WO2022174480A1 - 纤维纳米混凝土的结构强度评价方法、装置、可读介质 - Google Patents

纤维纳米混凝土的结构强度评价方法、装置、可读介质 Download PDF

Info

Publication number
WO2022174480A1
WO2022174480A1 PCT/CN2021/079961 CN2021079961W WO2022174480A1 WO 2022174480 A1 WO2022174480 A1 WO 2022174480A1 CN 2021079961 W CN2021079961 W CN 2021079961W WO 2022174480 A1 WO2022174480 A1 WO 2022174480A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
fiber
concrete
strength
test block
Prior art date
Application number
PCT/CN2021/079961
Other languages
English (en)
French (fr)
Inventor
李晗
史科
管巧艳
朱倩
谢晓鹏
Original Assignee
郑州航空工业管理学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州航空工业管理学院 filed Critical 郑州航空工业管理学院
Priority to US17/564,808 priority Critical patent/US20220268737A1/en
Publication of WO2022174480A1 publication Critical patent/WO2022174480A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone

Definitions

  • the invention belongs to the technical field of concrete detection, and in particular relates to a method, a device and a readable medium for evaluating the structural strength of fiber nano-concrete.
  • the compressive strength of fiber nanoconcrete is obtained through experiments.
  • the cube specimen with side length of 150mm is used as the standard size specimen of fiber nanoconcrete compressive strength below the latest standard C60 strength in my country.
  • the cubes with side length of 150mm are made under the conditions of standard curing (temperature 20 ⁇ 2°C, relative humidity above 95%), curing to 28d age, using The ultimate compressive strength measured by standard test methods is called the standard cubic compressive strength of concrete.
  • the strength detection of fiber nano-concrete structures can be generally divided into destructive testing technology and non-destructive testing technology according to their different principles. Although the test results of destructive testing technology are relatively intuitive and reliable, it will cause local damage to the structure, and the tested structure needs to be tested accordingly. Repair is not conducive to the later development and maintenance of fiber-nano-concrete components.
  • the on-site inspection of fiber-nano-concrete structural strength generally adopts non-destructive testing technology, which has become one of the evaluation and analysis methods of engineering accidents. It plays an important role in the process of building construction, acceptance and use.
  • the non-destructive testing technology of fiber nano-concrete structure refers to the determination of one or some physical quantities by directly acting on the structure or components without destroying the fiber nano-concrete structure, and inferring the strength of fiber nano-concrete through the correlation between these physical quantities and strength.
  • the detection technology of strength and other indicators includes ultrasonic method, rebound method, ultrasonic rebound method, impact echo method, radar method, infrared imaging method, etc.
  • the rebound method is simple in structure, easy to carry, and easy to master. It is widely used because of its advantages such as high detection efficiency, relatively low cost and cost, and generally unrestricted shape and size of the measured object.
  • the technical problem to be solved by the present invention is to provide a structural strength evaluation method, device and readable medium of fiber nanoconcrete, which can measure the design strength of each sub-part and the deviation from the tensile strength of the structure and provide corrective measures.
  • a method for evaluating the structural strength of fiber nano-concrete comprising the steps of:
  • Step S1 obtaining the sound velocity of the test fiber nano-concrete test block
  • Step S2 deriving the strength of the fiber nanoconcrete test block based on the relationship between the compressive strength of the fiber nanoconcrete and the sound speed of the fiber nanoconcrete;
  • Step S3 based on the measured parameters and design input parameters of the test fiber nano-concrete, determine the strength of the fiber nano-concrete of the local entity and evaluate the deviation of the strength of each part from the compressive strength of the structure.
  • obtaining the sound velocity of the test fiber nano-concrete test block based on the acoustic impedance method specifically includes the steps:
  • the sound source is coupled with the sound transmission medium, and the sound source is controlled to emit a sound wave signal with a predetermined frequency, amplitude and waveform to the sound transmission medium, and receive the sound wave signal of the predetermined frequency, amplitude and waveform.
  • the echo amplitude of the sound wave signal reflected by the interface between the sound transmission medium and the air reaches the sound source;
  • the sound source In the state where the sound transmission medium is in contact with the fiber nano-concrete test block to be tested, the sound source is coupled with the sound transmission medium, the sound source is controlled to transmit the sound wave signal to the sound transmission medium, and the sound wave signal is received through the sound transmission medium.
  • the echo amplitude of the echo reaching the sound source after the interface between the medium and the fiber nano-concrete test block to be tested is reflected;
  • the characteristic impedance of the fiber nano-concrete test block to be tested is calculated by the sound pressure reflection coefficient, and the sound velocity of the test fiber nano-concrete test block to be tested is calculated according to the characteristic impedance.
  • step S3 before evaluating the deviation of the intensity of each part, it includes: establishing a three-dimensional data model for evaluation, storing the three-dimensional data as array data according to the spatial position as a unique ID, and evaluating the intensity of each part by using the three-dimensional data model Deviation from global compressive strength.
  • step S3 further includes: outputting the corresponding actual deviation value of the part deviating from the limit and corrective measures according to the deviation condition of the evaluation.
  • the method also includes: step S4, using pressure-sensitive paper to obtain a color distribution image of the impacted position of the test fiber nano-concrete test block, and judging the test mixed fiber nano-concrete based on the shadow distribution and shadow darkness of the read image. Damage degree of soil test block.
  • a device for evaluating the structural strength of fiber nano-concrete comprising the steps of:
  • the acquisition module is used to obtain the sound velocity of the test fiber nano-concrete test block
  • the derivation module is used to deduce the strength of the fiber nanoconcrete test block based on the relationship between the compressive strength of the fiber nanoconcrete and the sound speed of the fiber nanoconcrete;
  • the judgment module is used to judge the concrete strength of the local entity and evaluate the deviation of the strength of each part from the compressive strength of the structure based on the measured parameters and design input parameters of the experimental fiber nano-concrete.
  • the acquisition module includes:
  • the first receiving unit is used for receiving the echo amplitude of the sound wave signal after the sound transmission medium is reflected by the interface between the sound transmission medium and the air and reaches the sound source when the sound transmission medium is not in contact with the fiber nano-concrete test block to be tested;
  • the second receiving unit in the state where the sound transmission medium is in contact with the fiber nano-concrete test block to be tested, receives the echo amplitude of the sound wave signal that is reflected from the interface between the sound transmission medium and the concrete test block to be tested and reaches the sound source. ;
  • the first calculation unit is used for calculating the sound pressure reflection coefficient of the interface between the sound transmission medium and the fiber nano-concrete test block to be tested by the echo amplitude value and the echo amplitude value;
  • the second calculation unit is configured to calculate the characteristic impedance of the concrete test block to be tested by the sound pressure reflection coefficient, and calculate the sound velocity of the test fiber nanoconcrete test block to be tested according to the characteristic impedance.
  • a readable medium having instructions stored thereon, the instructions, when executed by a processor, implement the steps of a method for evaluating the structural strength of fiber nanoconcrete.
  • the structural strength evaluation method of the invention can identify and intelligently analyze the strength of fiber nano-concrete, judge the strength of the fiber-nano-concrete structure; determine whether the strength of fiber-nano-concrete meets the design requirements, and can evaluate the design strength of each sub-part and the tensile strength of the structure. It can also evaluate the overall toughness of some projects; in addition, the present invention can evaluate the quality of the test block under the test results after objective improvement and the objective improvement method, and has excellent application. prospect.
  • Fig. 1 is the flow chart of the structural strength evaluation method of fiber nanoconcrete
  • FIG. 2 is a schematic structural diagram of a structural strength evaluation device for fiber nanoconcrete.
  • the present invention provides a method for evaluating the structural strength of fiber nanoconcrete, which specifically includes the following steps.
  • a method for evaluating the structural strength of fiber nano-concrete comprising the steps of:
  • Step S1 obtaining the sound velocity of the test fiber nano-concrete test block
  • Step S2 deriving the strength of the fiber nanoconcrete test block based on the relationship between the compressive strength of the fiber nanoconcrete and the sound speed of the fiber nanoconcrete;
  • Step S3 based on the measured parameters and design input parameters of the test fiber nano-concrete, the field rebound method is used to quickly determine the strength of the fiber nano-concrete of the local entity and evaluate the deviation of the strength of each part from the compressive strength of the structure.
  • obtaining the sound velocity of the test fiber nano-concrete test block based on the acoustic impedance method specifically includes the steps:
  • the sound source is coupled with the sound transmission medium, and the sound source is controlled to emit a sound wave signal with a predetermined frequency, amplitude and waveform to the sound transmission medium, and receive the sound wave signal of the predetermined frequency, amplitude and waveform.
  • the echo amplitude of the sound wave signal reflected by the interface between the sound transmission medium and the air reaches the sound source;
  • the sound source In the state where the sound transmission medium is in contact with the fiber nano-concrete test block to be tested, the sound source is coupled with the sound transmission medium, the sound source is controlled to transmit the sound wave signal to the sound transmission medium, and the sound wave signal is received through the sound transmission medium.
  • the echo amplitude of the echo reaching the sound source after the interface between the medium and the concrete block to be tested is reflected;
  • the characteristic impedance of the fiber nano-concrete test block to be tested is calculated by the sound pressure reflection coefficient, and the sound velocity of the test concrete test block to be tested is calculated according to the characteristic impedance.
  • the deviation of the strength of each part also includes establishing a three-dimensional data model for evaluation, storing the three-dimensional data as array data according to the spatial position as a unique ID, and using the three-dimensional data model to evaluate the strength of each part relative to the global compressive strength. deviation. It also includes outputting the actual deviation value and corrective measures of the corresponding part deviating from the limit according to the deviation of the evaluation.
  • the input method of the measured parameters is: input the measured parameters of the compressive strength measurement of each sub-item under the three-dimensional three-dimensional model, and store them as array data corresponding to the three-dimensional data;
  • the input method of the design input parameters is: input the three-dimensional three-dimensional model.
  • the design input parameters of the compressive strength of each sub-item are stored as array data corresponding to the three-dimensional data.
  • the method of the present invention further includes obtaining a color distribution image of the impacted position of the test fiber nanoconcrete test block by using pressure sensitive paper, and judging the damage degree of the test fiber nanoconcrete test block based on the shadow distribution and shadow darkness of the read image.
  • the pressure-sensitive paper is composed of two negative sheets coated with microcapsule chromogenic substances and color-developing substances respectively. During the test, the coated parts are placed face to face. When the fiber nano-concrete test block is impacted during the measurement process, the pressure-sensitive paper is stressed. Causes the internal microcapsules to rupture and release the chromogenic substance, and the chromogenic substance reacts with the chromogenic substance to produce color; the color concentration varies with the size of the force, so as to realize the image recording of fiber nanometers with pressure-sensitive paper The results of the magnitude of the force at different positions on the surface of the concrete test block.
  • the collection of the pressure at the impacted position of the fiber-nanoconcrete test block is controlled, which is realized by the pressure-sensitive paper on both sides.
  • the coated part of the pressure-sensitive paper is placed face to face, and the surface of the concrete test block is recorded with the pressure-sensitive paper image.
  • the obtained pressure-sensitive paper image information is converted into image digital information by the scanner, and becomes a two-dimensional pixel matrix that can be recognized by the program, and the damage degree image is scanned by the scanner;
  • the image digital information is used to read the shadow distribution and shadow darkness, and the pressure of the pressure-sensitive paper is identified according to the established shadow distribution and shadow darkness-pressure correspondence relationship, and then the impacted position of the fiber nano-concrete test block is calculated and obtained.
  • the surface pressure distribution and the corresponding damage degree is used to read the shadow distribution and shadow darkness, and the pressure of the pressure-sensitive paper is identified according to the established shadow distribution and shadow darkness-pressure correspondence relationship, and then the impacted position of the fiber nano-concrete test block is calculated and obtained.
  • an embodiment of the present invention also provides a structural strength evaluation device for fiber nano-concrete, including the steps:
  • the acquisition module is used to obtain the sound velocity of the test fiber nano-concrete test block
  • the derivation module is used to deduce the strength of the fiber nanoconcrete test block based on the relationship between the compressive strength of the fiber nanoconcrete and the sound speed of the fiber nanoconcrete;
  • the judgment module is used to judge the strength of the fiber nano-concrete of the local entity and evaluate the deviation of the strength of each part from the compressive strength of the structure based on the measured parameters and design input parameters of the test fiber nano-concrete.
  • the acquisition module includes:
  • the first receiving unit is used for receiving the echo amplitude of the sound wave signal after the sound transmission medium is reflected by the interface between the sound transmission medium and the air and reaches the sound source when the sound transmission medium is not in contact with the fiber nano-concrete test block to be tested;
  • the second receiving unit in the state where the sound transmission medium is in contact with the fiber nano-concrete test block to be tested, receives the echo amplitude of the sound wave signal that is reflected from the interface between the sound transmission medium and the concrete test block to be tested and reaches the sound source. ;
  • the first calculation unit is used for calculating the sound pressure reflection coefficient of the interface between the sound transmission medium and the fiber nano-concrete test block to be tested by the echo amplitude value and the echo amplitude value;
  • the second calculation unit is configured to calculate the characteristic impedance of the fiber nano-concrete test block to be tested by the sound pressure reflection coefficient, and calculate the sound speed of the fiber nano-concrete test block to be tested according to the characteristic impedance.
  • Embodiments of the present invention further provide a readable medium, where instructions are stored on the readable medium, and when the instructions are executed by a processor, implement the steps of the method for evaluating the structural strength of fiber nanoconcrete.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer loads and executes the computer program instructions, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored on or transmitted from one computer-readable medium to another computer-readable medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wired ( Transmission to another website site, computer, server, or data center by means such as coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable medium can be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc., that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • non-transitory media such as random access memory, read only memory, flash memory, hard disk, solid state disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disk (English: optical disc) and any combination thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种纤维纳米混凝土的结构强度评价方法、装置、可读介质,包括:获得试验纤维纳米混凝土试块的声速;基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出纤维纳米混凝土试块的强度;基于试验纤维纳米混凝土的实测参数及设计录入参数,判定局部实体的纤维纳米混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。采用该技术方案,可以测评各分部位设计强度以及与结构抗拉强度的偏离情况并给予纠正措施。

Description

纤维纳米混凝土的结构强度评价方法、装置、可读介质 技术领域
本发明属于混凝土检测技术领域,具体涉及一种纤维纳米混凝土的结构强度评价方法、装置、可读介质。
背景技术
纤维纳米混凝土的抗压强度是通过试验所得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为纤维纳米混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度。
纤维纳米混凝土结构强度的检测根据其原理不同一般可分为有损检测技术和无损检测技术,其中有损检测技术虽然测试结果比较直观可靠但是其会对结构造成局部破坏,被测结构需进行相应修补,不利于纤维纳米混凝土构件后期的发展和维护,纤维纳米混凝土结构强度的现场检测一般都是采用无损检测技术,它已成为工程事故的评定和分析手段之一,因此,无损检测技术在整个建筑施工、验收以及使用过程中都发挥着重要的作用。纤维纳米混凝土结构的无损检测技术是指通过对纤维纳米混凝土结构不进行破坏,直接作用在结构或构件上测定某个或某些物理量,并通过这些物理量与强度的相关性来推测纤维纳米混凝土的强度等指标的检测技术,包括超声法、回弹法、超声回弹法冲击回波法、雷达法、红外成像法等,其中回弹法由于仪器构造简单、仪器携带方便、测试方法易于掌握、检测效率高、造价及费用都较为低廉、被测物的形状尺寸一般不受限制等优越性而被广泛采用,由于其特别适用于施工现场对结构纤维纳米混凝土的强度进行 随机的、大量的检验,已被国际学术界公认为纤维纳米混凝土无损检测的基本方法之一,成为现场结构纤维纳米混凝土检验与验收的常用方法。经过多年的研究和大量的实验室和现场数据的积累,已经建立了国家统一测强曲线,也形成了《回弹法检测混凝土抗压强度技术规程》(JGJ/T23-2011),各地区大都也研究建立了适合当地检测的地区回弹测强曲线,为实体工程的质量检测与评定提供了依据。但是,在上述的技术中缺少一种强度检测与评价一体的方法。
发明内容
本发明要解决的技术问题是,提供一种纤维纳米混凝土的结构强度评价方法、装置、可读介质,可以测评各分部位设计强度以及与结构抗拉强度的偏离情况并给予纠正措施。
为实现上述目的,本发明采用如下的技术方案
一种纤维纳米混凝土的结构强度评价方法,包括步骤:
步骤S1、获得试验纤维纳米混凝土试块的声速;
步骤S2、基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出纤维纳米混凝土试块的强度;
步骤S3、基于试验纤维纳米混凝土的实测参数及设计录入参数,判定局部实体的纤维纳米混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。
作为优选,基于声阻抗法获得试验纤维纳米混凝土试块的声速,具体包括步骤:
在传声介质与待试验纤维纳米混凝土试块不接触的状态下,使声源与传声介质耦合,控制所述声源向传声介质发射预定频率、幅度和波形的声波信号,并接收所述声波信号经传声介质与空气界面反射后回波到达声源的回波幅值;
在传声介质与待测试验纤维纳米混凝土试块接触的状态下,使声源与传声介质耦合,控制所述声源向传声介质发射所述声波信号,并接收所述声波信号经传声介质与待试验纤维纳米混凝土试块界面反射后回波到达声源的回波幅值;
通过回波幅值为和回波幅值为计算传声介质与待试验纤维纳米混凝土试块界面的声压反射系数;
通过所述声压反射系数计算待试验纤维纳米混凝土试块的特性阻抗、及根据所述特性阻抗计算所述待测试验纤维纳米混凝土试块的声速。
作为优选,步骤S3中,在评测各部位强度的偏离情况之前包括:建立测评的三维数据模型,并将三维数据按照空间位置作为唯一ID存储为数组数据,利用所述三维数据模型评测各部位强度相对于全局抗压强度的偏离情况。
作为优选,步骤S3还包括:根据评测的偏离情况输出相对应的偏离界限的部位实际偏离数值以及纠正措施。
作为优选,还包括:步骤S4、利用感压纸获取试验纤维纳米混凝土试块受冲击位置的颜色分布图像,并基于读取的所述图像的阴影分布和阴影暗度大小判断试验混纤维纳米凝土试块的损伤程度。
一种纤维纳米混凝土的结构强度评价装置,包括步骤:
获取模块,用于获得试验纤维纳米混凝土试块的声速;
推导模块,用于基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出纤维纳米混凝土试块的强度;
判断模块,用于基于试验纤维纳米混凝土的实测参数及设计录入参数,判定局部实体的混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。
作为优选,所述获取模块包括:
第一接收单元,用于在传声介质与待试验纤维纳米混凝土试块不接触的状态下,接收所述声波信号经传声介质与空气界面反射后回波到达声源的回波幅值;
第二接收单元,在传声介质与待测试验纤维纳米混凝土试块接触的状态下,接收所述声波信号经传声介质与待试验混凝土试块界面反射后回波到达声源的回波幅值;
第一计算单元,用于通过回波幅值为和回波幅值为计算传声介质与待试验纤维纳米混凝土试块界面的声压反射系数;
第二计算单元,用于通过所述声压反射系数计算待试验混凝土试块的特性阻抗、及根据所述特性阻抗计算所述待测试验纤维纳米混凝土试块的声速。
一种可读介质,所述可读介质上存储有指令,所述指令被处理器执行时实现用于纤维纳米混凝土的结构强度评价方法的步骤。
本发明的结构强度评价方法,对纤维纳米混凝土强度进行鉴定和智能分析,判断纤维纳米混凝土结构的强度;判定纤维纳米混凝土强度是否满足设计要求,可以测评各分部位设计强度以及与结构抗拉强度的偏离情况并给予纠正措施,还可以评定部分项工程的整体强硬程度;另外,本发明可以评测在试验结果下的试块在客观改良后可以达到的质量以及客观改良方法,具有极好的应用前景。
附图说明
图1为纤维纳米混凝土的结构强度评价方法流程图;
图2为纤维纳米混凝土的结构强度评价装置的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
如图1所示,本发明提供供一种纤维纳米混凝土的结构强度评价方法,具体包括如下步骤。
一种纤维纳米混凝土的结构强度评价方法,包括步骤:
步骤S1、获得试验纤维纳米混凝土试块的声速;
步骤S2、基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出纤维纳米混凝土试块的强度;
步骤S3、基于试验纤维纳米混凝土的实测参数及设计录入参数,以现场回弹法快速判定局部实体的纤维纳米混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。
进一步,基于声阻抗法获得试验纤维纳米混凝土试块的声速,具体包括步骤:
在传声介质与待试验纤维纳米混凝土试块不接触的状态下,使声源与传声介质耦合,控制所述声源向传声介质发射预定频率、幅度和波形的声波信号,并接收所述声波信号经传声介质与空气界面反射后回波到达声源的回波幅值;
在传声介质与待测试验纤维纳米混凝土试块接触的状态下,使声源与传声介质耦合,控制所述声源向传声介质发射所述声波信号,并接收所述声波信号经传声介质与待试验混凝土试块界面反射后回波到达声源的回波幅值;
通过回波幅值为和回波幅值为计算传声介质与待试验混纤维纳米凝土试块界面的声压反射系数;
通过所述声压反射系数计算待试验纤维纳米混凝土试块的特性阻抗,及根据所述特性阻抗计算所述待测试验混凝土试块的声速。
进一步,在评测各部位强度的偏离情况之前,还包括建立测评的三维数据模型,并将三维数据按照空间位置作为唯一ID存储为数组 数据,利用三维数据模型评测各部位强度相对于全局抗压强度的偏离情况。还包括根据评测的偏离情况输出相对应的偏离界限的部位实际偏离数值以及纠正措施。
相应的,实测参数的输入方式为:输入三维立体模型下各个分部分项抗压强度测量的实测参数,并且与三维数据对应存储为数组数据;设计录入参数的输入方式为:输入三维立体模型下各个分部分项抗压强度的设计录入参数,并且与三维数据对应存储为数组数据。
进一步,本发明方法还包括利用感压纸获取试验纤维纳米混凝土试块受冲击位置的颜色分布图像,并基于读取图像的阴影分布和阴影暗度大小判断试验纤维纳米混凝土试块的损伤程度。
感压纸由分别涂有微囊生色物质和显色物质的两张底片组成,试验时候,将涂层部分面对面放置,当测量过程中纤维纳米混凝土试块受到冲击时,感压纸受力导致内部微囊破裂并释放出生色物质,生色物质与显色物质发生显色反应,从而产生颜色;颜色浓度随受力大小的不同而有所不同,从而实现用感压纸图像记录纤维纳米混凝土试块表面不同位置受力大小的结果。
因此,控制对纤维纳米混凝土试块受冲击位置压强的采集,具体是通过两面感压纸来实现,试验时候,将感压纸的涂层部分面对面放置,用感压纸图像记录混凝土试块表面不同位置受力大小的结果,通过扫描仪将获取的感压纸图像信息转换成图像数字信息,变成程序可识别的二维像素矩阵,还通过扫描仪将破损程度图像扫描;通过内部程序对图像数字信息进行阴影分布和阴影暗度大小读取,并根据建立的阴影分布和阴影暗度大小-压强对应关系来识别该感压纸的压强大小,再计算获取纤维纳米混凝土试块受冲击位置的表面压强分布情况及相应的损伤程度。
如图2所示,本发明实施例还提供一种纤维纳米混凝土的结构强度评价装置,包括步骤:
获取模块,用于获得试验纤维纳米混凝土试块的声速;
推导模块,用于基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出纤维纳米混凝土试块的强度;
判断模块,用于基于试验纤维纳米混凝土的实测参数及设计录入参数,判定局部实体的纤维纳米混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。
作为优选,所述获取模块包括:
第一接收单元,用于在传声介质与待试验纤维纳米混凝土试块不接触的状态下,接收所述声波信号经传声介质与空气界面反射后回波到达声源的回波幅值;
第二接收单元,在传声介质与待测试验纤维纳米混凝土试块接触的状态下,接收所述声波信号经传声介质与待试验混凝土试块界面反射后回波到达声源的回波幅值;
第一计算单元,用于通过回波幅值为和回波幅值为计算传声介质与待试验纤维纳米混凝土试块界面的声压反射系数;
第二计算单元,用于通过所述声压反射系数计算待试验纤维纳米混凝土试块的特性阻抗、及根据所述特性阻抗计算所述待测试验纤维纳米混凝土试块的声速。
本发明实施例还提供一种可读介质,所述可读介质上存储有指令,所述指令被处理器执行时实现纤维纳米混凝土的结构强度评价方法的步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机 程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、获取其他可编程装置。所述计算机指令可以存储在计算机可读介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
专业人员应该还可以进一步意识到,结合本发明中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英 文:floppy disk),光盘(英文:optical disc)及其任意组合。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (8)

  1. 一种纤维纳米混凝土的结构强度评价方法,其特征在于,包括步骤:
    步骤S1、获得试验纤维纳米混凝土试块的声速;
    步骤S2、基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出纤维纳米混凝土试块的强度;
    步骤S3、基于试验纤维纳米混凝土的实测参数及设计录入参数,判定局部实体的纤维纳米混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。
  2. 如权利要求1所述的纤维纳米混凝土的结构强度评价方法,其特征在于,基于声阻抗法获得试验纤维纳米混凝土试块的声速,具体包括步骤:
    在传声介质与待试验混凝土试块不接触的状态下,使声源与传声介质耦合,控制所述声源向传声介质发射预定频率、幅度和波形的声波信号,并接收所述声波信号经传声介质与空气界面反射后回波到达声源的回波幅值;
    在传声介质与待测试验纤维纳米混凝土试块接触的状态下,使声源与传声介质耦合,控制所述声源向传声介质发射所述声波信号,并接收所述声波信号经传声介质与待试验纤维纳米混凝土试块界面反射后回波到达声源的回波幅值;
    通过回波幅值为和回波幅值为计算传声介质与待试验纤维纳米混凝土试块界面的声压反射系数;
    通过所述声压反射系数计算待试验纤维纳米混凝土试块的特性阻抗、及根据所述特性阻抗计算所述待测试验纤维纳米混凝土试块的声速。
  3. 如权利要求1或2所述的纤维纳米混凝土的结构强度评价方法,其特征在于,步骤S3中,在评测各部位强度的偏离情况之前包括:建立测评的三维数据模型,并将三维数据按照空间位置作为唯一ID存储为数组数据,利用所述三维数据模型评测各部位强度相对于全局抗压强度的偏离情况。
  4. 如权利要求1或2所述的纤维纳米混凝土的结构强度评价方法,其特征在于,步骤S3还包括:根据评测的偏离情况输出相对应的偏离界限的部位实际偏离数值以及纠正措施。
  5. 如权利要求1或2所述的纤维纳米混凝土的结构强度评价方法,其特征在于,还包括:步骤S4、利用感压纸获取试验纤维纳米混凝土试块受冲击位置的颜色分布图像,并基于读取的所述图像的阴影分布和阴影暗度大小判断试验混纤维纳米凝土试块的损伤程度。
  6. 一种纤维纳米混凝土的结构强度评价装置,其特征在于,包括步骤:
    获取模块,用于获得试验纤维纳米混凝土试块的声速;
    推导模块,用于基于纤维纳米混凝土抗压强度与纤维纳米混凝土声速之间的关系推导出混凝土试块的强度;
    判断模块,用于基于试验纤维纳米混凝土的实测参数及设计录入参数,判定局部实体的纤维纳米混凝土强度并评测各部位强度相对于结构抗压强度的偏离情况。
  7. 如权利要求6所述的纤维纳米混凝土的结构强度评价装置,其特征在于,所述获取模块包括:
    第一接收单元,用于在传声介质与待试验纤维纳米混凝土试块不接触的状态下,接收所述声波信号经传声介质与空气界面反射后回波到达声源的回波幅值;
    第二接收单元,在传声介质与待测试验纤维纳米混凝土试块接触的状态下,接收所述声波信号经传声介质与待试验纤维纳米混凝土试块界面反射后回波到达声源的回波幅值;
    第一计算单元,用于通过回波幅值为和回波幅值为计算传声介质与待试验纤维纳米混凝土试块界面的声压反射系数;
    第二计算单元,用于通过所述声压反射系数计算待试验混凝土试块的特性阻抗、及根据所述特性阻抗计算所述待测试验纤维纳米混凝土试块的声速。
  8. 一种可读介质,所述可读介质上存储有指令,其特征在于,所述指令被处理器执行时实现权利要求1-5任一项所述的方法的步骤。
PCT/CN2021/079961 2021-02-22 2021-03-10 纤维纳米混凝土的结构强度评价方法、装置、可读介质 WO2022174480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/564,808 US20220268737A1 (en) 2021-02-22 2021-12-29 Method, Equipment and Readable Medium for Evaluating Structural Strength of Fiber and Nanosized Materials Reinforced Concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110199176.4 2021-02-22
CN202110199176.4A CN113029777A (zh) 2021-02-22 2021-02-22 纤维纳米混凝土的结构强度评价方法、装置、可读介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,808 Continuation US20220268737A1 (en) 2021-02-22 2021-12-29 Method, Equipment and Readable Medium for Evaluating Structural Strength of Fiber and Nanosized Materials Reinforced Concrete

Publications (1)

Publication Number Publication Date
WO2022174480A1 true WO2022174480A1 (zh) 2022-08-25

Family

ID=76461450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079961 WO2022174480A1 (zh) 2021-02-22 2021-03-10 纤维纳米混凝土的结构强度评价方法、装置、可读介质

Country Status (2)

Country Link
CN (1) CN113029777A (zh)
WO (1) WO2022174480A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028844A (ja) * 2001-07-18 2003-01-29 Mitsubishi Electric Corp コンクリート圧縮強度測定装置
CN101169363A (zh) * 2007-09-27 2008-04-30 上海理工大学 颗粒粒度、浓度和密度测量方法及其装置
CN103424470A (zh) * 2013-08-07 2013-12-04 国家电网公司 一种钢管混凝土粘结状态超声波检测的方法
CN107102066A (zh) * 2017-03-27 2017-08-29 河海大学 一种室内超声检测气泡混合轻质土强度的装置及方法
CN108088616A (zh) * 2016-11-23 2018-05-29 上海汽车集团股份有限公司 一种感压纸的精度测试方法、装置及系统
CN109253921A (zh) * 2018-11-02 2019-01-22 厦门港湾咨询监理有限公司 一种检测混凝土试块强度评价方法
CN110108864A (zh) * 2019-05-21 2019-08-09 湖南城市学院 一种预应力混凝土梁无损检测系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095139A1 (en) * 2005-10-27 2007-05-03 Fujimitsu Engineering Co., Ltd. Method and apparatus for non-destructive testing of concrete structures
CN109472486B (zh) * 2018-11-02 2020-09-08 厦门港湾咨询监理有限公司 试验检测混凝土试块数据集成评价系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028844A (ja) * 2001-07-18 2003-01-29 Mitsubishi Electric Corp コンクリート圧縮強度測定装置
CN101169363A (zh) * 2007-09-27 2008-04-30 上海理工大学 颗粒粒度、浓度和密度测量方法及其装置
CN103424470A (zh) * 2013-08-07 2013-12-04 国家电网公司 一种钢管混凝土粘结状态超声波检测的方法
CN108088616A (zh) * 2016-11-23 2018-05-29 上海汽车集团股份有限公司 一种感压纸的精度测试方法、装置及系统
CN107102066A (zh) * 2017-03-27 2017-08-29 河海大学 一种室内超声检测气泡混合轻质土强度的装置及方法
CN109253921A (zh) * 2018-11-02 2019-01-22 厦门港湾咨询监理有限公司 一种检测混凝土试块强度评价方法
CN110108864A (zh) * 2019-05-21 2019-08-09 湖南城市学院 一种预应力混凝土梁无损检测系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIANG ZHOU: "Research on3D Data Model of Apparent Damage Features for Concrete Structures", JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY, vol. 32, no. 11, 1 June 2010 (2010-06-01), pages 31 - 35, XP055961168 *
YANG JIANJIANG, YANG LE, CHEN XING: "Research on Ultrasonic Velocity and Compressive Strength of Concrete in Multi-variable Conditions", SHIGONG JISHU/CONSTRUCTION TECHNOLOGY, 10 August 2015 (2015-08-10), pages 39 - 43, XP055961160, [retrieved on 20220914], DOI: 10.7672/sgjs2015150039 *

Also Published As

Publication number Publication date
CN113029777A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN109253921B (zh) 一种检测混凝土试块强度评价方法
US11193838B2 (en) Method for determining plane stresses on in-service steel structure member based on phase spectrum of ultrasonic transverse wave
CN109472486B (zh) 试验检测混凝土试块数据集成评价系统
US20230061816A1 (en) Air-coupled Ultrasonic Detection Method and Device Based on Defect Probability Reconstruction Algorithm
CN104965025A (zh) 一种基于Lamb波信号相关系数的多区域损伤检测方法
CN110501225A (zh) 一种利用超声波反映不同含水率受载岩石损伤规律的方法
CN111521136B (zh) 一种基于水平剪切波的钢筋混凝土结构裂缝深度检测方法及检测装置
Payan et al. Ultrasonic methods
CN105866247A (zh) 钢板粘贴密实度检测装置及方法
CN112014471B (zh) 一种基于虚拟传感器的板结构多模态兰姆波拓扑梯度成像方法
US20220268737A1 (en) Method, Equipment and Readable Medium for Evaluating Structural Strength of Fiber and Nanosized Materials Reinforced Concrete
WO2022174480A1 (zh) 纤维纳米混凝土的结构强度评价方法、装置、可读介质
Jiao et al. Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structural health monitoring
Wang et al. Monitoring a concrete bridge girder with the coda wave interferometry method
CN109490417A (zh) 一种金属材料平面各项异性超声检测方法
CN203117167U (zh) 公路钢桥用超声波检测装置
CN1333265C (zh) 一种声发射检测技术中的声发射源信号反求方法及装置
CN116698986A (zh) 一种基于调谐带通滤波器的吸音材料质控系统和方法
CN113686963B (zh) 一种自密实钢管混凝土异形柱密实性检测方法
WO2022242238A1 (zh) 一种基于非线性超声测量疲劳微裂纹偏移角度的方法
CN115753991A (zh) 一种空耦超声高空间分辨率应力场测量装置的使用方法
CN112763575B (zh) 一种基于超声波的大型混凝土质量损伤程度评估方法
TWI612302B (zh) 水泥基質結構物聲學的火害判別方法
CN113237582A (zh) 一种工程验收用墙体内应力检测方法及检测系统
WO2021184236A1 (zh) 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926197

Country of ref document: EP

Kind code of ref document: A1