JP2003321704A - Lamination shaping method and lamination shaping apparatus used in the same - Google Patents

Lamination shaping method and lamination shaping apparatus used in the same

Info

Publication number
JP2003321704A
JP2003321704A JP2002129905A JP2002129905A JP2003321704A JP 2003321704 A JP2003321704 A JP 2003321704A JP 2002129905 A JP2002129905 A JP 2002129905A JP 2002129905 A JP2002129905 A JP 2002129905A JP 2003321704 A JP2003321704 A JP 2003321704A
Authority
JP
Japan
Prior art keywords
irradiation
laser light
additive manufacturing
intensity
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002129905A
Other languages
Japanese (ja)
Inventor
Taro Takagi
高木  太郎
Hiroharu Sasaki
弘治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002129905A priority Critical patent/JP2003321704A/en
Publication of JP2003321704A publication Critical patent/JP2003321704A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lamination shaping method by which the necessary shaping accuracy can be secured and a sufficient strength can be imparted to a lamination shaped article. <P>SOLUTION: In the lamination shaping method, a shape is formed by repeatedly laminating a unit shaped layer having a prescribed shape which is formed by selectively irradiating a thin layer of a shape-forming material with laser light so as to cause selective bonding or hardening. In such a lamination shaping method, when the unit shaped layer is formed, a pattern to be irradiated with the laser light is divided into a high accuracy treatment section D and a high strength treatment section F, and a certain range along the contour L of the irradiation pattern is included in the high accuracy treatment section D. In the high accuracy treatment section D, the shape-forming material is irradiated with the laser light of a first irradiation level, and in the high strength treatment section F, the shape-forming material is irradiated with laser light of a second irradiation level higher than the first irradiation level. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、単位造形層をレー
ザ照射により順次形成しながら積層させることで目的造
形物の造形がなされる積層造形法およびそれに用いる積
層造形装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layered modeling method in which unit modeling layers are sequentially formed by laser irradiation and stacked to form a target modeled object, and a layered modeling apparatus used therefor.

【0002】[0002]

【従来の技術】積層造形法は、薄い単位造形層を多数積
層して造形を行なうものであり、どのように複雑な形状
でも容易に造形することができるという優れた特徴を持
っており、複雑な形状を有する機械部品などの製造、あ
るいは意匠性の高い工業製品について設計形状の適否を
検討するためのプロトタイプの製造などに好適な手法と
して用いられている。積層造形法で機械部品などを製造
する場合には、一般に造形材料として金属材をベースに
した熱融合性の粉末材料が用いられ、積層造形工程を含
めて以下のような3段階の工程を経るのが通常である。
積層造形工程である第1段階の工程では、選択的レーザ
焼結(Selective Laser Sintering)とも呼ばれるレー
ザ焼結処理により、グリーンパーツとも呼ばれる一次中
間体(積層造形物)を造形する。レーザ焼結で用いられ
る装置の一構成例を模式化して図7に示す。レーザ焼結
装置(積層造形装置)は、焼結台ピストン1、粉末材料
供給ピストン2、展延ローラ3、CO2レーザなどが用
いられるレーザ4、レーザ4からのレーザ光5の照射制
御を行なうミラー6、およびレーザ光5のビームを収束
させるレンズ系7を備えている。そしてその焼結台ピス
トン1と粉末材料供給ピストン2は温度制御を可能とさ
れたチャンバー8の内部に設けられている。
2. Description of the Related Art The additive manufacturing method is a method in which a large number of thin unit molding layers are laminated to perform molding, and has an excellent feature that any complicated shape can be easily modeled. It is used as a suitable method for manufacturing machine parts having various shapes, or for manufacturing a prototype for examining the suitability of a design shape for an industrial product having a high design property. When manufacturing machine parts and the like by the additive manufacturing method, a heat-fusible powder material based on a metal material is generally used as a forming material, and the following three steps including the additive manufacturing process are performed. Is normal.
In the first stage process, which is a layered manufacturing process, a primary intermediate body (layered product), which is also called a green part, is formed by a laser sintering process which is also called selective laser sintering (Selective Laser Sintering). FIG. 7 schematically shows one structural example of an apparatus used in laser sintering. The laser sintering device (lamination manufacturing device) is a mirror that controls irradiation of a sintering table piston 1, a powder material supply piston 2, a spreading roller 3, a laser 4 using a CO 2 laser, and a laser beam 5 from the laser 4. 6 and a lens system 7 for converging the beam of the laser light 5. The sintering table piston 1 and the powder material supply piston 2 are provided inside a chamber 8 whose temperature can be controlled.

【0003】このようなレーザ焼結装置によるレーザ焼
結作業は以下のようになされる。まず粉末材料供給ピス
トン2を所定高さだけ上昇させることで焼結台ピストン
1に供給すべき粉末材料9の計量がなされ、展延ローラ
3がその計量分の粉末材料9を焼結台ピストン1の上に
例えば100μm程度といった薄層で展延させる。それ
からこの粉末材料の薄層にレーザ光を照射する。レーザ
光の照射は図外の制御系でミラー6を制御することによ
り所定のパターンでなされる。その照射パターンは、目
的の製品を仮想的に多数の層にスライスして得られる各
スライス面の形状に対応するパターンである。目的製品
のスライス面に関するデータは、目的製品の3次元デー
タ(3次元CADデータやX線CTのデータ)をコンピ
ュータ処理して得るのが通常である。
The laser sintering work by such a laser sintering apparatus is performed as follows. First, the powder material supply piston 2 is raised by a predetermined height to measure the powder material 9 to be supplied to the sintering table piston 1, and the spreading roller 3 measures the measured amount of the powder material 9 by the sintering table piston 1. A thin layer having a thickness of, for example, about 100 μm is spread on the surface of The thin layer of this powder material is then irradiated with laser light. The irradiation of the laser light is performed in a predetermined pattern by controlling the mirror 6 with a control system (not shown). The irradiation pattern is a pattern corresponding to the shape of each slice surface obtained by virtually slicing the target product into a large number of layers. The data relating to the slice plane of the target product is usually obtained by computer processing the three-dimensional data (three-dimensional CAD data or X-ray CT data) of the target product.

【0004】粉末材料の薄層にレーザ光を照射すると、
その照射部位において粉末材料が熱融合して焼結し、こ
れによりレーザ光の照射パターン、つまり一つのスライ
ス面の形状に対応する形状を有した一つの単位造形層1
0が形成される。一つの単位造形層10の形成を終えた
ら、その厚み分だけ焼結台ピストン1を下降させ、それ
に続いて以上と同じ作業を繰り返す。これら一連の作業
を数繰り返すことで単位造形層10、10、……が順次
積層され、その積層数が所定数つまり目的製品のスライ
ス数に達すれば目的製品の一次中間体(積層造形物)が
得られる。以上のようなレーザ焼結法については、例え
ば特公表平11−508322号公報にその例が開示さ
れている。
When a thin layer of powder material is irradiated with laser light,
At the irradiation site, the powder material is thermally fused and sintered, whereby one unit modeling layer 1 having a laser light irradiation pattern, that is, a shape corresponding to the shape of one slice plane.
0 is formed. When the formation of one unit modeling layer 10 is completed, the sintering table piston 1 is lowered by the thickness thereof, and subsequently the same operation as above is repeated. By repeating this series of operations several times, the unit molding layers 10, 10, ... Are sequentially laminated, and if the number of lamination reaches a predetermined number, that is, the number of slices of the target product, the primary intermediate product (laminated molding) of the target product is obtained. can get. An example of the above laser sintering method is disclosed in, for example, Japanese Patent Publication No. 11-508322.

【0005】ここで、粉末材料は熱融合性であり、その
熱融合性には間接タイプと直接タイプがある。間接タイ
プは、粉末粒子をバインダーでコーティングし、そのバ
インダーに熱融合性を発揮させるタイプである。一方、
直接タイプは粉末粒子自体に熱融合性を発揮させるタイ
プである。間接タイプの代表的な例としては、目的製品
の素材とする金属の粉末粒子に合成樹脂によるバインダ
ーや低融点金属によるバインダーをコーティングしたも
のがある。
Here, the powder material is heat-fusible, and the heat-fusible property includes an indirect type and a direct type. The indirect type is a type in which powder particles are coated with a binder and the binder exhibits a heat fusion property. on the other hand,
The direct type is a type that causes the powder particles themselves to exhibit heat fusion. As a typical example of the indirect type, there is one in which powder particles of a metal as a material of a target product are coated with a binder made of a synthetic resin or a binder made of a low melting point metal.

【0006】第2段階の工程では、第1段階の工程で得
られた一次中間体に加熱炉で本焼結を施す。この第2段
階の工程による本焼結を経ることで、ブラウンパーツと
も呼ばれる二次中間体が得られる。この二次中間体は空
隙率の高い多孔質体である。そこで溶浸材の溶浸により
空隙を埋めることで強度を高めて最終製品とする作業を
第3段階の工程として行なう。その溶浸材には、粉末材
料のベースが金属である場合ならば、例えば青銅などが
用いられる。
In the second step, the primary intermediate obtained in the first step is subjected to main sintering in a heating furnace. By undergoing the main sintering in the process of the second stage, a secondary intermediate body called brown parts is obtained. This secondary intermediate is a porous body having a high porosity. Therefore, the work of increasing the strength by filling the voids by infiltration of the infiltrant to obtain the final product is performed as the third step. If the base of the powder material is a metal, for example, bronze is used as the infiltrant.

【0007】以上は機械部品などの実用製品を製造する
ための手法として積層造形法を用いる場合の代表的な工
程例である。この他に、設計の適否を検討するためのプ
ロトタイプなどを製作するのにも積層造形法が用いられ
る。この場合の積層造形法は光造形法とも呼ばれ、例え
ば紫外線で硬化する感光性樹脂を液状にした造形材料が
用いられる。この光造形法では、液状の感光性樹脂を満
たせるようにしたタンク内に上下動可能とした可動テー
ブルを設けた構造の造形装置を用いて積層造形がなされ
る。すなわち液状の感光性樹脂を満たしたタンク内で可
動テーブルのテーブル面上に感光性樹脂液の薄層を生成
させ、この薄層にレーザ光を所定のパターンで照射する
ことにより、その照射パターンに応じたパターンで感光
性樹脂を硬化させて一つの単位造形層を形成する。一つ
の単位造形層の形成を終えたら、その厚み分だけ可動テ
ーブルを下降させ、形成済みの単位造形層の上に次の単
位造形層のための薄層を生成させて同様にレーザ光の照
射をなし、次の単位造形層を形成する。そして以降、可
動テーブルの下降による薄層の生成とそれへのレーザ光
の照射による単位造形層の形成を所定回数繰り返して目
的の造形物を得る。
The above is a typical example of the steps when the additive manufacturing method is used as a method for manufacturing practical products such as machine parts. In addition, the additive manufacturing method is also used to manufacture a prototype or the like for examining the suitability of a design. The layered modeling method in this case is also called an optical modeling method, and, for example, a modeling material in which a photosensitive resin that is cured by ultraviolet rays is liquefied is used. In this stereolithography method, layered modeling is performed by using a modeling apparatus having a structure in which a vertically movable movable table is provided in a tank filled with a liquid photosensitive resin. That is, a thin layer of the photosensitive resin liquid is generated on the table surface of the movable table in the tank filled with the liquid photosensitive resin, and the thin layer is irradiated with laser light in a predetermined pattern, so that the irradiation pattern is changed. The photosensitive resin is cured in a corresponding pattern to form one unit modeling layer. When the formation of one unit modeling layer is completed, the movable table is lowered by the thickness of the unit modeling layer to generate a thin layer for the next unit modeling layer on the formed unit modeling layer and similarly irradiate the laser beam. And the next unit modeling layer is formed. After that, generation of a thin layer by lowering the movable table and formation of a unit modeling layer by irradiating it with a laser beam are repeated a predetermined number of times to obtain a desired modeled object.

【0008】[0008]

【発明が解決しようとする課題】上記のような機械部品
などの製造のための積層造形工程(レーザ焼結工程)に
おいては、粉末材料の薄層にレーザ光を照射すると、そ
の照射スポットを中心に一定の範囲が熱融合して焼結が
なされることになる。この照射スポットを中心にした熱
融合による硬化範囲を仮に「焼結単位」と呼ぶとして、
この焼結単位はレーザ光の照射量(通常は単位面積当た
りの照射エネルギー量として表される)に応じた大きさ
となる。すなわち焼結単位は、レーザ光の照射量が多い
と大きくなり、少ないと小さくなる。そして焼結単位の
大小に応じて一次中間体の表面精度が決まり、それに応
じて最終的な製品の造形精度も決まってしまう。このこ
とから、レーザ焼結による積層造形においては、粉末材
料に照射するレーザ光の照射量が製品の造形精度に関し
てきわめて重要であることがわかる。
In the additive manufacturing process (laser sintering process) for manufacturing the above mechanical parts, etc., when a thin layer of powder material is irradiated with laser light, the irradiation spot is mainly focused. Then, a certain range is heat-fused and sintered. Assuming that the curing range centered on this irradiation spot by heat fusion is called "sintering unit",
This sintering unit has a size corresponding to the irradiation amount of laser light (normally expressed as the irradiation energy amount per unit area). That is, the sintering unit becomes large when the irradiation amount of the laser beam is large, and becomes small when the irradiation amount is small. The surface accuracy of the primary intermediate body is determined according to the size of the sintering unit, and the modeling accuracy of the final product is determined accordingly. From this, it is understood that, in the layered manufacturing by laser sintering, the irradiation amount of the laser light with which the powder material is irradiated is extremely important for the modeling accuracy of the product.

【0009】従来では造形精度を確保するためにレーザ
光の照射量を一定以下に抑えていた。例えば粉末材料と
してステンレス材の粉末粒子に熱融合温度が200℃程
度の合成樹脂バインダーをコーティングした粉末材料を
用いる場合であれば、0.7J/mm2程度が上限で、
0.2〜0.7J/mm2程度の照射量とするのが通常
である。
Conventionally, the irradiation amount of laser light has been suppressed below a certain level in order to secure the modeling accuracy. For example, when a powder material obtained by coating powder particles of stainless steel with a synthetic resin binder having a heat fusion temperature of about 200 ° C. is used as the powder material, about 0.7 J / mm 2 is the upper limit,
The irradiation amount is usually about 0.2 to 0.7 J / mm 2.

【0010】このように造形精度を確保するために照射
量を抑えたレーザ光の照射で得られる従来の積層造形法
における一次中間体(積層造形物)は、粉末粒子同士が
熱融合でいわば部分的に結合した程度の状態にあり、非
常に脆いものであった。そのためわずかな衝撃でも破損
を招くことになり、レーザ焼結工程から本焼結工程にか
けてのその取扱いに細心の注意を必要とすることから作
業能率が著しく低下し、また細心の注意をもってしても
破損の発生を避けられず、歩留まりが30%以下になる
ようなこともしばしばであるのが実情であった。
As described above, the primary intermediate in the conventional additive manufacturing method (additive manufacturing object) obtained by irradiating the laser beam with a reduced irradiation amount in order to ensure the accuracy of modeling is a so-called partial fusion of powder particles due to thermal fusion. It was in a state in which it was mechanically bonded and was very brittle. Therefore, even a slight impact will cause damage, and since careful handling is required from the laser sintering process to the main sintering process, the work efficiency is significantly reduced, and even with the utmost caution. The fact is that the occurrence of breakage is unavoidable and the yield is often 30% or less.

【0011】また造形精度との関係でレーザ光の照射量
を一定以下に抑える必要があり、そのために造形物に十
分な強度を与えることができなくなることは、上記した
光造形法でプロトタイプなどを製作する場合にも同様で
ある。すなわち光造形法では、レーザ光の照射量を多く
するとレーザ光照射パターンの外縁における散乱光の影
響が大きくなる。そしてこの散乱光によりレーザ光の照
射パターンの外側にまで感光性樹脂の硬化を生じると、
造形精度が損なわれることになる。そのためレーザ光の
照射量を一定以下に抑える必要があり、その結果として
積層造形物に十分な強度を与えることができなくなる。
In addition, it is necessary to keep the irradiation amount of the laser light below a certain level in relation to the modeling accuracy, and therefore it becomes impossible to give sufficient strength to the modeled object. The same applies when manufacturing. That is, in the stereolithography method, when the irradiation amount of the laser light is increased, the influence of scattered light on the outer edge of the laser light irradiation pattern becomes large. When the scattered light causes the curing of the photosensitive resin to the outside of the irradiation pattern of the laser light,
The molding accuracy will be impaired. Therefore, it is necessary to suppress the irradiation amount of laser light to a certain level or less, and as a result, it becomes impossible to give sufficient strength to the layered product.

【0012】本発明は、以上のような従来の事情を背景
になされてものであり、必要な造形精度を確保し、なお
かつ積層造形物に十分な強度を与えることを可能とする
積層造形法の提供を目的としている。
The present invention has been made against the background of the conventional circumstances as described above, and a layered manufacturing method capable of ensuring a required modeling accuracy and imparting sufficient strength to a layered modeled product. It is intended to be provided.

【0013】[0013]

【課題を解決するための手段】上記目的のために本発明
では、造形材料の薄層にレーザ光を選択的に照射して選
択的な結合や硬化を生じさせることでなされる、前記レ
ーザ光の選択的照射パターンに対応した形状の単位造形
層の形成を順次繰り返し、この繰り返し形成の単位造形
層を積層させつつ造形をなす積層造形法において、前記
単位造形層の形成に際して、前記レーザ光の照射パター
ン内を高精度処理部と高強度処理部に区分けし、かつ前
記高精度処理部には前記照射パターンの輪郭に沿う一定
の範囲を含ませるものとし、そして前記高強度処理部に
対しては前記高精度処理部に対するレーザ光の照射量よ
りも多い照射量でレーザ光を照射するようにしたことを
特徴としている。
To achieve the above object, according to the present invention, a thin layer of a molding material is selectively irradiated with laser light to cause selective bonding and curing. The formation of a unit modeling layer having a shape corresponding to the selective irradiation pattern is sequentially repeated, and in the layered modeling method in which modeling is performed while stacking the unit modeling layers of this repeated formation, in forming the unit modeling layer, the laser beam The irradiation pattern is divided into a high-precision processing section and a high-intensity processing section, and the high-precision processing section includes a certain range along the contour of the irradiation pattern, and with respect to the high-intensity processing section. Is characterized in that the high-precision processing unit is irradiated with laser light at a larger irradiation amount than the irradiation amount of laser light.

【0014】また本発明では、上記のような積層造形法
について、レーザ光の照射強度変えることで、高精度処
理部と高強度処理部それぞれに対するレーザ光の照射量
を異ならせるようにしている。
Further, in the present invention, in the additive manufacturing method as described above, the irradiation intensity of the laser beam is changed so that the irradiation amount of the laser beam for each of the high-precision processing section and the high-intensity processing section is made different.

【0015】また本発明では上記のような積層造形法に
ついて、レーザ光の照射パターン内の全体に所定の照射
量にてレーザ光を均一に照射した後に、高強度処理部の
みに所定の照射量にてレーザ光をさらに照射すること
で、高精度処理部と高強度処理部それぞれに対するレー
ザ光の照射量を異ならせるようにしている。
Further, in the present invention, in the additive manufacturing method as described above, after uniformly irradiating the whole of the irradiation pattern of the laser light with the predetermined irradiation amount, only the high-intensity processing portion has the predetermined irradiation amount. By further irradiating the high-precision processing section and the high-intensity processing section with each other, the irradiation amount of the laser light is made different.

【0016】また本発明では上記のような積層造形法に
用いる積層造形装置について、その制御系に、高精度処
理部と高強度処理部それぞれに対する照射強度を設定す
るための照射強度設定手段を設けるようにしている。
Further, in the present invention, with respect to the additive manufacturing apparatus used in the additive manufacturing method as described above, the control system thereof is provided with irradiation intensity setting means for setting the irradiation intensity for each of the high precision processing section and the high intensity processing section. I am trying.

【0017】また本発明では上記のような積層造形法に
用いる積層造形装置について、レーザ光の照射スポット
径を調節するための照射スポット径調節手段を制御系に
設けるようにしている。
Further, in the present invention, in the additive manufacturing apparatus used in the additive manufacturing method as described above, an irradiation spot diameter adjusting means for adjusting the irradiation spot diameter of the laser beam is provided in the control system.

【0018】また本発明では上記のような積層造形法に
用いる積層造形装置について、制御系による制御の下
で、レーザ光の照射パターン内の全体に所定の照射量に
てレーザ光を均一に照射する全体照射処理と、この全体
照射処理の後に高強度処理部にのみ所定の照射量にてレ
ーザ光をさらに照射する高強度処理部照射処理とを単位
造形層の形成ごとになせるようにしている
Further, in the present invention, regarding the additive manufacturing apparatus used in the additive manufacturing method as described above, under the control of the control system, the entire irradiation pattern of the laser light is uniformly irradiated with the laser light at a predetermined irradiation amount. The whole irradiation process and the high-intensity processing part irradiation process of further irradiating the high-intensity processing part with laser light at a predetermined irradiation amount after the whole irradiation process are performed for each formation of the unit modeling layer. Are

【0019】[0019]

【発明実施の形態】以下、本発明の実施の形態に関連さ
せて本発明をより具体的に説明する。図1に、本発明の
第1の実施形態で用いる積層造形装置の構成を模式化し
て示す。この積層造形装置は、基本的には上で説明した
従来の積層造形装置(レーザ焼結装置)と同様で、その
レーザ光の照射を制御する制御系11に、所定の照射パ
ターンに基づいてミラー6を制御する照射パターン設定
手段12が設けられているのに加えて、照射強度設定手
段13と照射スポット径調節手段14が設けられている
点で異なる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to the embodiments of the present invention. FIG. 1 schematically shows the configuration of the additive manufacturing apparatus used in the first embodiment of the present invention. This additive manufacturing apparatus is basically the same as the conventional additive manufacturing apparatus (laser sintering apparatus) described above, and a control system 11 for controlling the irradiation of the laser beam is controlled by a mirror based on a predetermined irradiation pattern. The difference lies in that an irradiation pattern setting means 12 for controlling 6 is provided, and in addition, an irradiation intensity setting means 13 and an irradiation spot diameter adjusting means 14 are provided.

【0020】第1の実施形態の説明にあたっては、仮に
図2に示すような断面形状の製品、すなわち曲折した角
筒状の中空部分Pを有する直方体形の実用製品Mを目的
の製品として積層造形法を実施するものとする。この目
的製品が例えば3次元CADシステムで設計されている
とすると、その3次元CADデータから目的製品を多数
の層にスライスし、それで得られる図3に示すような各
スライス面Sに関する形状データを作成する。そしてこ
のデータに基づいて図1の積層造形装置におけるミラー
6を制御系11の照射パターン設定手段12で制御する
ことにより、前記スライス面の形状に応じたパターンで
粉末材料の薄層にレーザ光を照射して一つのスライス面
の形状に対応する形状の一つの単位造形層を形成する。
一つの単位造形層の形成を終えたら、その厚み分だけ焼
結台ピストン1を下降させる。以降、このような処理を
順次繰り返すことで単位造形層を所定積層数まで積層し
て目的製品の一次中間体(積層造形物)を造形する。こ
のようにして得られた一次中間体は本焼結を施されるこ
とで二次中間体となり、さらにこの二次中間体に溶浸処
理を施すことで最終的な目的の製品が完成する。
In the description of the first embodiment, it is assumed that a product having a sectional shape as shown in FIG. 2, that is, a rectangular parallelepiped practical product M having a bent square tube-shaped hollow portion P is laminated and manufactured as a target product. The law shall be implemented. If this target product is designed by, for example, a three-dimensional CAD system, the target product is sliced into a number of layers from the three-dimensional CAD data, and shape data regarding each slice plane S as shown in FIG. create. Based on this data, the irradiation pattern setting means 12 of the control system 11 controls the mirror 6 in the layered manufacturing apparatus of FIG. 1 so that the laser beam is applied to the thin layer of the powder material in a pattern according to the shape of the slice surface. Irradiation is performed to form one unit modeling layer having a shape corresponding to the shape of one slice surface.
When the formation of one unit modeling layer is completed, the sintering table piston 1 is lowered by the thickness thereof. After that, by repeating such a process in sequence, the unit modeling layers are laminated up to a predetermined number of layers to form a primary intermediate (laminated model) of the target product. The thus-obtained primary intermediate is subjected to main sintering to become a secondary intermediate, and the final intermediate product is completed by subjecting this secondary intermediate to infiltration treatment.

【0021】ここまでは実用製品の製造における従来の
積層造形法と同様である。本発明ではこの単位造形層の
形成に際して、レーザ光の照射パターン内を高強度処理
部と高精度処理部造に区分けし、これら両部位について
レーザ光の照射量を異ならせることを主眼としている。
すなわち高強度処理部については、強度重視とし、従来
におけるレーザ焼結処理(積層造形)で用いられていた
のより多い照射量である第2の照射量レベルでレーザ光
を照射することにより、十分な強度を確保する、つまり
レーザ焼結工程で得られる一次中間体にその取扱いを容
易にするのに十分な強度を与えることができるようにす
る。一方、高精度処理部については、造形精度重視と
し、高強度処理部に対する照射量よりも少ない照射量で
ある第1の照射量レベルでレーザ光を照射することによ
り、十分な造形精度を確保する。造形精度重視の第1の
照射量レベルは、従来のレーザ焼結法で用いられていた
のと同様に、金属粉末粒子に熱融合温度が200℃程度
の合成樹脂バインダーをコーティングした粉末材料を用
いる場合であれば、0.2〜0.7J/mm2程度とす
るのが通常である。一方、強度重視の第2の照射量レベ
ルは、第1の照射量レベルの2倍以上とし、より好まし
くは5倍以上とする。
Up to this point, the process is the same as the conventional additive manufacturing method for manufacturing practical products. In the present invention, when the unit modeling layer is formed, the inside of the irradiation pattern of the laser light is divided into a high-intensity processing part and a high-precision processing part, and the irradiation amount of the laser light is made different for these two parts.
That is, regarding the high-strength processing portion, the strength is emphasized, and the irradiation with the laser beam at the second irradiation level, which is a larger irradiation amount than that used in the conventional laser sintering process (lamination manufacturing), is sufficient. Sufficient strength, that is, the primary intermediate obtained in the laser sintering process can be provided with sufficient strength to facilitate its handling. On the other hand, with respect to the high-precision processing unit, the modeling precision is emphasized, and sufficient modeling precision is ensured by irradiating the laser beam at the first irradiation amount level, which is an irradiation amount smaller than the irradiation amount for the high-strength processing unit. . The first dose level with emphasis on modeling accuracy uses a powder material in which metal powder particles are coated with a synthetic resin binder having a heat fusion temperature of about 200 ° C., as in the conventional laser sintering method. In some cases, it is usually about 0.2 to 0.7 J / mm 2. On the other hand, the intensity-focused second dose level is set to be at least twice the first dose level, and more preferably at least five times.

【0022】このように高強度処理部と高精度処理部と
でレーザ光の照射量を異ならせるために、本実施形態で
は、高精度処理部に対する照射時と高強度処理部に対す
る照射時とでレーザ光の照射強度の設定を変えるように
している。その設定の変更は照射強度設定手段13にて
行なう。照射強度設定手段13による照射強度の設定
は、作動電流を制御するなどしてレーザ4の作動状態を
制御することで行なうのが一つの手法である。この他に
も、例えばレーザ光5の光路にビーム径調節手段(図示
せず)を設け、このビーム径調節手段を照射強度設定手
段13で制御してレーザ光5のビーム径を調節すること
により照射強度を設定するような手法も可能である。
In order to make the irradiation amount of the laser beam different between the high-intensity processing section and the high-accuracy processing section as described above, in the present embodiment, the irradiation of the high-accuracy processing section and the irradiation of the high-intensity processing section are performed. The setting of the irradiation intensity of laser light is changed. The irradiation intensity setting means 13 changes the setting. One method of setting the irradiation intensity by the irradiation intensity setting means 13 is to control the operating state of the laser 4 by controlling the operating current. In addition to this, for example, a beam diameter adjusting means (not shown) is provided in the optical path of the laser light 5, and the beam diameter adjusting means is controlled by the irradiation intensity setting means 13 to adjust the beam diameter of the laser light 5. A method of setting the irradiation intensity is also possible.

【0023】高強度処理部に対しては、上記のように高
精度処理部に対する照射強度の2〜5倍以上の照射強度
でレーザ光を照射する。このように強力なレーザ光の照
射は急激な加熱により粉末材料を飛散させる場合があ
る。そこで高強度処理部への照射に際してはレーザ光5
の照射スポットの径を大きくして加熱の急激性を緩和さ
せるようにするのが好ましい。レーザ光5の照射スポッ
ト径を大きくするには、照射スポット径調節手段14で
レンズ系7を制御してレーザ光5の照射面(粉末材料の
薄層面)における収束度を弱める。つまり通常はレンズ
系7の焦点を照射面に合わせるようにしてあるのをずら
して焦点を照射面に対してぼかした状態にする。
As described above, the high-intensity processing section is irradiated with laser light at an irradiation intensity that is 2 to 5 times or more the irradiation intensity of the high-precision processing section. Irradiation with such a strong laser beam may cause the powder material to be scattered by rapid heating. Therefore, when irradiating the high-intensity processing section, laser light 5
It is preferable to increase the diameter of the irradiation spot to reduce the rapidity of heating. In order to increase the irradiation spot diameter of the laser light 5, the irradiation spot diameter adjusting means 14 controls the lens system 7 to weaken the degree of convergence of the laser light 5 on the irradiation surface (the thin layer surface of the powder material). That is, normally, the focus of the lens system 7 is adjusted to the irradiation surface, but the focus is blurred with respect to the irradiation surface.

【0024】ここで、図1の積層造形装置で積層造形を
行なう場合には、そのチャンバー8の内部に所定の環境
温度を設定してレーザ光の照射を行なう。その環境温度
は、粉末材料の熱融合温度が200℃程度の場合であれ
ば、100℃程度とするのが通常である。
Here, in the case of performing additive manufacturing with the additive manufacturing apparatus of FIG. 1, a predetermined environmental temperature is set inside the chamber 8 and laser light irradiation is performed. The environmental temperature is usually about 100 ° C. when the heat fusion temperature of the powder material is about 200 ° C.

【0025】図4に、レーザ光照射パターン内における
高強度処理部Fと高精度処理部Dの区分けパターンの一
例を示す。このような区分けパターンは、レーザ光の照
射パターンに予め組み込んでおくのが通常である。図の
例に見られるように、高強度処理部と高精度処理部の区
分けには、一つの重要な条件がある。それは、レーザ光
照射パターン内には造形精度に直接影響を及ぼす部位が
あるので、この部位は必ず高精度処理部に含ませるとい
うことである。造形精度に直接的に影響を及ぼす部位
は、レーザ光照射パターンの輪郭L(これは単位造形層
の輪郭でもある)に沿う一定範囲の領域である。すなわ
ちレーザ光照射パターンの輪郭に沿う一定範囲の領域で
は、そこにおける前述の焼結単位の大きさが単位造形層
の表面精度に直接的に影響を与え、その表面精度が造形
精度を規定するということである。このレーザ光照射パ
ターンの輪郭に沿う一定範囲、つまり高精度処理部に含
ませるべき範囲は、焼結単位の一般的な大きさに相関す
る。具体的には、輪郭Lから少なくとも200μm程度
の範囲がそれに当たる。
FIG. 4 shows an example of a division pattern of the high intensity processing section F and the high precision processing section D in the laser beam irradiation pattern. Such a division pattern is usually incorporated in advance in the laser light irradiation pattern. As can be seen from the example in the figure, there is one important condition for dividing the high-strength processing section and the high-precision processing section. That is, since there is a portion that directly affects the modeling accuracy in the laser light irradiation pattern, this portion must be included in the high precision processing section. The part that directly affects the modeling accuracy is a region within a certain range along the contour L of the laser light irradiation pattern (this is also the contour of the unit modeling layer). That is, in a certain range of the region along the contour of the laser beam irradiation pattern, the size of the above-mentioned sintering unit directly affects the surface accuracy of the unit modeling layer, and the surface accuracy defines the modeling accuracy. That is. A certain range along the contour of the laser beam irradiation pattern, that is, a range to be included in the high-precision processing unit correlates with the general size of the sintering unit. Specifically, it corresponds to a range of at least about 200 μm from the contour L.

【0026】このように、レーザ光照射パターンの輪郭
に沿う一定範囲の領域は高精度処理部に含ませることが
条件になるが、ただレーザ光照射パターンの輪郭に沿っ
て設定する沿高精度処理部の範囲は必要最小限にするの
が好ましい。すなわちレーザ焼結工程で得られる一次中
間体での破損し易いという問題には特に一次中間体の表
面近傍の強度が大きく影響する。そのためレーザ光照射
パターンの輪郭に沿って設定する沿高精度処理部の範囲
は必要最小限にして表面近傍の強度を高めるのが、より
好ましい条件になる。
As described above, a region within a certain range along the contour of the laser beam irradiation pattern is required to be included in the high precision processing section. However, the high precision processing set only along the contour of the laser beam irradiation pattern is performed. It is preferable that the range of parts is minimized. In other words, the strength near the surface of the primary intermediate has a great influence on the problem that the primary intermediate obtained in the laser sintering process is easily damaged. Therefore, it is a more preferable condition to increase the strength in the vicinity of the surface by minimizing the range of the high precision processing unit set along the contour of the laser light irradiation pattern.

【0027】ここで、図4の例では高強度処理部Fと高
精度処理部Dの区分けを格子状のパターンとし、レーザ
光照射パターンの輪郭に沿う一定範囲以外の部位につい
ても高精度処理部に含ませている。すなわちこの例で
は、高精度処理部をできるだけ広くし、高強度処理部は
必要最小限の範囲、つまり取扱いの容易性確保に十分な
強度を一次中間体に与えるのに必要最小限の範囲に抑え
るようにしている。このように高強度処理部を必要最小
限に抑える形態は本発明において可能な形態の一つであ
る。この形態はレーザ焼結工程での処理効率を重視する
場合にとる。高強度処理部を必要最小限に抑えるように
する場合の高強度処理部と高精度処理部の区分けには種
々のパターンが可能で、図4の例のような格子状パター
ンの他に、ハニカム状パターンやスポーク状パターンな
どを代表的なものとして挙げることができる。これらの
パターンは、高精度処理部をマトリックスとしてそのマ
トリックス中に骨格的に高強度処理部を設定するパター
ンであると一般化することができる。
Here, in the example of FIG. 4, the high-intensity processing section F and the high-precision processing section D are divided into a grid pattern, and the high-precision processing section is also applied to a portion other than a certain range along the contour of the laser beam irradiation pattern. Included in. That is, in this example, the high-precision processing section is made as wide as possible, and the high-strength processing section is kept within the minimum necessary range, that is, the minimum necessary range for providing the primary intermediate with sufficient strength for ensuring ease of handling. I am trying. As described above, the form in which the high-strength processing portion is minimized is one of the forms possible in the present invention. This form is adopted when importance is attached to the processing efficiency in the laser sintering process. When the high-strength processing section is to be minimized to a necessary minimum, various patterns can be used to distinguish the high-strength processing section and the high-precision processing section. In addition to the grid pattern as shown in FIG. A typical pattern is a circular pattern or a spoke pattern. These patterns can be generalized as patterns in which high-precision processing units are used as a matrix and high-strength processing units are skeletally set in the matrix.

【0028】本発明における他の可能な形態は、上で述
べた形態とは逆に高強度処理部をできるだけ広く設定す
る形態である。図5に、そのような形態における高強度
処理部Fと高精度処理部Dの区分けパターンの例を示
す。このように高強度処理部をできるだけ広く設定する
場合には、レーザ焼結の役割を高め、高強度処理部につ
いては本焼結と同程度の焼結をなせるような照射強度で
レーザ光の照射を行なうようにする。このようにするこ
とによりレーザ焼結処理に続く本焼結処理での処理効率
を高めることが可能となる。
Another possible form of the invention is to set the high-strength processing section as wide as possible, contrary to the form described above. FIG. 5 shows an example of a division pattern of the high-intensity processing unit F and the high-precision processing unit D in such a form. In this way, when setting the high-strength treatment part as wide as possible, the role of laser sintering is enhanced, and the high-strength treatment part is irradiated with laser light at an irradiation intensity that can achieve the same degree of sintering as the main sintering. Irradiate. By doing so, it is possible to improve the processing efficiency in the main sintering process that follows the laser sintering process.

【0029】次に本発明の第2の実施形態を説明する。
第2の実施形態では図6に示す積層造形装置を用いる。
この積層造形装置は、基本的には第1の実施形態におけ
る積層造形装置と同様である。ただ、その制御系21に
は、照射パターン設定手段12の他に、レーザ光照射処
理手順設定手段22が設けられている点で第1の実施形
態のそれと異なる。本実施形態では、レーザ光照射処理
手順設定手段22による制御の下で単位造形層ごとにレ
ーザ光の照射を2段階に分けて行なうことで、高精度処
理部と高強度処理部それぞれに対するレーザ光の照射量
を異ならせるようにしている。具体的には、まずレーザ
光の照射パターン内の全体に所定の照射量にてレーザ光
を均一に照射する全体照射処理を行なう。この全体照射
処理における照射量は第1の実施形態での高精度処理部
における照射量と同じである。それから全体照射処理に
続いて、高強度処理部のみに所定の照射量にてレーザ光
をさらに照射する高強度処理部照射処理を行なう。この
高強度処理部照射処理における照射量は、全体照射処理
での照射量との合計が全体照射処理での照射量の2〜5
倍以上となるような照射量とする。このように、レーザ
光の照射を2段階に分けて行なう場合には照射量の多い
高強度処理部で粉末材料が飛散するような事態を招かず
に済み、したがってレーザ光の焦点をぼかすなどの制御
を行なう必要がなくなる。積層造形に関するこの他の処
理内容などは第1の実施形態におけるそれと同様である
ので、その説明は省略する。
Next, a second embodiment of the present invention will be described.
In the second embodiment, the additive manufacturing apparatus shown in FIG. 6 is used.
This additive manufacturing apparatus is basically the same as the additive manufacturing apparatus in the first embodiment. However, the control system 21 is different from that of the first embodiment in that a laser beam irradiation processing procedure setting unit 22 is provided in addition to the irradiation pattern setting unit 12. In the present embodiment, under the control of the laser light irradiation processing procedure setting unit 22, the laser light irradiation is performed in two steps for each unit modeling layer, so that the laser light for each of the high-precision processing unit and the high-intensity processing unit is irradiated. The irradiation dose is different. Specifically, first, a whole irradiation process of uniformly irradiating the entire laser light irradiation pattern with a predetermined irradiation amount of laser light is performed. The irradiation amount in this overall irradiation processing is the same as the irradiation amount in the high precision processing unit in the first embodiment. Then, following the overall irradiation process, a high-intensity processing unit irradiation process is performed in which only the high-intensity processing unit is further irradiated with laser light at a predetermined irradiation amount. The irradiation amount in this high-intensity processing unit irradiation process is 2 to 5 of the irradiation amount in the whole irradiation process when the total with the irradiation amount in the whole irradiation process.
The irradiation dose should be double or more. In this way, when the laser light irradiation is performed in two stages, it is not necessary to cause a situation in which the powder material is scattered in the high-intensity processing portion with a large irradiation amount, and thus the focus of the laser light is blurred. There is no need to control. Since other processing contents regarding the additive manufacturing are the same as those in the first embodiment, the description thereof will be omitted.

【0030】以上の実施形態は何れも造形材料として熱
融合性の粉末材料を用いて実用製品を製造する場合の例
である。本発明はこれらの例に限られるものではなく、
上で説明した光造形法でプロトタイプなどを製作する場
合についても適用することができ、造形精度と強度の両
立を光造形法においても実現することを可能とする。
Each of the above embodiments is an example of manufacturing a practical product using a heat-fusible powder material as a modeling material. The present invention is not limited to these examples,
The present invention can be applied to the case where a prototype or the like is manufactured by the above-described stereolithography method, and it is possible to realize both the molding precision and the strength in the stereolithography method.

【0031】[0031]

【発明の効果】以上説明したように本発明は、レーザ焼
結による単位造形層の形成に際して、レーザ光の照射パ
ターン内を高精度処理部と高強度処理部に区分けし、こ
れら両部位でレーザ光の照射量を異ならせるようにして
いる。この結果、求められる造形精度を確保するととも
に、十分な強度、例えば積層造形で得られる積層造物に
取扱いの容易性を与えるのに必要な強度も確保すること
が可能となり、積層造形法の有用性をさらに一層高める
のに寄与することができる。
As described above, according to the present invention, when forming a unit modeling layer by laser sintering, the irradiation pattern of laser light is divided into a high-precision processing part and a high-strength processing part, and the laser is applied at both parts. The irradiation amount of light is made different. As a result, it becomes possible to secure the required modeling accuracy and also secure sufficient strength, for example, the strength necessary to give the laminated product obtained by additive manufacturing the easiness of handling, and the usefulness of the additive manufacturing method. Can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態おける積層造形装置の構成を模
式化して示す図である。
FIG. 1 is a diagram schematically illustrating a configuration of a layered modeling apparatus in a first embodiment.

【図2】目的とする製品の一形状例を示す図である。FIG. 2 is a diagram showing an example of the shape of a target product.

【図3】図2の製品を仮想的にスライスして得られるス
ライス面を示す図である。
FIG. 3 is a diagram showing a slice surface obtained by virtually slicing the product of FIG.

【図4】高精度処理部と高強度処理部の区分けパターン
の例を示す図である。
FIG. 4 is a diagram showing an example of a division pattern of a high-precision processing unit and a high-strength processing unit.

【図5】高精度処理部と高強度処理部の区分けパターン
の他の例を示す図である。
FIG. 5 is a diagram showing another example of a division pattern of a high-precision processing unit and a high-strength processing unit.

【図6】第2の実施形態おける積層造形装置の構成を模
式化して示す図である。
FIG. 6 is a diagram schematically showing a configuration of a layered modeling apparatus according to a second embodiment.

【図7】レーザ焼結装置の一構成例を模式化して示す図
である。
FIG. 7 is a diagram schematically showing a configuration example of a laser sintering device.

【符号の説明】[Explanation of symbols]

5 レーザ光 9 粉末材料(造形材料) 10 単位造形層 11 制御系 13 照射強度設定手段 14 照射スポット径調節手段 D 高精度処理部 F 高強度処理部 L 照射パターンの輪郭 M 製品 S スライス面 5 laser light 9 Powder materials (modeling materials) 10 unit modeling layer 11 Control system 13 Irradiation intensity setting means 14 Irradiation spot diameter adjustment means D High-precision processing unit F High strength processing section L irradiation pattern outline M product S slice plane

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F213 AC04 WA22 WA25 WA97 WB01 WL02 WL12 WL43 WL44 WL76 4K018 DA11 DA50 FA31    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F213 AC04 WA22 WA25 WA97 WB01                       WL02 WL12 WL43 WL44 WL76                 4K018 DA11 DA50 FA31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 造形材料の薄層にレーザ光を選択的に照
射して選択的な結合や硬化を生じさせることでなされ
る、前記レーザ光の選択的照射パターンに対応した形状
の単位造形層の形成を順次繰り返し、この繰り返し形成
の単位造形層を積層させつつ造形をなす積層造形法にお
いて、前記単位造形層の形成に際して、前記レーザ光の
照射パターン内を高精度処理部と高強度処理部に区分け
し、かつ前記高精度処理部には前記照射パターンの輪郭
に沿う一定の範囲を含ませるものとし、そして前記高強
度処理部に対しては前記高精度処理部に対するレーザ光
の照射量よりも多い照射量でレーザ光を照射するように
したことを特徴とする積層造形法。
1. A unit modeling layer having a shape corresponding to a selective irradiation pattern of laser light, which is formed by selectively irradiating a thin layer of a molding material with laser light to cause selective bonding and curing. In the layered manufacturing method in which the formation of the unit modeling layers is repeated by sequentially repeating the formation of the unit modeling layers, the high-precision processing section and the high-strength processing section are formed in the irradiation pattern of the laser beam when the unit modeling layers are formed. And, the high-precision processing unit shall include a certain range along the contour of the irradiation pattern, and for the high-intensity processing unit, from the irradiation amount of the laser light to the high-precision processing unit. The additive manufacturing method is characterized in that the laser light is irradiated with a large irradiation amount.
【請求項2】 レーザ光の照射強度を変えることで、高
精度処理部と高強度処理部それぞれに対するレーザ光の
照射量を異ならせるようにした請求項1に記載の積層造
形法。
2. The additive manufacturing method according to claim 1, wherein the irradiation amount of the laser light is changed so that the irradiation amount of the laser light for each of the high-precision processing portion and the high-intensity processing portion is made different.
【請求項3】 レーザ光の照射パターン内の全体に所定
の照射量にてレーザ光を均一に照射した後に、高強度処
理部のみに所定の照射量にてレーザ光をさらに照射する
ことで、高精度処理部と高強度処理部それぞれに対する
レーザ光の照射量を異ならせるようにした請求項1に記
載の積層造形法。
3. After uniformly irradiating the whole of the irradiation pattern of the laser light with the laser light at a predetermined irradiation amount, the high intensity processing section is further irradiated with the laser light at a predetermined irradiation amount, The additive manufacturing method according to claim 1, wherein the high-precision processing section and the high-intensity processing section are made to have different irradiation amounts of laser light.
【請求項4】 請求項2に記載の積層造形法に用いられ
る積層造形装置であって、制御系を備えており、この制
御系には、高精度処理部と高強度処理部それぞれに対す
る照射強度を設定するための照射強度設定手段が設けら
れている積層造形装置。
4. An additive manufacturing apparatus for use in the additive manufacturing method according to claim 2, further comprising a control system, wherein the control system includes irradiation intensity for each of the high-accuracy processing unit and the high-intensity processing unit. An additive manufacturing apparatus provided with an irradiation intensity setting means for setting.
【請求項5】 レーザ光の照射スポット径を調節するた
めの照射スポット径調節手段が制御系に設けられている
請求項4に記載の積層造形装置。
5. The additive manufacturing apparatus according to claim 4, wherein an irradiation spot diameter adjusting means for adjusting an irradiation spot diameter of the laser beam is provided in the control system.
【請求項6】 請求項3に記載の積層造形法に用いられ
る積層造形装置であって、制御系を備えており、この制
御系による制御の下で、レーザ光の照射パターン内の全
体に所定の照射量にてレーザ光を均一に照射する全体照
射処理と、この全体照射処理の後に高強度処理部にのみ
所定の照射量にてレーザ光をさらに照射する高強度処理
部照射処理とを単位造形層の形成ごとになすようにされ
ている積層造形装置。
6. An additive manufacturing apparatus for use in the additive manufacturing method according to claim 3, further comprising a control system, and under the control of the control system, a predetermined amount is provided in the entire irradiation pattern of the laser light. The whole irradiation process that uniformly irradiates the laser light with the irradiation amount of, and the high-intensity processing unit irradiation process that further irradiates the high-intensity processing unit with the predetermined irradiation amount only after the whole irradiation process A layered modeling apparatus that is configured to form each modeling layer.
JP2002129905A 2002-05-01 2002-05-01 Lamination shaping method and lamination shaping apparatus used in the same Pending JP2003321704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129905A JP2003321704A (en) 2002-05-01 2002-05-01 Lamination shaping method and lamination shaping apparatus used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129905A JP2003321704A (en) 2002-05-01 2002-05-01 Lamination shaping method and lamination shaping apparatus used in the same

Publications (1)

Publication Number Publication Date
JP2003321704A true JP2003321704A (en) 2003-11-14

Family

ID=29543179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129905A Pending JP2003321704A (en) 2002-05-01 2002-05-01 Lamination shaping method and lamination shaping apparatus used in the same

Country Status (1)

Country Link
JP (1) JP2003321704A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085986A (en) * 2008-09-02 2010-04-15 Tokyo Metropolitan Industrial Technology Research Institute Stringed instrument and manufacturing method thereof
JP2011500382A (en) * 2007-10-26 2011-01-06 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Process and free-form manufacturing system for manufacturing a three-dimensional object
JP2013018146A (en) * 2011-07-08 2013-01-31 Sony Corp Structure and production method therefor
WO2013132840A1 (en) * 2012-03-09 2013-09-12 パナソニック株式会社 Method of manufacturing three-dimensional sculpture
WO2014010144A1 (en) * 2012-07-09 2014-01-16 パナソニック株式会社 Method for manufacturing three-dimensional molding
JP2014111385A (en) * 2007-12-12 2014-06-19 3M Innovative Properties Co Method for making structure with improved edge definition
JP2014184659A (en) * 2013-03-25 2014-10-02 Honda Motor Co Ltd Method for forming three-dimensionally shaped object
JP2015182419A (en) * 2014-03-26 2015-10-22 日本電子株式会社 Three-dimensional lamination molding device and method
WO2016075801A1 (en) * 2014-11-14 2016-05-19 株式会社ニコン Shaping device and a shaping method
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US20170304947A1 (en) * 2014-11-14 2017-10-26 Nikon Corporation Shaping apparatus and shaping method
JP2021045887A (en) * 2019-09-18 2021-03-25 株式会社Screenホールディングス Three-dimensional molding manufacturing apparatus and three-dimensional molding manufacturing method
JP2021121310A (en) * 2021-02-05 2021-08-26 戎屋化学工業株式会社 Container with applicator
WO2021246098A1 (en) * 2020-06-01 2021-12-09 株式会社松浦機械製作所 Production method for three-dimensional shaped object and three-dimensional shaped object obtained by said method
JP7017709B1 (en) 2020-11-06 2022-02-09 地方独立行政法人東京都立産業技術研究センター 3D shape model manufacturing equipment, 3D shape model manufacturing method using additional manufacturing equipment, and 3D shape model manufacturing program using additional manufacturing equipment

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500382A (en) * 2007-10-26 2011-01-06 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Process and free-form manufacturing system for manufacturing a three-dimensional object
US8658076B2 (en) 2007-10-26 2014-02-25 Envisiontec Gmbh Process and freeform fabrication system for producing a three-dimensional object
JP2015063131A (en) * 2007-10-26 2015-04-09 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングEnvisiontec Gmbh Process and freeform fabrication system for producing three-dimensional object
JP2014111385A (en) * 2007-12-12 2014-06-19 3M Innovative Properties Co Method for making structure with improved edge definition
JP2010085986A (en) * 2008-09-02 2010-04-15 Tokyo Metropolitan Industrial Technology Research Institute Stringed instrument and manufacturing method thereof
JP2013018146A (en) * 2011-07-08 2013-01-31 Sony Corp Structure and production method therefor
JPWO2013132840A1 (en) * 2012-03-09 2015-07-30 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
WO2013132840A1 (en) * 2012-03-09 2013-09-12 パナソニック株式会社 Method of manufacturing three-dimensional sculpture
JP5599957B2 (en) * 2012-03-09 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
KR101648442B1 (en) * 2012-03-09 2016-08-16 파나소닉 아이피 매니지먼트 가부시키가이샤 Method of manufacturing three-dimensional sculpture
KR20140116496A (en) * 2012-03-09 2014-10-02 파나소닉 주식회사 Method of manufacturing three-dimensional sculpture
US9687911B2 (en) 2012-03-09 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
WO2014010144A1 (en) * 2012-07-09 2014-01-16 パナソニック株式会社 Method for manufacturing three-dimensional molding
CN104428084A (en) * 2012-07-09 2015-03-18 松下知识产权经营株式会社 Method for manufacturing three-dimensional molding
US9597836B2 (en) 2012-07-09 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
JPWO2014010144A1 (en) * 2012-07-09 2016-06-20 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
CN104428084B (en) * 2012-07-09 2016-08-31 松下知识产权经营株式会社 The manufacture method of three dimensional structure
JP2014184659A (en) * 2013-03-25 2014-10-02 Honda Motor Co Ltd Method for forming three-dimensionally shaped object
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US9975296B2 (en) 2014-02-10 2018-05-22 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
JP2015182419A (en) * 2014-03-26 2015-10-22 日本電子株式会社 Three-dimensional lamination molding device and method
TWI726855B (en) * 2014-11-14 2021-05-11 日商尼康股份有限公司 Modeling apparatus and modeling method
TWI727479B (en) * 2014-11-14 2021-05-11 日商尼康股份有限公司 Modeling apparatus and modeling method
US20170304947A1 (en) * 2014-11-14 2017-10-26 Nikon Corporation Shaping apparatus and shaping method
JPWO2016075801A1 (en) * 2014-11-14 2017-09-28 株式会社ニコン Modeling apparatus and modeling method
CN111151749A (en) * 2014-11-14 2020-05-15 株式会社尼康 Molding device and molding method
CN111151750A (en) * 2014-11-14 2020-05-15 株式会社尼康 Molding device and molding method
CN111168066A (en) * 2014-11-14 2020-05-19 株式会社尼康 Molding device and molding method
US11911844B2 (en) 2014-11-14 2024-02-27 Nikon Corporation Shaping apparatus and shaping method
WO2016075801A1 (en) * 2014-11-14 2016-05-19 株式会社ニコン Shaping device and a shaping method
US20170304946A1 (en) * 2014-11-14 2017-10-26 Nikon Corporation Shaping apparatus and shaping method
US11806810B2 (en) 2014-11-14 2023-11-07 Nikon Corporation Shaping apparatus and shaping method
US11161202B2 (en) 2014-11-14 2021-11-02 Nikon Corporation Shaping apparatus and shaping method
JP2021045887A (en) * 2019-09-18 2021-03-25 株式会社Screenホールディングス Three-dimensional molding manufacturing apparatus and three-dimensional molding manufacturing method
WO2021246098A1 (en) * 2020-06-01 2021-12-09 株式会社松浦機械製作所 Production method for three-dimensional shaped object and three-dimensional shaped object obtained by said method
JP2021188098A (en) * 2020-06-01 2021-12-13 株式会社松浦機械製作所 Production method of three-dimensional molded article and three-dimensional molded article by the method
JP7017709B1 (en) 2020-11-06 2022-02-09 地方独立行政法人東京都立産業技術研究センター 3D shape model manufacturing equipment, 3D shape model manufacturing method using additional manufacturing equipment, and 3D shape model manufacturing program using additional manufacturing equipment
JP2022075175A (en) * 2020-11-06 2022-05-18 地方独立行政法人東京都立産業技術研究センター Manufacturing device for three-dimensional shaped object, method for manufacturing three-dimensional shaped object by additive manufacturing device, and program for manufacturing three-dimensional shaped object using additive manufacturing device
JP2021121310A (en) * 2021-02-05 2021-08-26 戎屋化学工業株式会社 Container with applicator

Similar Documents

Publication Publication Date Title
Kumar et al. Selective laser sintering
RU2657897C2 (en) Method for melting powder, comprising heating of area adjacent to bath
JP6626033B2 (en) Apparatus and method for selective laser sintering of objects with voids
CN109622954B (en) Laminated molding device and method for manufacturing laminated molded article
US20200180029A1 (en) Heat treatment to anneal residual stresses during additive manufacturing
JP2003321704A (en) Lamination shaping method and lamination shaping apparatus used in the same
JP6483551B2 (en) Powder bed fusion unit
JP2020505251A (en) Additive manufacturing equipment combining electron beam selective melting and electron beam cutting
JP5826430B1 (en) Three-dimensional modeling apparatus and manufacturing method of three-dimensional shaped object
EP2319641B1 (en) Method to apply multiple materials with selective laser melting on a 3D article
WO2019091086A1 (en) Metal fine porous structure forming method based on selective laser melting
CN107848202B (en) Method and device for producing a three-dimensional object
KR20150115596A (en) Device and method for forming a 3-dimensional shaped object
US20110316178A1 (en) Method And Apparatus For Making Products By Sintering And/Or Melting
JP2005533172A (en) Method for manufacturing a three-dimensional molded product in a laser material processing unit or an optical modeling unit
CN108290216B (en) Powder for 3D printing and 3D printing method
JP2006257463A (en) Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor
JP2019127029A (en) Method for additionally producing at least one three-dimentional object
JP4739507B2 (en) 3D modeling equipment
CN110027212B (en) Method for operating a device for additive production of three-dimensional objects
CN111790908A (en) Method for manufacturing layered product, layered product manufacturing apparatus, and layered product
JP2004284025A (en) Laminate shaping method and laminate shaping apparatus
WO2018079626A1 (en) Three-dimensional printing apparatus and method for producing three-dimensional printed object
JP2020084195A (en) Additive manufacturing apparatus, additive manufacturing method and additive manufacturing article
JP2010052318A (en) Light shaping method