WO2022175604A1 - Module de batterie comprenant des cellules cylindriques refroidies - Google Patents

Module de batterie comprenant des cellules cylindriques refroidies Download PDF

Info

Publication number
WO2022175604A1
WO2022175604A1 PCT/FR2022/050012 FR2022050012W WO2022175604A1 WO 2022175604 A1 WO2022175604 A1 WO 2022175604A1 FR 2022050012 W FR2022050012 W FR 2022050012W WO 2022175604 A1 WO2022175604 A1 WO 2022175604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
solid material
cells
cell
wall
Prior art date
Application number
PCT/FR2022/050012
Other languages
English (en)
Inventor
Eric Deland Huy
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Publication of WO2022175604A1 publication Critical patent/WO2022175604A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a module of a battery, and more particularly to a battery of an electric propulsion vehicle supplying an electric motor machine.
  • the term battery will be understood throughout the text of this document to mean an assembly comprising at least one battery module containing at least two electrochemical cells.
  • This battery optionally comprises electrical or electronic means for managing the electrical energy of this at least one module.
  • the battery pack When there are several modules, they are grouped together in a tray or casing and then form a battery pack, this battery pack being often designated by the English expression "battery pack", this casing generally containing a mounting interface, and connection terminals.
  • electrical energy storage cell or electrochemical cells
  • electrochemical cells will be understood throughout the text of this document to mean cells generating current by chemical reaction, for example of the lithium-ion type (or Li-ion ), of the Ni-Mh, or Ni-Cd or even lead type, or even fuel cell cells.
  • immersion cell cooling system In this field, a so-called “immersion” cell cooling system is known, the cells being directly immersed in a dielectric fluid, this fluid circulating in or through the module and on the periphery of the cells.
  • This circulation is done by natural convection or else, this system comprises the module, a circulation pump, an exchanger, possibly a heater, and an expansion tank when this fluid is for example in liquid form, as well as a circulation of the fluid connecting all of the aforementioned elements in a closed loop.
  • cylindrical cells In the case of cylindrical cells, generally straight, they are attached to each other by a cage to block and form a module of fixed geometry, a rigid wall of the cage separating the juxtaposed cells so as to control the swelling of the cells in operation.
  • a fluid circulation space is preserved between the cells, in particular by creating openings in the rigid wall, so that this fluid can cool these cells.
  • the object of the invention is to remedy this problem by limiting the swelling of these cells.
  • the subject of the invention is an electrical energy storage battery module comprising a cage and a pair of straight cylindrical cells side by side held in a parallel position to each other by said cage, this cage comprising a wall surrounding the cylindrical surface of each cell over a given length and comprising an opening passing through the thickness of the wall so as to allow a dielectric fluid to circulate between each cell, this module being such that the wall comprises, between two generatrices of the cylinders closest to the two cells, a solid area of material extending the full length given.
  • the zone of solid material is for example of constant thickness but not necessarily, not perforated, and opposes the swelling of the cells.
  • This area of solid material will therefore not damage the cell, while participating in the homogenization of the temperatures of the cells thanks to the fact of being, for example, thermally conductive.
  • the opening(s) are in fact arranged on the periphery of the solid material zone, where the mechanical pressure between cells is absent because the cells cannot touch each other due to their cylindrical shape. These openings then allow the circulation of a dielectric fluid in which the cells are submerged.
  • the length given may be shorter or longer than the length of the cylinder of the cells. However, a given length equal to or greater than the length of the cylinder of the cells will be preferred so as to minimize the mechanical pressure between cells due to their swelling.
  • This area of solid material can be flat, or locally match the cylinders of the cells by taking their shape.
  • each cell is in contact against the area of solid material.
  • the wall comprises an opening on each side of the solid material zone.
  • each of the openings is rectangular and the area of solid material is a strip, each of the sides of which belongs to a side of one of the openings.
  • the outer periphery of the cage has a second zone of solid material:
  • this generatrix belonging to the cylinder of a cylindrical cell attached to the outer periphery of the cage.
  • the outer periphery of the cage also contributes to the non-swelling of the cells at the generatrices (cylinders) which would not be opposite another cell, but only opposite from the outer periphery of the cage.
  • This second zone of solid material can be flat, or locally match the cylinders of the cells by taking their shape.
  • this generatrix the closest to the outer periphery of the cage is in contact against the cage.
  • this second zone of solid material comprises an external stiffening rib extending over the given length.
  • This characteristic makes it easier to block the swelling of the cells: indeed, a large part of the compression forces of the cells on the (first) zone of solid material is transmitted from cell to cell to the second zone of solid material which has no adjacent or side-by-side cell to counter these compressive forces, so that it can bend.
  • This rib makes it possible to avoid this bending, and therefore swelling, or else it makes it possible to avoid oversizing the thickness of the wall of the cage.
  • the wall forms a polygonal section around each cell.
  • this polygon is a hexagon.
  • the openwork is on the same side of the polygon as the area of solid material.
  • FIG 1 shows a diagram of a module according to the invention.
  • FIG. 1 partially discloses an electrical energy storage battery module.
  • This module comprises a cage 1 and a pair of straight cylindrical cells 2 side by side held in a parallel position to each other by said cage 1.
  • This cage 1 forms as many cells as cells 2, each cell 2 being housed in a cell .
  • This cage comprises a wall 3, forming these cells and surrounding the cylindrical surface of each cell 2 over a given length L, according to the direction of the length of the cells 2.
  • This wall 3 comprises an opening 4 passing through the thickness of the wall 3 so as to allow a dielectric fluid to circulate between each cell 2.
  • the wall 3 comprises, between two generatrices closest to the cylinders of the two cells 2, a zone of solid material 5 extending over the entire given length L.
  • Dielectric fluids are well known to those skilled in the art: the first, the cheapest, the least polluting, but which has a low heat capacity, is air. But for an industrial application in batteries, it is more advantageous for this fluid to have a significant heat capacity closer to that of water, for example based on sulfur hexafluoride in gas or liquid form, or based of oil.
  • the cylindrical cells 2 are shown in Figure 1 by a dotted circular section. There are four 2-cells represented, but of course the minimum number is two 2-cells to form at least one couple. The number of cells 2 can be much larger, depending on the storage capacity and/or the voltage desired at the terminals of the battery.
  • Cage 1 is shown without a bottom and without a lid, but depending on the architecture of the module, one or the other or both are present.
  • the bottom will advantageously be present when the cells 2 slide into the cells, but not necessarily, a narrowing of the cell at one end of the cage 1 advantageously replacing the bottom, blocking the cell 2 once placed in the cell.
  • each cell 2 is in contact against the solid material zone 5.
  • This contact can be a sliding or tight fit.
  • This variant can be in combination with cells 2 in contact against the solid material zone 5, so as for example to reduce the stresses due to the swelling of the cells 2.
  • the wall 3 comprises for example a cutout 4 on each side of the solid material area 5, which allows very good circulation of the dielectric fluid through the cage 1 while lightening the cage 1 by removing material at places which, in fact, do not transmit any mechanical stress since they are never in contact with the cylindrical cells 2.
  • cutouts 4 are for example rectangular and the solid material zone 5 is then a strip, each of the sides of which belongs to one side of one of the cutouts 4.
  • This rectangular shape of the cutouts 4 is advantageous because it does not require complex tools to make them, but also because it is the most suitable shape for removing as much material as possible from the cage 1 while:
  • the end opposite the bottom of the cell is for example the end through which cell 2 is introduced into cage 1.
  • the outer periphery of the cage has a second zone of solid material 6:
  • the outer periphery of the cage 1 is therefore the part of the wall 3 of the cells which is visible from the outside of an assembly consisting of the cage 1 and the cells 2.
  • the outer periphery of the cage 1 is therefore a strapping, made by the part of the wall 3, surrounding all of the cells 2 of the module,
  • This second zone of solid material 6 is for example the whole of this part of the wall 3, so that the strapping is not perforated, as illustrated in figure 1.
  • this strapping is perforated, for example with second perforations on each side of the second zone of solid material 6.
  • second perforations are for example rectangular and the second zone of solid material 6 is then a second strip, each of the sides of which belongs to a side of one of the second openings.
  • This contact can be a slip fit, or a tight fit.
  • This variant can be in combination with cells 2 in contact against the second zone of solid material 6, so as for example to reduce the stresses due to the swelling of the cells 2.
  • This second zone of solid material 6 comprises for example an external stiffening rib extending over the given length L. For example over the entire given length L.
  • the wall 3 forms a polygonal section around each cell 2. This section is that of the cell.
  • This polygon is advantageously a hexagon, which allows each cell to be perfectly joined to one or more neighboring cells by perfect correspondence of the faces of the polygon of each cell, like a "honeycomb".
  • the cutout 4 is on the same side of the polygon as the solid material area 5.
  • each face of the hexagon of each cell comprising a solid material area 5 further comprises a cutout 4 rectangular on each side of the solid material zone 5.
  • This solid material zone 5 then forms the strip, each of the sides of which belongs to a side of one of the openings 4.
  • the cage 1 is advantageously made of thermally conductive and/or electrically insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Module de batterie de stockage d'énergie électrique comprenant une cage (1) et un couple de cellules droites cylindriques (2) côte à côte maintenues en position parallèle entre-elles par ladite cage (1), cette cage comprenant une paroi (3) entourant la surface cylindrique de chaque cellule (2) sur une longueur donnée (L) et comprenant un ajourage (4) traversant l'épaisseur de la paroi (3) de sorte à laisser circuler un fluide diélectrique entre chaque cellule (2), caractérisé en ce que la paroi (3) comprend, entre deux génératrices les plus proches des cylindres des deux cellules (2), une zone de matière pleine (5) s'étendant sur toute la longueur donnée (L).

Description

DESCRIPTION
TITRE : MODULE DE BATTERIE COMPRENANT DES CELLULES
CYLINDRIQUES REFROIDIES
[001] La présente invention revendique la priorité de la demande française N°2101475 déposée le 16.02.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[002] La présente invention concerne un module d’une batterie, et plus particulièrement une batterie d’un véhicule à propulsion électrique alimentant une machine motrice électrique.
[003] On comprendra par batterie, dans tout le texte de ce document, un ensemble comprenant au moins un module de batterie contenant au moins deux cellules électrochimiques. Cette batterie comprend éventuellement des moyens électriques ou électroniques pour la gestion d’énergie électrique de ce au moins un module. Lorsqu’il y a plusieurs modules, ils sont regroupés dans un bac ou carter et forment alors un bloc batteries, ce bloc batteries étant souvent désigné par l’expression anglaise « pack batteries », ce carter contenant généralement une interface de montage, et des bornes de raccordement.
[004] Par ailleurs, on comprendra par cellule de stockage d’énergie électrique, ou cellules électrochimique, dans tout le texte de ce document, des cellules générant du courant par réaction chimique, par exemple de type lithium-ion (ou Li-ion), de type Ni-Mh, ou Ni-Cd ou encore plomb, ou encore des cellules de pile à combustible.
[005] Dans ce domaine, il est connu un système de refroidissement des cellules dit « par immersion », les cellules étant directement immergées dans un fluide diélectrique, ce fluide circulant dans ou au travers du module et en périphérie des cellules. Cette circulation se fait par convection naturelle ou alors, ce système comprend le module, une pompe de circulation, un échangeur, éventuellement un réchauffeur, et un vase d’expansion lorsque ce fluide est par exemple sous forme liquide, ainsi qu’une conduite de circulation du fluide reliant en boucle fermée l’ensemble des éléments précités.
[006] Dans le cas des cellules cylindriques, généralement droites, elles sont accolées les unes aux autres par une cage pour faire bloc et former un module de géométrie fixe, une paroi rigide de la cage séparant les cellules juxtaposées de sorte à maîtriser le gonflement des cellules en fonctionnement. Un espace de circulation du fluide est préservé entre les cellules, notamment en créant des ajourages dans la paroi rigide, pour que ce fluide puisse refroidir ces cellules.
[007] On connaît par exemple un tel principe dans le document de brevet US-A1- 20150270590. Mais si les ajourages présentés dans ce document de brevet permettent la circulation du fluide diélectrique, ils dégradent fortement la tenue géométrique des cellules cylindriques car ces dernières peuvent librement augmenter de diamètre, notamment en leur milieu, dans ces ajourages, dégradant ainsi les couches enroulées internes à la cellule cylindrique.
[008] Le but de l’invention est de remédier à ce problème en limitant le gonflement de ces cellules.
[009] A cet effet, l’invention a pour objet un module de batterie de stockage d’énergie électrique comprenant une cage et un couple de cellules droites cylindriques côte à côte maintenues en position parallèle entre-elles par ladite cage, cette cage comprenant une paroi entourant la surface cylindrique de chaque cellule sur une longueur donnée et comprenant un ajourage traversant l’épaisseur de la paroi de sorte à laisser circuler un fluide diélectrique entre chaque cellule, ce module étant tel que la paroi comprend, entre deux génératrices des cylindres les plus proches des deux cellules, une zone de matière pleine s’étendant sur toute la longueur donnée.
[010] Ainsi la zone de matière pleine est par exemple d’épaisseur constante mais pas nécessairement, non ajourée, et s’oppose au gonflement des cellules. Cette zone de matière pleine ne va donc pas détériorer la cellule, tout en participant à l’homogénéisation des températures des cellules grâce au fait d’être par exemple thermo-conductrice. Le ou les ajourages sont de fait disposés en périphérie de la zone de matière pleine, là où la pression mécanique entre cellules est absente du fait que les cellules ne peuvent pas se toucher de par leur forme cylindrique. Ces ajourages permettent alors la circulation d’un fluide diélectrique dans lequel sont submergées les cellules.
[011] On notera que la longueur donnée peut être plus courte ou plus longue que la longueur du cylindre des cellules. On préférera cependant une longueur donnée égale ou supérieure à la longueur du cylindre des cellules de sorte à minimiser la pression mécanique entre cellules due à leur gonflement. [012] Cette zone de matière pleine peut être plane, ou épouser localement les cylindres des cellules en prenant leur forme.
[013] Selon un mode de réalisation de l’invention, chaque cellule est en contact contre la zone de matière pleine.
[014] Ainsi, dès qu’une cellule est soumise à un gonflement, ce dernier est immédiatement bloqué par la zone de matière pleine.
[015] Selon un mode de réalisation de l’invention, la paroi comprend un ajourage de chaque côté de la zone de matière pleine.
[016] Selon un mode de réalisation de l’invention, chacun des ajourages est rectangulaire et la zone de matière pleine est une bande dont chacun des côtés appartient à un coté d’un des ajourages.
[017] Selon un mode de réalisation de l’invention, la périphérie extérieure de la cage présente une seconde zone de matière pleine:
- s’étendant sur toute la longueur donnée, et
- en vis-à-vis de la génératrice la plus proche de la périphérie extérieure de la cage, cette génératrice appartenant au cylindre d’une cellule cylindrique accolée à la périphérie extérieure de la cage.
[018] Ainsi, la périphérie extérieure de la cage participe également au non gonflement des cellules au niveau de génératrices (des cylindres) qui ne seraient pas en vis-à-vis d’une autre cellule, mais uniquement en vis-à-vis de la périphérie extérieure de la cage.
[019] Cette seconde zone de matière pleine peut être plane, ou épouser localement les cylindres des cellules en prenant leur forme.
[020] Selon un mode de réalisation de l’invention, cette génératrice, la plus proche de la périphérie extérieure de la cage est en contact contre la cage.
[021] Ainsi, dès qu’une cellule est soumise à un gonflement, ce dernier est immédiatement bloqué par la seconde zone de matière pleine.
[022] Selon un mode de réalisation de l’invention, cette seconde zone de matière pleine comprend une nervure de rigidification externe s’étendant sur la longueur donnée.
[023] Cette caractéristique permet de bloquer plus facilement le gonflement des cellules : en effet, une grande partie des efforts de compression des cellules sur la (première) zone de matière pleine est transmise de cellule en cellule à la seconde zone de matière pleine qui n’a pas de cellule voisine ou côte à côte pour contrecarrer ces efforts de compression, si bien qu’elle peut fléchir. Cette nervure permet d’éviter ce fléchissement, et donc le gonflement, ou alors elle permet d’éviter de surdimensionner l’épaisseur de la paroi de la cage.
[024] Selon un mode de réalisation de l’invention, la paroi forme une section polygonale autour de chaque cellule.
[025] Selon un mode de réalisation de l’invention, ce polygone est un hexagone.
[026] Selon un mode de réalisation de l’invention, l’ajourage est sur la même face du polygone que la zone de matière pleine.
[027] D’autres particularités et avantages apparaîtront à la lecture de la description ci-après d’un mode particulier de réalisation, non limitatif de l’invention, faite en référence à la figure 1 dans laquelle :
[028] [Fig 1] : représente un schéma d’un module selon l’invention.
[029] La figure 1 divulgue partiellement un module de batterie de stockage d’énergie électrique. Ce module comprend une cage 1 et un couple de cellules droites cylindriques 2 côte à côte maintenues en position parallèle entre-elles par ladite cage 1. Cette cage 1 forme autant d’alvéoles que de cellules 2, chaque cellule 2 étant logée dans une alvéole. Cette cage comprend une paroi 3, formant ces alvéoles et entourant la surface cylindrique de chaque cellule 2 sur une longueur donnée L, selon le sens de la longueur des cellules 2. Cette paroi 3 comprend un ajourage 4 traversant l’épaisseur de la paroi 3 de sorte à laisser circuler un fluide diélectrique entre chaque cellule 2. La paroi 3 comprend, entre deux génératrices les plus proches des cylindres des deux cellules 2, une zone de matière pleine 5 s’étendant sur toute la longueur donnée L.
[030] Ce ou ces ajourages 4 permettent alors la circulation d’un fluide diélectrique dans lequel sont submergées les cellules 2.
[031] Les fluides diélectriques sont parfaitement connus de l’homme du métier : le premier, le moins cher, le moins polluant, mais qui a une faible capacité calorifique c’est l’air. Mais pour une application industrielle dans les batteries, il est plus avantageux que ce fluide ait une capacité calorifique importante plus proche de celle de l’eau, par exemple à base d'hexafluorure de soufre sous forme de gaz ou de liquide, ou à base d’huile. [032] Les cellules cylindriques 2 sont représentées sur la figure 1 par une section circulaire en pointillés. Il y a quatre cellules 2 représentées, mais bien entendu le nombre minimal est de deux cellules 2 pour former au moins un couple. Le nombre de cellules 2 peut être bien plus grand, en fonction de la capacité de stockage et/ou de la tension désirée aux bornes de la batterie.
[033] Quatre cellules 2 représentent donc une combinaison possible de six couples de cellules 2, à titre d’exemple.
[034] La cage 1 est représentée sans fond et sans couvercle, mais selon l’architecture du module l’un ou l’autre ou les deux sont présents. Par exemple, le fond sera avantageusement présent lorsque les cellules 2 glissent dans les alvéoles, mais pas nécessairement, un rétrécissement de l’alvéole a une extrémité de la cage 1 remplaçant avantageusement le fond, bloquant la cellule 2 une fois mise en place dans l’alvéole.
[035] Par exemple, chaque cellule 2 est en contact contre la zone de matière pleine 5. Ce contact peut être un ajustement glissant, ou serré. En variante il y a un jeu mécanique entre la cellule 2 et la zone de matière pleine 5, par exemple de 0,1mm à 1 mm. Cette variante peut être en combinaison avec des cellules 2 en contact contre la zone de matière pleine 5, de sorte par exemple à diminuer les contraintes dues au gonflement des cellules 2.
[036] La paroi 3 comprend par exemple un ajourage 4 de chaque côté de la zone de matière pleine 5, ce qui permet une très bonne circulation du fluide diélectrique au travers de la cage 1 tout en allégeant la cage 1 en enlevant de la matière aux endroits qui, de fait, ne transmettent aucune contrainte mécanique puisque jamais en contact avec les cellules 2 cylindriques.
[037] Ces ajourages 4 sont par exemple rectangulaires et la zone de matière pleine 5 est alors une bande dont chacun des côtés appartient à un coté d’un des ajourages 4. Cette forme rectangulaire des ajourages 4 est avantageuse car cela ne nécessite pas d’outillages complexes pour les réaliser, mais aussi parce que c’est la forme la plus adaptée pour enlever le maximum de matière de la cage 1 tout en :
- préservant l’existence de la zone de matière pleine 5 sur toute la longueur L, et
- formant une couronne de matière pleine de l’alvéole au fond de l’alvéole et à son extrémité opposée au fond, permettant de maintien des alvéoles entre-elles pour former la cage 1.
[038] L’extrémité opposée au fond de l’alvéole est par exemple l’extrémité par laquelle la cellule 2 est introduite dans la cage 1. [039] La périphérie extérieure de la cage présente une seconde zone de matière pleine 6 :
- s’étendant sur toute la longueur donnée L, et
- en vis-à-vis de la génératrice la plus proche de la périphérie extérieure de la cage 1, cette génératrice appartenant au cylindre d’une cellule 2 cylindrique accolée à la périphérie extérieure de la cage 1.
[040] La périphérie extérieure de la cage 1 est donc la partie de la paroi 3 des alvéoles qui est visible de l’extérieur d’un ensemble constitué de la cage 1 et des cellules 2.
[041] La périphérie extérieure de la cage 1 est donc un cerclage, réalisé par la partie de la paroi 3, entourant l’ensemble de toutes les cellules 2 du module,
[042] Cette seconde zone de matière pleine 6 est par exemple la totalité de cette partie de la paroi 3, de sorte que le cerclage n’est pas ajouré, comme illustré sur la figure 1.
[043] En variante non illustrée, et toujours dans le but d’alléger la cage 1 , ce cerclage est ajouré, par exemple avec des seconds ajourages de chaque côté de la seconde zone de matière pleine 6. Ces seconds ajourages sont par exemple rectangulaires et la seconde zone de matière pleine 6 est alors une seconde bande dont chacun des côtés appartient à un coté d’un des seconds ajourages.
[044] Cette génératrice, la plus proche de la périphérie extérieure de la cage (1 ) est par exemple en contact contre la cage 1 , c’est-à-dire contre le cerclage.
[045] Ce contact peut être un ajustement glissant, ou serré. En variante il y a un jeu mécanique entre la cellule 2 et la seconde zone de matière pleine 6, par exemple de 0,1mm à 1 mm. Cette variante peut être en combinaison avec des cellules 2 en contact contre la seconde zone de matière pleine 6, de sorte par exemple à diminuer les contraintes dues au gonflement des cellules 2.
[046] Cette seconde zone de matière pleine 6 comprend par exemple une nervure de rigidification externe s’étendant sur la longueur donnée L. Par exemple sur toute la longueur donnée L.
[047] Comme illustré, la paroi 3 forme une section polygonale autour de chaque cellule 2. Cette section est celle de l’alvéole.
[048] Ce polygone est avantageusement un hexagone, ce qui permet que chaque alvéole soit parfaitement accolée à une ou plusieurs alvéoles voisines par une correspondance parfaite des faces du polygone de chaque alvéole, à la manière d’un « nid d’abeilles ». [049] Comme illustré, l’ajourage 4 est sur la même face du polygone que la zone de matière pleine 5. Par exemple, chaque face de l’hexagone de chaque alvéole comprenant une zone de matière pleine 5, comprend en outre un ajourage 4 rectangulaire de chaque côté de la zone de matière pleine 5. Cette zone de matière pleine 5 forme alors la bande dont chacun des côtés appartient à un côté d’un des ajourages 4.
[050] La cage 1 est avantageusement en matériau thermo-conducteur et/ou isolant électriquement.

Claims

REVENDICATIONS
1. Module de batterie de stockage d’énergie électrique comprenant une cage (1) et un couple de cellules droites cylindriques (2) côte à côte maintenues en position parallèle entre-elles par ladite cage (1), cette cage comprenant une paroi (3) entourant la surface cylindrique de chaque cellule (2) sur une longueur donnée (L) et comprenant un ajourage (4) traversant l’épaisseur de la paroi (3) de sorte à laisser circuler un fluide diélectrique entre chaque cellule (2), caractérisé en ce que la paroi (3) comprend, entre deux génératrices les plus proches des cylindres des deux cellules (2), une zone de matière pleine (5) s’étendant sur toute la longueur donnée (L).
2. Module selon la revendication 1 , chaque cellule (2) étant en contact contre la zone de matière pleine (5).
3. Module selon l’une des revendications précédentes, la paroi (3) comprenant un ajourage (4) de chaque côté de la zone de matière pleine (5).
4. Module selon la revendication 3, chacun des ajourages (4) étant rectangulaire et la zone de matière pleine (5) étant une bande dont chacun des côtés appartient à un coté d’un des ajourages (4).
5. Module selon l’une des revendications précédentes, la périphérie extérieure de la cage présentant une seconde zone de matière pleine (6) :
- s’étendant sur toute la longueur donnée (L), et
- en vis-à-vis de la génératrice la plus proche de la périphérie extérieure de la cage, cette génératrice appartenant au cylindre d’une cellule cylindrique accolée à la périphérie extérieure de la cage.
6. Module selon la revendication 5, cette génératrice, la plus proche de la périphérie extérieure de la cage (1) étant en contact contre la cage.
7. Module selon la revendication 5 ou 6, cette seconde zone de matière pleine
(6) comprenant une nervure de rigidification externe s’étendant sur la longueur donnée
(L).
8. Module selon l’une des revendications précédentes, la paroi (3) formant une section polygonale autour de chaque cellule (2).
9. Module selon la revendication précédente, ce polygone étant un hexagone.
10. Module selon la revendications 8 ou 9, l’ajourage (4) étant sur la même face du polygone que la zone de matière pleine (5).
PCT/FR2022/050012 2021-02-16 2022-01-04 Module de batterie comprenant des cellules cylindriques refroidies WO2022175604A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101475A FR3119938B1 (fr) 2021-02-16 2021-02-16 Module de batterie comprenant des cellules cylindriques refroidies
FRFR2101475 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022175604A1 true WO2022175604A1 (fr) 2022-08-25

Family

ID=75953986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050012 WO2022175604A1 (fr) 2021-02-16 2022-01-04 Module de batterie comprenant des cellules cylindriques refroidies

Country Status (2)

Country Link
FR (1) FR3119938B1 (fr)
WO (1) WO2022175604A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101475A5 (fr) 1971-06-03 1972-03-31 Weber Marie Louise
AT9968U1 (de) * 2006-12-22 2008-06-15 Magna Steyr Fahrzeugtechnik Ag Hochtemperaturbatterie mit luftkühlung
US20150270590A1 (en) 2012-10-31 2015-09-24 Sanyo Electric Co., Ltd. Battery module
CN110797604A (zh) * 2019-10-24 2020-02-14 中铁轨道交通装备有限公司 一种均衡风冷电池箱系统及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101475A5 (fr) 1971-06-03 1972-03-31 Weber Marie Louise
AT9968U1 (de) * 2006-12-22 2008-06-15 Magna Steyr Fahrzeugtechnik Ag Hochtemperaturbatterie mit luftkühlung
US20150270590A1 (en) 2012-10-31 2015-09-24 Sanyo Electric Co., Ltd. Battery module
CN110797604A (zh) * 2019-10-24 2020-02-14 中铁轨道交通装备有限公司 一种均衡风冷电池箱系统及控制方法

Also Published As

Publication number Publication date
FR3119938A1 (fr) 2022-08-19
FR3119938B1 (fr) 2022-12-30

Similar Documents

Publication Publication Date Title
EP3014676B1 (fr) Bande de cellules électrochimiques pour réaliser un module de batterie pour véhicule électrique ou hybride, et procédé de réalisation d'un tel module
EP2145360B1 (fr) Module pour ensemble de stockage d'energie electrique.
EP3360176B1 (fr) Procédé de fabrication d'un module de stockage d'énergie électrique
EP2715816B1 (fr) Module et dispositif thermo electriques, notamment destines a generer un courant electrique dans un vehicule automobile
FR3085469A1 (fr) Structure de gestion thermique a canaux integres
FR3060206A1 (fr) Dispositif de stockage d'energie electrique pour vehicule automobile et piece rapportee formant une partie du boitier d’un tel dispositif de stockage d’energie
FR3066260A1 (fr) Dispositif de regulation thermique de cellules de stockage d'energie electrique de type cylindrique
EP3925018A1 (fr) Unité de batterie et véhicule automobile équipé d'au moins une telle unité
WO2022175604A1 (fr) Module de batterie comprenant des cellules cylindriques refroidies
WO2018167382A1 (fr) Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique
EP3278393A1 (fr) Module de batterie, notamment pour véhicule automobile, et échangeur thermique pour module de batterie correspondant
EP4089794A2 (fr) Unité de batterie avec des moyens de controle ou de régulation de température intégrés
WO2021228782A1 (fr) Etui pour cellule électrochimique pour batterie, agencement de cellules électrochimiques pour batterie comprenant un tel étui et procédé de fabrication d'un tel agencement de cellules
WO2021123559A1 (fr) Dispositif d'échange thermique pour des composants électriques et/ou électroniques
EP3956931B1 (fr) Dispositif de stockage à cellule électrochimique prismatique à inserts de drainage, et batterie associée
FR3061764A1 (fr) Echangeur thermique a deux rangees de tubes pour la regulation thermique d'une batterie d'un vehicule automobile
FR3065904A1 (fr) Plateau pour l'assemblage membrane / electrodes
FR3119935A1 (fr) Module de batterie comprenant des cellules prismatiques de stockage d’electricite, et un intercalaire
WO2016135243A1 (fr) Dispositif de gestion thermique d'une unité de réserve d'énergie
FR3121786A1 (fr) Système de gestion thermique pour un module de système électronique.
WO2024068421A1 (fr) Dispositif pour espacer des cellules de batterie d'un bloc batterie de vehicule
WO2022214572A1 (fr) Dispositif de traitement thermique pour un element electrique et/ou electronique
FR3141810A1 (fr) Ensemble pour batterie électrique
FR3123506A1 (fr) Module de batterie immerge
WO2019207237A1 (fr) Dispositif de stockage électrique d'un véhicule contrôlé thermiquement a l'aide de caloducs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22703014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22703014

Country of ref document: EP

Kind code of ref document: A1