WO2022176113A1 - Sliding coating film and sliding member - Google Patents
Sliding coating film and sliding member Download PDFInfo
- Publication number
- WO2022176113A1 WO2022176113A1 PCT/JP2021/006154 JP2021006154W WO2022176113A1 WO 2022176113 A1 WO2022176113 A1 WO 2022176113A1 JP 2021006154 W JP2021006154 W JP 2021006154W WO 2022176113 A1 WO2022176113 A1 WO 2022176113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon layer
- sliding
- layer
- piston ring
- coating
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 37
- 239000011248 coating agent Substances 0.000 title claims abstract description 35
- 239000010410 layer Substances 0.000 claims abstract description 122
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 113
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 107
- 239000012790 adhesive layer Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000005430 electron energy loss spectroscopy Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 abstract description 8
- 238000000926 separation method Methods 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910021385 hard carbon Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910018540 Si C Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000619 electron energy-loss spectrum Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000428199 Mustelinae Species 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- DYRBFMPPJATHRF-UHFFFAOYSA-N chromium silicon Chemical compound [Si].[Cr] DYRBFMPPJATHRF-UHFFFAOYSA-N 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J9/00—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
- F16J9/26—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
Definitions
- the present invention relates to a sliding coating formed on the sliding surface of a sliding member used in an internal combustion engine, and a sliding member on which the sliding coating is formed.
- a DLC film is a film with an amorphous structure (amorphous structure) in which sp 2 bonds of carbon atoms corresponding to a graphite structure and sp 3 bonds of carbon atoms corresponding to a diamond structure are mixed.
- the sp 2 component ratio (sp 2 /(sp 2 +sp 3 )) is large, the physical properties resemble those of graphite (solid lubricity and low friction coefficient), and the sp 3 component ratio (sp 3 /(sp 2 If +sp 3 )) is large, physical properties similar to diamond (excellent in hardness, abrasion resistance and chemical stability) can be obtained, so by adjusting the component ratio, DLC coatings with various properties can be formed. be able to.
- Patent Document 1 discloses a DLC-coated piston ring, in which, in the direction away from the substrate, an adhesive layer, a metal-containing amorphous carbon layer, and a metal-free non-crystalline carbon layer are formed in order. It is stated that the provision of a deposited crystalline carbon layer provides a piston ring that is easy to manufacture and meets the requirements for frictional resistance/lifetime.
- Patent Document 2 discloses a protective film formed on internal combustion engine parts such as cams (camshafts) and shims, in which a first diamond-like layer formed on the surface side of the part and a first It is described having a second diamond-like layer formed on the surface of the diamond-like layer and having an intermediate layer between the internal combustion engine component and the first diamond-like layer.
- a protective film it is possible to provide a protective film that does not peel off or the like even when an action such as a collision occurs between the cam surface and the shim surface.
- Patent Document 3 in order to solve the problem of preventing the peeling of the DLC film from the substrate due to the compressive stress during film formation, the density is controlled by the brightness of the TEM image of the cross section of the film.
- the TEM image of the first amorphous hard carbon layer on the material side is brighter than the TEM image of the second amorphous hard carbon layer formed on the surface of the first amorphous hard carbon layer, It is disclosed to prevent delamination from the substrate due to stress.
- DLC coatings various developments have been made especially from the viewpoint of wear resistance.
- the present inventors have studied and found that when a DLC layer is formed on an adhesive layer containing a metal such as chromium as in Patent Document 1, the adhesion between the piston ring base material and the adhesive layer is good.
- the adhesion between the metal-containing adhesive layer and the DLC layer is low, and a peeling phenomenon different from abrasion may occur due to the progression of wear accompanying sliding.
- An object of the present invention is to provide a sliding coating capable of suppressing such a peeling phenomenon that is different from wear due to progress of wear associated with sliding.
- the inventors of the present invention conducted extensive research to suppress separation from the interface between the adhesive layer and the second carbon layer due to abrasive wear that occurs on the piston ring surface when foreign matter such as sludge enters the sliding area.
- the second carbon layer is not a coating with a high diamond component ratio (large sp 3 component ratio) as in the past, but a coating with a low indentation elastic modulus and a high sp 2 component ratio, which bites the sludge. It was decided to relax the local stress at the time of collapse.
- the indentation elasticity is increased between the adhesive layer and the second carbon layer by having a larger sp 2 component ratio than the second carbon layer and containing no metal.
- a low modulus first carbon layer was formed.
- the difference in sp 2 component ratio and density between the first carbon layer and the second carbon layer is small, the bright field image observation by TEM as disclosed in Patent Document 3 (Fig. 2) cannot It was difficult to distinguish between the carbon layer and the second carbon layer.
- the present inventors focused on the fact that the coating can be identified by the spectral height of the ⁇ bond peak at the CK loss edge ELNES of the TEM-EELS spectrum, and formed a first carbon layer having a specific peak height. The inventors have found that the above problems can be solved by doing so.
- one embodiment of the present invention is a sliding coating formed on a sliding surface of a sliding member used in an internal combustion engine, wherein the sliding coating is adhered onto a metallic base material constituting the sliding member.
- layer, the first carbon layer, and the second carbon layer, and the structure near the electron energy loss edge is a sliding coating in which a peak exists between 280 eV and 290 eV in loss energy, and the peak height is higher in the first carbon layer than in the second carbon layer.
- Another aspect of the present invention is a sliding coating formed on a sliding surface of a sliding member used in an internal combustion engine, wherein the sliding coating is formed on a metal base material constituting the sliding member.
- the loss energy has peaks between 280 eV and 290 eV in the electron energy loss edge vicinity structure (CK loss edge ELNES) spectrum
- the adhesive layer and the second carbon The sliding coating has a region where the peak height is higher than that of the second carbon layer at the layer boundary.
- the first carbon layer preferably contains substantially no metal
- the second carbon layer preferably has a multilayer structure.
- still another embodiment of the present invention is a sliding member having the above-described sliding film, and the sliding member can be suitably used for, for example, a piston ring.
- peeling that may occur when the thickness of the DLC coating becomes a thin film of 2 ⁇ m or less due to the progress of wear accompanying sliding, that is, the sliding portion of the DLC coating is separated from the adhesive layer. A phenomenon such as peeling from the interface portion can be suppressed.
- FIG. 2 shows a cross-sectional image of a piston ring on which a sliding film according to the present embodiment is formed (photograph substituting for drawing).
- FIG. 1 is a schematic diagram of a reciprocating friction tester used in Experiment 1.
- FIG. 10 is a top surface laser microscope image and a cross-sectional microscope image of the second carbon layer, showing the results of Experiment 1 (drawing-substituting photographs).
- FIG. 4 is a graph showing the cross-sectional height of the second carbon layer showing the results of Experiment 1.
- FIG. 1 It is a top surface laser microscope image and a cross-sectional microscope image of the second carbon layer, showing the reciprocating friction test results of the piston ring on which the sliding coating of the present embodiment is formed (photographs substituted for drawings).
- 4 is a graph showing the cross-sectional height of the second carbon layer, showing the reciprocating friction test results of the piston ring on which the sliding film of the present embodiment is formed.
- 4 is a graph showing a TEM-EELS near-energy loss edge structure (CK loss edge ELNES) spectrum of the sliding coating of Example 1.
- One embodiment of the present invention is a sliding coating formed on the sliding surface of a sliding member used in an internal combustion engine, wherein the sliding coating is formed on a metallic base material constituting the sliding member, It is a laminate in which an adhesive layer, a first carbon layer, and a second carbon layer are laminated in this order.
- FIG. 1 shows a schematic cross-sectional view of a piston ring formed with a sliding film according to the present embodiment.
- the piston ring 10 is mounted in a piston ring groove (not shown) formed in the piston, and reciprocates while sliding on the inner peripheral surface of a cylinder liner (not shown) by the reciprocating motion of the piston.
- the piston ring 10 according to this embodiment may be used as any of a top ring, a second ring, and an oil ring.
- an oil ring When applied to an oil ring, a two-piece oil ring consisting of an oil ring body and a coil expander, and a three-piece oil ring consisting of two segments (also called side rails) and a spacer expander. segment of the ring.
- the piston ring 10 according to the present embodiment is attached to an aluminum alloy piston, and is preferably used as a piston ring for a cast iron cylinder liner or a cylinder whose inner peripheral surface is thermally sprayed.
- the material of the piston ring base material 11 is not particularly limited as long as it is a material conventionally used as a piston ring base material.
- stainless steel, spring steel, etc. are preferably used.
- martensitic stainless steel, silicon chromium steel, etc. are preferably used.
- the piston ring 10 comprises an adhesion layer 12 made of either Cr, Si—C or W on a piston ring base material 11, and a first carbon layer 13 and a second carbon layer 14 thereon.
- an adhesion layer 12 made of either Cr, Si—C or W on a piston ring base material 11, and a first carbon layer 13 and a second carbon layer 14 thereon.
- the adhesion between the piston ring base material and the adhesive layer is good, but the adhesive layer and the DLC
- the present inventors believe that such a problem (phenomenon) is caused by the fact that the piston ring base material 11 is provided with the adhesive layer 12 made of Cr, Si—C or W. is thinking. A specific experiment in which such knowledge was obtained will be described below.
- Experiment 1 was conducted using a reciprocating friction tester whose outline is shown in FIG. First, martensitic stainless steel was used as a piston ring base material having a nominal diameter of 86 mm and a width in the sliding direction of 1.2 mm. A piston ring was prepared by forming a film and processing the outer peripheral sliding surface. A piston ring member having a circumference of 20 mm was cut out from each of three positions forming 90° on both sides and the 180° position of the joint facing portion of the piston ring, and tested. The surface roughness of the piston ring member after final finishing was such that the roughness curve was plateau-shaped and the maximum height was Rz 1.0 ⁇ m.
- the lower test piece 110 is held by a movable block 120 and is made of flake graphite cast iron made of a pearlite matrix, and has a width of 17 mm and a length of 70 mm assuming a cylinder liner made of flake graphite cast iron having a hardness of HRB 100 and carbide precipitation of 3%.
- a 14 mm thick plate was prepared and subjected to final surface finishing with #600 emery paper, and the surface roughness was 1.2 ⁇ m at the maximum height Rz.
- test conditions for the reciprocating friction test are shown below.
- 150 ⁇ l (microliter) of used engine lubricating oil (viscosity before use 0 W-20) after 400 hours of actual engine operation was applied for 1 hour of the test time.
- ⁇ Test conditions> ⁇ Stroke: 50mm ⁇ Load: 50N ⁇ Speed: 300 cycles/min ⁇ Temperature of lower test piece: 80°C (use heater 122 for heating lower test piece) ⁇ Test time: 60 minutes
- ⁇ Analysis 1> A TEM combined with a transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS) from a film thickness direction cross-section of a thin piece produced by focused ion beam (FIB) processing for the same piston ring as Experiment 1.
- -EELS was used to analyze the structure near the electron energy loss edge of the carbon layer.
- the analysis method is as follows. 1. The slope of the background of the CK loss edge ELNES spectrum is corrected, and the intensity is normalized so that the height on the loss edge side becomes 1. 2. The energy value is corrected with reference to standard samples (diamond, graphite). 3. An area with a loss energy of 280 to 310 eV is measured. (Peak total area) 4.
- Peak separation is performed in the range of loss energy from 280 to 295 eV.
- the area of the peak near 285 eV after separation is measured.
- ( sp2 peak area) 5 Take the ratio of the sp2 peak area to the total peak area ( sp2 peak area ratio). Regarding this area ratio, a relative value based on a standard sample (diamond, graphite) is obtained. Let this be the sp 2 component ratio.
- the first carbon layer 13 is provided between the adhesive layer 12 and the second carbon layer 14, and the loss energy of the first carbon layer and the second carbon layer is A peak exists between 280 eV and 290 eV, and the peak height is higher in the first carbon layer than in the second carbon layer, thereby solving the problem of peeling from the interface with the adhesive layer. can be done.
- the boundary between the second carbon layer 14 and the adhesive layer 12 and the second carbon layer 14 is measured by TEM-EELS, in the electron energy loss edge vicinity structure spectrum (CK loss edge ELNES), The loss energy has peaks between 280 eV and 290 eV, and a region where the peak height is higher than the peak height of the second carbon layer 14 exists at the boundary between the adhesive layer 12 and the second carbon layer 14. It is also preferable to
- the thickness of the adhesive layer is not particularly limited, it is preferably 0.1 ⁇ m or more and preferably 2.0 ⁇ m or less from the viewpoint of improving the adhesion between the substrate 11 and the second carbon layer 14.
- the outer peripheral surface of the piston ring base material 11 may be smoothed, and when smoothed, the smoothing method is not particularly limited, but the surface roughness can be adjusted by lapping or buffing. preferable.
- the surface roughness of the piston ring base material 11 is preferably adjusted to 0.5 ⁇ m or less at the maximum height Rz in JISB0601 (2001).
- the first carbon layer 13 is measured by TEM-EELS, which is a combination of transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS). At this time, the irradiation diameter of the electron beam emitted from the electron gun of the TEM is set to be approximately equal to or smaller than the thickness of the first carbon layer. Analysis 1 was measured using a Cs-TEM with a nominal irradiation diameter of 0.1 nm.
- the method of forming the first carbon layer 13 is not particularly limited, and can be formed by applying a known method.
- the first carbon layer 13 preferably contains substantially no metal.
- substantially means that the metal component in the first carbon layer is 3 at % or less, preferably 1 at % or less, and more preferably below the detection limit. Also, the film thickness of the first carbon layer 13 is preferably 0.001 ⁇ m or more and 1 ⁇ m or less.
- the second carbon layer 14 has an sp 2 component ratio of usually 0.5 or more and 0.7 or less measured by TEM-EELS, which is a combination of transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS). is preferably 0.55 or more and 0.68 or less, and even more preferably 0.58 or more and 0.65 or less.
- TEM-EELS transmission electron microscope
- EELS electron energy loss spectroscopy
- the second carbon layer 14 preferably has a Martens hardness of 6 GPa or more and 13 GPa or less, may be 11 GPa or less, or may be 9 GPa or less.
- the second carbon layer 14 preferably has an indentation modulus of 250 GPa or less, more preferably 200 GPa or less, and even more preferably 180 GPa or less, as measured by a nanoindentation method.
- the lower limit is not particularly limited, if the indentation modulus is 120 GPa or more, peeling inside the film is less likely to occur.
- the hydrogen content of the second carbon layer 14 is preferably 5 at% or less, more preferably 3 at% or less, and more preferably substantially free of hydrogen from the viewpoint of wear resistance.
- the film thickness of the second carbon layer 14 is preferably 1 ⁇ m or more and 10 ⁇ m or less, and may be 2 ⁇ m or more and may be 3 ⁇ m or more. Also, the film thickness may be 7 ⁇ m or less, or may be 5 ⁇ m or less. Moreover, the second carbon layer 14 preferably has a multilayer structure.
- the method for producing the first carbon layer and the second carbon layer according to this embodiment is not particularly limited. As an example, there is a method of forming a coating using a filtered cathodic vacuum arc (FCVA) method or a magnetron sputtering method.
- FCVA filtered cathodic vacuum arc
- the first carbon layer and the second carbon layer may be formed by film formation a plurality of times while changing the applied bias voltage or without changing the bias voltage.
- the first carbon layer is preferably a magnetron sputtering method
- the second carbon layer is a laminate by the FCVA method or the magnetron sputtering method
- the absolute value of the applied bias voltage is preferably increased.
- Example 1 A piston ring base material made of stainless steel was set in the FCVA apparatus, and after the inside of the apparatus was evacuated to reduce the pressure, the base material was heated. Thereafter, while a pulse bias voltage in the range of -500 to -1500 V was applied to the substrate, argon gas was introduced into the apparatus and ion bombardment was performed with argon ions. Next, using a sputtering unit installed in the FCVA apparatus, a bias voltage in the range of -50 V to -600 V was applied to the piston ring base material in an argon gas atmosphere, and the adhesive layer had a thickness of 1.0 ⁇ m. was deposited on the piston ring substrate.
- a sputtering unit was then used to deposit a first carbon layer on the Cr layer.
- a carbon target was used to deposit a first carbon layer having a thickness of 0.01 ⁇ m in an argon gas atmosphere while a bias voltage within the range of ⁇ 50 V to ⁇ 600 V was applied to the piston ring base material.
- a carbon target is used with a pulse bias voltage applied to the piston ring base material within the range of -500 V to -3000 V, and an arc current of 50 to 200 A is used to discharge the thickness.
- a piston ring according to Example 1 was obtained by forming a second carbon layer of 2 ⁇ m.
- FIG. 6 shows the EELS spectrum obtained by the above measurement.
- Example 2 A piston ring according to Example 2 was obtained in the same manner as in Example 1, except that the first carbon layer contained a metal (10 at %).
- the structure near the electron energy loss edge (CK loss edge ELNES spectrum) has a ⁇ -bond peak of the sp2 component between 280 eV and 290 eV, and the peak height is higher than that of the second carbon layer.
- the carbon layer was higher.
- Comparative example 1 A piston ring according to Comparative Example 1 was obtained in the same manner as in Example 1, except that the adhesive layer was not provided and the first carbon layer was not provided.
- Comparative example 2 A piston ring according to Comparative Example 2 was obtained in the same manner as in Example 1, except that the first carbon layer was not provided.
- Comparative Example 3 A piston ring according to Comparative Example 3 was obtained in the same manner as in Example 1, except that no adhesive layer was provided.
- the structure near the electron energy loss edge (CK loss edge ELNES spectrum) has a ⁇ -bond peak of the sp2 component between 280 eV and 290 eV, and the peak height is higher than that of the second carbon layer. The carbon layer was higher.
- Comparative Example 4 A piston ring according to Comparative Example 4 was obtained in the same manner as in Example 1, except that the first carbon layer was formed by the FCVA method and the second carbon layer was formed by the magnetron sputtering method.
- the structure near the electron energy loss edge (CK loss edge ELNES spectrum) had a ⁇ -bond peak of the sp2 component between the loss energy of 280 eV and 290 eV, but the peak height was higher than that of the first carbon layer.
- the second carbon layer was higher.
- Piston ring 11 Piston ring base material 12 Adhesive layer 13 First carbon layer 14 Second carbon layer 100 Upper test piece 110 Lower test piece 120 Movable block 122 Lower test piece heater
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Physical Vapour Deposition (AREA)
Abstract
The present invention addresses the problem of providing a sliding coating film which is capable of suppressing separation phenomenon that is different from detrition due to sliding. The problem is solved by a sliding coating film which is a multilayer film that is obtained by sequentially superposing an adhesive layer, a first carbon layer and a second carbon layer in this order on a metal-based substrate that constitutes a sliding member, wherein: a peak is present between the loss energy of 280 eV and the loss energy of 290 eV in the electron energy loss near edge structures (C-K loss edge ELNES) of the first carbon layer and the second carbon layer as determined by TEM-EELS; and the peak height of the first carbon layer is higher than the peak height of the second carbon layer.
Description
本発明は、内燃機関で用いられる摺動部材の摺動面に形成される摺動被膜及びその摺動被膜が形成された摺動部材に関する。
The present invention relates to a sliding coating formed on the sliding surface of a sliding member used in an internal combustion engine, and a sliding member on which the sliding coating is formed.
内燃機関用ピストンに用いられるピストンリングの外周摺動面は、フリクション低減及び耐摩耗性向上を目的として、DLC(ダイヤモンドライクカーボン)被膜により被覆されることがあり、様々な開発が行われている。一般的にDLC被膜は、グラファイト構造に対応する炭素原子のsp2結合と、ダイヤモンド構造に対応する炭素原子のsp3結合とが混在するアモルファス構造(非晶質構造)の膜である。ここで、sp2成分比(sp2/(sp2+sp3))が大きければグラファイトに似た物性(固体潤滑性を有し低摩擦係数)となり、sp3成分比(sp3/(sp2+sp3))が大きければダイヤモンドに似た物性(硬さ、耐摩耗性及び化学的安定性に優れる)となるので、その成分比を調整することにより、様々な特性をもつDLC被膜を形成することができる。
The outer peripheral sliding surface of a piston ring used in a piston for an internal combustion engine is sometimes coated with a DLC (diamond-like carbon) film for the purpose of reducing friction and improving wear resistance, and various developments have been made. . Generally, a DLC film is a film with an amorphous structure (amorphous structure) in which sp 2 bonds of carbon atoms corresponding to a graphite structure and sp 3 bonds of carbon atoms corresponding to a diamond structure are mixed. Here, if the sp 2 component ratio (sp 2 /(sp 2 +sp 3 )) is large, the physical properties resemble those of graphite (solid lubricity and low friction coefficient), and the sp 3 component ratio (sp 3 /(sp 2 If +sp 3 )) is large, physical properties similar to diamond (excellent in hardness, abrasion resistance and chemical stability) can be obtained, so by adjusting the component ratio, DLC coatings with various properties can be formed. be able to.
摺動部材においてDLC被膜を有する例として特許文献1には、DLCコーティングされたピストンリングが開示されており、基板から離れる方向に、順に、接着層、金属含有非晶質炭素層及び無金属非晶質炭素層を堆積して備えることで、製造が容易であり、摩擦抵抗値/製品寿命について要求を満たすピストンリングを提供できることが記載されている。
As an example of having a DLC coating on a sliding member, Patent Document 1 discloses a DLC-coated piston ring, in which, in the direction away from the substrate, an adhesive layer, a metal-containing amorphous carbon layer, and a metal-free non-crystalline carbon layer are formed in order. It is stated that the provision of a deposited crystalline carbon layer provides a piston ring that is easy to manufacture and meets the requirements for frictional resistance/lifetime.
一方で特許文献2には、カム(カムシャフト)、シム等の内燃機関用部品に形成される保護膜であって、部品の表面側に形成される第一のダイヤモンド様層と、第一のダイヤモンド様層の表面上に形成される第二のダイヤモンド様層を有し、当該内燃機関用部品と第一のダイヤモンド様層との間に中間層を有することが記載されている。このような保護膜により、カム面とシム面との間に衝突等の作用が生じた場合でも、剥離等が生じない保護膜を提供できるとされている。
On the other hand, Patent Document 2 discloses a protective film formed on internal combustion engine parts such as cams (camshafts) and shims, in which a first diamond-like layer formed on the surface side of the part and a first It is described having a second diamond-like layer formed on the surface of the diamond-like layer and having an intermediate layer between the internal combustion engine component and the first diamond-like layer. With such a protective film, it is possible to provide a protective film that does not peel off or the like even when an action such as a collision occurs between the cam surface and the shim surface.
また、特許文献3には、DLC被膜の成膜時の圧縮応力による基板からの剥離を防止するという問題に対し、被膜断面のTEM像の明るさにより密度を管理すること、具体的には基材側の第1の非晶質硬質炭素層のTEM像が、第1の非晶質硬質炭素層の表面に形成された第2の非晶質硬質炭素層のTEM像よりも明るいことで、応力による基板からの剥離を防止することが開示されている。
Further, in Patent Document 3, in order to solve the problem of preventing the peeling of the DLC film from the substrate due to the compressive stress during film formation, the density is controlled by the brightness of the TEM image of the cross section of the film. The TEM image of the first amorphous hard carbon layer on the material side is brighter than the TEM image of the second amorphous hard carbon layer formed on the surface of the first amorphous hard carbon layer, It is disclosed to prevent delamination from the substrate due to stress.
DLC被膜に関しては、特に耐摩耗性の観点からさまざまな開発がされている。
一方で本発明者らが検討したところ、特許文献1のようにクロム等の金属を含有する接着層上にDLC層を形成した場合、ピストンリング基材と接着層との密着性は良好であるが、金属を含有する接着層とDLC層との密着性が低く、摺動に伴う摩耗の進行による摩滅とは異なる剥離現象が生じる場合があることを見出した。 Regarding DLC coatings, various developments have been made especially from the viewpoint of wear resistance.
On the other hand, the present inventors have studied and found that when a DLC layer is formed on an adhesive layer containing a metal such as chromium as inPatent Document 1, the adhesion between the piston ring base material and the adhesive layer is good. However, it was found that the adhesion between the metal-containing adhesive layer and the DLC layer is low, and a peeling phenomenon different from abrasion may occur due to the progression of wear accompanying sliding.
一方で本発明者らが検討したところ、特許文献1のようにクロム等の金属を含有する接着層上にDLC層を形成した場合、ピストンリング基材と接着層との密着性は良好であるが、金属を含有する接着層とDLC層との密着性が低く、摺動に伴う摩耗の進行による摩滅とは異なる剥離現象が生じる場合があることを見出した。 Regarding DLC coatings, various developments have been made especially from the viewpoint of wear resistance.
On the other hand, the present inventors have studied and found that when a DLC layer is formed on an adhesive layer containing a metal such as chromium as in
この剥離現象を詳細に説明すると、通常、摺動によってDLC被膜表面の摩耗が進行する場合、DLC表面の摺動箇所は、DLC被膜が摩滅し、DLC被膜よりも下層に存在する接着層や基材が露出してくるものである。しかしながら本発明者らが検討したところ、部品形状や摺動条件により変動はあるが、DLC被膜が徐々に摩耗して、例えば膜厚が2μm程度の薄膜となった場合、DLC被膜の摺動箇所が接着層との界面部分から剥離する現象が生じる場合があることが判明した。また、スラッジなどの異物が摺動領域に入り込むことで、同様に、DLC被膜の摺動箇所が接着層との界面部分から剥離する現象が生じる場合があることが判明した。
本発明は、このような摺動に伴う摩耗の進行による摩滅とは異なる剥離現象を抑制できる摺動被膜を提供することを課題とする。 To explain this peeling phenomenon in detail, when the wear of the DLC coating surface progresses due to sliding, the DLC coating is worn away at the sliding portion of the DLC surface, and the adhesive layer and substrate existing below the DLC coating are worn away. The material is exposed. However, when the inventors of the present invention have investigated, although there are fluctuations depending on the shape of the part and the sliding conditions, when the DLC coating gradually wears and becomes a thin film with a thickness of, for example, about 2 μm, the sliding part of the DLC coating It was found that a phenomenon of peeling off from the interface with the adhesive layer may occur. In addition, it was found that foreign matter such as sludge enters the sliding region, which may also cause a phenomenon in which the sliding portion of the DLC coating peels off from the interface portion with the adhesive layer.
An object of the present invention is to provide a sliding coating capable of suppressing such a peeling phenomenon that is different from wear due to progress of wear associated with sliding.
本発明は、このような摺動に伴う摩耗の進行による摩滅とは異なる剥離現象を抑制できる摺動被膜を提供することを課題とする。 To explain this peeling phenomenon in detail, when the wear of the DLC coating surface progresses due to sliding, the DLC coating is worn away at the sliding portion of the DLC surface, and the adhesive layer and substrate existing below the DLC coating are worn away. The material is exposed. However, when the inventors of the present invention have investigated, although there are fluctuations depending on the shape of the part and the sliding conditions, when the DLC coating gradually wears and becomes a thin film with a thickness of, for example, about 2 μm, the sliding part of the DLC coating It was found that a phenomenon of peeling off from the interface with the adhesive layer may occur. In addition, it was found that foreign matter such as sludge enters the sliding region, which may also cause a phenomenon in which the sliding portion of the DLC coating peels off from the interface portion with the adhesive layer.
An object of the present invention is to provide a sliding coating capable of suppressing such a peeling phenomenon that is different from wear due to progress of wear associated with sliding.
本発明者らは、スラッジなどの異物が摺動領域に入り込むことでピストンリング表面に生じるアブレシブ摩耗により、接着層と第二の炭素層の界面から剥離が生じることを抑制するため研究を重ねた。まず、第二の炭素層を、従来のようにダイヤモンド成分の比率が高い(sp3成分比が大きい)被膜とするのではなく、押込み弾性率が低くsp2成分比が大きい被膜としてスラッジを噛みこんだ際の局部的な応力を緩和することとした。更に、接着層と第二の炭素層との密着性を上げるため、接着層と第二の炭素層の間に第二の炭素層よりsp2成分比が大きく、且つ金属を含有せず押込み弾性率の低い、第一の炭素層を形成した。しかしながら、第一の炭素層と第二の炭素層のsp2成分比や密度の差が小さいため、特許文献3に開示されたようなTEMによる明視野像観察(図2)では、第一の炭素層と第二の炭素層の識別をすることが困難であった。
The inventors of the present invention conducted extensive research to suppress separation from the interface between the adhesive layer and the second carbon layer due to abrasive wear that occurs on the piston ring surface when foreign matter such as sludge enters the sliding area. . First, the second carbon layer is not a coating with a high diamond component ratio (large sp 3 component ratio) as in the past, but a coating with a low indentation elastic modulus and a high sp 2 component ratio, which bites the sludge. It was decided to relax the local stress at the time of collapse. Furthermore, in order to increase the adhesion between the adhesive layer and the second carbon layer, the indentation elasticity is increased between the adhesive layer and the second carbon layer by having a larger sp 2 component ratio than the second carbon layer and containing no metal. A low modulus first carbon layer was formed. However, since the difference in sp 2 component ratio and density between the first carbon layer and the second carbon layer is small, the bright field image observation by TEM as disclosed in Patent Document 3 (Fig. 2) cannot It was difficult to distinguish between the carbon layer and the second carbon layer.
そこで本発明者らは、TEM-EELSスペクトルのC-K損失端ELNESにおけるπ結合ピークのスペクトル高さにより、被膜を識別できることに着目し、特定のピーク高さを有する第1の炭素層を形成することで、上記課題を解決できることを見出した。
Therefore, the present inventors focused on the fact that the coating can be identified by the spectral height of the π bond peak at the CK loss edge ELNES of the TEM-EELS spectrum, and formed a first carbon layer having a specific peak height. The inventors have found that the above problems can be solved by doing so.
すなわち本発明の一形態は、内燃機関で用いられる摺動部材の摺動面に形成される摺動被膜であって、摺動被膜は、摺動部材を構成する金属系基材上に、接着層、第一の炭素層、第二の炭素層、の順に積層された積層被膜であり、第一の炭素層及び第二の炭素層のTEM-EELSによる電子エネルギー損失端近傍構造(C-K損失端ELNES)には、損失エネルギーが280eVから290eVの間にピークが存在し、そのピーク高さが第二の炭素層より第一の炭素層の方が高い、摺動被膜である。
That is, one embodiment of the present invention is a sliding coating formed on a sliding surface of a sliding member used in an internal combustion engine, wherein the sliding coating is adhered onto a metallic base material constituting the sliding member. layer, the first carbon layer, and the second carbon layer, and the structure near the electron energy loss edge (CK Loss edge ELNES) is a sliding coating in which a peak exists between 280 eV and 290 eV in loss energy, and the peak height is higher in the first carbon layer than in the second carbon layer.
また、本発明の別の形態は、内燃機関で用いられる摺動部材の摺動面に形成される摺動被膜であって、前記摺動被膜は、摺動部材を構成する金属系基材上に、接着層、第一の炭素層、第二の炭素層、の順に積層された積層被膜であり、TEM-EELSにより、前記第二の炭素層及び前記接着層と前記第二の炭素層の境界部を測定したときに、電子エネルギー損失端近傍構造(C-K損失端ELNES)スペクトルにおいて、損失エネルギーが280eVから290eVの間にそれぞれピークを有し、且つ前記接着層と前記第二の炭素層の境界部に当該ピーク高さが前記第二の炭素層より高い領域が存在する、摺動被膜である。
Another aspect of the present invention is a sliding coating formed on a sliding surface of a sliding member used in an internal combustion engine, wherein the sliding coating is formed on a metal base material constituting the sliding member. A laminated film in which an adhesion layer, a first carbon layer, and a second carbon layer are laminated in this order, and the second carbon layer and the adhesion layer and the second carbon layer are separated by TEM-EELS. When the boundary portion is measured, the loss energy has peaks between 280 eV and 290 eV in the electron energy loss edge vicinity structure (CK loss edge ELNES) spectrum, and the adhesive layer and the second carbon The sliding coating has a region where the peak height is higher than that of the second carbon layer at the layer boundary.
前記第一の炭素層は、実質的に金属を含有しないことが好ましく、前記第二の炭素層は多層構造であることが好ましい。
また、本発明の更に別の実施形態は、上記記載の摺動被膜を有する摺動部材であり、摺動部材としては例えばピストンリングに好適に使用することができる。 The first carbon layer preferably contains substantially no metal, and the second carbon layer preferably has a multilayer structure.
Further, still another embodiment of the present invention is a sliding member having the above-described sliding film, and the sliding member can be suitably used for, for example, a piston ring.
また、本発明の更に別の実施形態は、上記記載の摺動被膜を有する摺動部材であり、摺動部材としては例えばピストンリングに好適に使用することができる。 The first carbon layer preferably contains substantially no metal, and the second carbon layer preferably has a multilayer structure.
Further, still another embodiment of the present invention is a sliding member having the above-described sliding film, and the sliding member can be suitably used for, for example, a piston ring.
本発明により、摺動に伴う摩耗の進行によりDLC被膜の膜厚が2μm以下の薄膜となった場合に生じることがある摩滅とは異なる剥離、すなわち、DLC被膜の摺動箇所が接着層との界面部分から剥離するような現象を抑制することができる。
According to the present invention, peeling that may occur when the thickness of the DLC coating becomes a thin film of 2 μm or less due to the progress of wear accompanying sliding, that is, the sliding portion of the DLC coating is separated from the adhesive layer. A phenomenon such as peeling from the interface portion can be suppressed.
以下、具体的な実施形態を示し説明するが、各実施形態は本発明の一例として示されるものであり、必ずしも請求項に係る発明を特定するものではなく、また、実施形態の中で説明する特徴の全てが、本発明の課題を解決する手段に必須であるとは限らない。
Hereinafter, specific embodiments will be shown and described, but each embodiment is shown as an example of the present invention, and does not necessarily specify the invention according to the claims, and will be described in the embodiments. Not all features are essential to the solution to the problems of the invention.
本発明の一実施形態は、内燃機関で用いられる摺動部材の摺動面に形成される摺動被膜であって、前記摺動被膜は、摺動部材を構成する金属系基材上に、接着層、第一の炭素層、第二の炭素層の順に積層された積層体である。
One embodiment of the present invention is a sliding coating formed on the sliding surface of a sliding member used in an internal combustion engine, wherein the sliding coating is formed on a metallic base material constituting the sliding member, It is a laminate in which an adhesive layer, a first carbon layer, and a second carbon layer are laminated in this order.
図1に、本実施形態の摺動被膜が形成されたピストンリングの断面模式図を示す。
ピストンリング10は、ピストンに形成されたピストンリング溝(不図示)に装着され、ピストンの往復運動によってシリンダライナ(不図示)の内周面と摺動しながら往復運動する。
本実施形態に係るピストンリング10は、トップリング、セカンドリング、オイルリングの何れのピストンリングとして用いてもよい。なお、オイルリングに適用する場合は、オイルリング本体とコイルエキスパンダからなる2ピース構成オイルリングのオイルリング本体、及び2本のセグメント(サイドレールともいう)とスペーサエキスパンダからなる3ピース構成オイルリングのセグメント、のいずれにも適用することができる。
なお、本実施形態に係るピストンリング10は、アルミニウム合金製ピストンに装着され、鋳鉄製シリンダライナ又は内周面に溶射が施されたシリンダに対するピストンリングとして好ましく用いられる。 FIG. 1 shows a schematic cross-sectional view of a piston ring formed with a sliding film according to the present embodiment.
Thepiston ring 10 is mounted in a piston ring groove (not shown) formed in the piston, and reciprocates while sliding on the inner peripheral surface of a cylinder liner (not shown) by the reciprocating motion of the piston.
Thepiston ring 10 according to this embodiment may be used as any of a top ring, a second ring, and an oil ring. When applied to an oil ring, a two-piece oil ring consisting of an oil ring body and a coil expander, and a three-piece oil ring consisting of two segments (also called side rails) and a spacer expander. segment of the ring.
Thepiston ring 10 according to the present embodiment is attached to an aluminum alloy piston, and is preferably used as a piston ring for a cast iron cylinder liner or a cylinder whose inner peripheral surface is thermally sprayed.
ピストンリング10は、ピストンに形成されたピストンリング溝(不図示)に装着され、ピストンの往復運動によってシリンダライナ(不図示)の内周面と摺動しながら往復運動する。
本実施形態に係るピストンリング10は、トップリング、セカンドリング、オイルリングの何れのピストンリングとして用いてもよい。なお、オイルリングに適用する場合は、オイルリング本体とコイルエキスパンダからなる2ピース構成オイルリングのオイルリング本体、及び2本のセグメント(サイドレールともいう)とスペーサエキスパンダからなる3ピース構成オイルリングのセグメント、のいずれにも適用することができる。
なお、本実施形態に係るピストンリング10は、アルミニウム合金製ピストンに装着され、鋳鉄製シリンダライナ又は内周面に溶射が施されたシリンダに対するピストンリングとして好ましく用いられる。 FIG. 1 shows a schematic cross-sectional view of a piston ring formed with a sliding film according to the present embodiment.
The
The
The
ピストンリング基材11は、従来からピストンリング基材として使用されている材質であれば、材質は特に限定されない。例えば、ステンレス鋼材、ばね鋼材などが好適に用いられ、具体的には、マルテンサイト系ステンレス鋼、シリコンクロム鋼などが好適に用いられる。
The material of the piston ring base material 11 is not particularly limited as long as it is a material conventionally used as a piston ring base material. For example, stainless steel, spring steel, etc. are preferably used. Specifically, martensitic stainless steel, silicon chromium steel, etc. are preferably used.
ピストンリング10は、ピストンリング基材11上に、Cr、Si-C又はWのいずれかからなる接着層12を備え、その上に第一の炭素層13、及び第二の炭素層14を備える。
本実施形態では、特許文献1のようにクロム等の金属を含有する接着層上にDLC層を形成した場合、ピストンリング基材と接着層との密着性は良好であるが、接着層とDLC層との密着性が低く、摺動に伴う摩耗の進行による摩滅とは異なる剥離現象が生じることを見出したことに基づくものである。このような課題(現象)は、ピストンリング基材11上に、Cr、Si-C又はWのいずれかからなる接着層12を備えた形態であることにより生じるものであると、本発明者らは考えている。このような知見を得た具体的な実験について、以下説明する。 Thepiston ring 10 comprises an adhesion layer 12 made of either Cr, Si—C or W on a piston ring base material 11, and a first carbon layer 13 and a second carbon layer 14 thereon. .
In this embodiment, when the DLC layer is formed on the adhesive layer containing a metal such as chromium as inPatent Document 1, the adhesion between the piston ring base material and the adhesive layer is good, but the adhesive layer and the DLC This is based on the discovery that the adhesiveness to the layer is low, and a peeling phenomenon different from wear due to progress of wear accompanying sliding occurs. The present inventors believe that such a problem (phenomenon) is caused by the fact that the piston ring base material 11 is provided with the adhesive layer 12 made of Cr, Si—C or W. is thinking. A specific experiment in which such knowledge was obtained will be described below.
本実施形態では、特許文献1のようにクロム等の金属を含有する接着層上にDLC層を形成した場合、ピストンリング基材と接着層との密着性は良好であるが、接着層とDLC層との密着性が低く、摺動に伴う摩耗の進行による摩滅とは異なる剥離現象が生じることを見出したことに基づくものである。このような課題(現象)は、ピストンリング基材11上に、Cr、Si-C又はWのいずれかからなる接着層12を備えた形態であることにより生じるものであると、本発明者らは考えている。このような知見を得た具体的な実験について、以下説明する。 The
In this embodiment, when the DLC layer is formed on the adhesive layer containing a metal such as chromium as in
<実験1>
実験1は、図3に概要を示す往復動摩擦試験機を用いて行った。
まず、マルテンサイト系ステンレス鋼を呼び径86mm、摺動方向の幅が1.2mmのピストンリング基材とし、その外周面に接着層であるCr層と第二の炭素層を2μmの厚さで成膜し、外周摺動面を加工したピストンリングを準備した。該ピストンリングの合い口対向部180°位置と、両側90°を成す3箇所の各位置から、周長20mmのピストンリング部材を切り出し、供試した。最終仕上げ後のピストンリング部材の表面粗さは、粗さ曲線がプラトー形状であり、最大高さRz1.0μmとし、上試験片100とした。
下試験片110は可動ブロック120により保持され、パーライト基地からなる片状黒鉛鋳鉄であり、硬さがHRB100、炭化物析出が3%の片状黒鉛鋳鉄製シリンダライナに見立てた幅17mm、長さ70mm、厚さ14mmのプレートを作製し、#600エメリーペーパーにより最終表面仕上げを行って、表面粗さは最大高さRzで1.2μmであった。 <Experiment 1>
Experiment 1 was conducted using a reciprocating friction tester whose outline is shown in FIG.
First, martensitic stainless steel was used as a piston ring base material having a nominal diameter of 86 mm and a width in the sliding direction of 1.2 mm. A piston ring was prepared by forming a film and processing the outer peripheral sliding surface. A piston ring member having a circumference of 20 mm was cut out from each of three positions forming 90° on both sides and the 180° position of the joint facing portion of the piston ring, and tested. The surface roughness of the piston ring member after final finishing was such that the roughness curve was plateau-shaped and the maximum height was Rz 1.0 μm.
Thelower test piece 110 is held by a movable block 120 and is made of flake graphite cast iron made of a pearlite matrix, and has a width of 17 mm and a length of 70 mm assuming a cylinder liner made of flake graphite cast iron having a hardness of HRB 100 and carbide precipitation of 3%. , a 14 mm thick plate was prepared and subjected to final surface finishing with #600 emery paper, and the surface roughness was 1.2 μm at the maximum height Rz.
実験1は、図3に概要を示す往復動摩擦試験機を用いて行った。
まず、マルテンサイト系ステンレス鋼を呼び径86mm、摺動方向の幅が1.2mmのピストンリング基材とし、その外周面に接着層であるCr層と第二の炭素層を2μmの厚さで成膜し、外周摺動面を加工したピストンリングを準備した。該ピストンリングの合い口対向部180°位置と、両側90°を成す3箇所の各位置から、周長20mmのピストンリング部材を切り出し、供試した。最終仕上げ後のピストンリング部材の表面粗さは、粗さ曲線がプラトー形状であり、最大高さRz1.0μmとし、上試験片100とした。
下試験片110は可動ブロック120により保持され、パーライト基地からなる片状黒鉛鋳鉄であり、硬さがHRB100、炭化物析出が3%の片状黒鉛鋳鉄製シリンダライナに見立てた幅17mm、長さ70mm、厚さ14mmのプレートを作製し、#600エメリーペーパーにより最終表面仕上げを行って、表面粗さは最大高さRzで1.2μmであった。 <
First, martensitic stainless steel was used as a piston ring base material having a nominal diameter of 86 mm and a width in the sliding direction of 1.2 mm. A piston ring was prepared by forming a film and processing the outer peripheral sliding surface. A piston ring member having a circumference of 20 mm was cut out from each of three positions forming 90° on both sides and the 180° position of the joint facing portion of the piston ring, and tested. The surface roughness of the piston ring member after final finishing was such that the roughness curve was plateau-shaped and the maximum height was Rz 1.0 μm.
The
往復動摩擦試験の試験条件を以下に示す。上試験片100と下試験片110との摺動面には、エンジン実機運転400時間後の使用済みエンジン潤滑油(使用前粘度0W-20)を試験時間1時間に150μl(マイクロリットル)給油した。
<試験条件>
・ストローク:50mm
・荷重:50N
・速度:300cycle/min
・下試験片の温度:80℃(下試験片加熱用ヒータ122使用)
・試験時間:60min The test conditions for the reciprocating friction test are shown below. On the sliding surface between theupper test piece 100 and the lower test piece 110, 150 μl (microliter) of used engine lubricating oil (viscosity before use 0 W-20) after 400 hours of actual engine operation was applied for 1 hour of the test time. .
<Test conditions>
・Stroke: 50mm
・Load: 50N
・Speed: 300 cycles/min
・Temperature of lower test piece: 80°C (use heater 122 for heating lower test piece)
・Test time: 60 minutes
<試験条件>
・ストローク:50mm
・荷重:50N
・速度:300cycle/min
・下試験片の温度:80℃(下試験片加熱用ヒータ122使用)
・試験時間:60min The test conditions for the reciprocating friction test are shown below. On the sliding surface between the
<Test conditions>
・Stroke: 50mm
・Load: 50N
・Speed: 300 cycles/min
・Temperature of lower test piece: 80°C (
・Test time: 60 minutes
結果を図4に示す。図4の断面図(b)に示すように、第二の炭素層の中心部が接着層であるCr層との界面部分から剥離していることがわかる。
The results are shown in Figure 4. As shown in the cross-sectional view (b) of FIG. 4, it can be seen that the central portion of the second carbon layer is separated from the interface portion with the Cr layer, which is the adhesive layer.
<分析1>
実験1と同様のピストンリングに対し、集束イオンビーム(FIB)加工によって製作した薄片の、被膜厚さ方向断面から、透過型電子顕微鏡(TEM)に電子エネルギー損失分光法(EELS)を組み合わせたTEM-EELSを用いて、炭素層の電子エネルギー損失端近傍構造の分析を行った。分析方法は以下の通りである。
1.C-K損失端ELNESスペクトルのバックグラウンドの傾きを補正し、損失端側の高さが1になるよう強度を規格化する。
2.標準試料(ダイヤモンド、グラファイト)を参考に、エネルギー値の補正を行う。
3.損失エネルギーが280~310eVの面積を計測する。(ピーク全面積)
4.損失エネルギーが280~295eVの範囲でピーク分離を行う。分離後の285eV付近のピークの面積を計測する。(sp2ピーク面積)
5.ピーク全面積に対するsp2ピーク面積の比を取る(sp2ピーク面積比)。この面積比について、標準試料(ダイヤモンド、グラファイト)を基準とした相対値を求める。これをsp2成分割合とする。 <Analysis 1>
A TEM combined with a transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS) from a film thickness direction cross-section of a thin piece produced by focused ion beam (FIB) processing for the same piston ring asExperiment 1. -EELS was used to analyze the structure near the electron energy loss edge of the carbon layer. The analysis method is as follows.
1. The slope of the background of the CK loss edge ELNES spectrum is corrected, and the intensity is normalized so that the height on the loss edge side becomes 1.
2. The energy value is corrected with reference to standard samples (diamond, graphite).
3. An area with a loss energy of 280 to 310 eV is measured. (Peak total area)
4. Peak separation is performed in the range of loss energy from 280 to 295 eV. The area of the peak near 285 eV after separation is measured. ( sp2 peak area)
5. Take the ratio of the sp2 peak area to the total peak area ( sp2 peak area ratio). Regarding this area ratio, a relative value based on a standard sample (diamond, graphite) is obtained. Let this be the sp 2 component ratio.
実験1と同様のピストンリングに対し、集束イオンビーム(FIB)加工によって製作した薄片の、被膜厚さ方向断面から、透過型電子顕微鏡(TEM)に電子エネルギー損失分光法(EELS)を組み合わせたTEM-EELSを用いて、炭素層の電子エネルギー損失端近傍構造の分析を行った。分析方法は以下の通りである。
1.C-K損失端ELNESスペクトルのバックグラウンドの傾きを補正し、損失端側の高さが1になるよう強度を規格化する。
2.標準試料(ダイヤモンド、グラファイト)を参考に、エネルギー値の補正を行う。
3.損失エネルギーが280~310eVの面積を計測する。(ピーク全面積)
4.損失エネルギーが280~295eVの範囲でピーク分離を行う。分離後の285eV付近のピークの面積を計測する。(sp2ピーク面積)
5.ピーク全面積に対するsp2ピーク面積の比を取る(sp2ピーク面積比)。この面積比について、標準試料(ダイヤモンド、グラファイト)を基準とした相対値を求める。これをsp2成分割合とする。 <
A TEM combined with a transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS) from a film thickness direction cross-section of a thin piece produced by focused ion beam (FIB) processing for the same piston ring as
1. The slope of the background of the CK loss edge ELNES spectrum is corrected, and the intensity is normalized so that the height on the loss edge side becomes 1.
2. The energy value is corrected with reference to standard samples (diamond, graphite).
3. An area with a loss energy of 280 to 310 eV is measured. (Peak total area)
4. Peak separation is performed in the range of loss energy from 280 to 295 eV. The area of the peak near 285 eV after separation is measured. ( sp2 peak area)
5. Take the ratio of the sp2 peak area to the total peak area ( sp2 peak area ratio). Regarding this area ratio, a relative value based on a standard sample (diamond, graphite) is obtained. Let this be the sp 2 component ratio.
実験1から、摺動に伴う摩耗の進行による摩滅により第二の炭素層の膜厚が2μm以下の薄膜となった場合、第二の炭素層の摺動箇所の一部が接着層との界面部分から剥離する現象が生じる場合があることを確認した。
From Experiment 1, when the film thickness of the second carbon layer became a thin film of 2 μm or less due to wear due to the progress of wear accompanying sliding, part of the sliding location of the second carbon layer was the interface with the adhesive layer. It was confirmed that the phenomenon of peeling from the part may occur.
上記判明した問題に対し、本実施形態では、接着層12と第二の炭素層14の間に第一の炭素層13を備え、且つ第一の炭素層及び第二の炭素層の損失エネルギーが280eVから290eVの間にピークが存在し、そのピーク高さが第二の炭素層より第一の炭素層の方が高いことで、上記接着層との界面部分からの剥離の問題を解決することができる。
また、TEM-EELSにより、第二の炭素層14及び接着層12と第二の炭素層14の境界部を測定したときに、電子エネルギー損失端近傍構造スペクトル(C-K損失端ELNES)において、損失エネルギーが280eVから290eVの間にそれぞれピークを有し、且つ接着層12と第二の炭素層14の境界部に、当該ピーク高さが第二の炭素層14のピーク高さより高い領域が存在することも好ましい。 In order to solve the problem identified above, in this embodiment, thefirst carbon layer 13 is provided between the adhesive layer 12 and the second carbon layer 14, and the loss energy of the first carbon layer and the second carbon layer is A peak exists between 280 eV and 290 eV, and the peak height is higher in the first carbon layer than in the second carbon layer, thereby solving the problem of peeling from the interface with the adhesive layer. can be done.
Further, when the boundary between thesecond carbon layer 14 and the adhesive layer 12 and the second carbon layer 14 is measured by TEM-EELS, in the electron energy loss edge vicinity structure spectrum (CK loss edge ELNES), The loss energy has peaks between 280 eV and 290 eV, and a region where the peak height is higher than the peak height of the second carbon layer 14 exists at the boundary between the adhesive layer 12 and the second carbon layer 14. It is also preferable to
また、TEM-EELSにより、第二の炭素層14及び接着層12と第二の炭素層14の境界部を測定したときに、電子エネルギー損失端近傍構造スペクトル(C-K損失端ELNES)において、損失エネルギーが280eVから290eVの間にそれぞれピークを有し、且つ接着層12と第二の炭素層14の境界部に、当該ピーク高さが第二の炭素層14のピーク高さより高い領域が存在することも好ましい。 In order to solve the problem identified above, in this embodiment, the
Further, when the boundary between the
接着層の膜厚は特段限定されないが、基材11と第二の炭素層14との密着性を向上させる観点から、0.1μm以上であることが好ましく、2.0μm以下であることが好ましい。
ピストンリング基材11の外周面は平滑化されていてもよく、平滑化される場合、平滑化加工の方法は特に限定されないが、ラッピングまたはバフ研磨加工を施し、表面粗さを調整することが好ましい。ピストンリング基材11の表面粗さは、JISB0601(2001)における最大高さRzで0.5μm以下に調整することが好ましい。 Although the thickness of the adhesive layer is not particularly limited, it is preferably 0.1 μm or more and preferably 2.0 μm or less from the viewpoint of improving the adhesion between thesubstrate 11 and the second carbon layer 14. .
The outer peripheral surface of the pistonring base material 11 may be smoothed, and when smoothed, the smoothing method is not particularly limited, but the surface roughness can be adjusted by lapping or buffing. preferable. The surface roughness of the piston ring base material 11 is preferably adjusted to 0.5 μm or less at the maximum height Rz in JISB0601 (2001).
ピストンリング基材11の外周面は平滑化されていてもよく、平滑化される場合、平滑化加工の方法は特に限定されないが、ラッピングまたはバフ研磨加工を施し、表面粗さを調整することが好ましい。ピストンリング基材11の表面粗さは、JISB0601(2001)における最大高さRzで0.5μm以下に調整することが好ましい。 Although the thickness of the adhesive layer is not particularly limited, it is preferably 0.1 μm or more and preferably 2.0 μm or less from the viewpoint of improving the adhesion between the
The outer peripheral surface of the piston
第一の炭素層13は、透過型電子顕微鏡(TEM)に電子エネルギー損失分光法(EELS)を組み合わせたTEM-EELSで測定される。このとき、TEMの電子銃から照射される電子線の照射径は、第一の炭素層の厚さと比較して同程度若しくはそれよりも小さい径とする。分析1では、Cs-TEMを用いて測定し、その照射径は公称0.1nmとした。 第一の炭素層13を形成する方法は特に限定されず、公知の方法を適用して形成できる。
The first carbon layer 13 is measured by TEM-EELS, which is a combination of transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS). At this time, the irradiation diameter of the electron beam emitted from the electron gun of the TEM is set to be approximately equal to or smaller than the thickness of the first carbon layer. Analysis 1 was measured using a Cs-TEM with a nominal irradiation diameter of 0.1 nm. The method of forming the first carbon layer 13 is not particularly limited, and can be formed by applying a known method.
第一の炭素層13は、実質的に金属を含有しないことが好ましい。ここでいう「実質的に」とは、第一の炭素層中に金属成分が3at%以下であり、1at%以下であることが好ましく、検出限界以下であることがより好ましい。
また、第一の炭素層13の膜厚は0.001μm以上1μm以下であることが好ましい。 Thefirst carbon layer 13 preferably contains substantially no metal. The term “substantially” as used herein means that the metal component in the first carbon layer is 3 at % or less, preferably 1 at % or less, and more preferably below the detection limit.
Also, the film thickness of thefirst carbon layer 13 is preferably 0.001 μm or more and 1 μm or less.
また、第一の炭素層13の膜厚は0.001μm以上1μm以下であることが好ましい。 The
Also, the film thickness of the
第二の炭素層14は、透過型電子顕微鏡(TEM)に電子エネルギー損失分光法(EELS)を組み合わせたTEM-EELSで測定されるsp2成分比が通常0.5以上0.7以下であることが好ましく、0.55以上0.68以下であることがより好ましく、0.58以上0.65以下であることが更に好ましい。
The second carbon layer 14 has an sp 2 component ratio of usually 0.5 or more and 0.7 or less measured by TEM-EELS, which is a combination of transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS). is preferably 0.55 or more and 0.68 or less, and even more preferably 0.58 or more and 0.65 or less.
第二の炭素層14は、マルテンス硬さが6GPa以上13GPa以下であることが好ましく、11GPa以下であってもよく、9GPa以下であってもよい。
また、第二の炭素層14は、ナノインデンテーション法により測定される押込み弾性率が250GPa以下であることが好ましく、200GPa以下であることがより好ましく、180GPa以下であることが更に好ましい。一方、下限は特に限定されないが、押込み弾性率が120GPa以上であることで、膜内部の剥離が生じにくくなる。 Thesecond carbon layer 14 preferably has a Martens hardness of 6 GPa or more and 13 GPa or less, may be 11 GPa or less, or may be 9 GPa or less.
In addition, thesecond carbon layer 14 preferably has an indentation modulus of 250 GPa or less, more preferably 200 GPa or less, and even more preferably 180 GPa or less, as measured by a nanoindentation method. On the other hand, although the lower limit is not particularly limited, if the indentation modulus is 120 GPa or more, peeling inside the film is less likely to occur.
また、第二の炭素層14は、ナノインデンテーション法により測定される押込み弾性率が250GPa以下であることが好ましく、200GPa以下であることがより好ましく、180GPa以下であることが更に好ましい。一方、下限は特に限定されないが、押込み弾性率が120GPa以上であることで、膜内部の剥離が生じにくくなる。 The
In addition, the
第二の炭素層14は、水素含有量が5at%以下であることが好ましく、3at%以下であることがより好ましく、実質水素を含まないことが耐摩耗性の観点からより好ましい。
The hydrogen content of the second carbon layer 14 is preferably 5 at% or less, more preferably 3 at% or less, and more preferably substantially free of hydrogen from the viewpoint of wear resistance.
第二の炭素層14の膜厚は1μm以上10μm以下であることが好ましく、膜厚が2μm以上であってよく、3μm以上であってよい。また、膜厚が7μm以下であってもよく、5μm以下であってよい。また、第二の炭素層14は、多層構造であることが好ましい。
The film thickness of the second carbon layer 14 is preferably 1 μm or more and 10 μm or less, and may be 2 μm or more and may be 3 μm or more. Also, the film thickness may be 7 μm or less, or may be 5 μm or less. Moreover, the second carbon layer 14 preferably has a multilayer structure.
本実施形態に係る第一の炭素層及び第二の炭素層の製造方法は、特段限定されない。一例としては、フィルタード カソーディック バキューム アーク(FCVA:Filtered Cathodic Vacuum arc)法やマグネトロンスパッタリング法を用いて被膜を形成する方法があげられる。第一の炭素層及び第二の炭素層は、印加するバイアス電圧を変化させて、またはバイアス電圧を変化させることなく複数回成膜することで形成してもよい。
上記、TEM-EELSを用いた炭素層の電子エネルギー損失端近傍構造を所望のものとするための方法としては、第一の炭素層及び第二の炭素層の製造方法において、第一の炭素層はマグネトロンスパッタリング法、第二の炭素層はFCVA法又はマグネトロンスパッタリング法による積層とし、印加するバイアス電圧の絶対値を大きくすることが好ましい。 The method for producing the first carbon layer and the second carbon layer according to this embodiment is not particularly limited. As an example, there is a method of forming a coating using a filtered cathodic vacuum arc (FCVA) method or a magnetron sputtering method. The first carbon layer and the second carbon layer may be formed by film formation a plurality of times while changing the applied bias voltage or without changing the bias voltage.
As a method for obtaining a desired structure near the electron energy loss edge of the carbon layer using TEM-EELS, in the method for producing the first carbon layer and the second carbon layer, the first carbon layer is preferably a magnetron sputtering method, the second carbon layer is a laminate by the FCVA method or the magnetron sputtering method, and the absolute value of the applied bias voltage is preferably increased.
上記、TEM-EELSを用いた炭素層の電子エネルギー損失端近傍構造を所望のものとするための方法としては、第一の炭素層及び第二の炭素層の製造方法において、第一の炭素層はマグネトロンスパッタリング法、第二の炭素層はFCVA法又はマグネトロンスパッタリング法による積層とし、印加するバイアス電圧の絶対値を大きくすることが好ましい。 The method for producing the first carbon layer and the second carbon layer according to this embodiment is not particularly limited. As an example, there is a method of forming a coating using a filtered cathodic vacuum arc (FCVA) method or a magnetron sputtering method. The first carbon layer and the second carbon layer may be formed by film formation a plurality of times while changing the applied bias voltage or without changing the bias voltage.
As a method for obtaining a desired structure near the electron energy loss edge of the carbon layer using TEM-EELS, in the method for producing the first carbon layer and the second carbon layer, the first carbon layer is preferably a magnetron sputtering method, the second carbon layer is a laminate by the FCVA method or the magnetron sputtering method, and the absolute value of the applied bias voltage is preferably increased.
次に、実施例、比較例を用いて本発明についてさらに詳しく説明を行う。なお、本発明は以下の実施例に限定されるものではない。
Next, the present invention will be described in more detail using examples and comparative examples. In addition, the present invention is not limited to the following examples.
(実施例1)
ステンレス鋼からなるピストンリング基材をFCVA装置内にセットした状態で、装置内を真空排気して減圧した後、基材を加熱した。その後に基材に対してパルスバイアス電圧を-500~-1500Vの範囲で印加した状態で、装置内にアルゴンガスを導入し、アルゴンイオンによりイオンボンバードを行った。
次にFCVA装置内に設置されたスパッタリングユニットを用い、アルゴンガス雰囲気下でピストンリング基材に対してバイアス電圧を-50V~-600Vの範囲に印加した状態で、接着層として厚さ1.0μmのCr層をピストンリング基材上に成膜した。 (Example 1)
A piston ring base material made of stainless steel was set in the FCVA apparatus, and after the inside of the apparatus was evacuated to reduce the pressure, the base material was heated. Thereafter, while a pulse bias voltage in the range of -500 to -1500 V was applied to the substrate, argon gas was introduced into the apparatus and ion bombardment was performed with argon ions.
Next, using a sputtering unit installed in the FCVA apparatus, a bias voltage in the range of -50 V to -600 V was applied to the piston ring base material in an argon gas atmosphere, and the adhesive layer had a thickness of 1.0 μm. was deposited on the piston ring substrate.
ステンレス鋼からなるピストンリング基材をFCVA装置内にセットした状態で、装置内を真空排気して減圧した後、基材を加熱した。その後に基材に対してパルスバイアス電圧を-500~-1500Vの範囲で印加した状態で、装置内にアルゴンガスを導入し、アルゴンイオンによりイオンボンバードを行った。
次にFCVA装置内に設置されたスパッタリングユニットを用い、アルゴンガス雰囲気下でピストンリング基材に対してバイアス電圧を-50V~-600Vの範囲に印加した状態で、接着層として厚さ1.0μmのCr層をピストンリング基材上に成膜した。 (Example 1)
A piston ring base material made of stainless steel was set in the FCVA apparatus, and after the inside of the apparatus was evacuated to reduce the pressure, the base material was heated. Thereafter, while a pulse bias voltage in the range of -500 to -1500 V was applied to the substrate, argon gas was introduced into the apparatus and ion bombardment was performed with argon ions.
Next, using a sputtering unit installed in the FCVA apparatus, a bias voltage in the range of -50 V to -600 V was applied to the piston ring base material in an argon gas atmosphere, and the adhesive layer had a thickness of 1.0 μm. was deposited on the piston ring substrate.
次にスパッタリングユニットを用い、Cr層上に第一の炭素層を積層した。ピストンリング基材に対してバイアス電圧を-50V~-600Vの範囲内で印加した状態で、カーボンターゲットを用いてアルゴンガス雰囲気下で厚さ0.01μmの第一の炭素層を成膜した。
更に第一の炭素層上に、ピストンリング基材に対してパルスバイアス電圧を-500V~-3000Vの範囲内で印加した状態でカーボンターゲットを用いて、アーク電流50~200Aで放電し、厚さ2μmの第二の炭素層を成膜することで、実施例1に係るピストンリングを得た。
図6に上記測定で得られたEELSスペクトルを示す。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にはsp2成分のπ結合ピーク(炭素のK殻(1s軌道)にある電子が励起され、反結合性分子軌道に遷移する際に損失するエネルギーのピークであるπ*ピーク)があり、そのピーク高さは第二の炭素層よりも第一の炭素層の方が高くなっていることがわかる。 A sputtering unit was then used to deposit a first carbon layer on the Cr layer. A carbon target was used to deposit a first carbon layer having a thickness of 0.01 μm in an argon gas atmosphere while a bias voltage within the range of −50 V to −600 V was applied to the piston ring base material.
Furthermore, on the first carbon layer, a carbon target is used with a pulse bias voltage applied to the piston ring base material within the range of -500 V to -3000 V, and an arc current of 50 to 200 A is used to discharge the thickness. A piston ring according to Example 1 was obtained by forming a second carbon layer of 2 μm.
FIG. 6 shows the EELS spectrum obtained by the above measurement. When the loss energy of the structure near the electron energy loss edge (CK loss edge ELNES spectrum) is between 280 eV and 290 eV, the π bond peak of the sp 2 component (the electron in the K shell (1s orbital) of carbon is excited and reversed). It can be seen that there is a peak of energy lost when transitioning to a bonding molecular orbital (π * peak), and the peak height is higher in the first carbon layer than in the second carbon layer. .
更に第一の炭素層上に、ピストンリング基材に対してパルスバイアス電圧を-500V~-3000Vの範囲内で印加した状態でカーボンターゲットを用いて、アーク電流50~200Aで放電し、厚さ2μmの第二の炭素層を成膜することで、実施例1に係るピストンリングを得た。
図6に上記測定で得られたEELSスペクトルを示す。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にはsp2成分のπ結合ピーク(炭素のK殻(1s軌道)にある電子が励起され、反結合性分子軌道に遷移する際に損失するエネルギーのピークであるπ*ピーク)があり、そのピーク高さは第二の炭素層よりも第一の炭素層の方が高くなっていることがわかる。 A sputtering unit was then used to deposit a first carbon layer on the Cr layer. A carbon target was used to deposit a first carbon layer having a thickness of 0.01 μm in an argon gas atmosphere while a bias voltage within the range of −50 V to −600 V was applied to the piston ring base material.
Furthermore, on the first carbon layer, a carbon target is used with a pulse bias voltage applied to the piston ring base material within the range of -500 V to -3000 V, and an arc current of 50 to 200 A is used to discharge the thickness. A piston ring according to Example 1 was obtained by forming a second carbon layer of 2 μm.
FIG. 6 shows the EELS spectrum obtained by the above measurement. When the loss energy of the structure near the electron energy loss edge (CK loss edge ELNES spectrum) is between 280 eV and 290 eV, the π bond peak of the sp 2 component (the electron in the K shell (1s orbital) of carbon is excited and reversed). It can be seen that there is a peak of energy lost when transitioning to a bonding molecular orbital (π * peak), and the peak height is higher in the first carbon layer than in the second carbon layer. .
(実施例2)
第一の炭素層に金属を含有した(10at%)こと以外は、実施例1と同様に、実施例2に係るピストンリングを得た。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にsp2成分のπ結合ピークがあり、そのピーク高さは第二の炭素層よりも第一の炭素層の方が高くなっていた。 (Example 2)
A piston ring according to Example 2 was obtained in the same manner as in Example 1, except that the first carbon layer contained a metal (10 at %). The structure near the electron energy loss edge (CK loss edge ELNES spectrum) has a π-bond peak of the sp2 component between 280 eV and 290 eV, and the peak height is higher than that of the second carbon layer. The carbon layer was higher.
第一の炭素層に金属を含有した(10at%)こと以外は、実施例1と同様に、実施例2に係るピストンリングを得た。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にsp2成分のπ結合ピークがあり、そのピーク高さは第二の炭素層よりも第一の炭素層の方が高くなっていた。 (Example 2)
A piston ring according to Example 2 was obtained in the same manner as in Example 1, except that the first carbon layer contained a metal (10 at %). The structure near the electron energy loss edge (CK loss edge ELNES spectrum) has a π-bond peak of the sp2 component between 280 eV and 290 eV, and the peak height is higher than that of the second carbon layer. The carbon layer was higher.
(比較例1)
接着層を設けないこと、第一の炭素層を設けないこと以外は、実施例1と同様にして、比較例1に係るピストンリングを得た。 (Comparative example 1)
A piston ring according to Comparative Example 1 was obtained in the same manner as in Example 1, except that the adhesive layer was not provided and the first carbon layer was not provided.
接着層を設けないこと、第一の炭素層を設けないこと以外は、実施例1と同様にして、比較例1に係るピストンリングを得た。 (Comparative example 1)
A piston ring according to Comparative Example 1 was obtained in the same manner as in Example 1, except that the adhesive layer was not provided and the first carbon layer was not provided.
(比較例2)
第一の炭素層を設けないこと以外は、実施例1と同様に、比較例2に係るピストンリングを得た。 (Comparative example 2)
A piston ring according to Comparative Example 2 was obtained in the same manner as in Example 1, except that the first carbon layer was not provided.
第一の炭素層を設けないこと以外は、実施例1と同様に、比較例2に係るピストンリングを得た。 (Comparative example 2)
A piston ring according to Comparative Example 2 was obtained in the same manner as in Example 1, except that the first carbon layer was not provided.
(比較例3)
接着層を設けないこと以外は、実施例1と同様に、比較例3に係るピストンリングを得た。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にsp2成分のπ結合ピークがあり、そのピーク高さは第二の炭素層よりも第一の炭素層の方が高くなっていた。 (Comparative Example 3)
A piston ring according to Comparative Example 3 was obtained in the same manner as in Example 1, except that no adhesive layer was provided. The structure near the electron energy loss edge (CK loss edge ELNES spectrum) has a π-bond peak of the sp2 component between 280 eV and 290 eV, and the peak height is higher than that of the second carbon layer. The carbon layer was higher.
接着層を設けないこと以外は、実施例1と同様に、比較例3に係るピストンリングを得た。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にsp2成分のπ結合ピークがあり、そのピーク高さは第二の炭素層よりも第一の炭素層の方が高くなっていた。 (Comparative Example 3)
A piston ring according to Comparative Example 3 was obtained in the same manner as in Example 1, except that no adhesive layer was provided. The structure near the electron energy loss edge (CK loss edge ELNES spectrum) has a π-bond peak of the sp2 component between 280 eV and 290 eV, and the peak height is higher than that of the second carbon layer. The carbon layer was higher.
(比較例4)
第一の炭素層をFCVA法、第二の炭素層をマグネトロンスパッタリング法で成膜したこと以外は、実施例1と同様にして、比較例4に係るピストンリングを得た。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にsp2成分のπ結合ピークがあったが、そのピーク高さは第一の炭素層よりも第二の炭素層の方が高くなっていた。 (Comparative Example 4)
A piston ring according to Comparative Example 4 was obtained in the same manner as in Example 1, except that the first carbon layer was formed by the FCVA method and the second carbon layer was formed by the magnetron sputtering method. The structure near the electron energy loss edge (CK loss edge ELNES spectrum) had a π-bond peak of the sp2 component between the loss energy of 280 eV and 290 eV, but the peak height was higher than that of the first carbon layer. The second carbon layer was higher.
第一の炭素層をFCVA法、第二の炭素層をマグネトロンスパッタリング法で成膜したこと以外は、実施例1と同様にして、比較例4に係るピストンリングを得た。電子エネルギー損失端近傍構造(C-K損失端ELNESスペクトル)の損失エネルギーが280eVから290eVの間にsp2成分のπ結合ピークがあったが、そのピーク高さは第一の炭素層よりも第二の炭素層の方が高くなっていた。 (Comparative Example 4)
A piston ring according to Comparative Example 4 was obtained in the same manner as in Example 1, except that the first carbon layer was formed by the FCVA method and the second carbon layer was formed by the magnetron sputtering method. The structure near the electron energy loss edge (CK loss edge ELNES spectrum) had a π-bond peak of the sp2 component between the loss energy of 280 eV and 290 eV, but the peak height was higher than that of the first carbon layer. The second carbon layer was higher.
得られたピストンリングに対して、図3に示す上記実験1の摺動剥離評価を行った。上記実験1の評価において、第二の炭素層の摺動箇所が接着層との界面部分から剥離した場合は×、剥離しなかったが、若干のクラックが生じた場合は〇、剥離しなかった場合は◎とした。その結果は以下のとおりである。また、実施例1のピストンリングに対し上記実験1の往復動摩擦試験を実施した結果を図5a及び図5bに示す。
The sliding peeling evaluation of Experiment 1 shown in Fig. 3 was performed on the obtained piston ring. In the evaluation of Experiment 1 above, when the sliding portion of the second carbon layer was peeled from the interface with the adhesive layer, it was not peeled, but when some cracks occurred, it was not peeled. ◎ in the case. The results are as follows. 5a and 5b show the results of the reciprocating friction test of Experiment 1 on the piston ring of Example 1. FIG.
10 ピストンリング
11 ピストンリング基材
12 接着層
13 第一の炭素層
14 第二の炭素層
100 上試験片
110 下試験片
120 可動ブロック
122 下試験片加熱用ヒータ 10Piston ring 11 Piston ring base material 12 Adhesive layer 13 First carbon layer 14 Second carbon layer 100 Upper test piece 110 Lower test piece 120 Movable block 122 Lower test piece heater
11 ピストンリング基材
12 接着層
13 第一の炭素層
14 第二の炭素層
100 上試験片
110 下試験片
120 可動ブロック
122 下試験片加熱用ヒータ 10
Claims (5)
- 内燃機関で用いられる摺動部材の摺動面に形成される摺動被膜であって、
前記摺動被膜は、摺動部材を構成する金属系基材上に、接着層、第一の炭素層、第二の炭素層、の順に積層された積層被膜であり、
前記第一の炭素層及び前記第二の炭素層のTEM-EELSによる電子エネルギー損失端近傍構造(C-K損失端ELNES)には、損失エネルギーが280eVから290eVの間にピークが存在し、そのピーク高さが前記第二の炭素層より前記第一の炭素層の方が高い、摺動被膜。 A sliding coating formed on a sliding surface of a sliding member used in an internal combustion engine,
The sliding coating is a laminated coating in which an adhesive layer, a first carbon layer, and a second carbon layer are laminated in this order on a metal-based base material that constitutes a sliding member,
In the electron energy loss edge vicinity structure (CK loss edge ELNES) by TEM-EELS of the first carbon layer and the second carbon layer, there is a peak in the loss energy between 280 eV and 290 eV. A sliding coating, wherein the first carbon layer has a higher peak height than the second carbon layer. - 前記第一の炭素層は、実質的に金属を含有しない、請求項1に記載の摺動被膜。 The sliding coating according to claim 1, wherein the first carbon layer contains substantially no metal.
- 前記第二の炭素層は、多層構造である、請求項1または2に記載の摺動被膜。 The sliding coating according to claim 1 or 2, wherein the second carbon layer has a multilayer structure.
- 請求項1乃至3のいずれか1項に記載の摺動被膜を有する摺動部材。 A sliding member having the sliding film according to any one of claims 1 to 3.
- ピストンリングである、請求項4に記載の摺動部材。
5. The sliding member according to claim 4, which is a piston ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/006154 WO2022176113A1 (en) | 2021-02-18 | 2021-02-18 | Sliding coating film and sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/006154 WO2022176113A1 (en) | 2021-02-18 | 2021-02-18 | Sliding coating film and sliding member |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022176113A1 true WO2022176113A1 (en) | 2022-08-25 |
Family
ID=82930352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006154 WO2022176113A1 (en) | 2021-02-18 | 2021-02-18 | Sliding coating film and sliding member |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022176113A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007246996A (en) * | 2006-03-16 | 2007-09-27 | Tdk Corp | Protective film, and component for use in internal combustion engine provided with the protective film |
WO2017104822A1 (en) * | 2015-12-18 | 2017-06-22 | 日本アイ・ティ・エフ株式会社 | Coating film, manufacturing method therefor, and pvd apparatus |
JP2018154873A (en) * | 2017-03-17 | 2018-10-04 | 日本アイ・ティ・エフ株式会社 | Laminate coating film and method of manufacturing the same, and piston ring |
JP2020033622A (en) * | 2018-08-31 | 2020-03-05 | 株式会社リケン | Sliding member |
-
2021
- 2021-02-18 WO PCT/JP2021/006154 patent/WO2022176113A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007246996A (en) * | 2006-03-16 | 2007-09-27 | Tdk Corp | Protective film, and component for use in internal combustion engine provided with the protective film |
WO2017104822A1 (en) * | 2015-12-18 | 2017-06-22 | 日本アイ・ティ・エフ株式会社 | Coating film, manufacturing method therefor, and pvd apparatus |
JP2018154873A (en) * | 2017-03-17 | 2018-10-04 | 日本アイ・ティ・エフ株式会社 | Laminate coating film and method of manufacturing the same, and piston ring |
JP2020033622A (en) * | 2018-08-31 | 2020-03-05 | 株式会社リケン | Sliding member |
Non-Patent Citations (1)
Title |
---|
"DLC membrane handbook [Handbook of diamond-like carbon films]", 2 June 2006, NTS CO., LTD., JP, ISBN: 4-86043-125-1, article SAITOH, HIDETOSHI: "Passages; DLC membrane handbook", pages: 398 - 399, 403-405, XP009539693 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6494505B2 (en) | Hard carbon film | |
RU2520245C2 (en) | Sliding element, particularly, coated piston ring, and method of its fabrication | |
JP6557342B2 (en) | Piston ring and manufacturing method thereof | |
US11293548B2 (en) | Sliding member and coating film | |
JP6472389B2 (en) | Piston ring and manufacturing method thereof | |
JP5564099B2 (en) | Combination of cylinder and piston ring | |
JP6109325B2 (en) | Combination of aluminum alloy mating material and piston ring | |
JP6718452B2 (en) | Piston ring and manufacturing method thereof | |
WO2013137060A1 (en) | Combination of cylinder and piston ring | |
KR102498972B1 (en) | piston ring | |
JP7290171B2 (en) | SLIDING MEMBER, MANUFACTURING METHOD THEREOF AND COATING FILM | |
JP2020200803A (en) | piston ring | |
JP7298083B2 (en) | Piston ring and its manufacturing method | |
JP2018076958A (en) | piston ring | |
WO2022176113A1 (en) | Sliding coating film and sliding member | |
WO2022203052A1 (en) | Sliding member, manufacturing method thereof, and coating film | |
JP2019116677A (en) | Sliding member | |
JP2006207691A (en) | Hard film coated sliding member | |
JP4374160B2 (en) | piston ring | |
JP7021402B1 (en) | Sliding member | |
WO2023053380A1 (en) | Sliding member | |
JP2006206960A (en) | Sliding member coated with hard film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21926548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |