WO2013190981A1 - Sealed container, electronic device, and solar cell module - Google Patents

Sealed container, electronic device, and solar cell module Download PDF

Info

Publication number
WO2013190981A1
WO2013190981A1 PCT/JP2013/065311 JP2013065311W WO2013190981A1 WO 2013190981 A1 WO2013190981 A1 WO 2013190981A1 JP 2013065311 W JP2013065311 W JP 2013065311W WO 2013190981 A1 WO2013190981 A1 WO 2013190981A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
oxide
transition metal
metal oxide
sealed container
Prior art date
Application number
PCT/JP2013/065311
Other languages
French (fr)
Japanese (ja)
Inventor
正 藤枝
内藤 孝
拓也 青柳
沢井 裕一
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013190981A1 publication Critical patent/WO2013190981A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • B32B17/10302Edge sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a sealed container, and more particularly, to an electronic device using the sealed container, in particular, a solar cell module.
  • a plurality of solar cells are provided in a sealed container, and the solar cells are shielded and protected from the outside air.
  • OLED organic light emitting diode
  • a glass hermetic seal for example, Patent Document 1.
  • the hermetic seal is softened with a laser to bond the two glass plates.
  • a V 2 O 5 —P 2 O 5 low melting point glass is used for this hermetic seal.
  • Patent Document 2 proposes pre-sintering the V 2 O 5 —P 2 O 5 low melting point glass in an atmosphere that is less oxidizable than air.
  • the problem to be solved by the present invention is to provide a sealed container capable of hermetically sealing an internal space even when used for bonding a glass member and a metal member. Moreover, the subject which this invention tends to solve is providing the electronic device using this sealed container, especially a solar cell module.
  • the present invention includes a glass member, a metal member, and a transition metal oxide glass that is fused to both the glass member and the metal member, and the transition metal oxide glass.
  • this invention is an electronic device using this sealed container, especially a solar cell module.
  • a sealed container capable of hermetically sealing an internal space even when used for bonding a glass member and a metal member.
  • an electronic device using this sealed container in particular, a solar cell module can be provided.
  • FIG. 7B is a cross-sectional view taken along the line AA in FIG. 7A. It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 2nd Embodiment of this invention. It is an assembly perspective view of the solar cell module which concerns on the 2nd Embodiment of this invention. It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 3rd Embodiment of this invention. It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 4th Embodiment of this invention.
  • FIG. 1 the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 1st Embodiment of this invention is shown.
  • a transparent transparent glass substrate (glass member (plate material)) 4 a that serves as a support plate of the solar cell module 1 and transmits sunlight is disposed on the light receiving surface side of the solar cell 6.
  • a transparent sealing resin 11 enclosing a plurality of solar cells 6 is disposed below the transparent glass substrate 4a.
  • the transparent sealing resin 11 is fused to the transparent glass substrate 4a.
  • a back sheet 14 is disposed below the transparent sealing resin 11.
  • the solar cell 6 is sandwiched between the transparent glass substrate 4a and the back sheet 14.
  • the transparent sealing resin 11 an ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), or the like can be used.
  • the back sheet 14 is a sheet material having a multilayer structure of at least three layers.
  • an aluminum foil (metal member, sheet material) 5a is used for the purpose of moisture prevention and prevention of atmospheric gas intrusion.
  • a fluororesin film, a low hydrolysis type polyester film, a moisture-proof coating film, or the like can be used.
  • the transparent sealing resin 11 is fused to the back sheet 14.
  • the insulating layer 12 is omitted, and the transition metal oxide glass (sealing material) 3 is fused to the aluminum foil (metal member) 5a.
  • the transition metal oxide glass (sealing material) 3 is fused to the peripheral edge of the transparent glass substrate 4a.
  • the transparent glass substrate 4a and the aluminum foil 5a are disposed to face each other, and the transition metal oxide glass 3 is provided between the outer peripheral portions thereof.
  • the transition metal oxide glass (sealing material) 3 bonds the transparent glass substrate 4a and the aluminum foil (metal member) 5a, and seals the gap generated between the transparent glass substrate 4a and the aluminum foil 5a.
  • the sealed container 2 formed by bonding the transparent glass substrate 4a and the aluminum foil 5a (back sheet 14) with the transition metal oxide glass 3 can be configured.
  • a plurality of solar cells 6 wrapped with a transparent sealing resin 11 are arranged.
  • the plurality of solar cells 6 are connected to each other by lead wires (wiring) 7.
  • Lead wires (wirings) 7 between the solar cells 6 are also arranged in the sealed container 2. This prevents moisture in the air and atmospheric gas from entering the inside of the sealed container 2, so that the solar battery cell 6 and the lead wire (wiring) 7 between them do not deteriorate and output over a long period of time. Reduction is suppressed.
  • the insulating layer 12 at the peripheral edge of the back sheet 14 is omitted. However, if the insulation between the solar battery cell 6 and the outside can be sufficiently secured by the transparent sealing resin 11, the entire insulating layer 12 is provided. And the insulating layer 13 may be omitted.
  • a lead wire (wiring) 7 connected to the solar battery cell 6 and drawn out from the solar battery cell 6 is led out to the outside through a lead-out hole formed in the transparent sealing resin 11 and the back sheet 14.
  • the lead-out hole is covered and sealed with silicon resin (silicone) 8 from the outside.
  • the lead wire (wiring) 7 exposed to the outside is connected to the output cable 10 in the terminal box 9.
  • the present invention is not limited to this, and a metal or alloy other than aluminum may be used for the metal member (aluminum foil) 5a.
  • the transition metal oxide glass 3 is an n-type semiconductor in order to firmly adhere to the aluminum foil (metal member) 5a.
  • the transition metal oxide glass 3 having an n-type semiconductor polarity is obtained by ringing a natural oxide layer formed on the surface of an aluminum foil (metal member) 5a so that the natural oxide layer is removed and the aluminum foil (metal Member) can be firmly bonded to 5a.
  • the transition metal oxide glass 3 has transition metal ions having different valences.
  • the number of expensive transition metal ions is larger than the number of low-valent transition metal ions.
  • the ratio of the number of expensive transition metal ions to the number of low-valent transition metal ions is greater than one. Specifically, vanadium ions can be used as transition metal ions.
  • V +5 pentavalent vanadium ion
  • V +4 tetravalent vanadium ion
  • the ratio to the number (concentration) of [V +5], 4 valent number of the vanadium ions (V +4) (Concentration) [V +4] pentavalent vanadium ions (V +5) ([V + 5 ] / [V + 4 ]) is greater than 1 ([V + 5 ] / [V + 4 ]> 1).
  • the valence of the vanadium ion in the transition metal oxide glass 3 can be measured by the oxidation-reduction titration method according to JIS-G1221. Vanadium ions can be not only pentavalent and tetravalent but also trivalent (V +3 ).
  • the number of tetravalent vanadium ions (V +4 ) of the number (concentration) [V +5 ] of pentavalent vanadium ions (V +5 ) The ratio ([V +5 ] / [V +4 ]) to the number (concentration) [V +4 ] is made larger than 1 ([V +5 ] / [V +4 ]> 1), not only 4 the ratio to the number (density) [V +3] number of valence of vanadium ions (V +4) (concentration) of [V +4], 3-valent vanadium ions (V +3) ([V +4 ] / [V +3 ]) may be greater than 1 ([V +4 ] / [V +3 ]> 1).
  • the ratio ([V +5 ] / [V +4 ] and [V +4 ] / [V +3 ]) can be adjusted by the additive element, and the ratio ([V +5 ] / [V +4 ] and [V +4 ] / [V +3 ]) to be greater than 1, copper, silver, alkali metal (which has the effect of suppressing the reduction of vanadium pentoxide (V 2 O 5 ))
  • at least one element of potassium) and alkaline earth metal for example, strontium and barium may be added.
  • vanadium which is a transition metal
  • the oxide layer (natural oxide) on the surface of the aluminum foil (metal member) 5a can be reduced, so that the transition metal oxide glass 3 is firmly bonded to the metal. can do.
  • the fact that the semiconductor polarity of the transition metal oxide glass 3 is n-type increases the number of ions having a large valence. Raise your valence and give your opponent an electron to reduce your opponent. When it is n-type, the number of ions of transition metal that can increase its valence is small, and at first glance, it is considered difficult to reduce the metal to be joined.
  • the semiconductor polarity of the transition metal oxide is made to be n-type, thereby enabling strong adhesion to the metal.
  • the transition metal oxide glass 3 Since the transition metal oxide glass 3 has a high absorption rate of light having a wavelength of 1100 nm or less, the transition metal oxide glass 3 can be heated by being irradiated with laser light having a wavelength of 1100 nm or less, and can be softened and flown and fused (laser sealing). .
  • the transition metal oxide glass 3 is fused to the transparent glass substrate 4a and the aluminum foil 5a by irradiating the transition metal oxide glass 3 from the transparent glass substrate 4a side through which the laser light is transmitted. Can do.
  • the wavelength range of the laser light is desirably 400 to 1100 nm. In the wavelength range of less than 400 nm, the entire surface of the transparent glass substrate 4a may be heated.
  • the transition metal oxide glass 3 can be heated without heating the entire surface of the transparent glass substrate 4a.
  • the resin 11 can be sealed in the sealed container 2.
  • the glass transition point of the transition metal oxide glass 3 is 320 ° C. or lower, and its softening point is 380 ° C. or lower.
  • the transition point and the softening point are characteristic temperatures by differential thermal analysis (DTA), the transition point is the starting temperature of the first endothermic peak, and the softening point is the second endothermic peak temperature.
  • DTA differential thermal analysis
  • the transition point exceeds 320 ° C.
  • a large residual strain may be generated in the laser sealing with rapid heating and rapid cooling.
  • the softening point exceeds 380 ° C., it becomes difficult to soften and flow easily during laser irradiation.
  • the laser sealing does not generate a large residual strain, and can be easily softened and flowed during laser irradiation.
  • the thermal expansion coefficient of the transition metal oxide glass 3 is a value between the thermal expansion coefficients of the transparent glass substrate 4 a and the back sheet 14. Thereby, both the thermal expansion coefficient difference of the transition metal oxide glass 3 and the transparent glass substrate 4a and the thermal expansion coefficient difference of the transition metal oxide glass 3 and the back sheet
  • seat 14 can be made small. And generation
  • the thermal expansion coefficient of the transition metal oxide glass 3 is reduced.
  • filler particles having a thermal expansion coefficient smaller than the thermal expansion coefficient of the glass component of the transition metal oxide glass 3 are used as the glass component of the transition metal oxide glass 3. It is mixed and vitrified together.
  • the filler particles one or more of zirconium phosphate tungstate (Zr 2 (WO 4 ) (PO 4 ) 2 ), niobium oxide (Nb 2 O 5 ), and silicon (Si) can be used.
  • niobium oxide Nb 2 O 5
  • Si silicon
  • the effect of lowering the thermal expansion coefficient of the transition metal oxide glass 3 is larger in the order of niobium oxide, silicon, and zirconium tungstate phosphate. Silicon generates heat by absorbing laser light having a wavelength in the range of 400 to 1100 nm.
  • the heat conductivity of silicon is better than the other two filler particles and the glass component of the transition metal oxide glass 3. For this reason, silicon is particularly effective for the laser sealing.
  • the filler particle content is 35 parts by volume or less with respect to the volume part of the glass component of the transition metal oxide glass 3.
  • the composition of the glass component of the transition metal oxide glass 3 (the composition of the component excluding the filler particles) has the following characteristics.
  • the glass component of the transition metal oxide glass 3 contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide.
  • the sum of the mass converted to V 2 O 5 , TeO 2 , P 2 O 5 , and Fe 2 O 3 respectively is 75% by mass or more based on the mass of the glass component of the transition metal oxide glass 3. ing.
  • the mass of vanadium oxide converted as V 2 O 5 is larger than the mass of tellurium oxide converted as TeO 2 .
  • the mass of tellurium oxide converted to TeO 2 is larger than the mass of phosphorus oxide converted to P 2 O 5 .
  • the mass converted to phosphorus oxide as P 2 O 5 is greater than or equal to the mass converted to iron oxide as Fe 2 O 3 .
  • the glass component of the transition metal oxide glass 3 contains vanadium oxide in an amount of 35 to 55% by mass in terms of V 2 O 5 .
  • the glass component of the transition metal oxide glass 3 contains 19-30% by mass of tellurium oxide in terms of TeO 2 .
  • the glass component of the transition metal oxide glass 3 contains 7 to 20% by mass of phosphorus oxide in terms of P 2 O 5 .
  • the glass component of the transition metal oxide glass 3 contains 5 to 15% by mass of iron oxide in terms of Fe 2 O 3 .
  • the transition metal oxide glass 3 It is important for the transition metal oxide glass 3 to contain the largest amount of V 2 O 5 in terms of oxide, thereby efficiently absorbing the wavelength range of 400 to 1100 nm and heating. At the same time, the softening point T s of the low-melting glass can be lowered, and it can be easily softened and flowed by irradiation with a laser having a wavelength range of 400 to 1100 nm. TeO 2 and P 2 O 5 are important components for vitrification. If it is not glass, it cannot soften and flow at low temperatures. Also, it cannot be softened and flowed easily by laser irradiation. P 2 O 5 has a greater effect of vitrification than TeO 2 and is effective for lowering thermal expansion.
  • Fe 2 O 3 is a component that acts on P 2 O 5 in particular to improve the moisture resistance and water resistance of the low-melting glass. Fe 2 O 3 is also a component that efficiently absorbs a wavelength range of 400 to 1100 nm, like V 2 O 5 .
  • the low melting point glass is crystallized by heating. This crystallization is a phenomenon that hinders the softening fluidity of the low-melting glass and is not preferable.
  • V 2 O 5 is less than 35% by mass, it may be difficult to soften and flow easily even when irradiated with a laser having a wavelength in the range of 400 to 1100 nm.
  • reliability such as moisture resistance and water resistance may be lowered.
  • TeO 2 is less than 19% by mass, the crystallization tendency may increase, the softening point T s may increase, or the reliability such as moisture resistance and water resistance may decrease.
  • the softening point T s tends to be lowered, but the thermal expansion coefficient becomes large, and the low melting point glass may be broken before it softens and flows due to heat shock caused by laser irradiation.
  • P 2 O 5 is less than 7% by mass, the tendency to crystallize increases, and it may become difficult to soften and flow by laser irradiation.
  • the softening point Ts increases, and it may be difficult to soften and flow easily even when irradiated with a laser. Further, reliability such as moisture resistance and water resistance may be lowered.
  • Fe 2 O 3 is less than 5% by mass, reliability such as moisture resistance and water resistance is lowered.
  • crystallization may be accelerated.
  • the glass component of the transition metal oxide glass 3 is any one of tungsten oxide, molybdenum oxide, copper oxide, tantalum oxide, manganese oxide, antimony oxide, bismuth oxide, zinc oxide, barium oxide, strontium oxide, silver oxide and potassium oxide. It is good to include the above.
  • These metal ions oxides may take a plurality of valences, of which WO 3, MoO 3, CuO, Ta 2 O 5, MnO 2, Sb 2 O 3, Bi 2 O 3, ZnO, BaO, SrO, Ag
  • the sum of the masses converted as 2 O and K 2 O is 25% by mass or less with respect to the mass of the transition metal oxide glass 3.
  • the softening point T s may increase, the thermal expansion coefficient may increase, or the crystallization tendency may increase.
  • one or more of WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrO, BaO, Ag 2 O, K 2 O The total is more preferably 0 to 20% by mass.
  • it contains WO 3 , MoO 3 , Ta 2 O 5 , ZnO, BaO, SrO, and in order to improve moisture resistance and water resistance, MnO 2 , Sb 2 O 3 , Bi 2 O 3 , BaO , SrO, Ag 2 O, K 2 O, Nb 2 O 5 , Ta 2 O 5 , ZnO for reducing the thermal expansion coefficient, MoO 3 , Ag 2 O, K for reducing the softening point Ts 2 O content is effective.
  • components that promote crystallization are Nb 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , Ag 2 O, K 2 O, and components that increase the softening point Ts are Sb 2 O. 3 , Bi 2 O 3 , BaO, SrO, components that increase the coefficient of thermal expansion are MoO 3 , BaO, SrO, Ag 2 O, K 2 O, and components that decrease the moisture resistance and water resistance are MoO 3 Nb 2 O 5 , Ta 2 O 5 , ZnO.
  • Example 1 the composition of the glass component (low melting point glass) of the transition metal oxide glass 3 clarified in the first embodiment is examined.
  • Tables 1 to 4 show, as examples, compositions that can be glass components of the transition metal oxide glass 3 and various characteristics for each composition.
  • Table 5 shows a composition that cannot be a glass component of the transition metal oxide glass 3 and various characteristics for each composition as a comparative example.
  • glass No. 1 Low melting glass having a composition of G1 to G80 was produced.
  • raw materials from a reagent manufactured by High Purity Chemical Laboratory, vanadium oxide V 2 O 5 , tellurium oxide TeO 2 , phosphorus oxide P 2 O 5 , iron oxide Fe 2 O 3 , tungsten oxide WO 3 , molybdenum oxide MoO 3 , Copper oxide CuO, tantalum oxide Ta 2 O 5 , manganese oxide MnO 2 , antimony oxide Sb 2 O 3 , bismuth oxide Bi 2 O 3 , zinc oxide ZnO, strontium carbonate SrCoS 3 , barium carbonate BaCO 3 , silver oxide Ag 2 O and Potassium carbonate K 2 CO 3 was used.
  • glass no For each composition of G1 to G80, these reagents were weighed so that the composition was obtained and the total mass was 200 g. Next, Glass No. For each composition of G1 to G80, weighed reagents were blended and mixed, placed in a platinum crucible, heated in an electric furnace and melted. In the electric furnace, the temperature was raised to a melting temperature of 900 to 1000 ° C. at a heating rate of 5 to 10 ° C./min, and heated at the melting temperature for 2 hours. In order to make the composition distribution uniform, hot water was stirred during heating for 2 hours at the melting temperature.
  • glass no The characteristics of the glass components G1 to G80 (low melting point glass) were measured. First, the density was measured. The measurement results are shown in the density column of Tables 1 to 5.
  • differential thermal analysis was performed.
  • the produced glass No. Part of the glass components G1 to G80 low melting point glass
  • differential thermal analysis was performed to raise the temperature to 500 ° C. at a rate of 5 ° C./min.
  • the DTA curve as shown in FIG. 2 was acquired. From this DTA curve, the transition point T g , the yield point M g , the softening point T s and the crystallization temperature T cry were determined (measured).
  • alumina (Al 2 O 3 ) powder was used as a standard sample. As shown in FIG.
  • the transition point The T g the onset temperature of the first endothermic peak was determined by the tangent method.
  • Yield point M g is the peak temperature of the first endothermic peak was determined by the tangent method.
  • the softening point T s was determined as the peak temperature of the second endothermic peak and obtained by the tangential method.
  • the crystallization temperature Tcry was determined as the starting temperature of the exothermic peak due to crystallization and was determined by the tangential method.
  • the characteristic temperature of glass (transition point T g , yield point M g , softening point T s ) is defined by the viscosity, and the transition point T g , yield point M g , and softening point T s have a viscosity of 10 13.3 poise respectively. , 10 11.0 poise and 10 7.65 poise.
  • the crystallization temperature Tcry is a temperature at which glass (low melting point glass) starts to crystallize. Since crystallization hinders the softening fluidity of the glass, it is desirable to make the crystallization temperature T cry higher than the softening point T s as much as possible.
  • thermal expansion characteristics were measured.
  • the produced glass No. Glass component G1 ⁇ G80 part (low-melting glass), respectively, were annealed at a temperature within the temperature range of transition point T g ⁇ sag M g, to remove thermal strain. It was processed into a prismatic shape of 4 mm in length and 20 mm in height. Using this prism was measured and the thermal expansion coefficient at 30 ⁇ 250 ° C.
  • the thermal dilatometer the transition temperature T G of thermal expansion characteristic temperature deformation temperature A T.
  • a cylindrical quartz glass having a diameter of 5 mm and a height of 20 mm was used as a standard sample.
  • the temperature rising rate of the prism and the standard sample was 5 ° C./min, and the temperature was raised until the deformation temperature AT could be confirmed. And by this temperature rise, the thermal expansion curve as shown in FIG. 3 was acquired. Note that the amount of elongation on the vertical axis of the thermal expansion curve in FIG. 3 is the amount of elongation obtained by subtracting the amount of elongation of quartz glass, which is a standard sample.
  • the thermal expansion coefficient was calculated from the gradient of elongation with respect to temperature in the temperature range of 30 to 250 ° C. of the thermal expansion curve.
  • the transition temperature TG of the thermal expansion characteristic temperature was determined as a temperature at which a significant increase in the gradient of elongation begins, and was determined by the tangential method.
  • the deformation temperature AT is a temperature at which deformation occurs due to a load, and was determined as a peak temperature of elongation.
  • Transition temperature T G was determined to slightly higher than the transition point T g of the said differential thermal analysis.
  • Deformation temperature A T is a M g yield point of the differential thermal analysis was measured as a temperature between the softening point T s.
  • the softening fluidity of the glass components G1 to G80 (low melting point glass) was evaluated.
  • DTA differential thermal analysis
  • a part of the low melting point glass was powdered.
  • this powder was compacted by a hand press (1 ton / cm 2 ) to produce a glass compact.
  • the glass compact was formed into a disk shape having a diameter of 10 mm and a height of 2 mm. This glass powder compact was placed on a white glass substrate, and various laser beams were transmitted through the white glass substrate from the white glass substrate side to irradiate the glass compact.
  • a laser beam having a wavelength of 405 nm by a semiconductor laser As various laser beams, a laser beam having a wavelength of 405 nm by a semiconductor laser, a laser beam having a wavelength of 532 nm by a YAG laser, a laser beam having a wavelength of 630 nm by a semiconductor laser, a laser beam having a wavelength of 805 nm by a semiconductor laser, A laser beam having a wavelength of 1064 nm by a YAG laser was used.
  • the evaluation criteria for the softening fluidity is “ ⁇ ” when the laser irradiation part of the glass compact has flowed, “ ⁇ ” when it has flowed but many cracks occur, and “ ⁇ ” when softened.
  • Low melting point glasses having compositions of G1 to G64 are glass Nos. Of Comparative Examples. G69,74 ⁇ 76 and 78-80 the low-melting transition point T g is lower than the glass compositions of, for transition low T g and 320 ° C. or less, not observed cracks in the heat shock by laser irradiation.
  • Low melting point glasses having compositions of G1 to G64 are glass Nos. Of Comparative Examples. Since the thermal expansion coefficient is smaller than that of the low melting point glass having the composition of G68, 70 to 73, 77 and 78, and the thermal expansion coefficient is relatively small as 100 ⁇ 10 ⁇ 7 / ° C. or less, cracks caused by heat shock due to laser irradiation can not see.
  • Low melting point glasses having compositions of G1 to G64 are glass Nos. Of Comparative Examples. The moisture resistance is better than that of low melting glass having a composition of G65 to 68, 70 to 74, 76, 78 and 80.
  • Low melting point glasses having compositions of G1 to G64 are glass Nos. Of Comparative Examples.
  • the softening fluidity by laser irradiation is better than the low melting glass having the composition of G67, 69, 73 to 76, and 78 to 80, and like the low melting glass having the composition of Comparative Examples 68, 70 to 73, 77, and 78.
  • the low melting point glass having the composition of G1 to G64 (Example) absorbs laser light having a wavelength in the range of about 400 to about 1100 nm efficiently, is heated, and has a low softening point T s of 380 ° C. or less, which is good Soft fluidity.
  • the transition point T g is 320 ° C. or less and low thermal expansion coefficient is small as 100 ⁇ 10 -7 / °C less, cracks in the heat shock does not occur due to laser irradiation.
  • the glass No. According to the low melting point glass having the composition of G1 to G64 (Examples), excellent characteristics were obtained in the various characteristics described above. These glass Nos. From the compositions of G1 to G64 (Examples), a compositional composition common to these can be derived. The common composition is the glass No.
  • the low melting point glass having the composition of G1 to G64 (Example) contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide, and V 2 O 5 , TeO 2 , P 2 O 5 and Fe 2 in terms of the following oxides.
  • the total of O 3 is 75% by mass or more and has a relationship of V 2 O 5 > TeO 2 > P 2 O 5 ⁇ Fe 2 O 3 (% by mass).
  • any one or more of tungsten oxide, molybdenum oxide, copper oxide, tantalum oxide, manganese oxide, antimony oxide, bismuth oxide, zinc oxide, barium oxide, strontium oxide, silver oxide and potassium oxide are included.
  • a particularly effective composition range is that V 2 O 5 is 35 to 55% by mass, TeO 2 is 19 to 30% by mass, and P 2 O 5 is 7% in terms of the following oxides after satisfying the above-described composition conditions.
  • Example 2 the glass No. shown in Table 2 was used.
  • the transition metal oxide glass 3 which uses the low melting glass of the composition of G19 as a glass component is produced. Using this transition metal oxide glass 3, a sealed container 2 is produced, and the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 are evaluated.
  • a glass No. The low melting glass having the composition of G19 was pulverized by a jet mill into a powder having an average particle size of 3 ⁇ m or less.
  • the sealing material paste was produced using this powder, the resin binder, and the solvent. Nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. If it is a sealing material paste, it can be apply
  • FIG. 4 the perspective view in the middle of manufacture of the sealed container 2 which concerns on Example 2 of this invention is shown.
  • a slide glass (white plate glass) was prepared as the transparent glass substrate 4a.
  • the said sealing material paste used as the transition metal oxide glass 3 was apply
  • the solvent was removed by heating in the atmosphere at a temperature of 150 to 200 ° C. for 30 minutes.
  • Glass No. The temperature should be lower than the softening point T s (355 ° C.) of the low melting point glass having the composition of G19.
  • the resin binder was removed by heating in the atmosphere at a temperature of 320 ° C. for 30 minutes.
  • the transition metal oxide glass 3 was able to be formed (baked) on the transparent glass substrate 4a.
  • the line width W of the transition metal oxide glass 3 was 1.5 mm.
  • the baking film thickness T of the transition metal oxide glass 3 in order to produce four different sealed containers 2 of about 5, 10, 20, and 30 ⁇ m, four types with different coating amounts are produced. As will be described later, since each of the four types was irradiated with five types of laser beams having different wavelengths used in Example 1, 20 types of sealed containers 2 were finally produced.
  • FIG. 5 shows a longitudinal sectional view of the sealed container 2 according to the second embodiment of the present invention in the middle of manufacture.
  • an aluminum substrate (plate material) is used as the metal member 5a.
  • the aluminum substrate (metal member) 5a was disposed so as to face the transparent glass substrate 4a with the transition metal oxide glass 3 interposed therebetween.
  • Laser light 15 was applied to the transition metal oxide glass 3 from the transparent glass substrate 4a side.
  • the laser beam 15 was irradiated while moving along the transition metal oxide glass 3 at a speed of 8 mm / second, and was irradiated over the entire circumference of the frame shape of the transition metal oxide glass 3.
  • the transition metal oxide glass 3 was fused to the transparent glass substrate 4a and the aluminum substrate 5a.
  • the transparent glass substrate 4a and the aluminum substrate 5a were bonded via the transition metal oxide glass 3.
  • the laser beam 15 five types of laser beams with different wavelengths used in Example 1 were irradiated.
  • Table 6 shows the evaluation results of the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3. These evaluation results are shown for each fired film thickness of the transition metal oxide glass 3 and for each wavelength of irradiated laser light (irradiation laser wavelength).
  • a helium leak test was performed. For the helium leak test, a port capable of depressurizing the inside of the sealed container 2 was formed in the aluminum substrate 5a although not shown.
  • “ ⁇ ” was set when no leak was detected
  • “X” was set when a leak was detected.
  • a peel test was performed as an evaluation of the adhesion of the transition metal oxide glass 3.
  • a commercially available cellophane tape was attached to the aluminum substrate 5a with the transparent glass substrate 4a fixed to the base and pulled as it was.
  • the transparent glass substrate 4a itself or the transition metal oxide glass 3 itself is broken, it is “ ⁇ ”, and it is peeled off at the interface between the transition metal oxide glass 3 and the transparent glass substrate 4a or the aluminum substrate 5a.
  • “x” was used.
  • the fired film thickness was 20 ⁇ m or less (less than 30 ⁇ m), the airtightness and adhesiveness were good regardless of the wavelength of the laser beam 15 used.
  • the fired film thickness is 30 ⁇ m, depending on the wavelength of the laser beam 15 to be used, there are cases where good airtightness and adhesiveness can be obtained or not. Specifically, when the fired film thickness was 30 ⁇ m, good hermeticity and adhesiveness were obtained by using the laser light 15 having wavelengths of 532 nm and 1064 nm. Further, when the fired film thickness was 30 ⁇ m, good hermeticity was obtained by using the laser beam 15 having a wavelength of 805 nm.
  • the laser beam 15 When the laser beam 15 is absorbed in the transition metal oxide glass 3 in the vicinity of the aluminum substrate 5a, the intensity of the laser beam 15 is attenuated and it is difficult to generate heat up to a temperature necessary for fusion to the aluminum substrate 5a. Conceivable. Therefore, when the fired film thickness is large, in addition to the incidence of the laser beam 15 from the transparent glass substrate 4a side, the laser beam 15 is emitted from the aluminum substrate 5a side or from the side surface of the transition metal oxide glass 3. Irradiation is sufficient.
  • a transparent resin substrate (resin member) was used.
  • the transparent resin substrate is made of polycarbonate.
  • Resin members such as polycarbonate are made of glass no. Since the heat resistance is lower than that of the low melting point glass having the composition of G19, the transition metal oxide glass 3 at 320 ° C. in Example 2 cannot be fired. Accordingly, the transition metal oxide glass 3 on the transparent resin substrate (polycarbonate) is baked by irradiating the transition metal oxide glass 3 with a laser beam 15 having a wavelength of 805 nm that is not absorbed by the polycarbonate from the transparent resin substrate side. went.
  • the laser beam 15 was irradiated while moving at a predetermined speed along the transition metal oxide glass 3, and was irradiated over the entire circumference of the frame shape of the transition metal oxide glass 3. Thereby, the transition metal oxide glass 3 was baked. According to this, the temperature of the transparent resin substrate (polycarbonate) hardly increased. After that, similarly to Example 2, the transition metal oxide glass 3 was irradiated with laser light 15 having five kinds of wavelengths from the transparent resin substrate (polycarbonate) side to complete the sealed container 2. The evaluation results of the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 were the same as the evaluation results of Example 2.
  • the transition metal oxide glass 3 is produced similarly to Example 2, and the sealed container 2 is produced using this transition metal oxide glass 3.
  • the airtightness (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 are evaluated.
  • a glass substrate having a thermal expansion coefficient of 50 ⁇ 10 ⁇ 7 / ° C. was used as the transparent glass substrate 4a.
  • the glass component of the transition metal oxide glass 3 was changed to the glass No. 2 of Example 2. In place of the composition of G19, glass No. The composition was G43. Furthermore, in order to lower the thermal expansion coefficient of the transition metal oxide glass 3, filler particles were added.
  • filler particles As filler particles, three types of zirconium phosphate tungstate (Zr 2 (WO 4 ) (PO 4 ) 2 ), niobium oxide (Nb 2 O 5 ), and silicon (Si) were used.
  • the average particle size of the filler particles was about 5 ⁇ m.
  • the glass No. The low melting point glass having the composition of G43 was pulverized by a jet mill into a powder having an average particle size of 3 ⁇ m or less. Next, using this powder, one of the three types of filler particles, a resin binder, and a solvent, three types of sealing material pastes having different types of filler particles were produced. Moreover, the content of the filler particles in the sealing material paste was changed to four types of 15, 25, 35, and 45 parts by volume with respect to 100 parts by volume of the powder. Therefore, finally, 12 types of sealing material paste (transition metal oxide glass 3) and 12 types of sealed containers 2 were produced correspondingly.
  • the density of low-melting glass composition of G43 is 3.53g / cm 3, Zr 2 ( WO 4) (PO 4) 2 densities 3.80g / cm 3, Nb 2 density of O 5 is 4.57g / cm 3, Si
  • the density of was 2.33 g / cm 3 .
  • ethyl cellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent.
  • each of the 12 types of sealing material pastes was applied to the outer peripheral portion of the transparent glass substrate 4 a by screen printing. Next, the solvent was dried. Next, the resin binder was removed by heating in the atmosphere at a temperature of 400 ° C. for 30 minutes. Thereby, the transition metal oxide glass 3 was able to be formed (baked) on the transparent glass substrate 4a.
  • the line width W of the transition metal oxide glass 3 was about 1.5 mm, and the film thickness T was about 20 ⁇ m.
  • an aluminum substrate (metal member) 5a was placed so as to face the transparent glass substrate 4a with the transition metal oxide glass 3 interposed therebetween.
  • the transition metal oxide glass 3 was irradiated with laser light 15 having a wavelength of 805 nm from the transparent glass substrate 4a side.
  • the laser beam 15 was irradiated while moving along the transition metal oxide glass 3 at a speed of 8 mm / second, and was irradiated over the entire circumference of the frame shape of the transition metal oxide glass 3.
  • the transition metal oxide glass 3 was fused to the transparent glass substrate 4a and the aluminum substrate 5a over the entire circumference.
  • the transparent glass substrate 4a and the aluminum substrate 5a were bonded via the transition metal oxide glass 3. Thereby, the sealed container 2 was completed.
  • Table 7 shows the evaluation results of the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3. These evaluation results are shown for each type and volume part of the filler particles.
  • the evaluation method and evaluation criteria for airtightness (gas barrier property) and adhesiveness were the same as those in Example 2. From this, regardless of the type of filler particles, when the content was 35 parts by volume or less (less than 45 parts by volume), good airtightness and adhesiveness were obtained. Further, when the filler particle content was 45 parts by volume, good airtightness was obtained, but the adhesiveness deteriorated. This is because if there are too many filler particles, the area of the glass component in the transition metal oxide glass 3 fused to the transparent glass substrate 4a and the aluminum substrate 5a becomes small.
  • the content of the filler particles is set to 35 parts by volume or less (45 parts with the glass component in the transition metal oxide glass 3 being 100 parts by volume (45 (Less than volume part) is considered preferable.
  • wettability (Zr 2 (WO 4 ) (PO 4 ) 2 ), Nb 2 O 5 , and Si are selected as filler particles and the glass component in the transition metal oxide glass 3.
  • the present invention is not limited to these, and ⁇ -eucryptite, cordierite, zirconium phosphate, zirconium silicate, and the like having a small thermal expansion coefficient are also applicable.
  • the height of the inner space of the sealed container 2 is equal to the fired film thickness of the transition metal oxide glass 3.
  • the fired film thickness has an upper limit value that can ensure good airtightness and adhesiveness.
  • the height of the internal space of the sealed container 2 will also be restrict
  • FIG. 7A shows a plan view of the sealed container 2 according to Example 4 of the present invention
  • FIG. 7B shows a cross-sectional view taken along the line AA in FIG. 7A
  • a spacer (glass member) 4b is sandwiched between the transparent glass substrate 4a and the aluminum substrate 5a.
  • a glass member such as white plate glass having a high laser beam transmittance, or a resin member such as polycarbonate can be used.
  • the transparent glass substrate 4a may be replaced with a resin member such as polycarbonate having a high laser light transmittance.
  • a plurality of glass members of a transparent glass substrate (plate material, glass member) 4a and spacers (frame material, glass member) 4b are bonded with a transition metal oxide glass 3a.
  • the aluminum substrate (plate, metal member) 5a and the spacer (glass member) 4b are bonded with a transition metal oxide glass 3b.
  • the spacer (glass member) 4b and the transition metal oxide glasses 3a and 3b have a frame shape and overlap each other. According to this, the height of the internal space of the sealed container 2 can be changed by changing the height of the spacer (glass member) 4b without changing the fired film thickness of the transition metal oxide glasses 3a and 3b. .
  • the sealed container 2 manufactured by actually changing the height of the spacer (glass member) 4b in four ways will be described.
  • the sealing material paste is glass no.
  • the low melting point glass powder having the composition of G43, Si filler particles, nitrocellulose, and butyl carbitol acetate were used.
  • the Si filler particles were 10 parts by volume with respect to 100 parts by volume of the powder.
  • This sealing material paste was applied to the upper and lower surfaces of the spacer 4b.
  • the solvent was removed by heating at 150 to 200 ° C. for 30 minutes in the atmosphere.
  • provisional baking was performed by removing the binder by heating at 340 ° C. for 30 minutes in the atmosphere to complete the transition metal oxide glasses 3a and 3b.
  • the fired film thickness of each of the transition metal oxide glasses 3a and 3b was 15 ⁇ m.
  • the spacer 4b was prepared by changing the width to 3 mm and changing the thickness in four ways of 70, 320, 500, and 1000 ⁇ m, respectively. These laminates were sandwiched between the transparent glass substrate 4a and the aluminum substrate 5a, respectively, and installed on the outer periphery thereof.
  • the transition metal oxide glasses 3a and 3b were irradiated with laser light having a wavelength of 630 nm from the transparent glass substrate 4a side. The laser light passes through the transparent glass substrate 4a and irradiates the transition metal oxide glass 3b, and further passes through the transition metal oxide glass 3b and the spacer 4b to irradiate the transition metal oxide glass 3a.
  • the spacer 4b functions as a waveguide of laser light that transmits the laser light without being attenuated.
  • the moving speed of the laser beam was 8 mm / second.
  • the sealed container 2 was completed by the above.
  • the airtightness (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 were evaluated in the same manner as in Example 2. Good airtightness and adhesiveness were obtained regardless of the thickness of the spacer 4b. It has been found that when the distance between the transparent glass substrate 4a and the aluminum substrate 5a is large, it is effective to use the spacer 4b.
  • the material of the spacer 4b in addition to the white plate glass having high laser light transmittance, it is also possible to apply silicon or iron oxide which has a high laser absorption rate and generates heat.
  • FIG. 8 the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 2nd Embodiment of this invention is shown.
  • the solar cell module 1 of the second embodiment is completed based on the results of Examples 1 to 3 and the results of Example 4.
  • the solar cell module 1 of the second embodiment is different from the solar cell module 1 of the first embodiment in that the spacer 4b described in Example 4 is used. Thereby, the effect similar to the effect obtained in Example 4 can be acquired.
  • the sealed container 2 that is not limited to the height of the solar cell (electronic component) 6 is provided. Can do.
  • the lead wire (wiring) 7 drawn out from the solar battery cell 6 penetrates through the transition metal oxide glass 3a and is drawn out to the outside. Yes.
  • a transparent glass substrate (glass member) 4 a and a spacer (glass member) 4 b are disposed around the transition metal oxide glass 3 a, and the transition metal oxide glass 3 a is fused to the lead wire (wiring, metal member) 7.
  • the sealed container 2 is sealed by being attached to the transparent glass substrate (glass member) 4a and the spacer (glass member) 4b.
  • FIG. 9 shows an assembled perspective view of the solar cell module 1 according to the second embodiment of the present invention.
  • a plurality of solar battery cells 6 are arranged in a row while performing connection soldering for each solar battery cell 6 using a lead wire (for example, a ribbon wire of a solder-plated copper base material) 7 with an automatic wiring device.
  • a string cell 16 connected to is formed. These are connected in parallel and arranged in parallel (in three rows in the example of FIG. 9), and a plurality of solar cells 6 are arranged in a matrix.
  • a transparent glass substrate 4a is prepared, a transparent sealing resin (EVA sheet) 11b is arranged on the transparent glass substrate 4a, a matrix-like solar battery cell 6 is arranged thereon, and further transparent thereon. Sealing resin (EVA sheet) 11a is disposed.
  • the transparent sealing resin 11a is omitted. Can do.
  • the transition metal oxide glasses 3a and 3b were temporarily baked, and on that, The back sheet 14 with the peripheral aluminum foil 5a exposed is disposed.
  • the exposed aluminum foil 5a is placed on and in contact with the transition metal oxide glass 3b.
  • the lead wire (wiring) 7 is taken out, and in the lamination apparatus, the transparent glass substrate 4a to the back sheet 14 are pressure-bonded and integrated in a vacuum at a temperature near the EVA crosslinking temperature.
  • the transparent sealing resins 11 a and 11 b integrally wrap the solar battery cell 6 and seal the solar battery cell 6.
  • Example 4 laser light was irradiated from the transparent glass substrate 4a side, and the outer peripheral portion of the solar cell module 1 was joined (sealed). It is also possible to improve the lamination apparatus so that laser irradiation can be performed during lamination, and to perform lamination and laser irradiation simultaneously. Further, the transparent sealing resin (EVA sheet) may be omitted, and in this case, the lamination step can be omitted.
  • EVA sheet transparent sealing resin
  • FIG. 10 the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 3rd Embodiment of this invention is shown.
  • the solar cell module 1 of the third embodiment is different from the solar cell module 1 of the second embodiment in that a composite transparent substrate 18 is used instead of the transparent glass substrate 4a.
  • the composite transparent substrate 18 has a transparent resin substrate 17 such as polycarbonate, and the surface thereof is covered with the same transition metal oxide glass 3c as the transition metal oxide glasses 3a and 3b. As described in the modification of Example 2, the transition metal oxide glasses 3a and 3c are firmly fused to the transparent resin substrate 17 such as polycarbonate.
  • the solar cell module 1 can be reduced in weight significantly by using the composite transparent substrate 18 instead of the transparent glass substrate 4a.
  • the transition metal oxide glass 3c is coated on the transparent resin substrate 17 by applying the sealing material paste on the transparent resin substrate 17, and the softening point T s temperature of the glass component of the transition metal oxide glass 3c. This can be done by heating and baking.
  • the structure for drawing out the lead wire (wiring) 7 is the same as that in the first embodiment.
  • FIG. 11 the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 4th Embodiment of this invention is shown.
  • the solar cell module 1 of the fourth embodiment is different from the solar cell module 1 of the second embodiment in that an aluminum frame (metal frame material) 19 is used.
  • the aluminum frame 19 is provided on the outer peripheral portion of the solar cell module 1.
  • the cross-sectional shape of the aluminum frame 19 is a U-shape, and is inserted so as to cover the outer peripheral portions of the transparent glass substrate 4 a and the back sheet 14.
  • a transition metal oxide glass (sealing material) 3 is provided inside the U-shape of the aluminum frame 19 and is fused to the aluminum frame 19.
  • the transition metal oxide glass (sealing material) 3 is fused to the transparent glass substrate 4a, the spacer 4b, and the aluminum foil 5a. Also by this, the sealed container 2 can be made airtight. Further, the aluminum frame 19 can increase the strength of the solar cell module 1.
  • An aluminum frame may be used for the conventional solar cell module 1, and the aluminum frame can be used as it is as the aluminum frame 19 of the fourth embodiment. Note that the laser beam 15 is applied to the aluminum frame 19 for the fusion. Thereby, the aluminium frame 19 is heated and the heat is transferred to the transition metal oxide glass 3 to raise the temperature.
  • the fourth embodiment is different from the second embodiment in that the lead wire (wiring) 7 drawn out from the solar battery cell 6 is sealed not with the silicon resin 8 but with the transition metal oxide.
  • the same transition metal oxide glass 3d as the physical glass 3 is used. Accordingly, the insulating layer 13 around the lead-out hole formed in the back sheet 14 is omitted, and the transition metal oxide glass 3d is fused to the exposed aluminum foil 5a. The transition metal oxide glass 3d is also fused to a lead wire (wiring) 7 drawn out to the outside. Also by this, the sealed container 2 is sealed.
  • the present invention is not limited to the first to fourth embodiments and Examples 1 to 4 described above, and includes various modifications.
  • the first to fourth embodiments and Examples 1 to 4 described above have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. is not.
  • a part of the configuration of an embodiment (example) can be replaced with the configuration of another embodiment (example), and another embodiment (example) can be replaced with the configuration of an embodiment (example).
  • the present invention is effectively applied to a display incorporating an organic light emitting diode, a dye-sensitized solar cell incorporating an organic dye, a solar cell incorporating a photoelectric conversion element and bonded together with a resin, and the like. It is.
  • the present invention can also be applied to the case where an element or material having low heat resistance is applied inside the electronic component, and is not limited to the electronic component.
  • this embodiment can be applied to all types of solar cells in which cells are bonded and fixed to a transparent substrate. For example, it can be applied to thin film solar cells, organic solar cells, and dye-sensitized solar cells.
  • the present invention can be applied to OLED displays, dye-sensitized solar cells, Si solar cells, plasma display panels, ceramic mounting substrates, and electronic components generally incorporating low heat resistance organic elements and organic materials.
  • the reliability of the electronic parts can be significantly improved.

Abstract

This invention has a glass member (4a), a metal member (5a), and a transition metal oxide glass (3) that fuses onto both the glass member (4a) and the metal member (5a). The transition metal oxide glass (3) is an n-type semiconductor. This invention is formed by bonding the glass member (4a) and the metal member (5a) using the transition metal oxide glass (3). The transition metal oxide glass (3) has transition metal ions having different valences, and the number of transition metal ions having higher valences is greater than the number of transition metal ions having lower valences. The transition metal oxide glass (3) contains vanadium, at least one of tellurium and phosphorus, and at least one of silver, iron, tungsten, copper, an alkali metal, and an alkali earth metal. The transition metal oxide glass (3) contains vanadium oxide, tellurium oxide, phosphorus oxide, and iron oxide, and the total mass thereof is no less than 75 mass% in relation to the mass of the transition metal oxide glass.

Description

密封容器、電子装置及び太陽電池モジュールSealed container, electronic device and solar cell module
 本発明は、密封容器に関し、この密封容器を利用する電子装置、特に、太陽電池モジュールに関する。 The present invention relates to a sealed container, and more particularly, to an electronic device using the sealed container, in particular, a solar cell module.
 太陽電池モジュールでは、密封容器内に複数の太陽電池セルが設けられ、太陽電池セルを外気から遮断し保護している。また、有機発光ダイオード(OLED)が内蔵されるディスプレイでは、有機発光ダイオードを挟む2枚のガラス板の外周部をガラス製の密封シールで封止することが提案されている(例えば、特許文献1参照)。この密封シールをレーザにより軟化させ、2枚のガラス板を結合する。この密封シールには、V25-P25系低融点ガラスが用いられている。そして、特許文献2では、このV25-P25系低融点ガラスを空気より酸化性の弱い雰囲気中で予備焼結を行うことが提案されている。 In a solar cell module, a plurality of solar cells are provided in a sealed container, and the solar cells are shielded and protected from the outside air. Further, in a display incorporating an organic light emitting diode (OLED), it has been proposed to seal the outer peripheral portion of two glass plates sandwiching the organic light emitting diode with a glass hermetic seal (for example, Patent Document 1). reference). The hermetic seal is softened with a laser to bond the two glass plates. For this hermetic seal, a V 2 O 5 —P 2 O 5 low melting point glass is used. Patent Document 2 proposes pre-sintering the V 2 O 5 —P 2 O 5 low melting point glass in an atmosphere that is less oxidizable than air.
特許第4540669号公報Japanese Patent No. 4540669 特表2008-527656号公報JP 2008-527656 Gazette
 電子装置、特に、太陽電池モジュールは、その使用期間が長期間に及ぶため、密封容器の気密が完全でなく空気中の湿気、雰囲気ガスや雨粒がわずかでも長い時間をかけて透過する場合があると考えられる。この場合、内部の太陽電池セルやそれらを接続する電気的接続部分が劣化すると考えられる。密封容器の気密性の向上には、密封シールのシール性の向上が不可欠であるが、特許文献1の密封シールは、金属銅の導線とは結合するが、電子装置、特に、太陽電池モジュールの密封容器に用いられるガラス部材と金属部材の接着による封止(シール)には不向きであった。 Since electronic devices, particularly solar cell modules, are used for a long period of time, airtightness of sealed containers is not perfect, and moisture, atmospheric gases and raindrops in the air may permeate over a long period of time. it is conceivable that. In this case, it is thought that an internal photovoltaic cell and the electrical connection part which connects them deteriorate. In order to improve the hermeticity of the sealed container, it is indispensable to improve the sealing performance of the hermetic seal. However, the hermetic seal of Patent Document 1 is combined with the metal copper conductor, but the electronic device, in particular, the solar cell module. It was unsuitable for sealing (sealing) by adhesion between a glass member and a metal member used in a sealed container.
 そこで、本発明が解決しようとする課題は、ガラス部材と金属部材との接着に用いても内部空間を気密に封止できる密封容器を提供することである。また、本発明が解決しようとする課題は、この密封容器を用いる電子装置、特に、太陽電池モジュールを提供することである。 Therefore, the problem to be solved by the present invention is to provide a sealed container capable of hermetically sealing an internal space even when used for bonding a glass member and a metal member. Moreover, the subject which this invention tends to solve is providing the electronic device using this sealed container, especially a solar cell module.
 前記課題を解決するために、本発明は、ガラス部材と、金属部材と、前記ガラス部材と前記金属部材のどちらにも融着する遷移金属酸化物ガラスとを有し、前記遷移金属酸化物ガラスはn型半導体であり、前記ガラス部材と前記金属部材を前記遷移金属酸化物ガラスで接着して形成されたことを特徴とする密封容器である。また、本発明は、この密封容器を用いる電子装置、特に、太陽電池モジュールである。 In order to solve the above problems, the present invention includes a glass member, a metal member, and a transition metal oxide glass that is fused to both the glass member and the metal member, and the transition metal oxide glass. Is an n-type semiconductor, and is a sealed container formed by bonding the glass member and the metal member with the transition metal oxide glass. Moreover, this invention is an electronic device using this sealed container, especially a solar cell module.
 本発明によれば、ガラス部材と金属部材との接着に用いても内部空間を気密に封止できる密封容器を提供できる。また、この密封容器を用いる電子装置、特に、太陽電池モジュールを提供できる。前記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a sealed container capable of hermetically sealing an internal space even when used for bonding a glass member and a metal member. Moreover, an electronic device using this sealed container, in particular, a solar cell module can be provided. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
本発明の第1の実施形態に係る太陽電池モジュールの要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 1st Embodiment of this invention. 遷移金属酸化物ガラスの示差熱分析(DTA)で得られるDTA曲線の1例である。It is an example of the DTA curve obtained by the differential thermal analysis (DTA) of a transition metal oxide glass. 遷移金属酸化物ガラスの熱膨張曲線の1例である。It is an example of the thermal expansion curve of transition metal oxide glass. 本発明の実施例2に係る密封容器の製造途中の斜視図である。It is a perspective view in the middle of manufacture of the sealed container which concerns on Example 2 of this invention. 本発明の実施例2に係る密封容器の製造途中の縦断面図である。It is a longitudinal cross-sectional view in the middle of manufacture of the sealed container which concerns on Example 2 of this invention. 塗布して焼成した遷移金属酸化物ガラスの透過率曲線の1例である。It is an example of the transmittance | permeability curve of the transition metal oxide glass apply | coated and baked. 本発明の実施例4に係る密封容器の平面図である。It is a top view of the sealed container which concerns on Example 4 of this invention. 図7AのA-A方向の矢視断面図である。FIG. 7B is a cross-sectional view taken along the line AA in FIG. 7A. 本発明の第2の実施形態に係る太陽電池モジュールの要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る太陽電池モジュールの組立斜視図である。It is an assembly perspective view of the solar cell module which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る太陽電池モジュールの要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る太陽電池モジュールの要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the solar cell module which concerns on the 4th Embodiment of this invention.
 次に、本発明の実施形態(実施例)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。また、本発明は、ここで取り上げた複数の実施形態(実施例)の個々に限定されることはなく、適宜組み合わせてもよい。 Next, embodiments (examples) of the present invention will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted. In addition, the present invention is not limited to each of the plurality of embodiments (examples) taken up here, and may be combined as appropriate.
(第1の実施形態)
 図1に、本発明の第1の実施形態に係る太陽電池モジュール1の要部の縦断面図を示す。太陽電池モジュール1では、内部の太陽電池セル6を外気から保護する必要がある。太陽電池セル6の受光面側には、太陽電池モジュール1の支持板となり、太陽光を透過させる透明の透明ガラス基板(ガラス部材(板材))4aが配設されている。この透明ガラス基板4aの下側に、複数の太陽電池セル6を封入した透明封止樹脂11が配設されている。透明封止樹脂11は、透明ガラス基板4aに融着している。この透明封止樹脂11の下側に、バックシート14が配設されている。透明ガラス基板4aとバックシート14で、太陽電池セル6を挟んでいる。透明封止樹脂11としては、エチレン-酢酸ビニル共重合体(EVA)やポリビニルブチラール(PVB)等を用いることができる。バックシート14は、少なくとも3層の多層構造のシート材になっている。その多層構造の中間層には、防湿や雰囲気ガス侵入防止を目的としてアルミホイル(金属部材、シート材)5aが使用されている。アルミホイル5aの両側の絶縁層12、13には、フッ素樹脂フィルム、低加水分解タイプポリエステルフィルムや防湿コーティング膜等を使用することができる。透明封止樹脂11は、バックシート14に融着している。バックシート14の周縁部では、絶縁層12が省かれ、アルミホイル(金属部材)5aに、遷移金属酸化物ガラス(封止材料)3が融着している。また、遷移金属酸化物ガラス(封止材料)3は、透明ガラス基板4aの周縁部に融着している。透明ガラス基板4aとアルミホイル5aは、対向して配置され、それらの外周部同士の間に遷移金属酸化物ガラス3が設けられている。遷移金属酸化物ガラス(封止材料)3は、透明ガラス基板4aとアルミホイル(金属部材)5aとを接着し、透明ガラス基板4aとアルミホイル5aの間に生じる隙間を封止している。これにより、透明ガラス基板4aとアルミホイル5a(バックシート14)を遷移金属酸化物ガラス3で接着して形成された密封容器2を構成することができる。密封容器2の中に、透明封止樹脂11で包まれた複数の太陽電池セル6が配置されている。複数の太陽電池セル6は、互いにリード線(配線)7で接続されている。太陽電池セル6間のリード線(配線)7も、密封容器2の中に配置されている。これにより、密封容器2の内部への空気中の湿気や雰囲気ガス等の侵入が防止されるため、太陽電池セル6とその間のリード線(配線)7の劣化が生じず、長期間に亘り出力低下が抑制される。なお、図1では、バックシート14の周縁部の絶縁層12を省いているが、透明封止樹脂11により太陽電池セル6と外部の間の絶縁が十分確保できるのであれば、絶縁層12全体を省くことができ、また、絶縁層13を省いてもよい。
(First embodiment)
In FIG. 1, the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 1st Embodiment of this invention is shown. In the solar cell module 1, it is necessary to protect the internal solar cells 6 from the outside air. A transparent transparent glass substrate (glass member (plate material)) 4 a that serves as a support plate of the solar cell module 1 and transmits sunlight is disposed on the light receiving surface side of the solar cell 6. A transparent sealing resin 11 enclosing a plurality of solar cells 6 is disposed below the transparent glass substrate 4a. The transparent sealing resin 11 is fused to the transparent glass substrate 4a. A back sheet 14 is disposed below the transparent sealing resin 11. The solar cell 6 is sandwiched between the transparent glass substrate 4a and the back sheet 14. As the transparent sealing resin 11, an ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), or the like can be used. The back sheet 14 is a sheet material having a multilayer structure of at least three layers. In the intermediate layer of the multilayer structure, an aluminum foil (metal member, sheet material) 5a is used for the purpose of moisture prevention and prevention of atmospheric gas intrusion. For the insulating layers 12 and 13 on both sides of the aluminum foil 5a, a fluororesin film, a low hydrolysis type polyester film, a moisture-proof coating film, or the like can be used. The transparent sealing resin 11 is fused to the back sheet 14. In the periphery of the back sheet 14, the insulating layer 12 is omitted, and the transition metal oxide glass (sealing material) 3 is fused to the aluminum foil (metal member) 5a. The transition metal oxide glass (sealing material) 3 is fused to the peripheral edge of the transparent glass substrate 4a. The transparent glass substrate 4a and the aluminum foil 5a are disposed to face each other, and the transition metal oxide glass 3 is provided between the outer peripheral portions thereof. The transition metal oxide glass (sealing material) 3 bonds the transparent glass substrate 4a and the aluminum foil (metal member) 5a, and seals the gap generated between the transparent glass substrate 4a and the aluminum foil 5a. Thereby, the sealed container 2 formed by bonding the transparent glass substrate 4a and the aluminum foil 5a (back sheet 14) with the transition metal oxide glass 3 can be configured. In the sealed container 2, a plurality of solar cells 6 wrapped with a transparent sealing resin 11 are arranged. The plurality of solar cells 6 are connected to each other by lead wires (wiring) 7. Lead wires (wirings) 7 between the solar cells 6 are also arranged in the sealed container 2. This prevents moisture in the air and atmospheric gas from entering the inside of the sealed container 2, so that the solar battery cell 6 and the lead wire (wiring) 7 between them do not deteriorate and output over a long period of time. Reduction is suppressed. In FIG. 1, the insulating layer 12 at the peripheral edge of the back sheet 14 is omitted. However, if the insulation between the solar battery cell 6 and the outside can be sufficiently secured by the transparent sealing resin 11, the entire insulating layer 12 is provided. And the insulating layer 13 may be omitted.
 なお、太陽電池セル6に接続し、太陽電池セル6から外部に引き出されるリード線(配線)7は、透明封止樹脂11とバックシート14に穿設された導出孔から外部に導出されており、この導出孔は、外側からシリコン樹脂(シリコーン)8で覆われ、封止されている。外部に露出したリード線(配線)7は、端子ボックス9内において、出力ケーブル10に接続する。リード線(配線)7と、アルミホイル(金属部材)5aには、アルミニウム又はアルミニウム合金を用いることが好ましく、遷移金属酸化物ガラス3を強固に融着させることができる。ただ、これに限らず、金属部材(アルミホイル)5aには、アルミニウム以外の金属や合金を用いてもよい。 A lead wire (wiring) 7 connected to the solar battery cell 6 and drawn out from the solar battery cell 6 is led out to the outside through a lead-out hole formed in the transparent sealing resin 11 and the back sheet 14. The lead-out hole is covered and sealed with silicon resin (silicone) 8 from the outside. The lead wire (wiring) 7 exposed to the outside is connected to the output cable 10 in the terminal box 9. It is preferable to use aluminum or an aluminum alloy for the lead wire (wiring) 7 and the aluminum foil (metal member) 5a, and the transition metal oxide glass 3 can be firmly fused. However, the present invention is not limited to this, and a metal or alloy other than aluminum may be used for the metal member (aluminum foil) 5a.
 そして、遷移金属酸化物ガラス3は、アルミホイル(金属部材)5aに強固に接着するために、n型半導体になっている。半導体極性がn型の遷移金属酸化物ガラス3は、アルミホイル(金属部材)5aの表面に形成されている自然酸化物層を環元させることで、自然酸化物層を除き、アルミホイル(金属部材)5aに強固に接着することができる。遷移金属酸化物ガラス3は、異なる価数をとる遷移金属イオンを有している。そして、高価数の遷移金属イオンの数が、低価数の遷移金属イオンの数よりも多くなっている。低価数の遷移金属イオン数に対する高価数の遷移金属イオン数の比が、1より大きくなっている。具体的に、遷移金属イオンとしては、バナジウムイオンを用いることができる。高価数のバナジウムイオンを、5価のバナジウムイオン(V+5)とすることができ、低価数のバナジウムイオンを、4価のバナジウムイオン(V+4)とすることができる。そして、5価のバナジウムイオン(V+5)の数(濃度)[V+5]の、4価のバナジウムイオン(V+4)の数(濃度)[V+4]に対する比([V+5]/[V+4])が、1より大きくなっている([V+5]/[V+4]>1)。なお、遷移金属酸化物ガラス3中のバナジウムイオンの価数はJIS-G1221に準じた酸化還元滴定法にて測定できる。また、バナジウムイオンは、5価と4価だけでなく、3価(V+3)もとることができる。そこで、遷移金属酸化物ガラス3をn型半導体にするには、5価のバナジウムイオン(V+5)の数(濃度)[V+5]の、4価のバナジウムイオン(V+4)の数(濃度)[V+4]に対する比([V+5]/[V+4])を、1より大きくする([V+5]/[V+4]>1)だけでなく、4価のバナジウムイオン(V+4)の数(濃度)[V+4]の、3価のバナジウムイオン(V+3)の数(濃度)[V+3]に対する比([V+4]/[V+3])を、1より大きくしてもよい([V+4]/[V+3]>1)。 The transition metal oxide glass 3 is an n-type semiconductor in order to firmly adhere to the aluminum foil (metal member) 5a. The transition metal oxide glass 3 having an n-type semiconductor polarity is obtained by ringing a natural oxide layer formed on the surface of an aluminum foil (metal member) 5a so that the natural oxide layer is removed and the aluminum foil (metal Member) can be firmly bonded to 5a. The transition metal oxide glass 3 has transition metal ions having different valences. The number of expensive transition metal ions is larger than the number of low-valent transition metal ions. The ratio of the number of expensive transition metal ions to the number of low-valent transition metal ions is greater than one. Specifically, vanadium ions can be used as transition metal ions. An expensive number of vanadium ions can be converted to a pentavalent vanadium ion (V +5 ), and a low number of vanadium ions can be converted to a tetravalent vanadium ion (V +4 ). Then, the ratio to the number (concentration) of [V +5], 4 valent number of the vanadium ions (V +4) (Concentration) [V +4] pentavalent vanadium ions (V +5) ([V + 5 ] / [V + 4 ]) is greater than 1 ([V + 5 ] / [V + 4 ]> 1). In addition, the valence of the vanadium ion in the transition metal oxide glass 3 can be measured by the oxidation-reduction titration method according to JIS-G1221. Vanadium ions can be not only pentavalent and tetravalent but also trivalent (V +3 ). Therefore, in order to make the transition metal oxide glass 3 into an n-type semiconductor, the number of tetravalent vanadium ions (V +4 ) of the number (concentration) [V +5 ] of pentavalent vanadium ions (V +5 ) The ratio ([V +5 ] / [V +4 ]) to the number (concentration) [V +4 ] is made larger than 1 ([V +5 ] / [V +4 ]> 1), not only 4 the ratio to the number (density) [V +3] number of valence of vanadium ions (V +4) (concentration) of [V +4], 3-valent vanadium ions (V +3) ([V +4 ] / [V +3 ]) may be greater than 1 ([V +4 ] / [V +3 ]> 1).
 前記の比([V+5]/[V+4]と[V+4]/[V+3])は、添加元素により調整可能であり、前記の比([V+5]/[V+4]と[V+4]/[V+3])を1より大きくするためには、五酸化バナジウム(V25)の還元を抑制する効果のある、銅、銀、アルカリ金属(例えば、カリウム)、アルカリ土類金属(例えば、ストロンチウムやバリウム)のうち少なくとも一種類以上の元素を添加すればよい。 The ratio ([V +5 ] / [V +4 ] and [V +4 ] / [V +3 ]) can be adjusted by the additive element, and the ratio ([V +5 ] / [V +4 ] and [V +4 ] / [V +3 ]) to be greater than 1, copper, silver, alkali metal (which has the effect of suppressing the reduction of vanadium pentoxide (V 2 O 5 )) For example, at least one element of potassium) and alkaline earth metal (for example, strontium and barium) may be added.
 前記のように、遷移金属であるバナジウムは、3価、4価、5価のイオンの状態で酸化物となる。そして、これらイオンの状態間の遷移に伴い、アルミホイル(金属部材)5aの表面の酸化物層(自然酸化物)を還元することができるので、遷移金属酸化物ガラス3は金属に強固に接着することができる。そして、遷移金属酸化物ガラス3の半導体極性がn型であるということは、価数の大きいイオンが多くなっている。自らの価数を上げて相手に電子を与えることで相手を還元する。n型であると、自らの価数を上げることができる遷移金属のイオンが少なくなっており、一見すると、その接合する金属の還元は困難であると考えられる。しかし、接合しようとする金属表面の自然酸化物を還元するのに十分な還元力が得られ、遷移金属酸化物ガラス3は金属に強固に接着した。このように、本発明では、遷移金属酸化物の半導体極性をn型にすることにより、金属との強固な接着を可能にしている。 As described above, vanadium, which is a transition metal, becomes an oxide in the form of trivalent, tetravalent, and pentavalent ions. As the transition between these ion states occurs, the oxide layer (natural oxide) on the surface of the aluminum foil (metal member) 5a can be reduced, so that the transition metal oxide glass 3 is firmly bonded to the metal. can do. The fact that the semiconductor polarity of the transition metal oxide glass 3 is n-type increases the number of ions having a large valence. Raise your valence and give your opponent an electron to reduce your opponent. When it is n-type, the number of ions of transition metal that can increase its valence is small, and at first glance, it is considered difficult to reduce the metal to be joined. However, a reducing power sufficient to reduce the native oxide on the metal surfaces to be joined was obtained, and the transition metal oxide glass 3 adhered firmly to the metal. As described above, in the present invention, the semiconductor polarity of the transition metal oxide is made to be n-type, thereby enabling strong adhesion to the metal.
 また、ガラス化成分であるテルルや燐の他に、バリウム、タングステン等のイオン半径の比較的大きい元素や、鉄を添加することにより、遷移金属酸化物ガラス3の水分あるいは大気の透過性を著しく低下させることができる。 In addition to tellurium and phosphorus, which are vitrification components, elements having a relatively large ionic radius, such as barium and tungsten, and iron are added to significantly increase the moisture or atmospheric permeability of the transition metal oxide glass 3. Can be reduced.
 遷移金属酸化物ガラス3は、波長が1100nm以下の光の吸収率が高いため、波長1100nm以下のレーザ光を照射することによって加熱でき、軟化流動して融着(レーザ封止)させることができる。レーザ光を透過する透明ガラス基板4aの側から遷移金属酸化物ガラス3へ、そのレーザ光を照射することにより、遷移金属酸化物ガラス3を、透明ガラス基板4aとアルミホイル5aに融着させることができる。なお、レーザ光の波長範囲は、400~1100nmが望ましい。400nm未満の波長範囲では、透明ガラス基板4aの全面が加熱されてしまう恐れがある。波長が1100nmを超えると、遷移金属酸化物ガラス3の吸収が減り、良好な軟化流動性を示さなくなったり、また水分が含まるような箇所があると、加熱されて悪影響を及ぼしたりすることがある。逆に、400~1100nmの波長範囲では、透明ガラス基板4aの全面を加熱することなく、遷移金属酸化物ガラス3を加熱できるので、耐熱性の低い太陽電池セル6等の電子部品や透明封止樹脂11を、密封容器2内に密封することができる。 Since the transition metal oxide glass 3 has a high absorption rate of light having a wavelength of 1100 nm or less, the transition metal oxide glass 3 can be heated by being irradiated with laser light having a wavelength of 1100 nm or less, and can be softened and flown and fused (laser sealing). . The transition metal oxide glass 3 is fused to the transparent glass substrate 4a and the aluminum foil 5a by irradiating the transition metal oxide glass 3 from the transparent glass substrate 4a side through which the laser light is transmitted. Can do. Note that the wavelength range of the laser light is desirably 400 to 1100 nm. In the wavelength range of less than 400 nm, the entire surface of the transparent glass substrate 4a may be heated. If the wavelength exceeds 1100 nm, the absorption of the transition metal oxide glass 3 is reduced, and it does not show good softening fluidity, and if there is a portion containing moisture, it may be heated and have an adverse effect. is there. On the contrary, in the wavelength range of 400 to 1100 nm, the transition metal oxide glass 3 can be heated without heating the entire surface of the transparent glass substrate 4a. The resin 11 can be sealed in the sealed container 2.
 遷移金属酸化物ガラス3のガラス転移点は320℃以下になり、その軟化点は380℃以下になっている。ここで、転移点と軟化点は、示差熱分析(DTA)による特性温度であり、転移点は第一吸熱ピークの開始温度であり、軟化点は第二吸熱ピーク温度である。転移点が320℃を超えると、急熱急冷をともなう前記レーザ封止で大きな残留歪が発生することがある。また、軟化点が380℃を超えると、レーザ照射時に容易に軟化流動させにくくなる。遷移金属酸化物ガラス3によれば、前記レーザ封止で大きな残留歪を発生させることもなく、また、レーザ照射時に容易に軟化流動させることができる。 The glass transition point of the transition metal oxide glass 3 is 320 ° C. or lower, and its softening point is 380 ° C. or lower. Here, the transition point and the softening point are characteristic temperatures by differential thermal analysis (DTA), the transition point is the starting temperature of the first endothermic peak, and the softening point is the second endothermic peak temperature. When the transition point exceeds 320 ° C., a large residual strain may be generated in the laser sealing with rapid heating and rapid cooling. On the other hand, if the softening point exceeds 380 ° C., it becomes difficult to soften and flow easily during laser irradiation. According to the transition metal oxide glass 3, the laser sealing does not generate a large residual strain, and can be easily softened and flowed during laser irradiation.
 遷移金属酸化物ガラス3の熱膨張係数は、透明ガラス基板4aとバックシート14の熱膨張係数の間の値になっている。これにより、遷移金属酸化物ガラス3と透明ガラス基板4aの熱膨張係数差と、遷移金属酸化物ガラス3とバックシート14の熱膨張係数差を、共に小さくすることができる。そして、レーザ照射時のヒートショックによるクラックの発生を抑制することができる。遷移金属酸化物ガラス3の熱膨張係数を、透明ガラス基板4aとバックシート14の熱膨張係数の間の値に調整するために、遷移金属酸化物ガラス3の熱膨張係数を小さくしている。遷移金属酸化物ガラス3の熱膨張係数を小さくするために、遷移金属酸化物ガラス3のガラス成分の熱膨張係数よりも熱膨張係数が小さいフィラー粒子を、遷移金属酸化物ガラス3のガラス成分といっしょに混合しガラス化している。フィラー粒子としては、リン酸タングステン酸ジルコニウム(Zr2(WO4)(PO42)、酸化ニオブ(Nb25)、シリコン(Si)の内から1種以上を用いることができる。遷移金属酸化物ガラス3の熱膨張係数を下げる効果は、酸化ニオブ、シリコン、リン酸タングステン酸ジルコニウムの順に大きい。なお、シリコンは、波長が400~1100nmの範囲にあるレーザ光を吸収して発熱する。また、シリコンは、その熱伝導が他の2つのフィラー粒子や遷移金属酸化物ガラス3のガラス成分よりも良い。このため、シリコンは、前記レーザ封止には特に有効である。また、フィラー粒子の含有量は、遷移金属酸化物ガラス3のガラス成分の体積部に対し、35体積部以下になっている。これにより、遷移金属酸化物ガラス3のガラス成分の金属との強固な接着性を維持したまま、熱膨張係数を透明ガラス基板4aとバックシート14の熱膨張係数の間の値に設定できている。 The thermal expansion coefficient of the transition metal oxide glass 3 is a value between the thermal expansion coefficients of the transparent glass substrate 4 a and the back sheet 14. Thereby, both the thermal expansion coefficient difference of the transition metal oxide glass 3 and the transparent glass substrate 4a and the thermal expansion coefficient difference of the transition metal oxide glass 3 and the back sheet | seat 14 can be made small. And generation | occurrence | production of the crack by the heat shock at the time of laser irradiation can be suppressed. In order to adjust the thermal expansion coefficient of the transition metal oxide glass 3 to a value between the thermal expansion coefficients of the transparent glass substrate 4a and the back sheet 14, the thermal expansion coefficient of the transition metal oxide glass 3 is reduced. In order to reduce the thermal expansion coefficient of the transition metal oxide glass 3, filler particles having a thermal expansion coefficient smaller than the thermal expansion coefficient of the glass component of the transition metal oxide glass 3 are used as the glass component of the transition metal oxide glass 3. It is mixed and vitrified together. As the filler particles, one or more of zirconium phosphate tungstate (Zr 2 (WO 4 ) (PO 4 ) 2 ), niobium oxide (Nb 2 O 5 ), and silicon (Si) can be used. The effect of lowering the thermal expansion coefficient of the transition metal oxide glass 3 is larger in the order of niobium oxide, silicon, and zirconium tungstate phosphate. Silicon generates heat by absorbing laser light having a wavelength in the range of 400 to 1100 nm. Moreover, the heat conductivity of silicon is better than the other two filler particles and the glass component of the transition metal oxide glass 3. For this reason, silicon is particularly effective for the laser sealing. The filler particle content is 35 parts by volume or less with respect to the volume part of the glass component of the transition metal oxide glass 3. Thereby, the thermal expansion coefficient can be set to a value between the thermal expansion coefficients of the transparent glass substrate 4a and the back sheet 14 while maintaining the strong adhesion with the metal of the glass component of the transition metal oxide glass 3. .
 また、遷移金属酸化物ガラス3のガラス成分の組成(フィラー粒子を除いた成分の組成)には、後記の特徴を有している。遷移金属酸化物ガラス3のガラス成分は、酸化バナジウム、酸化テルル、酸化リンと酸化鉄を含んでいる。これらを、それぞれ、V25、TeO2、P25、Fe23として換算した質量の和は、遷移金属酸化物ガラス3のガラス成分の質量に対して75質量%以上になっている。酸化バナジウムをV25として換算した質量は、酸化テルルをTeO2として換算した質量より多くなっている。酸化テルルをTeO2として換算した質量は、酸化リンをP25として換算した質量より多くなっている。酸化リンをP25として換算した質量は、酸化鉄をFe23として換算した質量以上になっている。また、遷移金属酸化物ガラス3のガラス成分は、酸化バナジウムを、V25として換算して、35~55質量%含んでいる。遷移金属酸化物ガラス3のガラス成分は、酸化テルルを、TeO2として換算して、19~30質量%含んでいる。遷移金属酸化物ガラス3のガラス成分は、酸化リンを、P25として換算して、7~20質量%含んでいる。遷移金属酸化物ガラス3のガラス成分は、酸化鉄を、Fe23として換算して、5~15質量%含んでいる。 Further, the composition of the glass component of the transition metal oxide glass 3 (the composition of the component excluding the filler particles) has the following characteristics. The glass component of the transition metal oxide glass 3 contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide. The sum of the mass converted to V 2 O 5 , TeO 2 , P 2 O 5 , and Fe 2 O 3 respectively is 75% by mass or more based on the mass of the glass component of the transition metal oxide glass 3. ing. The mass of vanadium oxide converted as V 2 O 5 is larger than the mass of tellurium oxide converted as TeO 2 . The mass of tellurium oxide converted to TeO 2 is larger than the mass of phosphorus oxide converted to P 2 O 5 . The mass converted to phosphorus oxide as P 2 O 5 is greater than or equal to the mass converted to iron oxide as Fe 2 O 3 . The glass component of the transition metal oxide glass 3 contains vanadium oxide in an amount of 35 to 55% by mass in terms of V 2 O 5 . The glass component of the transition metal oxide glass 3 contains 19-30% by mass of tellurium oxide in terms of TeO 2 . The glass component of the transition metal oxide glass 3 contains 7 to 20% by mass of phosphorus oxide in terms of P 2 O 5 . The glass component of the transition metal oxide glass 3 contains 5 to 15% by mass of iron oxide in terms of Fe 2 O 3 .
 遷移金属酸化物ガラス3としては、酸化物換算でV25を最も多く含有されることが重要であり、これによって400~1100nmの波長範囲を効率よく吸収し、加熱される。同時に低融点ガラスの軟化点Tsを低温化でき、400~1100nmの波長範囲にあるレーザを照射することによって容易に軟化流動させることが可能となる。TeO2とP25はガラス化させるための重要な成分である。ガラスでないと、低温で軟化流動させることができない。また、レーザ照射によっても容易に軟化流動させることができない。P25はTeO2よりガラス化する効果が大きく、しかも低熱膨張化に有効であるが、TeO2以上の含有量とすると、耐湿性や耐水性が低下したり、軟化点Tsが上昇したりしてしまう。しかし、一方でTeO2の含有量を多くしていくと、熱膨張係数が大きくなる傾向があり、大きくなり過ぎると、レーザ照射によるヒートショックで低融点ガラスが軟化流動する前に破損してしまうことがある。Fe23は、特にP25に作用して低融点ガラスの耐湿性や耐水性を向上する成分である。また、Fe23は、V25同様に400~1100nmの波長範囲を効率的に吸収する成分でもある。しかし、Fe23は、P25を超える含有量とすると、低融点ガラスが加熱により結晶化してしまう。この結晶化は低融点ガラスの軟化流動性を妨げる現象であり、好ましいことではない。V25が35質量%未満では、波長が400~1100nmの範囲にあるレーザを照射しても、容易に軟化流動しづらくなる場合がある。一方、55質量%を超えると、耐湿性、耐水性等の信頼性が低下する場合がある。TeO2が19質量%未満では、結晶化傾向が大きくなったり、また軟化点Tsが上昇したり、耐湿性、耐水性等の信頼性が低下する場合がある。一方30質量%を超えると、軟化点Tsを低温化しやすくなるが、熱膨張係数が大きくなり、レーザ照射によるヒートショックで低融点ガラスが軟化流動する前に破損することがある。P25が7質量%未満では、結晶化傾向が増加し、しかもレーザ照射により軟化流動しにくくなる場合がある。一方、20質量%を超えると、軟化点Tsが上昇してしまい、レーザを照射しても容易に軟化流動しにくくなる場合がある。さらに、耐湿性、耐水性等の信頼性も低下する場合がある。Fe23が5質量%未満では、耐湿性、耐水性等の信頼性が低下し、一方15質量%を超えると結晶化が促進する場合がある。 It is important for the transition metal oxide glass 3 to contain the largest amount of V 2 O 5 in terms of oxide, thereby efficiently absorbing the wavelength range of 400 to 1100 nm and heating. At the same time, the softening point T s of the low-melting glass can be lowered, and it can be easily softened and flowed by irradiation with a laser having a wavelength range of 400 to 1100 nm. TeO 2 and P 2 O 5 are important components for vitrification. If it is not glass, it cannot soften and flow at low temperatures. Also, it cannot be softened and flowed easily by laser irradiation. P 2 O 5 has a greater effect of vitrification than TeO 2 and is effective for lowering thermal expansion. However, when the content is higher than TeO 2 , the moisture resistance and water resistance are lowered, and the softening point T s is increased. I will do. However, on the other hand, if the content of TeO 2 is increased, the thermal expansion coefficient tends to increase, and if it is too large, the low melting point glass is damaged before it softens and flows due to heat shock caused by laser irradiation. Sometimes. Fe 2 O 3 is a component that acts on P 2 O 5 in particular to improve the moisture resistance and water resistance of the low-melting glass. Fe 2 O 3 is also a component that efficiently absorbs a wavelength range of 400 to 1100 nm, like V 2 O 5 . However, if the content of Fe 2 O 3 exceeds P 2 O 5 , the low melting point glass is crystallized by heating. This crystallization is a phenomenon that hinders the softening fluidity of the low-melting glass and is not preferable. If V 2 O 5 is less than 35% by mass, it may be difficult to soften and flow easily even when irradiated with a laser having a wavelength in the range of 400 to 1100 nm. On the other hand, when it exceeds 55% by mass, reliability such as moisture resistance and water resistance may be lowered. If TeO 2 is less than 19% by mass, the crystallization tendency may increase, the softening point T s may increase, or the reliability such as moisture resistance and water resistance may decrease. On the other hand, if it exceeds 30% by mass, the softening point T s tends to be lowered, but the thermal expansion coefficient becomes large, and the low melting point glass may be broken before it softens and flows due to heat shock caused by laser irradiation. When P 2 O 5 is less than 7% by mass, the tendency to crystallize increases, and it may become difficult to soften and flow by laser irradiation. On the other hand, if it exceeds 20% by mass, the softening point Ts increases, and it may be difficult to soften and flow easily even when irradiated with a laser. Further, reliability such as moisture resistance and water resistance may be lowered. When Fe 2 O 3 is less than 5% by mass, reliability such as moisture resistance and water resistance is lowered. On the other hand, when it exceeds 15% by mass, crystallization may be accelerated.
 遷移金属酸化物ガラス3のガラス成分は、酸化タングステン、酸化モリブデン、酸化銅、酸化タンタル、酸化マンガン、酸化アンチモン、酸化ビスマス、酸化亜鉛、酸化バリウム、酸化ストロンチウム、酸化銀と酸化カリウムのいずれか一種以上を含むとよい。これら酸化物の金属イオンは複数の価数をとりうるが、そのうちWO3、MoO3、CuO、Ta25、MnO2、Sb23、Bi23、ZnO、BaO、SrO、Ag2O、K2Oとして換算した質量の和は、遷移金属酸化物ガラス3の質量に対して25質量%以下になっている。これらの含有量の合計が、25質量%を超えると、軟化点Tsが上昇したり、熱膨張係数が大きくなったり、或いは結晶化傾向が大きくなったりする場合がある。また、WO3、MoO3、Nb25、Ta25、MnO2、Sb23、Bi23、ZnO、SrO、BaO、Ag2O、K2Oのうち1種以上の合計が0~20質量%であることがより好ましい。 The glass component of the transition metal oxide glass 3 is any one of tungsten oxide, molybdenum oxide, copper oxide, tantalum oxide, manganese oxide, antimony oxide, bismuth oxide, zinc oxide, barium oxide, strontium oxide, silver oxide and potassium oxide. It is good to include the above. These metal ions oxides may take a plurality of valences, of which WO 3, MoO 3, CuO, Ta 2 O 5, MnO 2, Sb 2 O 3, Bi 2 O 3, ZnO, BaO, SrO, Ag The sum of the masses converted as 2 O and K 2 O is 25% by mass or less with respect to the mass of the transition metal oxide glass 3. When the total of these contents exceeds 25% by mass, the softening point T s may increase, the thermal expansion coefficient may increase, or the crystallization tendency may increase. Also, one or more of WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrO, BaO, Ag 2 O, K 2 O The total is more preferably 0 to 20% by mass.
 結晶化の防止や抑制にはWO3、MoO3、Ta25、ZnO、BaO、SrOの含有、耐湿性や耐水性の向上にはMnO2、Sb23、Bi23、BaO、SrO、Ag2O、K2Oの含有、熱膨張係数の低減にはNb25、Ta25、ZnOの含有、軟化点Tsの低温化にはMoO3、Ag2O、K2Oの含有が有効である。一方、結晶化を促進してしまう成分はNb25、MnO2、Sb23、Bi23、Ag2O、K2O、軟化点Tsを上昇させてしまう成分はSb23、Bi23、BaO、SrO、熱膨張係数を増加してしまう成分はMoO3、BaO、SrO、Ag2O、K2O、耐湿性や耐水性を低下してしまう成分はMoO3、Nb25、Ta25、ZnOである。このため、WO3、MoO3、Nb25、Ta25、MnO2、Sb23、Bi23、ZnO、BaO、SrO、Ag2O、K2Oの含有は、一長一短であり、V25、TeO2、P25及びFe23からなるベース組成の特性を十分に配慮した上で含有させる成分とその含有量を決定する必要がある。 In order to prevent or suppress crystallization, it contains WO 3 , MoO 3 , Ta 2 O 5 , ZnO, BaO, SrO, and in order to improve moisture resistance and water resistance, MnO 2 , Sb 2 O 3 , Bi 2 O 3 , BaO , SrO, Ag 2 O, K 2 O, Nb 2 O 5 , Ta 2 O 5 , ZnO for reducing the thermal expansion coefficient, MoO 3 , Ag 2 O, K for reducing the softening point Ts 2 O content is effective. On the other hand, components that promote crystallization are Nb 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , Ag 2 O, K 2 O, and components that increase the softening point Ts are Sb 2 O. 3 , Bi 2 O 3 , BaO, SrO, components that increase the coefficient of thermal expansion are MoO 3 , BaO, SrO, Ag 2 O, K 2 O, and components that decrease the moisture resistance and water resistance are MoO 3 Nb 2 O 5 , Ta 2 O 5 , ZnO. For this reason, the inclusion of WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, BaO, SrO, Ag 2 O, K 2 O has advantages and disadvantages. Therefore, it is necessary to determine the component to be contained and the content thereof with sufficient consideration of the characteristics of the base composition composed of V 2 O 5 , TeO 2 , P 2 O 5 and Fe 2 O 3 .
 本実施例1では、第1の実施形態で明らかにした遷移金属酸化物ガラス3のガラス成分(低融点ガラス)の組成について検討している。表1~4には、実施例として、遷移金属酸化物ガラス3のガラス成分となりうる組成と、その組成毎の各種特性を示している。遷移金属酸化物ガラス3のガラス成分となりうる組成(実施例)として、表1~4中のガラスNo.G1~G64の64種類の組成を示している。表5には、比較例として、遷移金属酸化物ガラス3のガラス成分とはなりえない組成と、その組成毎の各種特性を示している。遷移金属酸化物ガラス3のガラス成分となりえない組成(比較例)として、表5中のガラスNo.G65~G80の16種類の組成を示している。 In Example 1, the composition of the glass component (low melting point glass) of the transition metal oxide glass 3 clarified in the first embodiment is examined. Tables 1 to 4 show, as examples, compositions that can be glass components of the transition metal oxide glass 3 and various characteristics for each composition. As compositions (examples) that can be glass components of the transition metal oxide glass 3, glass Nos. 64 compositions of G1 to G64 are shown. Table 5 shows a composition that cannot be a glass component of the transition metal oxide glass 3 and various characteristics for each composition as a comparative example. As a composition (comparative example) that cannot be a glass component of the transition metal oxide glass 3, glass No. 1 in Table 5 was used. 16 types of compositions from G65 to G80 are shown.
 組成の検討に当たり、まず、ガラスNo.G1~G80の組成の低融点ガラスを作製した。原料としては、高純度化学研究所製の試薬から、酸化バナジウムV25、酸化テルルTeO2、酸化リンP25、酸化鉄Fe23、酸化タングステンWO3、酸化モリブデンMoO3、酸化銅CuO、酸化タンタルTa25、酸化マンガンMnO2、酸化アンチモンSb23、酸化ビスマスBi23、酸化亜鉛ZnO、炭酸ストロンチウムSrCoS3、炭酸バリウムBaCO3、酸化銀Ag2O及び炭酸カリウムK2CO3を用いた。これらの試薬を原料として、ガラスNo.G1~G80の組成毎に、その組成となり、かつ、合計の質量が200gになるように、それらの試薬を秤量した。次に、ガラスNo.G1~G80の組成毎に、秤量した試薬を、配合・混合し、白金ルツボに入れ、電気炉にて加熱し溶融した。電気炉では、5~10℃/分の昇温速度で900~1000℃の溶融温度まで昇温し、その溶融温度で2時間加熱した。組成分布を均一にするために、溶融温度での2時間の加熱中に湯の撹拌をした。その後、溶融している湯を、白金ルツボから、予め150~200℃に加熱しておいたステンレス板上に流出させて急冷し、低融点ガラスを作製した。前記で、ガラスNo.G1~G80の組成の低融点ガラス(ガラス成分)が完成した。 In examining the composition, first, glass No. 1 was used. Low melting glass having a composition of G1 to G80 was produced. As raw materials, from a reagent manufactured by High Purity Chemical Laboratory, vanadium oxide V 2 O 5 , tellurium oxide TeO 2 , phosphorus oxide P 2 O 5 , iron oxide Fe 2 O 3 , tungsten oxide WO 3 , molybdenum oxide MoO 3 , Copper oxide CuO, tantalum oxide Ta 2 O 5 , manganese oxide MnO 2 , antimony oxide Sb 2 O 3 , bismuth oxide Bi 2 O 3 , zinc oxide ZnO, strontium carbonate SrCoS 3 , barium carbonate BaCO 3 , silver oxide Ag 2 O and Potassium carbonate K 2 CO 3 was used. Using these reagents as raw materials, glass no. For each composition of G1 to G80, these reagents were weighed so that the composition was obtained and the total mass was 200 g. Next, Glass No. For each composition of G1 to G80, weighed reagents were blended and mixed, placed in a platinum crucible, heated in an electric furnace and melted. In the electric furnace, the temperature was raised to a melting temperature of 900 to 1000 ° C. at a heating rate of 5 to 10 ° C./min, and heated at the melting temperature for 2 hours. In order to make the composition distribution uniform, hot water was stirred during heating for 2 hours at the melting temperature. Thereafter, the molten hot water was allowed to flow out of a platinum crucible onto a stainless steel plate that had been heated to 150 to 200 ° C. in advance and quenched to prepare a low melting glass. In the above, glass no. A low melting glass (glass component) having a composition of G1 to G80 was completed.
 次に、ガラスNo.G1~G80のガラス成分(低融点ガラス)の特性を測定した。まず、密度を測定した。測定結果は表1~表5の密度の欄に示した。 Next, glass no. The characteristics of the glass components G1 to G80 (low melting point glass) were measured. First, the density was measured. The measurement results are shown in the density column of Tables 1 to 5.
 次に、示差熱分析(DTA)を行った。示差熱分析(DTA)では、まず、作製したガラスNo.G1~G80のガラス成分(低融点ガラス)の一部をそれぞれ、ジェットミルで平均粒径が3μm以下になるまで粉砕し、粉末にした。その粉末を用いて5℃/分の昇温速度で500℃まで昇温する示差熱分析(DTA)を行なった。そして、図2に示すようなDTA曲線を取得した。このDTA曲線から、転移点Tg、屈伏点Mg、軟化点Ts及び結晶化温度Tcryを決定(測定)した。なお、標準サンプルとしてアルミナ(Al2O3)粉末を用いた。図2に示すように、転移点Tgは、第1吸熱ピークの開始温度とし、接線法により求めた。屈伏点Mgは、その第1吸熱ピークのピーク温度とし、接線法により求めた。軟化点Tsは、第2吸熱ピークのピーク温度とし、接線法により求めた。結晶化温度Tcryは、結晶化による発熱ピークの開始温度とし、接線法により求めた。 Next, differential thermal analysis (DTA) was performed. In the differential thermal analysis (DTA), first, the produced glass No. Part of the glass components G1 to G80 (low melting point glass) was pulverized with a jet mill until the average particle size became 3 μm or less to form powder. Using the powder, differential thermal analysis (DTA) was performed to raise the temperature to 500 ° C. at a rate of 5 ° C./min. And the DTA curve as shown in FIG. 2 was acquired. From this DTA curve, the transition point T g , the yield point M g , the softening point T s and the crystallization temperature T cry were determined (measured). Note that alumina (Al 2 O 3 ) powder was used as a standard sample. As shown in FIG. 2, the transition point The T g, the onset temperature of the first endothermic peak was determined by the tangent method. Yield point M g is the peak temperature of the first endothermic peak was determined by the tangent method. The softening point T s was determined as the peak temperature of the second endothermic peak and obtained by the tangential method. The crystallization temperature Tcry was determined as the starting temperature of the exothermic peak due to crystallization and was determined by the tangential method.
 ガラスの特性温度(転移点Tg、屈伏点Mg、軟化点Ts)は、粘度により定義され、転移点Tg、屈伏点Mg、及び軟化点Tsは、粘度がそれぞれ1013.3poise、1011.0poise及び107.65poiseになる温度と言われている。ガラス(低融点ガラス)を低温で軟化流動させるためには、極力、軟化点Tsを低温化する必要がある。また、熱的な残留歪を緩和するためには、極力、転移点Tgを低温化することが好ましい。結晶化温度Tcryは、ガラス(低融点ガラス)が結晶化を開始する温度である。結晶化は、ガラスの軟化流動性を阻害するため、極力、結晶化温度Tcryを軟化点Tsより高温側にすることが望ましい。 The characteristic temperature of glass (transition point T g , yield point M g , softening point T s ) is defined by the viscosity, and the transition point T g , yield point M g , and softening point T s have a viscosity of 10 13.3 poise respectively. , 10 11.0 poise and 10 7.65 poise. In order to soften and flow glass (low melting point glass) at a low temperature, it is necessary to lower the softening point T s as much as possible. Further, in order to mitigate the thermal residual strain, as much as possible, it is preferable to lower temperature the transition point T g. The crystallization temperature Tcry is a temperature at which glass (low melting point glass) starts to crystallize. Since crystallization hinders the softening fluidity of the glass, it is desirable to make the crystallization temperature T cry higher than the softening point T s as much as possible.
 次に、熱膨張特性を測定した。熱膨張特性の測定では、まず、作製したガラスNo.G1~G80のガラス成分(低融点ガラス)の一部をそれぞれ、転移点Tg~屈伏点Mgの温度範囲内の温度でアニールし、熱歪を除去した。縦、横4mmで、高さ20mmの角柱形状に加工した。この角柱を用い、熱膨張計により30~250℃における熱膨張係数と、熱膨張特性温度の転移温度TGと変形温度ATを測定した。なお、熱膨張計では、標準サンプルとしては、直径5mmで高さ20mmの円柱形状の石英ガラスを用いた。また、熱膨張計では、前記角柱と標準サンプルの昇温速度を、5℃/分とし、変形温度ATが確認できるまで昇温した。そして、この昇温により、図3に示すような、熱膨張曲線を取得した。なお、図3の熱膨張曲線の縦軸の伸び量は、標準サンプルである石英ガラスの伸び量が引かれた伸び量である。熱膨張係数は、熱膨張曲線の30~250℃の温度範囲における温度に対する伸び量の勾配から算出した。熱膨張特性温度の転移温度TGは、伸び量の勾配の顕著な増大が開始する温度とし、接線法により求めた。変形温度ATは、荷重により変形する温度であり、伸び量のピーク温度として求めた。転移温度TGは、前記示差熱分析の転移点Tgより若干高めに測定された。変形温度ATは、前記示差熱分析の屈伏点Mgと、軟化点Tsの間の温度として測定された。 Next, thermal expansion characteristics were measured. In the measurement of thermal expansion characteristics, first, the produced glass No. Glass component G1 ~ G80 part (low-melting glass), respectively, were annealed at a temperature within the temperature range of transition point T g ~ sag M g, to remove thermal strain. It was processed into a prismatic shape of 4 mm in length and 20 mm in height. Using this prism was measured and the thermal expansion coefficient at 30 ~ 250 ° C. The thermal dilatometer, the transition temperature T G of thermal expansion characteristic temperature deformation temperature A T. In the thermal dilatometer, a cylindrical quartz glass having a diameter of 5 mm and a height of 20 mm was used as a standard sample. In the thermal dilatometer, the temperature rising rate of the prism and the standard sample was 5 ° C./min, and the temperature was raised until the deformation temperature AT could be confirmed. And by this temperature rise, the thermal expansion curve as shown in FIG. 3 was acquired. Note that the amount of elongation on the vertical axis of the thermal expansion curve in FIG. 3 is the amount of elongation obtained by subtracting the amount of elongation of quartz glass, which is a standard sample. The thermal expansion coefficient was calculated from the gradient of elongation with respect to temperature in the temperature range of 30 to 250 ° C. of the thermal expansion curve. The transition temperature TG of the thermal expansion characteristic temperature was determined as a temperature at which a significant increase in the gradient of elongation begins, and was determined by the tangential method. The deformation temperature AT is a temperature at which deformation occurs due to a load, and was determined as a peak temperature of elongation. Transition temperature T G was determined to slightly higher than the transition point T g of the said differential thermal analysis. Deformation temperature A T is a M g yield point of the differential thermal analysis was measured as a temperature between the softening point T s.
 次に、作製したガラスNo.G1~G80のガラス成分(低融点ガラス)の耐湿性試験を行った。耐湿性試験では、まず、熱膨張特性の測定で用いたのと同じ前記角柱を用意し、その角柱の表面を鏡面加工した。そして、耐湿性試験として、温度85℃、湿度85%の条件の環境下に、10日間、放置するという加速試験を行った。耐湿性の評価基準は、鏡面加工したガラス表面の光沢が維持されている場合には「○」とし、その光沢が失われた場合には「△」とし、ガラスが崩壊した場合には「×」とした。 Next, the produced glass No. A moisture resistance test was conducted on glass components G1 to G80 (low melting point glass). In the moisture resistance test, first, the same prism as that used in the measurement of thermal expansion characteristics was prepared, and the surface of the prism was mirror-finished. Then, as a moisture resistance test, an accelerated test was performed in which the sample was left for 10 days in an environment of a temperature of 85 ° C. and a humidity of 85%. The evaluation standard of moisture resistance is “◯” when the gloss of the mirror-finished glass surface is maintained, “△” when the gloss is lost, and “×” when the glass collapses. "
 次に、作製したガラスNo.G1~G80のガラス成分(低融点ガラス)の軟化流動性の評価を行った。軟化流動性の評価では、まず、前記示差熱分析(DTA)と同様に、低融点ガラスの一部をそれぞれ粉末にした。そして、この粉末をハンドプレス(1ton/cm2)により圧粉成形し、ガラス圧粉成形体を作製した。ガラス圧粉成形体は、直径10mmで高さ2mmの円板形状とした。このガラス圧粉成形体を白板ガラス基板上に置き、各種レーザ光を、白板ガラス基板側から白板ガラス基板を透過させて、ガラス圧粉成形体へ照射した。各種レーザ光としては、半導体レーザによる波長405nmのレーザ光と、YAGレーザによる2倍波の波長532nmのレーザ光と、半導体レーザによる波長630nmのレーザ光と、半導体レーザによる波長805nmのレーザ光と、YAGレーザによる波長1064nmのレーザ光を用いた。軟化流動性の評価基準は、ガラス圧粉成形体のレーザ照射部が流動した場合には「○」とし、流動したがクラックが多発した場合には「●」とし、軟化した場合には「△」とし、軟化したがクラックが多発した場合には「▲」とし、流動も軟化もしなかった場合には「×」とした。そのガラス圧粉成形体のレーザ照射部の軟化流動の状態やクラックの発生状態は、白板ガラス基板越しに光学顕微鏡で観察して評価した。 Next, the produced glass No. The softening fluidity of the glass components G1 to G80 (low melting point glass) was evaluated. In the evaluation of the softening fluidity, first, in the same manner as in the differential thermal analysis (DTA), a part of the low melting point glass was powdered. And this powder was compacted by a hand press (1 ton / cm 2 ) to produce a glass compact. The glass compact was formed into a disk shape having a diameter of 10 mm and a height of 2 mm. This glass powder compact was placed on a white glass substrate, and various laser beams were transmitted through the white glass substrate from the white glass substrate side to irradiate the glass compact. As various laser beams, a laser beam having a wavelength of 405 nm by a semiconductor laser, a laser beam having a wavelength of 532 nm by a YAG laser, a laser beam having a wavelength of 630 nm by a semiconductor laser, a laser beam having a wavelength of 805 nm by a semiconductor laser, A laser beam having a wavelength of 1064 nm by a YAG laser was used. The evaluation criteria for the softening fluidity is “◯” when the laser irradiation part of the glass compact has flowed, “●” when it has flowed but many cracks occur, and “△” when softened. ”And“ ▲ ”when softened but frequently cracked, and“ X ”when neither fluid nor softened. The state of softening flow and the occurrence of cracks in the laser-irradiated part of the green compact were evaluated by observing with an optical microscope through a white glass substrate.
 表1~4に示すガラスNo.G1~G64(実施例)の組成と、表5に示すガラスNo.G65~G80(比較例)の組成を、前記で測定した各種特性で比較する。これより、ガラスNo.G1~G64(実施例)の組成の低融点ガラスは、比較例のガラスNo.G67、69、73~76及び78~80の組成の低融点ガラスより軟化点Tsが低く、軟化点Tsが380℃以下と低いため、良好な軟化流動性を有する。 Glass Nos. Shown in Tables 1 to 4 G1 to G64 (Examples) and glass Nos. Shown in Table 5 The compositions of G65 to G80 (comparative examples) are compared with the various characteristics measured above. From this, glass no. Low melting point glasses having compositions of G1 to G64 (Examples) are glass Nos. Of Comparative Examples. G67,69,73 ~ 76 and 78-80 low softening point T s than the low melting glass composition, for the softening point T s is lower and 380 ° C. or less, has good softening fluidity.
 また、ガラスNo.G1~G64(実施例)の組成の低融点ガラスは、比較例のガラスNo.G69、74~76及び78~80の組成の低融点ガラスより転移点Tgが低く、転移点Tgが320℃以下と低いため、レーザ照射によるヒートショックでのクラックが見られない。 Glass No. Low melting point glasses having compositions of G1 to G64 (Examples) are glass Nos. Of Comparative Examples. G69,74 ~ 76 and 78-80 the low-melting transition point T g is lower than the glass compositions of, for transition low T g and 320 ° C. or less, not observed cracks in the heat shock by laser irradiation.
 また、ガラスNo.G1~G64(実施例)の組成の低融点ガラスは、比較例のガラスNo.G68、70~73、77及び78の組成の低融点ガラスより熱膨張係数が小さく、熱膨張係数が100×10-7/℃以下と比較的に小さいため、レーザ照射によるヒートショックでのクラックが見られない。 Glass No. Low melting point glasses having compositions of G1 to G64 (Examples) are glass Nos. Of Comparative Examples. Since the thermal expansion coefficient is smaller than that of the low melting point glass having the composition of G68, 70 to 73, 77 and 78, and the thermal expansion coefficient is relatively small as 100 × 10 −7 / ° C. or less, cracks caused by heat shock due to laser irradiation can not see.
 また、ガラスNo.G1~G64(実施例)の組成の低融点ガラスは、比較例のガラスNo.G65~68、70~74、76、78及び80の組成の低融点ガラスより耐湿性が良好である。 Also, glass no. Low melting point glasses having compositions of G1 to G64 (Examples) are glass Nos. Of Comparative Examples. The moisture resistance is better than that of low melting glass having a composition of G65 to 68, 70 to 74, 76, 78 and 80.
 また、ガラスNo.G1~G64(実施例)の組成の低融点ガラスは、比較例のガラスNo.G67、69、73~76及び78~80の組成の低融点ガラスよりレーザ照射による軟化流動性が良好であり、しかも比較例68、70~73、77及び78の組成の低融点ガラスのようにクラックの発生も見られない。ガラスNo.G1~G64(実施例)の組成の低融点ガラスは、波長が略400~略1100nmの範囲あるレーザ光を効率よく吸収し、加熱され、しかも軟化点Tsが380℃以下と低いため、良好な軟化流動性を有する。さらに、転移点Tgが320℃以下と低く、熱膨張係数が100×10-7/℃以下と小さいため、レーザ照射によるヒートショックでのクラックが発生しない。 Glass No. Low melting point glasses having compositions of G1 to G64 (Examples) are glass Nos. Of Comparative Examples. The softening fluidity by laser irradiation is better than the low melting glass having the composition of G67, 69, 73 to 76, and 78 to 80, and like the low melting glass having the composition of Comparative Examples 68, 70 to 73, 77, and 78. There is no occurrence of cracks. Glass No. The low melting point glass having the composition of G1 to G64 (Example) absorbs laser light having a wavelength in the range of about 400 to about 1100 nm efficiently, is heated, and has a low softening point T s of 380 ° C. or less, which is good Soft fluidity. Furthermore, the transition point T g is 320 ° C. or less and low thermal expansion coefficient is small as 100 × 10 -7 / ℃ less, cracks in the heat shock does not occur due to laser irradiation.
 このように、ガラスNo.G1~G64(実施例)の組成の低融点ガラスによれば、前記の各種特性において優れた特性が得られた。これらのガラスNo.G1~G64(実施例)の組成から、これらに共通する組成の構成が導き出せる。共通する組成とは、すなわち、ガラスNo.G1~G64(実施例)の組成の低融点ガラスでは、酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、次の酸化物換算でV25、TeO2、P25及びFe23の合計が75質量%以上であり、V2O5>TeO2>P2O5≧Fe2O3(質量%)の関係を有する。さらに、ガラス成分として、酸化タングステン、酸化モリブデン、酸化銅、酸化タンタル、酸化マンガン、酸化アンチモン、酸化ビスマス、酸化亜鉛、酸化バリウム、酸化ストロンチウム、酸化銀及び酸化カリウムのうちいずれか1種以上を含んでもよく、次の酸化物換算でWO3+MoO3+CuO+Ta2O5+MnO2+Sb2O3+Bi2O3+ZnO+BaO+SrO+Ag2O+K2O≦25質量%である。特に有効な組成範囲は、前記した組成の条件を満たした上で、次の酸化物換算でV25が35~55質量%、TeO2が19~30質量%、P25が7~20質量%、Fe23が5~15質量%、及びWO3、MoO3、Nb25、Ta25、MnO2、Sb23、Bi23、ZnO、SrO、BaO、Ag2O、K2Oのうちの1種以上の合計が0~20質量%である。 Thus, the glass No. According to the low melting point glass having the composition of G1 to G64 (Examples), excellent characteristics were obtained in the various characteristics described above. These glass Nos. From the compositions of G1 to G64 (Examples), a compositional composition common to these can be derived. The common composition is the glass No. The low melting point glass having the composition of G1 to G64 (Example) contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide, and V 2 O 5 , TeO 2 , P 2 O 5 and Fe 2 in terms of the following oxides. The total of O 3 is 75% by mass or more and has a relationship of V 2 O 5 > TeO 2 > P 2 O 5 ≧ Fe 2 O 3 (% by mass). Further, as a glass component, any one or more of tungsten oxide, molybdenum oxide, copper oxide, tantalum oxide, manganese oxide, antimony oxide, bismuth oxide, zinc oxide, barium oxide, strontium oxide, silver oxide and potassium oxide are included. However, WO 3 + MoO 3 + CuO + Ta 2 O 5 + MnO 2 + Sb 2 O 3 + Bi 2 O 3 + ZnO + BaO + SrO + Ag 2 O + K 2 O ≦ 25% by mass in terms of the following oxides. A particularly effective composition range is that V 2 O 5 is 35 to 55% by mass, TeO 2 is 19 to 30% by mass, and P 2 O 5 is 7% in terms of the following oxides after satisfying the above-described composition conditions. ˜20 mass%, Fe 2 O 3 5˜15 mass%, and WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrO, The total of one or more of BaO, Ag 2 O, and K 2 O is 0 to 20% by mass.
 本実施例2では、表2で示したガラスNo.G19の組成の低融点ガラスをガラス成分とする遷移金属酸化物ガラス3を作製している。この遷移金属酸化物ガラス3を用いて、密封容器2を作製し、密封容器2の気密性(ガスバリア性)と、遷移金属酸化物ガラス3の接着性を評価している。この評価では、まず、ガラスNo.G19の組成の低融点ガラスを、ジェットミルで平均粒径が3μm以下の粉末に粉砕した。そして、この粉末と、樹脂バインダと、溶剤とを用いて封止材料ペーストを作製した。樹脂バインダにはニトロセルロース、溶剤にはブチルカルビトールアセテートを用いた。封止材料ペーストであれば所望の形状に塗布することができ、これを焼成することで、所望の形状の遷移金属酸化物ガラス3を形成することができる。 In Example 2, the glass No. shown in Table 2 was used. The transition metal oxide glass 3 which uses the low melting glass of the composition of G19 as a glass component is produced. Using this transition metal oxide glass 3, a sealed container 2 is produced, and the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 are evaluated. In this evaluation, first, a glass No. The low melting glass having the composition of G19 was pulverized by a jet mill into a powder having an average particle size of 3 μm or less. And the sealing material paste was produced using this powder, the resin binder, and the solvent. Nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. If it is a sealing material paste, it can be apply | coated to a desired shape, The transition metal oxide glass 3 of a desired shape can be formed by baking this.
 図4に、本発明の実施例2に係る密封容器2の製造途中の斜視図を示す。透明ガラス基板4aとして、スライドガラス(白板ガラス)を用意した。図4に示すように、遷移金属酸化物ガラス3となる前記封止材料ペーストを、スクリーン印刷法にて、透明ガラス基板4aの外周部に枠形状に塗布した。次に、大気中で、150~200℃の温度で30分間加熱し、溶剤を除去した。次に、ガラスNo.G19の組成の低融点ガラスの軟化点Ts(355℃)未満の温度であればよいが、具体的には320℃の温度で30分間、大気中で加熱し、樹脂バインダを除去した。これにより、透明ガラス基板4a上に遷移金属酸化物ガラス3を形成(焼成)することができた。なお、遷移金属酸化物ガラス3の線幅Wは、1.5mmとした。また、遷移金属酸化物ガラス3の焼成膜厚Tについては、約5、10、20、30μmの4種類の異なる密封容器2を作製するべく、塗布量を変えた4種類を作製している。なお、後記するが、この4種類の1種類毎に、実施例1で用いた波長の異なる5種類のレーザ光を照射したので、最終的には20種類の密封容器2を作製した。 In FIG. 4, the perspective view in the middle of manufacture of the sealed container 2 which concerns on Example 2 of this invention is shown. A slide glass (white plate glass) was prepared as the transparent glass substrate 4a. As shown in FIG. 4, the said sealing material paste used as the transition metal oxide glass 3 was apply | coated to the outer peripheral part of the transparent glass substrate 4a in the frame shape with the screen printing method. Next, the solvent was removed by heating in the atmosphere at a temperature of 150 to 200 ° C. for 30 minutes. Next, Glass No. The temperature should be lower than the softening point T s (355 ° C.) of the low melting point glass having the composition of G19. Specifically, the resin binder was removed by heating in the atmosphere at a temperature of 320 ° C. for 30 minutes. Thereby, the transition metal oxide glass 3 was able to be formed (baked) on the transparent glass substrate 4a. The line width W of the transition metal oxide glass 3 was 1.5 mm. Moreover, about the baking film thickness T of the transition metal oxide glass 3, in order to produce four different sealed containers 2 of about 5, 10, 20, and 30 μm, four types with different coating amounts are produced. As will be described later, since each of the four types was irradiated with five types of laser beams having different wavelengths used in Example 1, 20 types of sealed containers 2 were finally produced.
 図5に、本発明の実施例2に係る密封容器2の製造途中の縦断面図を示す。実施例2では、金属部材5aとして、第1の実施形態のバックシート14のアルミホイル(シート材)に替えて、アルミニウム基板(板材)を用いている。アルミニウム基板(金属部材)5aは、遷移金属酸化物ガラス3を挟んで、透明ガラス基板4aに対向するように配置した。レーザ光15を、透明ガラス基板4aの側から遷移金属酸化物ガラス3に照射した。レーザ光15は、遷移金属酸化物ガラス3に沿って、8mm/秒の速度で移動しながら照射し、遷移金属酸化物ガラス3の枠形状の全周にわたって照射した。これにより、遷移金属酸化物ガラス3は、透明ガラス基板4aとアルミニウム基板5aとに融着した。透明ガラス基板4aとアルミニウム基板5aは、遷移金属酸化物ガラス3を介して接着した。なお、レーザ光15としては、実施例1で用いた波長の異なる5種類のレーザ光を照射した。 FIG. 5 shows a longitudinal sectional view of the sealed container 2 according to the second embodiment of the present invention in the middle of manufacture. In Example 2, instead of the aluminum foil (sheet material) of the back sheet 14 of the first embodiment, an aluminum substrate (plate material) is used as the metal member 5a. The aluminum substrate (metal member) 5a was disposed so as to face the transparent glass substrate 4a with the transition metal oxide glass 3 interposed therebetween. Laser light 15 was applied to the transition metal oxide glass 3 from the transparent glass substrate 4a side. The laser beam 15 was irradiated while moving along the transition metal oxide glass 3 at a speed of 8 mm / second, and was irradiated over the entire circumference of the frame shape of the transition metal oxide glass 3. Thereby, the transition metal oxide glass 3 was fused to the transparent glass substrate 4a and the aluminum substrate 5a. The transparent glass substrate 4a and the aluminum substrate 5a were bonded via the transition metal oxide glass 3. As the laser beam 15, five types of laser beams with different wavelengths used in Example 1 were irradiated.
 表6に、密封容器2の気密性(ガスバリア性)と、遷移金属酸化物ガラス3の接着性の評価結果を示す。また、これらの評価結果は、遷移金属酸化物ガラス3の焼成膜厚毎、照射したレーザ光の波長(照射レーザ波長)毎に示している。密封容器2の気密性(ガスバリア性)の評価として、ヘリウムリーク試験を実施した。ヘリウムリーク試験のために、アルミニウム基板5aには、図示を省略したが密封容器2内を減圧可能なポートを形成しておいた。そして、評価基準として、リークが検出できない場合には「○」とし、リークを検出した場合には「×」とした。 Table 6 shows the evaluation results of the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3. These evaluation results are shown for each fired film thickness of the transition metal oxide glass 3 and for each wavelength of irradiated laser light (irradiation laser wavelength). As an evaluation of the hermeticity (gas barrier property) of the sealed container 2, a helium leak test was performed. For the helium leak test, a port capable of depressurizing the inside of the sealed container 2 was formed in the aluminum substrate 5a although not shown. As an evaluation criterion, “◯” was set when no leak was detected, and “X” was set when a leak was detected.
 また、遷移金属酸化物ガラス3の接着性の評価として、剥離試験を実施した。剥離試験では、透明ガラス基板4aを台に固定した状態で、市販のセロハンテープを、アルミニウム基板5aに貼り付け、そのまま引っ張った。評価基準として、透明ガラス基板4a自体や遷移金属酸化物ガラス3自体が破損した場合には「○」とし、遷移金属酸化物ガラス3と、透明ガラス基板4a又はアルミニウム基板5aとの界面で剥離した場合には「×」とした。焼成膜厚が20μm以下(30μm未満)の場合には、どの波長のレーザ光15を用いても気密性と接着性は良好であった。しかし、焼成膜厚が30μmでは、使用するレーザ光15の波長によって、良好な気密性と接着性が得られる場合と得られない場合があった。具体的に、焼成膜厚が30μmの場合には、532nmと1064nmの波長のレーザ光15を用いることで、良好な気密性と接着性が得られた。また、焼成膜厚が30μmの場合には、805nmの波長のレーザ光15を用いることで、良好な気密性が得られた。 In addition, a peel test was performed as an evaluation of the adhesion of the transition metal oxide glass 3. In the peeling test, a commercially available cellophane tape was attached to the aluminum substrate 5a with the transparent glass substrate 4a fixed to the base and pulled as it was. As an evaluation standard, when the transparent glass substrate 4a itself or the transition metal oxide glass 3 itself is broken, it is “◯”, and it is peeled off at the interface between the transition metal oxide glass 3 and the transparent glass substrate 4a or the aluminum substrate 5a. In this case, “x” was used. When the fired film thickness was 20 μm or less (less than 30 μm), the airtightness and adhesiveness were good regardless of the wavelength of the laser beam 15 used. However, when the fired film thickness is 30 μm, depending on the wavelength of the laser beam 15 to be used, there are cases where good airtightness and adhesiveness can be obtained or not. Specifically, when the fired film thickness was 30 μm, good hermeticity and adhesiveness were obtained by using the laser light 15 having wavelengths of 532 nm and 1064 nm. Further, when the fired film thickness was 30 μm, good hermeticity was obtained by using the laser beam 15 having a wavelength of 805 nm.
 図6に、ガラスNo.G19の組成のガラス成分を有し、塗布して焼成した膜形状の遷移金属酸化物ガラス3の透過率曲線を示す。300~2000nmの波長域において、波長が短いほど透過率は低くなった。また、焼成膜厚が大きいほど、透過率は低下した。焼成膜厚が大きい場合に透過率が低下するということは、図5に示すように、遷移金属酸化物ガラス3に、透明ガラス基板4a側からレーザ光15が入射すると、遷移金属酸化物ガラス3にレーザ光15が吸収されて、アルミニウム基板5a近傍の遷移金属酸化物ガラス3では、レーザ光15の強度が減衰し、アルミニウム基板5aへの融着に必要な温度まで発熱し難くなっていると考えられる。そこで、焼成膜厚が大きい場合には、透明ガラス基板4a側からのレーザ光15の入射に加えて、アルミニウム基板5a側からや、遷移金属酸化物ガラス3の側面の側から、レーザ光15を照射すればよい。 In FIG. The transmittance | permeability curve of the transition metal oxide glass 3 of the film | membrane shape which has a glass component of the composition of G19, apply | coated and baked is shown. In the wavelength region of 300 to 2000 nm, the shorter the wavelength, the lower the transmittance. Moreover, the transmittance | permeability fell, so that the baking film thickness was large. When the fired film thickness is large, the transmittance decreases, as shown in FIG. 5, when the laser beam 15 enters the transition metal oxide glass 3 from the transparent glass substrate 4 a side, the transition metal oxide glass 3. When the laser beam 15 is absorbed in the transition metal oxide glass 3 in the vicinity of the aluminum substrate 5a, the intensity of the laser beam 15 is attenuated and it is difficult to generate heat up to a temperature necessary for fusion to the aluminum substrate 5a. Conceivable. Therefore, when the fired film thickness is large, in addition to the incidence of the laser beam 15 from the transparent glass substrate 4a side, the laser beam 15 is emitted from the aluminum substrate 5a side or from the side surface of the transition metal oxide glass 3. Irradiation is sufficient.
(実施例2の変形例)
 実施例2の変形例では、実施例2の透明ガラス基板(スライドガラス)4aに替えて、透明樹脂基板(樹脂部材)を用いた。透明樹脂基板は、1例として、ポリカーボネート製とした。ポリカーボネート等の樹脂部材は、ガラスNo.G19の組成の低融点ガラスより耐熱性が低いため、実施例2の320℃の遷移金属酸化物ガラス3の焼成ができない。そこで、透明樹脂基板(ポリカーボネート)上の遷移金属酸化物ガラス3の焼成は、ポリカーボネートに吸収されない波長が805nmのレーザ光15を、透明樹脂基板側から遷移金属酸化物ガラス3に、照射することで行った。レーザ光15は、遷移金属酸化物ガラス3に沿って、所定の速度で移動しながら照射され、遷移金属酸化物ガラス3の枠形状の全周にわたって照射された。これにより、遷移金属酸化物ガラス3を焼成した。これによれば、透明樹脂基板(ポリカーボネート)はほとんど昇温しなかった。後は、実施例2と同様に、5種類の波長のレーザ光15を、透明樹脂基板(ポリカーボネート)側から遷移金属酸化物ガラス3に照射し、密封容器2を完成させた。この密封容器2の気密性(ガスバリア性)と、遷移金属酸化物ガラス3の接着性の評価結果は、実施例2の評価結果と同じであった。
(Modification of Example 2)
In the modification of Example 2, instead of the transparent glass substrate (slide glass) 4a of Example 2, a transparent resin substrate (resin member) was used. As an example, the transparent resin substrate is made of polycarbonate. Resin members such as polycarbonate are made of glass no. Since the heat resistance is lower than that of the low melting point glass having the composition of G19, the transition metal oxide glass 3 at 320 ° C. in Example 2 cannot be fired. Accordingly, the transition metal oxide glass 3 on the transparent resin substrate (polycarbonate) is baked by irradiating the transition metal oxide glass 3 with a laser beam 15 having a wavelength of 805 nm that is not absorbed by the polycarbonate from the transparent resin substrate side. went. The laser beam 15 was irradiated while moving at a predetermined speed along the transition metal oxide glass 3, and was irradiated over the entire circumference of the frame shape of the transition metal oxide glass 3. Thereby, the transition metal oxide glass 3 was baked. According to this, the temperature of the transparent resin substrate (polycarbonate) hardly increased. After that, similarly to Example 2, the transition metal oxide glass 3 was irradiated with laser light 15 having five kinds of wavelengths from the transparent resin substrate (polycarbonate) side to complete the sealed container 2. The evaluation results of the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 were the same as the evaluation results of Example 2.
 本実施例3でも、実施例2と同様に、遷移金属酸化物ガラス3を作製し、この遷移金属酸化物ガラス3を用いて密封容器2を作製している。そして、この密封容器2の気密性(ガスバリア性)と、その遷移金属酸化物ガラス3の接着性を評価している。なお、本実施例3では、透明ガラス基板4aとして、熱膨張係数が50×10-7/℃のガラス基板を用いた。また、遷移金属酸化物ガラス3のガラス成分を、実施例2のガラスNo.G19の組成に替えて、ガラスNo.G43の組成とした。さらに、遷移金属酸化物ガラス3の熱膨張係数を下げるために、フィラー粒子を添加した。フィラー粒子としては、リン酸タングステン酸ジルコニウム(Zr2(WO4)(PO42)と、酸化ニオブ(Nb25)と、シリコン(Si)の3種類を用いた。フィラー粒子の平均粒径は、5μm程度とした。 Also in the present Example 3, the transition metal oxide glass 3 is produced similarly to Example 2, and the sealed container 2 is produced using this transition metal oxide glass 3. The airtightness (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 are evaluated. In Example 3, a glass substrate having a thermal expansion coefficient of 50 × 10 −7 / ° C. was used as the transparent glass substrate 4a. Further, the glass component of the transition metal oxide glass 3 was changed to the glass No. 2 of Example 2. In place of the composition of G19, glass No. The composition was G43. Furthermore, in order to lower the thermal expansion coefficient of the transition metal oxide glass 3, filler particles were added. As filler particles, three types of zirconium phosphate tungstate (Zr 2 (WO 4 ) (PO 4 ) 2 ), niobium oxide (Nb 2 O 5 ), and silicon (Si) were used. The average particle size of the filler particles was about 5 μm.
 今回の評価にあたって、まず、ガラスNo.G43の組成の低融点ガラスを、ジェットミルで平均粒径が3μm以下の粉末に粉砕した。次に、この粉末と、前記3種類のフィラー粒子内のいずれかと、樹脂バインダと、溶剤とを用いて、フィラー粒子の種類が異なる3種類の封止材料ペーストを作製した。また、封止材料ペースト中のフィラー粒子の含有量を、前記粉末の100体積部に対し、それぞれ15、25、35、45体積部と4種類に変化させた。したがって、最終的には12種類の封止材料ペースト(遷移金属酸化物ガラス3)と、それに対応して12種類の密封容器2を作製した。 In this evaluation, the glass No. The low melting point glass having the composition of G43 was pulverized by a jet mill into a powder having an average particle size of 3 μm or less. Next, using this powder, one of the three types of filler particles, a resin binder, and a solvent, three types of sealing material pastes having different types of filler particles were produced. Moreover, the content of the filler particles in the sealing material paste was changed to four types of 15, 25, 35, and 45 parts by volume with respect to 100 parts by volume of the powder. Therefore, finally, 12 types of sealing material paste (transition metal oxide glass 3) and 12 types of sealed containers 2 were produced correspondingly.
 使用したガラスNo.G43の組成の低融点ガラスの密度は3.53g/cm3、Zr2(WO4)(PO42の密度は3.80g/cm3、Nb25の密度は4.57g/cm3、Siの密度は2.33g/cm3であった。また、樹脂バインダにはエチルセルロースを用い、溶剤にはブチルカルビトールアセテートを用いた。12種類の封止材料用ペースト毎に、スクリーン印刷法にて、透明ガラス基板4aの外周部へ図4に示すように塗布した。次に、溶剤を乾燥させた。次に、大気中で、400℃の温度で30分間加熱し、樹脂バインダを除去した。これにより、透明ガラス基板4a上に遷移金属酸化物ガラス3を形成(焼成)することができた。遷移金属酸化物ガラス3の線幅Wは約1.5mmであり、膜厚Tは約20μmであった。 Glass No. used The density of low-melting glass composition of G43 is 3.53g / cm 3, Zr 2 ( WO 4) (PO 4) 2 densities 3.80g / cm 3, Nb 2 density of O 5 is 4.57g / cm 3, Si The density of was 2.33 g / cm 3 . Further, ethyl cellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. As shown in FIG. 4, each of the 12 types of sealing material pastes was applied to the outer peripheral portion of the transparent glass substrate 4 a by screen printing. Next, the solvent was dried. Next, the resin binder was removed by heating in the atmosphere at a temperature of 400 ° C. for 30 minutes. Thereby, the transition metal oxide glass 3 was able to be formed (baked) on the transparent glass substrate 4a. The line width W of the transition metal oxide glass 3 was about 1.5 mm, and the film thickness T was about 20 μm.
 次に、図5に示すように、アルミニウム基板(金属部材)5aを、遷移金属酸化物ガラス3を挟んで、透明ガラス基板4aに対向するように配置した。次に、波長が805nmのレーザ光15を、透明ガラス基板4aの側から遷移金属酸化物ガラス3に照射した。レーザ光15は、遷移金属酸化物ガラス3に沿って、8mm/秒の速度で移動しながら照射し、遷移金属酸化物ガラス3の枠形状の全周にわたって照射した。これにより、遷移金属酸化物ガラス3は、透明ガラス基板4aとアルミニウム基板5aとに全周にわたって融着した。透明ガラス基板4aとアルミニウム基板5aは、遷移金属酸化物ガラス3を介して接着した。これにより、密封容器2を完成させた。 Next, as shown in FIG. 5, an aluminum substrate (metal member) 5a was placed so as to face the transparent glass substrate 4a with the transition metal oxide glass 3 interposed therebetween. Next, the transition metal oxide glass 3 was irradiated with laser light 15 having a wavelength of 805 nm from the transparent glass substrate 4a side. The laser beam 15 was irradiated while moving along the transition metal oxide glass 3 at a speed of 8 mm / second, and was irradiated over the entire circumference of the frame shape of the transition metal oxide glass 3. As a result, the transition metal oxide glass 3 was fused to the transparent glass substrate 4a and the aluminum substrate 5a over the entire circumference. The transparent glass substrate 4a and the aluminum substrate 5a were bonded via the transition metal oxide glass 3. Thereby, the sealed container 2 was completed.
 表7に、密封容器2の気密性(ガスバリア性)と、遷移金属酸化物ガラス3の接着性の評価結果を示す。これらの評価結果は、フィラー粒子の種類毎、体積部毎に示している。気密性(ガスバリア性)と接着性の評価方法と評価基準は実施例2と同じにした。これより、フィラー粒子は、その種類によらず、含有量が35体積部以下(45体積部未満)では、良好な気密性と接着性が得られた。また、フィラー粒子の含有量が45体積部では、良好な気密性が得られたが、接着性は劣化した。これは、フィラー粒子が多すぎると、透明ガラス基板4aとアルミニウム基板5aに融着する遷移金属酸化物ガラス3内のガラス成分の面積が小さくなるためである。 Table 7 shows the evaluation results of the hermeticity (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3. These evaluation results are shown for each type and volume part of the filler particles. The evaluation method and evaluation criteria for airtightness (gas barrier property) and adhesiveness were the same as those in Example 2. From this, regardless of the type of filler particles, when the content was 35 parts by volume or less (less than 45 parts by volume), good airtightness and adhesiveness were obtained. Further, when the filler particle content was 45 parts by volume, good airtightness was obtained, but the adhesiveness deteriorated. This is because if there are too many filler particles, the area of the glass component in the transition metal oxide glass 3 fused to the transparent glass substrate 4a and the aluminum substrate 5a becomes small.
 前記より、透明ガラス基板4aとアルミニウム基板5aを気密かつ強固に接着するには、フィラー粒子の含有量を、遷移金属酸化物ガラス3内のガラス成分を100体積部として、35体積部以下(45体積部未満)が好ましいと考えられる。なお、本実施例3では、フィラー粒子として遷移金属酸化物ガラス3内のガラス成分とぬれ性が良い(Zr2(WO4)(PO42)、Nb25、及び、Siを選定して検討したが、これらに限られたものではなく、熱膨張係数が小さいβ-ユークリプタイト、コージェライト、リン酸ジルコニウム、ケイ酸ジルコニウム等も適用可能である。 From the above, in order to bond the transparent glass substrate 4a and the aluminum substrate 5a in an airtight and strong manner, the content of the filler particles is set to 35 parts by volume or less (45 parts with the glass component in the transition metal oxide glass 3 being 100 parts by volume (45 (Less than volume part) is considered preferable. In Example 3, wettability (Zr 2 (WO 4 ) (PO 4 ) 2 ), Nb 2 O 5 , and Si are selected as filler particles and the glass component in the transition metal oxide glass 3. However, the present invention is not limited to these, and β-eucryptite, cordierite, zirconium phosphate, zirconium silicate, and the like having a small thermal expansion coefficient are also applicable.
 そして、実施例1~実施例3の結果を踏まえて、前記第1の実施形態に係る太陽電池モジュール1が完成された。 Based on the results of Examples 1 to 3, the solar cell module 1 according to the first embodiment was completed.
 実施例2の密封容器2では、図5に示すように、密封容器2の内部空間の高さは、遷移金属酸化物ガラス3の焼成膜厚に等しくなる。表6に示すように、レーザ光15の照射条件を一定とすると、焼成膜厚には、良好な気密性と接着性確保できる上限値が存在する。そして、この上限値に密封容器2の内部空間の高さも制限されてしまうことになる。そこで、本実施例4では、密封容器2の内部空間の高さが、その上限値に制限されない密封容器2について説明する。 In the sealed container 2 of Example 2, as shown in FIG. 5, the height of the inner space of the sealed container 2 is equal to the fired film thickness of the transition metal oxide glass 3. As shown in Table 6, if the irradiation condition of the laser beam 15 is constant, the fired film thickness has an upper limit value that can ensure good airtightness and adhesiveness. And the height of the internal space of the sealed container 2 will also be restrict | limited to this upper limit. In the fourth embodiment, therefore, the sealed container 2 in which the height of the internal space of the sealed container 2 is not limited to the upper limit value will be described.
 図7Aに、本発明の実施例4に係る密封容器2の平面図を示し、図7Bに、図7AのA-A方向の矢視断面図を示す。透明ガラス基板4aとアルミニウム基板5aの間に、スペーサ(ガラス部材)4bを挟んでいる。スペーサ(ガラス部材)4bには、透明ガラス基板4aと同様に、レーザ光の透過率の高い白板ガラス等のガラス部材や、ポリカーボネート等の樹脂部材を用いることができる。また、透明ガラス基板4aは、レーザ光の透過率の高いポリカーボネート等の樹脂部材に替えてもよい。 FIG. 7A shows a plan view of the sealed container 2 according to Example 4 of the present invention, and FIG. 7B shows a cross-sectional view taken along the line AA in FIG. 7A. A spacer (glass member) 4b is sandwiched between the transparent glass substrate 4a and the aluminum substrate 5a. As the spacer (glass member) 4b, similarly to the transparent glass substrate 4a, a glass member such as white plate glass having a high laser beam transmittance, or a resin member such as polycarbonate can be used. The transparent glass substrate 4a may be replaced with a resin member such as polycarbonate having a high laser light transmittance.
 透明ガラス基板(板材、ガラス部材)4aと、スペーサ(枠材、ガラス部材)4bの複数のガラス部材は、遷移金属酸化物ガラス3aで接着されている。同様に、アルミニウム基板(板、金属部材)5aと、スペーサ(ガラス部材)4bは、遷移金属酸化物ガラス3bで接着されている。スペーサ(ガラス部材)4bと、遷移金属酸化物ガラス3a、3bは、枠形状をし、互いに重なっている。これによれば、遷移金属酸化物ガラス3a、3bの焼成膜厚を変えることなく、スペーサ(ガラス部材)4bの高さを変えることで、密封容器2の内部空間の高さを変えることができる。後記では、実際に、スペーサ(ガラス部材)4bの高さを、4通りに変えて作製した密封容器2について説明する。 A plurality of glass members of a transparent glass substrate (plate material, glass member) 4a and spacers (frame material, glass member) 4b are bonded with a transition metal oxide glass 3a. Similarly, the aluminum substrate (plate, metal member) 5a and the spacer (glass member) 4b are bonded with a transition metal oxide glass 3b. The spacer (glass member) 4b and the transition metal oxide glasses 3a and 3b have a frame shape and overlap each other. According to this, the height of the internal space of the sealed container 2 can be changed by changing the height of the spacer (glass member) 4b without changing the fired film thickness of the transition metal oxide glasses 3a and 3b. . In the following description, the sealed container 2 manufactured by actually changing the height of the spacer (glass member) 4b in four ways will be described.
 まず、封止材料ペーストは、ガラスNo.G43の組成の低融点ガラスの粉末と、Siフィラー粒子と、ニトロセルロースと、ブチルカルビトールアセテートを用いて作製した。前記粉末の100体積部に対して、Siフィラー粒子は10体積部とした。この封止材料ペーストを、スペーサ4bの上下面に塗布した。次に、大気中での150~200℃-30分間の加熱で溶剤を除去した。次に、大気中での340℃-30分間の加熱でバインダを除去することにより仮焼成を行い、遷移金属酸化物ガラス3a、3bを完成させた。遷移金属酸化物ガラス3a、3bの焼成膜厚はそれぞれ15μmであった。なお、スペーサ4bの幅は3mm一定とし、厚みをそれぞれ70、320、500、1000μmの4通りに変えて作製した。それらの積層体をそれぞれ透明ガラス基板4aとアルミニウム基板5aの間に挟み、それらの外周部に設置した。次に、透明ガラス基板4a側から波長630nmのレーザ光を遷移金属酸化物ガラス3aと3bに照射した。なお、レーザ光は、透明ガラス基板4aを透過して遷移金属酸化物ガラス3bに照射し、さらに、遷移金属酸化物ガラス3bとスペーサ4bを透過して遷移金属酸化物ガラス3aに照射する。すなわち、スペーサ4bは、レーザ光を減衰させずに伝送するレーザ光の導波路として機能している。レーザ光の移動速度は、8mm/秒とした。以上により、密封容器2を完成させた。密封容器2の気密性(ガスバリア性)と、遷移金属酸化物ガラス3の接着性を、実施例2と同様にして評価した。どの厚みのスペーサ4bを用いた場合にも良好な気密性と接着性が得られた。透明ガラス基板4aとアルミニウム基板5aの間隔が大きい場合には、スペーサ4bを活用することは有効であることが分かった。なお、スペーサ4bの材質としては、レーザ光の透過率の高い白板ガラスの他に、逆にレーザ吸収率が高く、それ自体が発熱するシリコンや鉄酸化物等を適用することも可能である。 First, the sealing material paste is glass no. The low melting point glass powder having the composition of G43, Si filler particles, nitrocellulose, and butyl carbitol acetate were used. The Si filler particles were 10 parts by volume with respect to 100 parts by volume of the powder. This sealing material paste was applied to the upper and lower surfaces of the spacer 4b. Next, the solvent was removed by heating at 150 to 200 ° C. for 30 minutes in the atmosphere. Next, provisional baking was performed by removing the binder by heating at 340 ° C. for 30 minutes in the atmosphere to complete the transition metal oxide glasses 3a and 3b. The fired film thickness of each of the transition metal oxide glasses 3a and 3b was 15 μm. Note that the spacer 4b was prepared by changing the width to 3 mm and changing the thickness in four ways of 70, 320, 500, and 1000 μm, respectively. These laminates were sandwiched between the transparent glass substrate 4a and the aluminum substrate 5a, respectively, and installed on the outer periphery thereof. Next, the transition metal oxide glasses 3a and 3b were irradiated with laser light having a wavelength of 630 nm from the transparent glass substrate 4a side. The laser light passes through the transparent glass substrate 4a and irradiates the transition metal oxide glass 3b, and further passes through the transition metal oxide glass 3b and the spacer 4b to irradiate the transition metal oxide glass 3a. That is, the spacer 4b functions as a waveguide of laser light that transmits the laser light without being attenuated. The moving speed of the laser beam was 8 mm / second. The sealed container 2 was completed by the above. The airtightness (gas barrier property) of the sealed container 2 and the adhesiveness of the transition metal oxide glass 3 were evaluated in the same manner as in Example 2. Good airtightness and adhesiveness were obtained regardless of the thickness of the spacer 4b. It has been found that when the distance between the transparent glass substrate 4a and the aluminum substrate 5a is large, it is effective to use the spacer 4b. As the material of the spacer 4b, in addition to the white plate glass having high laser light transmittance, it is also possible to apply silicon or iron oxide which has a high laser absorption rate and generates heat.
(第2の実施形態)
 図8に、本発明の第2の実施形態に係る太陽電池モジュール1の要部の縦断面図を示す。第2の実施形態の太陽電池モジュール1は、実施例1~実施例3の結果に、さらに、実施例4の結果を踏まえて、完成させている。第2の実施形態の太陽電池モジュール1が、第1の実施形態の太陽電池モジュール1と異なっている点は、実施例4で説明したスペーサ4bが用いられている点である。これにより、実施例4で得られた効果と同様の効果を得ることができる。これにより、太陽電池セル(電子部品)6の高さに応じて、スペーサ4bの高さを設定することで、太陽電池セル(電子部品)6の高さに制限されない密封容器2を提供することができる。また、第2の実施形態では、第1の実施形態と異なり、太陽電池セル6から外部に引き出されるリード線(配線)7が、遷移金属酸化物ガラス3a内を貫通して外部に引き出されている。その遷移金属酸化物ガラス3aの周囲には、透明ガラス基板(ガラス部材)4aとスペーサ(ガラス部材)4bが配置され、遷移金属酸化物ガラス3aは、リード線(配線、金属部材)7に融着し、かつ、透明ガラス基板(ガラス部材)4aとスペーサ(ガラス部材)4bにも融着することで、密封容器2を封止している。
(Second Embodiment)
In FIG. 8, the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 2nd Embodiment of this invention is shown. The solar cell module 1 of the second embodiment is completed based on the results of Examples 1 to 3 and the results of Example 4. The solar cell module 1 of the second embodiment is different from the solar cell module 1 of the first embodiment in that the spacer 4b described in Example 4 is used. Thereby, the effect similar to the effect obtained in Example 4 can be acquired. Thus, by providing the height of the spacer 4b according to the height of the solar cell (electronic component) 6, the sealed container 2 that is not limited to the height of the solar cell (electronic component) 6 is provided. Can do. Further, in the second embodiment, unlike the first embodiment, the lead wire (wiring) 7 drawn out from the solar battery cell 6 penetrates through the transition metal oxide glass 3a and is drawn out to the outside. Yes. A transparent glass substrate (glass member) 4 a and a spacer (glass member) 4 b are disposed around the transition metal oxide glass 3 a, and the transition metal oxide glass 3 a is fused to the lead wire (wiring, metal member) 7. The sealed container 2 is sealed by being attached to the transparent glass substrate (glass member) 4a and the spacer (glass member) 4b.
 図9に、本発明の第2の実施形態に係る太陽電池モジュール1の組立斜視図を示す。次に、太陽電池モジュール1の製造プロセスについて説明する。まず、自動配線装置で、リード線(配線、例えば、半田めっき銅母材のリボン線等)7を用いて、太陽電池セル6毎の連結半田付けを行いながら、複数の太陽電池セル6が一列に接続されたストリングセル16を形成する。それを並列接続するとともに、並列に(図9の例では3列に)配置し、複数の太陽電池セル6をマトリクス状に配置する。次に、透明ガラス基板4aを用意し、透明ガラス基板4a上に、透明封止樹脂(EVAシート)11bを配置し、その上にマトリクス状の太陽電池セル6を配置し、さらにその上に透明封止樹脂(EVAシート)11aを配置する。なお、透明封止樹脂11a付きのバックシート14を使用する場合には(バックシート14の絶縁層12が、透明封止樹脂11aを兼ねている場合には)、透明封止樹脂11aを省くことができる。その後、透明ガラス基板4aの外周部上に、実施例4に記載の方法で作製したスペーサ4bの上下面に、遷移金属酸化物ガラス3a、3bを仮焼成したものを配置し、その上に、周縁部のアルミホイル5aを露出させたバックシート14を配置する。遷移金属酸化物ガラス3bの上に露出したアルミホイル5aが載って接するように配置する。次に、リード線(配線)7を外部に取り出し、ラミネーション装置において、透明ガラス基板4aからバックシート14までを、真空中でEVAの架橋温度付近の温度で加熱しながら圧着し、一体化させる。これにより、透明封止樹脂11aと11bは、一体となって太陽電池セル6を包み、太陽電池セル6を封止する。次に、実施例4に記載したように、透明ガラス基板4aの側からレーザ光を照射して、太陽電池モジュール1の外周部を接合(封止)した。なお、ラミネーション中にレーザ照射できるようにラミネーション装置を改良し、ラミネーションとレーザ照射を同時に行うことも可能である。また、透明封止樹脂(EVAシート)を省いてもよく、この場合、ラミネーション工程も省略できる。 FIG. 9 shows an assembled perspective view of the solar cell module 1 according to the second embodiment of the present invention. Next, the manufacturing process of the solar cell module 1 will be described. First, a plurality of solar battery cells 6 are arranged in a row while performing connection soldering for each solar battery cell 6 using a lead wire (for example, a ribbon wire of a solder-plated copper base material) 7 with an automatic wiring device. A string cell 16 connected to is formed. These are connected in parallel and arranged in parallel (in three rows in the example of FIG. 9), and a plurality of solar cells 6 are arranged in a matrix. Next, a transparent glass substrate 4a is prepared, a transparent sealing resin (EVA sheet) 11b is arranged on the transparent glass substrate 4a, a matrix-like solar battery cell 6 is arranged thereon, and further transparent thereon. Sealing resin (EVA sheet) 11a is disposed. In addition, when using the backsheet 14 with the transparent sealing resin 11a (when the insulating layer 12 of the backsheet 14 also serves as the transparent sealing resin 11a), the transparent sealing resin 11a is omitted. Can do. Then, on the outer peripheral part of the transparent glass substrate 4a, on the upper and lower surfaces of the spacer 4b produced by the method described in Example 4, the transition metal oxide glasses 3a and 3b were temporarily baked, and on that, The back sheet 14 with the peripheral aluminum foil 5a exposed is disposed. The exposed aluminum foil 5a is placed on and in contact with the transition metal oxide glass 3b. Next, the lead wire (wiring) 7 is taken out, and in the lamination apparatus, the transparent glass substrate 4a to the back sheet 14 are pressure-bonded and integrated in a vacuum at a temperature near the EVA crosslinking temperature. Thereby, the transparent sealing resins 11 a and 11 b integrally wrap the solar battery cell 6 and seal the solar battery cell 6. Next, as described in Example 4, laser light was irradiated from the transparent glass substrate 4a side, and the outer peripheral portion of the solar cell module 1 was joined (sealed). It is also possible to improve the lamination apparatus so that laser irradiation can be performed during lamination, and to perform lamination and laser irradiation simultaneously. Further, the transparent sealing resin (EVA sheet) may be omitted, and in this case, the lamination step can be omitted.
(第3の実施形態)
 図10に、本発明の第3の実施形態に係る太陽電池モジュール1の要部の縦断面図を示す。第3の実施形態の太陽電池モジュール1が、第2の実施形態の太陽電池モジュール1と異なっている点は、透明ガラス基板4aに替えて、複合透明基板18が用いられている点である。複合透明基板18は、ポリカーボネート等の透明樹脂基板17を有し、その表面を、遷移金属酸化物ガラス3a、3bと同じ遷移金属酸化物ガラス3cで被覆している。実施例2の変形例で説明したように、ポリカーボネート等の透明樹脂基板17に対して、遷移金属酸化物ガラス3aと3cは強固に融着する。透明樹脂基板17を遷移金属酸化物ガラス3cで被覆することで、気密性を高めることができ、かつ、透明樹脂基板17の経時的な劣化や傷の発生を防ぐことができる。そして、透明ガラス基板4aに替えて、複合透明基板18を用いることで、太陽電池モジュール1を大幅に軽量化することができる。なお、透明樹脂基板17への遷移金属酸化物ガラス3cの被覆は、前記封止材料ペーストを、透明樹脂基板17上に塗布し、その遷移金属酸化物ガラス3cのガラス成分の軟化点Ts温度以上に加熱し、焼成することにより行える。また、リード線(配線)7を外部に引き出す構造は、第1の実施形態と同様にしている。
(Third embodiment)
In FIG. 10, the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 3rd Embodiment of this invention is shown. The solar cell module 1 of the third embodiment is different from the solar cell module 1 of the second embodiment in that a composite transparent substrate 18 is used instead of the transparent glass substrate 4a. The composite transparent substrate 18 has a transparent resin substrate 17 such as polycarbonate, and the surface thereof is covered with the same transition metal oxide glass 3c as the transition metal oxide glasses 3a and 3b. As described in the modification of Example 2, the transition metal oxide glasses 3a and 3c are firmly fused to the transparent resin substrate 17 such as polycarbonate. By covering the transparent resin substrate 17 with the transition metal oxide glass 3c, airtightness can be improved, and deterioration of the transparent resin substrate 17 with time and generation of scratches can be prevented. And the solar cell module 1 can be reduced in weight significantly by using the composite transparent substrate 18 instead of the transparent glass substrate 4a. The transition metal oxide glass 3c is coated on the transparent resin substrate 17 by applying the sealing material paste on the transparent resin substrate 17, and the softening point T s temperature of the glass component of the transition metal oxide glass 3c. This can be done by heating and baking. The structure for drawing out the lead wire (wiring) 7 is the same as that in the first embodiment.
(第4の実施形態)
 図11に、本発明の第4の実施形態に係る太陽電池モジュール1の要部の縦断面図を示す。第4の実施形態の太陽電池モジュール1が、第2の実施形態の太陽電池モジュール1と異なっている点は、アルミニウム枠(金属枠材)19が用いられている点である。アルミニウム枠19は、太陽電池モジュール1の外周部に設けられる。アルミニウム枠19の断面形状は、コの字の形状をしており、透明ガラス基板4aとバックシート14の外周部を覆うように差し込まれている。アルミニウム枠19のコの字の形状の内側には、遷移金属酸化物ガラス(封止材料)3が設けられ、アルミニウム枠19に融着している。また、遷移金属酸化物ガラス(封止材料)3は、透明ガラス基板4aとスペーサ4bとアルミホイル5aに融着している。これによっても、密封容器2を気密にすることができる。また、アルミニウム枠19により、太陽電池モジュール1の強度を高めることができる。従来の太陽電池モジュール1にはアルミニウム枠が用いられる場合があり、そのアルミニウム枠を、第4の実施形態のアルミニウム枠19としてそのまま利用することができる。なお、前記融着のために、レーザ光15は、アルミニウム枠19に照射する。これにより、アムミニウム枠19を加熱し、その熱を遷移金属酸化物ガラス3へ伝熱させて昇温する。
(Fourth embodiment)
In FIG. 11, the longitudinal cross-sectional view of the principal part of the solar cell module 1 which concerns on the 4th Embodiment of this invention is shown. The solar cell module 1 of the fourth embodiment is different from the solar cell module 1 of the second embodiment in that an aluminum frame (metal frame material) 19 is used. The aluminum frame 19 is provided on the outer peripheral portion of the solar cell module 1. The cross-sectional shape of the aluminum frame 19 is a U-shape, and is inserted so as to cover the outer peripheral portions of the transparent glass substrate 4 a and the back sheet 14. A transition metal oxide glass (sealing material) 3 is provided inside the U-shape of the aluminum frame 19 and is fused to the aluminum frame 19. The transition metal oxide glass (sealing material) 3 is fused to the transparent glass substrate 4a, the spacer 4b, and the aluminum foil 5a. Also by this, the sealed container 2 can be made airtight. Further, the aluminum frame 19 can increase the strength of the solar cell module 1. An aluminum frame may be used for the conventional solar cell module 1, and the aluminum frame can be used as it is as the aluminum frame 19 of the fourth embodiment. Note that the laser beam 15 is applied to the aluminum frame 19 for the fusion. Thereby, the aluminium frame 19 is heated and the heat is transferred to the transition metal oxide glass 3 to raise the temperature.
 また、第4の実施形態が、第2の実施形態と異なっている点は、太陽電池セル6から外部に引き出されるリード線(配線)7の封止に、シリコン樹脂8ではなく、遷移金属酸化物ガラス3と同じ遷移金属酸化物ガラス3dが用いられている点である。これに伴い、バックシート14に穿設された導出孔の周りの絶縁層13が省かれ、露出したアルミホイル5aに遷移金属酸化物ガラス3dが融着している。また、遷移金属酸化物ガラス3dは、外部に引き出されるリード線(配線)7にも融着している。これによっても、密封容器2を密封している。 The fourth embodiment is different from the second embodiment in that the lead wire (wiring) 7 drawn out from the solar battery cell 6 is sealed not with the silicon resin 8 but with the transition metal oxide. This is that the same transition metal oxide glass 3d as the physical glass 3 is used. Accordingly, the insulating layer 13 around the lead-out hole formed in the back sheet 14 is omitted, and the transition metal oxide glass 3d is fused to the exposed aluminum foil 5a. The transition metal oxide glass 3d is also fused to a lead wire (wiring) 7 drawn out to the outside. Also by this, the sealed container 2 is sealed.
 なお、本発明は、前記した第1~第4の実施形態と実施例1~4に限定されるものではなく、様々な変形例が含まれる。例えば、前記した第1~第4の実施形態と実施例1~4は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態(実施例)の構成の一部を他の実施形態(実施例)の構成に置き換えることも可能であり、また、ある実施形態(実施例)の構成に他の実施形態(実施例)の構成を加えることも可能である。また、各実施形態(実施例)の構成の一部について、他の構成の追加・削除・置換をすることも可能である。すなわち、本発明は、有機発光ダイオードが内蔵されたディスプレイ、有機色素が内蔵された色素増感型太陽電池、光電変換素子が内蔵され、樹脂で張り合わせられた太陽電池等へ有効に適用されるものである。また、本発明は、電子部品の内部に耐熱性が低い素子や材料が適用されている場合にも適用でき、上記電子部品だけに限られたものではない。また本実施形態(実施例)は、セルを透明基板に接着、固定するような太陽電池全般に適用できるものである。たとえば、薄膜太陽電池や有機太陽電池や色素増感型太陽電池にも展開できる。このように、本発明は、OLEDディスプレイ、色素増感型太陽電池、Si太陽電池、プラズマディスプレイパネル、セラミック実装基板、耐熱性が低い有機素子や有機材料が内蔵された電子部品全般に適用でき、その電子部品の信頼性を著しく向上できるものである The present invention is not limited to the first to fourth embodiments and Examples 1 to 4 described above, and includes various modifications. For example, the first to fourth embodiments and Examples 1 to 4 described above have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. is not. Further, a part of the configuration of an embodiment (example) can be replaced with the configuration of another embodiment (example), and another embodiment (example) can be replaced with the configuration of an embodiment (example). It is also possible to add the configuration of the embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment (example). That is, the present invention is effectively applied to a display incorporating an organic light emitting diode, a dye-sensitized solar cell incorporating an organic dye, a solar cell incorporating a photoelectric conversion element and bonded together with a resin, and the like. It is. The present invention can also be applied to the case where an element or material having low heat resistance is applied inside the electronic component, and is not limited to the electronic component. In addition, this embodiment (example) can be applied to all types of solar cells in which cells are bonded and fixed to a transparent substrate. For example, it can be applied to thin film solar cells, organic solar cells, and dye-sensitized solar cells. As described above, the present invention can be applied to OLED displays, dye-sensitized solar cells, Si solar cells, plasma display panels, ceramic mounting substrates, and electronic components generally incorporating low heat resistance organic elements and organic materials. The reliability of the electronic parts can be significantly improved.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 1   電子装置(太陽電池モジュール)
 2   密封容器
 3、3a、3b、3d 遷移金属酸化物ガラス(封止材料)
 3、3c 遷移金属酸化物ガラス(被覆層)
 4a  ガラス部材(板材、透明ガラス基板)
 4b  ガラス部材(枠材、スペーサ、白板ガラス)
 5a  金属部材(板材(アルミニウム基板)又はシート材(バックシートの金属(アルミニウム)層、アルミホイル))
 5b  金属部材(配線)
 6   電子部品(太陽電池セル)
 7   リード線(配線)
 8   シリコン樹脂(シリコーン)
 9   端子ボックス
 10  出力ケーブル
 11、11a、11b 透明封止樹脂(EVAシート)
 12、13 バックシートの絶縁層
 14  バックシート
 15  レーザ光
 16  ストリングセル
 17  透明樹脂基板
 18  複合透明基板
 19  アルミニウム枠(金属枠材)
1 Electronic device (solar cell module)
2 Sealed container 3, 3a, 3b, 3d Transition metal oxide glass (sealing material)
3, 3c Transition metal oxide glass (coating layer)
4a Glass member (plate material, transparent glass substrate)
4b Glass member (frame material, spacer, white plate glass)
5a Metal member (plate material (aluminum substrate) or sheet material (backsheet metal (aluminum) layer, aluminum foil))
5b Metal member (wiring)
6 Electronic components (solar cells)
7 Lead wire (wiring)
8 Silicone resin
9 Terminal box 10 Output cable 11, 11a, 11b Transparent sealing resin (EVA sheet)
12, 13 Insulating layer of back sheet 14 Back sheet 15 Laser light 16 String cell 17 Transparent resin substrate 18 Composite transparent substrate 19 Aluminum frame (metal frame material)

Claims (15)

  1.  ガラス部材又は樹脂部材と、
     金属部材と、
     前記ガラス部材又は前記樹脂部材と、前記金属部材とのどちらにも融着する遷移金属酸化物ガラスとを有し、
     前記遷移金属酸化物ガラスは、n型半導体であり、
     前記ガラス部材又は前記樹脂部材と、前記金属部材とを前記遷移金属酸化物ガラスで接着して形成されたことを特徴とする密封容器。
    A glass member or a resin member;
    A metal member;
    A transition metal oxide glass fused to both the glass member or the resin member and the metal member;
    The transition metal oxide glass is an n-type semiconductor,
    A sealed container formed by adhering the glass member or the resin member and the metal member with the transition metal oxide glass.
  2.  前記遷移金属酸化物ガラスは、異なる価数をとる遷移金属イオンを有し、
     高価数の前記遷移金属イオンの数が、低価数の前記遷移金属イオンの数よりも多いことを特徴とする請求項1に記載の密封容器。
    The transition metal oxide glass has transition metal ions having different valences,
    2. The sealed container according to claim 1, wherein the number of expensive transition metal ions is larger than the number of low-valent transition metal ions.
  3.  前記遷移金属酸化物ガラスは、バナジウムを含み、テルルと燐の少なくとも1種を含み、銀、鉄、タングステン、銅、アルカリ金属とアルカリ土類金属の少なくとも1種を含むことを特徴とする請求項1又は請求項2に記載の密封容器。 The transition metal oxide glass includes vanadium, includes at least one of tellurium and phosphorus, and includes at least one of silver, iron, tungsten, copper, an alkali metal, and an alkaline earth metal. The sealed container according to claim 1 or 2.
  4.  前記遷移金属酸化物ガラスは、酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、
     それらを、それぞれ、V25、TeO2、P25、Fe23として換算した質量の和は、前記遷移金属酸化物ガラスの質量に対して75質量%以上であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の密封容器。
    The transition metal oxide glass includes vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide,
    The sum of the mass converted to V 2 O 5 , TeO 2 , P 2 O 5 , and Fe 2 O 3 , respectively, is 75% by mass or more with respect to the mass of the transition metal oxide glass. The sealed container according to any one of claims 1 to 3.
  5.  前記遷移金属酸化物ガラスは、酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、
     酸化バナジウムをV25として換算した質量は、酸化テルルをTeO2として換算した質量より多く、
     酸化テルルをTeO2として換算した質量は、酸化リンをP25として換算した質量より多く、
     酸化リンをP25として換算した質量は、酸化鉄をFe23として換算した質量以上であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の密封容器。
    The transition metal oxide glass includes vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide,
    The mass obtained by converting vanadium oxide as V 2 O 5 is larger than the mass obtained by converting tellurium oxide as TeO 2 .
    The mass of tellurium oxide converted as TeO 2 is larger than the mass of phosphorus oxide converted as P 2 O 5 ,
    Mass obtained by converting the phosphorus oxide as P 2 O 5 is a sealed container according to any one of claims 1 to 4, characterized in that the iron oxide is at least mass calculated as Fe 2 O 3.
  6.  前記遷移金属酸化物ガラスは、
     酸化バナジウムを、V25として換算して、35~55質量%含み、
     酸化テルルを、TeO2として換算して、19~30質量%含み、
     酸化リンを、P25として換算して、7~20質量%含み、
     酸化鉄を、Fe23として換算して、5~15質量%含むことを特徴とする請求項1乃至請求項5のいずれか1項に記載の密封容器。
    The transition metal oxide glass is
    Containing vanadium oxide in terms of V 2 O 5 , 35 to 55% by mass,
    Containing 19-30% by mass of tellurium oxide in terms of TeO 2 ;
    Phosphorus oxide, converted as P 2 O 5 , contains 7 to 20% by mass,
    6. The sealed container according to claim 1, wherein iron oxide is contained in an amount of 5 to 15% by mass in terms of Fe 2 O 3 .
  7.  前記遷移金属酸化物ガラスは、
     酸化タングステン、酸化モリブデン、酸化銅、酸化タンタル、酸化マンガン、酸化アンチモン、酸化ビスマス、酸化亜鉛、酸化バリウム、酸化ストロンチウム、酸化銀と酸化カリウムのいずれか一種以上を含み、
     それらを、それぞれWO3、MoO3、CuO、Ta25、MnO2、Sb23、Bi23、ZnO、BaO、SrO、Ag2O、K2Oとして換算した質量の和は、前記遷移金属酸化物ガラスの質量に対して25質量%以下であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の密封容器。
    The transition metal oxide glass is
    Including one or more of tungsten oxide, molybdenum oxide, copper oxide, tantalum oxide, manganese oxide, antimony oxide, bismuth oxide, zinc oxide, barium oxide, strontium oxide, silver oxide and potassium oxide,
    The sum of the masses converted to WO 3 , MoO 3 , CuO, Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, BaO, SrO, Ag 2 O, and K 2 O, respectively, is The sealed container according to any one of claims 1 to 6, wherein the content is 25% by mass or less based on the mass of the transition metal oxide glass.
  8.  前記ガラス部材又は前記樹脂部材は、板状であり、
     前記金属部材は、板状又はシート状であり、
     前記ガラス部材又は前記樹脂部材と、前記金属部材とは、対向して配置され、それらの外周部に前記遷移金属酸化物ガラスが設けられることを特徴とする請求項1乃至請求項7のいずれか1項に記載の密封容器。
    The glass member or the resin member is plate-shaped,
    The metal member is plate-shaped or sheet-shaped,
    The said glass member or the said resin member, and the said metal member are arrange | positioned facing each other, The said transition metal oxide glass is provided in those outer peripheral parts, The any one of Claim 1 thru | or 7 characterized by the above-mentioned. Item 2. The sealed container according to item 1.
  9.  前記ガラス部材又は前記樹脂部材を、複数個有し、
     前記ガラス部材又は前記樹脂部材同士が、前記遷移金属酸化物ガラスで接着されていることを特徴とする請求項1乃至請求項8のいずれか1項に記載の密封容器。
    It has a plurality of the glass member or the resin member,
    The sealed container according to any one of claims 1 to 8, wherein the glass member or the resin member is bonded with the transition metal oxide glass.
  10.  前記ガラス部材又は前記樹脂部材と、前記金属部材との間に、ガラス又は樹脂であるスペーサを備え、
     前記ガラス部材又は前記樹脂部材と、前記スペーサとが、前記遷移金属酸化物ガラスで接着され、
     前記金属部材と前記スペーサとが、前記遷移金属酸化物ガラスで接着され、
     前記ガラス部材又は前記樹脂部材と、前記金属部材の外周部に前記スペーサが設けられることを特徴とする請求項8又は請求項9に記載の密封容器。
    A spacer that is glass or resin is provided between the glass member or the resin member and the metal member,
    The glass member or the resin member and the spacer are bonded with the transition metal oxide glass,
    The metal member and the spacer are bonded with the transition metal oxide glass,
    The sealed container according to claim 8 or 9, wherein the spacer is provided on an outer peripheral portion of the glass member or the resin member and the metal member.
  11.  前記ガラス部材又は前記樹脂部材と、前記金属部材と前記スペーサの外周部に配置される金属枠材を有し、
     前記ガラス部材又は前記樹脂部材と、前記金属部材と前記スペーサは、前記遷移金属酸化物ガラスによって前記金属枠材と接着されていることを特徴とする請求項10に記載の密封容器。
    The glass member or the resin member, the metal member and a metal frame member disposed on the outer periphery of the spacer,
    The sealed container according to claim 10, wherein the glass member or the resin member, the metal member, and the spacer are bonded to the metal frame member by the transition metal oxide glass.
  12.  前記ガラス部材又は前記樹脂部材と、前記金属部材とを、レーザ照射によって軟化流動する前記遷移金属酸化物ガラスで、接着して形成されたことを特徴とする請求項1乃至請求項11のいずれか1項に記載の密封容器。 The said glass member or the said resin member, and the said metal member are adhere | attached and formed by the said transition metal oxide glass softened and flowed by laser irradiation, The any one of Claim 1 thru | or 11 characterized by the above-mentioned. Item 2. The sealed container according to item 1.
  13.  前記金属部材の材質は、アルミニウム又はアルミニウム合金であることを特徴とする請求項1乃至請求項12のいずれか1項に記載の密封容器。 The sealed container according to any one of claims 1 to 12, wherein a material of the metal member is aluminum or an aluminum alloy.
  14.  請求項1乃至請求項13のいずれか1項に記載の密封容器と、
     前記密封容器を収容する電子部品とを有し、
     前記金属部材は、前記電子部品から外部に引き出される配線を有し、
     前記配線と、前記ガラス部材、前記樹脂部材又は前記配線以外の前記金属部材との間は、前記遷移金属酸化物ガラスで封止されていることを特徴とする電子装置。
    A sealed container according to any one of claims 1 to 13,
    An electronic component that houses the sealed container,
    The metal member has wiring drawn out from the electronic component to the outside,
    The electronic device, wherein the wiring and the glass member, the resin member, or the metal member other than the wiring are sealed with the transition metal oxide glass.
  15.  請求項1乃至請求項13のいずれか1項に記載の密封容器と、
     前記密封容器を収容する複数の太陽電池セルを有することを特徴とする太陽電池モジュール。
    A sealed container according to any one of claims 1 to 13,
    A solar cell module comprising a plurality of solar cells for housing the sealed container.
PCT/JP2013/065311 2012-06-22 2013-06-03 Sealed container, electronic device, and solar cell module WO2013190981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140511 2012-06-22
JP2012140511A JP5935120B2 (en) 2012-06-22 2012-06-22 Sealed container, electronic device and solar cell module

Publications (1)

Publication Number Publication Date
WO2013190981A1 true WO2013190981A1 (en) 2013-12-27

Family

ID=49768583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065311 WO2013190981A1 (en) 2012-06-22 2013-06-03 Sealed container, electronic device, and solar cell module

Country Status (2)

Country Link
JP (1) JP5935120B2 (en)
WO (1) WO2013190981A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176519A1 (en) * 2021-02-16 2022-08-25 昭和電工マテリアルズ株式会社 Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode
CN115477472A (en) * 2022-09-06 2022-12-16 湖南兆湘光电高端装备研究院有限公司 Vanadium-phosphorus sealing glass and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA47245B1 (en) * 2017-05-23 2021-05-31 Agc Glass Europe COVER GLASS FOR SOLAR CELLS AND SOLAR CELL MODULE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2008546211A (en) * 2005-06-10 2008-12-18 ゼネラル・エレクトリック・カンパニイ Hermetic sealing package and manufacturing method thereof
JP2010228998A (en) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same, and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2008546211A (en) * 2005-06-10 2008-12-18 ゼネラル・エレクトリック・カンパニイ Hermetic sealing package and manufacturing method thereof
JP2010228998A (en) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same, and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176519A1 (en) * 2021-02-16 2022-08-25 昭和電工マテリアルズ株式会社 Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode
CN115477472A (en) * 2022-09-06 2022-12-16 湖南兆湘光电高端装备研究院有限公司 Vanadium-phosphorus sealing glass and preparation method and application thereof
CN115477472B (en) * 2022-09-06 2023-08-18 湖南兆湘光电高端装备研究院有限公司 Vanadium-phosphorus sealing glass and preparation method and application thereof

Also Published As

Publication number Publication date
JP2014007214A (en) 2014-01-16
JP5935120B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5733279B2 (en) Electronic component and manufacturing method thereof, and sealing material paste used therefor
TWI501934B (en) Electronic parts and their manufacturing methods, as well as the use of its sealing material paste
US10727362B2 (en) Methods of hermetically sealing photovoltaic modules
JP6350127B2 (en) Lead-free low-melting glass composition, glass frit for low-temperature sealing containing the same, glass paste for low-temperature sealing, conductive material and conductive glass paste, and glass sealing parts and electric / electronic parts using the same
TWI497466B (en) Electronic device and manufacturing method thereof
CN108463440B (en) Lead-free glass composition, glass composite material, glass paste, sealed structure, electrical/electronic component, and coated component
US9614178B2 (en) Electronic component, process for producing same, sealing material paste, and filler particles
JP2013239609A (en) Airtight member and method for manufacturing the same
JP2011126722A (en) Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell
JP5935120B2 (en) Sealed container, electronic device and solar cell module
JPWO2012090695A1 (en) Electronic device and manufacturing method thereof
JP2012113968A (en) Electric element package
WO2017170051A1 (en) Glass powder and sealing material using same
WO2018216587A1 (en) Method for producing hermetic package, and hermetic package
WO2020050031A1 (en) Airtight package
JP2014038118A (en) Reflector and method of manufacturing the same
WO2012046817A1 (en) Electronic device and method of manufacturing thereof
JP6885433B2 (en) Lead-free low melting point glass composition, low melting point glass composite material and low melting point glass paste containing the same, and sealing structures, electrical and electronic parts and painted parts using these.
JP2014221695A (en) Sealed package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806379

Country of ref document: EP

Kind code of ref document: A1