WO2022175614A1 - Rotor de machine électrique tournante - Google Patents

Rotor de machine électrique tournante Download PDF

Info

Publication number
WO2022175614A1
WO2022175614A1 PCT/FR2022/050136 FR2022050136W WO2022175614A1 WO 2022175614 A1 WO2022175614 A1 WO 2022175614A1 FR 2022050136 W FR2022050136 W FR 2022050136W WO 2022175614 A1 WO2022175614 A1 WO 2022175614A1
Authority
WO
WIPO (PCT)
Prior art keywords
housings
rotor
row
housing
central housing
Prior art date
Application number
PCT/FR2022/050136
Other languages
English (en)
Inventor
Radu Fratila
Sara BAZHAR
Mohand Ou Ramdane HAMITI
Original Assignee
Nidec Psa Emotors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Psa Emotors filed Critical Nidec Psa Emotors
Priority to EP22705437.6A priority Critical patent/EP4295469A1/fr
Priority to US18/264,353 priority patent/US20240120785A1/en
Publication of WO2022175614A1 publication Critical patent/WO2022175614A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to rotating electrical machines, motors or generators, and more particularly the rotors of such machines.
  • the invention relates to rotors with permanent magnets.
  • the invention relates more particularly to synchronous or asynchronous alternating current machines. It relates in particular to traction or propulsion machines for electric (Battery Electric Vehicle) and/or hybrid (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle) motor vehicles, such as individual cars, vans, trucks or buses.
  • the invention also applies to rotating electrical machines for industrial and/or energy production applications, in particular naval, aeronautical or wind turbine applications.
  • Permanent magnet rotors are generally composed of a rotor mass and permanent magnets of various geometric shapes.
  • the rotor mass may comprise a stack of thin cut-out magnetic laminations. It can comprise one or more stacks of sheets stacked on top of each other.
  • the permanent magnets can be arranged on the surface, directly facing the air gap or, as a variant, be arranged inside the rotor mass, in housings of the latter, being then said to be “buried” or “embedded”.
  • the rows are arranged such that two adjacent magnets of two consecutive poles are parallel to each other and two magnets of two rows are also parallel to each other.
  • the invention aims to meet this need and thus has as its object, according to one of its aspects, a rotor of a rotating electrical machine, a rotor mass comprising laminations stacked on top of each other, the rotor mass comprising a plurality of housings, at least part of the housings, see all the housings, receiving one or more permanent magnets defining poles of the rotor, the housings of a pole being arranged in at least a first and a second row of housings, the first row of housing comprising three housings arranged in a U, with a central housing and two lateral housings, a length of a largest rectangle inscribed in the central housing being equal to +/- 20% of the length of the largest rectangle inscribed in a lateral housing , at least one of the side housings, in particular the two side housings of the first row, comprising a recess which extends from the side housing towards the central housing.
  • the presence of two rows of housings makes it possible to increase the number of magnets received in the rotor mass, and thus to increase the resulting power density. It is thus possible to obtain more torque with the same rotor size.
  • the invention advantageously makes it possible to improve the reluctant torque of the machine.
  • the 'length' is measured along the axis of the row of slots. We speak of 'width' to designate the dimension perpendicular to the length in the plane of a transverse section of the rotor mass.
  • the length of the largest rectangle inscribed in the central housing may be equal to +/- 20% to the length of the largest rectangle inscribed in a side housing, or even to +/- 17%, better still to +/-15%, or even at +/- 10%, even better at +/-7%, or even at +/- 5%.
  • the length of the largest rectangle inscribed in a side recess is taken as a reference.
  • the length of a second row magnet may be equal to the length of a first row magnet. All the magnets of a pole can have the same length.
  • the rotor comprises a first and a second row of housings per pole, being devoid of any additional row.
  • the second row can be closer to the air gap than the first row.
  • the first row is farther from the air gap than the second row.
  • the first row can comprise a central housing and two side housings.
  • the two side housings are symmetrical to each other with respect to an axis of the pole.
  • the rotor mass may comprise one or more stacks of laminations stacked on top of each other. Each stack of laminations can comprise at least one housing receiving the permanent magnet. In the case where the rotor mass comprises several stacks of laminations stacked on top of each other, the rotor mass may comprise, for a housing, a single or several permanent magnets, for example one permanent magnet per laminations package.
  • the width of the largest rectangle inscribed in the central slot can be equal to +/- 50% to the width of the largest rectangle inscribed in a side slot, better at 40%, even better at 30%, or even at +/- 20 %, better at +/-15%, even at +/- 10%, even better at +/- 7%, even at +/- 5%.
  • the width of the largest rectangle inscribed in a side recess is taken as a reference.
  • the width B of the central housing can be equal to the width B of a side housing.
  • the width A of a housing of the second row can be less than the width B of a housing of the first row.
  • a (BA)/B ratio can be between 0 and 40%, better between 5 and 35%, or even between 10 and 30%, being for example of the order of 25%.
  • the width A of a slot in the second row may be equal to the width B of a slot in the first row. All the housings of a pole can have the same width A.
  • the number of sizes of permanent magnets required can be advantageously reduced to two or three at most, or even to only one.
  • the side pockets of the first row can be provided with permanent magnets.
  • the permanent magnets of the side housings of the first row can be identical to each other. They may in particular have the same size in cross section.
  • the central housing of the first row can be provided with one or more permanent magnets, or, as a variant, be devoid of them.
  • the rotor can advantageously allow a certain modularity for the resulting machine.
  • the center housing of the first row can be provided with a permanent magnet of the same size as the permanent magnets of the side housings.
  • the central housing of the first row can be provided with a smaller permanent magnet than the permanent magnets of the side housings. This is advantageous from an electromagnetic point of view. Indeed, the permanent magnet being smaller than the housing, there is a part of the housing which happens to be empty on the sides of the magnet, which empty part makes it possible to reduce electromagnetic leakage.
  • the central housing of the first row is empty.
  • the housings of the second row may be arranged in a V.
  • the second row may in particular comprise two housings arranged in a V. They may be symmetrical to one another with respect to an axis of the pole.
  • all the housings of the second row are provided with permanent magnets.
  • the V configuration of the second row saves space and avoids any risk of saturation of the magnetic circuit.
  • the housings of the second row are empty, being devoid of magnets.
  • the second row permanent magnets can be identical to each other. They may in particular have the same size in cross section.
  • the permanent magnets of the second row can have a different size from the permanent magnets of the first row, being for example smaller.
  • An angular opening a3 of the second row can be greater than or equal to twice the sum of the angular opening al between two consecutive poles and the angular opening a2 between the first and second rows.
  • the angular openings are measured on the surface of the rotor, at the level of the air gap, for a given pole of the rotor.
  • k is equal to 34.6%.
  • An angle a4 between the adjacent housings of two consecutive poles can be strictly greater than 0, being in particular between 5° and 35°, better still between 12° and 30°, being for example 24.8° in one embodiment.
  • a strictly positive angle a4 increases the saliency torque. The choice of the value of the angle a4 makes it possible to improve the resulting torque.
  • the angle a4 may in particular be less than 55°, better still less than 50°, better still less than 40°, being in particular less than 35°.
  • the two adjacent housings considered for the measurement of the angle a4 between the two consecutive poles are housings of the first row.
  • Each lateral housing of the first row forming with the central housing a bridge of material, the two bridges of material each having a longitudinal axis, the two axes being parallel to each other. This makes it possible to improve the mechanical strength and to obtain a better mechanical behavior to withstand the centrifugal force.
  • the axes of the material bridges can be parallel to an axis of the pole of the rotor.
  • the recess may be configured to project radially from the central housing.
  • the recess may protrude radially from the central housing by a distance Y of between 0 mm and twice the width of the central housing. This protrusion can make it possible to increase the path of the magnetic flux, which makes it possible to reduce flux leaks. It thus makes it possible to increase the reluctance because the path of the flux is lengthened while reducing the leakage flux.
  • the radial projection of the recess of the first row of housings can advantageously be associated with bridges of material between the side housings and the central housing which may be straight.
  • the bridges of material between the lateral housings and the central housing may in particular extend along an axis which may be rectilinear.
  • the two axes of the two material bridges of the first row can be parallel to each other. They can extend substantially radially. These axes may be parallel to the edges of the central housing.
  • Such a configuration can make it possible to reduce the leakage fluxes and thus increase the electromotive force, as well as to increase the reluctance of the magnetic circuit and the torque, while increasing the mechanical strength of the material bridges.
  • the torque can for example be increased by 200 rpm.
  • a width X of the recess can be between 0 mm and twice the width B of the central housing.
  • the length Z of the recess can be between once the width B of the central housing and twice the latter.
  • This material bridge has a minimum width conditioned by the mechanical strength constraints. Its width is substantially equal to at least the thickness of the magnetic sheet.
  • a radial dimension W between the bottom of the second row and the first row can be between once the width B of the central housing and three times the latter.
  • the recess may have an edge that extends at least partially parallel to an edge of the central housing.
  • At least one housing may include at least one abutment for holding the permanent magnet intended to be received in the housing.
  • Each housing may include a stop located towards the air gap.
  • the housings are each separated from the air gap by a material bridge whose width is conditioned by the mechanical strength constraints. Their width is substantially equal at least to the thickness of the magnetic sheet. The length of these bridges is substantially equal to the width of the housings.
  • the side housings can also include a stop located towards G obviously, for the maintenance of the permanent magnet.
  • the rotor may be devoid of circulation of cooling fluid in the housings.
  • the recesses are not configured to allow the circulation of a cooling fluid.
  • a further subject of the invention is a rotating electrical machine rotor, comprising a rotor mass comprising laminations stacked on top of each other, the rotor mass comprising a plurality of housings, at least one part of the housings, see all the housings, receiving one or more permanent magnets defining poles of the rotor, the housings of a pole being arranged in at least a first and a second row of housings, the first row of housings comprising three housings arranged U-shaped, with a central housing and two lateral housings, a length L2 of a largest rectangle inscribed in the central housing being equal to +/- 20% to the length L1 of the largest rectangle inscribed in a lateral housing, at least one of the side housings, in particular the two side housings of the first row, comprising a recess which extends from the side housing towards the central housing, each log lateral element of the first row providing with the central housing a bridge of material, the two bridges of
  • the rotor mass of the rotor may be composed of a plurality of packages arranged consecutively along an axis of rotation of the rotor, two consecutive packages being angularly offset around the axis of rotation of the rotor by an elementary angle 0r.
  • the rotor may in particular comprise a first stack of laminations and a second stack of laminations.
  • Such a rotor is said to be 'twisted'.
  • the rotor can advantageously be twisted, particularly in the case where the stator comprises a full-pitch winding.
  • the invention can make it possible to reduce the number of packages necessary for the rotor. When the rotor is twisted, the reduction of torque ripples can be further improved.
  • the rotor may not be twisted. We then speak of a so-called ‘straight’ rotor.
  • the rotor may advantageously be straight, particularly in the case where the stator comprises a fractional-pitch winding.
  • At least one of the laminations of the rotor mass may comprise a plurality of notches on the surface of the rotor mass facing the air gap.
  • the notches of the rotor can all be identical or different. They may differ, for example, in their size and/or in their shape.
  • the notches of the rotor can be provided facing the air gap, on the surface of the rotor or slightly buried.
  • the notches of the rotor can be identical to or different from the notches of the stator.
  • At least one notch of the rotor may have a shape, in the plane of the sheet, chosen from the following list, which is not exhaustive: partially circular, semi-circular, oblong, partially elliptical, polygonal, square, rectangular, rectangular with or without rounded corners, triangular, trapezoidal, dovetail, V-shaped or W-shaped.
  • the notch comprises a partially circular portion, for example semi-circular
  • its radius of curvature may be between 0.1 and 4 mm, better still between 0.36 and 3 mm, or even between 0.63 and 2 mm. , being for example of the order of 0.36 mm or 0.4 mm or 0.6 mm or 0.63 mm or 0.8 mm or 0.9 mm or 1 mm or 1 .2 mm or 1.26 mm or 1.4 mm or 1.6 mm or 1.8 mm.
  • the radius of curvature of a rounded corner can be less than half the width of a notch, measured circumferentially in the plane of the sheet.
  • the radius of curvature of a rounded corner may be less than or equal to at least half the width ar of a notch and its depth br, measured radially in the plane of the sheet, i.e. min (br, ar/ 2).
  • At least one notch of the rotor may comprise a partially circular or even semi-circular portion, its radius of curvature R being between 0.4 e and 8 e, better still between 0.7 e and 4 e, being for example of the order of e, where e designates the width of the air gap of the machine comprising the stator.
  • At least one notch of the rotor can have a depth br, measured radially in the plane of the sheet, less than its width ar, measured circumferentially in the plane of the sheet.
  • the depth, measured radially in the plane of the sheet can be greater than the width of the notch of the rotor, measured circumferentially in the plane of the sheet.
  • the notches of the laminations of a first pack of the rotor mass can be angularly offset with respect to the notches of the laminations of a second pack of the rotor mass.
  • the rotor mass may comprise at least two stacks of laminations, or even at least three or four stacks. It can for example comprise two, three or four packs of sheets. The first and second packs of sheets can be consecutive.
  • the laminations of a stack of rotor laminations can all be identical to each other.
  • each stack of laminations of the rotor may be identical between laminations of said stack.
  • the plates of two different packages can be identical to each other, being angularly offset or being turned over in order to obtain the angular offset of the notches.
  • the sheets of two different packages can be identical to each other, not being returned.
  • the two packages with identical sheets may or may not be consecutive. They can for example be separated by a stack of sheets having different sheets.
  • identical sheets it is mainly meant that said sheets are identical by the position of the notch(s).
  • the sheets of two different packages may be different from each other, the notch or notches not being placed in the same way or possibly having a different shape or size, or the number of notches being different.
  • different sheets it is mainly meant that said sheets differ from each other by the position of the notch(s) or by the number of notches.
  • two sheets can have a different number of notches.
  • the detents are offset relative to a longitudinal axis of the rotor pole, which may be an axis of symmetry for the pole, by an offset angle.
  • the sheets may in particular differ from each other by the value of the offset angle.
  • the offset angle can be different between a sheet of the first package and a sheet of the second package.
  • the angular offset of the notches of two packages of the rotor can form a pattern with a regular offset or not, always in the same direction, or with a change of direction, for example herringbone, V, W, zig-zag.
  • the rotor may be devoid of notches on the surface of the rotor mass.
  • the surface of the rotor mass can be substantially smooth.
  • Another subject of the invention is a rotating electrical machine comprising a stator and a rotor as defined above.
  • the machine can be used as a motor or as a generator.
  • the machine can be reluctance. It can constitute a synchronous motor or, as a variant, a synchronous generator. As a further variant, it constitutes an asynchronous machine.
  • the maximum speed of rotation of the machine can be high, being for example greater than 10,000 rpm, better still greater than 12,000 rpm, being for example of the order of 14,000 rpm to 15,000 rpm , or even 20,000 rpm or 24,000 rpm or 25,000 rpm.
  • the maximum speed of rotation of the machine may be less than 100,000 rpm, or even 60,000 rpm, or even even less than 40,000 rpm, better still less than 30,000 rpm.
  • the invention may be particularly suitable for high-powered machines.
  • the machine may comprise a single inner rotor or, as a variant, an inner rotor and an outer rotor, arranged radially on either side of the stator and coupled in rotation.
  • the machine can work alone or be coupled to a gearbox. In this case, it is inserted into a casing which also houses a gearbox.
  • the machine has a stator.
  • the latter comprises teeth defining notches between them.
  • the stator may comprise electrical conductors, at least some of the electrical conductors, or even a majority of the electrical conductors, which may be pin-shaped U or I. Alternatively, the electrical conductors may include round wire.
  • the stator can be star or delta connected.
  • the machine may comprise a number of poles comprised between 2 and 48, better still between 4 and 24, or even between 6 and 12, being for example 6 or 8.
  • Another subject of the invention is a method for manufacturing a rotor of a rotating electrical machine as defined above.
  • the method may include the step of introducing longitudinally, along the axis of rotation of the rotor, at least one permanent magnet into the housing.
  • the method may first comprise the step consisting in introducing longitudinally at least one permanent magnet into the housing of each stack of laminations, then the step consisting of stacking the stacks of sheets on top of each other, with the permanent magnets in the housings.
  • Figure 1 is a schematic and partial view, in cross section, of a rotating electrical machine rotor according to the invention
  • Figure 2 is a view similar to Figure 1 without the permanent magnets
  • Figure 3 is a view similar to Figure 1
  • Figure 4a is a view similar to Figure 2 of an alternative embodiment
  • Figure 4b is a view similar to Figure 2 of an alternative embodiment
  • Figure 4c is a view similar to Figure 2 of an alternative embodiment
  • Figure 4d is a view similar to Figure 2 of an alternative embodiment
  • Figure 5 is a view similar to Figure 1 of an alternative embodiment
  • Figure 6 is a view similar to Figure 1 of an alternative embodiment
  • Figure 7a is a view similar to Figure 1 of an alternative embodiment
  • Figure 7b is a view similar to Figure 1 of another sheet of the variant of Figure 7a.
  • Figure 8a is a sectional view, schematic and partial, of an alternative rotor embodiment.
  • Figure 8b is a sectional view, schematic and partial, of a rotor embodiment variant.
  • Figure 8c is a sectional view, schematic and partial, of a rotor embodiment variant.
  • a rotor 30 of a rotating electrical machine comprising a rotor mass 33 in which are formed housings 10. Permanent magnets are inserted into each of the housings 10, so as to define poles of the rotor.
  • This rotor is intended to be associated with a stator, not shown.
  • the magnets are in this example of generally rectangular shape in cross section as illustrated in the embodiments of Figures 1, 5 and 6.
  • Each magnet has, in cross section, on the one hand, a first long side and a second long side , opposite the first, and on the other hand, a first short side and a second short side, opposite the first.
  • Each housing 10 is delimited by two faces respectively facing the first long side and the second long side of the magnet.
  • the housings 10 of a pole are arranged in a first row 11 of housings further from the air gap and a second row 12 of housings closer to the air gap.
  • the first row 11 of housings 10 comprises three housings 10 arranged in a U, with a central housing and two lateral housings symmetrical to each other with respect to an axis of the pole P.
  • a length L2 of a larger rectangle inscribed in the central housing is in the example described equal to the length L1 of the largest rectangle inscribed in a lateral housing.
  • the 'length' is measured along the axis of the row of slots.
  • the length L3 is designated as the length of a larger rectangle inscribed in a housing of the second row.
  • the width B of the largest rectangle inscribed in the central housing is equal to the width B of the largest rectangle inscribed in a side housing.
  • the side housings of the first row 11 are provided with permanent magnets, as is the central housing.
  • the permanent magnets of the side housings and the central housing of the first row 11 are identical to each other. In particular, they have the same size in cross-section.
  • Each lateral housing of the first row forms a bridge of material with the central housing, the two bridges of material each having a longitudinal axis, the two axes being parallel to each other.
  • the two side housings of the first row 11 include a recess 15 which extends from the side housing towards the central housing.
  • the recess 15 is configured to project radially from the central housing by a distance Y.
  • the recess 15 has a width X and a length Z.
  • the recess 15 has an edge which extends at least partially parallel to an edge of the central housing.
  • the second row 12 comprises two housings arranged in a V. They are symmetrical to each other with respect to an axis of the pole P. In the example described, all the housings of the second row 12 are provided with permanent magnets .
  • the second row permanent magnets are identical to each other. In particular, they have the same size in cross-section. In contrast, the second row permanent magnets are a different size from the first row permanent magnets, being smaller.
  • the width A of a slot in the second row is less than the width B of a slot in the first row.
  • a radial dimension W between the bottom of the second row and the first row can be between once the width B of the central housing and three times the latter.
  • the side housings of the first row 11 as well as the housings of the second row 12 comprise at least one abutment 16 for holding the permanent magnet intended to be received in the housing, this abutment 16 being located towards the air gap.
  • the angular opening a3 of the second row 12 is defined. This angular opening a3 is greater than twice the sum of the angular opening al between two consecutive poles and the angular opening a2 between the first and second rows.
  • we have a3 1.2*2 (a1+a2).
  • the angular openings are measured at the surface of the rotor, at the level of the air gap, for a given pole of the rotor, as shown in Figure 2.
  • An angle a4 between the adjacent housings 10 of two consecutive poles is in the example described 24.8°.
  • the two adjacent housings considered for the measurement of the angle a4 between the two consecutive poles are housings of the first row.
  • angles and angular openings are given.
  • the side magnets of the first row 11 make between them an angle b ⁇ of approximately 70°.
  • the magnets of the second row 12 form between them an angle b2 of approximately 103°.
  • the angular opening a3 of the second row 12 is about 13 mm.
  • the angular opening a5 of the first row 11 is about 30 mm.
  • a gap D between the two recesses of the side housings of the first row 11 is approximately 15 mm.
  • the housings of the second row 12 are elongated at a point so as to reduce the distance W between the bottom of the second row and the first row.
  • the recesses 15 of the housings of the first row 12 are shortened, not projecting radially from the central housing.
  • the recesses 15 of the housings of the first row 12 are on the contrary elongated, ending in a semicircle.
  • the recesses 15 of the housings of the first row 12 are separated from the rest of the housing by a stop 17 for holding the permanent magnet.
  • the side housings of the first row 11 are provided with permanent magnets, as is the central housing, these magnets being all identical.
  • the central housing of the first row 11 is provided with a permanent magnet smaller than the permanent magnets of the side housings, of length L4 less than the length L1 or the length L2.
  • the central housing of the first row may be empty, being devoid of a permanent magnet.
  • certain laminations of the rotor comprise deformable tabs 19 which are each connected to one face of the corresponding housing, as illustrated in FIG. 7a, while other laminations of the stack n 'not include, as shown in Figure 7b.
  • deformable tabs 19 which are each connected to one face of the corresponding housing, as illustrated in FIG. 7a, while other laminations of the stack n 'not include, as shown in Figure 7b.
  • only the side housings of the first rows and the housings of the second rows have such a deformable tongue 19.
  • the deformable tongues 19 each extend into the corresponding housing.
  • Each deformable tab 19 has a portion which is bent so as to be pressed against a small side of the corresponding magnet.
  • the bendable portion of the deformable tongue 19 is bent outside the plane of the sheets, along a folding axis of the deformable tongue 19 extending in a plane parallel to the plane of the sheet.
  • the machine has a number of poles of 8.
  • this is different, being for example 6.
  • the laminations of the rotor mass comprise notches 62 on the surface of the rotor mass facing the air gap.
  • the notches are of partially elliptical shape, with a depth br, measured radially in the plane of the sheet, greater than the width ar of the notch 62, measured circumferentially in the plane of the sheet.
  • a pole of the rotor has four notches 62 distributed symmetrically on either side of an axis of the pole.
  • the notches of a pole are not distributed symmetrically, the notches of the laminations of a first package of the rotor mass are angularly offset with respect to the notches of the laminations of a second package of the rotor mass.
  • FIG. 8b a rotor formed of two identical sheets turned over, in order to form two packets 50a, 50b of sheets each comprising two notches 62 angularly offset.
  • the rotor comprises four packets 50a, 50b, 50c, 50d, each comprising a single notch 62 angularly offset.
  • the notches 62 here differ in their depth.
  • the rotor comprises a configuration different from those illustrated, for example by the number of packets, by the position of the notches or their shape or size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Rotor (30) de machine électrique tournante, comportant une masse rotorique (33) comportant des tôles empilées les unes sur les autres, la masse rotorique (33) comportant une pluralité de logements (10) pour recevoir un ou des aimants permanents définissant des pôles du rotor, les logements d'un pôle étant disposés en au moins une première (11) et une deuxième (12) rangées de logements, la première rangée de logements comportant trois logements disposés en U, avec un logement central et deux logements latéraux, une longueur (L2) d'un plus grand rectangle inscrit dans le logement central étant égale à +/- 20% à la longueur (L1) du plus grand rectangle inscrit dans un logement latéral, au moins un des logements latéraux, notamment les deux logements latéraux de la première rangée, comportant un évidement (15) qui s'étend depuis le logement latéral vers le logement central.

Description

Description
Titre : Rotor de machine électrique tournante
La présente invention revendique la priorité de la demande française 2101695 déposée le 22 février 2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
Domaine technique
La présente invention concerne les machines électriques tournantes, motrices ou génératrices, et plus particulièrement les rotors de telles machines. L’invention s’intéresse aux rotors à aimants permanents.
L’invention porte plus particulièrement sur les machines synchrones ou asynchrones, à courant alternatif. Elle concerne notamment les machines de traction ou de propulsion de véhicules automobiles électriques (Battery Electric Vehicle) et/ou hybrides (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle), telles que voitures individuelles, camionnettes, camions ou bus. L’invention s’applique également à des machines électriques tournantes pour des applications industrielles et/ou de production d’énergie, notamment navales, aéronautiques ou éoliennes.
Technique antérieure
Les rotors à aimants permanents sont généralement composés d’une masse rotorique et d’aimants permanents de formes géométriques diverses. La masse rotorique peut comporter un empilement de tôles magnétiques minces découpées. Elle peut comporter un ou plusieurs paquets de tôles empilés les uns sur les autres.
Les aimants permanents peuvent être disposés en surface, faisant directement face à l’entrefer ou, en variante, être disposés à l’intérieur de la masse rotorique, dans des logements de ce dernier, étant alors dits « enterrés » ou « encastrés ».
Dans ce cas, ils peuvent être disposés en rangée, comme par exemple dans la demande US 2007/0096578, dans laquelle les logements des aimants ont des extrémités arrondies en demi-cercle, de même que dans la demande US 2007/0096577.
Dans les demandes CN110212666, US 2013/0020889 et CN 206650521, on a un aimant permanent disposé en surface et une seule rangée d’aimants enterrés. Dans les demandes US 2008/007131, WO 2019/179864 et KR 10-2018229, les aimants permanents des deux rangées sont disposés en V.
Dans la demande WO 2019/174323, les rangées sont disposées de telle sorte que deux aimants adjacents de deux pôles consécutifs sont parallèles entre eux et deux aimants de deux rangées sont également parallèles entre eux.
Il existe un besoin pour améliorer les performances magnétiques et notamment le couple volumique des machines électriques tournantes, et réduire leur coût de fabrication et de montage.
Résumé de l’invention
L’invention vise à répondre à ce besoin et a ainsi pour objet, selon l’un de ses aspects, un rotor de machine électrique tournante, une masse rotorique comportant des tôles empilées les unes sur les autres, la masse rotorique comportant une pluralité de logements, au moins une partie des logements, voir tous les logements, recevant un ou des aimants permanents définissant des pôles du rotor, les logements d’un pôle étant disposés en au moins une première et une deuxième rangées de logements, la première rangée de logement comportant trois logements disposés en U, avec un logement central et deux logements latéraux, une longueur d’un plus grand rectangle inscrit dans le logement central étant égale à +/- 20% à la longueur du plus grand rectangle inscrit dans un logement latéral, au moins un des logements latéraux, notamment les deux logements latéraux de la première rangée, comportant un évidement qui s’étend depuis le logement latéral vers le logement central.
Avantageusement, la présence de deux rangées de logements permet d’augmenter le nombre d’aimants reçus dans la masse rotorique, et ainsi d’augmenter la densité de puissance résultante. On peut ainsi obtenir plus de couple avec un même encombrement de rotor. L’invention permet avantageusement d’améliorer le couple réluctant de la machine.
Exposé de l’invention La ‘longueur’ est mesurée selon l’axe de la rangée de logements. On parle de ‘largeur’ pour désigner la dimension perpendiculaire à la longueur dans le plan d’une section transversale de la masse rotorique.
La longueur du plus grand rectangle inscrit dans le logement central peut être égale à +/- 20% à la longueur du plus grand rectangle inscrit dans un logement latéral, voire à +/- 17%, mieux à +/-15%, voire à +/- 10%, encore mieux à +/-7%, voire à +/- 5%. Dans ce rapport, on prend pour référence la longueur du plus grand rectangle inscrit dans un logement latéral.
Dans un mode de réalisation, la longueur d’un aimant de la deuxième rangée peut être égale à la longueur d’un aimant de la première rangée. Tous les aimants d’un pôle peuvent avoir la même longueur.
Dans un mode de réalisation, le rotor comporte une première et une deuxième rangées de logements par pôle, étant dépourvu de rangée supplémentaire.
La deuxième rangée peut être plus proche de l’entrefer que la première rangée. La première rangée est plus éloignée de l’entrefer que la deuxième rangée.
La première rangée peut comporter un logement central et deux logements latéraux. Les deux logements latéraux sont symétriques l’un de l’autre par rapport à un axe du pôle.
La masse rotorique peut comporter un ou plusieurs paquets de tôles empilés les uns sur les autres. Chaque paquet de tôles peut comporter au moins un logement recevant l’aimant permanent. Dans le cas où la masse rotorique comporte plusieurs paquets de tôles empilés les uns sur les autres, la masse rotorique peut comporter, pour un logement, un seul ou plusieurs aimants permanents, par exemple un aimant permanent par paquet de tôles.
La largeur du plus grand rectangle inscrit dans le logement central peut être égale à +/- 50% à la largeur du plus grand rectangle inscrit dans un logement latéral, mieux à 40%, encore mieux à 30%, voire à +/- 20%, mieux à +/-15%, voire à +/- 10%, encore mieux à +/- 7%, voire à +/- 5%. Dans ce rapport, on prend pour référence la largeur du plus grand rectangle inscrit dans un logement latéral.
La largeur B du logement central peut être égale à la largeur B d’un logement latéral.
La largeur A d’un logement de la deuxième rangée peut être inférieur à la largeur B d’un logement de la première rangée. Un ratio (B-A)/B peut être compris entre 0 et 40%, mieux entre 5 et 35%, voire entre 10 et 30%, étant par exemple de l’ordre de 25%. Dans un mode de réalisation, on peut avoir la largeur B d’un logement de la première rangée égale à 3,7 mm et la largeur A d’un logement de la deuxième rangée égale à 2,8 mm.
Dans un mode de réalisation, la largeur A d’un logement de la deuxième rangée peut être égale à la largeur B d’un logement de la première rangée. Tous les logements d’un pôle peuvent avoir la même largeur A.
Le nombre de tailles d’aimants permanents nécessaires peut être avantageusement réduit à deux ou trois au maximum, voire n’être que de un.
Les logements latéraux de la première rangée peuvent être pourvus d’aimants permanents. Les aimants permanents des logements latéraux de la première rangée peuvent être identiques l’un à l’autre. Ils peuvent notamment avoir la même taille en section transversale.
Le logement central de la première rangée peut être pourvu d’un ou plusieurs aimants permanents, ou en variante en être dépourvu. En fonction du choix pour la présence ou non d’un aimant permanent central, le rotor peut permettre avantageusement une certaine modularité pour la machine résultante.
Le logement central de la première rangée peut être pourvu d’un aimant permanent de même taille que les aimants permanents des logements latéraux.
En variante, le logement central de la première rangée peut être pourvu d’un aimant permanent plus petit que les aimants permanents des logements latéraux. Cela est avantageux d’un point de vue électromagnétique. En effet, l’aimant permanent étant plus petit que le logement, on a une partie du logement qui se trouve être vide sur les côtés de l’aimant, laquelle partie vide permet de diminuer les fuites électromagnétiques.
Dans une autre variante de réalisation, le logement central de la première rangée est vide.
Les logements de la deuxième rangée peuvent être disposés en V. La deuxième rangée peut notamment comporter deux logements disposés en V. Ils peuvent être symétriques l’un de l’autre par rapport à un axe du pôle. Dans un mode de réalisation, tous les logements de la deuxième rangée sont pourvus d’aimants permanents. La configuration en V de la deuxième rangée permet un gain de place, et d’éviter tout risque de saturation du circuit magnétique. Dans une autre variante de réalisation, les logements de la deuxième rangée sont vides, étant dépourvus d’aimants.
Les aimants permanents de la deuxième rangée peuvent être identiques l’un à l’autre. Ils peuvent notamment avoir la même taille en section transversale. Les aimants permanents de la deuxième rangée peuvent avoir une taille différente des aimants permanents de la première rangée, étant par exemple plus petits.
Une ouverture angulaire a3 de la deuxième rangée peut être supérieure ou égale à deux fois la somme de l’ouverture angulaire al entre deux pôles consécutifs et l’ouverture angulaire a2 entre les première et deuxième rangées. On peut écrire a3 > 2 (al + a2). Les ouvertures angulaires sont mesurées à la surface du rotor, au niveau de l’entrefer, pour un pôle donné du rotor.
Une ouverture angulaire a3 de la deuxième rangée peut être donnée par la relation suivante : a3 = k 2p/(2r), où p est le nombre de paires de pôles du rotor et k le coefficient d’ouverture polaire, avec le coefficient d’ouverture polaire k qui est compris dans l’intervalle [22,5% ; 37,5%], mieux dans l’intervalle [25% ; 35%].
Le choix de la valeur du coefficient d’ouverture polaire k permet d’optimiser le couple résultant. Dans un exemple de réalisation, k est égal à 34,6%.
Un angle a4 entre les logements adjacents de deux pôles consécutifs peut être strictement supérieur à 0, étant notamment compris entre 5° et 35°, mieux entre 12° et 30°, étant par exemple de 24,8° dans un mode de réalisation. Un angle a4 strictement positif permet d’augmenter le couple de saillance. Le choix de la valeur de l’angle a4 permet d’améliorer le couple résultant.
L’angle a4 peut en particulier être inférieur à 55°, mieux inférieur à 50°, mieux encore inférieur à 40°, étant notamment inférieur à 35°. Les deux logements adjacents considérés pour la mesure de l’angle a4 entre les deux pôles consécutifs sont des logements de la première rangée.
Chaque logement latéral de la première rangée ménageant avec le logement central un pont de matière, les deux ponts de matière ayant chacun un axe longitudinal, les deux axes étant parallèles l’un à l’autre. Cela permet d’améliorer la tenue mécanique et d’obtenir un meilleur comportement mécanique pour tenir la force centrifuge.
Les axes des ponts de matière peuvent être parallèles à un axe du pôle du rotor. L’évidement peut être configuré pour dépasser radialement du logement central. L’évidement peut dépasser radialement du logement central d’une distance Y comprise entre 0 mm et le double de la largeur du logement central. Ce dépassement peut permettre d’augmenter le chemin du flux magnétique, ce qui permet de diminuer les fuites de flux. Il permet ainsi d’augmenter la réluctance car le trajet du flux est rallongé tout en diminuant le flux de fuite.
Le dépassement radial de l’évidement de la première rangée de logements peut être avantageusement associé à des ponts de matière entre les logements latéraux et le logement central qui peuvent être droits. Les ponts de matière entre les logements latéraux et le logement central peuvent notamment s’étendre selon un axe qui peut être rectiligne. Les deux axes des deux ponts de matière de la première rangée peuvent être parallèles l’un à l’autre. Ils peuvent s’étendre sensiblement radialement. Ces axes peuvent être parallèles aux bords du logement central. Une telle configuration peut permettre de diminuer les flux de fuite et d’augmenter ainsi la force électromotrice, ainsi que d’augmenter la réluctance du circuit magnétique et le couple, tout en augmentant la tenue mécanique des ponts de matière. Le couple peut par exemple être augmenté de 200 rpm.
Une largeur X de l’évidement peut être comprise entre 0 mm et le double de la largeur B du logement central. La longueur Z de l’évidement peut être comprise entre une fois la largeur B du logement central et le double de celle-ci.
Ces dimensions conditionnent la taille du pont de matière entre les logements latéraux et le logement central. Ce pont de matière a une largeur minimale conditionnée par les contraintes de tenue mécanique. Sa largeur est sensiblement égale au moins à l’épaisseur de la tôle magnétique.
Une dimension radiale W entre le fond de la deuxième rangée et la première rangée peut être comprise entre une fois la largeur B du logement central et le triple de celle- ci.
L’évidement peut avoir un bord qui s’étend au moins partiellement parallèlement à un bord du logement central.
Au moins un logement peut comporter au moins une butée de maintien de l’aimant permanent destiné à être reçu dans le logement. Chaque logement peut comporter une butée située vers l’entrefer. Les logements sont séparés de l’entrefer chacun par un pont de matière dont la largeur est conditionnée par les contraintes de tenue mécanique. Leur largeur est sensiblement égale au moins à l’épaisseur de la tôle magnétique. La longueur de ces ponts est sensiblement égale à la largeur des logements.
Les logements latéraux peuvent également comporter une butée située vers G évidemment, pour le maintien de l’aimant permanent.
Le rotor peut être dépourvu de circulation de fluide de refroidissement dans les logements. En particulier, les évidements ne sont pas configurés pour permettre la circulation d’un fluide de refroidissement.
L’invention a encore pour objet, indépendamment ou en combinaison avec ce qui précède, un rotor de machine électrique tournante, comportant une masse rotorique comportant des tôles empilées les unes sur les autres, la masse rotorique comportant une pluralité de logements, au moins une partie des logements, voir tous les logements, recevant un ou des aimants permanents définissant des pôles du rotor, les logements d’un pôle étant disposés en au moins une première et une deuxième rangées de logements, la première rangée de logements comportant trois logements disposés en U, avec un logement central et deux logements latéraux, une longueur L2 d’un plus grand rectangle inscrit dans le logement central étant égale à +/- 20% à la longueur L1 du plus grand rectangle inscrit dans un logement latéral, au moins un des logements latéraux, notamment les deux logements latéraux de la première rangée, comportant un évidement qui s’étend depuis le logement latéral vers le logement central, chaque logement latéral de la première rangée ménageant avec le logement central un pont de matière, les deux ponts de matière ayant chacun un axe longitudinal, les deux axes étant parallèles l’un à l’autre.
Rotor yrillé
Dans un mode de réalisation, la masse rotorique du rotor peut être composée d’une pluralité de paquets disposés consécutivement le long d’un axe de rotation du rotor, deux paquets consécutifs étant décalés angulairement autour de l’axe de rotation du rotor d’un angle élémentaire 0r. Le rotor peut notamment comporter un premier paquet de tôles et un deuxième paquet de tôles.
Un tel rotor est dit ‘vrillé’. Le rotor peut être avantageusement vrillé notamment dans le cas où le stator comporte un bobinage à pas entier. L’invention peut permettre de réduire le nombre de paquets nécessaires au rotor. Lorsque le rotor est vrillé, la réduction des ondulations de couple peut être encore améliorée.
En variante, le rotor peut ne pas être vrillé. On parle alors de rotor dit ‘droit’ . Le rotor peut être avantageusement droit notamment dans le cas où le stator comporte un bobinage à pas fractionnaire.
Crans au rotor
Au moins l’une des tôles de la masse rotorique peut comporter une pluralité de crans à la surface de la masse rotorique faisant face à l’entrefer.
Les crans du rotor peuvent être tous identiques ou différents. Ils peuvent différer par exemple par leur taille et/ou par leur forme. Les crans du rotor peuvent être ménagés face à l’entrefer, à la surface du rotor ou légèrement enterrés.
Les crans du rotor peuvent être identiques ou différents des crans du stator.
Au moins un cran du rotor peut avoir une forme, dans le plan de la tôle, choisie dans la liste suivante, qui n’est pas limitative : partiellement circulaire, semi-circulaire, oblongue, partiellement en ellipse, polygonale, carrée, rectangulaire, rectangulaire avec ou sans des coins arrondis, triangulaire, en trapèze, en queue d’aronde, en forme de V ou de W.
Dans le cas où le cran comporte une portion partiellement circulaire, par exemple semi-circulaire, son rayon de courbure peut être compris entre 0,1 et 4 mm, mieux entre 0,36 et 3 mm, voire entre 0,63 et 2 mm, étant par exemple de l’ordre de 0,36 mm ou de 0,4 mm ou de 0,6 mm ou de 0,63 mm ou de 0,8 mm ou de 0,9 mm ou de 1 mm ou de 1,2 mm ou de 1,26 mm ou de 1,4 mm ou de 1,6 mm ou de 1,8 mm.
Le rayon de courbure d’un coin arrondi peut être inférieur à la moitié de la largeur d’un cran, mesurée circonférentiellement dans le plan de la tôle. Le rayon de courbure d’un coin arrondi peut être inférieur ou égale au minimum de la moitié de la largeur ar d’un cran et de sa profondeur br, mesurée radialement dans le plan de la tôle, à savoir min (br, ar/2).
Au moins un cran du rotor peut comporter une portion partiellement circulaire, voire semi-circulaire, son rayon de courbure R étant compris entre 0,4 e et 8 e, mieux entre 0,7 e et 4 e, étant par exemple de l’ordre de e, où e désigne la largeur de l’entrefer de la machine comportant le stator.
Au moins un cran du rotor peut avoir une profondeur br, mesurée radialement dans le plan de la tôle, inférieure à sa largeur ar, mesurée circonférentiellement dans le plan de la tôle.
En variante, la profondeur, mesurée radialement dans le plan de la tôle, peut être supérieure à la largeur du cran du rotor, mesurée circonférentiellement dans le plan de la tôle.
Les crans des tôles d’un premier paquet de la masse rotorique peuvent être décalés angulairement par rapport aux crans des tôles d’un deuxième paquet de la masse rotorique.
La masse rotorique peut comporter au moins deux paquets de tôles, voire au moins trois ou quatre paquets. Elle peut par exemple comporter deux, trois ou quatre paquets de tôles. Les premier et deuxième paquets de tôles peuvent être consécutifs.
Les tôles d’un paquet de tôles du rotor peuvent être toutes identiques entre elles.
Les tôles de chaque paquet de tôles du rotor peuvent être identiques entre tôles dudit paquet.
Les tôles de deux paquets différents peuvent être identiques entre elles, étant décalées angulairement ou étant retournées afin d’obtenir le décalage angulaire des crans. Les tôles de deux paquets différents peuvent être identiques entre elles, n’étant pas retournées. Les deux paquets avec des tôles identiques peuvent être consécutifs ou non. Ils peuvent par exemple être séparés par un paquet de tôles ayant des tôles différentes.
Par ‘tôles identiques’, on entend principalement que lesdites tôles sont identiques par la position du ou des crans.
En variante, les tôles de deux paquets différents peuvent être différentes entre elles, le ou les crans n’étant pas placés de la même manière ou pouvant avoir une forme ou une taille différente, ou le nombre de crans étant différent.
Par ‘tôles différentes’ , on entend principalement que lesdites tôles diffèrent entre elles par la position du ou des crans ou par le nombre de crans.
Dans un mode de réalisation, deux tôles peuvent comporter un nombre différent de crans. Dans un mode de réalisation, les crans sont décalés par rapport à un axe longitudinal du pôle du rotor, qui peut être un axe de symétrie pour le pôle, d’un angle de décalage. Les tôles peuvent notamment différer entre elles par la valeur de l’angle de décalage. L’angle de décalage peut être différent entre une tôle du premier paquet et une tôle du deuxième paquet.
Le décalage angulaire des crans de deux paquets du rotor peut former un motif avec un décalage régulier ou non, toujours dans le même sens, ou avec un changement de sens, par exemple en chevrons, en V, en W, en zig-zag.
En variante, le rotor peut être dépourvu de crans à la surface de la masse rotorique. La surface de la masse rotorique peut être sensiblement lisse.
Machine
L’invention a encore pour objet une machine électrique tournante comportant un stator et un rotor tel que défini ci-dessus.
La machine peut être utilisée comme moteur ou comme générateur. La machine peut être à réluctance. Elle peut constituer un moteur synchrone ou en variante un générateur synchrone. En variante encore, elle constitue une machine asynchrone.
La vitesse maximale de rotation de la machine peut être élevée, étant par exemple supérieure à 10 000 tr/min, mieux supérieure à 12000 tr/min, étant par exemple de l’ordre de 14 000 tr/min à 15 000 tr/min, voire même de 20 000 tr/min ou de 24 000 tr/min ou de 25 000 tr/min. La vitesse maximale de rotation de la machine peut être inférieure à 100 000 tr/min, voire à 60 000 tr/min, voire encore inférieure à 40 000 tr/min, mieux inférieure à 30 000 tr/min.
L’invention peut convenir tout particulièrement pour des machines de forte puissance.
La machine peut comporter un seul rotor intérieur ou, en variante, un rotor intérieur et un rotor extérieur, disposés radialement de part et d’autre du stator et accouplés en rotation.
La machine peut fonctionner seule ou être couplée à une boîte de vitesse. Dans ce cas, elle est insérée dans un carter qui loge également une boîte de vitesse.
La machine comporte un stator. Ce dernier comporte des dents définissant entre elles des encoches. Le stator peut comporter des conducteurs électriques, au moins une partie des conducteurs électriques, voire une majorité des conducteurs électriques, pouvant être en forme d'épingle en U ou en I. En variante, les conducteurs électriques peuvent comporter du fil rond.
Le stator peut être connecté en étoile ou en triangle.
La machine peut comporter un nombre de pôles compris entre 2 et 48, mieux entre 4 et 24, voire entre 6 et 12, étant par exemple de 6 ou 8.
L’invention a encore pour objet un procédé de fabrication d’un rotor de machine électrique tournante tel que défini ci-dessus.
Le procédé peut comporter l’étape consistant à introduire longitudinalement, le long de l’axe de rotation du rotor, au moins un aimant permanent dans le logement.
Dans le cas où la masse rotorique comporte plusieurs paquets de tôles empilés les uns sur les autres, le procédé peut d’abord comporter l’étape consistant à introduire longitudinalement au moins un aimant permanent dans le logement de chaque paquet de tôles, puis l’étape consistant à empiler les paquets de tôles les uns sur les autres, avec les aimants permanents dans les logements.
Brève description des dessins
[Lig 1] La figure 1 est une vue schématique et partielle, en coupe transversale, d’un rotor de machine électrique tournante selon l’invention,
[Lig 2] la figure 2 est une vue analogue à la figure 1 sans les aimants permanents, [Lig 3] la figure 3 est une vue analogue à la figure 1,
[Lig 4a] la figure 4a est une vue analogue à la figure 2 d’une variante de réalisation,
[Lig 4b] la figure 4b est une vue analogue à la figure 2 d’une variante de réalisation,
[Lig 4c] la figure 4c est une vue analogue à la figure 2 d’une variante de réalisation,
[Lig 4d] la figure 4d est une vue analogue à la figure 2 d’une variante de réalisation,
[Lig 5] la figure 5 est une vue analogue à la figure 1 d’une variante de réalisation, [Lig 6] la figure 6 est une vue analogue à la figure 1 d’une variante de réalisation. [Lig 7a] la figure 7a est une vue analogue à la figure 1 d’une variante de réalisation. [Fig 7b] la figure 7b est une vue analogue à la figure 1 d’une autre tôle de la variante de la figure 7 a.
[Fig 8a] La figure 8a est une vue en coupe, schématique et partielle, d’une variante de réalisation de rotor.
[Fig 8b] La figure 8b est une vue en coupe, schématique et partielle, d’une variante de réalisation de rotor.
[Fig 8c] La figure 8c est une vue en coupe, schématique et partielle, d’une variante de réalisation de rotor.
Description détaillée
On a illustré aux figures 1 à 3 un rotor 30 de machine électrique tournante selon l’invention, comportant une masse rotorique 33 dans laquelle sont ménagés des logements 10. Des aimants permanents sont insérés dans chacun des logements 10, de façon à définir des pôles du rotor. Ce rotor est destiné à être associé à un stator non représenté.
Les aimants sont dans cet exemple de forme générale rectangulaire en section transversale comme illustré dans les modes de réalisation des figures 1, 5 et 6. Chaque aimant présente, en section transversale, d’une part, un premier grand côté et un deuxième grand côté, opposé au premier, et d’autre part, un premier petit côté et un deuxième petit côté, opposé au premier. Chaque logement 10 est délimité par deux faces en regard respectivement du premier grand côté et du deuxième grand côté de l’aimant.
Les logements 10 d’un pôle sont disposés en une première rangée 11 de logements plus éloignée de l’entrefer et une deuxième rangée 12 de logements plus proche de l’entrefer.
La première rangée 11 de logements 10 comporte trois logements 10 disposés en U, avec un logement central et deux logements latéraux symétriques l’un de l’autre par rapport à un axe du pôle P.
Une longueur L2 d’un plus grand rectangle inscrit dans le logement central est dans l’exemple décrit égale à la longueur L1 du plus grand rectangle inscrit dans un logement latéral. La ‘longueur’ est mesurée selon l’axe de la rangée de logements. On désigne la longueur L3 comme la longueur d’un plus grand rectangle inscrit dans un logement de la deuxième rangée. La largeur B du plus grand rectangle inscrit dans le logement central est égale à la largeur B du plus grand rectangle inscrit dans un logement latéral. On parle de ‘largeur’ pour désigner la dimension perpendiculaire à la longueur dans le plan d’une section transversale de la masse rotorique.
Les logements latéraux de la première rangée 11 sont pourvus d’aimants permanents, de même que le logement central. Les aimants permanents des logements latéraux et du logement central de la première rangée 11 sont identiques l’un à l’autre. Ils ont notamment la même taille en section transversale.
Chaque logement latéral de la première rangée ménagent avec le logement central un pont de matière, les deux ponts de matière ayant chacun un axe longitudinal, les deux axes étant parallèles l’un à l’autre.
En outre les deux logements latéraux de la première rangée 11 comportent un évidement 15 qui s’étend depuis le logement latéral vers le logement central. L’évidement 15 est configuré pour dépasser radialement du logement central d’une distance Y. L’évidement 15 a une largeur X et une longueur Z.
En outre, l’évidement 15 a un bord qui s’étend au moins partiellement parallèlement à un bord du logement central.
La deuxième rangée 12 comporte deux logements disposés en V. Ils sont symétriques l’un de l’autre par rapport à un axe du pôle P. Dans l’exemple décrit, tous les logements de la deuxième rangée 12 sont pourvus d’aimants permanents. Les aimants permanents de la deuxième rangée sont identiques l’un à l’autre. Ils ont notamment la même taille en section transversale. En revanche, les aimants permanents de la deuxième rangée ont une taille différente des aimants permanents de la première rangée, étant plus petits. La largeur A d’un logement de la deuxième rangée est inférieure à la largeur B d’un logement de la première rangée.
Une dimension radiale W entre le fond de la deuxième rangée et la première rangée peut être comprise entre une fois la largeur B du logement central et le triple de celle- ci.
Les logements latéraux de la première rangée 11 ainsi que les logements de la deuxième rangée 12 comportent au moins une butée 16 de maintien de l’aimant permanent destiné à être reçu dans le logement, cette butée 16 étant située vers l’entrefer. On définit l’ouverture angulaire a3 de la deuxième rangée 12. Cette ouverture angulaire a3 est supérieure à deux fois la somme de l’ouverture angulaire al entre deux pôles consécutifs et l’ouverture angulaire a2 entre les première et deuxième rangées. On peut écrire a3 > 2 (al + a2). Dans l’exemple décrit, on a a3 = 1,2 * 2 (al + a2). Les ouvertures angulaires sont mesurées à la surface du rotor, au niveau de l’entrefer, pour un pôle donné du rotor, comme illustré sur la figure 2.
Par ailleurs, on peut définir l’ouverture angulaire a3 de la deuxième rangée par la relation suivante : a3 = k 2p/(2r), où p est le nombre de paires de pôles du rotor qui est dans l’exemple décrit 4, et k le coefficient d’ouverture polaire, qui est égal à 34,6%.
Un angle a4 entre les logements 10 adjacents de deux pôles consécutifs est dans l’exemple décrit de 24,8°. Les deux logements adjacents considérés pour la mesure de l’angle a4 entre les deux pôles consécutifs sont des logements de la première rangée.
A titre d’exemple, on donne en référence à la figure 3 des valeurs d’angle et d’ouvertures angulaires. Les aimants latéraux de la première rangée 11 font entre eux un angle bΐ de 70° environ. Les aimants de la deuxième rangée 12 font entre eux un angle b2 de 103° environ.
L’ouverture angulaire a3 de la deuxième rangée 12 est d’environ 13 mm. L’ouverture angulaire a5 de la première rangée 11 est d’environ 30 mm.
Enfin un écart D entre les deux évidements des logements latéraux de la première rangée 11 est d’environ 15 mm.
Bien entendu, les formes des logements 10 et des évidements 15 pourraient varier sans que l’on sorte du cadre de la présente invention. A titre d’exemple, on a illustré aux figures 4a à 4d des variantes de réalisation.
Dans l’exemple de la figure 4a, les logements de la deuxième rangée 12 sont allongés en pointe de façon à réduire la distance W entre le fond de la deuxième rangée et la première rangée.
Dans l’exemple de la figure 4b, les évidements 15 des logements de la première rangée 12 sont raccourcis, ne dépassant pas radialement du logement central.
Dans l’exemple de la figure 4c, les évidements 15 des logements de la première rangée 12 sont au contraire allongés, se terminant en demi-cercle. Dans l’exemple de la figure 4d, les évidements 15 des logements de la première rangée 12 sont séparés du reste du logement par une butée 17 de maintien de l’aimant permanent.
Dans l’exemple de réalisation des figures 1 et 2, les logements latéraux de la première rangée 11 sont pourvus d’aimants permanents, de même que le logement central, ces aimants étant tous identiques.
Dans la variante de réalisation illustrée à la figure 5, le logement central de la première rangée 11 est pourvu d’un aimant permanent plus petit que les aimants permanents des logements latéraux, de longueur L4 inférieure à la longueur L1 ou à la longueur L2.
En variante encore, comme illustré à la figure 6, le logement central de la première rangée peut être vide, étant dépourvu d’aimant permanent.
Dans la variante de réalisation illustrée aux figures 7a et 7b, certaines tôles du rotor comportent des languettes déformables 19 qui se raccordent chacune à une face du logement correspondant, comme illustré à la figure 7a, tandis que d’autres tôles de l’empilement n’en comportent pas, comme illustré à la figure 7b. Dans l’exemple illustré, seuls les logements latéraux des premières rangées et les logements des deuxièmes rangées comporte une telle languette déformable 19.
Les languettes déformables 19 s’étendent chacune dans le logement correspondant. Chaque languette déformable 19 comporte une portion qui est pliée de manière à être plaquée contre un petit côté de l’aimant correspondant. La portion pliable de la languette déformable 19 est pliée en dehors du plan des tôles, selon un axe de pliure de la languette déformable 19 s’étendant dans un plan parallèle au plan de la tôle.
Dans les exemples décrits, la machine comporte un nombre de pôles de 8. Bien entendu, on ne sort pas du cadre de la présente invention si celui-ci est différent, étant par exemple de 6.
Dans une variante de réalisation illustrée à la figure 8a, les tôles de la masse rotorique comportent des crans 62 à la surface de la masse rotorique faisant face à l’entrefer
E.
Dans cet exemple, les crans sont de forme partiellement en ellipse, avec une profondeur br, mesurée radialement dans le plan de la tôle, supérieure à la largeur ar du cran 62, mesurée circonférentiellement dans le plan de la tôle. Dans l’exemple de la figure 8a, un pôle du rotor comporte quatre crans 62 répartis symétriquement de part et d’autre d’un axe du pôle.
Notamment lorsque les crans d’un pôle ne sont pas répartis symétriquement, les crans des tôles d’un premier paquet de la masse rotorique sont décalés angulairement par rapport aux crans des tôles d’un deuxième paquet de la masse rotorique.
A titre d’exemple, on a illustré à la figure 8b un rotor formé de deux tôles identiques retournées, afin de former deux paquets 50a, 50b de tôles comportant chacun deux crans 62 décalés angulairement.
Dans l’exemple de la figure 8c, le rotor comporte quatre paquets 50a, 50b, 50c, 50d, comportant chacun un seul cran 62 décalé angulairement. Les crans 62 diffèrent ici par leur profondeur.
Bien entend, on ne sort pas du cadre de la présente invention si le rotor comporte une configuration différente de celles illustrées, par exemple par le nombre de paquets, par la position des crans ou leur forme ou dimension.

Claims

Revendications
1. Rotor (30) de machine électrique tournante, comportant une masse rotorique (33) comportant des tôles empilées les unes sur les autres, la masse rotorique (33) comportant une pluralité de logements (10), au moins une partie des logements, voir tous les logements, recevant un ou des aimants permanents définissant des pôles du rotor, les logements d’un pôle étant disposés en au moins une première (11) et une deuxième (12) rangées de logements, la première rangée (11) de logements comportant trois logements disposés en U, avec un logement central et deux logements latéraux, une longueur (L2) d’un plus grand rectangle inscrit dans le logement central étant égale à +/- 20% à la longueur (Ll) du plus grand rectangle inscrit dans un logement latéral, au moins un des logements latéraux, notamment les deux logements latéraux de la première rangée, comportant un évidement (15) qui s’étend depuis le logement latéral vers le logement central, l’évidement (15) étant configuré pour dépasser radialement du logement central.
2. Rotor selon la revendication précédente, la largeur (B) du plus grand rectangle inscrit dans le logement central étant égale à +/- 50% à la largeur (B) du plus grand rectangle inscrit dans un logement latéral.
3. Rotor selon l’une quelconque des revendications précédentes, dans lequel les logements latéraux de la première rangée (11) sont pourvus d’aimants permanents.
4. Rotor selon l’une quelconque des revendications précédentes, le logement central de la première rangée (11) étant pourvu d’un aimant permanent plus petit que les aimants permanents des logements latéraux.
5. Rotor selon l’une quelconque des revendications précédentes, les logements de la deuxième rangée (12) étant disposés en V.
6. Rotor selon l’une quelconque des revendications précédentes, dans lequel une ouverture angulaire (a3) de la deuxième rangée est supérieure ou égale à deux fois la somme de l’ouverture angulaire (al) entre deux pôles consécutifs et l’ouverture angulaire (a2) entre les première et deuxième rangées.
7. Rotor selon l’une quelconque des revendications précédentes, dans lequel une ouverture angulaire (a3) de la deuxième rangée (12) est donnée par la relation suivante : a3 = k 2p/(2r), où p est le nombre de paires de pôles du rotor et k le coefficient d’ouverture polaire, avec le coefficient d’ouverture polaire k qui est compris dans l’intervalle [22,5% ; 37,5%], mieux dans l’intervalle [25% ; 35%].
8. Rotor selon l’une quelconque des revendications précédentes, un angle (a4) entre les logements adjacents de deux pôles consécutifs étant strictement supérieur à 0, étant notamment compris entre 5° et 35°, mieux entre 12° et 30°.
9. Rotor (30) de machine électrique tournante, comportant une masse rotorique (33) comportant des tôles empilées les unes sur les autres, la masse rotorique (33) comportant une pluralité de logements (10), au moins une partie des logements, voir tous les logements, recevant un ou des aimants permanents définissant des pôles du rotor, les logements d’un pôle étant disposés en au moins une première (11) et une deuxième (12) rangées de logements, la première rangée (11) de logements comportant trois logements disposés en U, avec un logement central et deux logements latéraux, une longueur (L2) d’un plus grand rectangle inscrit dans le logement central étant égale à +/- 20% à la longueur (Ll) du plus grand rectangle inscrit dans un logement latéral, au moins un des logements latéraux, notamment les deux logements latéraux de la première rangée, comportant un évidement (15) qui s’étend depuis le logement latéral vers le logement central, chaque logement latéral de la première rangée ménageant avec le logement central un pont de matière, les deux ponts de matière ayant chacun un axe longitudinal, les deux axes étant parallèles l’un à l’autre.
10. Rotor selon l’une quelconque des revendications précédentes, une largeur (X) de l’évidement (15) étant comprise entre 0 mm et le double de la largeur (B) du logement central.
11. Rotor selon l’une quelconque des revendications précédentes, une dimension radiale (W) entre le fond de la deuxième rangée et la première rangée étant comprise entre une fois la largeur B du logement central et le triple de celle-ci.
12. Rotor selon l’une quelconque des revendications précédentes, l’évidement ayant un bord qui s’étend au moins partiellement parallèlement à un bord du logement central.
13. Rotor selon l’une quelconque des revendications précédentes, au moins un logement comportant au moins une butée (17) de maintien de l’aimant permanent destiné à être reçu dans le logement.
14. Rotor selon l’une quelconque des revendications précédentes, étant dépourvu de circulation de fluide de refroidissement dans les logements.
15. Machine électrique tournante, comportant un stator et un rotor (30) tel que défini selon l’une quelconque des revendications précédentes.
PCT/FR2022/050136 2021-02-22 2022-01-26 Rotor de machine électrique tournante WO2022175614A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22705437.6A EP4295469A1 (fr) 2021-02-22 2022-01-26 Rotor de machine électrique tournante
US18/264,353 US20240120785A1 (en) 2021-02-22 2022-01-26 Rotor for a rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101695A FR3120168A1 (fr) 2021-02-22 2021-02-22 Rotor de machine électrique tournante
FRFR2101695 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022175614A1 true WO2022175614A1 (fr) 2022-08-25

Family

ID=76375139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050136 WO2022175614A1 (fr) 2021-02-22 2022-01-26 Rotor de machine électrique tournante

Country Status (4)

Country Link
US (1) US20240120785A1 (fr)
EP (1) EP4295469A1 (fr)
FR (1) FR3120168A1 (fr)
WO (1) WO2022175614A1 (fr)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101695A5 (fr) 1970-07-14 1972-03-31 Ingersoll Rand Co
US20070096578A1 (en) 2005-10-31 2007-05-03 Jahns Thomas M Device having permanent-magnet pieces
US20070096577A1 (en) 2005-10-31 2007-05-03 Caterpillar Inc. Electric machine
US20080007131A1 (en) 2006-06-12 2008-01-10 Remy International, Inc. Electric machine with interior permanent magnets
US20100079026A1 (en) * 2008-10-01 2010-04-01 Seok-Hee Han Electric machine
US20130020889A1 (en) 2011-07-19 2013-01-24 Aisin Aw Co., Ltd. Rotating electrical machine
TWI589097B (zh) * 2013-07-05 2017-06-21 Aida Eng Ltd Permanent magnet motor
CN206650521U (zh) 2017-03-20 2017-11-17 牟特科技(北京)有限公司 一种永磁电机斜极转子结构及电机
KR102018229B1 (ko) 2018-05-29 2019-09-04 엘지전자 주식회사 전동기의 로터
CN110212666A (zh) 2019-05-16 2019-09-06 广州小鹏汽车科技有限公司 转子冲片结构、定子冲片和电机结构
WO2019174323A1 (fr) 2018-03-16 2019-09-19 珠海格力电器股份有限公司 Structure de rotor, moteur à reluctance synchrone auxiliaire à aimant permanent et véhicule électrique
WO2019179864A1 (fr) 2018-03-21 2019-09-26 Zf Friedrichshafen Ag Rotor d'une machine électrique à aimants permanents
WO2020090152A1 (fr) * 2018-10-30 2020-05-07 三菱電機株式会社 Machine électrique tournante
FR3094583A1 (fr) * 2019-03-29 2020-10-02 IFP Energies Nouvelles Rotor de machine électrique avec pôles asymétriques et aimants latéraux
US20200395796A1 (en) * 2019-06-17 2020-12-17 Komotek Co., Ltd. Rotor for Motor for Reducing Amount of Usage of Permanent Magnets

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101695A5 (fr) 1970-07-14 1972-03-31 Ingersoll Rand Co
US20070096578A1 (en) 2005-10-31 2007-05-03 Jahns Thomas M Device having permanent-magnet pieces
US20070096577A1 (en) 2005-10-31 2007-05-03 Caterpillar Inc. Electric machine
US20080007131A1 (en) 2006-06-12 2008-01-10 Remy International, Inc. Electric machine with interior permanent magnets
US20100079026A1 (en) * 2008-10-01 2010-04-01 Seok-Hee Han Electric machine
US20130020889A1 (en) 2011-07-19 2013-01-24 Aisin Aw Co., Ltd. Rotating electrical machine
TWI589097B (zh) * 2013-07-05 2017-06-21 Aida Eng Ltd Permanent magnet motor
CN206650521U (zh) 2017-03-20 2017-11-17 牟特科技(北京)有限公司 一种永磁电机斜极转子结构及电机
WO2019174323A1 (fr) 2018-03-16 2019-09-19 珠海格力电器股份有限公司 Structure de rotor, moteur à reluctance synchrone auxiliaire à aimant permanent et véhicule électrique
WO2019179864A1 (fr) 2018-03-21 2019-09-26 Zf Friedrichshafen Ag Rotor d'une machine électrique à aimants permanents
KR102018229B1 (ko) 2018-05-29 2019-09-04 엘지전자 주식회사 전동기의 로터
WO2020090152A1 (fr) * 2018-10-30 2020-05-07 三菱電機株式会社 Machine électrique tournante
FR3094583A1 (fr) * 2019-03-29 2020-10-02 IFP Energies Nouvelles Rotor de machine électrique avec pôles asymétriques et aimants latéraux
CN110212666A (zh) 2019-05-16 2019-09-06 广州小鹏汽车科技有限公司 转子冲片结构、定子冲片和电机结构
US20200395796A1 (en) * 2019-06-17 2020-12-17 Komotek Co., Ltd. Rotor for Motor for Reducing Amount of Usage of Permanent Magnets

Also Published As

Publication number Publication date
FR3120168A1 (fr) 2022-08-26
US20240120785A1 (en) 2024-04-11
EP4295469A1 (fr) 2023-12-27

Similar Documents

Publication Publication Date Title
EP1362407B1 (fr) Machine tournante perfectionnee pour vehicule automobile
EP2715917A1 (fr) Rotor a aimants permanents et machine tournante comportant un tel rotor
EP4229739A1 (fr) Rotor de machine électrique tournante
WO2021123539A1 (fr) Rotor de machine électrique tournante
WO2022175614A1 (fr) Rotor de machine électrique tournante
EP2283561B1 (fr) Rotor de machine electrique tournante avec structures interpolaires a masse reduite
EP3229348B1 (fr) Rotor pour machine électrique tournante
EP2372874B1 (fr) Machine électrique tournante synchrone à aimants permanents et concentration de flux
EP4315565A1 (fr) Rotor de machine électrique tournante
EP2781007A2 (fr) Rotor a aimants permanents pour une machine electrique tournante
EP3607640B1 (fr) Rotor pour machine électrique à aimants permanents internes
WO2021123612A1 (fr) Rotor de machine electrique tournante
FR3086118A1 (fr) Machine electrique tournante munie d'un rotor a masse reduite
WO2016146909A1 (fr) Rotor de machine electrique tournante a configuration d'aimants permanents optimisee
WO2021064315A1 (fr) Rotor de machine electrique tournante
EP4437637A1 (fr) Rotor de machine électrique tournante
WO2023187272A1 (fr) Rotor de machine électrique tournante
WO2023062306A2 (fr) Stator de machine électrique tournante
WO2024126049A1 (fr) Rotor de machine électrique avec un évidement comprenant un adhésif
WO2023203295A1 (fr) Machine électrique tournante
WO2024084158A1 (fr) Flasque de rotor de machine électrique
FR3105634A1 (fr) Machine électrique tournante ayant un ratio de dimensions minimisant le bruit
WO2021123528A1 (fr) Rotor de machine electrique tournante
EP4309265A1 (fr) Rotor de machine électrique tournante
WO2023237827A1 (fr) Rotor de machine électrique tournante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22705437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18264353

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022705437

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022705437

Country of ref document: EP

Effective date: 20230922