WO2022176430A1 - Method for manufacturing three-dimensional structure, and fabrication device - Google Patents

Method for manufacturing three-dimensional structure, and fabrication device Download PDF

Info

Publication number
WO2022176430A1
WO2022176430A1 PCT/JP2022/000452 JP2022000452W WO2022176430A1 WO 2022176430 A1 WO2022176430 A1 WO 2022176430A1 JP 2022000452 W JP2022000452 W JP 2022000452W WO 2022176430 A1 WO2022176430 A1 WO 2022176430A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
manufacturing
layer
dimensional structure
irradiation
Prior art date
Application number
PCT/JP2022/000452
Other languages
French (fr)
Japanese (ja)
Inventor
高弘 林
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2022176430A1 publication Critical patent/WO2022176430A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • B29C64/273Arrangements for irradiation using laser beams; using electron beams [EB] pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional structure using a layered manufacturing method and a manufacturing apparatus for the three-dimensional structure.
  • Non-Patent Document 1 discloses a technique for detecting defects occurring in a metal structure from reflected waves of laser light irradiated to the metal structure.
  • the conventional techniques as described above are suitable for detecting defects inside a metal structure (typically on the order of mm from the surface layer), directly below the surface layer (typically on the order of ⁇ m from the surface layer) or There is a problem that it is not suitable for detecting defects on the surface. Due to this problem, the prior art cannot detect defects during the manufacturing process of the metal structure and repair the defects during the manufacturing process.
  • An object of one aspect of the present invention is to realize a manufacturing method or the like that detects defects directly under the surface layer or on the surface during manufacturing in the manufacturing of a three-dimensional structure using the additive manufacturing method.
  • a method for manufacturing a three-dimensional structure is a method for manufacturing a three-dimensional structure using a modeling apparatus that models a three-dimensional structure by a layered manufacturing method. After starting the stacking step of stacking a material layer made of the material of the three-dimensional structure, and the stacking step of stacking the surface layer on a surface layer that is the uppermost material layer among the stacked material layers. and an irradiation step of irradiating a beam before the start of the next lamination step to generate vibration at the irradiation point, a detection step of detecting the vibration, and based on the intensity of the detected vibration, the material layer and a determination step of determining the presence or absence of defects.
  • a method for manufacturing a three-dimensional structure includes manufacturing a three-dimensional structure using a modeling apparatus that models a three-dimensional structure by a layered manufacturing method.
  • a method comprising: providing a material for the three-dimensional structure to a predetermined build area; and forming a material layer by irradiating the material provided to the build area with a beam and solidifying the material.
  • a forming step wherein the material layers are laminated by repeating the providing step and the layer forming step; a detecting step of detecting vibration generated at an irradiation point of the beam; and the detected vibration. and a determining step of determining whether or not there is a defect in the material layer based on the intensity of .
  • a modeling apparatus is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, and defines a modeling area of the three-dimensional structure.
  • a table a control device for controlling lamination of material layers made of the material of the three-dimensional structure, and a surface layer, which is the uppermost material layer among the laminated material layers, after the start of lamination of the surface layer and the following
  • a beam output device that outputs a beam that is irradiated before the start of lamination of the material layers and that generates vibration at an irradiation point, and a detection device that is provided on the table and detects the vibration are provided.
  • a modeling apparatus is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, and defines a modeling area of the three-dimensional structure.
  • a table a providing device for providing the material of the three-dimensional structure to a predetermined modeling area, and a forming device for forming a material layer by irradiating the material provided to the modeling area with a beam to solidify the material.
  • a control device for stacking the material layers by controlling the providing device and the forming device to repeat the formation of the material layers in the modeling area; a detection device for detecting vibrations generated by the
  • FIG. 2 is a flowchart showing an example of the flow of manufacturing processing for a metal structure executed by the modeling apparatus shown in FIG. 1;
  • FIG. FIG. 3 is a diagram showing an outline of a modeling process included in the manufacturing process shown in FIG. 2; 3 is a diagram showing an overview of inspection processing included in the manufacturing processing shown in FIG. 2;
  • FIG. 2 is a diagram showing an example of a vibration waveform of ultrasonic waves received by an ultrasonic probe included in the modeling apparatus shown in FIG. 1;
  • FIG. 3 is a flowchart showing an example of the flow of defect detection processing included in the manufacturing processing shown in FIG.
  • FIG. 9 is a flow chart showing an example of the flow of manufacturing processing of a metal structure executed by the modeling apparatus shown in FIG. 8.
  • FIG. 10 is a diagram showing an outline of simultaneous processing included in the manufacturing processing shown in FIG. 9; FIG.
  • FIG. 1 is a diagram showing the main configuration of a modeling apparatus 1 according to this embodiment.
  • the modeling apparatus 1 is an apparatus for modeling (manufacturing) a metal three-dimensional structure (hereinafter referred to as a metal structure) using the additive manufacturing method. That is, the modeling apparatus 1 models a desired metal structure by stacking a plurality of layers.
  • the modeling apparatus 1 includes a base 2, a table 3, a recoater 4 (providing device), a modeling laser 5, a mirror 6, an optical system 7, a control device 8, an inspection laser 9 (beam output device), and an ultrasonic probe. 10 (detection device) and an information processing device 11 .
  • the base table 2 is a table on which the metal powder M that is the material of the metal structure is placed, and the recoater 4 is arranged.
  • the recoater 4 reciprocates in a horizontal uniaxial direction (direction of arrow A) to supply the metal powder M onto the table 3 and flatten it to form a powder layer.
  • Table 3 is a platform on which the desired metal structure is formed.
  • the table 3 defines a shaping area, which is a predetermined area in which the metal structure is to be shaped.
  • a powder layer is formed on the table 3 by the recoater 4 .
  • the table 3 can be moved vertically (in the direction of arrow U) by a drive unit (not shown).
  • the base 2 and the table 3 form a horizontal surface.
  • the layer is generated by solidifying the powder layer with a laser beam for shaping the metal structure (hereinafter referred to as a shaping laser beam R1).
  • a shaping laser beam R1 for shaping the metal structure
  • the said layer is described as a material layer.
  • the table 3 moves downward in FIG. 1 by the thickness of the material layer each time the material layer is formed (stacked). Thereby, the metal powder can be layered on the formed material layer.
  • the shaping laser 5 outputs a shaping laser beam R1 (shaping beam).
  • the shaping laser beam R1 can melt the powder layer, and the shaping laser 5 is, for example, a CO2 laser, a fiber laser or a YAG laser.
  • the modeling laser 5 outputs a continuous wave with an output of several hundred W (for example, 300 W).
  • the shaping laser 5 includes a light source, a collimator and a focus control unit.
  • the shaping laser beam R1 output from the light source is converted into parallel light by a collimator. Subsequently, the parallel light is condensed by the focus control unit and adjusted to a predetermined beam diameter.
  • the modeling laser beam R1 has higher energy than the laser beam output from the inspection laser 9 . In other words, the modeling laser 5 has a higher output than the inspection laser 9 .
  • the mirror 6 reflects light of a specific wavelength and transmits light of wavelengths other than the specific wavelength.
  • the modeling laser 5 outputs the modeling laser beam R1 of the specific wavelength. That is, the mirror 6 reflects the modeling laser beam R1.
  • the optical system 7 includes a plurality of galvanomirrors (two in the example of FIG. 1).
  • the optical system 7 reflects the modeling laser beam and irradiates it onto a predetermined region (modeling region) of the powder layer. This causes the powder layer to melt and then solidify to form a material layer.
  • the control device 8 controls the modeling laser 5, the optical system 7, and the inspection laser 9.
  • the control device 8 controls the modeling laser 5 to output the modeling laser beam R1.
  • the control device 8 controls the optical system 7 to adjust the angle of each galvanomirror.
  • the powder layer is irradiated with the shaping laser beam R1 whose irradiation position is controlled, and a desired material layer is formed.
  • the control device 8 also controls the inspection laser 9 to output laser light (hereinafter referred to as inspection laser light R2).
  • control device 8 may be a plurality of control devices that control the modeling laser 5, the optical system 7, and the inspection laser 9, respectively.
  • the controller 8 controls the recoater 4 to supply the metal powder M onto the table 3 and flatten it to form a powder layer. Subsequently, the control device 8 controls the shaping laser 5 and the optical system 7 to irradiate a predetermined region of the powder layer with the shaping laser beam R1. Thus, the first material layer is formed. Subsequently, the control device 8 controls the drive section of the table 3 to move the table 3 downward in FIG. 1 by a predetermined distance (specifically, the thickness of the material layer).
  • laminated material layer P (hereinafter referred to as laminated material layer P) shown in FIG. 1 is formed.
  • a metal structure is formed.
  • the inspection laser 9 outputs an inspection laser beam R2 for inspecting the presence or absence of defects occurring in the material layer.
  • defects include, but are not limited to, voids, cracks, peeling, and the like that occur in the material layer.
  • the inspection laser 9 is, for example, a CO 2 laser, a fiber laser, or a YAG laser, and can vibrate the material layer without melting it by the output inspection laser light R2 (beam, laser light). That is, the inspection laser beam R2 has lower energy than the modeling laser beam R1.
  • the inspection laser 9 outputs a pulse wave as the inspection laser light R2 with an output of several tens of W (for example, 50 W).
  • the inspection laser 9 is a pulse laser will be described.
  • the inspection laser 9 outputs an inspection laser beam R2 at a repetition frequency fL .
  • the repetition frequency f L can be controlled within a range of 1 kHz to 200 kHz, for example.
  • the repetition frequency f L is set to a frequency within the band of 10 to 100 kHz.
  • the inspection laser 9 also includes a light source, a collimator and a focus control unit.
  • the inspection laser beam R2 output from the light source is converted into parallel light by a collimator. Subsequently, the parallel light is condensed by the focus control unit and adjusted to a predetermined beam diameter.
  • the inspection laser beam R2 is a laser beam with a wavelength other than a specific wavelength. As a result, the inspection laser beam R2 passes through the mirror 6 and enters the optical system 7 .
  • the control device 8 controls the optical system 7 to adjust the galvanomirror, thereby scanning the surface layer of the laminated material layer P with the inspection laser beam R2. As a result, the entire surface layer is irradiated with the inspection laser beam R2.
  • the surface layer is the uppermost material layer of the laminated material layers P, that is, the outermost material layer formed last.
  • the surface layer is irradiated with the inspection laser beam R2 and vibrates to generate ultrasonic waves. The ultrasonic waves propagate to the table 3 .
  • the modeling laser 5, the mirror 6, and the inspection laser 9 are configured such that the modeling laser beam R1 and the inspection laser beam R2 enter the mirror 6 from different directions and are reflected by the mirror 6. It is arranged so that R1 and the inspection laser beam R2 transmitted through the mirror 6 enter the optical system 7 along the same optical path.
  • the ultrasonic probe 10 receives ultrasonic waves generated in the laminated material layer P. Specifically, the ultrasonic probe 10 is provided on the table 3 and receives ultrasonic waves propagated from the material layer to the table 3 . In the example of FIG. 1, a plurality of (six) ultrasonic probes 10 are provided on the back surface of the table 3, but the number and installation positions of the ultrasonic probes 10 are not limited to this.
  • the back surface is the surface opposite to the surface on which the material layer is formed.
  • the ultrasonic probe 10 may be provided at least partially on the surface on which the material layer is formed.
  • the number of ultrasonic probes 10 may be one, but it is desirable to have a plurality of them.
  • the ultrasonic waves received by each ultrasonic probe 10 can be added. As a result, it is possible to minimize the unevenness in the intensity of the ultrasonic waves caused by the installation position of the ultrasonic probe 10, and as a result, it is possible to specify the position of the defect more accurately.
  • the frequency band of ultrasonic waves that can be received by the ultrasonic probe 10 is the frequency band that the repetition frequency f L can take (first frequency band, hereinafter referred to as an irradiation band).
  • the reception band includes an irradiation band and a higher frequency band than the irradiation band.
  • the lower limit of the reception band is equal to or higher than the lowest resonant frequency of the metal structure, and the upper limit is on the order of 10 MHz.
  • the influence of rigid body displacement can be eliminated. Also, by setting the upper limit to the order of 10 MHz, more resonance frequencies can be included in the reception band, making it easier to detect defects.
  • ultrasonic waves in the present embodiment are not intended to be limited to elastic waves with frequencies higher than audible sound. That is, in the present embodiment, “ultrasonic waves” may include elastic waves (vibrations) with a frequency of 15 kHz or less. In other words, the reception band of the ultrasound probe 10 may include a frequency band of 15 kHz or less. Note that the lower limit of the reception band may be, for example, 10 kHz. Of course, in this embodiment, “ultrasonic waves” may include elastic waves (vibrations) of frequencies higher than 15 kHz.
  • the information processing device 11 is communicably connected to the ultrasonic probe 10, and determines whether there is a defect and identifies the position of the defect based on the intensity of the ultrasonic waves received by the ultrasonic probe 10. . The details of this processing will be described later.
  • the information processing device 11 identifies the position of the defect, the information processing device 11 transmits position information indicating the position to the control device 8 .
  • the control device 8 can control the modeling laser 5 and the optical system 7 to irradiate the modeling laser beam to the position indicated by the position information, thereby repairing the defect.
  • the base 2, the table 3, the recoater 4, the modeling laser 5, the mirror 6, the optical system 7, the inspection laser 9, and the ultrasonic probe 10 are placed in an appropriate draft chamber (not shown). position.
  • FIG. 2 is a flow chart showing an example of the flow of the metal structure manufacturing process (hereinafter simply referred to as manufacturing process) executed by the modeling apparatus 1 .
  • the manufacturing process includes the outlined modeling process and the process of inspecting the laminate material layer P for defects.
  • step S1 the control device 8 controls the recoater 4 to supply the metal powder M onto the table 3 and flatten it to form a powder layer.
  • the build area of the powder layer is formed on the table 3 .
  • the build region of the powder layer is formed on the previously formed material layer.
  • step S2 laminate step, layer formation step
  • the control device 8 controls the modeling laser 5 and the optical system 7 to scan the modeling laser beam R1 in the modeling area to form a material layer.
  • the material layer is formed on the material layer formed in the previous execution of step S2, so the process executed in step S2 is expressed as the process of stacking the material layers.
  • FIG. 3 is a diagram showing an overview of the modeling process. 3 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1.
  • FIG. 3 the modeling laser 5 outputs a modeling laser beam R1.
  • the modeling laser beam R1 is output under the control of the control device 8, reflected by the mirror 6, and enters the optical system 7.
  • the control device 8 controls the optical system 7 to scan the modeling area with the laser beam R1 for modeling to form a material layer.
  • step S3 the control device 8 controls the drive section of the table 3 to lower the table 3 by one material layer.
  • step S4 the control device 8 determines whether or not the material layer has been formed a predetermined number of times. If it is determined that the process has been performed a predetermined number of times (YES in step S4), the manufacturing process proceeds to step S5. On the other hand, if it is determined that the process has not been performed the predetermined number of times (NO in step S4), the manufacturing process returns to step S1. That is, in the case of NO in step S4, the modeling apparatus 1 re-executes formation of the material layer and stacks the material layer (stacking step).
  • step S5 the control device 8 controls the inspection laser 9 and the optical system 7 to scan the surface layer with the inspection laser light R2 (pulse wave).
  • FIG. 4 is a diagram showing an overview of inspection processing. 4 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1.
  • FIG. 4 the inspection laser 9 outputs an inspection laser beam R2.
  • the inspection laser beam R2 is output under the control of the control device 8.
  • FIG. The inspection laser beam R2 has a wavelength different from that of the modeling laser beam R1, and is not a wavelength reflected by the mirror 6. Therefore, the inspection laser beam R2 passes through the mirror 6 and enters the optical system . Further, the control device 8 controls the optical system 7 to scan the surface layer with the inspection laser beam R2.
  • step S6 the ultrasonic probe 10 receives the generated ultrasonic waves.
  • FIG. 5 is a diagram showing an example of a vibration waveform of ultrasonic waves received by the ultrasonic probe 10. As shown in FIG. The vibration waveform is based on the inspection laser beam R2 output by the inspection laser 9 . That is, the ultrasonic probe 10 receives ultrasonic waves generated multiple times at each position of the surface layer with a period of 1/f L based on the repetition frequency f L of the inspection laser beam R2. 1/ fL is the pulse period of the inspection laser beam R2.
  • step S ⁇ b>7 the information processing device 11 executes defect detection processing based on the ultrasonic waves received by the ultrasonic probe 10 .
  • FIG. 6 is a flowchart showing an example of the flow of defect detection processing.
  • the information processing device 11 converts the vibration waveform of the ultrasonic waves received by the ultrasonic probe 10 into a frequency spectrum.
  • the information processing device 11 generates a frequency spectrum by Fourier transforming the vibration waveform. Specifically, when the information processing device 11 receives all pulses of the 1/f L period, the information processing device 11 Fourier-transforms the entire waveform. This produces a frequency spectrum.
  • FIG. 7 is a diagram showing an example of a frequency spectrum.
  • the frequency spectrum includes a frequency fH higher than the repetition frequency fL of the inspection laser beam R2 (inside the dashed rectangle in FIG. 7).
  • the frequency fH is, for example, a frequency that is an integral multiple of the frequency fL as shown in FIG. In other words, in the example of FIG. 7, the interval of the frequency spectrum is fL .
  • step S22 the information processing device 11 calculates the sum of squares of the frequency spectrum. That is, the information processing device 11 squares the intensity of each frequency in the frequency spectrum, and totals the squared intensity of each frequency. Unnecessary frequency bands can be removed by calculating the sum of squares of the frequency spectrum.
  • step S23 the calculated sum of squares is compared with the reference value.
  • the reference value is based on the value of the sum of squares of the frequency spectrum corresponding to defect-free locations in the metal structure.
  • the reference value may be a single numerical value or a numerical range (hereinafter referred to as a reference range), but in this embodiment it is assumed to be a single numerical value.
  • step S8 determines whether or not there is a defect directly under the surface layer (or on the surface). Specifically, the information processing device 11 compares the sum of squares corresponding to each position with a reference value. (YES in step S8). In this case, the information processing device 11 identifies the position corresponding to the sum of squares of values larger than the reference value by a predetermined value or more. This position is a position where a defect occurs directly under the surface layer. The information processing device 11 transmits position information indicating the specified position to the control device 8 . The manufacturing process then proceeds to step S9.
  • step S8 if the difference between the sum of squares and the reference value is less than the predetermined value (NO in step S8), the information processing device 11 determines that there is no defect directly below the surface layer. In this case, the manufacturing process proceeds to step S10.
  • the information processing device 11 may determine whether the sum of squares corresponding to each position is within the reference range. If it is within the reference range, the manufacturing process proceeds to step S9, and if it is not within the reference range, the manufacturing process proceeds to step S10.
  • step S9 the control device 8 controls the modeling laser 5 and the optical system 7 based on the received position information to irradiate the defected position with the modeling laser beam R1 to repair the defect. do.
  • step S10 the control device 8 determines whether or not the metal structure is completed. If it is determined that the manufacturing process has been completed (YES in step S10), the manufacturing process ends. If it is determined that it is not completed (NO in step S10), the manufacturing process returns to step S1.
  • the modeling apparatus 1 irradiates the surface layer of the laminated material layer P with the inspection laser beam R2 every time the material layer is generated a predetermined number of times, and detects the ultrasonic probe provided on the table 3. Ultrasonic waves are detected by the element 10 . The modeling apparatus 1 determines whether or not there is a defect in the material layer based on the intensity of the ultrasonic waves. As a result, in manufacturing a metal structure, it is possible to detect defects directly under the surface layer or on the surface during manufacturing.
  • the modeling apparatus 1 scans the surface layer with the inspection laser beam R2, generates ultrasonic waves at a plurality of irradiation points, and determines the presence or absence of defects for each of the plurality of irradiation points. This can improve the likelihood of detecting defects.
  • the modeling apparatus 1 irradiates the irradiation point determined to have a defect with the laser beam for modeling R1 to repair the defect.
  • the metal structure can be completed in a defect-free state, thereby suppressing a decrease in the strength of the metal structure.
  • the modeling apparatus 1 irradiates a pulse-wave laser beam as the inspection laser beam R2. Then, the modeling apparatus 1 determines whether or not there is a defect based on all of the ultrasonic waves generated a plurality of times at the irradiation point from the start to the end of the irradiation of the inspection laser beam R2. As a result, the intensity of the ultrasonic waves can be made sufficient for determination, so that the accuracy of determination can be improved.
  • the modeling apparatus 1 receives ultrasonic waves in a reception band that includes frequencies higher than the irradiation band that the repetition frequency fL of the inspection laser beam R2 can take. As a result, it is possible to perform determination using high-frequency components contained in ultrasonic waves, so that defects occurring directly under the surface layer or on the surface can be detected.
  • the modeling laser 5, the mirror 6, the optical system 7, and the inspection laser 9 are arranged so that the modeling laser beam R1 and the inspection laser beam R2 share the optical system 7. Therefore, the modeling apparatus 1 can accurately identify the position of the defect and repair the defect with high accuracy.
  • the mirror 6 reflects the modeling laser beam R1 and transmits the inspection laser beam R2.
  • the modeling laser 5 and the inspection laser 9 are arranged so that the modeling laser beam R1 and the inspection laser beam R2 are incident on the mirror 6 from different directions, the modeling from the mirror 6 to the optical system 7
  • the shaping laser 5, the mirror 6, and the inspection laser 9 are arranged so that the optical paths of the shaping laser beam R1 and the inspection laser beam R2 are the same, scanning with the shaping laser beam R1 and scanning with the inspection laser beam R2 can be performed. and the optical system 7 can be shared. As a result, it is possible to easily realize the sharing of the optical system 7 between the laser beam R1 for modeling and the laser beam R2 for inspection.
  • the ultrasonic probe 10 is provided on the table 3 to receive ultrasonic waves propagated from the surface layer to the table 3 .
  • Some existing defect detection techniques use laser vibrometers to detect vibrations in the material layer. Since the laser vibrometer detects reflected light and scattered light, detection may be difficult depending on the state of the surface layer (surface state).
  • the modeling apparatus 1 according to the present embodiment can determine the presence or absence of defects regardless of the state of the surface layer (the surface state of the laminated material layer P).
  • FIG. 8 is a diagram showing the main configuration of a modeling apparatus 1A according to this embodiment.
  • the modeling apparatus 1A differs from the modeling apparatus 1 in that it includes a laser 5A (forming apparatus) in place of the modeling laser 5 and does not include an inspection laser 9 .
  • the laser 5A is, for example, a continuous wave laser that outputs continuous waves.
  • it is desirable that the intensity of the continuous wave is controllable.
  • the laser 5A is caused to generate laser light R3, which is a pulse wave, by applying a modulation signal from an external device to the laser 5A.
  • the external device may be, for example, the control device 8 or another device (not shown).
  • the external device inputs to the laser 5A a modulation signal such that the duty ratio of the laser beam R3 is 50%.
  • the duty ratio is a value obtained by dividing the period during which a pulse is generated (pulse width) by the period of the pulse wave.
  • the pulse wave generation method is not limited to this example.
  • the modeling apparatus 1A may include a modulator (not shown) and convert the continuous wave output from the laser 5A into a pulse wave using the modulator.
  • FIG. 9 is a flowchart showing an example of the flow of the metal structure manufacturing process (hereinafter simply referred to as manufacturing process) executed by the modeling apparatus 1A.
  • manufacturing process the same step numbers as in FIG. 2 are assigned to the steps that execute the same processes as the manufacturing process (see FIG. 2) according to the first embodiment. Also, since the details of this step have already been described, the description will not be repeated here.
  • a material layer is formed by irradiating a powder layer with the shaping laser beam R1 output from the shaping laser 5, and the surface layer of the laminated material layer P obtained by laminating the material layer is By scanning with the inspection laser beam R2 output from the inspection laser 9, defects just below the surface layer are detected. That is, in the modeling process according to the first embodiment, the irradiation with the modeling laser beam R1 and the irradiation with the inspection laser beam R2 are performed at different timings.
  • the material layer is formed by irradiating the powder layer with laser light R3, which is a pulse wave, and ultrasonic waves are generated from the laminated material layer P. That is, in the manufacturing process according to the present embodiment, the irradiation with the laser beam R3 simultaneously melts and solidifies the powder layer and generates ultrasonic waves. Henceforth, this processing may be described as "simultaneous processing.”
  • step S31 the control device 8 controls the laser 5A and the optical system 7 to scan the modeling area with the laser beam R3.
  • FIG. 10 is a diagram showing an overview of simultaneous processing. Note that FIG. 10 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1A.
  • the laser 5A outputs laser light R3, which is a pulse wave, and makes it enter the optical system 7.
  • the optical system 7 scans the modeling area with the laser beam R3 to form a material layer. The output and scanning of the laser beam R3 are performed under the control of the controller 8.
  • FIG. 10 is a diagram showing an overview of simultaneous processing. Note that FIG. 10 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1A.
  • the laser 5A outputs laser light R3, which is a pulse wave, and makes it enter the optical system 7.
  • the optical system 7 scans the modeling area with the laser beam R3 to form a material layer. The output and
  • the control device 8 approximately doubles the maximum output of the laser beam R3. As a result, the same level of energy as in the case of continuous wave irradiation can be imparted to the powder layer, so that the pulse wave can impart sufficient energy to the powder layer for melting.
  • the laser beam R3 is a pulse wave
  • the powder layer is irradiated with the laser beam R3
  • ultrasonic waves are generated in the laminated material layer P and propagated to the table 3.
  • the ultrasonic wave is received by the ultrasonic probe 10 in step S6, it is possible to determine whether there is a defect in the surface layer, that is, directly under the material layer being formed, that is, perform defect detection processing. Since the defect detection process has been described in the first embodiment, the description will not be repeated here.
  • step S8 when the information processing device 11 determines that there is a defect just below the surface layer (YES in step S8), in step S32, the control device 8 controls the laser 5A and the optical system 7 to determine whether the defect has occurred.
  • the position is irradiated with laser light R3 to repair the defect. Note that the position where the defect occurs can be specified based on the position information transmitted from the information processing device 11 to the control device 8, as described in the first embodiment.
  • step S8 when the information processing device 11 determines that there is no defect directly under the surface layer (NO in step S8), step S32 is not executed, and the process proceeds to step S10.
  • step S3 that is, the control device 8 controls the drive unit of the table 3, and the table 3 is lowered by one material layer.
  • the execution timing of step S3 is not limited to this example, and may be any timing after execution of step S31.
  • the modeling apparatus 1A irradiates the powder layer with the laser beam R3, which is a pulse wave, detects ultrasonic waves with the ultrasonic probe 10 provided on the table 3, and detects the ultrasonic waves. Based on the intensity of the ultrasonic waves, it is determined whether there is a defect in the material layer. This allows defects in the surface layer, ie, directly under the material layer being formed, to be detected during manufacture in the manufacture of metal structures.
  • the modeling apparatus 1A can detect defects directly below the surface layer by only including one laser 5A. That is, the modeling apparatus 1A does not need to be equipped with a plurality of lasers like the modeling apparatus 1 does. As a result, the cost for preparing the modeling apparatus 1A can be reduced.
  • the device for forming the material layer is not limited to the shaping laser 5 as long as it can solidify the powder layer.
  • the device may be, for example, a device that outputs an electron beam.
  • the electron beam is controlled by the control device 8 to irradiate the modeling area without passing through the mirror 6 and the optical system 7 .
  • the modeling apparatus 1 may further include a configuration for irradiating a desired position in the modeling region with the electron beam.
  • the device for generating ultrasonic waves from the material layer is not limited to the inspection laser 9 as long as it can output a beam for generating ultrasonic waves.
  • the device may be, for example, a device that outputs an electron beam.
  • the electron beam is controlled by the control device 8 to irradiate the modeling area without passing through the mirror 6 and the optical system 7 .
  • the modeling apparatus 1 may further include a configuration for irradiating a desired position in the modeling region with the electron beam.
  • the device for generating ultrasonic waves while forming a material layer is not limited to the laser 5A as long as it can solidify the powder layer and output a beam for generating ultrasonic waves.
  • the device may be, for example, a device that outputs an electron beam.
  • the electron beam is controlled by the control device 8 to irradiate the modeling area without passing through the optical system 7 .
  • the modeling apparatus 1A may further include a configuration for irradiating a desired position in the modeling region with the electron beam.
  • the method of generating pulse waves is not limited to the example of using a pulse laser. Specifically, a pulse wave may be generated by the method described in the second embodiment.
  • the detection device for detecting the presence or absence of defects may be any device capable of detecting vibration generated in the material layer and propagated to the table 3, and the ultrasonic probe 10 is not limited to
  • the defect detection processing executed by the information processing device 11 is not limited to the example of FIG.
  • the information processing device 11 calculates the sum of squares of the discrete waveform signal for the vibration waveform without converting the vibration waveform into a frequency spectrum, and calculates the sum of squares of the discrete waveform signal when there is no defect ( A reference value) may be compared to determine the presence or absence of defects.
  • the information processing device 11 may compare the intensity of the highest intensity frequency in the frequency spectrum with the frequency (reference value) when there is no defect, and determine the presence or absence of the defect.
  • the information processing device 11 may compare the intensity of a predetermined frequency with the frequency (reference value) when there is no defect, and determine whether or not there is a defect.
  • the predetermined frequency is desirably a frequency on the order of MHz in order to detect defects that occur just below the surface layer.
  • the information processing device 11 may also generate an image of the corresponding position in the laminated material layer P based on the vibration waveform of the ultrasonic waves received by the ultrasonic probe 10 and display it on a display device (not shown). Thereby, the user of the modeling apparatus 1 can confirm whether or not there is a defect at the position. Further, the information processing apparatus 11 may determine whether or not there is a defect by inputting an image generated in a learned model obtained by machine learning an image indicating a defect.
  • the wavelength of the inspection laser beam R2 may be the wavelength reflected by the mirror 6.
  • the controller 8 controls the position of the mirror 6 as an example. Specifically, when the inspection laser 9 outputs the inspection laser beam R2, the controller 8 moves the mirror 6 out of the optical path of the inspection laser beam R2. This allows the inspection laser beam R2 to enter the optical system 7 .
  • the control device 8 controls the inspection laser 9 to irradiate the surface layer with the inspection laser beam R2. good.
  • the irradiation timing of the inspection laser beam R2 is after the formation of the material layer is finished, but the irradiation timing is not limited to this.
  • the irradiation timing may be, specifically, the timing when the irradiation position of the laser beam R1 for modeling reaches a predetermined position in the modeling region during formation of the material layer.
  • the modeling apparatus 1 since the modeling laser beam R1 and the inspection laser beam R2 are simultaneously irradiated, the modeling apparatus 1 includes an optical system for the modeling laser beam R1 and an optical system for the inspection laser beam R2. It is equipped with a system.
  • the duty ratio of the laser beam R3 is not limited to 50%.
  • the duty ratio should be set to an appropriate value that can realize solidification of the powder layer and generation of ultrasonic waves sufficient for defect detection.
  • the period of laser light R3 is not particularly limited.
  • the period may be any period suitable for forming the material layer and generating the ultrasonic waves.
  • the material of the three-dimensional structure to be modeled is not limited to metal.
  • the material may be, for example, gypsum, resin, sand, or ceramics.
  • the three-dimensional structure modeling method is not limited to the methods described above, as long as an appropriate one is selected based on the material or the three-dimensional structure to be modeled.
  • the method of forming the laminated material layers in other words, the method of solidifying the material, is not limited to melting.
  • the method includes, for example, a method of irradiating a powder with a beam (laser beam, electron beam, etc.) to sinter it, a method of supplying a molten material and solidifying it, and a method of solidifying (hardening) a liquid material by irradiating it with ultraviolet rays. method, a method of mixing and solidifying a liquid binder, etc., but not limited thereto.
  • a method of stacking material layers that have already been formed may be employed in the method of forming a three-dimensional structure.
  • a method of laminating materials formed on sheets may be employed.
  • PBF Powder Bed Function
  • binder jetting method material jetting method
  • FDM Field Deposition Modeling
  • DED Directed Energy Deposition
  • the modeling method employed in Embodiment 1 may be any of the methods described above.
  • the modeling method employed in the second embodiment may be a method of solidifying a material by irradiation with a beam (typically laser light).
  • the providing device provided by the table 3 that provides materials to the modeling area for modeling the three-dimensional structure is not limited to the recoater 4 .
  • the forming device that solidifies the provided material to form the material layer is not limited to the modeling laser 5 and the laser 5A.
  • the providing device and the forming device may be those according to the adopted modeling method.
  • control device 8 and the information processing device 11 are programs for causing a computer to function as the device, and the program for causing the computer to function as each control block of the device. can be realized.
  • the device comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program.
  • control device eg processor
  • storage device eg memory
  • the above program may be recorded on one or more computer-readable recording media, not temporary.
  • the recording medium may or may not be included in the device.
  • the program may be supplied to the device via any transmission medium, wired or wireless.
  • control blocks can be realized by logic circuits.
  • integrated circuits in which logic circuits functioning as the control blocks described above are formed are also included in the scope of the present invention.
  • control blocks described above it is also possible to implement the functions of the control blocks described above by, for example, a quantum computer.
  • a method for manufacturing a three-dimensional structure according to aspect 1 of the present invention is a method for manufacturing the three-dimensional structure using a modeling apparatus that models the three-dimensional structure by a layered manufacturing method, wherein the three-dimensional structure After the start of the lamination step of laminating a material layer made of a material, and the lamination step of laminating the surface layer on a surface layer that is the uppermost material layer among the laminated material layers, and before the start of the next lamination step an irradiation step of irradiating a beam to generate vibration at the irradiation point, a detection step of detecting the vibration, and a determination step of determining whether or not there is a defect in the material layer based on the intensity of the detected vibration. , including.
  • manufacturing a three-dimensional structure includes an irradiation step, a detection step, and a determination step. Thereby, in manufacturing a three-dimensional structure, it is possible to detect defects directly under the surface layer or on the surface during manufacturing.
  • the surface layer is scanned with the beam, the vibration is generated at a plurality of the irradiation points, and the determination step includes: The presence or absence of the defect may be determined for each of the plurality of irradiation points.
  • the manufacturing method according to aspect 3 of the present invention may further include a repair step of repairing the defect at the irradiation point determined to have the defect in the aspect 2.
  • the three-dimensional structure can be completed in a defect-free state, so that the reduction in strength of the completed three-dimensional structure can be suppressed.
  • laser light may be irradiated as the beam.
  • the surface layer can be irradiated with a laser beam having directivity and convergence, so that a desired position of the surface layer can be accurately irradiated with the laser beam.
  • the pulse wave of the laser light is irradiated, and in the determination step, the irradiation is performed from the start to the end of the irradiation of the laser light.
  • the presence or absence of the defect may be determined based on the intensity of the vibrations generated at the point a plurality of times.
  • the intensity of the vibration can be made sufficient for determination, and as a result, the presence or absence of the defect can be determined. Judgment accuracy can be improved.
  • the laser beam having a repetition frequency of the pulse wave included in a first frequency band is radiated, and in the detecting step, The vibration may be detected in a second frequency band that includes frequencies higher than those of the first frequency band.
  • the vibration of the material layer in response to the laser light contains high frequency components that are higher in frequency than the repetition frequency of the laser light (pulse wave). According to the above configuration, it is possible to determine the presence or absence of defects using the high-frequency component, so that defects occurring directly under the surface layer or on the surface can be detected.
  • the determination step if the strength exceeds a reference value, it is determined that the defect is present immediately below or on the surface of the surface layer. You can judge.
  • repairable defects can be detected, so that defects that have occurred can be repaired while manufacturing a three-dimensional structure.
  • the beam in any one of aspects 1 to 7, in the irradiation step, the beam may be irradiated when the stacking step is performed a predetermined number of times.
  • the presence or absence of defects can be determined each time a predetermined number of material layers are laminated.
  • the predetermined number of times is set to the number of times that the generated defect can be repaired, the generated defect can be repaired while manufacturing the three-dimensional structure.
  • the lamination step includes a providing step of providing the material to a predetermined modeling area; a layer forming step of forming the material layer by solidifying a material; the providing step and the layer forming step are repeated to stack the material layer; The beam may be irradiated after the start of the layer forming step for forming the and before the start of the next material providing step.
  • the beam is irradiated from the start of surface layer formation until the next material is provided, so defects directly under the surface layer or on the surface can be detected appropriately. can do.
  • the material is metal powder
  • the metal powder in the providing step, the metal powder is flattened at a predetermined position on a table to form a powder layer, and
  • a predetermined region of the powder layer may be irradiated with a shaping beam to solidify the powder layer to form the material layer.
  • the shaping beam has a higher power than said beam of the irradiation step.
  • a method for manufacturing a three-dimensional structure according to aspect 11 of the present invention is a method for manufacturing the three-dimensional structure using a modeling apparatus that models the three-dimensional structure by a layered manufacturing method, wherein the three-dimensional structure a providing step of providing a material to a predetermined modeling area; and a layer forming step of forming a material layer by irradiating the material provided in the modeling area with a beam to solidify the material, wherein the material layer is , a detection step of detecting vibration generated at the irradiation point of the beam, which is laminated by repeating the providing step and the layer forming step; and a determination step of determining the presence or absence of defects.
  • a detection step of detecting vibration generated in beam irradiation for forming a material layer and a determination step of determining the presence or absence of a defect based on the intensity of the vibration.
  • a determination step of determining the presence or absence of a defect based on the intensity of the vibration include.
  • defects directly below the surface layer or on the surface can be detected without preparing a device for outputting a beam for generating vibrations, in addition to a device for outputting a beam for forming the material layer. can be detected.
  • a modeling apparatus is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, comprising: a table defining a modeling region of the three-dimensional structure; a control device for controlling lamination of material layers, and a surface layer that is the uppermost material layer among the laminated material layers is irradiated after the start of lamination of the surface layer and before the start of lamination of the next material layer; A beam output device that outputs a beam that generates vibration at an irradiation point, and a detection device that is provided on the table and detects the vibration are provided.
  • the modeling device includes the beam output device and the detection device.
  • a modeling apparatus is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, and includes: a table that defines a modeling region of the three-dimensional structure; A providing device for providing a predetermined modeling region, a forming device for forming a material layer by irradiating a beam to the material provided in the modeling region to solidify it, and controlling the providing device and the forming device. a control device for stacking the material layers by repeating the formation of the material layers in the modeling area; a detection device provided on the table for detecting vibration generated at the irradiation point of the beam; Prepare.
  • a detection step of detecting vibration generated in beam irradiation for forming a material layer and a determination step of determining the presence or absence of a defect based on the intensity of the vibration.
  • a determination step of determining the presence or absence of a defect based on the intensity of the vibration include.
  • defects directly below the surface layer or on the surface can be detected without preparing a device for outputting a beam for generating vibrations, in addition to a device for outputting a beam for forming the material layer. can be detected.
  • the modeling apparatus is the aspect 12 or 13, further comprising an information processing device that determines whether or not there is a defect in the material layer based on the intensity of the vibration detected by the detection device. good too.
  • defects occurring in the material layer can be automatically detected based on the intensity of vibration detected by the detection device.
  • the detection device detects the vibration propagated from the material layer irradiated with the beam to the table. good.
  • the existing defect detection technology uses a laser vibrometer to detect vibrations in the material layer. Since the laser vibrometer detects reflected light and scattered light, detection may be difficult depending on the state of the surface layer (surface state). On the other hand, according to the above configuration, it is possible to determine the presence or absence of a defect without providing a configuration for detecting the reflected light or the scattered light of the beam.
  • Reference Signs List 1 1A molding device 2 base stand 3 table 4 recoater (providing device) 5 laser for modeling 5A laser (forming device) 6 mirror 7 optical system 8 control device 9 inspection laser (beam output device) 10 Ultrasonic probe (detection device) 11 information processing device M metal powder P laminated material layer R1 modeling laser beam (modeling beam) R2 Inspection laser light (beam, laser light) R3 laser light (beam)

Abstract

In manufacturing of a metal three-dimensional structure using an additive fabrication method, the present invention detects defects on or directly under a surface during the course of manufacturing. This method for manufacturing a metal three-dimensional structure includes: a layering step (S2) for layering material layers composed of a metal powder; an irradiation step (S5) for irradiating the surface of the layered material layers with inspection laser light when a prescribed number of the material layers have been layered, and generating vibration at irradiation points; a detection step (S6) for detecting the vibration; and a determination step (S8) for determining, on the basis of the strength of the detected vibration, whether defects are present in the material layers.

Description

三次元構造物の製造方法および造形装置Three-dimensional structure manufacturing method and modeling apparatus
 本発明は、積層造形法を用いた三次元構造物の製造方法および当該三次元構造物の造形装置に関する。 The present invention relates to a method for manufacturing a three-dimensional structure using a layered manufacturing method and a manufacturing apparatus for the three-dimensional structure.
 積層造形法を用いて生成した金属の三次元構造物(以下、金属構造物と表記)に発生した欠陥を検出する技術が従来技術として知られている。非特許文献1には、金属構造物に照射したレーザ光の反射波により、金属構造物に発生した欠陥を検出する技術が開示されている。  Technology for detecting defects occurring in three-dimensional metal structures (hereinafter referred to as metal structures) produced using the additive manufacturing method is known as a conventional technology. Non-Patent Document 1 discloses a technique for detecting defects occurring in a metal structure from reflected waves of laser light irradiated to the metal structure.
 上述のような従来技術は、金属構造物の内部(典型的には、表層からmmオーダー)にある欠陥を検出することに適しており、表層直下(典型的には、表層からμmオーダー)または表面にある欠陥を検出することには適していないという問題がある。この問題により、従来技術は、金属構造物の製造途中で欠陥を検出し、製造途中で当該欠陥を補修することができない。 The conventional techniques as described above are suitable for detecting defects inside a metal structure (typically on the order of mm from the surface layer), directly below the surface layer (typically on the order of μm from the surface layer) or There is a problem that it is not suitable for detecting defects on the surface. Due to this problem, the prior art cannot detect defects during the manufacturing process of the metal structure and repair the defects during the manufacturing process.
 本発明の一態様は、積層造形法を用いた三次元構造物の製造において、表層直下または表面にある欠陥を、製造途中に検出する製造方法等を実現することを目的とする。 An object of one aspect of the present invention is to realize a manufacturing method or the like that detects defects directly under the surface layer or on the surface during manufacturing in the manufacturing of a three-dimensional structure using the additive manufacturing method.
 上記の課題を解決するために、本発明の一態様に係る三次元構造物の製造方法は、積層造形法により三次元構造物を造形する造形装置を用いた前記三次元構造物の製造方法であって、前記三次元構造物の材料から成る材料層を積層する積層ステップと、積層された前記材料層のうち最上の前記材料層である表層に、当該表層を積層する前記積層ステップの開始以後かつ次の前記積層ステップの開始前にビームを照射し、照射点にて振動を発生させる照射ステップと、前記振動を検出する検出ステップと、検出された前記振動の強度に基づき、前記材料層における欠陥の有無を判定する判定ステップと、を含む。 In order to solve the above problems, a method for manufacturing a three-dimensional structure according to one aspect of the present invention is a method for manufacturing a three-dimensional structure using a modeling apparatus that models a three-dimensional structure by a layered manufacturing method. After starting the stacking step of stacking a material layer made of the material of the three-dimensional structure, and the stacking step of stacking the surface layer on a surface layer that is the uppermost material layer among the stacked material layers. and an irradiation step of irradiating a beam before the start of the next lamination step to generate vibration at the irradiation point, a detection step of detecting the vibration, and based on the intensity of the detected vibration, the material layer and a determination step of determining the presence or absence of defects.
 また、上記の課題を解決するために、本発明の一態様に係る三次元構造物の製造方法は、積層造形法により三次元構造物を造形する造形装置を用いた前記三次元構造物の製造方法であって、前記三次元構造物の材料を所定の造形領域に提供する提供ステップと、前記造形領域に提供された前記材料にビームを照射して固化させることにより、材料層を形成する層形成ステップと、を含み、前記材料層は、前記提供ステップおよび前記層形成ステップが繰り返されることにより積層され、前記ビームの照射点にて発生した振動を検出する検出ステップと、検出された前記振動の強度に基づき、前記材料層に生じた欠陥の有無を判定する判定ステップと、をさらに含む。 Further, in order to solve the above problems, a method for manufacturing a three-dimensional structure according to one aspect of the present invention includes manufacturing a three-dimensional structure using a modeling apparatus that models a three-dimensional structure by a layered manufacturing method. A method, comprising: providing a material for the three-dimensional structure to a predetermined build area; and forming a material layer by irradiating the material provided to the build area with a beam and solidifying the material. a forming step, wherein the material layers are laminated by repeating the providing step and the layer forming step; a detecting step of detecting vibration generated at an irradiation point of the beam; and the detected vibration. and a determining step of determining whether or not there is a defect in the material layer based on the intensity of .
 また、上記の課題を解決するために、本発明の一態様に係る造形装置は、積層造形法により三次元構造物を造形する造形装置であって、前記三次元構造物の造形領域を規定するテーブルと、前記三次元構造物の材料から成る材料層の積層を制御する制御装置と、積層された前記材料層のうち最上の前記材料層である表層に、当該表層の積層開始以後かつ次の前記材料層の積層開始前に照射され、照射点にて振動を発生させるビームを出力するビーム出力装置と、前記テーブルに設けられ、前記振動を検出する検出装置と、を備える。 Further, in order to solve the above problems, a modeling apparatus according to an aspect of the present invention is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, and defines a modeling area of the three-dimensional structure. a table, a control device for controlling lamination of material layers made of the material of the three-dimensional structure, and a surface layer, which is the uppermost material layer among the laminated material layers, after the start of lamination of the surface layer and the following A beam output device that outputs a beam that is irradiated before the start of lamination of the material layers and that generates vibration at an irradiation point, and a detection device that is provided on the table and detects the vibration are provided.
 また、上記の課題を解決するために、本発明の一態様に係る造形装置は、積層造形法により三次元構造物を造形する造形装置であって、前記三次元構造物の造形領域を規定するテーブルと、前記三次元構造物の材料を所定の造形領域に提供する提供装置と、前記造形領域に提供された前記材料にビームを照射して固化させることにより、材料層を形成する形成装置と、前記提供装置および前記形成装置を制御して、前記造形領域での前記材料層の形成を繰り返させることにより前記材料層を積層させる制御装置と、前記テーブルに設けられ、前記ビームの照射点にて発生した振動を検出する検出装置と、を備える。 Further, in order to solve the above problems, a modeling apparatus according to an aspect of the present invention is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, and defines a modeling area of the three-dimensional structure. a table, a providing device for providing the material of the three-dimensional structure to a predetermined modeling area, and a forming device for forming a material layer by irradiating the material provided to the modeling area with a beam to solidify the material. , a control device for stacking the material layers by controlling the providing device and the forming device to repeat the formation of the material layers in the modeling area; a detection device for detecting vibrations generated by the
 本発明の一態様によれば、積層造形法を用いた三次元構造物の製造において、製造途中において表層直下または表面にある欠陥を検出することができる。 According to one aspect of the present invention, in the production of a three-dimensional structure using the additive manufacturing method, it is possible to detect defects directly below the surface layer or on the surface during production.
本発明の実施形態1に係る造形装置の要部構成を示す図である。It is a figure which shows the principal part structure of the modeling apparatus which concerns on Embodiment 1 of this invention. 図1に示す造形装置が実行する金属構造物の製造処理の流れの一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of the flow of manufacturing processing for a metal structure executed by the modeling apparatus shown in FIG. 1; FIG. 図2に示す製造処理に含まれる造形処理の概要を示す図である。FIG. 3 is a diagram showing an outline of a modeling process included in the manufacturing process shown in FIG. 2; 図2に示す製造処理に含まれる検査処理の概要を示す図である。3 is a diagram showing an overview of inspection processing included in the manufacturing processing shown in FIG. 2; FIG. 図1に示す造形装置が備える超音波探触子が受信する超音波の振動波形の一例を示す図である。2 is a diagram showing an example of a vibration waveform of ultrasonic waves received by an ultrasonic probe included in the modeling apparatus shown in FIG. 1; FIG. 図2に示す製造処理に含まれる欠陥検出処理の流れの一例を示すフローチャートである。3 is a flowchart showing an example of the flow of defect detection processing included in the manufacturing processing shown in FIG. 2; 振動波形から変換された周波数スペクトルの一例を示す図である。It is a figure which shows an example of the frequency spectrum converted from the vibration waveform. 本発明の実施形態2に係る造形装置の要部構成を示す図である。It is a figure which shows the principal part structure of the modeling apparatus which concerns on Embodiment 2 of this invention. 図8に示す造形装置が実行する金属構造物の製造処理の流れの一例を示すフローチャートである。FIG. 9 is a flow chart showing an example of the flow of manufacturing processing of a metal structure executed by the modeling apparatus shown in FIG. 8. FIG. 図9に示す製造処理に含まれる同時処理の概要を示す図である。FIG. 10 is a diagram showing an outline of simultaneous processing included in the manufacturing processing shown in FIG. 9; FIG.
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
An embodiment of the present invention will be described in detail below.
 (造形装置)
 図1は、本実施形態に係る造形装置1の要部構成を示す図である。造形装置1は、積層造形法を用いて金属の三次元構造物(以下、金属構造物と表記)を造形(製造)する装置である。すなわち、造形装置1は、複数の層を積層させることで所望の金属構造物を造形する。
(modeling device)
FIG. 1 is a diagram showing the main configuration of a modeling apparatus 1 according to this embodiment. The modeling apparatus 1 is an apparatus for modeling (manufacturing) a metal three-dimensional structure (hereinafter referred to as a metal structure) using the additive manufacturing method. That is, the modeling apparatus 1 models a desired metal structure by stacking a plurality of layers.
 造形装置1は、ベース台2、テーブル3、リコータ4(提供装置)、造形用レーザ5、ミラー6、光学系7、制御装置8、検査用レーザ9(ビーム出力装置)、超音波探触子10(検出装置)および情報処理装置11を備える。ベース台2は、金属構造物の材料である金属粉末Mが載置される台であり、リコータ4が配置される。リコータ4は、水平一軸方向(矢印A方向)に往復移動して、テーブル3上に金属粉末Mを供給するとともに平坦化して粉末層を形成する。テーブル3は、所望の金属構造物が形成される台である。換言すれば、テーブル3は、金属構造物が造形される所定領域である造形領域を規定する。上述したとおり、テーブル3には、リコータ4により粉末層が形成される。テーブル3は、図示しない駆動部により鉛直方向(矢印U方向)に移動可能となる。金属構造物の最初の層が製造されるまでは、ベース台2およびテーブル3は水平面を形成する。なお、当該層は、金属構造物を造形するためのレーザ光(以下、造形用レーザ光R1と表記)により、粉末層を固化することによって生成される。以降、当該層を材料層と表記する。また、詳細については後述するが、テーブル3は、材料層が形成(積層)されるたびに、材料層の厚みの分、図1の下方向へ移動する。これにより、形成された材料層の上に金属粉末を積層することができる。 The modeling apparatus 1 includes a base 2, a table 3, a recoater 4 (providing device), a modeling laser 5, a mirror 6, an optical system 7, a control device 8, an inspection laser 9 (beam output device), and an ultrasonic probe. 10 (detection device) and an information processing device 11 . The base table 2 is a table on which the metal powder M that is the material of the metal structure is placed, and the recoater 4 is arranged. The recoater 4 reciprocates in a horizontal uniaxial direction (direction of arrow A) to supply the metal powder M onto the table 3 and flatten it to form a powder layer. Table 3 is a platform on which the desired metal structure is formed. In other words, the table 3 defines a shaping area, which is a predetermined area in which the metal structure is to be shaped. As described above, a powder layer is formed on the table 3 by the recoater 4 . The table 3 can be moved vertically (in the direction of arrow U) by a drive unit (not shown). Until the first layer of metal structure is manufactured, the base 2 and the table 3 form a horizontal surface. The layer is generated by solidifying the powder layer with a laser beam for shaping the metal structure (hereinafter referred to as a shaping laser beam R1). Henceforth, the said layer is described as a material layer. Although the details will be described later, the table 3 moves downward in FIG. 1 by the thickness of the material layer each time the material layer is formed (stacked). Thereby, the metal powder can be layered on the formed material layer.
 造形用レーザ5は、造形用レーザ光R1(造形ビーム)を出力する。造形用レーザ光R1は、粉末層を溶融することが可能であり、造形用レーザ5は、例えば、COレーザ、ファイバーレーザまたはYAGレーザである。一例として、造形用レーザ5は、数百W(例えば、300W)の出力で、連続波(Continuous Wave)を出力する。造形用レーザ5は、光源、コリメータおよびフォーカス制御ユニットを含む。光源から出力された造形用レーザ光R1は、コリメータにより平行光に変換される。続いて、平行光は、フォーカス制御ユニットにより集光され、所定のビーム径に調整される。なお、造形用レーザ光R1は、検査用レーザ9が出力するレーザ光より高エネルギーである。換言すれば、造形用レーザ5は、検査用レーザ9より出力が大きい。 The shaping laser 5 outputs a shaping laser beam R1 (shaping beam). The shaping laser beam R1 can melt the powder layer, and the shaping laser 5 is, for example, a CO2 laser, a fiber laser or a YAG laser. As an example, the modeling laser 5 outputs a continuous wave with an output of several hundred W (for example, 300 W). The shaping laser 5 includes a light source, a collimator and a focus control unit. The shaping laser beam R1 output from the light source is converted into parallel light by a collimator. Subsequently, the parallel light is condensed by the focus control unit and adjusted to a predetermined beam diameter. The modeling laser beam R1 has higher energy than the laser beam output from the inspection laser 9 . In other words, the modeling laser 5 has a higher output than the inspection laser 9 .
 ミラー6は、特定の波長の光を反射し、当該特定の波長以外の波長の光を透過する。ここで、造形用レーザ5は、当該特定の波長の造形用レーザ光R1を出力する。すなわち、ミラー6は、造形用レーザ光R1を反射する。 The mirror 6 reflects light of a specific wavelength and transmits light of wavelengths other than the specific wavelength. Here, the modeling laser 5 outputs the modeling laser beam R1 of the specific wavelength. That is, the mirror 6 reflects the modeling laser beam R1.
 光学系7は、複数のガルバノミラー(図1の例では2つ)を含む。光学系7は、造形用レーザ光を反射し、粉末層の所定領域(造形領域)に照射する。これにより、粉末層が溶融した後固化し、材料層が形成される。 The optical system 7 includes a plurality of galvanomirrors (two in the example of FIG. 1). The optical system 7 reflects the modeling laser beam and irradiates it onto a predetermined region (modeling region) of the powder layer. This causes the powder layer to melt and then solidify to form a material layer.
 制御装置8は、造形用レーザ5、光学系7および検査用レーザ9を制御する。制御装置8は、造形用レーザ5を制御して、造形用レーザ光R1を出力させる。また、制御装置8は、光学系7を制御して、各ガルバノミラーの角度を調整する。これにより、照射位置が制御された造形用レーザ光R1が粉末層に照射され、所望の材料層が形成される。また、制御装置8は、検査用レーザ9を制御して、レーザ光(以下、検査用レーザ光R2と表記)を出力させる。 The control device 8 controls the modeling laser 5, the optical system 7, and the inspection laser 9. The control device 8 controls the modeling laser 5 to output the modeling laser beam R1. Also, the control device 8 controls the optical system 7 to adjust the angle of each galvanomirror. As a result, the powder layer is irradiated with the shaping laser beam R1 whose irradiation position is controlled, and a desired material layer is formed. The control device 8 also controls the inspection laser 9 to output laser light (hereinafter referred to as inspection laser light R2).
 なお、制御装置8は、造形用レーザ5、光学系7および検査用レーザ9のそれぞれを制御する、複数の制御装置であってもよい。 Note that the control device 8 may be a plurality of control devices that control the modeling laser 5, the optical system 7, and the inspection laser 9, respectively.
 ここで、金属構造物の造形の流れについて概要を説明する。ベース台2およびテーブル3が水平面を形成している状態で、制御装置8は、リコータ4を制御し、テーブル3上に金属粉末Mを供給するとともに平坦化して粉末層を形成する。続いて、制御装置8は、造形用レーザ5および光学系7を制御し、粉末層の所定領域に造形用レーザ光R1を照射する。これにより、1層目の材料層が形成される。続いて、制御装置8は、テーブル3の駆動部を制御して、テーブル3を所定の距離(具体的には、材料層の厚さ)だけ、図1の下方向に移動させる。 Here, I will explain the outline of the flow of modeling of metal structures. With the base 2 and the table 3 forming a horizontal surface, the controller 8 controls the recoater 4 to supply the metal powder M onto the table 3 and flatten it to form a powder layer. Subsequently, the control device 8 controls the shaping laser 5 and the optical system 7 to irradiate a predetermined region of the powder layer with the shaping laser beam R1. Thus, the first material layer is formed. Subsequently, the control device 8 controls the drive section of the table 3 to move the table 3 downward in FIG. 1 by a predetermined distance (specifically, the thickness of the material layer).
 以上の処理を繰り返すことにより、図1に示す積層された材料層P(以下、積層材料層Pと表記)が造形される。そして、当該処理を所定回数繰り返した結果、金属構造物が造形される。 By repeating the above processes, the laminated material layer P (hereinafter referred to as laminated material layer P) shown in FIG. 1 is formed. As a result of repeating the process for a predetermined number of times, a metal structure is formed.
 再度図1を参照し、造形装置1の要部構成の説明に戻る。検査用レーザ9は、材料層に発生した欠陥の有無を検査するための検査用レーザ光R2を出力する。なお、欠陥とは、材料層に発生したボイド、ヒビ、または剥離などを含むが、これに限定されない。  Referring to FIG. The inspection laser 9 outputs an inspection laser beam R2 for inspecting the presence or absence of defects occurring in the material layer. Note that defects include, but are not limited to, voids, cracks, peeling, and the like that occur in the material layer.
 検査用レーザ9は、例えば、COレーザ、ファイバーレーザまたはYAGレーザであり、出力した検査用レーザ光R2(ビーム、レーザ光)により材料層を溶融させずに振動させることが可能である。つまり、検査用レーザ光R2は、造形用レーザ光R1より低エネルギーである。一例として、検査用レーザ9は、数十W(例えば、50W)の出力で、検査用レーザ光R2としてパルス波(Pulse Wave)を出力する。本実施形態では、検査用レーザ9がパルスレーザである例を説明する。具体的には、検査用レーザ9は、繰り返し周波数fで検査用レーザ光R2を出力する。なお、繰り返し周波数fは、例えば、1kHz~200kHzの範囲で制御可能である。また、本実施形態では、繰り返し周波数fを10~100kHzの帯域内の周波数とする。また、検査用レーザ9は、光源、コリメータおよびフォーカス制御ユニットを含む。光源から出力された検査用レーザ光R2は、コリメータにより平行光に変換される。続いて、平行光は、フォーカス制御ユニットにより集光され、所定のビーム径に調整される。 The inspection laser 9 is, for example, a CO 2 laser, a fiber laser, or a YAG laser, and can vibrate the material layer without melting it by the output inspection laser light R2 (beam, laser light). That is, the inspection laser beam R2 has lower energy than the modeling laser beam R1. As an example, the inspection laser 9 outputs a pulse wave as the inspection laser light R2 with an output of several tens of W (for example, 50 W). In this embodiment, an example in which the inspection laser 9 is a pulse laser will be described. Specifically, the inspection laser 9 outputs an inspection laser beam R2 at a repetition frequency fL . Note that the repetition frequency f L can be controlled within a range of 1 kHz to 200 kHz, for example. Also, in this embodiment, the repetition frequency f L is set to a frequency within the band of 10 to 100 kHz. The inspection laser 9 also includes a light source, a collimator and a focus control unit. The inspection laser beam R2 output from the light source is converted into parallel light by a collimator. Subsequently, the parallel light is condensed by the focus control unit and adjusted to a predetermined beam diameter.
 検査用レーザ光R2は、特定の波長以外の波長のレーザ光である。これにより、検査用レーザ光R2は、ミラー6を透過して光学系7へ入射する。制御装置8は、光学系7を制御してガルバノミラーを調整することにより、積層材料層Pの表層で検査用レーザ光R2を走査する。これにより、表層全体に検査用レーザ光R2が照射される。なお、表層とは、積層材料層Pのうち、最上の材料層、すなわち最後に形成された最も外側の材料層である。表層に検査用レーザ光R2が照射され、振動することにより超音波が発生する。当該超音波はテーブル3に伝播する。 The inspection laser beam R2 is a laser beam with a wavelength other than a specific wavelength. As a result, the inspection laser beam R2 passes through the mirror 6 and enters the optical system 7 . The control device 8 controls the optical system 7 to adjust the galvanomirror, thereby scanning the surface layer of the laminated material layer P with the inspection laser beam R2. As a result, the entire surface layer is irradiated with the inspection laser beam R2. The surface layer is the uppermost material layer of the laminated material layers P, that is, the outermost material layer formed last. The surface layer is irradiated with the inspection laser beam R2 and vibrates to generate ultrasonic waves. The ultrasonic waves propagate to the table 3 .
 なお、造形用レーザ5、ミラー6および検査用レーザ9は、異なる方向から造形用レーザ光R1と検査用レーザ光R2とがミラー6に入射し、かつ、ミラー6により反射された造形用レーザ光R1と、ミラー6を透過した検査用レーザ光R2とが同一の光路で光学系7に入射するように配置される。 The modeling laser 5, the mirror 6, and the inspection laser 9 are configured such that the modeling laser beam R1 and the inspection laser beam R2 enter the mirror 6 from different directions and are reflected by the mirror 6. It is arranged so that R1 and the inspection laser beam R2 transmitted through the mirror 6 enter the optical system 7 along the same optical path.
 超音波探触子10は、積層材料層Pにて発生した超音波を受信する。具体的には、超音波探触子10は、テーブル3に設けられ、材料層からテーブル3に伝播した超音波を受信する。図1の例では、複数(6個)の超音波探触子10がテーブル3の裏面に設けられているが、超音波探触子10の数および設置位置はこれに限定されない。なお、裏面とは、材料層が形成される面と反対側の面である。例えば、超音波探触子10は、材料層が形成される面に、少なくとも一部が設けられてもよい。なお、超音波探触子10は1個でもよいが、複数であることが望ましい。複数の超音波探触子10をテーブル3に設けることにより、各超音波探触子10が受信した超音波を足し合わせることが可能となる。これにより、超音波探触子10の設置位置に起因する超音波の強度のムラを最小限に抑えることができ、結果として、より正確に欠陥の位置を特定することができる。 The ultrasonic probe 10 receives ultrasonic waves generated in the laminated material layer P. Specifically, the ultrasonic probe 10 is provided on the table 3 and receives ultrasonic waves propagated from the material layer to the table 3 . In the example of FIG. 1, a plurality of (six) ultrasonic probes 10 are provided on the back surface of the table 3, but the number and installation positions of the ultrasonic probes 10 are not limited to this. The back surface is the surface opposite to the surface on which the material layer is formed. For example, the ultrasonic probe 10 may be provided at least partially on the surface on which the material layer is formed. The number of ultrasonic probes 10 may be one, but it is desirable to have a plurality of them. By providing a plurality of ultrasonic probes 10 on the table 3, the ultrasonic waves received by each ultrasonic probe 10 can be added. As a result, it is possible to minimize the unevenness in the intensity of the ultrasonic waves caused by the installation position of the ultrasonic probe 10, and as a result, it is possible to specify the position of the defect more accurately.
 出願人は、積層材料層Pにて発生した超音波は、検査用レーザ光R2における繰り返し周波数fより高い周波数成分を含んでいることを見出した。このため、超音波探触子10が受信可能な超音波の周波数帯域(第2の周波数帯域、以下、受信帯域と表記)は、繰り返し周波数fがとり得る周波数帯域(第1の周波数帯域、以下、照射帯域と表記)より広い。具体的には、受信帯域は、照射帯域と、照射帯域より高周波数の帯域とを含む。一例として、受信帯域の下限は、金属構造物の最も低次の共振周波数以上であり、上限は10MHzオーダーである。受信帯域の下限を最も低次の共振周波数以上とすることにより、剛体変位の影響を排除することができる。また、上限を10MHzオーダーとすることにより、受信帯域中により多くの共振周波数を含めることができ、欠陥の検出がより容易になる。 The applicant found that the ultrasonic waves generated in the laminated material layer P contain frequency components higher than the repetition frequency fL of the inspection laser beam R2. Therefore, the frequency band of ultrasonic waves that can be received by the ultrasonic probe 10 (second frequency band, hereinafter referred to as reception band) is the frequency band that the repetition frequency f L can take (first frequency band, hereinafter referred to as an irradiation band). Specifically, the reception band includes an irradiation band and a higher frequency band than the irradiation band. As an example, the lower limit of the reception band is equal to or higher than the lowest resonant frequency of the metal structure, and the upper limit is on the order of 10 MHz. By making the lower limit of the reception band equal to or higher than the lowest-order resonance frequency, the influence of rigid body displacement can be eliminated. Also, by setting the upper limit to the order of 10 MHz, more resonance frequencies can be included in the reception band, making it easier to detect defects.
 なお、本実施形態における「超音波」とは、可聴音より高い周波数の弾性波に限定されることを意図するものではない。すなわち、本実施形態において、「超音波」は、15kHz以下の周波数の弾性波(振動)を含んでもよい。換言すれば、超音波探触子10の受信帯域は、15kHz以下の周波数帯域を含んでいてもよい。なお、受信帯域の下限は、例えば10kHzであってもよい。もちろん、本実施形態において、「超音波」は、15kHzより高い周波数の弾性波(振動)を含んでもよい。 It should be noted that "ultrasonic waves" in the present embodiment are not intended to be limited to elastic waves with frequencies higher than audible sound. That is, in the present embodiment, "ultrasonic waves" may include elastic waves (vibrations) with a frequency of 15 kHz or less. In other words, the reception band of the ultrasound probe 10 may include a frequency band of 15 kHz or less. Note that the lower limit of the reception band may be, for example, 10 kHz. Of course, in this embodiment, "ultrasonic waves" may include elastic waves (vibrations) of frequencies higher than 15 kHz.
 情報処理装置11は、超音波探触子10と通信可能に接続されており、超音波探触子10が受信した超音波の強度に基づき、欠陥の有無の判定および欠陥の位置の特定を行う。この処理の詳細については後述する。情報処理装置11は、欠陥の位置を特定した場合、当該位置を示す位置情報を制御装置8へ送信する。これにより、制御装置8は、造形用レーザ5および光学系7を制御して、位置情報が示す位置に造形用レーザ光を照射し、欠陥を補修することができる。 The information processing device 11 is communicably connected to the ultrasonic probe 10, and determines whether there is a defect and identifies the position of the defect based on the intensity of the ultrasonic waves received by the ultrasonic probe 10. . The details of this processing will be described later. When the information processing device 11 identifies the position of the defect, the information processing device 11 transmits position information indicating the position to the control device 8 . As a result, the control device 8 can control the modeling laser 5 and the optical system 7 to irradiate the modeling laser beam to the position indicated by the position information, thereby repairing the defect.
 なお、造形装置1のうち、ベース台2、テーブル3、リコータ4、造形用レーザ5、ミラー6、光学系7、検査用レーザ9および超音波探触子10は、図示しないドラフトチャンバー内の適切な位置に設けられる。 In the modeling apparatus 1, the base 2, the table 3, the recoater 4, the modeling laser 5, the mirror 6, the optical system 7, the inspection laser 9, and the ultrasonic probe 10 are placed in an appropriate draft chamber (not shown). position.
 (製造処理の流れ)
 図2は、造形装置1が実行する金属構造物の製造処理(以下、単に製造処理と表記)の流れの一例を示すフローチャートである。製造処理は、概要を説明した造形処理と、積層材料層Pに対する欠陥の検査処理とを含む。
(Manufacturing process flow)
FIG. 2 is a flow chart showing an example of the flow of the metal structure manufacturing process (hereinafter simply referred to as manufacturing process) executed by the modeling apparatus 1 . The manufacturing process includes the outlined modeling process and the process of inspecting the laminate material layer P for defects.
 ステップS1(提供ステップ)において、制御装置8は、リコータ4を制御して、テーブル3上に金属粉末Mを供給するとともに平坦化して粉末層を形成する。製造処理の開始後、1回目のステップS1の実行において、粉末層の造形領域は、テーブル3上に形成される。2回目以降のステップS1の実行において、粉末層の造形領域は、先に形成された材料層上に形成される。 In step S1 (providing step), the control device 8 controls the recoater 4 to supply the metal powder M onto the table 3 and flatten it to form a powder layer. After starting the manufacturing process, in the first execution of step S<b>1 , the build area of the powder layer is formed on the table 3 . In subsequent executions of step S1, the build region of the powder layer is formed on the previously formed material layer.
 続いて、ステップS2(積層ステップ、層形成ステップ)において、制御装置8は、造形用レーザ5および光学系7を制御して、造形領域で造形用レーザ光R1を走査し、材料層を形成する。2回目以降のステップS2の実行において、材料層は前回のステップS2の実行で形成された材料層上に形成されるので、ステップS2で実行される処理は、材料層を積層する処理と表現することもできる。 Subsequently, in step S2 (lamination step, layer formation step), the control device 8 controls the modeling laser 5 and the optical system 7 to scan the modeling laser beam R1 in the modeling area to form a material layer. . In the execution of step S2 for the second and subsequent times, the material layer is formed on the material layer formed in the previous execution of step S2, so the process executed in step S2 is expressed as the process of stacking the material layers. can also
 図3は、造形処理の概要を示す図である。なお、図3では、造形装置1の各部のうち、ここでの説明との関連性が低いベース台2、リコータ4、制御装置8および情報処理装置11の記載を省略している。図3に示すように、造形用レーザ5は、造形用レーザ光R1を出力する。造形用レーザ光R1は、制御装置8の制御により出力され、ミラー6で反射して光学系7へ入射する。さらに、制御装置8は、光学系7を制御して、造形用レーザ光R1を造形領域で走査し、材料層を形成する。 FIG. 3 is a diagram showing an overview of the modeling process. 3 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1. FIG. As shown in FIG. 3, the modeling laser 5 outputs a modeling laser beam R1. The modeling laser beam R1 is output under the control of the control device 8, reflected by the mirror 6, and enters the optical system 7. As shown in FIG. Further, the control device 8 controls the optical system 7 to scan the modeling area with the laser beam R1 for modeling to form a material layer.
 再度図2を参照し、製造処理の流れの説明に戻る。続いて、ステップS3において、制御装置8は、テーブル3の駆動部を制御し、テーブル3を材料層1層分降下させる。 Return to the description of the manufacturing process flow with reference to FIG. 2 again. Subsequently, in step S3, the control device 8 controls the drive section of the table 3 to lower the table 3 by one material layer.
 続いて、ステップS4において、制御装置8は、材料層の形成を所定回数実行したか否かを判定する。所定回数実行したと判定した場合(ステップS4でYES)、製造処理はステップS5へ進む。一方、所定回数実行していないと判定した場合(ステップS4でNO)、製造処理はステップS1へ戻る。すなわち、ステップS4でNOの場合、造形装置1は、材料層の形成を再度実行し、材料層を積層させる(積層ステップ)。 Subsequently, in step S4, the control device 8 determines whether or not the material layer has been formed a predetermined number of times. If it is determined that the process has been performed a predetermined number of times (YES in step S4), the manufacturing process proceeds to step S5. On the other hand, if it is determined that the process has not been performed the predetermined number of times (NO in step S4), the manufacturing process returns to step S1. That is, in the case of NO in step S4, the modeling apparatus 1 re-executes formation of the material layer and stacks the material layer (stacking step).
 ステップS5(照射ステップ)において、制御装置8は、検査用レーザ9および光学系7を制御して、表層で検査用レーザ光R2(パルス波)を走査する。 In step S5 (irradiation step), the control device 8 controls the inspection laser 9 and the optical system 7 to scan the surface layer with the inspection laser light R2 (pulse wave).
 図4は、検査処理の概要を示す図である。なお、図4では、造形装置1の各部のうち、ここでの説明との関連性が低いベース台2、リコータ4、制御装置8および情報処理装置11の記載を省略している。図4に示すように、検査用レーザ9は、検査用レーザ光R2を出力する。検査用レーザ光R2は、制御装置8の制御により出力される。また、検査用レーザ光R2は、造形用レーザ光R1と波長が異なる光であり、かつ、ミラー6が反射する特定の波長ではないため、ミラー6を透過して光学系7へ入射する。さらに、制御装置8は、光学系7を制御して、検査用レーザ光R2を表層で走査する。 FIG. 4 is a diagram showing an overview of inspection processing. 4 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1. FIG. As shown in FIG. 4, the inspection laser 9 outputs an inspection laser beam R2. The inspection laser beam R2 is output under the control of the control device 8. FIG. The inspection laser beam R2 has a wavelength different from that of the modeling laser beam R1, and is not a wavelength reflected by the mirror 6. Therefore, the inspection laser beam R2 passes through the mirror 6 and enters the optical system . Further, the control device 8 controls the optical system 7 to scan the surface layer with the inspection laser beam R2.
 再度図2を参照し、製造処理の流れの説明に戻る。続いて、ステップS6(検出ステップ)において、超音波探触子10は、発生した超音波を受信する。図5は、超音波探触子10が受信する超音波の振動波形の一例を示す図である。当該振動波形は、検査用レーザ9が出力した検査用レーザ光R2に基づく。すなわち、超音波探触子10は、検査用レーザ光R2の繰り返し周波数fに基づき、1/fの周期で、表層の各位置にて複数回発生した超音波を受信する。なお、1/fは検査用レーザ光R2のパルスの周期である。 With reference to FIG. 2 again, the explanation of the flow of the manufacturing process will be resumed. Subsequently, in step S6 (detection step), the ultrasonic probe 10 receives the generated ultrasonic waves. FIG. 5 is a diagram showing an example of a vibration waveform of ultrasonic waves received by the ultrasonic probe 10. As shown in FIG. The vibration waveform is based on the inspection laser beam R2 output by the inspection laser 9 . That is, the ultrasonic probe 10 receives ultrasonic waves generated multiple times at each position of the surface layer with a period of 1/f L based on the repetition frequency f L of the inspection laser beam R2. 1/ fL is the pulse period of the inspection laser beam R2.
 再度図2を参照し、製造処理の流れの説明に戻る。続いて、ステップS7において、情報処理装置11は、超音波探触子10が受信した超音波に基づき、欠陥検出処理を実行する。 Return to the description of the manufacturing process flow with reference to FIG. 2 again. Subsequently, in step S<b>7 , the information processing device 11 executes defect detection processing based on the ultrasonic waves received by the ultrasonic probe 10 .
 図6は、欠陥検出処理の流れの一例を示すフローチャートである。ステップS21において、情報処理装置11は、超音波探触子10が受信した超音波の振動波形を周波数スペクトルへ変換する。一例として、情報処理装置11は、当該振動波形に対してフーリエ変換を行うことにより、周波数スペクトルを生成する。具体的には、情報処理装置11は、1/f周期のパルスをすべて受信すると、その全波形をフーリエ変換する。これにより、周波数スペクトルが生成される。 FIG. 6 is a flowchart showing an example of the flow of defect detection processing. In step S21, the information processing device 11 converts the vibration waveform of the ultrasonic waves received by the ultrasonic probe 10 into a frequency spectrum. As an example, the information processing device 11 generates a frequency spectrum by Fourier transforming the vibration waveform. Specifically, when the information processing device 11 receives all pulses of the 1/f L period, the information processing device 11 Fourier-transforms the entire waveform. This produces a frequency spectrum.
 図7は、周波数スペクトルの一例を示す図である。上述したとおり、周波数スペクトルは、検査用レーザ光R2の繰り返し周波数fより高い周波数fを含む(図7における破線の矩形内)。当該周波数fは、一例として、図7に示すように周波数fの整数倍の周波数である。換言すれば、図7の例において、周波数スペクトルの間隔はfとなる。 FIG. 7 is a diagram showing an example of a frequency spectrum. As described above, the frequency spectrum includes a frequency fH higher than the repetition frequency fL of the inspection laser beam R2 (inside the dashed rectangle in FIG. 7). The frequency fH is, for example, a frequency that is an integral multiple of the frequency fL as shown in FIG. In other words, in the example of FIG. 7, the interval of the frequency spectrum is fL .
 再度図6を参照し、欠陥検出処理の流れの説明に戻る。続いて、ステップS22において、情報処理装置11は、周波数スペクトルの二乗和を算出する。すなわち、情報処理装置11は、周波数スペクトルにおける各周波数の強度を二乗し、二乗後の各周波数の強度を合計する。周波数スペクトルの二乗和を算出することにより、不要な周波数帯域を取り除くことができる。  Referring to FIG. 6 again, return to the description of the flow of the defect detection process. Subsequently, in step S22, the information processing device 11 calculates the sum of squares of the frequency spectrum. That is, the information processing device 11 squares the intensity of each frequency in the frequency spectrum, and totals the squared intensity of each frequency. Unnecessary frequency bands can be removed by calculating the sum of squares of the frequency spectrum.
 続いて、ステップS23において、算出された二乗和と基準値とを比較する。ここで、基準値は、金属構造物における欠陥の無い位置に対応する周波数スペクトルの二乗和の値に基づく。基準値は1つの数値であってもよいし、数値範囲(以下、基準範囲と表記)であってもよいが、本実施形態では1つの数値であるとする。ステップS23が終了すると、欠陥検出処理は製造処理に戻る。 Subsequently, in step S23, the calculated sum of squares is compared with the reference value. Here, the reference value is based on the value of the sum of squares of the frequency spectrum corresponding to defect-free locations in the metal structure. The reference value may be a single numerical value or a numerical range (hereinafter referred to as a reference range), but in this embodiment it is assumed to be a single numerical value. After step S23 ends, the defect detection process returns to the manufacturing process.
 再度図2を参照し、製造処理の流れの説明に戻る。ステップS8(判定ステップ)において、情報処理装置11は、表層直下(または表面)に欠陥が有るか否かを判定する。具体的には、情報処理装置11は、各位置に対応する二乗和について、基準値との比較の結果、二乗和と基準値との差が所定値以上である場合、表層直下に欠陥が有ると判定する(ステップS8でYES)。この場合、情報処理装置11は、基準値より所定値以上大きい値の二乗和について、対応する位置を特定する。当該位置はすなわち、表層直下に欠陥が生じている位置である。情報処理装置11は、特定した位置を示す位置情報を制御装置8へ送信する。そして、製造処理はステップS9へ進む。 Return to the description of the manufacturing process flow with reference to FIG. 2 again. In step S8 (determination step), the information processing device 11 determines whether or not there is a defect directly under the surface layer (or on the surface). Specifically, the information processing device 11 compares the sum of squares corresponding to each position with a reference value. (YES in step S8). In this case, the information processing device 11 identifies the position corresponding to the sum of squares of values larger than the reference value by a predetermined value or more. This position is a position where a defect occurs directly under the surface layer. The information processing device 11 transmits position information indicating the specified position to the control device 8 . The manufacturing process then proceeds to step S9.
 一方、二乗和と基準値との差が所定値未満である場合(ステップS8でNO)、情報処理装置11は、表層直下に欠陥が無いと判定する。この場合、製造処理はステップS10へ進む。 On the other hand, if the difference between the sum of squares and the reference value is less than the predetermined value (NO in step S8), the information processing device 11 determines that there is no defect directly below the surface layer. In this case, the manufacturing process proceeds to step S10.
 なお、基準範囲を用いる場合、情報処理装置11は、各位置に対応する二乗和が、基準範囲内であるか否かを判定してもよい。基準範囲内である場合、製造処理はステップS9、基準範囲内でない場合、製造処理はステップS10へ進む。 When using the reference range, the information processing device 11 may determine whether the sum of squares corresponding to each position is within the reference range. If it is within the reference range, the manufacturing process proceeds to step S9, and if it is not within the reference range, the manufacturing process proceeds to step S10.
 ステップS9(補修ステップ)において、制御装置8は、受信した位置情報に基づき造形用レーザ5および光学系7を制御して、欠陥が生じた位置に造形用レーザ光R1を照射し、欠陥を補修する。 In step S9 (repairing step), the control device 8 controls the modeling laser 5 and the optical system 7 based on the received position information to irradiate the defected position with the modeling laser beam R1 to repair the defect. do.
 ステップS10において、制御装置8は、金属構造物が完成したか否かを判定する。完成したと判定した場合(ステップS10でYES)、製造処理は終了する。完成していないと判定した場合(ステップS10でNO)、製造処理はステップS1へ戻る。 At step S10, the control device 8 determines whether or not the metal structure is completed. If it is determined that the manufacturing process has been completed (YES in step S10), the manufacturing process ends. If it is determined that it is not completed (NO in step S10), the manufacturing process returns to step S1.
 <効果>
 以上の構成によれば、造形装置1は、材料層の生成が所定回数行われる毎に、積層材料層Pの表層に検査用レーザ光R2を照射し、テーブル3に設けられた超音波探触子10により超音波を検出する。造形装置1は、当該超音波の強度に基づき、材料層に生じた欠陥の有無を判定する。これにより、金属構造物の製造において、表層直下または表面にある欠陥を、製造途中に検出することができる。
<effect>
According to the above configuration, the modeling apparatus 1 irradiates the surface layer of the laminated material layer P with the inspection laser beam R2 every time the material layer is generated a predetermined number of times, and detects the ultrasonic probe provided on the table 3. Ultrasonic waves are detected by the element 10 . The modeling apparatus 1 determines whether or not there is a defect in the material layer based on the intensity of the ultrasonic waves. As a result, in manufacturing a metal structure, it is possible to detect defects directly under the surface layer or on the surface during manufacturing.
 また、造形装置1は、検査用レーザ光R2を表層で走査し、複数の照射点にて超音波を発生させ、複数の照射点の各々について、欠陥の有無を判定する。これにより、欠陥を検出する可能性を向上させることができる。 In addition, the modeling apparatus 1 scans the surface layer with the inspection laser beam R2, generates ultrasonic waves at a plurality of irradiation points, and determines the presence or absence of defects for each of the plurality of irradiation points. This can improve the likelihood of detecting defects.
 また、造形装置1は、欠陥が有ると判定された照射点に造形用レーザ光R1を照射し、当該欠陥を補修する。これにより、金属構造物を欠陥の無い状態で完成させることができるので、金属構造物の強度低下を抑えることができる。 In addition, the modeling apparatus 1 irradiates the irradiation point determined to have a defect with the laser beam for modeling R1 to repair the defect. As a result, the metal structure can be completed in a defect-free state, thereby suppressing a decrease in the strength of the metal structure.
 また、造形装置1は、検査用レーザ光R2としてパルス波のレーザ光を照射する。そして、造形装置1は、検査用レーザ光R2の照射開始から終了までに照射点において複数回発生した超音波のすべてに基づき欠陥の有無を判定する。これにより、超音波の強度を判定に十分なものとすることができるので、判定の精度を向上させることができる。 In addition, the modeling apparatus 1 irradiates a pulse-wave laser beam as the inspection laser beam R2. Then, the modeling apparatus 1 determines whether or not there is a defect based on all of the ultrasonic waves generated a plurality of times at the irradiation point from the start to the end of the irradiation of the inspection laser beam R2. As a result, the intensity of the ultrasonic waves can be made sufficient for determination, so that the accuracy of determination can be improved.
 また、造形装置1は、検査用レーザ光R2の繰り返し周波数fがとり得る照射帯域より高い周波数を含む受信帯域で超音波を受信する。これにより、超音波に含まれる高周波数成分を用いた判定を行うことができるので、表層直下または表面に発生した欠陥を検出することができる。 Further, the modeling apparatus 1 receives ultrasonic waves in a reception band that includes frequencies higher than the irradiation band that the repetition frequency fL of the inspection laser beam R2 can take. As a result, it is possible to perform determination using high-frequency components contained in ultrasonic waves, so that defects occurring directly under the surface layer or on the surface can be detected.
 また、造形装置1では、造形用レーザ光R1と検査用レーザ光R2とが光学系7を共有するように造形用レーザ5、ミラー6、光学系7および検査用レーザ9が配置されている。そのため、造形装置1は、欠陥の位置を精度よく同定することができ、欠陥を精度よく補修することができる。 Further, in the modeling apparatus 1, the modeling laser 5, the mirror 6, the optical system 7, and the inspection laser 9 are arranged so that the modeling laser beam R1 and the inspection laser beam R2 share the optical system 7. Therefore, the modeling apparatus 1 can accurately identify the position of the defect and repair the defect with high accuracy.
 また、ミラー6は、造形用レーザ光R1を反射し、検査用レーザ光R2を透過する。これにより、異なる方向から造形用レーザ光R1と検査用レーザ光R2とがミラー6に入射するように造形用レーザ5および検査用レーザ9を配置したとしても、ミラー6から光学系7までの造形用レーザ光R1および検査用レーザ光R2の光路が同一となるように造形用レーザ5、ミラー6および検査用レーザ9を配置すれば、造形用レーザ光R1の走査と検査用レーザ光R2の走査とにおいて、光学系7を共有することができる。結果として、造形用レーザ光R1と検査用レーザ光R2との光学系7の共有を簡易に実現することができる。 Also, the mirror 6 reflects the modeling laser beam R1 and transmits the inspection laser beam R2. As a result, even if the modeling laser 5 and the inspection laser 9 are arranged so that the modeling laser beam R1 and the inspection laser beam R2 are incident on the mirror 6 from different directions, the modeling from the mirror 6 to the optical system 7 If the shaping laser 5, the mirror 6, and the inspection laser 9 are arranged so that the optical paths of the shaping laser beam R1 and the inspection laser beam R2 are the same, scanning with the shaping laser beam R1 and scanning with the inspection laser beam R2 can be performed. and the optical system 7 can be shared. As a result, it is possible to easily realize the sharing of the optical system 7 between the laser beam R1 for modeling and the laser beam R2 for inspection.
 また、超音波探触子10は、テーブル3に設けられることにより、表層からテーブル3に伝播した超音波を受信する。既存の欠陥検出技術には、材料層の振動検出にレーザ振動計を使用しているものがある。レーザ振動計は反射光、散乱光を検出するため、表層の状態(表面状態)によっては検出が難しい場合がある。これに対し、本実施形態に係る造形装置1は、表層の状態(積層材料層Pの表面状態)によらず、欠陥の有無を判定することができる。 Also, the ultrasonic probe 10 is provided on the table 3 to receive ultrasonic waves propagated from the surface layer to the table 3 . Some existing defect detection techniques use laser vibrometers to detect vibrations in the material layer. Since the laser vibrometer detects reflected light and scattered light, detection may be difficult depending on the state of the surface layer (surface state). In contrast, the modeling apparatus 1 according to the present embodiment can determine the presence or absence of defects regardless of the state of the surface layer (the surface state of the laminated material layer P).
 〔実施形態2〕
 以下、本発明の別の実施形態について、詳細に説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない場合がある。
[Embodiment 2]
Another embodiment of the invention is described in detail below. For convenience of explanation, members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof may not be repeated.
 (造形装置1A)
 図8は、本実施形態に係る造形装置1Aの要部構成を示す図である。造形装置1Aが、造形装置1と異なる点は、造形用レーザ5に代えてレーザ5A(形成装置)を備えている点、検査用レーザ9を備えていない点である。
(Modeling device 1A)
FIG. 8 is a diagram showing the main configuration of a modeling apparatus 1A according to this embodiment. The modeling apparatus 1A differs from the modeling apparatus 1 in that it includes a laser 5A (forming apparatus) in place of the modeling laser 5 and does not include an inspection laser 9 .
 レーザ5Aは、一例として、連続波を出力する連続波レーザである。なお、当該連続波の強度は制御可能であることが望ましい。 The laser 5A is, for example, a continuous wave laser that outputs continuous waves. In addition, it is desirable that the intensity of the continuous wave is controllable.
 本実施形態では、レーザ5Aに対して外部装置から変調信号をかけることで、レーザ5Aからパルス波であるレーザ光R3を発生させる。当該外部装置は、例えば制御装置8であってもよいし、図示しない別の装置であってもよい。一例として、外部装置は、レーザ光R3のduty比が50%となるような変調信号をレーザ5Aに入力する。ここで、duty比とは、パルスが発生している期間(パルス幅)を、パルス波の周期で除算した値である。なお、パルス波の発生方法はこの例に限定されない。例えば、造形装置1Aは、図示しない変調器を備え、レーザ5Aから出力された連続波を、変調器を用いてパルス波に変換してもよい。 In this embodiment, the laser 5A is caused to generate laser light R3, which is a pulse wave, by applying a modulation signal from an external device to the laser 5A. The external device may be, for example, the control device 8 or another device (not shown). As an example, the external device inputs to the laser 5A a modulation signal such that the duty ratio of the laser beam R3 is 50%. Here, the duty ratio is a value obtained by dividing the period during which a pulse is generated (pulse width) by the period of the pulse wave. Note that the pulse wave generation method is not limited to this example. For example, the modeling apparatus 1A may include a modulator (not shown) and convert the continuous wave output from the laser 5A into a pulse wave using the modulator.
 (製造処理の流れ)
 図9は、造形装置1Aが実行する金属構造物の製造処理(以下、単に製造処理と表記)の流れの一例を示すフローチャートである。なお、当該製造処理において、実施形態1に係る製造処理(図2参照)と同じ処理を実行するステップについては、図2と同じステップ番号を付している。また、当該ステップについては、その詳細をすでに説明しているため、ここでは説明を繰り返さない。
(Manufacturing process flow)
FIG. 9 is a flowchart showing an example of the flow of the metal structure manufacturing process (hereinafter simply referred to as manufacturing process) executed by the modeling apparatus 1A. In the manufacturing process, the same step numbers as in FIG. 2 are assigned to the steps that execute the same processes as the manufacturing process (see FIG. 2) according to the first embodiment. Also, since the details of this step have already been described, the description will not be repeated here.
 図9に示す各ステップの説明の前に、本実施形態に係る製造処理と、実施形態1に係る製造処理との相違点を説明する。実施形態1に係る製造処理では、造形用レーザ5から出力された造形用レーザ光R1を粉末層へ照射することにより材料層を形成し、当該材料層を積層した積層材料層Pの表層を、検査用レーザ9から出力された検査用レーザ光R2で走査することにより、表層直下の欠陥を検出していた。つまり、実施形態1に係る造形処理では、造形用レーザ光R1の照射と検査用レーザ光R2の照射とを別のタイミングで行っていた。 Before describing each step shown in FIG. 9, differences between the manufacturing process according to the present embodiment and the manufacturing process according to the first embodiment will be described. In the manufacturing process according to the first embodiment, a material layer is formed by irradiating a powder layer with the shaping laser beam R1 output from the shaping laser 5, and the surface layer of the laminated material layer P obtained by laminating the material layer is By scanning with the inspection laser beam R2 output from the inspection laser 9, defects just below the surface layer are detected. That is, in the modeling process according to the first embodiment, the irradiation with the modeling laser beam R1 and the irradiation with the inspection laser beam R2 are performed at different timings.
 これに対し、本実施形態に係る製造処理では、パルス波であるレーザ光R3を粉末層に照射することにより材料層を形成するとともに、積層材料層Pから超音波を発生させる。つまり、本実施形態に係る製造処理では、レーザ光R3の照射により、粉末層の溶融および固化と、超音波の発生とを同時に行う。以降、この処理を「同時処理」と記載する場合がある。 On the other hand, in the manufacturing process according to the present embodiment, the material layer is formed by irradiating the powder layer with laser light R3, which is a pulse wave, and ultrasonic waves are generated from the laminated material layer P. That is, in the manufacturing process according to the present embodiment, the irradiation with the laser beam R3 simultaneously melts and solidifies the powder layer and generates ultrasonic waves. Henceforth, this processing may be described as "simultaneous processing."
 ステップS31において、制御装置8は、レーザ5Aおよび光学系7を制御して、造形領域でレーザ光R3を走査する。 In step S31, the control device 8 controls the laser 5A and the optical system 7 to scan the modeling area with the laser beam R3.
 図10は、同時処理の概要を示す図である。なお、図10では、造形装置1Aの各部のうち、ここでの説明との関連性が低いベース台2、リコータ4、制御装置8および情報処理装置11の記載を省略している。図10に示すように、レーザ5Aはパルス波であるレーザ光R3を出力し、光学系7へ入射させる。さらに、光学系7は、レーザ光R3を造形領域で走査し、材料層を形成する。レーザ光R3の出力および走査は、制御装置8の制御により行われる。 FIG. 10 is a diagram showing an overview of simultaneous processing. Note that FIG. 10 omits the description of the base 2, the recoater 4, the control device 8, and the information processing device 11, which are less relevant to the description here, among the components of the modeling apparatus 1A. As shown in FIG. 10, the laser 5A outputs laser light R3, which is a pulse wave, and makes it enter the optical system 7. As shown in FIG. Further, the optical system 7 scans the modeling area with the laser beam R3 to form a material layer. The output and scanning of the laser beam R3 are performed under the control of the controller 8. FIG.
 なお、duty比が50%である場合、レーザ光R3のエネルギーは、同出力の連続波を同時間粉末層に照射する場合のエネルギーに比べて約半分となる。当該連続波のエネルギーが、粉末層を溶融するのに十分なエネルギーである場合、レーザ光R3のエネルギーは、粉末層を溶融するのに不十分である虞がある。このため、制御装置8は、レーザ光R3の最大出力を約2倍にする。これにより、連続波を照射する場合と同程度のエネルギーを粉末層に与えることができるので、パルス波で溶融に十分なエネルギーを粉末層に与えることができる。 It should be noted that when the duty ratio is 50%, the energy of the laser light R3 is about half of the energy in the case of irradiating the powder layer with the continuous wave of the same output for the same time. If the energy of the continuous wave is sufficient to melt the powder layer, the energy of the laser beam R3 may be insufficient to melt the powder layer. Therefore, the control device 8 approximately doubles the maximum output of the laser beam R3. As a result, the same level of energy as in the case of continuous wave irradiation can be imparted to the powder layer, so that the pulse wave can impart sufficient energy to the powder layer for melting.
 レーザ光R3はパルス波であるので、レーザ光R3が粉末層に照射されると、積層材料層Pで超音波が発生し、テーブル3に伝播する。当該超音波がステップS6にて、超音波探触子10により受信されることにより、表層、すなわち形成中の材料層の直下における欠陥の有無の判定、すなわち欠陥検出処理を実行することができる。なお、欠陥検出処理については実施形態1で説明しているため、ここでは説明を繰り返さない。 Since the laser beam R3 is a pulse wave, when the powder layer is irradiated with the laser beam R3, ultrasonic waves are generated in the laminated material layer P and propagated to the table 3. When the ultrasonic wave is received by the ultrasonic probe 10 in step S6, it is possible to determine whether there is a defect in the surface layer, that is, directly under the material layer being formed, that is, perform defect detection processing. Since the defect detection process has been described in the first embodiment, the description will not be repeated here.
 ステップS8において、情報処理装置11が表層直下に欠陥が有ると判定した場合(ステップS8でYES)、ステップS32において、制御装置8は、レーザ5Aおよび光学系7を制御して、欠陥が生じた位置にレーザ光R3を照射し、欠陥を補修する。なお、欠陥が生じた位置については、実施形態1で説明したとおり、情報処理装置11から制御装置8へ送信される位置情報に基づき特定可能である。 In step S8, when the information processing device 11 determines that there is a defect just below the surface layer (YES in step S8), in step S32, the control device 8 controls the laser 5A and the optical system 7 to determine whether the defect has occurred. The position is irradiated with laser light R3 to repair the defect. Note that the position where the defect occurs can be specified based on the position information transmitted from the information processing device 11 to the control device 8, as described in the first embodiment.
 ステップS8において、情報処理装置11が表層直下に欠陥が無いと判定した場合(ステップS8でNO)、ステップS32は実行されず、ステップS10へ進む。 In step S8, when the information processing device 11 determines that there is no defect directly under the surface layer (NO in step S8), step S32 is not executed, and the process proceeds to step S10.
 なお、図10の例では、ステップS10において金属構造物が完成していないと判定した場合(ステップS10でNO)に、ステップS3、すなわち、制御装置8がテーブル3の駆動部を制御し、テーブル3を材料層1層分降下させる処理を実行する。ただし、ステップS3の実行タイミングはこの例に限定されず、ステップS31の実行後であればどのタイミングであってもよい。 In the example of FIG. 10, when it is determined in step S10 that the metal structure has not been completed (NO in step S10), step S3, that is, the control device 8 controls the drive unit of the table 3, and the table 3 is lowered by one material layer. However, the execution timing of step S3 is not limited to this example, and may be any timing after execution of step S31.
 <効果>
 本実施形態で説明した構成によれば、造形装置1Aは、粉末層にパルス波であるレーザ光R3を照射し、テーブル3に設けられた超音波探触子10により超音波を検出し、当該超音波の強度に基づき、材料層に生じた欠陥の有無を判定する。これにより、金属構造物の製造において、表層、すなわち形成中の材料層の直下にある欠陥を、製造途中に検出することができる。
<effect>
According to the configuration described in the present embodiment, the modeling apparatus 1A irradiates the powder layer with the laser beam R3, which is a pulse wave, detects ultrasonic waves with the ultrasonic probe 10 provided on the table 3, and detects the ultrasonic waves. Based on the intensity of the ultrasonic waves, it is determined whether there is a defect in the material layer. This allows defects in the surface layer, ie, directly under the material layer being formed, to be detected during manufacture in the manufacture of metal structures.
 また、造形装置1Aは、1つのレーザ5Aを備えるのみで、表層直下にある欠陥を検出することができる。つまり、造形装置1Aは、造形装置1のように複数のレーザを備える必要が無い。これにより、造形装置1Aの準備にかかるコストを抑えることができる。 In addition, the modeling apparatus 1A can detect defects directly below the surface layer by only including one laser 5A. That is, the modeling apparatus 1A does not need to be equipped with a plurality of lasers like the modeling apparatus 1 does. As a result, the cost for preparing the modeling apparatus 1A can be reduced.
 また、造形装置1Aによる金属構造物の造形では、パルス波の照射により材料層を形成するので、材料層の形成過程において金属粉末に熱を与えない期間が発生する。この期間が存在することにより、形成される材料層および製造される金属構造物の物性に良い影響を与える可能性がある。 In addition, in the modeling of the metal structure by the modeling apparatus 1A, since the material layer is formed by irradiating the pulse wave, there is a period during which the metal powder is not heated during the process of forming the material layer. The presence of this period can positively affect the physical properties of the material layers formed and the metal structures produced.
 〔変形例〕
 実施形態1において、材料層を形成するための装置は、粉末層を固化させることができればよく、造形用レーザ5に限定されない。当該装置は例えば、電子線を出力する装置であってもよい。この例の場合、電子線は、制御装置8により制御されて、ミラー6および光学系7を介さずに造形領域に照射される。造形装置1は、電子線を造形領域の所望の位置に照射するための構成をさらに含んでいてもよい。
[Modification]
In Embodiment 1, the device for forming the material layer is not limited to the shaping laser 5 as long as it can solidify the powder layer. The device may be, for example, a device that outputs an electron beam. In this example, the electron beam is controlled by the control device 8 to irradiate the modeling area without passing through the mirror 6 and the optical system 7 . The modeling apparatus 1 may further include a configuration for irradiating a desired position in the modeling region with the electron beam.
 実施形態1において、材料層から超音波を発生させるための装置は、超音波を発生させるためのビームを出力することができればよく、検査用レーザ9に限定されない。当該装置は例えば、電子線を出力する装置であってもよい。この例の場合、電子線は、制御装置8により制御されて、ミラー6および光学系7を介さずに造形領域に照射される。造形装置1は、電子線を造形領域の所望の位置に照射するための構成をさらに含んでいてもよい。 In Embodiment 1, the device for generating ultrasonic waves from the material layer is not limited to the inspection laser 9 as long as it can output a beam for generating ultrasonic waves. The device may be, for example, a device that outputs an electron beam. In this example, the electron beam is controlled by the control device 8 to irradiate the modeling area without passing through the mirror 6 and the optical system 7 . The modeling apparatus 1 may further include a configuration for irradiating a desired position in the modeling region with the electron beam.
 実施形態2において、材料層を形成しながら超音波を発生させるための装置は、粉末層を固化させ、かつ超音波を発生させるためのビームを出力することができればよく、レーザ5Aに限定されない。当該装置は例えば、電子線を出力する装置であってもよい。この例の場合、電子線は、制御装置8により制御されて、光学系7を介さずに造形領域に照射される。造形装置1Aは、電子線を造形領域の所望の位置に照射するための構成をさらに含んでいてもよい。 In Embodiment 2, the device for generating ultrasonic waves while forming a material layer is not limited to the laser 5A as long as it can solidify the powder layer and output a beam for generating ultrasonic waves. The device may be, for example, a device that outputs an electron beam. In the case of this example, the electron beam is controlled by the control device 8 to irradiate the modeling area without passing through the optical system 7 . The modeling apparatus 1A may further include a configuration for irradiating a desired position in the modeling region with the electron beam.
 実施形態1において、パルス波を発生させる方法はパルスレーザを用いる例に限定されない。具体的には、実施形態2にて説明した方法でパルス波を発生させてもよい。 In Embodiment 1, the method of generating pulse waves is not limited to the example of using a pulse laser. Specifically, a pulse wave may be generated by the method described in the second embodiment.
 実施形態1および2において、欠陥の有無の検出のための検出装置は、材料層に発生し、テーブル3に伝播した振動を検出することが可能な装置であればよく、超音波探触子10に限定されない。 In Embodiments 1 and 2, the detection device for detecting the presence or absence of defects may be any device capable of detecting vibration generated in the material layer and propagated to the table 3, and the ultrasonic probe 10 is not limited to
 実施形態1および2において、情報処理装置11が実行する欠陥検出処理は、図6の例に限定されない。例えば、情報処理装置11は、振動波形を周波数スペクトルに変換することなく、振動波形について、離散波形信号の二乗和を算出し、当該二乗和と、欠陥が無い場合における離散波形信号の二乗和(基準値)とを比較し、欠陥の有無を判定してもよい。また、情報処理装置11は、周波数スペクトルにおける最も高強度の周波数について、欠陥がない場合における当該周波数(基準値)との間で強度を比較し、欠陥の有無を判定してもよい。また、情報処理装置11は、所定の周波数について、欠陥がない場合における当該周波数(基準値)との間で強度を比較し、欠陥の有無を判定してもよい。当該所定の周波数は、表層直下に発生した欠陥を検出するために、MHzオーダーの周波数であることが望ましい。 In the first and second embodiments, the defect detection processing executed by the information processing device 11 is not limited to the example of FIG. For example, the information processing device 11 calculates the sum of squares of the discrete waveform signal for the vibration waveform without converting the vibration waveform into a frequency spectrum, and calculates the sum of squares of the discrete waveform signal when there is no defect ( A reference value) may be compared to determine the presence or absence of defects. Further, the information processing device 11 may compare the intensity of the highest intensity frequency in the frequency spectrum with the frequency (reference value) when there is no defect, and determine the presence or absence of the defect. Further, the information processing device 11 may compare the intensity of a predetermined frequency with the frequency (reference value) when there is no defect, and determine whether or not there is a defect. The predetermined frequency is desirably a frequency on the order of MHz in order to detect defects that occur just below the surface layer.
 また、情報処理装置11は、超音波探触子10が受信した超音波の振動波形に基づき、積層材料層Pにおける対応する位置の画像を生成し、図示しない表示装置に表示してもよい。これにより、造形装置1のユーザが、当該位置の欠陥の有無を確認することができる。また、情報処理装置11は、欠陥を示す画像を機械学習させた学習済みモデルに生成した画像を入力することにより、欠陥の有無を判定してもよい。 The information processing device 11 may also generate an image of the corresponding position in the laminated material layer P based on the vibration waveform of the ultrasonic waves received by the ultrasonic probe 10 and display it on a display device (not shown). Thereby, the user of the modeling apparatus 1 can confirm whether or not there is a defect at the position. Further, the information processing apparatus 11 may determine whether or not there is a defect by inputting an image generated in a learned model obtained by machine learning an image indicating a defect.
 実施形態1において、検査用レーザ光R2の波長は、ミラー6により反射される波長であってもよい。この例の場合、一例として、制御装置8はミラー6の位置を制御する。具体的には、制御装置8は、検査用レーザ9が検査用レーザ光R2を出力する場合、ミラー6を検査用レーザ光R2の光路から外れるように移動させる。これにより、検査用レーザ光R2を光学系7へ入射させることができる。 In Embodiment 1, the wavelength of the inspection laser beam R2 may be the wavelength reflected by the mirror 6. In this example, the controller 8 controls the position of the mirror 6 as an example. Specifically, when the inspection laser 9 outputs the inspection laser beam R2, the controller 8 moves the mirror 6 out of the optical path of the inspection laser beam R2. This allows the inspection laser beam R2 to enter the optical system 7 .
 実施形態1において、制御装置8は、図2のステップS2の実行以降かつ次のステップS1の実行前に、検査用レーザ9を制御して検査用レーザ光R2を表層に照射する構成であればよい。上述した実施形態では、検査用レーザ光R2の照射タイミングは、材料層の形成が終わってからであったが、当該照射タイミングはこれに限定されない。例えば、当該照射タイミングは、材料層の形成中、具体的には、造形用レーザ光R1の照射位置が造形領域の所定位置に到達したタイミングであってもよい。なお、この例では、造形用レーザ光R1と検査用レーザ光R2とを同時に照射するため、造形装置1は、造形用レーザ光R1のための光学系と、検査用レーザ光R2のための光学系とを備えている。 In Embodiment 1, after execution of step S2 in FIG. 2 and before execution of the next step S1, the control device 8 controls the inspection laser 9 to irradiate the surface layer with the inspection laser beam R2. good. In the above-described embodiment, the irradiation timing of the inspection laser beam R2 is after the formation of the material layer is finished, but the irradiation timing is not limited to this. For example, the irradiation timing may be, specifically, the timing when the irradiation position of the laser beam R1 for modeling reaches a predetermined position in the modeling region during formation of the material layer. In this example, since the modeling laser beam R1 and the inspection laser beam R2 are simultaneously irradiated, the modeling apparatus 1 includes an optical system for the modeling laser beam R1 and an optical system for the inspection laser beam R2. It is equipped with a system.
 実施形態2において、レーザ光R3のduty比は50%に限定されない。duty比は、粉末層の固化と欠陥検出に十分な超音波の発生とを実現できる適切な数値に設定されればよい。 In Embodiment 2, the duty ratio of the laser beam R3 is not limited to 50%. The duty ratio should be set to an appropriate value that can realize solidification of the powder layer and generation of ultrasonic waves sufficient for defect detection.
 実施形態2において、レーザ光R3の周期は特に限定されない。つまり、当該周期は、材料層の形成および超音波の発生に適した周期であればよい。 In Embodiment 2, the period of laser light R3 is not particularly limited. In other words, the period may be any period suitable for forming the material layer and generating the ultrasonic waves.
 実施形態1および2において、造形される三次元構造物の材料は、金属に限定されない。当該材料は例えば、石膏、樹脂、砂、またはセラミックスなどであってもよい。 In Embodiments 1 and 2, the material of the three-dimensional structure to be modeled is not limited to metal. The material may be, for example, gypsum, resin, sand, or ceramics.
 また、実施形態1および2において、三次元構造物の造形方法は、材料または造形される三次元構造物に基づき、適切なものが選択されればよく、上述した方法に限定されない。例えば、積層される材料層の形成方法、換言すれば材料を固化させる方法は、溶融に限定されない。当該方法は例えば、粉末にビーム(レーザ光または電子線等)を照射して焼結させる方法、溶融済の材料を供給して凝固させる方法、液体材料に紫外線を照射して固化(硬化)させる方法、液体の結合材を混合させて固化させる方法などであるが、これに限定されない。 In addition, in Embodiments 1 and 2, the three-dimensional structure modeling method is not limited to the methods described above, as long as an appropriate one is selected based on the material or the three-dimensional structure to be modeled. For example, the method of forming the laminated material layers, in other words, the method of solidifying the material, is not limited to melting. The method includes, for example, a method of irradiating a powder with a beam (laser beam, electron beam, etc.) to sinter it, a method of supplying a molten material and solidifying it, and a method of solidifying (hardening) a liquid material by irradiating it with ultraviolet rays. method, a method of mixing and solidifying a liquid binder, etc., but not limited thereto.
 また、三次元構造物の造形方法において、形成済みの材料層を積層する方法が採用されてもよい。一例として、シート上に形成した材料を積層する方法が採用されてもよい。 In addition, a method of stacking material layers that have already been formed may be employed in the method of forming a three-dimensional structure. As an example, a method of laminating materials formed on sheets may be employed.
 つまり、三次元構造物の造形方法の例としては、実施形態にて説明した方法、いわゆるPBF(Powder Bed Function)の他、バインダージェッティング法、マテリアルジェッティング法、FDM(Fused Deposition Modeling)、DED(Directed Energy Deposition)、シート積層法、光造形法などが挙げられる。 In other words, as an example of a three-dimensional structure modeling method, in addition to the method described in the embodiment, the so-called PBF (Powder Bed Function), binder jetting method, material jetting method, FDM (Fused Deposition Modeling), DED (Directed Energy Deposition), sheet lamination, stereolithography, and the like.
 なお、実施形態1において採用される造形方法は、上述したいずれの方法であってもよい。一方、実施形態2において採用される造形方法は、ビーム(典型的にはレーザ光)の照射により材料を固化させる方法であればよい。 It should be noted that the modeling method employed in Embodiment 1 may be any of the methods described above. On the other hand, the modeling method employed in the second embodiment may be a method of solidifying a material by irradiation with a beam (typically laser light).
 よって、テーブル3により提供される、三次元構造物を造形する造形領域に材料を提供する提供装置は、リコータ4に限定されない。また、提供された材料を固化させて材料層を形成する形成装置は、造形用レーザ5およびレーザ5Aに限定されない。当該提供装置および形成装置は、採用された造形方法に応じたものであればよい。 Therefore, the providing device provided by the table 3 that provides materials to the modeling area for modeling the three-dimensional structure is not limited to the recoater 4 . Further, the forming device that solidifies the provided material to form the material layer is not limited to the modeling laser 5 and the laser 5A. The providing device and the forming device may be those according to the adopted modeling method.
 〔ソフトウェアによる実現例〕
 制御装置8および情報処理装置11(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロックとしてコンピュータを機能させるためのプログラムにより実現することができる。
[Example of realization by software]
The functions of the control device 8 and the information processing device 11 (hereinafter referred to as “apparatus”) are programs for causing a computer to function as the device, and the program for causing the computer to function as each control block of the device. can be realized.
 この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。 In this case, the device comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program. Each function described in each of the above embodiments is realized by executing the above program using the control device and the storage device.
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。 The above program may be recorded on one or more computer-readable recording media, not temporary. The recording medium may or may not be included in the device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。 Also, part or all of the functions of the above control blocks can be realized by logic circuits. For example, integrated circuits in which logic circuits functioning as the control blocks described above are formed are also included in the scope of the present invention. In addition, it is also possible to implement the functions of the control blocks described above by, for example, a quantum computer.
 〔まとめ〕
 本発明の態様1に係る三次元構造物の製造方法は、積層造形法により三次元構造物を造形する造形装置を用いた前記三次元構造物の製造方法であって、前記三次元構造物の材料から成る材料層を積層する積層ステップと、積層された前記材料層のうち最上の前記材料層である表層に、当該表層を積層する前記積層ステップの開始以後かつ次の前記積層ステップの開始前にビームを照射し、照射点にて振動を発生させる照射ステップと、前記振動を検出する検出ステップと、検出された前記振動の強度に基づき、前記材料層における欠陥の有無を判定する判定ステップと、を含む。
〔summary〕
A method for manufacturing a three-dimensional structure according to aspect 1 of the present invention is a method for manufacturing the three-dimensional structure using a modeling apparatus that models the three-dimensional structure by a layered manufacturing method, wherein the three-dimensional structure After the start of the lamination step of laminating a material layer made of a material, and the lamination step of laminating the surface layer on a surface layer that is the uppermost material layer among the laminated material layers, and before the start of the next lamination step an irradiation step of irradiating a beam to generate vibration at the irradiation point, a detection step of detecting the vibration, and a determination step of determining whether or not there is a defect in the material layer based on the intensity of the detected vibration. ,including.
 前記の構成によれば、三次元構造物の製造に、照射ステップ、検出ステップおよび判定ステップが含まれている。これにより、三次元構造物の製造において、表層直下または表面にある欠陥を、製造途中に検出することができる。 According to the above configuration, manufacturing a three-dimensional structure includes an irradiation step, a detection step, and a determination step. Thereby, in manufacturing a three-dimensional structure, it is possible to detect defects directly under the surface layer or on the surface during manufacturing.
 また、本発明の態様2に係る製造方法は、前記態様1において、前記照射ステップでは、前記表層で前記ビームを走査し、複数の前記照射点にて前記振動を発生させ、前記判定ステップでは、複数の前記照射点の各々について、前記欠陥の有無を判定してもよい。 Further, in the manufacturing method according to aspect 2 of the present invention, in aspect 1, in the irradiation step, the surface layer is scanned with the beam, the vibration is generated at a plurality of the irradiation points, and the determination step includes: The presence or absence of the defect may be determined for each of the plurality of irradiation points.
 前記の構成によれば、表層全体にビームが照射されるので、欠陥を検出する可能性を向上させることができる。 According to the above configuration, since the entire surface layer is irradiated with the beam, it is possible to improve the possibility of detecting defects.
 また、本発明の態様3に係る製造方法は、前記態様2において、前記欠陥が有ると判定された前記照射点にて前記欠陥を補修する補修ステップをさらに含んでもよい。 In addition, the manufacturing method according to aspect 3 of the present invention may further include a repair step of repairing the defect at the irradiation point determined to have the defect in the aspect 2.
 前記の構成によれば、三次元構造物を欠陥の無い状態で完成させることができるので、完成した三次元構造物の強度低下を抑えることができる。 According to the above configuration, the three-dimensional structure can be completed in a defect-free state, so that the reduction in strength of the completed three-dimensional structure can be suppressed.
 また、本発明の態様4に係る製造方法は、前記態様1から3のいずれかにおいて、前記照射ステップでは、前記ビームとしてレーザ光を照射してもよい。 Further, in the manufacturing method according to aspect 4 of the present invention, in any one of aspects 1 to 3, in the irradiation step, laser light may be irradiated as the beam.
 前記の構成によれば、指向性および収束性を有するレーザ光を表層に照射することができるので、表層の所望の位置に精度よくレーザ光を照射することができる。 According to the above configuration, the surface layer can be irradiated with a laser beam having directivity and convergence, so that a desired position of the surface layer can be accurately irradiated with the laser beam.
 また、本発明の態様5に係る製造方法は、前記態様4において、前記照射ステップでは、パルス波の前記レーザ光を照射し、前記判定ステップでは、前記レーザ光の照射開始から終了までに前記照射点において発生した複数回の前記振動の前記強度に基づき、前記欠陥の有無を判定してもよい。 Further, in the manufacturing method according to aspect 5 of the present invention, in aspect 4, in the irradiation step, the pulse wave of the laser light is irradiated, and in the determination step, the irradiation is performed from the start to the end of the irradiation of the laser light. The presence or absence of the defect may be determined based on the intensity of the vibrations generated at the point a plurality of times.
 前記の構成によれば、パルス波により発生した複数回の振動の強度に基づき欠陥の有無を判定するので、振動の強度を判定に十分なものとすることができ、結果として、欠陥の有無の判定精度を向上させることができる。 According to the above configuration, since the presence or absence of a defect is determined based on the intensity of the vibration generated by the pulse wave a plurality of times, the intensity of the vibration can be made sufficient for determination, and as a result, the presence or absence of the defect can be determined. Judgment accuracy can be improved.
 また、本発明の態様6に係る製造方法は、前記態様5において、前記照射ステップでは、前記パルス波の繰り返し周波数が第1の周波数帯域に含まれる前記レーザ光を照射し、前記検出ステップでは、前記第1の周波数帯域の周波数より高い周波数を含む第2の周波数帯域で前記振動を検出してもよい。 Further, in the manufacturing method according to aspect 6 of the present invention, in aspect 5, in the irradiating step, the laser beam having a repetition frequency of the pulse wave included in a first frequency band is radiated, and in the detecting step, The vibration may be detected in a second frequency band that includes frequencies higher than those of the first frequency band.
 出願人は、レーザ光に応じた材料層の振動は、当該レーザ光(パルス波)の繰り返し周波数より高い周波数である高周波数成分を含んでいることを見出した。そして、前記の構成によれば、当該高周波数成分を用いて欠陥の有無を判定することができるので、表層直下または表面に発生した欠陥を検出することができる。 The applicant found that the vibration of the material layer in response to the laser light contains high frequency components that are higher in frequency than the repetition frequency of the laser light (pulse wave). According to the above configuration, it is possible to determine the presence or absence of defects using the high-frequency component, so that defects occurring directly under the surface layer or on the surface can be detected.
 また、本発明の態様7に係る製造方法は、前記態様1から6のいずれかにおいて、前記判定ステップでは、前記強度が基準値を上回った場合、前記表層の直下または表面に前記欠陥が有ると判定してもよい。 Further, in the manufacturing method according to aspect 7 of the present invention, in any one of aspects 1 to 6, in the determination step, if the strength exceeds a reference value, it is determined that the defect is present immediately below or on the surface of the surface layer. You can judge.
 前記の構成によれば、補修可能な欠陥を検出することができるので、三次元構造物を製造しながら、発生した欠陥を補修することができる。 According to the above configuration, repairable defects can be detected, so that defects that have occurred can be repaired while manufacturing a three-dimensional structure.
 また、本発明の態様8に係る製造方法は、前記態様1から7のいずれかにおいて、前記照射ステップでは、前記積層ステップが所定回数実行された場合に前記ビームを照射してもよい。 Further, in the manufacturing method according to aspect 8 of the present invention, in any one of aspects 1 to 7, in the irradiation step, the beam may be irradiated when the stacking step is performed a predetermined number of times.
 前記の構成によれば、所定数の材料層が積層されるたびに欠陥の有無を判定することができる。ここで、所定回数を、発生した欠陥を補修可能な回数に設定すれば、三次元構造物を製造しながら、発生した欠陥を補修することができる。 According to the above configuration, the presence or absence of defects can be determined each time a predetermined number of material layers are laminated. Here, if the predetermined number of times is set to the number of times that the generated defect can be repaired, the generated defect can be repaired while manufacturing the three-dimensional structure.
 また、本発明の態様9に係る製造方法は、前記態様1から8のいずれかにおいて、前記積層ステップは、前記材料を所定の造形領域に提供する提供ステップと、前記造形領域に提供された前記材料を固化させることにより、前記材料層を形成する層形成ステップと、を含み、前記提供ステップと前記層形成ステップとが繰り返されることにより、前記材料層が積層され、前記照射ステップでは、前記表層を形成する前記層形成ステップの開始以降かつ次の前記材料提供ステップの開始前に前記ビームを照射してもよい。 Further, in the manufacturing method according to aspect 9 of the present invention, in any one of aspects 1 to 8, the lamination step includes a providing step of providing the material to a predetermined modeling area; a layer forming step of forming the material layer by solidifying a material; the providing step and the layer forming step are repeated to stack the material layer; The beam may be irradiated after the start of the layer forming step for forming the and before the start of the next material providing step.
 前記の構成によれば、材料から材料層を形成して積層する技術において、表層の形成開始から、次の材料提供までの間にビームを照射するので、表層直下または表面の欠陥を適切に検出することができる。 According to the above configuration, in the technique of forming and stacking material layers from materials, the beam is irradiated from the start of surface layer formation until the next material is provided, so defects directly under the surface layer or on the surface can be detected appropriately. can do.
 また、本発明の態様10に係る製造方法は、前記態様9において、前記材料は金属粉末であり、前記提供ステップでは、前記金属粉末をテーブルの所定位置で平坦化して粉末層を形成し、前記層形成ステップでは、前記粉末層の所定の領域に、造形ビームを照射することで、前記粉末層を固化して前記材料層を形成してもよい。 Further, in the manufacturing method according to aspect 10 of the present invention, in aspect 9, the material is metal powder, and in the providing step, the metal powder is flattened at a predetermined position on a table to form a powder layer, and In the layer forming step, a predetermined region of the powder layer may be irradiated with a shaping beam to solidify the powder layer to form the material layer.
 前記の構成によれば、金属粉末を焼結させた材料層を積層して三次元構造物を製造する技術において、表層直下または表面にある欠陥を、製造途中に検出することができる。例えば、造形ビームは、照射ステップの前記ビームよりも、出力が大きい。 According to the above configuration, in the technique of manufacturing a three-dimensional structure by laminating material layers obtained by sintering metal powder, defects immediately below the surface layer or on the surface can be detected during manufacturing. For example, the shaping beam has a higher power than said beam of the irradiation step.
 本発明の態様11に係る三次元構造物の製造方法は、積層造形法により三次元構造物を造形する造形装置を用いた前記三次元構造物の製造方法であって、前記三次元構造物の材料を所定の造形領域に提供する提供ステップと、前記造形領域に提供された前記材料にビームを照射して固化させることにより、材料層を形成する層形成ステップと、を含み、前記材料層は、前記提供ステップおよび前記層形成ステップが繰り返されることにより積層され、前記ビームの照射点にて発生した振動を検出する検出ステップと、検出された前記振動の強度に基づき、前記材料層に生じた欠陥の有無を判定する判定ステップと、をさらに含む。 A method for manufacturing a three-dimensional structure according to aspect 11 of the present invention is a method for manufacturing the three-dimensional structure using a modeling apparatus that models the three-dimensional structure by a layered manufacturing method, wherein the three-dimensional structure a providing step of providing a material to a predetermined modeling area; and a layer forming step of forming a material layer by irradiating the material provided in the modeling area with a beam to solidify the material, wherein the material layer is , a detection step of detecting vibration generated at the irradiation point of the beam, which is laminated by repeating the providing step and the layer forming step; and a determination step of determining the presence or absence of defects.
 前記の構成によれば、三次元構造物の製造において、材料層を形成するためのビーム照射において発生した振動を検出する検出ステップと、当該振動の強度に基づき欠陥の有無を判定する判定ステップが含まれている。これにより、三次元構造物の製造において、表層、すなわち形成中の材料層の直下または表面にある欠陥を、製造途中に検出することができる。 According to the above configuration, in manufacturing a three-dimensional structure, there are a detection step of detecting vibration generated in beam irradiation for forming a material layer, and a determination step of determining the presence or absence of a defect based on the intensity of the vibration. include. Thereby, in the manufacture of a three-dimensional structure, defects in the surface layer, ie directly under or on the surface of the material layer being formed, can be detected during manufacture.
 また、前記の構成によれば、材料層を形成するためのビームを出力する装置とは別に、振動を発生させるためのビームを出力する装置を用意せずとも、表層直下または表面にある欠陥を検出することができる。 Further, according to the above configuration, defects directly below the surface layer or on the surface can be detected without preparing a device for outputting a beam for generating vibrations, in addition to a device for outputting a beam for forming the material layer. can be detected.
 本発明の態様12に係る造形装置は、積層造形法により三次元構造物を造形する造形装置であって、前記三次元構造物の造形領域を規定するテーブルと、前記三次元構造物の材料から成る材料層の積層を制御する制御装置と、積層された前記材料層のうち最上の前記材料層である表層に、当該表層の積層開始以後かつ次の前記材料層の積層開始前に照射され、照射点にて振動を発生させるビームを出力するビーム出力装置と、前記テーブルに設けられ、前記振動を検出する検出装置と、を備える。 A modeling apparatus according to aspect 12 of the present invention is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, comprising: a table defining a modeling region of the three-dimensional structure; a control device for controlling lamination of material layers, and a surface layer that is the uppermost material layer among the laminated material layers is irradiated after the start of lamination of the surface layer and before the start of lamination of the next material layer; A beam output device that outputs a beam that generates vibration at an irradiation point, and a detection device that is provided on the table and detects the vibration are provided.
 前記の構成によれば、造形装置がビーム出力装置および検出装置を備えている。これにより、三次元構造物の製造において、表層直下または表面にある欠陥を、製造途中に検出することができる。 According to the above configuration, the modeling device includes the beam output device and the detection device. Thereby, in manufacturing a three-dimensional structure, it is possible to detect defects directly under the surface layer or on the surface during manufacturing.
 本発明の態様13に係る造形装置は、積層造形法により三次元構造物を造形する造形装置であって、前記三次元構造物の造形領域を規定するテーブルと、前記三次元構造物の材料を所定の造形領域に提供する提供装置と、前記造形領域に提供された前記材料にビームを照射して固化させることにより、材料層を形成する形成装置と、前記提供装置および前記形成装置を制御して、前記造形領域での前記材料層の形成を繰り返させることにより前記材料層を積層させる制御装置と、前記テーブルに設けられ、前記ビームの照射点にて発生した振動を検出する検出装置と、を備える。 A modeling apparatus according to aspect 13 of the present invention is a modeling apparatus that models a three-dimensional structure by a layered manufacturing method, and includes: a table that defines a modeling region of the three-dimensional structure; A providing device for providing a predetermined modeling region, a forming device for forming a material layer by irradiating a beam to the material provided in the modeling region to solidify it, and controlling the providing device and the forming device. a control device for stacking the material layers by repeating the formation of the material layers in the modeling area; a detection device provided on the table for detecting vibration generated at the irradiation point of the beam; Prepare.
 前記の構成によれば、三次元構造物の製造において、材料層を形成するためのビーム照射において発生した振動を検出する検出ステップと、当該振動の強度に基づき欠陥の有無を判定する判定ステップが含まれている。これにより、三次元構造物の製造において、表層、すなわち形成中の材料層の直下または表面にある欠陥を、製造途中に検出することができる。 According to the above configuration, in manufacturing a three-dimensional structure, there are a detection step of detecting vibration generated in beam irradiation for forming a material layer, and a determination step of determining the presence or absence of a defect based on the intensity of the vibration. include. Thereby, in the manufacture of a three-dimensional structure, defects in the surface layer, ie directly under or on the surface of the material layer being formed, can be detected during manufacture.
 また、前記の構成によれば、材料層を形成するためのビームを出力する装置とは別に、振動を発生させるためのビームを出力する装置を用意せずとも、表層直下または表面にある欠陥を検出することができる。 Further, according to the above configuration, defects directly below the surface layer or on the surface can be detected without preparing a device for outputting a beam for generating vibrations, in addition to a device for outputting a beam for forming the material layer. can be detected.
 また、本発明の態様14に係る造形装置は、前記態様12または13において、前記検出装置が検出した前記振動の強度に基づき、前記材料層における欠陥の有無を判定する情報処理装置をさらに備えてもよい。 Further, the modeling apparatus according to aspect 14 of the present invention is the aspect 12 or 13, further comprising an information processing device that determines whether or not there is a defect in the material layer based on the intensity of the vibration detected by the detection device. good too.
 前記の構成によれば、検出装置が検出した振動の強度に基づき、材料層に生じた欠陥を自動的に検出することができる。 According to the above configuration, defects occurring in the material layer can be automatically detected based on the intensity of vibration detected by the detection device.
 また、本発明の態様15に係る造形装置は、前記態様12から14のいずれかにおいて、前記検出装置は、前記ビームを照射された前記材料層から前記テーブルに伝播した前記振動を検出してもよい。 Further, in the modeling apparatus according to aspect 15 of the present invention, in any one of aspects 12 to 14, the detection device detects the vibration propagated from the material layer irradiated with the beam to the table. good.
 既存の欠陥検出技術では、材料層の振動検出にレーザ振動計を使用している。レーザ振動計は反射光、散乱光を検出するため、表層の状態(表面状態)によっては検出が難しい場合がある。これに対し、前記の構成によれば、欠陥の有無の判定のために、ビームの反射光や散乱光を検出する構成を備えずとも、欠陥の有無を判定することができる。  The existing defect detection technology uses a laser vibrometer to detect vibrations in the material layer. Since the laser vibrometer detects reflected light and scattered light, detection may be difficult depending on the state of the surface layer (surface state). On the other hand, according to the above configuration, it is possible to determine the presence or absence of a defect without providing a configuration for detecting the reflected light or the scattered light of the beam.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 1、1A 造形装置
 2 ベース台
 3 テーブル
 4 リコータ(提供装置)
 5 造形用レーザ
 5A レーザ(形成装置)
 6 ミラー
 7 光学系
 8 制御装置
 9 検査用レーザ(ビーム出力装置)
 10 超音波探触子(検出装置)
 11 情報処理装置
 M 金属粉末
 P 積層材料層
 R1 造形用レーザ光(造形ビーム)
 R2 検査用レーザ光(ビーム、レーザ光)
 R3 レーザ光(ビーム)
Reference Signs List 1, 1A molding device 2 base stand 3 table 4 recoater (providing device)
5 laser for modeling 5A laser (forming device)
6 mirror 7 optical system 8 control device 9 inspection laser (beam output device)
10 Ultrasonic probe (detection device)
11 information processing device M metal powder P laminated material layer R1 modeling laser beam (modeling beam)
R2 Inspection laser light (beam, laser light)
R3 laser light (beam)

Claims (15)

  1.  積層造形法により三次元構造物を造形する造形装置を用いた前記三次元構造物の製造方法であって、
     前記三次元構造物の材料から成る材料層を積層する積層ステップと、
     積層された前記材料層のうち最上の前記材料層である表層に、当該表層を積層する前記積層ステップの開始以後かつ次の前記積層ステップの開始前にビームを照射し、照射点にて振動を発生させる照射ステップと、
     前記振動を検出する検出ステップと、
     検出された前記振動の強度に基づき、前記材料層における欠陥の有無を判定する判定ステップと、を含む、製造方法。
    A method for manufacturing the three-dimensional structure using a modeling apparatus that models the three-dimensional structure by an additive manufacturing method,
    A stacking step of stacking material layers made of the material of the three-dimensional structure;
    A surface layer, which is the uppermost material layer among the laminated material layers, is irradiated with a beam after the start of the lamination step of laminating the surface layer and before the start of the next lamination step, and vibration is caused at the irradiation point. an irradiation step to occur;
    a detection step of detecting the vibration;
    and a determination step of determining whether or not there is a defect in the material layer based on the intensity of the detected vibration.
  2.  前記照射ステップでは、前記表層で前記ビームを走査し、複数の前記照射点にて前記振動を発生させ、
     前記判定ステップでは、複数の前記照射点の各々について、前記欠陥の有無を判定する、請求項1に記載の製造方法。
    In the irradiation step, the surface layer is scanned with the beam to generate the vibration at a plurality of the irradiation points;
    2. The manufacturing method according to claim 1, wherein, in said determining step, presence or absence of said defect is determined for each of said plurality of irradiation points.
  3.  前記欠陥が有ると判定された前記照射点にて前記欠陥を補修する補修ステップをさらに含む、請求項2に記載の製造方法。 The manufacturing method according to claim 2, further comprising a repair step of repairing the defect at the irradiation point determined to have the defect.
  4.  前記照射ステップでは、前記ビームとしてレーザ光を照射する、請求項1から3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein in said irradiation step, a laser beam is irradiated as said beam.
  5.  前記照射ステップでは、パルス波の前記レーザ光を照射し、
     前記判定ステップでは、
      前記レーザ光の照射開始から終了までに前記照射点において発生した複数回の前記振動の前記強度に基づき、前記欠陥の有無を判定する、請求項4に記載の製造方法。
    In the irradiation step, the pulse wave of the laser light is irradiated,
    In the determination step,
    5. The manufacturing method according to claim 4, wherein the presence or absence of the defect is determined based on the intensity of the vibration generated at the irradiation point a plurality of times from the start to the end of the irradiation of the laser light.
  6.  前記照射ステップでは、前記パルス波の繰り返し周波数が第1の周波数帯域に含まれる前記レーザ光を照射し、
     前記検出ステップでは、前記第1の周波数帯域の周波数より高い周波数を含む第2の周波数帯域で前記振動を検出する、請求項5に記載の製造方法。
    In the irradiating step, irradiating the laser light whose repetition frequency of the pulse wave is included in a first frequency band;
    6. The manufacturing method according to claim 5, wherein in said detecting step, said vibration is detected in a second frequency band including frequencies higher than those of said first frequency band.
  7.  前記判定ステップでは、前記強度が基準値を上回った場合、前記表層の直下または表面に前記欠陥が有ると判定する、請求項1から6のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein in the determining step, if the intensity exceeds a reference value, it is determined that the defect is present directly under or on the surface of the surface layer.
  8.  前記照射ステップでは、前記積層ステップが所定回数実行された場合に前記ビームを照射する、請求項1から7のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein in the irradiation step, the beam is irradiated when the stacking step has been performed a predetermined number of times.
  9.  前記積層ステップは、
      前記材料を所定の造形領域に提供する提供ステップと、
      前記造形領域に提供された前記材料を固化させることにより、前記材料層を形成する層形成ステップと、を含み、
     前記提供ステップと前記層形成ステップとが繰り返されることにより、前記材料層が積層され、
     前記照射ステップでは、前記表層を形成する前記層形成ステップの開始以降かつ次の前記提供ステップの開始前に前記ビームを照射する、請求項1から8のいずれか1項に記載の製造方法。
    The lamination step includes:
    a providing step of providing the material to a predetermined build area;
    a layer forming step of forming the material layer by solidifying the material provided to the build region;
    The material layers are laminated by repeating the providing step and the layer forming step,
    The manufacturing method according to any one of claims 1 to 8, wherein in the irradiation step, the beam is irradiated after starting the layer forming step of forming the surface layer and before starting the next providing step.
  10.  前記材料は金属粉末であり、
     前記提供ステップでは、前記金属粉末をテーブルの所定位置で平坦化して粉末層を形成し、
     前記層形成ステップでは、前記粉末層の所定の領域に、造形ビームを照射することで、前記粉末層を固化して前記材料層を形成する、請求項9に記載の製造方法。
    the material is a metal powder,
    in the providing step, flattening the metal powder at a predetermined position on a table to form a powder layer;
    10. The manufacturing method according to claim 9, wherein in said layer forming step, a predetermined region of said powder layer is irradiated with a shaping beam to solidify said powder layer to form said material layer.
  11.  積層造形法により三次元構造物を造形する造形装置を用いた前記三次元構造物の製造方法であって、
     前記三次元構造物の材料を所定の造形領域に提供する提供ステップと、
     前記造形領域に提供された前記材料にビームを照射して固化させることにより、材料層を形成する層形成ステップと、を含み、
     前記材料層は、前記提供ステップおよび前記層形成ステップが繰り返されることにより積層され、
     前記ビームの照射点にて発生した振動を検出する検出ステップと、
     検出された前記振動の強度に基づき、前記材料層に生じた欠陥の有無を判定する判定ステップと、をさらに含む、製造方法。
    A method for manufacturing the three-dimensional structure using a modeling apparatus that models the three-dimensional structure by an additive manufacturing method,
    a providing step of providing a material for the three-dimensional structure to a predetermined modeling area;
    a layer forming step of forming a material layer by irradiating the material provided in the modeling region with a beam and solidifying it,
    The material layers are laminated by repeating the providing step and the layer forming step,
    a detection step of detecting vibration generated at the irradiation point of the beam;
    and a determination step of determining whether or not there is a defect in the material layer based on the intensity of the detected vibration.
  12.  積層造形法により三次元構造物を造形する造形装置であって、
     前記三次元構造物の造形領域を規定するテーブルと、
     前記三次元構造物の材料から成る材料層の積層を制御する制御装置と、
     積層された前記材料層のうち最上の前記材料層である表層に、当該表層の積層開始以後かつ次の前記材料層の積層開始前に照射され、照射点にて振動を発生させるビームを出力するビーム出力装置と、
     前記テーブルに設けられ、前記振動を検出する検出装置と、を備える、造形装置。
    A modeling apparatus for modeling a three-dimensional structure by an additive manufacturing method,
    a table that defines a modeling area for the three-dimensional structure;
    a control device for controlling lamination of material layers made of the material of the three-dimensional structure;
    A surface layer, which is the uppermost material layer among the laminated material layers, is irradiated after the start of lamination of the surface layer and before the start of lamination of the next material layer, and outputs a beam that generates vibration at the irradiation point. a beam output device;
    and a detection device that is provided on the table and detects the vibration.
  13.  積層造形法により三次元構造物を造形する造形装置であって、
     前記三次元構造物の造形領域を規定するテーブルと、
     前記三次元構造物の材料を所定の造形領域に提供する提供装置と、
     前記造形領域に提供された前記材料にビームを照射して固化させることにより、材料層を形成する形成装置と、
     前記提供装置および前記形成装置を制御して、前記造形領域での前記材料層の形成を繰り返させることにより前記材料層を積層させる制御装置と、
     前記テーブルに設けられ、前記ビームの照射点にて発生した振動を検出する検出装置と、を備える、造形装置。
    A modeling apparatus for modeling a three-dimensional structure by an additive manufacturing method,
    a table that defines a modeling area for the three-dimensional structure;
    a providing device for providing the material for the three-dimensional structure to a predetermined modeling area;
    a forming device that forms a material layer by irradiating the material provided in the modeling region with a beam and solidifying the material;
    a control device for stacking the material layers by controlling the providing device and the forming device to repeat the formation of the material layers in the modeling area;
    and a detection device that is provided on the table and detects vibration generated at the irradiation point of the beam.
  14.  前記検出装置が検出した前記振動の強度に基づき、前記材料層における欠陥の有無を判定する情報処理装置をさらに備える、請求項12または13に記載の造形装置。 14. The modeling apparatus according to claim 12 or 13, further comprising an information processing device that determines the presence or absence of defects in the material layer based on the intensity of the vibration detected by the detection device.
  15.  前記検出装置は、前記ビームを照射された前記材料層から前記テーブルに伝播した前記振動を検出する、請求項12から14のいずれか1項に記載の造形装置。 The molding apparatus according to any one of claims 12 to 14, wherein said detection device detects said vibration propagated from said material layer irradiated with said beam to said table.
PCT/JP2022/000452 2021-02-18 2022-01-11 Method for manufacturing three-dimensional structure, and fabrication device WO2022176430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021024558 2021-02-18
JP2021-024558 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176430A1 true WO2022176430A1 (en) 2022-08-25

Family

ID=82930688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000452 WO2022176430A1 (en) 2021-02-18 2022-01-11 Method for manufacturing three-dimensional structure, and fabrication device

Country Status (1)

Country Link
WO (1) WO2022176430A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060063A (en) * 2014-09-16 2016-04-25 株式会社東芝 Lamination molding device and lamination molding method
US20170059529A1 (en) * 2015-08-24 2017-03-02 Siemens Energy, Inc. Adaptive additive manufacturing process using in-situ laser ultrasonic testing
JP2017094728A (en) * 2015-11-19 2017-06-01 ゼネラル・エレクトリック・カンパニイ Acoustic monitoring method for additive manufacturing processes
JP2018523011A (en) * 2015-06-11 2018-08-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
CN110465661A (en) * 2019-07-30 2019-11-19 武汉大学深圳研究院 A kind of SLM metal increasing material manufacturing defect real-time detection method and detection device
CN111687413A (en) * 2020-06-08 2020-09-22 武汉大学 Real-time monitoring device, forming equipment and method for laser near-net forming
JP2020530070A (en) * 2017-08-01 2020-10-15 シグマ ラボズ,インコーポレイテッド Systems and methods for measuring radiant thermal energy during additional manufacturing operations
JP2020533481A (en) * 2017-06-20 2020-11-19 カール・ツアイス・インダストリーエレ・メステクニク・ゲーエムベーハー Additional manufacturing method and equipment
CN112404457A (en) * 2020-10-30 2021-02-26 武汉大学深圳研究院 Dissimilar metal additive manufacturing interface quality regulation feedback system and method
JP2021143972A (en) * 2020-03-13 2021-09-24 三菱重工業株式会社 Defect detection method, defect detection device and molding device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060063A (en) * 2014-09-16 2016-04-25 株式会社東芝 Lamination molding device and lamination molding method
JP2018523011A (en) * 2015-06-11 2018-08-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
US20170059529A1 (en) * 2015-08-24 2017-03-02 Siemens Energy, Inc. Adaptive additive manufacturing process using in-situ laser ultrasonic testing
JP2017094728A (en) * 2015-11-19 2017-06-01 ゼネラル・エレクトリック・カンパニイ Acoustic monitoring method for additive manufacturing processes
JP2020533481A (en) * 2017-06-20 2020-11-19 カール・ツアイス・インダストリーエレ・メステクニク・ゲーエムベーハー Additional manufacturing method and equipment
JP2020530070A (en) * 2017-08-01 2020-10-15 シグマ ラボズ,インコーポレイテッド Systems and methods for measuring radiant thermal energy during additional manufacturing operations
CN110465661A (en) * 2019-07-30 2019-11-19 武汉大学深圳研究院 A kind of SLM metal increasing material manufacturing defect real-time detection method and detection device
JP2021143972A (en) * 2020-03-13 2021-09-24 三菱重工業株式会社 Defect detection method, defect detection device and molding device
CN111687413A (en) * 2020-06-08 2020-09-22 武汉大学 Real-time monitoring device, forming equipment and method for laser near-net forming
CN112404457A (en) * 2020-10-30 2021-02-26 武汉大学深圳研究院 Dissimilar metal additive manufacturing interface quality regulation feedback system and method

Similar Documents

Publication Publication Date Title
CN110799286B (en) Method and apparatus for additive manufacturing
EP1815936B1 (en) Methodof producing an object including testing and/or analysing of object
JP6961926B2 (en) Acoustic monitoring methods for additive manufacturing processes
US11648730B2 (en) System and method for calibrating an acoustic monitoring system of an additive manufacturing machine
US11703481B2 (en) Method for checking a component to be produced in an additive manner, and device
KR101913979B1 (en) Method for manufacturing three-dimensionally shaped molding
TW201946767A (en) Lamination molding apparatus and method for manufacturing lamination molded product
JP2009166447A (en) Optical shaping apparatus and optical shaping method
US20150314373A1 (en) Additive manufacturing system for minimizing thermal stresses
JP2017013426A (en) Apparatus for fusing powder bed
JP2022184906A5 (en)
JP2005533172A (en) Method for manufacturing a three-dimensional molded product in a laser material processing unit or an optical modeling unit
JP6735925B2 (en) Internal defect detection system, three-dimensional additive manufacturing apparatus, internal defect detection method, three-dimensional additive manufactured article manufacturing method, and three-dimensional additive manufactured object
WO2021182032A1 (en) Defect detection method, defect detection device, and shaping device
WO2022176430A1 (en) Method for manufacturing three-dimensional structure, and fabrication device
de Pastre et al. Effects of additive manufacturing processes on part defects and properties: A classification review
JP2003321704A (en) Lamination shaping method and lamination shaping apparatus used in the same
JP7270216B2 (en) LASER PROCESSING DEVICE, LASER PROCESSING METHOD, AND CORRECTION DATA GENERATION METHOD
CN103464891B (en) Laser processing device and laser processing
JP2021030275A (en) Welding system and welding method
US20230004142A1 (en) Method, system and device for acquisition and processing of elastic waves and field sensor data for real-time in-situ monitoring of additive manufacturing
JP2010052318A (en) Light shaping method
JP2021138975A (en) Method for manufacturing three-dimensionally shaped molding
Kouprianoff Online monitoring of laser-based powder bed fusion by acoustic emission
NL2032044B1 (en) Apparatus and method for producing an object by means of additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755756

Country of ref document: EP

Kind code of ref document: A1