group consisting of polyhydric alcohol ester solvents and terpene solvents.
 樹脂は、熱処理によって熱分解されうる樹脂であれば特に制限されず、天然高分子であっても、合成高分子であってもよい。具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロース等のセルロース樹脂、ポリビニルアルコール化合物、ポリビニルピロリドン化合物、アクリル樹脂、酢酸ビニル-アクリル酸エステル共重合体、ポリビニルブチラール等のブチラール樹脂、フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂等のアルキド樹脂、エポキシ樹脂、フェノール樹脂、ロジンエステル樹脂などが挙げられる。 The resin is not particularly limited as long as it can be thermally decomposed by heat treatment, and may be a natural polymer or a synthetic polymer. Specifically, cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and nitrocellulose, polyvinyl alcohol compounds, polyvinylpyrrolidone compounds, acrylic resins, vinyl acetate-acrylic acid ester copolymers, butyral resins such as polyvinyl butyral, and phenol-modified alkyds. Resins, alkyd resins such as castor oil fatty acid-modified alkyd resins, epoxy resins, phenol resins, rosin ester resins, and the like.
 熱処理による熱分解性の観点からは、樹脂はセルロース樹脂及びアクリル樹脂からなる群より選択される少なくとも1種を含むことが好ましい。 From the viewpoint of thermal decomposition by heat treatment, the resin preferably contains at least one selected from the group consisting of cellulose resins and acrylic resins.
 樹脂の重量平均分子量は、特に制限されない。中でも樹脂の重量平均分子量は、5,000~500,000であることが好ましく、10,000~300,000であることがより好ましい。樹脂の重量平均分子量が5,000以上であると、電極形成用組成物の粘度の増加が抑制できる傾向にある。これは例えば、樹脂が粒子に吸着したときの立体的な反発作用が充分となり、これら樹脂同士の凝集が抑制されるためと考えることができる。一方、樹脂の重量平均分子量が500,000以下であると、樹脂同士が溶剤中で凝集することが抑制され、電極形成用組成物の粘度の増加が抑制できる傾向にある。また樹脂の重量平均分子量が500,000以下であると、樹脂の燃焼温度が高すぎて電極形成用組成物を熱処理する際に燃焼されずに異物として残存することが抑制され、より低抵抗率な電極を形成することができる傾向にある。 The weight average molecular weight of the resin is not particularly limited. Among them, the weight average molecular weight of the resin is preferably 5,000 to 500,000, more preferably 10,000 to 300,000. When the weight-average molecular weight of the resin is 5,000 or more, the increase in the viscosity of the electrode-forming composition tends to be suppressed. It can be considered that this is because, for example, when the resin is adsorbed to the particles, the steric repulsive action becomes sufficient, and the cohesion of these resins is suppressed. On the other hand, when the weight-average molecular weight of the resin is 500,000 or less, aggregation of the resins in the solvent is suppressed, and an increase in the viscosity of the electrode-forming composition tends to be suppressed. When the weight-average molecular weight of the resin is 500,000 or less, the combustion temperature of the resin is too high and the electrode-forming composition is not burned and remains as a foreign matter during the heat treatment, which results in a lower resistivity. electrode can be formed.
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B、東ソー(株))を用いて3次元で近似する。GPCの測定条件は、以下の通りである。
 ・装置:(ポンプ:L-2130型[(株)日立ハイテクノロジーズ])、(検出器:L-2490型RI[(株)日立ハイテクノロジーズ])、(カラムオーブン:L-2350[(株)日立ハイテクノロジーズ])
 ・カラム:Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M(計3本)(昭和電工マテリアルズ(株))
 ・カラムサイズ:10.7mm×300mm(内径)
 ・溶離液:テトラヒドロフラン
 ・試料濃度:10mg/2mL
 ・注入量:200μL
 ・流量:2.05mL/分
 ・測定温度:25℃
The weight-average molecular weight is obtained by converting the molecular weight distribution measured by GPC (gel permeation chromatography) using a standard polystyrene calibration curve. A standard curve is approximated in three dimensions using a set of 5 standard polystyrene samples (PStQuick MP-H, PStQuick B, Tosoh Corporation). The measurement conditions of GPC are as follows.
・ Apparatus: (Pump: L-2130 [Hitachi High-Technologies Co., Ltd.]), (Detector: L-2490 RI [Hitachi High-Technologies Co., Ltd.]), (Column Oven: L-2350 [Co., Ltd. Hitachi High Technologies])
・ Column: Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M (3 in total) (Showa Denko Materials Co., Ltd.)
・Column size: 10.7 mm × 300 mm (inner diameter)
・ Eluent: Tetrahydrofuran ・ Sample concentration: 10 mg/2 mL
・Injection volume: 200 μL
・Flow rate: 2.05 mL/min ・Measurement temperature: 25°C
 電極形成用組成物が溶剤及び樹脂を含む場合、溶剤及び樹脂の含有率は、電極形成用組成物の所望の液物性、使用する溶剤及び樹脂の種類等に応じて選択できる。
 例えば、溶剤及び樹脂の合計含有率は、電極形成用組成物全体の3.0質量%~70.0質量%であることが好ましく、20.0質量%~55.0質量%であることがより好ましく、30.0質量%~50.0質量%であることがさらに好ましい。
 溶剤及び樹脂の合計含有率が上記範囲内であることにより、電極形成用組成物を基板に付与する際の付与適性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる傾向にある。
 電極形成用組成物が溶剤及び樹脂を含む場合、溶剤及び樹脂の含有比は、電極形成用組成物が所望の液物性となるように、使用する溶剤及び樹脂の種類に応じて適宜選択することができる。
When the electrode-forming composition contains a solvent and a resin, the contents of the solvent and the resin can be selected depending on the desired liquid properties of the electrode-forming composition, the types of the solvent and the resin used, and the like.
For example, the total content of the solvent and the resin is preferably 3.0% by mass to 70.0% by mass, more preferably 20.0% by mass to 55.0% by mass, of the entire electrode-forming composition. More preferably, it is 30.0% by mass to 50.0% by mass.
When the total content of the solvent and the resin is within the above range, the application aptitude of the electrode-forming composition to the substrate is improved, and an electrode having a desired width and height can be formed more easily. tend to be able to
When the electrode-forming composition contains a solvent and a resin, the content ratio of the solvent and the resin should be appropriately selected according to the types of the solvent and resin used so that the electrode-forming composition has desired liquid physical properties. can be done.
 電極形成用組成物は、銀含有粒子の焼結性、ビスマス含有粒子の拡散バリア性、ガラス粒子によるアルミニウム電極の強度及び密着性の向上効果等の観点から、銀含有粒子、ビスマス含有粒子及びガラス粒子の合計含有率が、電極形成用組成物全体の30.0質量%~97.0質量%であることが好ましく、45.0質量%~80.0質量%であることがより好ましく、50.0質量%~70.0質量%であることがさらに好ましい。 The electrode-forming composition contains silver-containing particles, bismuth-containing particles and glass from the viewpoint of the sinterability of silver-containing particles, the diffusion barrier properties of bismuth-containing particles, and the effect of improving the strength and adhesion of aluminum electrodes by glass particles. The total content of particles is preferably 30.0% by mass to 97.0% by mass, more preferably 45.0% by mass to 80.0% by mass, based on the entire electrode-forming composition. It is more preferably 0.0% by mass to 70.0% by mass.
(その他の成分)
 電極形成用組成物は、上述した成分に加え、当該技術分野で通常用いられるその他の成分をさらに含有してよい。その他の成分としては、可塑剤、分散剤、界面活性剤、増粘剤、無機結合剤、金属酸化物(酸化ビスマスを除く)、セラミックス、有機金属化合物等を挙げることができる。
(other ingredients)
In addition to the components described above, the electrode-forming composition may further contain other components commonly used in the art. Other components include plasticizers, dispersants, surfactants, thickeners, inorganic binders, metal oxides (except bismuth oxide), ceramics, organometallic compounds, and the like.
(電極形成用組成物の製造方法)
 電極形成用組成物の製造方法は、特に制限されない。例えば、銀含有粒子、ビスマス含有粒子、ガラス粒子及び必要に応じて用いられるその他の成分を分散及び混合することで製造することができる。分散及び混合の方法は特に制限されず、通常用いられる方法から選択して適用することができる。
(Method for producing electrode-forming composition)
The method for producing the electrode-forming composition is not particularly limited. For example, it can be produced by dispersing and mixing silver-containing particles, bismuth-containing particles, glass particles, and optionally other components. Dispersion and mixing methods are not particularly limited, and can be applied by selecting from commonly used methods.
<アルミニウム/銀積層電極>
 本開示のアルミニウム/銀積層電極は、上述した本開示の電極形成用組成物の熱処理物を含むものであって、アルミニウムを含む第1電極と、前記第1電極の上に配置される銀を含む第2電極とを備え、前記第1電極は酸化ビスマス相及びガラス相をさらに含むものである。
<Aluminum/silver laminated electrode>
The aluminum/silver laminated electrode of the present disclosure includes a heat-treated product of the electrode-forming composition of the present disclosure described above, and includes a first electrode containing aluminum and silver disposed on the first electrode. and a second electrode comprising: the first electrode further comprising a bismuth oxide phase and a glass phase.
 第1電極が酸化ビスマス相及びガラス相を含むか否かは、透過型電子顕微鏡を用いて確認できる。具体的には、結晶Biの格子縞(原子の配列)の存在によって酸化ビスマス相の存在を確認でき、アモルファス特有の組織の存在によってガラス相の存在を確認できる。透過型電子顕微鏡の拡大倍率は、例えば、数十万倍に設定する。 Whether or not the first electrode contains the bismuth oxide phase and the glass phase can be confirmed using a transmission electron microscope. Specifically, the existence of a bismuth oxide phase can be confirmed by the presence of lattice fringes (atomic arrangement) of crystalline Bi 2 O 3 , and the existence of a glass phase can be confirmed by the existence of a structure peculiar to amorphous. The magnification of the transmission electron microscope is set, for example, at several hundred thousand times.
 上記構成のアルミニウム/銀積層電極は、太陽電池素子を構成する基板の上に配置されることが好ましく、太陽電池素子の裏面に相当する側に配置されることがより好ましい。
 本開示において「基板の上」には、基板の表面に形成されるパッシベーション膜、パッシベーション膜の保護膜等の膜の上も含まれる。
The aluminum/silver laminated electrode having the above structure is preferably arranged on the substrate constituting the solar cell element, and more preferably arranged on the side corresponding to the back surface of the solar cell element.
In the present disclosure, "on the substrate" includes a film formed on the surface of the substrate, such as a passivation film and a protective film for the passivation film.
 アルミニウムを含む第1電極の厚み(厚みが一定でない場合は、最小厚み)は、例えば、0.5μm~50.0μmの範囲であってよい。
 銀を含む第2電極の厚み(厚みが一定でない場合は、最小厚み)は、例えば、0.5μm~30.0μmの範囲であってよい。
The thickness (minimum thickness if the thickness is not uniform) of the first electrode containing aluminum may be, for example, in the range of 0.5 μm to 50.0 μm.
The thickness (minimum thickness if the thickness is not uniform) of the second electrode containing silver may range, for example, from 0.5 μm to 30.0 μm.
 上記構成のアルミニウム/銀積層電極は、例えば、上述した電極形成用組成物を用いて製造することができる。
 電極形成用組成物を用いて製造されるアルミニウム/銀積層電極及びこれを含む太陽電池素子の構造の一例について、図1を用いて説明する。なお、アルミニウム/銀積層電極の実施形態はこれに限定されるものではない。
 また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。なお、実質的に同一の機能を有する部材には全図面を通して同じ符号を付与し、重複する説明は省略する場合がある。
 図1は、電極形成用組成物を用いて作製したPERC構造の太陽電池素子の裏面電極の断面模式図である。図1に示すように、半導体基板1の表面にはパッシベーション膜18及び保護膜19(SiN)がこの順で成膜され、その上にアルミニウム電極(アルミニウム粒子焼結部とも言う)5及びアルミニウム/銀積層電極8が形成されている。
 アルミニウム/銀積層電極8は、アルミニウム電極と銀電極(銀粒子焼結部ともいう)とが積層された箇所を含む。例えば、アルミニウム/銀積層電極8の最表面に、銀粒子焼結部が形成されてよい。また、アルミニウム電極5と、アルミニウム/銀積層電極8を構成するアルミニウム電極とは、同時に形成されてよい。
The aluminum/silver laminated electrode having the above structure can be produced, for example, using the electrode-forming composition described above.
An example of the structure of an aluminum/silver laminated electrode manufactured using the electrode-forming composition and a solar cell element including the same will be described with reference to FIG. However, the embodiment of the aluminum/silver laminated electrode is not limited to this.
In addition, the sizes of the members in each drawing are conceptual, and the relative relationship between the sizes of the members is not limited to this. Note that members having substantially the same functions are given the same reference numerals throughout the drawings, and redundant description may be omitted.
FIG. 1 is a schematic cross-sectional view of a back electrode of a solar cell element having a PERC structure produced using an electrode-forming composition. As shown in FIG. 1, a passivation film 18 and a protective film 19 (SiN x ) are formed in this order on the surface of a semiconductor substrate 1, and an aluminum electrode (also referred to as an aluminum particle sintered portion) 5 and an aluminum electrode are formed thereon. /A silver laminated electrode 8 is formed.
The aluminum/silver laminated electrode 8 includes a portion where an aluminum electrode and a silver electrode (also referred to as a silver particle sintered portion) are laminated. For example, a silver particle sintered portion may be formed on the outermost surface of the aluminum/silver laminated electrode 8 . Moreover, the aluminum electrode 5 and the aluminum electrode constituting the aluminum/silver laminated electrode 8 may be formed at the same time.
(アルミニウム/銀積層電極の製造方法)
 電極形成用組成物を用いてアルミニウム/銀積層電極を製造する方法は特に制限されない。
 例えば、半導体基板の上にアルミニウム粒子含有膜を形成する工程と、電極形成用組成物を、アルミニウム粒子含有膜の上に付与し、必要に応じて乾燥する工程と、アルミニウム粒子含有膜及び電極形成用組成物を熱処理する工程と、をこの順に実施する方法が挙げられる。
(Manufacturing method of aluminum/silver laminated electrode)
There is no particular limitation on the method of producing the aluminum/silver laminated electrode using the electrode-forming composition.
For example, a step of forming an aluminum particle-containing film on a semiconductor substrate, a step of applying an electrode-forming composition onto the aluminum particle-containing film and drying if necessary, and a step of forming the aluminum particle-containing film and the electrode. and a step of heat-treating the composition for use in this order.
 アルミニウム粒子含有膜は、パッシベーション膜及び保護膜(SiN)が成膜された半導体基板上に形成されてよい。また、アルミニウム粒子含有膜は、半導体基板上に付与したアルミニウム電極形成組成物を乾燥して形成されてよい。半導体基板は、シリコン(Si)基板であってよい。アルミニウム電極形成用組成物を用いて、アルミニウム粒子含有膜を半導体基板上に形成する場合の、アルミニウム電極形成用組成物を付与する方法としては、スクリーン印刷法、インクジェット法、ディスペンサー法等を挙げることができ、生産性の観点から、スクリーン印刷法が好ましい。アルミニウム電極形成用組成物を付与した後の乾燥条件としては、当該技術分野で通常用いられる熱処理条件を適用することができる。 The aluminum particle-containing film may be formed on a semiconductor substrate on which a passivation film and a protective film (SiN x ) are formed. Also, the aluminum particle-containing film may be formed by drying the aluminum electrode-forming composition that has been applied onto the semiconductor substrate. The semiconductor substrate may be a silicon (Si) substrate. When forming an aluminum particle-containing film on a semiconductor substrate using the composition for forming an aluminum electrode, the method for applying the composition for forming an aluminum electrode includes a screen printing method, an inkjet method, a dispenser method, and the like. screen printing method is preferable from the viewpoint of productivity. As drying conditions after application of the composition for forming an aluminum electrode, heat treatment conditions commonly used in the technical field can be applied.
 電極形成用組成物を、アルミニウム粒子含有膜上に付与する方法としては、スクリーン印刷法、インクジェット法、ディスペンサー法等を挙げることができ、生産性の観点から、スクリーン印刷法が好ましい。 Examples of the method for applying the electrode-forming composition onto the aluminum particle-containing film include a screen printing method, an inkjet method, a dispenser method, and the like, and the screen printing method is preferable from the viewpoint of productivity.
 電極形成用組成物をスクリーン印刷法によってアルミニウム粒子含有膜上に付与する場合、電極形成用組成物は、ペースト状であることが好ましい。ペースト状の電極形成用組成物は、20Pa・s~1000Pa・sの範囲の粘度を有することが好ましい。尚、電極形成用組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃で測定される。 When the electrode-forming composition is applied onto the aluminum particle-containing film by screen printing, the electrode-forming composition is preferably in the form of a paste. The paste-like electrode-forming composition preferably has a viscosity in the range of 20 Pa·s to 1000 Pa·s. The viscosity of the electrode-forming composition is measured at 25° C. using a Brookfield HBT viscometer.
 電極形成用組成物のアルミニウム粒子含有膜への付与量は、形成する電極の大きさに応じて適宜選択することができる。例えば、電極形成用組成物の付与量としては、1.0mg/cm~20.0mg/cmとすることができ、2.0mg/cm~15.0mg/cmであることが好ましい。 The amount of the electrode-forming composition to be applied to the aluminum particle-containing film can be appropriately selected according to the size of the electrode to be formed. For example, the amount of the electrode-forming composition applied can be 1.0 mg/cm 2 to 20.0 mg/cm 2 , preferably 2.0 mg/cm 2 to 15.0 mg/cm 2 . .
 また、電極形成用組成物を用いてアルミニウム/銀積層電極を形成する際の熱処理条件としては、当該技術分野で通常用いられる熱処理条件を適用することができる。熱処理温度としては、一般的な結晶シリコン系太陽電池素子を製造する際に用いられる700℃~900℃の範囲を好適に用いることができる。
 また熱処理時間は、熱処理温度に応じて適宜選択することができ、例えば、1秒~20秒とすることができる。
As the heat treatment conditions for forming the aluminum/silver laminated electrode using the electrode-forming composition, heat treatment conditions that are commonly used in the relevant technical field can be applied. As the heat treatment temperature, a range of 700° C. to 900° C., which is used when manufacturing a general crystalline silicon solar cell element, can be suitably used.
Also, the heat treatment time can be appropriately selected according to the heat treatment temperature, and can be, for example, 1 second to 20 seconds.
 熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、赤外線加熱炉、トンネル炉等を挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に投入し熱エネルギーに変換されるため高効率であり、また、より短時間での急速加熱が可能である。さらに、燃焼による生成物が少なく、また非接触加熱であるため、生成する電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、熱処理するため、炉体の区分けと搬送スピードの制御によって、より均一に熱処理することが可能である。太陽電池素子の発電性能の観点からは、トンネル炉により熱処理することが好適である。 As the heat treatment device, any device capable of heating to the above temperature can be appropriately adopted, and examples thereof include infrared heating furnaces and tunnel furnaces. An infrared heating furnace is highly efficient because electric energy is applied to the heating material in the form of electromagnetic waves and converted into thermal energy, and rapid heating in a shorter time is possible. Furthermore, since there are few combustion products and non-contact heating, it is possible to suppress contamination of the generated electrodes. Since the tunnel furnace automatically and continuously transports the sample from the entrance to the exit for heat treatment, more uniform heat treatment is possible by dividing the furnace body and controlling the transport speed. From the viewpoint of the power generation performance of the solar cell element, heat treatment in a tunnel furnace is preferable.
 以下、アルミニウム/銀積層電極の製造方法の具体例を、図面を参照しながら説明する。ただし、本開示はこれに限定されるものではない。代表的なアルミニウム/銀積層電極の製造方法の一例を、図2A~図2Cに示す。 A specific example of the method for manufacturing the aluminum/silver laminated electrode will be described below with reference to the drawings. However, the present disclosure is not limited to this. An example of a method of manufacturing a typical aluminum/silver laminated electrode is shown in FIGS. 2A-2C.
 まず図2Aに示すように、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1の一方の面に、ペースト状のアルミニウム電極形成用組成物2を、スクリーン印刷法で塗布する。これを150℃程度の温度で加熱し、アルミニウム電極形成用組成物2中の溶剤を除去する。これにより、図2Bに示すように、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1上にアルミニウム粒子含有膜3が形成される。
 次いで、アルミニウム粒子含有膜3上の所望の領域に、電極形成用組成物4を塗布し、これを150℃程度の温度で加熱し、乾燥する。なお、電極形成用組成物4がペースト状の場合は、アルミニウム電極形成用組成物2と同様、スクリーン印刷法で塗布される。その後、これを上述した条件で熱処理する。これにより、図2Cに示すように、アルミニウム/銀積層電極8が、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1上に形成される。
 アルミニウム/銀積層電極8は、最表面に銀粒子焼結部7が配置され、銀粒子焼結部7とパッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1との間には、アルミニウム粒子焼結部/酸化ビスマス相混合部6が配置される。
First, as shown in FIG. 2A, a paste-like aluminum electrode forming composition 2 is applied by screen printing to one surface of a semiconductor substrate 1 on which a passivation film 18 and a protective film (SiN x ) 19 are formed. do. This is heated at a temperature of about 150° C. to remove the solvent in the aluminum electrode forming composition 2 . Thereby, as shown in FIG. 2B, the aluminum particle-containing film 3 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN x ) 19 are formed.
Next, the electrode-forming composition 4 is applied to a desired region on the aluminum particle-containing film 3, and is dried by heating at a temperature of about 150°C. When the electrode-forming composition 4 is in the form of a paste, it is applied by screen printing as in the case of the aluminum electrode-forming composition 2 . After that, it is heat-treated under the conditions described above. Thereby, as shown in FIG. 2C, the aluminum/silver laminated electrode 8 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN x ) 19 are formed.
The aluminum/silver layered electrode 8 has a silver particle sintered portion 7 disposed on the outermost surface, and a space between the silver particle sintered portion 7 and the semiconductor substrate 1 on which a passivation film 18 and a protective film (SiN x ) 19 are formed. , an aluminum particle sintered portion/bismuth oxide phase mixed portion 6 is arranged.
 図3は、図2Cのうち、アルミニウム/銀積層電極の形成箇所を拡大して示したものである。図3に示すように、アルミニウム粒子焼結部/酸化ビスマス相混合部6は、アルミニウム粒子焼結部5と、アルミニウム粒子焼結部5の空隙部に充填された酸化ビスマス相9とを含む。アルミニウム粒子焼結部/酸化ビスマス相混合部6がこのような構成を有するのは、上述したように、電極形成用組成物4中のビスマス含有粒子の一部又は全体が熱処理によりアルミニウム粒子含有膜3に移行するためである。 FIG. 3 is an enlarged view of the portion where the aluminum/silver laminated electrode is formed in FIG. 2C. As shown in FIG. 3 , the aluminum particle sintered portion/bismuth oxide phase mixed portion 6 includes the aluminum particle sintered portion 5 and the bismuth oxide phase 9 filled in the voids of the aluminum particle sintered portion 5 . The aluminum particle sintered portion/bismuth oxide phase mixed portion 6 has such a configuration because, as described above, part or all of the bismuth-containing particles in the electrode-forming composition 4 are heat-treated to form an aluminum particle-containing film. This is for transitioning to 3.
 酸化ビスマス相9は、銀粒子焼結部7とアルミニウム粒子焼結部5とを隔てるように配置されていてもよく、アルミニウム粒子焼結部5中のアルミニウム粒子と、銀粒子焼結部7とが接触している箇所が部分的に形成されてもよい。この場合、アルミニウム粒子と銀粒子との過度の相互拡散が抑制される程度に、銀粒子焼結部7とアルミニウム粒子焼結部5とを隔てるように酸化ビスマス相9が配置されていることが好ましい。
 図3において、アルミニウム粒子焼結部/酸化ビスマス相混合部6がアルミニウムを含む第1電極に該当し、銀粒子焼結部7が銀を含む第2電極に該当する。また、酸化ビスマス相9にはガラス相も含まれる。
The bismuth oxide phase 9 may be arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5, and the aluminum particles in the aluminum particle sintered portion 5 and the silver particle sintered portion 7 may be partially formed. In this case, the bismuth oxide phase 9 is arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5 to the extent that excessive mutual diffusion between the aluminum particles and the silver particles is suppressed. preferable.
In FIG. 3, the aluminum particle sintered portion/bismuth oxide phase mixed portion 6 corresponds to the first electrode containing aluminum, and the silver particle sintered portion 7 corresponds to the second electrode containing silver. The bismuth oxide phase 9 also includes a glass phase.
<太陽電池素子>
 本開示の太陽電池素子は、半導体基板と、前記半導体基板上に設けられるパッシベーション膜と、前記パッシベーション膜上に設けられる上述した本開示の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極と、を有するものである。
<Solar cell element>
A solar cell element of the present disclosure includes a semiconductor substrate, a passivation film provided on the semiconductor substrate, and an aluminum/silver laminated electrode comprising a heat-treated product of the electrode-forming composition of the present disclosure provided on the passivation film. and
 上記太陽電池素子は、必要に応じ、半導体基板の上に設けられるパッシベーション膜を保護するための保護膜を備えてもよい。パッシベーション膜として具体的には酸化アルミニウム膜(AlO)が挙げられる。保護膜として具体的には窒化ケイ素膜(SiN)が挙げられる。
 上記太陽電池素子のアルミニウム/銀積層電極は、半導体基板の裏面に設けられるものであってもよい。また、上記太陽電池素子はPERC構造を有するものであってもよい。
If necessary, the solar cell element may include a protective film for protecting a passivation film provided on the semiconductor substrate. A specific example of the passivation film is an aluminum oxide film (AlO x ). A specific example of the protective film is a silicon nitride film (SiN x ).
The aluminum/silver laminated electrode of the solar cell element may be provided on the back surface of the semiconductor substrate. Moreover, the solar cell element may have a PERC structure.
 以下、太陽電池素子の構成の具体例を、図面を参照しながら説明するが、本開示はこれに限定されるものではない。代表的な太陽電池素子の一例を、図4、図5A、図5B、図6A、図6B及び図6Cに示す。 A specific example of the configuration of the solar cell element will be described below with reference to the drawings, but the present disclosure is not limited to this. An example of a typical solar cell element is shown in FIGS. 4, 5A, 5B, 6A, 6B and 6C.
 図4は、太陽電池素子の受光面側の概略平面図である。図4に示す受光面電極14は、一般的には銀電極ペーストを用いて形成される。具体的には、反射防止膜13上に銀電極ペーストを所望のパターンで付与し、乾燥した後、大気中700℃~900℃程度で熱処理して受光面電極14が形成される。 FIG. 4 is a schematic plan view of the light receiving surface side of the solar cell element. The light-receiving surface electrode 14 shown in FIG. 4 is generally formed using a silver electrode paste. Specifically, a silver electrode paste is applied in a desired pattern on the antireflection film 13, dried, and then heat treated at about 700° C. to 900° C. in the atmosphere to form the light receiving surface electrode 14.
 図5Aは、太陽電池素子の裏面の概略平面図である。図5Aに示す太陽電池素子の裏面には、アルミニウム電極5が全面に形成されている。図5Bは、太陽電池素子の裏面のうち、アルミニウムフィンガー電極20及びアルミニウムバスバー電極21が裏面の一部に形成された場合の概略平面図である。
 太陽電池素子の裏面には、上述したように、アルミニウム電極形成用組成物の付与及び乾燥後、本開示の電極形成用組成物を所望のパターンで付与し乾燥する。次いで、これを大気中700℃~900℃程度で熱処理して、アルミニウム/銀積層電極を形成する。熱処理は、上述した受光面電極14の形成のための熱処理と一括して行ってもよい。
FIG. 5A is a schematic plan view of the back surface of the solar cell element. An aluminum electrode 5 is formed on the entire back surface of the solar cell element shown in FIG. 5A. FIG. 5B is a schematic plan view when the aluminum finger electrodes 20 and the aluminum busbar electrodes 21 are formed on part of the back surface of the solar cell element.
After applying and drying the aluminum electrode-forming composition on the rear surface of the solar cell element, the electrode-forming composition of the present disclosure is applied in a desired pattern and dried. Next, this is heat-treated in the air at about 700° C. to 900° C. to form an aluminum/silver laminated electrode. The heat treatment may be performed together with the heat treatment for forming the light-receiving surface electrode 14 described above.
 図6A~6Cの概略断面図に示すように、半導体基板1の一方の面の表面付近には、n型拡散層12が形成され、n型拡散層12上に出力取出し電極14及び反射防止膜13が形成されている。 As shown in the schematic cross-sectional views of FIGS. 6A to 6C, an n + -type diffusion layer 12 is formed near the surface of one surface of the semiconductor substrate 1, and an output extraction electrode 14 and a reflector are formed on the n + -type diffusion layer 12. A protective film 13 is formed.
 図6Aは図5AにおけるA-A’部の切断面である。A-A’断面が裏面パッシベーション膜の開口部を横切らない場合、裏面は図6Aに示す構造をもつ。図6Bは、図5BにおけるB-B’部の切断面である。B-B’断面が裏面パッシベーション膜の開口部を横切らない場合、裏面は図6Bに示す構造をもつ。図6Cは、図5BにおけるC-C’部の切断面である。C-C’断面が裏面パッシベーション膜の開口部(アルミニウムフィンガー電極20)を横切る場合、裏面は図6Cに示す構造をもつ。 FIG. 6A is a cross section along A-A' in FIG. 5A. If the A-A' section does not cross the opening of the backside passivation film, the backside has the structure shown in FIG. 6A. FIG. 6B is a cross section along line B-B' in FIG. 5B. If the BB' section does not cross the opening of the backside passivation film, the backside has the structure shown in FIG. 6B. FIG. 6C is a cross section along line C-C' in FIG. 5B. When the C-C' cross section crosses the openings (aluminum finger electrodes 20) of the back surface passivation film, the back surface has the structure shown in FIG. 6C.
 図6A~図6Cに示すように、受光面側では、熱処理によって受光面電極14を形成する銀電極ペーストに含まれるガラス粒子と、反射防止膜13とが反応(ファイアースルー)して、受光面電極14とn型拡散層12とが電気的に接続(オーミックコンタクト)される。
 裏面側では、熱処理によってアルミニウム電極5、アルミニウムフィンガー電極20又はアルミニウムバスバー電極21中のアルミニウムが半導体基板1の裏面の一部(裏面パッシベーション膜成膜部をレーザーなどで除去した部分)に拡散して、p型拡散層15を形成することによって、半導体基板1とアルミニウム電極5との間にオーミックコンタクトが部分的に形成される。
As shown in FIGS. 6A to 6C, on the light-receiving surface side, the glass particles contained in the silver electrode paste forming the light-receiving surface electrode 14 react (fire through) with the antireflection film 13 by heat treatment, and the light-receiving surface The electrode 14 and the n + -type diffusion layer 12 are electrically connected (ohmic contact).
On the back side, heat treatment causes the aluminum in the aluminum electrodes 5, the aluminum finger electrodes 20, or the aluminum bus bar electrodes 21 to diffuse into a portion of the back surface of the semiconductor substrate 1 (the portion where the back surface passivation film is removed by laser or the like). , p + -type diffusion layers 15 partially form an ohmic contact between the semiconductor substrate 1 and the aluminum electrode 5 .
 以下、本開示の内容を実施例及び比較例を用いてより詳細に説明するが、本開示の範囲は以下の実施例に限定されるものではない。 The contents of the present disclosure will be described in more detail below using examples and comparative examples, but the scope of the present disclosure is not limited to the following examples.
 以下の実施例において、ガラス粒子の形状は、走査型電子顕微鏡(日立ハイテクノロジーズ社、TM-1000)を用いて観察して判定した。ガラス粒子の体積平均粒子径はレーザー散乱回折法粒度分布測定装置(ベックマン・コールター社、LS 13 320型、測定波長:632nm)を用いて算出した。ガラス粒子の軟化点は、示差熱・熱重量同時測定装置(株式会社島津製作所、DT-60H)を用いて測定される示差熱(DTA)曲線から求めた。具体的には、DTA曲線において、吸熱部から軟化点を見積もることができる。 In the following examples, the shape of the glass particles was observed and determined using a scanning electron microscope (Hitachi High-Technologies Corporation, TM-1000). The volume average particle diameter of the glass particles was calculated using a laser scattering diffraction method particle size distribution analyzer (Beckman Coulter, LS 13 320 type, measurement wavelength: 632 nm). The softening point of the glass particles was obtained from a differential thermal (DTA) curve measured using a simultaneous differential thermal/thermogravimetric analyzer (Shimadzu Corporation, DT-60H). Specifically, the softening point can be estimated from the endothermic part in the DTA curve.
(ホウ素含有ガラス粒子の調製)
 二酸化ケイ素(SiO)1.6質量%、酸化ホウ素(B)13.4質量%、酸化ビスマス(Bi)84.1質量%及び酸化リチウム(LiO)0.9質量%からなるホウ素含有ガラスを得た。得られたホウ素含有ガラスの軟化点は440℃であった。
 得られたホウ素含有ガラスを用いて、体積平均粒子径が1.1μmであるホウ素含有ガラス粒子を得た。粒子の形状は略球状であった。
(リン含有ガラス粒子の調製)
 酸化リン(P)38.0質量%、酸化錫(SnO)57.0質量%、酸化亜鉛(ZnO)3.5質量%及び酸化アルミニウム(Al)1.5質量%からなるリン含有ガラスを得た。得られたリン含有ガラスの軟化点は340℃であった。リン含有ガラスを用いて、体積平均粒子径が8.0μmであるリン含有ガラス粒子を得た。粒子の形状は略球状であった。
(バナジウム-テルル含有ガラス粒子の調製)
 酸化亜鉛(ZnO)13.2質量%、酸化銅(CuO)1.9質量%、酸化バナジウム(V)35.6質量%及び酸化テルル(TeO)49.3質量%からなるバナジウム-テルル含有ガラスを得た。得られたバナジウム-テルル含有ガラスの軟化点は290℃であった。バナジウム-テルル含有ガラスを用いて、体積平均粒子径が1.4μmであるバナジウム-テルル含有ガラス粒子を得た。粒子の形状は略球状であった。
(Preparation of boron-containing glass particles)
Silicon dioxide ( SiO2 ) 1.6% by mass, boron oxide ( B2O3 ) 13.4% by mass, bismuth oxide ( Bi2O3) 84.1% by mass and lithium oxide ( Li2O ) 0.9% A boron-containing glass consisting of % by weight was obtained. The softening point of the obtained boron-containing glass was 440°C.
Using the obtained boron-containing glass, boron-containing glass particles having a volume average particle size of 1.1 μm were obtained. The shape of the particles was approximately spherical.
(Preparation of phosphorus-containing glass particles)
from 38.0% by weight phosphorus oxide ( P2O5), 57.0% by weight tin oxide (SnO), 3.5 % by weight zinc oxide (ZnO) and 1.5% by weight aluminum oxide ( Al2O3 ) A phosphorus-containing glass was obtained. The obtained phosphorus-containing glass had a softening point of 340°C. Using phosphorus-containing glass, phosphorus-containing glass particles having a volume average particle size of 8.0 μm were obtained. The shape of the particles was approximately spherical.
(Preparation of vanadium-tellurium-containing glass particles)
Vanadium consisting of 13.2% by mass of zinc oxide (ZnO), 1.9% by mass of copper oxide (CuO), 35.6% by mass of vanadium oxide ( V2O5 ) and 49.3% by mass of tellurium oxide ( TeO2 ) - A tellurium-containing glass was obtained. The softening point of the resulting vanadium-tellurium-containing glass was 290°C. Vanadium-tellurium-containing glass was used to obtain vanadium-tellurium-containing glass particles having a volume average particle size of 1.4 μm. The shape of the particles was approximately spherical.
(電極形成用組成物の調製)
 表1に記載の成分を表1に示す量で配合し、ロールミル(株式会社アイメックス、BR-150HCV)を用いて混合し、実施例1~4及び比較例のペースト状の電極形成用組成物を調製した。表1に記載の成分の詳細は、以下の通りである。表1の数値は、質量部である。
(Preparation of electrode-forming composition)
The components shown in Table 1 were blended in the amounts shown in Table 1, and mixed using a roll mill (BR-150HCV, Imex Co., Ltd.) to obtain pasty electrode-forming compositions of Examples 1 to 4 and Comparative Examples. prepared. Details of the components listed in Table 1 are as follows. The numerical values in Table 1 are parts by mass.
 Ag:銀粒子(体積平均粒子径:0.6μm、銀含有率:99.9質量%)
 Bi:金属ビスマス粒子(体積平均粒子径:1.5μm、ビスマス含有率:99.5質量%)
 Bi:酸化ビスマス粒子(体積平均粒子径:2.2μm)
 Bガラス:上述したホウ素含有ガラス粒子
 V-Teガラス:上述したバナジウム-テルル含有ガラス粒子
 Pガラス:上述したリン含有ガラス粒子
 TPO:テルピネオール
 エチルセルロース:日新化成株式会社、STD-10
Ag: silver particles (volume average particle size: 0.6 μm, silver content: 99.9% by mass)
Bi: metal bismuth particles (volume average particle size: 1.5 μm, bismuth content: 99.5% by mass)
Bi 2 O 3 : Bismuth oxide particles (volume average particle size: 2.2 μm)
B glass: Boron-containing glass particles as described above V-Te glass: Vanadium-tellurium-containing glass particles as described above P glass: Phosphorus-containing glass particles as described above TPO: Terpineol Ethyl cellulose: Nisshin Kasei Co., Ltd., STD-10
 上記で得られた電極形成用組成物を用いて、以下の方法で太陽電池素子を作製した。
 受光面にn型拡散層、テクスチャ及び反射防止(SiN)膜が形成され、受光面とは反対側の面(以下、「裏面」ともいう)にパッシベーション膜としての酸化アルミニウム(AlO)膜及び保護膜(SiN)膜がこの順に形成された厚み160μmのp型シリコン単結晶基板を用意し、158.75mm×158.75mmの大きさに切り出した。次いで、裏面のパッシベーション膜/保護膜の一部について、図5Bに示すように、アルミニウムフィンガー電極を形成する箇所をレーザーによって除去し、シリコン基板を露出させた。受光面上に、銀粒子及び鉛ガラス粒子を含む銀電極形成用組成物(デュポン社製、PV20)を図4に示すような電極パターンとなるようにスクリーン印刷により付与した。実際には、受光面出力取出し電極14の本数を9本とした。これを250℃の設定温度及び240インチ/分の搬送速度の条件で加熱したトンネル炉(Despatch社)で加熱し、溶剤を蒸散により取り除いた。
Using the electrode-forming composition obtained above, a solar cell element was produced by the following method.
An n + -type diffusion layer, a texture and an antireflection (SiN x ) film are formed on the light receiving surface, and aluminum oxide (AlO x ) as a passivation film is formed on the surface opposite to the light receiving surface (hereinafter also referred to as “back surface”). A p-type silicon single crystal substrate having a thickness of 160 μm, on which a film and a protective film (SiN x ) were formed in this order, was prepared and cut into a size of 158.75 mm×158.75 mm. Next, as shown in FIG. 5B, portions of the passivation film/protective film on the back surface were removed by laser at portions where aluminum finger electrodes were to be formed, exposing the silicon substrate. A composition for forming a silver electrode (PV20, manufactured by DuPont) containing silver particles and lead glass particles was applied to the light-receiving surface by screen printing so as to form an electrode pattern as shown in FIG. Actually, the number of the light-receiving surface output extraction electrodes 14 is nine. This was heated in a heated tunnel furnace (Despatch Co.) at a set temperature of 250° C. and a conveying speed of 240 inches/minute to remove the solvent by evaporation.
 続いて、シリコン基板の裏面側に、アルミニウム電極形成用組成物(Ruxing社、RX8401)と、上記で得られた電極形成用組成物とを、スクリーン印刷により、図5Bに示すような電極パターンの形状に付与した。実際には、アルミニウムバスバー電極21の本数を9本とし、アルミニウムバスバー電極21の1本あたりのアルミニウム/銀積層電極の形成箇所を6か所とした。
 具体的には、アルミニウム電極形成用組成物を、アルミニウムフィンガー電極20及びアルミニウムバスバー電極21の細線パターンの形状に印刷し、乾燥してアルミニウム粒子含有膜を形成した。その後、アルミニウム粒子含有膜の上に電極形成用組成物を印刷した。
 アルミニウムフィンガー電極の形成箇所は、シリコン基板が露出している部分と一致させた。アルミニウム電極形成用組成物の印刷条件は、熱処理後のアルミニウム電極の厚みが30μmとなるように調節した。電極形成用組成物の印刷は、1.6mm×8.0mmサイズのパッド形状が配列されたパターンを用いて、8.0mg/cmの塗布量になるように行った。
 アルミニウム電極形成用組成物及び電極形成用組成物をそれぞれ印刷した後は、250℃の設定温度及び240インチ/分の搬送速度の条件で、トンネル炉(Despatch社)で加熱し、溶剤を蒸散により取り除いた。
Subsequently, an aluminum electrode-forming composition (RX8401 by Ruxing) and the electrode-forming composition obtained above were applied to the back surface of the silicon substrate by screen printing to form an electrode pattern as shown in FIG. 5B. given the shape. In practice, the number of aluminum busbar electrodes 21 was set to nine, and the number of aluminum/silver laminated electrodes formed on each aluminum busbar electrode 21 was set to six.
Specifically, the composition for forming an aluminum electrode was printed in the shape of fine line patterns of the aluminum finger electrodes 20 and the aluminum busbar electrodes 21, and dried to form an aluminum particle-containing film. Thereafter, an electrode-forming composition was printed on the aluminum particle-containing film.
The positions where the aluminum finger electrodes were formed were aligned with the exposed portions of the silicon substrate. The conditions for printing the aluminum electrode-forming composition were adjusted so that the thickness of the aluminum electrode after heat treatment was 30 μm. The electrode-forming composition was printed using a pattern in which pad shapes each having a size of 1.6 mm×8.0 mm were arranged so that the coating amount was 8.0 mg/cm 2 .
After printing the aluminum electrode-forming composition and the electrode-forming composition, respectively, they are heated in a tunnel furnace (Despatch) under the conditions of a set temperature of 250° C. and a conveying speed of 240 inches/minute to evaporate the solvent. Removed.
 続いてトンネル炉(Despatch社)を用いて大気雰囲気下、最高温度870℃の設定温度及び240インチ/分の搬送速度の条件で熱処理を行って、裏面出力取出し電極としてのアルミニウム/銀積層電極が形成された太陽電池素子を作製した。 Subsequently, heat treatment was performed using a tunnel furnace (Despatch Co.) in an air atmosphere at a maximum temperature of 870° C. and a conveying speed of 240 inches/minute to form an aluminum/silver laminated electrode as a rear output extraction electrode. A formed solar cell element was produced.
-裏面側電極の表面観察-
 得られた太陽電池素子における裏面側のアルミニウム/銀積層電極の表面状態を目視により観察したところ、いずれの太陽電池素子においても銀白色を呈しており、電極として機能しうる状態であった。
- Observation of the surface of the back side electrode -
When the surface state of the aluminum/silver laminated electrode on the back side of the obtained solar cell element was visually observed, all the solar cell elements exhibited a silvery white color and were in a state capable of functioning as an electrode.
-PL明暗比-
 得られた太陽電池素子の欠陥をフォトルミネッセンス法でマッピングし、数値化処理することで、PL明暗比を算出した。具体的には、太陽電池素子の受光面側を上面として、EL・PL像観察システム(アイテス社製 PVX100 及びオプションユニット POPLI V2R)を用いてPL像を撮影した。PL像中の、アルミニウム/銀積層電極形成箇所及び電極非形成箇所から、それぞれ任意に28箇所について、画像処理ソフト(National Institutes оf Health開発 ImageJ)を用いて濃淡値を導出した。下記式(A)から得られた値を、各太陽電池素子のPL明暗比とした。
(アルミニウム/銀積層電極形成箇所の濃淡値の28箇所平均値)÷(電極非形成箇所の濃淡値の28箇所平均値)・・・式(A)
 比較例の太陽電池素子で求められたPL明暗比の値を基準(1.00)とし、各実施例の太陽電池素子で求められたPL明暗比の値を比較例の太陽電池素子で求められたPL明暗比で除した値(PL比)を、表1に示した。
-PL contrast ratio-
The defect of the obtained solar cell element was mapped by the photoluminescence method and numerically processed to calculate the PL contrast ratio. Specifically, a PL image was photographed using an EL/PL image observation system (manufactured by Aites PVX100 and optional unit POPLI V2R) with the light-receiving surface side of the solar cell element as the upper surface. In the PL image, 28 arbitrarily selected positions of aluminum/silver laminated electrode formation and non-electrode formation were derived using image processing software (Developed by National Institutes of Health, ImageJ). The value obtained from the following formula (A) was taken as the PL contrast ratio of each solar cell element.
(Average value of shading values at 28 locations where aluminum/silver laminated electrodes are formed)/(Average value of shading values at 28 locations where electrodes are not formed) Formula (A)
The value of the PL contrast ratio obtained in the solar cell element of the comparative example was used as a reference (1.00), and the value of the PL contrast ratio obtained in the solar cell element of each example was calculated in the solar cell element of the comparative example. Table 1 shows the value (PL ratio) divided by the PL light-dark ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例の太陽電池素子に対して各実施例の太陽電池素子のPL比が向上している。PL比の結果から、各実施例の太陽電池素子の裏面に設けられたパッシベーション層のエッチングが、比較例の太陽電池素子に比較して抑制されていることが示唆される。 As shown in Table 1, the PL ratio of the solar cell element of each example is improved with respect to the solar cell element of the comparative example. The results of the PL ratio suggest that the etching of the passivation layer provided on the back surface of the solar cell element of each example is suppressed compared to the solar cell element of the comparative example.
1…半導体基板、2…アルミニウム電極形成用組成物(ペースト状)、3…アルミニウム粒子含有膜、4…電極形成用組成物(乾燥前後)、5…アルミニウム粒子焼結部、アルミニウム電極、6…アルミニウム粒子焼結部/酸化ビスマス相混合部、7…銀粒子焼結部、8…アルミニウム/銀積層電極、9…酸化ビスマス相、12…n型拡散層、13…反射防止膜、14…受光面電極及び出力取出し電極、15…p型拡散層、18…パッシベーション膜、19…保護膜(SiN)、20…アルミニウムフィンガー電極、21…アルミニウムバスバー電極 REFERENCE SIGNS LIST 1 semiconductor substrate 2 aluminum electrode-forming composition (paste) 3 aluminum particle-containing film 4 electrode-forming composition (before and after drying) 5 aluminum particle sintered portion, aluminum electrode 6 Aluminum particle sintered portion/bismuth oxide phase mixed portion 7 Silver particle sintered portion 8 Aluminum/silver laminated electrode 9 Bismuth oxide phase 12 n + type diffusion layer 13 Antireflection film 14 Light-receiving surface electrode and output extraction electrode, 15: p + -type diffusion layer, 18: passivation film, 19: protective film (SiN x ), 20: aluminum finger electrode, 21: aluminum busbar electrode
 2021年2月16日に出願された日本国特許出願2021-022877号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2021-022877 filed on February 16, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (15)

  1.  銀含有粒子と、ビスマス含有粒子と、ガラス粒子と、を含み、
     前記ガラス粒子が、バナジウムとテルルとを含有するガラス粒子を含む電極形成用組成物。
    comprising silver-containing particles, bismuth-containing particles, and glass particles;
    The composition for forming an electrode, wherein the glass particles contain glass particles containing vanadium and tellurium.
  2.  前記バナジウムとテルルとを含有するガラス粒子を構成するガラスの組成において、酸化バナジウムの含有率が、20.0質量%~50.0質量%である請求項1に記載の電極形成用組成物。 The electrode-forming composition according to claim 1, wherein the content of vanadium oxide in the composition of the glass constituting the glass particles containing vanadium and tellurium is 20.0% by mass to 50.0% by mass.
  3.  前記バナジウムとテルルとを含有するガラス粒子を構成するガラスの組成において、酸化テルルの含有率が、35.0質量%~65.0質量%である請求項1又は請求項2に記載の電極形成用組成物。 3. The electrode formation according to claim 1, wherein the content of tellurium oxide in the composition of the glass constituting the glass particles containing vanadium and tellurium is 35.0% by mass to 65.0% by mass. composition.
  4.  前記ガラス粒子全体に占める前記バナジウムとテルルとを含有するガラス粒子の割合が、50.0質量%~100.0質量%である請求項1~請求項3のいずれか1項に記載の電極形成用組成物。 The electrode formation according to any one of claims 1 to 3, wherein the proportion of the glass particles containing vanadium and tellurium in the total glass particles is 50.0% by mass to 100.0% by mass. composition.
  5.  前記ガラス粒子が、リンを含有するガラス粒子をさらに含む請求項1~請求項4のいずれか1項に記載の電極形成用組成物。 The electrode-forming composition according to any one of claims 1 to 4, wherein the glass particles further contain phosphorus-containing glass particles.
  6.  前記リンを含有するガラス粒子を構成するガラスの組成において、酸化リンの含有率が、20.0質量%~50.0質量%である請求項5に記載の電極形成用組成物。 The electrode-forming composition according to claim 5, wherein the content of phosphorus oxide is 20.0% by mass to 50.0% by mass in the composition of the glass constituting the glass particles containing phosphorus.
  7.  前記ガラス粒子全体に占める前記リンを含有するガラス粒子の割合が、40.0質量%以下である請求項5又は請求項6に記載の電極形成用組成物。 The electrode-forming composition according to claim 5 or 6, wherein the proportion of the phosphorus-containing glass particles in the entire glass particles is 40.0% by mass or less.
  8.  前記ビスマス含有粒子が、金属ビスマス粒子、ビスマス合金粒子及び酸化ビスマス粒子からなる群より選択される少なくとも1種を含む請求項1~請求項7のいずれか1項に記載の電極形成用組成物。 The electrode-forming composition according to any one of claims 1 to 7, wherein the bismuth-containing particles include at least one selected from the group consisting of metal bismuth particles, bismuth alloy particles and bismuth oxide particles.
  9.  前記銀含有粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/Ag比)が、0.30~1.40である請求項1~請求項8のいずれか1項に記載の電極形成用組成物。 The mass ratio (Bi/Ag ratio) of the content of the bismuth-containing particles to the content of the silver-containing particles is 0.30 to 1.40, according to any one of claims 1 to 8. A composition for forming an electrode.
  10.  前記ガラス粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/G比)が、0.5~15.0である請求項1~請求項9のいずれか1項に記載の電極形成用組成物。 The electrode according to any one of claims 1 to 9, wherein the mass ratio (Bi/G ratio) of the content of the bismuth-containing particles to the content of the glass particles is 0.5 to 15.0. Forming composition.
  11.  前記ガラス粒子の含有率が、前記電極形成用組成物全体の1.0質量%~15.0質量%である請求項1~請求項10のいずれか1項に記載の電極形成用組成物。 The electrode-forming composition according to any one of claims 1 to 10, wherein the content of the glass particles is 1.0% by mass to 15.0% by mass of the entire electrode-forming composition.
  12.  溶剤及び樹脂からなる群より選択される少なくとも1種をさらに含む請求項1~請求項11のいずれか1項に記載の電極形成用組成物。 The electrode-forming composition according to any one of claims 1 to 11, further comprising at least one selected from the group consisting of solvents and resins.
  13.  アルミニウム/銀積層電極を形成するための請求項1~請求項12のいずれか1項に記載の電極形成用組成物。 The electrode-forming composition according to any one of claims 1 to 12, for forming an aluminum/silver laminated electrode.
  14.  半導体基板と、前記半導体基板上に設けられるパッシベーション膜と、前記パッシベーション膜上に設けられる請求項1~請求項13のいずれか1項に記載の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極と、を有する太陽電池素子。 Aluminum/silver comprising a semiconductor substrate, a passivation film provided on the semiconductor substrate, and a heat-treated product of the electrode-forming composition according to any one of claims 1 to 13 provided on the passivation film. A solar cell element having a laminated electrode.
  15.  請求項1~請求項13のいずれか1項に記載の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極であって、
     アルミニウムを含む第1電極と、前記第1電極の上に配置される銀を含む第2電極とを備え、前記第1電極は酸化ビスマス相及びガラス相をさらに含む、アルミニウム/銀積層電極。
    An aluminum/silver laminated electrode comprising a heat-treated product of the electrode-forming composition according to any one of claims 1 to 13,
    An aluminum/silver laminated electrode comprising a first electrode comprising aluminum and a second electrode comprising silver disposed over said first electrode, said first electrode further comprising a bismuth oxide phase and a glass phase.
PCT/JP2022/002478 2021-02-16 2022-01-24 Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode WO2022176519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500664A JPWO2022176519A1 (en) 2021-02-16 2022-01-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021022877 2021-02-16
JP2021-022877 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022176519A1 true WO2022176519A1 (en) 2022-08-25

Family

ID=82931536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002478 WO2022176519A1 (en) 2021-02-16 2022-01-24 Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode

Country Status (3)

Country Link
JP (1) JPWO2022176519A1 (en)
TW (1) TW202244944A (en)
WO (1) WO2022176519A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270140A (en) * 1990-06-21 1992-09-25 Johnson Matthey Inc Sealing glass composition and said composition containing electrically conductive component
US5188990A (en) * 1991-11-21 1993-02-23 Vlsi Packaging Materials Low temperature sealing glass compositions
JP2009209032A (en) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd Glass composition
JP2012218982A (en) * 2011-04-11 2012-11-12 Hitachi Chemical Co Ltd Electronic component, conductive paste for aluminum electrode to be applied to the same, and glass composition for aluminum electrode
JP2012226837A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
JP2013074165A (en) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Conductive composition for forming solar cell collector electrode, solar cell, and solar cell module
WO2013190981A1 (en) * 2012-06-22 2013-12-27 株式会社 日立製作所 Sealed container, electronic device, and solar cell module
WO2014014109A1 (en) * 2012-07-19 2014-01-23 日立化成株式会社 Passivation-layer-forming composition, semiconductor substrate having passivation layer, method for manufacturing semiconductor substrate having passivation layer, solar-cell element, method for manufacturing solar-cell element, and solar cell
JP2014024730A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Electronic component and its manufacturing method, and sealing material paste used therefor
WO2015030199A1 (en) * 2013-08-30 2015-03-05 京セラ株式会社 Solar cell element and method for manufacturing same
JP2016210681A (en) * 2011-07-04 2016-12-15 株式会社日立製作所 Glass composition, glass frit containing the glass composition and glass paste containing the glass composition
JP2017521826A (en) * 2014-06-19 2017-08-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Solar cell conductor
KR20200031599A (en) * 2018-02-23 2020-03-24 엘지전자 주식회사 Lead-free low temperature calcined glass frit, paste and vacuum glass assembly using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270140A (en) * 1990-06-21 1992-09-25 Johnson Matthey Inc Sealing glass composition and said composition containing electrically conductive component
US5188990A (en) * 1991-11-21 1993-02-23 Vlsi Packaging Materials Low temperature sealing glass compositions
JP2009209032A (en) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd Glass composition
JP2012218982A (en) * 2011-04-11 2012-11-12 Hitachi Chemical Co Ltd Electronic component, conductive paste for aluminum electrode to be applied to the same, and glass composition for aluminum electrode
JP2012226837A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
JP2016210681A (en) * 2011-07-04 2016-12-15 株式会社日立製作所 Glass composition, glass frit containing the glass composition and glass paste containing the glass composition
JP2013074165A (en) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The Conductive composition for forming solar cell collector electrode, solar cell, and solar cell module
WO2013190981A1 (en) * 2012-06-22 2013-12-27 株式会社 日立製作所 Sealed container, electronic device, and solar cell module
WO2014014109A1 (en) * 2012-07-19 2014-01-23 日立化成株式会社 Passivation-layer-forming composition, semiconductor substrate having passivation layer, method for manufacturing semiconductor substrate having passivation layer, solar-cell element, method for manufacturing solar-cell element, and solar cell
JP2014024730A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Electronic component and its manufacturing method, and sealing material paste used therefor
WO2015030199A1 (en) * 2013-08-30 2015-03-05 京セラ株式会社 Solar cell element and method for manufacturing same
JP2017521826A (en) * 2014-06-19 2017-08-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Solar cell conductor
KR20200031599A (en) * 2018-02-23 2020-03-24 엘지전자 주식회사 Lead-free low temperature calcined glass frit, paste and vacuum glass assembly using the same

Also Published As

Publication number Publication date
JPWO2022176519A1 (en) 2022-08-25
TW202244944A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5349738B2 (en) Semiconductor device manufacturing method and conductive composition used therefor
TWI570748B (en) Paste composition for electrode and photovoltaic cell
WO2012140786A1 (en) Electrode paste composition, solar-cell element, and solar cell
WO2012140787A1 (en) Electrode paste composition, solar-cell element, and solar cell
JP5811186B2 (en) Electrode paste composition, solar cell element and solar cell
JP2006302891A (en) Manufacturing method for semiconductor device and conductive composition used in it
TWI495125B (en) Element and photovoltaic cell
JP6206491B2 (en) Electrode forming composition, solar cell element and solar cell
JP2011519111A (en) Conductive composition and method of use in the manufacture of semiconductor devices
TW201144250A (en) Thick-film pastes containing lead-tellurium-lithium-titanium-oxides, and their use in the manufacture of semiconductor devices
JP2012226837A (en) Paste composition for electrode, solar cell element, and solar cell
WO2015115565A1 (en) Electrode formation composition, electrode, solar cell element, method for producing same, and solar cell
JP2022143534A (en) Electrode forming composition and solar cell element
JP2016189443A (en) Composition for electrode formation, electrode, solar cell element, method of manufacturing the same, and solar cell
WO2022176519A1 (en) Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode
WO2022176520A1 (en) Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode
WO2017033343A1 (en) Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element
WO2022181732A1 (en) Solar cell element and solar cell
WO2022181730A1 (en) Solar cell element and solar cell
WO2022075456A1 (en) Electrode-forming composition, solar cell element, and aluminum/silver stacked electrode
WO2022181731A1 (en) Solar cell element and solar cell
WO2022075457A1 (en) Electrode-forming composition, solar cell element, and aluminum/silver stacked electrode
WO2022138385A1 (en) Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode
JP2016189310A (en) Electrode-forming composition, electrode, solar cell element and method for producing the same, and solar cell
JP2015195223A (en) Paste composition for electrode, solar cell element, and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500664

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755843

Country of ref document: EP

Kind code of ref document: A1