WO2022176190A1 - Heat-storage material composition and heat-storage device - Google Patents

Heat-storage material composition and heat-storage device Download PDF

Info

Publication number
WO2022176190A1
WO2022176190A1 PCT/JP2021/006581 JP2021006581W WO2022176190A1 WO 2022176190 A1 WO2022176190 A1 WO 2022176190A1 JP 2021006581 W JP2021006581 W JP 2021006581W WO 2022176190 A1 WO2022176190 A1 WO 2022176190A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
sugar alcohol
storage material
material composition
compound
Prior art date
Application number
PCT/JP2021/006581
Other languages
French (fr)
Japanese (ja)
Inventor
知卓 輪島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/006581 priority Critical patent/WO2022176190A1/en
Priority to JP2021539859A priority patent/JP6949290B1/en
Publication of WO2022176190A1 publication Critical patent/WO2022176190A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/06Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen
    • C09K15/08Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen containing a phenol or quinone moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a heat storage material composition and a heat storage device including the same.
  • a latent heat storage material is a heat storage material that uses the latent heat that is absorbed or released when a substance undergoes a phase transition. Since the latent heat storage material can absorb or release a large amount of thermal energy at the time of phase transition, it is expected to construct a highly efficient heat storage device using the latent heat storage material.
  • Patent Document 1 describes that a heat storage material composition containing a sugar alcohol, an antioxidant, and a nucleating agent is stable against heat history, and the sugar alcohol has good crystallization properties.
  • Patent Document 2 describes that an antioxidant may be added to a heat storage material composition containing an aqueous solution in which a sugar alcohol and water-soluble salts are dissolved.
  • sugar alcohol liquid deteriorates more quickly at low temperatures than sugar alcohol that is not dissolved or dispersed in water (hereinafter sometimes referred to as "sugar alcohol simple substance").
  • sugar alcohol simple substance a sugar alcohol that is not dissolved or dispersed in water
  • the mechanism by which the sugar alcohol alone deteriorates is different from the mechanism by which the sugar alcohol solution deteriorates, and even if the method is effective for suppressing the deterioration of the sugar alcohol alone (for example, Patent Document 1). , indicates that it is not always an effective method for suppressing the deterioration of the sugar alcohol solution.
  • the antioxidant described in Patent Document 2 is used to suppress oxidation of the sugar alcohol by oxygen present in the environment in which the heat storage material composition is used. Therefore, when the sugar alcohol solution is used in an oxygen-blocked environment, it is considered that the sugar alcohol solution does not deteriorate due to oxidation even if the sugar alcohol solution does not contain an antioxidant.
  • the present inventors have found that if the sugar alcohol solution is heated for a long period of time in an oxygen-blocked environment, the sugar alcohol solution may deteriorate, and that the metal member included in the heat storage device using the sugar alcohol was found to corrode. Deterioration of the sugar-alcohol solution is considered to lead to deterioration in heat storage performance, leading to shortened life of the heat storage device.
  • An object of the present disclosure is to provide a heat storage material composition capable of suppressing deterioration due to long-term heating, and a heat storage device including the same.
  • the heat storage material composition of the present disclosure is a sugar alcohol liquid containing sugar alcohol and water; and a compound having one phenolic hydroxyl group in the molecule.
  • the heat storage material composition of the present disclosure deterioration of the heat storage material composition due to long-term heating can be suppressed, so that the life of the heat storage device can be extended.
  • the heat storage material composition of the present embodiment comprises a sugar alcohol liquid containing sugar alcohol and water, and a compound having one phenolic hydroxyl group in the molecule (hereinafter sometimes referred to as "compound (I)"). ,including.
  • the heat storage material composition may further contain additives such as corrosion inhibitors, supercooling inhibitors, coloring agents, or antioxidants other than compound (I).
  • the heat storage material composition contains the sugar alcohol liquid and the compound (I), even when the heat storage material composition is heated for a long period of time, the heat storage material composition is discolored and the pH of the heat storage material composition is lowered. It is possible to suppress the deterioration of the heat storage material composition. The reason for this is presumed as follows.
  • the heat applied for the heating breaks the molecular chains of the sugar alcohol, and the radicals generated by this breaking further break other molecular chains, causing a chain reaction.
  • the chain reaction decomposes the sugar alcohol and causes the generation of organic acids such as formic acid. Therefore, as the chain reaction progresses, the organic acid accumulates in the sugar alcohol solution. This is thought to cause deterioration of the sugar-alcohol liquid, such as discoloration of the sugar-alcohol liquid and a decrease in pH of the sugar-alcohol liquid.
  • compound (I) converts radicals generated by heat applied for heating. Because it can be captured, chain reactions are less likely to occur. As a result, even if the heat storage material composition is heated for a long period of time, the decomposition of the sugar alcohol and the generation of the organic acid can be suppressed. It is thought that the deterioration of the heat storage material composition such as the deterioration of the heat storage material composition can be suppressed. By suppressing deterioration of the heat storage material composition, it can be expected that stable heat storage performance can be obtained over a long period of time. In addition, by suppressing the decrease in the pH of the heat storage material composition, it is possible to suppress corrosion of metal members included in the heat storage device using the heat storage material composition, so that the life of the heat storage device can be extended. be able to.
  • the heat storage material composition can be prepared by mixing the sugar alcohol liquid and compound (I), and is preferably prepared by adding compound (I) to the sugar alcohol liquid.
  • sugar alcohol liquid contains sugar alcohol and water.
  • the sugar-alcohol liquid may be a state in which part or all of the sugar alcohol is dissolved in water, or part or all of the sugar alcohol is dispersed.
  • the sugar alcohol liquid is preferably an aqueous solution in which all the sugar alcohol is dissolved in water.
  • the sugar alcohol is not particularly limited as long as it is a compound known as a latent heat storage material.
  • sugar alcohols include erythritol, mannitol, xylitol, sorbitol, maltitol, dulcitol, lactitol, palatinit and the like. Among these, erythritol, mannitol, xylitol, and dulcitol are preferred, and erythritol is more preferred, since they have a large amount of heat storage per unit volume when used as a sugar alcohol solution.
  • One or two or more sugar alcohols may be contained in the sugar alcohol liquid.
  • the concentration of the sugar alcohol in the sugar alcohol liquid is not particularly limited, but is usually 30% by weight or more, may be 40% by weight or more, preferably 50% by weight or more, and is 60% by weight or more. is more preferable, and may be 65% by weight or more.
  • the sugar alcohol concentration in the sugar alcohol liquid is usually 90% by weight or less, preferably 85% by weight or less, more preferably 80% by weight or less, and may be 75% by weight or less. When two or more sugar alcohols are contained in the sugar alcohol liquid, the sugar alcohol concentration is calculated based on the total weight of all sugar alcohols contained in the sugar alcohol liquid.
  • the concentration of the sugar alcohol in the heat storage material composition may be adjusted so as to obtain the desired heat storage performance. It is preferably 45% by weight or more, more preferably 50% by weight or more, and may be 60% by weight or more.
  • the concentration of the sugar alcohol in the heat storage material composition is usually 90% by weight or less, preferably 85% by weight or less, more preferably 80% by weight or less, and may be 75% by weight or less. .
  • the sugar alcohol concentration is calculated based on the total weight of all sugar alcohols contained in the heat storage material composition.
  • Water used for the sugar alcohol solution includes, for example, pure water, ion-exchanged water, distilled water, reverse osmosis water, and tap water, and one or more of these can be used.
  • the sugar alcohol liquid can be prepared by mixing water and sugar alcohol, and is preferably prepared by adding sugar alcohol to water.
  • Compound (I) is a compound having one phenolic hydroxyl group in the molecule.
  • a phenolic hydroxyl group refers to a hydroxyl group bonded to a carbon atom constituting a benzene ring.
  • Compound (I) has one phenolic hydroxyl group.
  • a compound having two or more phenolic hydroxyl groups has high reactivity, and when added to a sugar alcohol solution, it reacts with the sugar alcohol and polymerizes, so it hardly contributes to suppression of deterioration of the heat storage material composition.
  • Compound (I) may have one benzene ring to which a phenolic hydroxyl group is bonded in the molecule, and may have a benzene ring in addition to the benzene ring.
  • Compound (I) preferably has one benzene ring in its molecule.
  • the carbon atoms other than the carbon atom to which the phenolic hydroxyl group is bonded are alkyl groups such as methyl group, ethyl group, propyl group, and butyl group, And, an organic group such as an alkoxy group such as a methoxy group and an ethoxy group may be bonded.
  • compound (I) examples include methoxyphenols such as 2-methoxyphenol and 4-methoxyphenol, 2,6-dimethoxyphenol, 2-t-butyl-4-methoxyphenol, cresol, and phenol.
  • the compound (I) contained in the heat storage material composition may be one kind, or two or more kinds.
  • Compound (I) contained in the heat storage material composition is not particularly limited, but is usually 0.003 mol or more, preferably 0.005 mol or more, preferably 0.007 mol, per 1 mol of sugar alcohol. It is more preferably 0.009 mol or more, and is usually 0.025 mol or less, more preferably 0.020 mol or less, and 0.018 mol or less. is more preferable, and may be 0.015 mol or less.
  • the content of compound (I) is calculated based on the total weight of all compounds (I) contained in the heat storage material composition. If the content of compound (I) is within the above range, it is easy to suppress deterioration of the heat storage material composition when heated for a long period of time.
  • the heat storage material composition may contain an additive that is a compound other than the sugar alcohol liquid and compound (I).
  • additives include corrosion inhibitors, supercooling inhibitors, coloring agents, and antioxidants other than compound (I).
  • Corrosion inhibitors include, for example, chromates, phosphates, sodium nitrites, silicates, organic amines, and the like.
  • supercooling inhibitors include metal salts or organic salts of fatty acids such as stearates, palmitates, and behenates.
  • Colorants include known pigments or dyes.
  • Antioxidants other than compound (I) include known sulfur-based antioxidants, phosphorus-based antioxidants, and amine-based antioxidants.
  • the heat storage device of this embodiment includes a heat storage material composition.
  • the heat storage device includes a container for housing the heat storage material composition, and a heat exchange component for transferring heat from the outside to the heat storage material composition or for transferring the heat of the heat storage material composition to the outside. be able to.
  • the container and heat exchange parts with which the heat storage material composition is in contact are sometimes made of metal members made of metal such as aluminum, aluminum alloy, iron alloy, or copper.
  • metal members made of metal such as aluminum, aluminum alloy, iron alloy, or copper.
  • generation of organic acid and decrease in pH of the heat storage material composition are suppressed even when heated for a long period of time. can be suppressed.
  • Detection of amount of metal Detection of metals in the sugar alcohol solution after heat treatment and detection of metals in the heat storage material composition after heat treatment were performed by plasma emission spectroscopy using "SPS-3100" manufactured by SII Nano Technology Co., Ltd. by analysis.
  • a sugar alcohol solution (a) (concentration of sugar alcohol: 80% by weight) was prepared by mixing 40 g of erythritol as a sugar alcohol and 10 g of water. The heating treatment was carried out under the heating treatment condition (1) in which the temperature was maintained at 5 hours. The color of the sugar alcohol liquid (a) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
  • a heat storage material composition (E1) was prepared by adding 0.38 g of 4-methoxyphenol as the compound (I) to the sugar alcohol liquid (a) prepared in the same manner as in Reference Example 1, and then placed in a pressurized sealed container. A heating treatment was performed under the heating treatment condition (2) in which the mixture was placed in a thermostat set at a temperature of 90° C. and held for 30 days. The color of the heat storage material composition (E1) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
  • a heat storage material composition (E2) was prepared in the same manner as the heat storage material composition (E1) of Example 1, except that 2-methoxyphenol was used as compound (I) instead of 4-methoxyphenol. prepared and heat treated. After the heat treatment, the heat storage material composition (E2) was visually checked for color, detected formic acid, and measured for pH. Table 1 shows the results.
  • a heat storage material composition (C1) was prepared by adding 0.27 g of hydroquinone to the sugar alcohol liquid (a) prepared by the same procedure as in Reference Example 1, and placed in a pressure-sealed container at a set temperature of 90°C. The heating treatment was performed under the heating treatment condition (2) of holding for 30 days in a constant temperature bath. The color of the heat storage material composition (C1) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
  • a heat storage material composition (C2) was prepared by adding 0.42 g of methoxyhydroquinone to the sugar alcohol liquid (a) prepared by the same procedure as in Reference Example 1, and placed in a pressure-sealed container, and the temperature was set to 90°C. The heating treatment was performed under the heating treatment condition (2) of holding for 30 days in a constant temperature bath. The color of the heat storage material composition (C2) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
  • the heat storage material composition containing the sugar alcohol liquid and compound (I) was colorless and transparent even when heated for a long period of time, and the decrease in pH was suppressed (Example 1 and 2).
  • the sugar alcohol solution containing no compound (I) was heated for a short period of time, deterioration was suppressed (Reference Example 1).
  • the color turned brown and the pH decreased (Comparative Examples 1 and 2). Since the heat storage material composition containing the compound (I) can suppress deterioration of the heat storage material composition due to long-term heating, the heat storage material composition containing the compound (I) stabilizes the heat storage performance over a long period of time. It is thought that it can be made into
  • the heat storage material composition turned black and the pH decreased (Comparative Examples 3 and 4). From the color change of the heat storage material composition, it is considered that the compound having multiple phenolic hydroxyl groups forms a reaction product generated by the reaction with the sugar alcohol, so it contributes to suppressing the deterioration of the heat storage material composition. is considered difficult.
  • a sugar alcohol solution (b) (concentration of sugar alcohol: 60% by weight) was prepared by mixing 30 g of erythritol as a sugar alcohol and 20 g of water. The heating treatment was carried out under the heating treatment condition (4) of holding for 14 days at . The color of the sugar alcohol liquid (b) after the heat treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
  • a heat storage material composition (E3) was prepared by adding 0.38 g of 4-methoxyphenol as the compound (I) to the sugar alcohol liquid (a) prepared in the same manner as in Reference Example 1, and placed in a pressure sealed container. A heating treatment was performed under the heating treatment condition (4) in which the temperature was set to 90° C. and held for 14 days in a constant temperature bath. The color of the heat storage material composition (E3) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
  • a heat storage material composition (E4) was prepared by adding 0.38 g of 4-methoxyphenol as the compound (I) to the sugar alcohol liquid (b) prepared in the same manner as in Comparative Example 6, and placed in a pressure-sealed container. A heating treatment was performed under the heating treatment condition (4) in which the temperature was set to 90° C. and held for 14 days in a constant temperature bath. The color of the heat storage material composition (E4) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
  • a sugar alcohol liquid (c) (concentration of sugar alcohol: 40% by weight) was prepared by mixing 20 g of erythritol as a sugar alcohol and 30 g of water.
  • a heat storage material composition (E5) was prepared by adding 0.38 g of 4-methoxyphenol as compound (I) to this sugar alcohol liquid (c), placed in a pressurized sealed container, and set to a temperature of 90°C. The heating treatment was performed under the heating treatment condition (4) of holding for 14 days in a constant temperature bath. The color of the heat storage material composition (E5) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
  • the heat storage material composition containing a sugar alcohol solution with a sugar alcohol concentration of 40% to 80% by weight and compound (I) suppresses a decrease in pH even when heated for a long period of time. did it.
  • the heat storage material composition containing sugar alcohol solutions with sugar alcohol concentrations of 60% by weight and 80% by weight and compound (I) is excellent in suppressing discoloration and pH drop even when heated for a long period of time. rice field.
  • Example 6 A test piece of aluminum (Al), a test piece of iron (Fe), and a copper (Cu) test were applied to the heat storage material composition (E1) prepared in the same procedure as in Example 1 and placed in a pressure-sealed container. After performing a heating treatment under the heating treatment condition (2) in which the immersed piece was held for 30 days in a constant temperature bath with a set temperature of 90° C., the test piece was taken out. After the heating treatment, the heat storage material composition (E1) was visually checked for color, formic acid and metal were detected, and after cooling, the pH was measured. Table 3 shows the results.
  • the heat storage material composition containing the sugar alcohol solution and the compound (I) suppresses discoloration, accumulation of formic acid, and dissolution of the metal even when in contact with the metal for a long period of time under heating conditions. I was able to Therefore, in the heat storage device using the heat storage material composition containing the sugar alcohol liquid and the compound (I), it is possible to suppress the corrosion of the metal member included in the heat storage device, so that it is possible to extend the life of the heat storage device. can. In Comparative Example 7, it is considered that the pH did not decrease because hydroxide ions were generated as the test piece corroded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This heat-storage material composition comprises: a sugar alcohol solution comprising a sugar alcohol and water; and a compound having one phenolic hydroxyl group in the molecule.

Description

蓄熱材組成物及び蓄熱デバイスThermal storage material composition and thermal storage device
 本開示は、蓄熱材組成物及びそれを含む蓄熱デバイスに関する。 The present disclosure relates to a heat storage material composition and a heat storage device including the same.
 潜熱蓄熱材は、物質が相転移する際に吸収又は放出する潜熱を利用した蓄熱材である。潜熱蓄熱材は、相転移の際に大量の熱エネルギーを吸収又は放出できることから、潜熱蓄熱材を用いて高効率な蓄熱デバイスを構築することが期待されている。 A latent heat storage material is a heat storage material that uses the latent heat that is absorbed or released when a substance undergoes a phase transition. Since the latent heat storage material can absorb or release a large amount of thermal energy at the time of phase transition, it is expected to construct a highly efficient heat storage device using the latent heat storage material.
 潜熱蓄熱材の一種として、エリスリトール、マンニトール、及びキシリトール等の糖アルコールが知られており、この糖アルコールを含む蓄熱材組成物が、特許文献1(特開平10-102050号公報)及び特許文献2(特開2008-95042号公報)に開示されている。特許文献1には、糖アルコール、抗酸化剤、及び造核剤を含む蓄熱材組成物は、熱履歴に対して安定であり、糖アルコールの結晶化性が良好であることが記載されている。特許文献2には、糖アルコール及び水溶性の塩類を溶解した水溶液を含有する蓄熱材組成物に酸化防止剤を添加していてもよいことが記載されている。 Sugar alcohols such as erythritol, mannitol, and xylitol are known as a kind of latent heat storage material. (Japanese Unexamined Patent Application Publication No. 2008-95042). Patent Document 1 describes that a heat storage material composition containing a sugar alcohol, an antioxidant, and a nucleating agent is stable against heat history, and the sugar alcohol has good crystallization properties. . Patent Document 2 describes that an antioxidant may be added to a heat storage material composition containing an aqueous solution in which a sugar alcohol and water-soluble salts are dissolved.
特開平10-102050号公報JP-A-10-102050 特開2008-95042号公報JP-A-2008-95042
 本発明者は、糖アルコール液が、水に溶解又は分散していない糖アルコール(以下、「糖アルコール単体」ということがある。)に比較すると、低温で速やかに劣化することを確認した。このことは、糖アルコール単体が劣化するメカニズムと、糖アルコール液が劣化するメカニズムとは異なっており、糖アルコール単体の劣化を抑制するために有効な方法であっても(例えば、特許文献1)、糖アルコール液の劣化を抑制するために有効な方法であるとは限らないことを示している。 The present inventor confirmed that sugar alcohol liquid deteriorates more quickly at low temperatures than sugar alcohol that is not dissolved or dispersed in water (hereinafter sometimes referred to as "sugar alcohol simple substance"). This means that the mechanism by which the sugar alcohol alone deteriorates is different from the mechanism by which the sugar alcohol solution deteriorates, and even if the method is effective for suppressing the deterioration of the sugar alcohol alone (for example, Patent Document 1). , indicates that it is not always an effective method for suppressing the deterioration of the sugar alcohol solution.
 また、特許文献2に記載の酸化防止剤は、蓄熱材組成物を使用する環境下に存在する酸素によって、糖アルコールが酸化されることを抑制するために用いられていると考えられる。そのため、酸素が遮断された環境下において糖アルコール液を使用する場合には、当該糖アルコール液が酸化防止剤を含んでいなくても、酸化によって糖アルコールが劣化することはないと考えられる。しかしながら、本発明者は、酸素が遮断された環境下において糖アルコール液を長期間加温すると、糖アルコール液が劣化する場合があること、及び、糖アルコールを用いた蓄熱デバイスに含まれる金属部材が腐食する場合があることを確認した。糖アルコール液の劣化は、蓄熱性能の低下を招来し、蓄熱デバイスの低寿命化に繋がると考えられる。 In addition, it is believed that the antioxidant described in Patent Document 2 is used to suppress oxidation of the sugar alcohol by oxygen present in the environment in which the heat storage material composition is used. Therefore, when the sugar alcohol solution is used in an oxygen-blocked environment, it is considered that the sugar alcohol solution does not deteriorate due to oxidation even if the sugar alcohol solution does not contain an antioxidant. However, the present inventors have found that if the sugar alcohol solution is heated for a long period of time in an oxygen-blocked environment, the sugar alcohol solution may deteriorate, and that the metal member included in the heat storage device using the sugar alcohol was found to corrode. Deterioration of the sugar-alcohol solution is considered to lead to deterioration in heat storage performance, leading to shortened life of the heat storage device.
 本開示の目的は、長期間の加温による劣化を抑制することができる蓄熱材組成物、及びそれを含む蓄熱デバイスを提供することにある。 An object of the present disclosure is to provide a heat storage material composition capable of suppressing deterioration due to long-term heating, and a heat storage device including the same.
 本開示の蓄熱材組成物は、
 糖アルコール及び水を含む糖アルコール液と、
 分子内のフェノール性水酸基が1つである化合物と、を含む。
The heat storage material composition of the present disclosure is
a sugar alcohol liquid containing sugar alcohol and water;
and a compound having one phenolic hydroxyl group in the molecule.
 本開示の蓄熱材組成物によれば、長期間の加温による蓄熱材組成物の劣化を抑制することができるため、蓄熱デバイスの長寿命化を図ることができる。 According to the heat storage material composition of the present disclosure, deterioration of the heat storage material composition due to long-term heating can be suppressed, so that the life of the heat storage device can be extended.
 実施の形態1.
 (蓄熱材組成物)
 本実施の形態の蓄熱材組成物は、糖アルコール及び水を含む糖アルコール液と、分子内のフェノール性水酸基が1つである化合物(以下、「化合物(I)」ということがある。)と、を含む。蓄熱材組成物は、さらに、腐食防止剤、過冷却防止剤、着色剤、又は化合物(I)以外の酸化防止剤等の添加剤を含んでいてもよい。
Embodiment 1.
(Heat storage material composition)
The heat storage material composition of the present embodiment comprises a sugar alcohol liquid containing sugar alcohol and water, and a compound having one phenolic hydroxyl group in the molecule (hereinafter sometimes referred to as "compound (I)"). ,including. The heat storage material composition may further contain additives such as corrosion inhibitors, supercooling inhibitors, coloring agents, or antioxidants other than compound (I).
 蓄熱材組成物が糖アルコール液と化合物(I)とを含むことにより、当該蓄熱材組成物を長期間加温した場合においても、蓄熱材組成物が変色し、蓄熱材組成物のpHが低下するという蓄熱材組成物の劣化を抑制することができる。この理由は、次のように推測される。 Since the heat storage material composition contains the sugar alcohol liquid and the compound (I), even when the heat storage material composition is heated for a long period of time, the heat storage material composition is discolored and the pH of the heat storage material composition is lowered. It is possible to suppress the deterioration of the heat storage material composition. The reason for this is presumed as follows.
 糖アルコール液を長期間加温すると、加温のために加えられた熱が糖アルコールの分子鎖を切断し、この切断によって発生したラジカルがさらに別の分子鎖を切断するという連鎖反応が引き起こされる。連鎖反応は、糖アルコールを分解し、ギ酸等の有機酸を発生させる原因になることから、連鎖反応が進行すると糖アルコール液中に有機酸が蓄積する。これにより、糖アルコール液が変色したり、糖アルコール液のpHが低下したりする等の糖アルコール液の劣化が生じると考えられる。 When the sugar alcohol solution is heated for a long period of time, the heat applied for the heating breaks the molecular chains of the sugar alcohol, and the radicals generated by this breaking further break other molecular chains, causing a chain reaction. . The chain reaction decomposes the sugar alcohol and causes the generation of organic acids such as formic acid. Therefore, as the chain reaction progresses, the organic acid accumulates in the sugar alcohol solution. This is thought to cause deterioration of the sugar-alcohol liquid, such as discoloration of the sugar-alcohol liquid and a decrease in pH of the sugar-alcohol liquid.
 一方、本実施の形態の蓄熱材組成物のように、糖アルコール液と化合物(I)とが共存していると、加温のために加えられた熱によって発生するラジカルを化合物(I)が捕捉することができるため、連鎖反応が引き起こされにくい。これにより、蓄熱材組成物を長期間加温しても、糖アルコールの分解及び有機酸の発生を抑制することができるため、蓄熱材組成物が変色したり、蓄熱材組成物のpHが低下したりする等の蓄熱材組成物の劣化を抑制することができると考えられる。蓄熱材組成物の劣化を抑制することにより、長期間にわたって安定な蓄熱性能が得られることが期待できる。また、蓄熱材組成物のpHの低下を抑制することにより、蓄熱材組成物を用いた蓄熱デバイスに含まれる金属部材が腐食することを抑制することができるため、蓄熱デバイスの長寿命化を図ることができる。 On the other hand, when the sugar alcohol liquid and compound (I) coexist as in the heat storage material composition of the present embodiment, compound (I) converts radicals generated by heat applied for heating. Because it can be captured, chain reactions are less likely to occur. As a result, even if the heat storage material composition is heated for a long period of time, the decomposition of the sugar alcohol and the generation of the organic acid can be suppressed. It is thought that the deterioration of the heat storage material composition such as the deterioration of the heat storage material composition can be suppressed. By suppressing deterioration of the heat storage material composition, it can be expected that stable heat storage performance can be obtained over a long period of time. In addition, by suppressing the decrease in the pH of the heat storage material composition, it is possible to suppress corrosion of metal members included in the heat storage device using the heat storage material composition, so that the life of the heat storage device can be extended. be able to.
 蓄熱材組成物は、糖アルコール液と化合物(I)とを混合することによって調製することができ、糖アルコール液に化合物(I)を添加することによって調製することが好ましい。 The heat storage material composition can be prepared by mixing the sugar alcohol liquid and compound (I), and is preferably prepared by adding compound (I) to the sugar alcohol liquid.
 (糖アルコール液)
 糖アルコール液は、糖アルコールと水とを含む。糖アルコール液は、糖アルコールの一部又は全部が水に溶解していてもよく、糖アルコールの一部又は全部が分散している状態であってもよい。糖アルコール液は、糖アルコールがすべて水に溶解している水溶液であることが好ましい。
(sugar alcohol liquid)
The sugar alcohol liquid contains sugar alcohol and water. The sugar-alcohol liquid may be a state in which part or all of the sugar alcohol is dissolved in water, or part or all of the sugar alcohol is dispersed. The sugar alcohol liquid is preferably an aqueous solution in which all the sugar alcohol is dissolved in water.
 糖アルコールは、潜熱蓄熱材として公知の化合物であれば特に限定されない。糖アルコールは、例えば、エリスリトール、マンニトール、キシリトール、ソルビトール、マルチトール、ズルシトール、ラクチトール、パラチニット等が挙げられる。これらのうち、糖アルコール液としたときの単位体積当たりの蓄熱量が大きいことから、エリスリトール、マンニトール、キシリトール、ズルシトールが好ましく、エリスリトールがより好ましい。糖アルコール液に含まれる糖アルコールは、1種又は2種以上であってもよい。 The sugar alcohol is not particularly limited as long as it is a compound known as a latent heat storage material. Examples of sugar alcohols include erythritol, mannitol, xylitol, sorbitol, maltitol, dulcitol, lactitol, palatinit and the like. Among these, erythritol, mannitol, xylitol, and dulcitol are preferred, and erythritol is more preferred, since they have a large amount of heat storage per unit volume when used as a sugar alcohol solution. One or two or more sugar alcohols may be contained in the sugar alcohol liquid.
 糖アルコール液中の糖アルコールの濃度は、特に限定されないが、通常30重量%以上であり、40重量%以上であってもよく、50重量%以上であることが好ましく、60重量%以上であることがより好ましく、65重量%以上であってもよい。糖アルコール液中の糖アルコールの濃度は、通常90重量%以下であり、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、75重量%以下であってもよい。糖アルコール液中に2種以上の糖アルコールが含まれる場合、糖アルコールの濃度は、糖アルコール液に含まれる全ての糖アルコールの合計重量に基づいて算出する。 The concentration of the sugar alcohol in the sugar alcohol liquid is not particularly limited, but is usually 30% by weight or more, may be 40% by weight or more, preferably 50% by weight or more, and is 60% by weight or more. is more preferable, and may be 65% by weight or more. The sugar alcohol concentration in the sugar alcohol liquid is usually 90% by weight or less, preferably 85% by weight or less, more preferably 80% by weight or less, and may be 75% by weight or less. When two or more sugar alcohols are contained in the sugar alcohol liquid, the sugar alcohol concentration is calculated based on the total weight of all sugar alcohols contained in the sugar alcohol liquid.
 蓄熱材組成物中の糖アルコールの濃度は、所望する蓄熱性能が得られるように調整すればよいが、通常28重量%以上であり、35重量%以上であってもよく、40重量%以上であってもよく、45重量%以上であることが好ましく、50重量%以上であることがより好ましく、60重量%以上であってもよい。蓄熱材組成物中の糖アルコールの濃度は、通常90重量%以下であり、85重量%以下であることが好ましく、80重量%以下であることがより好ましく、75重量%以下であってもよい。蓄熱材組成物中に2種以上の糖アルコールが含まれる場合、糖アルコールの濃度は、蓄熱材組成物に含まれる全ての糖アルコールの合計重量に基づいて算出する。 The concentration of the sugar alcohol in the heat storage material composition may be adjusted so as to obtain the desired heat storage performance. It is preferably 45% by weight or more, more preferably 50% by weight or more, and may be 60% by weight or more. The concentration of the sugar alcohol in the heat storage material composition is usually 90% by weight or less, preferably 85% by weight or less, more preferably 80% by weight or less, and may be 75% by weight or less. . When two or more sugar alcohols are contained in the heat storage material composition, the sugar alcohol concentration is calculated based on the total weight of all sugar alcohols contained in the heat storage material composition.
 糖アルコール液に用いる水は、例えば、純水、イオン交換水、蒸留水、逆浸透水、水道水等を挙げることができ、これらのうちの1以上を用いることができる。 Water used for the sugar alcohol solution includes, for example, pure water, ion-exchanged water, distilled water, reverse osmosis water, and tap water, and one or more of these can be used.
 糖アルコール液は、水と糖アルコールとを混合することによって調製することができ、水に糖アルコールを添加することによって調製することが好ましい。 The sugar alcohol liquid can be prepared by mixing water and sugar alcohol, and is preferably prepared by adding sugar alcohol to water.
 (化合物(I))
 化合物(I)は、分子内のフェノール性水酸基が1つである化合物である。本明細書において、フェノール性水酸基は、ベンゼン環を構成する炭素原子に結合した水酸基をいう。化合物(I)が有するフェノール性水酸基は、1つである。フェノール性水酸基の数が2以上の化合物は反応性が高く、糖アルコール液に添加すると糖アルコールと反応して重合するため、蓄熱材組成物の劣化の抑制には寄与しにくい。
(Compound (I))
Compound (I) is a compound having one phenolic hydroxyl group in the molecule. As used herein, a phenolic hydroxyl group refers to a hydroxyl group bonded to a carbon atom constituting a benzene ring. Compound (I) has one phenolic hydroxyl group. A compound having two or more phenolic hydroxyl groups has high reactivity, and when added to a sugar alcohol solution, it reacts with the sugar alcohol and polymerizes, so it hardly contributes to suppression of deterioration of the heat storage material composition.
 化合物(I)は、分子内に、フェノール性水酸基が結合しているベンゼン環を1つ有していればよく、当該ベンゼン環以外にもさらにベンゼン環を有していてもよい。化合物(I)が分子内に有するベンゼン環は1つであることが好ましい。 Compound (I) may have one benzene ring to which a phenolic hydroxyl group is bonded in the molecule, and may have a benzene ring in addition to the benzene ring. Compound (I) preferably has one benzene ring in its molecule.
 フェノール性水酸基が結合しているベンゼン環を構成する炭素原子のうち、フェノール性水酸基が結合した炭素原子以外の炭素原子には、メチル基、エチル基、プロピル基、及びブチル基等のアルキル基、及び、メトキシ基及びエトキシ基等のアルコキシ基等の有機基が結合していてもよい。 Of the carbon atoms constituting the benzene ring to which the phenolic hydroxyl group is bonded, the carbon atoms other than the carbon atom to which the phenolic hydroxyl group is bonded are alkyl groups such as methyl group, ethyl group, propyl group, and butyl group, And, an organic group such as an alkoxy group such as a methoxy group and an ethoxy group may be bonded.
 化合物(I)としては、例えば、2-メトキシフェノール及び4-メトキシフェノール等のメトキシフェノール、2,6-ジメトキシフェノール、2-t-ブチル-4-メトキシフェノール、クレゾール、フェノール等が挙げられる。 Examples of compound (I) include methoxyphenols such as 2-methoxyphenol and 4-methoxyphenol, 2,6-dimethoxyphenol, 2-t-butyl-4-methoxyphenol, cresol, and phenol.
 蓄熱材組成物に含まれる化合物(I)は、1種であってもよく、2種以上であってもよい。 The compound (I) contained in the heat storage material composition may be one kind, or two or more kinds.
 蓄熱材組成物に含まれる化合物(I)は、特に限定されないが、糖アルコール1モルに対して、通常0.003モル以上であり、0.005モル以上であることが好ましく、0.007モル以上であることがより好ましく、0.009モル以上であってもよく、また、通常0.025モル以下であり、0.020モル以下であることがより好ましく、0.018モル以下であることがより好ましく、0.015モル以下であってもよい。蓄熱材組成物中に2種以上の化合物(I)が含まれる場合、化合物(I)の含有量は、蓄熱材組成物に含まれる全ての化合物(I)の合計重量に基づいて算出する。化合物(I)の含有量を上記の範囲内であれば、長期間加温した場合の蓄熱材組成物の劣化を抑制しやすい。 Compound (I) contained in the heat storage material composition is not particularly limited, but is usually 0.003 mol or more, preferably 0.005 mol or more, preferably 0.007 mol, per 1 mol of sugar alcohol. It is more preferably 0.009 mol or more, and is usually 0.025 mol or less, more preferably 0.020 mol or less, and 0.018 mol or less. is more preferable, and may be 0.015 mol or less. When two or more compounds (I) are contained in the heat storage material composition, the content of compound (I) is calculated based on the total weight of all compounds (I) contained in the heat storage material composition. If the content of compound (I) is within the above range, it is easy to suppress deterioration of the heat storage material composition when heated for a long period of time.
 (添加剤)
 蓄熱材組成物は、糖アルコール液及び化合物(I)以外の化合物である添加剤を含んでいてもよい。添加剤としては、腐食防止剤、過冷却防止剤、着色剤、又は化合物(I)以外の酸化防止剤等が挙げられる。腐食防止剤としては、例えば、クロム酸塩、リン酸塩、亜硝酸ナトリウム、珪酸塩、及び有機アミン等が挙げられる。過冷却防止剤としては、例えば、ステアリン酸塩、パルミチン酸塩、又はベヘン酸塩等の脂肪酸の金属塩又は有機塩等が挙げられる。着色剤としては、公知の顔料又は染料が挙げられる。化合物(I)以外の酸化防止剤としては、公知の硫黄系酸化防止剤、リン系酸化防止剤、及びアミン系酸化防止剤が挙げられる。
(Additive)
The heat storage material composition may contain an additive that is a compound other than the sugar alcohol liquid and compound (I). Examples of additives include corrosion inhibitors, supercooling inhibitors, coloring agents, and antioxidants other than compound (I). Corrosion inhibitors include, for example, chromates, phosphates, sodium nitrites, silicates, organic amines, and the like. Examples of supercooling inhibitors include metal salts or organic salts of fatty acids such as stearates, palmitates, and behenates. Colorants include known pigments or dyes. Antioxidants other than compound (I) include known sulfur-based antioxidants, phosphorus-based antioxidants, and amine-based antioxidants.
 (蓄熱デバイス)
 本実施の形態の蓄熱デバイスは、蓄熱材組成物を含む。蓄熱デバイスは、蓄熱材組成物を収容するための容器、及び、蓄熱材組成物に外部からの熱を伝達する又は蓄熱材組成物の熱を外部に伝達するための熱交換用部品等を含むことができる。
(Heat storage device)
The heat storage device of this embodiment includes a heat storage material composition. The heat storage device includes a container for housing the heat storage material composition, and a heat exchange component for transferring heat from the outside to the heat storage material composition or for transferring the heat of the heat storage material composition to the outside. be able to.
 蓄熱材組成物が接触する容器及び熱交換用部品は、アルミニウム、アルミニウム合金、鉄合金、又は銅等の金属によって形成された金属部材によって形成されていることがある。この場合、蓄熱材組成物に有機酸が発生したり、pHが低下したりすると、金属部材が腐食しやすい。本実施の形態の蓄熱材組成物は、長期間の加温によっても有機酸の発生及び蓄熱材組成物のpHの低下が抑制されているため、蓄熱デバイスに用いた場合にも金属部材が腐食することを抑制することができる。 The container and heat exchange parts with which the heat storage material composition is in contact are sometimes made of metal members made of metal such as aluminum, aluminum alloy, iron alloy, or copper. In this case, if an organic acid is generated in the heat storage material composition or if the pH is lowered, the metal member is likely to corrode. In the heat storage material composition of the present embodiment, generation of organic acid and decrease in pH of the heat storage material composition are suppressed even when heated for a long period of time. can be suppressed.
 以下、実施例及び比較例等により、本開示をさらに詳しく説明するが、本開示はこれらの例に限定されるものではない。 The present disclosure will be described in more detail below with examples, comparative examples, etc., but the present disclosure is not limited to these examples.
 [pHの測定]
 加温処理後の糖アルコール液のpH、及び、加温処理後の蓄熱材組成物のpHは、株式会社堀場製作所製「LAQUAtwin-pH-11B」を用いて測定した。
[Measurement of pH]
The pH of the sugar alcohol solution after the heat treatment and the pH of the heat storage material composition after the heat treatment were measured using "LAQUAtwin-pH-11B" manufactured by Horiba, Ltd.
 [ギ酸の検出]
 加温処理後の糖アルコール液中のギ酸の検出、及び、加温処理後の蓄熱材組成物中のギ酸の検出は、日本ダイオネクス株式会社製「イオンクロマトグラフICS-1600型」を用いたイオンクロマトグラフ分析によって行った。
[Detection of formic acid]
The detection of formic acid in the sugar alcohol solution after the heat treatment and the detection of formic acid in the heat storage material composition after the heat treatment were carried out using an ion chromatograph ICS-1600 manufactured by Nippon Dionex Co. A chromatographic analysis was performed.
 [金属量の検出]
 加温処理後の糖アルコール液中の金属の検出、及び、加温処理後の蓄熱材組成物中の金属の検出は、SIIナノテクノロジー株式会社製「SPS-3100型」を用いたプラズマ発光分光分析によって行った。プラズマ発光分光分析によって検出する金属は、アルミニウム(Al)、鉄(Fe)、及び銅(Cu)とした。
[Detection of amount of metal]
Detection of metals in the sugar alcohol solution after heat treatment and detection of metals in the heat storage material composition after heat treatment were performed by plasma emission spectroscopy using "SPS-3100" manufactured by SII Nano Technology Co., Ltd. by analysis. The metals detected by plasma emission spectroscopy were aluminum (Al), iron (Fe), and copper (Cu).
 〔参考例1〕
 糖アルコールとしてのエリスリトール40gと水10gとを混合した糖アルコール液(a)(糖アルコールの濃度:80重量%)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で5時間保持する加温処理条件(1)で加温処理を行った。加温処理後の糖アルコール液(a)について、色を目視で確認し、ギ酸の検出を行い、放冷の後にpHの測定を行った。結果を表1に示す。
[Reference Example 1]
A sugar alcohol solution (a) (concentration of sugar alcohol: 80% by weight) was prepared by mixing 40 g of erythritol as a sugar alcohol and 10 g of water. The heating treatment was carried out under the heating treatment condition (1) in which the temperature was maintained at 5 hours. The color of the sugar alcohol liquid (a) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
 〔比較例1〕
 参考例1と同様の手順で調製した糖アルコール液(a)を加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(2)で加温処理を行った。加温処理後の糖アルコール液(a)について、色を目視で確認し、ギ酸の検出を行い、放冷の後にpHの測定を行った。結果を表1に示す。
[Comparative Example 1]
The sugar alcohol solution (a) prepared by the same procedure as in Reference Example 1 is placed in a pressure-sealed container and heated under the heating condition (2) of holding for 30 days in a constant temperature bath with a set temperature of 90°C. did The color of the sugar alcohol liquid (a) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
 〔比較例2〕
 参考例1と同様の手順で調製した糖アルコール液(a)を、窒素置換した加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(3)で加温処理を行った。加温処理後の糖アルコール液(a)について、色を目視で確認し、ギ酸の検出を行い、放冷の後にpHの測定を行った。結果を表1に示す。
[Comparative Example 2]
Heating treatment conditions (3) in which the sugar alcohol solution (a) prepared by the same procedure as in Reference Example 1 is placed in a pressure-sealed container purged with nitrogen and kept in a constant temperature bath with a set temperature of 90° C. for 30 days. was subjected to heat treatment. The color of the sugar alcohol liquid (a) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
 〔実施例1〕
 参考例1と同様の手順で調製した糖アルコール液(a)に、化合物(I)としての4-メトキシフェノール0.38gを添加して蓄熱材組成物(E1)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(2)で加温処理を行った。加温処理後の蓄熱材組成物(E1)について、色を目視で確認し、ギ酸の検出を行い、放冷の後にpHの測定を行った。結果を表1に示す。
[Example 1]
A heat storage material composition (E1) was prepared by adding 0.38 g of 4-methoxyphenol as the compound (I) to the sugar alcohol liquid (a) prepared in the same manner as in Reference Example 1, and then placed in a pressurized sealed container. A heating treatment was performed under the heating treatment condition (2) in which the mixture was placed in a thermostat set at a temperature of 90° C. and held for 30 days. The color of the heat storage material composition (E1) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
 〔実施例2〕
 4-メトキシフェノールに代えて、化合物(I)としての2-メトキシフェノールを用いたこと以外は、実施例1の蓄熱材組成物(E1)の調製と同様にして蓄熱材組成物(E2)を調製し、加温処理を行った。加温処理後の蓄熱材組成物(E2)について、色を目視で確認し、ギ酸の検出、及びpHの測定を行った。結果を表1に示す。
[Example 2]
A heat storage material composition (E2) was prepared in the same manner as the heat storage material composition (E1) of Example 1, except that 2-methoxyphenol was used as compound (I) instead of 4-methoxyphenol. prepared and heat treated. After the heat treatment, the heat storage material composition (E2) was visually checked for color, detected formic acid, and measured for pH. Table 1 shows the results.
 〔比較例3〕
 参考例1と同様の手順で調製した糖アルコール液(a)にヒドロキノン0.27gを添加して蓄熱材組成物(C1)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(2)で加温処理を行った。加温処理後の蓄熱材組成物(C1)について、色を目視で確認し、ギ酸の検出を行い、放冷の後にpHの測定を行った。結果を表1に示す。
[Comparative Example 3]
A heat storage material composition (C1) was prepared by adding 0.27 g of hydroquinone to the sugar alcohol liquid (a) prepared by the same procedure as in Reference Example 1, and placed in a pressure-sealed container at a set temperature of 90°C. The heating treatment was performed under the heating treatment condition (2) of holding for 30 days in a constant temperature bath. The color of the heat storage material composition (C1) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
 〔比較例4〕
 参考例1と同様の手順で調製した糖アルコール液(a)にメトキシヒドロキノン0.42gを添加して蓄熱材組成物(C2)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(2)で加温処理を行った。加温処理後の蓄熱材組成物(C2)について、色を目視で確認し、ギ酸の検出を行い、放冷の後にpHの測定を行った。結果を表1に示す。
[Comparative Example 4]
A heat storage material composition (C2) was prepared by adding 0.42 g of methoxyhydroquinone to the sugar alcohol liquid (a) prepared by the same procedure as in Reference Example 1, and placed in a pressure-sealed container, and the temperature was set to 90°C. The heating treatment was performed under the heating treatment condition (2) of holding for 30 days in a constant temperature bath. The color of the heat storage material composition (C2) after the heating treatment was visually confirmed, formic acid was detected, and the pH was measured after standing to cool. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、糖アルコール液及び化合物(I)を含む蓄熱材組成物は、長期間加温した場合においても、無色透明であり、pHの低下が抑制されていた(実施例1及び2)。一方、化合物(I)を含まない糖アルコール液は、短期間加温した場合には劣化が抑制されたが(参考例1)、長期間加温した場合には、酸素が存在する条件下であっても、酸素を遮断した窒素雰囲気下であっても、褐色に変化し、pHが低下した(比較例1及び2)。蓄熱材組成物が化合物(I)を含むことにより、長期間の加温による蓄熱材組成物の劣化を抑制できることから、化合物(I)を含む蓄熱材組成物は、長期間にわたって蓄熱性能を安定化できると考えられる。 As shown in Table 1, the heat storage material composition containing the sugar alcohol liquid and compound (I) was colorless and transparent even when heated for a long period of time, and the decrease in pH was suppressed (Example 1 and 2). On the other hand, when the sugar alcohol solution containing no compound (I) was heated for a short period of time, deterioration was suppressed (Reference Example 1). Even in a nitrogen atmosphere in which oxygen was cut off, the color turned brown and the pH decreased (Comparative Examples 1 and 2). Since the heat storage material composition containing the compound (I) can suppress deterioration of the heat storage material composition due to long-term heating, the heat storage material composition containing the compound (I) stabilizes the heat storage performance over a long period of time. It is thought that it can be made into
 また、フェノール性水酸基を複数有する化合物を添加した場合には、蓄熱材組成物が黒色に変色しpHが低下した(比較例3及び4)。蓄熱材組成物の色変化から、フェノール性水酸基を複数有する化合物は、糖アルコールとの反応によって生成した反応生成物を形成していると考えられるため、蓄熱材組成物の劣化の抑制には寄与しにくいと考えられる。 Also, when a compound having a plurality of phenolic hydroxyl groups was added, the heat storage material composition turned black and the pH decreased (Comparative Examples 3 and 4). From the color change of the heat storage material composition, it is considered that the compound having multiple phenolic hydroxyl groups forms a reaction product generated by the reaction with the sugar alcohol, so it contributes to suppressing the deterioration of the heat storage material composition. is considered difficult.
 〔比較例5〕
 参考例1と同様の手順で調製した糖アルコール液(a)を加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で14日間保持する加温処理条件(4)で加温処理を行った。加温処理後の糖アルコール液(a)について、色を目視で確認し、放冷の後にpHの測定を行った。結果を表2に示す。
[Comparative Example 5]
The sugar alcohol solution (a) prepared by the same procedure as in Reference Example 1 is placed in a pressure-sealed container, and heated under the heating condition (4) of holding for 14 days in a constant temperature bath with a set temperature of 90°C. did The color of the sugar alcohol liquid (a) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
 〔比較例6〕
 糖アルコールとしてのエリスリトール30gと水20gとを混合した糖アルコール液(b)(糖アルコールの濃度:60重量%)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で14日間保持する加温処理条件(4)で加温処理を行った。加温処理後の糖アルコール液(b)について、色を目視で確認し、放冷の後にpHの測定を行った。結果を表2に示す。
[Comparative Example 6]
A sugar alcohol solution (b) (concentration of sugar alcohol: 60% by weight) was prepared by mixing 30 g of erythritol as a sugar alcohol and 20 g of water. The heating treatment was carried out under the heating treatment condition (4) of holding for 14 days at . The color of the sugar alcohol liquid (b) after the heat treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
 〔実施例3〕
 参考例1と同様の手順で調製した糖アルコール液(a)に、化合物(I)としての4-メトキシフェノール0.38gを添加した蓄熱材組成物(E3)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で14日間保持する加温処理条件(4)で加温処理を行った。加温処理後の蓄熱材組成物(E3)について、色を目視で確認し、放冷の後にpHの測定を行った。結果を表2に示す。
[Example 3]
A heat storage material composition (E3) was prepared by adding 0.38 g of 4-methoxyphenol as the compound (I) to the sugar alcohol liquid (a) prepared in the same manner as in Reference Example 1, and placed in a pressure sealed container. A heating treatment was performed under the heating treatment condition (4) in which the temperature was set to 90° C. and held for 14 days in a constant temperature bath. The color of the heat storage material composition (E3) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
 〔実施例4〕
 比較例6と同様の手順で調製した糖アルコール液(b)に、化合物(I)としての4-メトキシフェノール0.38gを添加した蓄熱材組成物(E4)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で14日間保持する加温処理条件(4)で加温処理を行った。加温処理後の蓄熱材組成物(E4)について、色を目視で確認し、放冷の後にpHの測定を行った。結果を表2に示す。
[Example 4]
A heat storage material composition (E4) was prepared by adding 0.38 g of 4-methoxyphenol as the compound (I) to the sugar alcohol liquid (b) prepared in the same manner as in Comparative Example 6, and placed in a pressure-sealed container. A heating treatment was performed under the heating treatment condition (4) in which the temperature was set to 90° C. and held for 14 days in a constant temperature bath. The color of the heat storage material composition (E4) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
 〔実施例5〕
 糖アルコールとしてのエリスリトール20gと水30gとを混合した糖アルコール液(c)(糖アルコールの濃度:40重量%)を調製した。この糖アルコール液(c)に、化合物(I)としての4-メトキシフェノール0.38gを添加した蓄熱材組成物(E5)を調製して加圧密閉容器に入れ、設定温度を90℃とした恒温槽内で14日間保持する加温処理条件(4)で加温処理を行った。加温処理後の蓄熱材組成物(E5)について、色を目視で確認し、放冷の後にpHの測定を行った。結果を表2に示す。
[Example 5]
A sugar alcohol liquid (c) (concentration of sugar alcohol: 40% by weight) was prepared by mixing 20 g of erythritol as a sugar alcohol and 30 g of water. A heat storage material composition (E5) was prepared by adding 0.38 g of 4-methoxyphenol as compound (I) to this sugar alcohol liquid (c), placed in a pressurized sealed container, and set to a temperature of 90°C. The heating treatment was performed under the heating treatment condition (4) of holding for 14 days in a constant temperature bath. The color of the heat storage material composition (E5) after the heating treatment was visually confirmed, and the pH was measured after standing to cool. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、糖アルコール濃度が40重量%~80重量%である糖アルコール液と化合物(I)とを含む蓄熱材組成物は、長期間の加温によっても、pHの低下を抑制できた。特に、糖アルコール濃度が60重量%及び80重量%である糖アルコール液と化合物(I)とを含む蓄熱材組成物は、長期間の加温によっても、変色及びpHの低下の抑制に優れていた。 As shown in Table 2, the heat storage material composition containing a sugar alcohol solution with a sugar alcohol concentration of 40% to 80% by weight and compound (I) suppresses a decrease in pH even when heated for a long period of time. did it. In particular, the heat storage material composition containing sugar alcohol solutions with sugar alcohol concentrations of 60% by weight and 80% by weight and compound (I) is excellent in suppressing discoloration and pH drop even when heated for a long period of time. rice field.
 〔比較例7〕
 参考例1と同様の手順で調製して加圧密閉容器に入れた糖アルコール液(a)に、アルミニウム(Al)の試験片、鉄(Fe)の試験片、及び銅(Cu)の試験片を浸漬した状態で、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(2)で加温処理を行った後、上記試験片を取り出した。その後、加温処理後の糖アルコール液(a)について、色を目視で確認し、ギ酸の検出及び金属の検出を行い、放冷の後にpHの測定を行った。結果を表3に示す。
[Comparative Example 7]
An aluminum (Al) test piece, an iron (Fe) test piece, and a copper (Cu) test piece were added to the sugar alcohol liquid (a) prepared by the same procedure as in Reference Example 1 and placed in a pressure-sealed container. in a state of being immersed in, the test piece was taken out after performing a heating treatment under the heating treatment condition (2) in which the set temperature was kept at 90° C. for 30 days in a constant temperature bath. After that, the color of the sugar alcohol liquid (a) after the heating treatment was visually confirmed, formic acid was detected, and metal was detected. After standing to cool, the pH was measured. Table 3 shows the results.
 〔実施例6〕
 実施例1と同様の手順で調製して加圧密閉容器に入れた蓄熱材組成物(E1)に、アルミニウム(Al)の試験片、鉄(Fe)の試験片、及び銅(Cu)の試験片を浸漬した状態で、設定温度を90℃とした恒温槽内で30日間保持する加温処理条件(2)で加温処理を行った後、上記試験片を取り出した。加温処理後の蓄熱材組成物(E1)について、色を目視で確認し、ギ酸の検出及び金属の検出を行い、放冷の後にpHの測定を行った。結果を表3に示す。
[Example 6]
A test piece of aluminum (Al), a test piece of iron (Fe), and a copper (Cu) test were applied to the heat storage material composition (E1) prepared in the same procedure as in Example 1 and placed in a pressure-sealed container. After performing a heating treatment under the heating treatment condition (2) in which the immersed piece was held for 30 days in a constant temperature bath with a set temperature of 90° C., the test piece was taken out. After the heating treatment, the heat storage material composition (E1) was visually checked for color, formic acid and metal were detected, and after cooling, the pH was measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、糖アルコール液及び化合物(I)を含む蓄熱材組成物は、加温条件下で長期間、金属と接触しても、変色、ギ酸の蓄積、金属の溶解を抑制することができた。したがって、糖アルコール液及び化合物(I)を含む蓄熱材組成物を用いた蓄熱デバイスでは、蓄熱デバイスに含まれる金属部材の腐食を抑制することができるため、蓄熱デバイスの長寿命化を図ることができる。なお、比較例7では、試験片の腐食に伴って水酸化物イオンが生成したため、pHが低下しなかったと考えられる。 As shown in Table 3, the heat storage material composition containing the sugar alcohol solution and the compound (I) suppresses discoloration, accumulation of formic acid, and dissolution of the metal even when in contact with the metal for a long period of time under heating conditions. I was able to Therefore, in the heat storage device using the heat storage material composition containing the sugar alcohol liquid and the compound (I), it is possible to suppress the corrosion of the metal member included in the heat storage device, so that it is possible to extend the life of the heat storage device. can. In Comparative Example 7, it is considered that the pH did not decrease because hydroxide ions were generated as the test piece corroded.
 今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalents of the scope of the claims.

Claims (5)

  1.  糖アルコール及び水を含む糖アルコール液と、
     分子内のフェノール性水酸基が1つである化合物と、を含む、蓄熱材組成物。
    a sugar alcohol liquid containing sugar alcohol and water;
    and a compound having one phenolic hydroxyl group in the molecule.
  2.  前記化合物は、メトキシフェノールである、請求項1に記載の蓄熱材組成物。 The heat storage material composition according to claim 1, wherein the compound is methoxyphenol.
  3.  前記糖アルコールは、エリスリトールである、請求項1又は2に記載の蓄熱材組成物。 The heat storage material composition according to claim 1 or 2, wherein the sugar alcohol is erythritol.
  4.  前記糖アルコール液中の前記糖アルコールの濃度は、50重量%以上80重量%以下である、請求項1~3のいずれか1項に記載の蓄熱材組成物。 The heat storage material composition according to any one of claims 1 to 3, wherein the concentration of the sugar alcohol in the sugar alcohol liquid is 50% by weight or more and 80% by weight or less.
  5.  請求項1~4のいずれか1項に記載の蓄熱材組成物を含む蓄熱デバイス。 A heat storage device comprising the heat storage material composition according to any one of claims 1 to 4.
PCT/JP2021/006581 2021-02-22 2021-02-22 Heat-storage material composition and heat-storage device WO2022176190A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/006581 WO2022176190A1 (en) 2021-02-22 2021-02-22 Heat-storage material composition and heat-storage device
JP2021539859A JP6949290B1 (en) 2021-02-22 2021-02-22 Heat storage material composition and heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006581 WO2022176190A1 (en) 2021-02-22 2021-02-22 Heat-storage material composition and heat-storage device

Publications (1)

Publication Number Publication Date
WO2022176190A1 true WO2022176190A1 (en) 2022-08-25

Family

ID=78001450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006581 WO2022176190A1 (en) 2021-02-22 2021-02-22 Heat-storage material composition and heat-storage device

Country Status (2)

Country Link
JP (1) JP6949290B1 (en)
WO (1) WO2022176190A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163989A (en) * 1984-02-03 1985-08-26 Agency Of Ind Science & Technol Phase transition heat storing material
JPS61218683A (en) * 1985-03-25 1986-09-29 Agency Of Ind Science & Technol Heat-storing material utilizing phase transition heat
JP2014019718A (en) * 2012-07-12 2014-02-03 Hakugen:Kk Refrigerant
JP6818942B1 (en) * 2019-10-18 2021-01-27 三菱電機株式会社 Heat storage type water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183111A (en) * 1996-10-29 1998-07-14 Mitsubishi Chem Corp Thermal storage and radiation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163989A (en) * 1984-02-03 1985-08-26 Agency Of Ind Science & Technol Phase transition heat storing material
JPS61218683A (en) * 1985-03-25 1986-09-29 Agency Of Ind Science & Technol Heat-storing material utilizing phase transition heat
JP2014019718A (en) * 2012-07-12 2014-02-03 Hakugen:Kk Refrigerant
JP6818942B1 (en) * 2019-10-18 2021-01-27 三菱電機株式会社 Heat storage type water heater

Also Published As

Publication number Publication date
JPWO2022176190A1 (en) 2022-08-25
JP6949290B1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP4980534B2 (en) Antifreeze concentrates based on dicarboxylic acids, molybdates and triazoles or thiazoles and refrigerant compositions containing these antifreeze concentrates
RU2360939C2 (en) Antifreeze cooling composition for application at high temperatures
JPS62158778A (en) Monobasic-dibasic acid salt antifreeze liquid/corrosion inhibitor and its production
CA2078898C (en) Combinations of alkanoic hydrocarbyl dicarboxylic and carbocyclic alkanoic acids or salts useful as heat transfer fluid corrosion inhibitors
PL200841B1 (en) Antifreeze concentrate containing the colorant c.i. reactive violet 5
JPH0195179A (en) Anticorrosive antifreeze liquid blend
BG65318B1 (en) Corrosion inhibitors and synergistic inhibitor combinations for the protection of light metals in heat-transfer fluids and engine coolants
JP2007162124A (en) Antifreeze composition
KR19990077315A (en) Use of quaternized imidazoles as nonferrous metal corrosion inhibitors, concentrated antifreeze and coolant compositions containing depressants
KR20190127739A (en) Antifreeze Corrosion Concentrate
JP2006503959A (en) How to cool a hot engine
WO2005033362A1 (en) Liquid coolant composition
JP3941030B2 (en) Low phosphorus coolant composition
WO2022176190A1 (en) Heat-storage material composition and heat-storage device
KR101300238B1 (en) Compositions of Antifreezing Liquid or Cooling Liquid with Improvements in Anticorrosion and pH Buffering
JPH05105871A (en) Coolant composition
PT1159372E (en) Monocarboxylic acid based antifreeze composition for diesel engines
RU2302479C1 (en) Corrosion inhibitor for low-freezing cooling liquids
RU2303083C1 (en) Corrosion inhibitor for low-freezing fluids
RU2299272C1 (en) Corrosion inhibitor for low-freezing coolant fluid
JP2010236064A (en) Liquid coolant composition
JP4119622B2 (en) Coolant composition
JP5274778B2 (en) Higher polyglycol based heat-carrying media with improved thermal stability
JP2007528937A (en) Boiler feed composition
WO2012035951A1 (en) Aqueous cleaning agent

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539859

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926620

Country of ref document: EP

Kind code of ref document: A1