WO2022173068A1 - Pellicle for extreme ultraviolet lithography and method for manufacturing same - Google Patents

Pellicle for extreme ultraviolet lithography and method for manufacturing same Download PDF

Info

Publication number
WO2022173068A1
WO2022173068A1 PCT/KR2021/001952 KR2021001952W WO2022173068A1 WO 2022173068 A1 WO2022173068 A1 WO 2022173068A1 KR 2021001952 W KR2021001952 W KR 2021001952W WO 2022173068 A1 WO2022173068 A1 WO 2022173068A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
extreme ultraviolet
protective film
base
ultraviolet lithography
Prior art date
Application number
PCT/KR2021/001952
Other languages
French (fr)
Korean (ko)
Inventor
강희영
신인희
황보창권
김태영
송우섭
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Publication of WO2022173068A1 publication Critical patent/WO2022173068A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Definitions

  • the present invention relates to a pellicle for extreme ultraviolet lithography and a method for manufacturing the same, and more particularly, to a pellicle for extreme ultraviolet lithography having a structure with improved thermal stability and a method for manufacturing the same.
  • a method called photolithography is used as a method of patterning a semiconductor wafer.
  • photolithography a photomask is used as a patterning original plate, and the pattern on the photomask is transferred to the wafer.
  • dust is attached to the photomask, since light is absorbed or reflected due to the dust, the transferred pattern is damaged, resulting in deterioration in performance or yield of the semiconductor device.
  • the extreme ultraviolet (EUV) exposure process is a next-generation semiconductor exposure technology applicable to a mass production process of a node semiconductor of several nanometers or less.
  • the wavelength of 13.5 nm used in the EUV exposure process is easily absorbed by most materials in nature.
  • the membrane of the pellicle Due to the characteristics of EUV light, the membrane of the pellicle, which prevents contamination of the photomask by preventing the inflow of contaminants during the exposure process, was manufactured as a very thin single-layer thin film structure.
  • the membrane of the pellicle for lithography manufactured with a single-layer thin film structure has a problem in that physical and thermal stability are deteriorated and easily deformed due to the thin film structure.
  • the thermal shock is repeated instantaneously heated to about 600°C to 1200°C and then cooled to room temperature. Fatigue failure occurs.
  • Korean Patent Registration No. 10-2100029 proposes a pellicle structure for lithography of a multilayer thin film structure stacked in a plurality of layers, but a structure capable of improving optical properties while further improving thermal stability has been steadily developed. is being demanded
  • An object of the present invention is to provide a pellicle for extreme ultraviolet lithography, which can further improve thermal stability, and a method for manufacturing the same, as devised to solve the above requirements.
  • the pellicle for extreme ultraviolet lithography is a pellicle for protecting a photomask in an exposure process using light including extreme ultraviolet, formed in a plate shape and a base protective film formed of a light-transmitting material class; and a core layer having a plurality of spiral protrusions that are spaced apart from each other to protrude in a spiral form on the base protective film.
  • the base protective layer is Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , is formed of any one of TiN, Ta-C.
  • the spiral projection is formed of TiO 2 .
  • a finishing protective film formed in a plate shape to face the base protective film on the core layer may be further provided.
  • the thickness from the base protective film to the finishing protective film is applied in a range of 1 to 50 nm.
  • the method for manufacturing a pellicle for extreme ultraviolet lithography includes a base protective film formed in a plate shape and made of a light-transmitting material, and the base protective film is spaced apart from each other and extended to protrude in a spiral shape
  • the angle between the central axis of rotation and the first direction is greater than 0° and less than 90°.
  • the pellicle for extreme ultraviolet lithography and the method for manufacturing the same according to the present invention it is possible to provide an advantage of providing a pellicle having sufficient mechanical strength while being able to improve thermal stability.
  • FIG. 1 is a cross-sectional view showing a pellicle for extreme ultraviolet lithography according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a pellicle for extreme ultraviolet lithography according to another embodiment of the present invention.
  • FIG. 3 is a view for explaining a process of manufacturing the core layer of FIG. 1 .
  • FIG. 1 is a cross-sectional view showing a pellicle for extreme ultraviolet lithography according to an embodiment of the present invention.
  • a pellicle 100 for extreme ultraviolet lithography is for protecting the photomask 10 in an exposure process using light including extreme ultraviolet (EUV) and includes a thin film structure 110 .
  • EUV extreme ultraviolet
  • an arrow in FIG. 1 indicates a traveling direction of the extreme ultraviolet light emitted from the exposure process.
  • the thin film structure 110 includes a base protective film 112 and a core layer 120 .
  • the base protective layer 112 is formed in a plate shape and is made of a light-transmitting material. In addition, it is preferable to apply a material having good heat dissipation efficiency for the absorption of extreme ultraviolet light for the base passivation layer 112 .
  • the base passivation layer 112 is, for example, Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , It may be formed of any one of TiN and Ta-C.
  • the base passivation layer 112 may also be used as a growth substrate on which the spiral protrusions 122 of the core layer 120, which will be described later, are grown by deposition.
  • the base passivation layer 112 is formed to have a thickness of less than 5 nm.
  • the base protective layer 112 is applied to have a thickness of 0.3 to 4.8 nm.
  • the base protective layer 112 forms a shielding space for shielding dust from entering the photomask 10 together with the frame 150 to be described later.
  • the core layer 120 is a portion formed in a structure having a plurality of spiral protrusions 122 that are spaced apart from each other and extend to protrude in a spiral form on the base passivation layer 112 .
  • the spiral protrusion 122 is formed in a structure that rotates in the form of a spiral band having an annular cross-section when it proceeds from the inner surface opposite to the photomask 10 of the base protective film 112 in the direction toward the photomask 10, have.
  • the number of turns and the pitch interval P of the spiral protrusion 122 may be appropriately applied.
  • the spiral protrusion 122 improves the heat dissipation efficiency by improving the contact area by the spiral structure.
  • the spiral protrusion 122 constituting the core layer 120 is formed of a material having light transmittance and good heat dissipation efficiency.
  • the core layer 120 may be formed of a material such as diamond-like carbon (DLC), SiC, or TiO 2 .
  • the core layer 120 may be formed of the same material as the base protective layer 112 .
  • the thickness of the core layer 120 is appropriately applied at less than 50 nm.
  • the spiral protrusion 122 of the core layer 120 may be formed by vertically helically growing with respect to the base passivation layer 112 by glancing angle deposition (GLAD) using deposition equipment. That is, the spiral protrusion 122 can be formed by applying deposition equipment of various known deposition methods, such as physical vapor deposition (PVD) methods such as sputter and E-Beam evaporation. The detailed manufacturing process will be described later.
  • PVD physical vapor deposition
  • the thin film structure 110 may be formed in a structure in which a finishing protective film 114 formed in a plate shape to face the base protective film 112 is further provided on the core layer 120 as shown in FIG. 2 , of course. .
  • edge of the finishing protective layer 114 may be formed to be bonded to the frame 150 differently from the illustrated example.
  • the finish protective film 114 applies a material having good heat dissipation efficiency for absorption of extreme ultraviolet light like the base protective film 112 , and as an example, Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , TiN, may be formed of any one material of Ta-C.
  • the finishing protective film 114 is applied to have a thickness of less than 5 nm.
  • the finish protective layer 112 is applied to have a thickness of 0.3 to 4.8 nm.
  • the thickness from the base protective film 112 to the finishing protective film 114 including the core layer 120 is applied to be 1 to 50 nm.
  • the finishing protective layer 114 blocks the movement of the material detached from the spiral protrusion 122 of the core layer 120 to the photomask 10 .
  • the frame 150 extends from the photomask 10 to support the thin film structure 110 to be spaced apart from the photomask 10 and is bonded to the edge of the thin film structure 110 .
  • the frame 150 may be formed of various known materials such as aluminum.
  • the frame 150 is bonded between the photomask 10 and the edge of the base passivation layer 112 .
  • the support substrate 180 on which the base passivation layer 112 is mounted is disposed to be inclined with respect to the deposition target material B moving in the first direction by the deposition equipment.
  • the first direction refers to a moving direction of the deposition target material B corresponding to the source material for generating the spiral protrusions 122 of the core layer 120 that is generated and moved by the deposition equipment.
  • the rotation axis 182 of the support substrate 180 formed to extend rearwardly on the support substrate 180 along the rotation center axis S of the support substrate 180 in a direction perpendicular to the base passivation layer 112 is rotated.
  • a plurality of spiral protrusions 122 are formed on the base protective film 112 through a process of depositing with a deposition equipment (not shown) while rotating.
  • a deposition equipment not shown
  • an electron beam evaporator may be applied as deposition equipment for forming the spiral protrusion 122 .
  • the angle ⁇ between the rotational central axis 182 of the support substrate 180 and the first direction, which is the advancing direction of the deposition target material B, is greater than 0° and 90° less applicable.
  • the base protective film 112 is formed by stacking a circular seed corresponding to the spiral protrusion 122 to be formed, and as described above, the base protective film 112 is mounted to be inclined with respect to the deposition target material (B).
  • a method of forming the support substrate 180 through a deposition process after disposing it may be applied.
  • the angle ⁇ between the inclinations of the support substrate 180 with respect to the first direction may be adjusted.
  • the spacing between pitches (P), density, etc. of the plurality of spiral protrusions 122 grown by adjusting the rotational speed and the flow rate of steam of the source that will form the spiral protrusions 122 may be adjusted.
  • spiral protrusions 122 are partially absorbed by the base protective film 112 or the finishing protective film 114 among the extreme ultraviolet rays incident to the photomask 10 through the base protective film 112 during the exposure process to efficiently radiate the converted thermal energy.
  • the optical properties can be easily adjusted to a desired condition.
  • spiral protrusion 122 may be used as a circular polarizer.
  • the spiral protrusion 122 is grown through a deposition process, thereby providing an advantage of high mechanical strength.
  • pellicle for extreme ultraviolet lithography and a method for manufacturing the same, it is possible to improve thermal stability and provide an advantage of providing a pellicle having sufficient mechanical strength.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

The present invention relates to a pellicle for protecting a photomask in an exposure process using light including extreme ultraviolet rays, and a method for manufacturing same, the pellicle comprising: a base protective film which is plate-shaped and formed of a light-transmissive material; and a core layer having a plurality of spiral protrusions which protrude from the base protective film and spirally extend while being spaced apart from each other. Such a pellicle for extreme ultraviolet lithography and a method for manufacturing same can advantageously provide a pellicle which has sufficient mechanical strength while being able to improve thermal stability.

Description

극자외선 리소그래피용 펠리클 및 그 제조방법Pellicle for extreme ultraviolet lithography and manufacturing method thereof
본 발명은 극자외선 리소그래피용 펠리클 및 그 제조방법에 관한 것으로서, 상세하게는 열적안정성이 향상된 구조의 극자외선 리소그래피용 펠리클 및 그 제조방법에 관한 것이다.The present invention relates to a pellicle for extreme ultraviolet lithography and a method for manufacturing the same, and more particularly, to a pellicle for extreme ultraviolet lithography having a structure with improved thermal stability and a method for manufacturing the same.
반도체 디바이스의 제조시 반도체 웨이퍼에 패터닝을 하는 방법으로 포토 리소그래피라는 방법이 사용된다. 포토 리소그래피에서는 패터닝의 원판으로서 포토 마스크가 사용되고, 포토 마스크 상의 패턴이 웨이퍼에 전사된다. 그런데, 포토 마스크에 먼지가 부착되어 있으면 먼지로 인하여 빛이 흡수되거나, 반사되기 때문에 전사된 패턴이 손상되어 반도체 장치의 성능이나 수율의 저하를 초래하는 문제가 발생한다.In manufacturing a semiconductor device, a method called photolithography is used as a method of patterning a semiconductor wafer. In photolithography, a photomask is used as a patterning original plate, and the pattern on the photomask is transferred to the wafer. However, when dust is attached to the photomask, since light is absorbed or reflected due to the dust, the transferred pattern is damaged, resulting in deterioration in performance or yield of the semiconductor device.
따라서 이들의 작업은 보통 클린룸에서 행해지지만 클린룸 내에도 먼지가 존재하므로, 포토 마스크 표면에 먼지가 부착하는 것을 방지하기 위하여 펠리클을 부착하는 방법이 행해지고 있다. 이 경우, 먼지는 포토 마스크의 표면에는 직접 부착되지 않고, 펠리클 막 위에 부착되고, 리소그래피 과정에서는 초점이 포토 마스크의 패턴 상에 일치되어 있으므로 펠리클 상의 먼지는 초점이 맞지 않아 패턴에 전사되지 않는다는 장점이 있다.Therefore, although these operations are usually performed in a clean room, since dust is also present in the clean room, a method of attaching a pellicle is performed in order to prevent the dust from adhering to the surface of the photomask. In this case, the dust is not directly attached to the surface of the photomask, but is attached to the pellicle film, and in the lithography process, the focus is on the pattern of the photomask, so the dust on the pellicle is out of focus and is not transferred to the pattern. have.
한편, 반도체 디바이스의 고집적화 및 미세화는 해마다 가속화되고 있다. 극자외선(EUV;extreme ultraviolet) 노광 공정은 수 나노미터 이하 노드 반도체(node semiconductor) 양산 공정에 적용 가능한 차세대 반도체 노광 기술이다. EUV 노광 공정에서 사용되는 13.5 nm의 파장은 자연계의 대부분의 물질에 흡수되기 쉬운 특성을 갖는다. Meanwhile, high integration and miniaturization of semiconductor devices are accelerating every year. The extreme ultraviolet (EUV) exposure process is a next-generation semiconductor exposure technology applicable to a mass production process of a node semiconductor of several nanometers or less. The wavelength of 13.5 nm used in the EUV exposure process is easily absorbed by most materials in nature.
이러한 EUV 광의 특성으로 인하여, 노광 공정 중에 오염물질의 유입을 방지하여 포토 마스크의 오염을 막는 펠리클의 멤브레인은 매우 얇은 단층 박막 구조로 제조되었다. 그러나, 단층 박막 구조로 제조된 리소그래피용 펠리클의 멤브레인은 얇은 박막 구조에 의해 물리적 안정성 및 열적 안정성이 저하되고 쉽게 변형되는 문제점이 있다. 특히, EUV가 팰리클 박막에 흡수되면 대부분 열에너지로 변환되고, 약 600℃ 내지 1200℃까지 순간적으로 가열되었다가, 실온까지 냉각되는 열충격이 반복되고, 고온에 의한 펠리클 박막의 변형 뿐만아니라 열충격에 의한 피로 파괴가 발생한다. 이러한 문제점을 개선하기 위하여 국내 등록특허 제10-2100029호에는 복수의 층으로 적층된 다층 박막 구조의 리소그래피용 펠리클 구조체가 제안되어 있으나, 열적 안정성을 더욱 향상시키면서 광학적 특성도 개선할 수 있는 구조가 꾸준히 요구되고 있다.Due to the characteristics of EUV light, the membrane of the pellicle, which prevents contamination of the photomask by preventing the inflow of contaminants during the exposure process, was manufactured as a very thin single-layer thin film structure. However, the membrane of the pellicle for lithography manufactured with a single-layer thin film structure has a problem in that physical and thermal stability are deteriorated and easily deformed due to the thin film structure. In particular, when EUV is absorbed by the pellicle thin film, most of it is converted into thermal energy, and the thermal shock is repeated instantaneously heated to about 600°C to 1200°C and then cooled to room temperature. Fatigue failure occurs. In order to improve this problem, Korean Patent Registration No. 10-2100029 proposes a pellicle structure for lithography of a multilayer thin film structure stacked in a plurality of layers, but a structure capable of improving optical properties while further improving thermal stability has been steadily developed. is being demanded
본 발명은 상기와 같은 요구사항을 해결하기 위하여 창안된 것으로서, 열적 안정성을 더욱 향상시킬 수 있는 극자외선 리소그래피용 펠리클 및 그 제조방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a pellicle for extreme ultraviolet lithography, which can further improve thermal stability, and a method for manufacturing the same, as devised to solve the above requirements.
상기의 목적을 달성하기 위하여 본 발명에 따른 극자외선 리소그래피용 펠리클은 극자외선을 포함한 광을 이용한 노광공정에서 포토마스크를 보호하기 위한 펠리클에 있어서, 판형상으로 형성되며 광투과성 소재로 형성되는 베이스 보호막과; 상기 베이스 보호막에 상호 이격되어 나선형태로 돌출되게 연장된 복수 개의 나선돌기를 갖는 코어층;을 구비한다.In order to achieve the above object, the pellicle for extreme ultraviolet lithography according to the present invention is a pellicle for protecting a photomask in an exposure process using light including extreme ultraviolet, formed in a plate shape and a base protective film formed of a light-transmitting material class; and a core layer having a plurality of spiral protrusions that are spaced apart from each other to protrude in a spiral form on the base protective film.
본 발명의 일측면에 따르면, 상기 베이스 보호막은 Si, SiO2, ZrSi2, SiC, B4C, ZrB2, ZrC, Ru2Si3, BN, ZrN, Si3N4, Y2O3, ZrO2, TiN, Ta-C 중 어느 하나의 소재로 형성된다.According to an aspect of the present invention, the base protective layer is Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , is formed of any one of TiN, Ta-C.
본 발명의 또 다른 측면에 따르면, 상기 나선돌기는 TiO2 로 형성된다.According to another aspect of the present invention, the spiral projection is formed of TiO 2 .
또한, 상기 코어층 상부에 상기 베이스 보호막과 대향되게 판형으로 형성된 마감 보호막;을 더 구비할 수 있다.In addition, a finishing protective film formed in a plate shape to face the base protective film on the core layer may be further provided.
또한, 상기 베이스 보호막으로부터 상기 마감 보호막까지의 두께는 1 내지 50nm 로 적용한다.In addition, the thickness from the base protective film to the finishing protective film is applied in a range of 1 to 50 nm.
또한, 상기의 목적을 달성하기 위하여 본 발명에 따른 극자외선 리소그래피용 펠리클의 제조방법은 판형상으로 형성되며 광투과성 소재로 형성되는 베이스 보호막과, 상기 베이스 보호막에 상호 이격되어 나선형태로 돌출되게 연장된 복수 개의 나선돌기를 갖는 코어층을 구비하는 극자외선 리소그래피용 펠리클의 제조방법에 있어서, 가. 증착 장비에 의해 제1방향으로 이동하는 증착대상물질에 대해 경사지게 베이스 보호막이 장착된 지지기판을 배치하는 단계와; 나. 상기 베이스 보호막에 수직한 방향을 따르는 회전중심축을 따라 상기 지지기판을 회전시키면서 상기 증착장비로 증착하여 상기 나선돌기를 다수 형성하는 단계;를 포함한다.In addition, in order to achieve the above object, the method for manufacturing a pellicle for extreme ultraviolet lithography according to the present invention includes a base protective film formed in a plate shape and made of a light-transmitting material, and the base protective film is spaced apart from each other and extended to protrude in a spiral shape In the method of manufacturing a pellicle for extreme ultraviolet lithography having a core layer having a plurality of spiral protrusions, a. disposing a support substrate on which a base passivation film is mounted to be inclined with respect to a deposition target material moving in a first direction by means of deposition equipment; me. and forming a plurality of spiral protrusions by depositing the support substrate with the deposition equipment while rotating the support substrate along a central axis of rotation in a direction perpendicular to the base passivation layer.
또한, 상기 회전중심축과 상기 제1방향과의 사이각은 0°초과 90°미만으로 적용되는 것이 바람직하다.In addition, it is preferable that the angle between the central axis of rotation and the first direction is greater than 0° and less than 90°.
본 발명에 따른 극자외선 리소그래피용 펠리클 및 그 제조방법에 의하면, 열적 안전성을 향상시킬 수 있으면서 충분한 기계적 강도를 갖는 펠리클을 제공할 수 있는 장점을 제공한다. According to the pellicle for extreme ultraviolet lithography and the method for manufacturing the same according to the present invention, it is possible to provide an advantage of providing a pellicle having sufficient mechanical strength while being able to improve thermal stability.
도 1은 본 발명의 일 실시예에 따른 극자외선 리소그래피용 펠리클을 나타내 보인 단면도이고,1 is a cross-sectional view showing a pellicle for extreme ultraviolet lithography according to an embodiment of the present invention;
도 2는 본 발명의 또 다른 실시예에 따른 극자외선 리소그래피용 펠리클을 나타내 보인 단면도이고,2 is a cross-sectional view showing a pellicle for extreme ultraviolet lithography according to another embodiment of the present invention;
도 3은 도 1의 코어층 제조과정을 설명하기 위한 도면이다.FIG. 3 is a view for explaining a process of manufacturing the core layer of FIG. 1 .
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 극자외선 리소그래피용 펠리클 및 그 제조방법을 더욱 상세하게 설명한다.Hereinafter, a pellicle for extreme ultraviolet lithography and a manufacturing method thereof according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 극자외선 리소그래피용 펠리클을 나타내 보인 단면도이다.1 is a cross-sectional view showing a pellicle for extreme ultraviolet lithography according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 극자외선 리소그래피용 펠리클(100)은 극자외선(EUV)을 포함한 광을 이용한 노광공정에서 포토마스크(10)를 보호하기 위한 것으로서 박막 구조체(110)를 구비한다. 참고로 도 1에서 화살표는 노광공정에서 출사되는 극자외선 광의 진행방향이다.Referring to FIG. 1 , a pellicle 100 for extreme ultraviolet lithography according to the present invention is for protecting the photomask 10 in an exposure process using light including extreme ultraviolet (EUV) and includes a thin film structure 110 . . For reference, an arrow in FIG. 1 indicates a traveling direction of the extreme ultraviolet light emitted from the exposure process.
박막 구조체(110)는 베이스 보호막(112)과, 코어층(120)을 구비한다.The thin film structure 110 includes a base protective film 112 and a core layer 120 .
베이스 보호막(112)은 판형상으로 형성되며 광투과성 소재로 형성된다. 또한, 베이스 보호막(112)은 극자외선 광의 흡수에 대한 열방출 효율이 좋은 소재를 적용하는 것이 바람직하다. 베이스 보호막(112)은 일 예로서, Si, SiO2, ZrSi2, SiC, B4C, ZrB2, ZrC, Ru2Si3, BN, ZrN, Si3N4, Y2O3, ZrO2, TiN, Ta-C 중 어느 하나의 소재로 형성될 수 있다.The base protective layer 112 is formed in a plate shape and is made of a light-transmitting material. In addition, it is preferable to apply a material having good heat dissipation efficiency for the absorption of extreme ultraviolet light for the base passivation layer 112 . The base passivation layer 112 is, for example, Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , It may be formed of any one of TiN and Ta-C.
베이스 보호막(112)은 후술되는 코어층(120)의 나선돌기(122)가 증착에 의해 성장되기 위한 성장 기판으로서도 이용될 수 있다.The base passivation layer 112 may also be used as a growth substrate on which the spiral protrusions 122 of the core layer 120, which will be described later, are grown by deposition.
베이스 보호막(112)은 5nm 미만의 두께를 갖도록 형성된 것을 적용한다. 일 예로서, 베이스 보호막(112)은 0.3 내지 4.8nm의 두께로 형성된 것을 적용한다.The base passivation layer 112 is formed to have a thickness of less than 5 nm. As an example, the base protective layer 112 is applied to have a thickness of 0.3 to 4.8 nm.
이러한 베이스 보호막(112)은 후술되는 프레임(150)과 함께 포토 마스크(10)에 대한 먼지 유입을 차폐하는 차폐공간을 형성한다.The base protective layer 112 forms a shielding space for shielding dust from entering the photomask 10 together with the frame 150 to be described later.
코어층(120)은 베이스 보호막(112)에 상호 이격되어 나선형태로 돌출되게 연장된 복수 개의 나선돌기(122)를 갖는 구조로 형성된 부분이다. The core layer 120 is a portion formed in a structure having a plurality of spiral protrusions 122 that are spaced apart from each other and extend to protrude in a spiral form on the base passivation layer 112 .
나선돌기(122)는 베이스 보호막(112)의 포토 마스크(10)와 대향되는 내측면에서 포토 마스크(10)를 향하는 방향으로 진행될 때 환형 단면을 갖는 나선띠 형태로 회전되면서 진행하는 구조로 형성되어 있다. 나선돌기(122)의 턴수 및 피치 간격(P)은 적절하게 적용하면 된다.The spiral protrusion 122 is formed in a structure that rotates in the form of a spiral band having an annular cross-section when it proceeds from the inner surface opposite to the photomask 10 of the base protective film 112 in the direction toward the photomask 10, have. The number of turns and the pitch interval P of the spiral protrusion 122 may be appropriately applied.
이러한 나선돌기(122)는 나선구조에 의한 접촉면적을 향상시켜 방열 효율을 향상시킨다.The spiral protrusion 122 improves the heat dissipation efficiency by improving the contact area by the spiral structure.
코어층(120)을 이루는 나선돌기(122)는 광투과성을 갖으며 열방출 효율이 좋은 소재로 형성된다. 코어층(120)은 일 례로서, DLC(Diamond-like Carbon), SiC, TiO2 등의 소재로 형성될 수 있다. 또 다르게는 코어층(120)은 베이스 보호막(112)과 동일한 소재로 형성될 수 있음은 물론이다.The spiral protrusion 122 constituting the core layer 120 is formed of a material having light transmittance and good heat dissipation efficiency. As an example, the core layer 120 may be formed of a material such as diamond-like carbon (DLC), SiC, or TiO 2 . Alternatively, of course, the core layer 120 may be formed of the same material as the base protective layer 112 .
코어층(120)의 두께는 50nm 미만에서 적절하게 적용하는 것이 바람직하다.It is preferable that the thickness of the core layer 120 is appropriately applied at less than 50 nm.
코어층(120)의 나선돌기(122)는 증착 장비를 이용하여 글랜싱 앵글 증착법(Glancing Angle Deposition; GLAD)에 의해 베이스 보호막(112)에 대하여 수직으로 나선상태로 성장시켜 형성될 수 있다. 즉, 나선돌기(122)는 스퍼터(Sputter), 전자빔증착(E-Beam evaporation)과 같은 물리적 증기 증착(PVD: physical vapor deposition) 방식 등 공지된 다양한 증착 방식의 증착 장비를 적용하여 형성할 수 있고 상세한 제조과정은 후술한다.The spiral protrusion 122 of the core layer 120 may be formed by vertically helically growing with respect to the base passivation layer 112 by glancing angle deposition (GLAD) using deposition equipment. That is, the spiral protrusion 122 can be formed by applying deposition equipment of various known deposition methods, such as physical vapor deposition (PVD) methods such as sputter and E-Beam evaporation. The detailed manufacturing process will be described later.
한편, 박막 구조체(110)는 도 2에 도시된 바와 같이 코어층(120) 상부에 베이스 보호막(112)과 대향되게 판형으로 형성된 마감 보호막(114)이 더 마련된 구조로 형성될 수 있음은 물론이다.On the other hand, the thin film structure 110 may be formed in a structure in which a finishing protective film 114 formed in a plate shape to face the base protective film 112 is further provided on the core layer 120 as shown in FIG. 2 , of course. .
마감 보호막(114)의 가장자리는 도시된 예와 다르게 프레임(150)에 접합되게 형성될 수 있음은 물론이다.Of course, the edge of the finishing protective layer 114 may be formed to be bonded to the frame 150 differently from the illustrated example.
마감 보호막(114)은 베이스 보호막(112)과 마찬가지로 극자외선 광의 흡수에 대한 열방출 효율이 좋은 소재를 적용하며, 일 예로서, Si, SiO2, ZrSi2, SiC, B4C, ZrB2, ZrC, Ru2Si3, BN, ZrN, Si3N4, Y2O3, ZrO2, TiN, Ta-C 중 어느 하나의 소재로 형성될 수 있다.The finish protective film 114 applies a material having good heat dissipation efficiency for absorption of extreme ultraviolet light like the base protective film 112 , and as an example, Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , TiN, may be formed of any one material of Ta-C.
마감 보호막(114)은 5nm 미만의 두께를 갖도록 형성된 것을 적용한다. 일 예로서, 마감 보호막(112)은 0.3 내지 4.8nm의 두께로 형성된 것을 적용한다.The finishing protective film 114 is applied to have a thickness of less than 5 nm. As an example, the finish protective layer 112 is applied to have a thickness of 0.3 to 4.8 nm.
이러한 구조에서 베이스 보호막(112)으로부터 코어층(120)을 포함한 마감 보호막(114)까지의 두께는 1 내지 50nm가 되게 적용한다.In this structure, the thickness from the base protective film 112 to the finishing protective film 114 including the core layer 120 is applied to be 1 to 50 nm.
마감 보호막(114)은 코어층(120)의 나선돌기(122)로부터 탈리된 소재의 포토 마스크(10)로의 이동을 차단한다.The finishing protective layer 114 blocks the movement of the material detached from the spiral protrusion 122 of the core layer 120 to the photomask 10 .
프레임(150)은 박막 구조체(110)를 포토 마스크(10)로부터 이격되게 지지할 수 있도록 포토 마스크(10)로부터 연장되어 박막 구조체(110)의 가장자리와 접합되어 있다. 프레임(150)은 알루미늄 등 공지된 다양한 소재로 형성될 수 있다.The frame 150 extends from the photomask 10 to support the thin film structure 110 to be spaced apart from the photomask 10 and is bonded to the edge of the thin film structure 110 . The frame 150 may be formed of various known materials such as aluminum.
도시된 예에서 프레임(150)은 포토 마스크(10)와 베이스 보호막(112)의 가장자리 사이에 접합되어 있다.In the illustrated example, the frame 150 is bonded between the photomask 10 and the edge of the base passivation layer 112 .
이하에서는 이러한 펠리클(100) 박막 구조체(110)의 제조방법을 도 3을 함께 참조하여 설명한다.Hereinafter, a method of manufacturing the pellicle 100 thin film structure 110 will be described with reference to FIG. 3 .
먼저, 증착 장비에 의해 제1방향으로 이동하는 증착대상물질(B)에 대해 경사지게 베이스 보호막(112)이 장착된 지지 기판(180)을 배치한다. 여기서, 제1방향은 증착장비에서 생성되어 이동하는 코어층(120)의 나선돌기(122) 생성용 소스 소재에 해당하는 증착대상물질(B)의 진행방향을 말한다. First, the support substrate 180 on which the base passivation layer 112 is mounted is disposed to be inclined with respect to the deposition target material B moving in the first direction by the deposition equipment. Here, the first direction refers to a moving direction of the deposition target material B corresponding to the source material for generating the spiral protrusions 122 of the core layer 120 that is generated and moved by the deposition equipment.
다음으로, 베이스 보호막(112)에 수직한 방향을 따르는 지지기판(180)의 회전중심축(S)을 따라 지지기판(180)에 후방으로 연장되게 형성된 지지 기판(180)의 회전축(182)을 회전시키면서 증착장비(미도시)로 증착하는 과정을 통해 나선돌기(122)를 베이스 보호막(112)에 다수 형성한다. 여기서, 나선돌기(122)를 형성하는 증착장비로서 전자빔 증착기(electron beam evaporator)가 적용될 수 있다.Next, the rotation axis 182 of the support substrate 180 formed to extend rearwardly on the support substrate 180 along the rotation center axis S of the support substrate 180 in a direction perpendicular to the base passivation layer 112 is rotated. A plurality of spiral protrusions 122 are formed on the base protective film 112 through a process of depositing with a deposition equipment (not shown) while rotating. Here, an electron beam evaporator may be applied as deposition equipment for forming the spiral protrusion 122 .
또한, 나선돌기(122)의 증착과정에서 지지기판(180)의 회전중심축(182)과 증착대상물질(B)의 진행방향인 제1방향과의 사이각(θ)은 0°초과 90°미만으로 적용된다.In addition, in the deposition process of the spiral protrusion 122 , the angle θ between the rotational central axis 182 of the support substrate 180 and the first direction, which is the advancing direction of the deposition target material B, is greater than 0° and 90° less applicable.
또한, 베이스 보호막(112)은 형성하고자 하는 나선돌기(122)에 대응되는 원형의 시드(seed)를 쌓은 뒤에 앞서 설명된 바와 같이 증착대상물질(B)에 대해 경사지게 베이스 보호막(112)이 장착된 지지 기판(180)을 배치한 다음 증착과정을 거쳐 형성하는 방법을 적용할 수 있음은 물론이다.In addition, the base protective film 112 is formed by stacking a circular seed corresponding to the spiral protrusion 122 to be formed, and as described above, the base protective film 112 is mounted to be inclined with respect to the deposition target material (B). Of course, a method of forming the support substrate 180 through a deposition process after disposing it may be applied.
이러한 제조 과정을 통해 나선돌기(122)가 베이스 보호막(112)으로부터 증착 및 성장하여 형성될 때, 제1방향에 대한 지지기판(180)의 기울기인 사이각(θ), 지지기판(180)의 회전속도 및 나선돌기(122)를 형성하게 될 소스의 증기 유량 등의 조절에 의해 성장되는 복수의 나선돌기(122)의 피치간 간격(P), 밀도 등이 조절될 수 있다. When the spiral protrusion 122 is formed by depositing and growing from the base passivation layer 112 through this manufacturing process, the angle θ between the inclinations of the support substrate 180 with respect to the first direction, The spacing between pitches (P), density, etc. of the plurality of spiral protrusions 122 grown by adjusting the rotational speed and the flow rate of steam of the source that will form the spiral protrusions 122 may be adjusted.
이러한 나선돌기(122)는 노광공정시 베이스 보호막(112)을 통해 포토 마스크(10)로 입사되는 극자외선 중 베이스 보호막(112) 또는 마감 보호막(114)에 일부 흡수되어 변환된 열에너지를 효율적으로 방열하여 펠리클(100)의 열적 안정성을 향상시키는 기능을 한다.These spiral protrusions 122 are partially absorbed by the base protective film 112 or the finishing protective film 114 among the extreme ultraviolet rays incident to the photomask 10 through the base protective film 112 during the exposure process to efficiently radiate the converted thermal energy. To function to improve the thermal stability of the pellicle (100).
또한, 나선돌기(122)의 피치간 간격에 따라 나선 돌기(122) 사이의 공기층에 의한 코어층(120) 전체의 유효굴절율이 달라짐으로써, 광학적 특성을 목적하는 조건에 맞게 용이하게 조정할 수 있다.In addition, since the effective refractive index of the entire core layer 120 by the air layer between the spiral projections 122 varies according to the spacing between the pitches of the spiral projections 122 , the optical properties can be easily adjusted to a desired condition.
또한, 나선돌기(122)는 원형 편광자로도 이용할 수 있다.Also, the spiral protrusion 122 may be used as a circular polarizer.
한편, 나선돌기(122)는 증착과정을 통해 성장됨으로써 기계적 강도도 높은 장점을 제공한다. On the other hand, the spiral protrusion 122 is grown through a deposition process, thereby providing an advantage of high mechanical strength.
이상에서 설명된 극자외선 리소그래피용 펠리클 및 그 제조방법에 의하면, 열적 안전성을 향상시킬 수 있으면서 충분한 기계적 강도를 갖는 펠리클을 제공할 수 있는 장점을 제공한다.According to the above-described pellicle for extreme ultraviolet lithography and a method for manufacturing the same, it is possible to improve thermal stability and provide an advantage of providing a pellicle having sufficient mechanical strength.

Claims (7)

  1. 극자외선을 포함한 광을 이용한 노광공정에서 포토마스크를 보호하기 위한 펠리클에 있어서,In the pellicle for protecting the photomask in the exposure process using light including extreme ultraviolet,
    판형상으로 형성되며 광투과성 소재로 형성되는 베이스 보호막과;a base protective film formed in a plate shape and made of a light-transmitting material;
    상기 베이스 보호막에 상호 이격되어 나선형태로 돌출되게 연장된 복수 개의 나선돌기를 갖는 코어층;을 구비하는 것을 특징으로 하는 극자외선 리소그래피용 펠리클.A pellicle for extreme ultraviolet lithography, characterized in that it comprises a; a core layer having a plurality of spiral protrusions that are spaced apart from each other on the base protective film to protrude in a spiral form.
  2. 제1항에 있어서, 상기 베이스 보호막은 Si, SiO2, ZrSi2, SiC, B4C, ZrB2, ZrC, Ru2Si3, BN, ZrN, Si3N4, Y2O3, ZrO2, TiN, Ta-C 중 어느 하나의 소재로 형성된 것을 특징으로 하는 극자외선 리소그래피용 펠리클.According to claim 1, wherein the base protective layer is Si, SiO 2 , ZrSi 2 , SiC, B 4 C, ZrB 2 , ZrC, Ru 2 Si 3 , BN, ZrN, Si 3 N4, Y 2 O 3 , ZrO 2 , A pellicle for extreme ultraviolet lithography, characterized in that it is formed of any one of TiN and Ta-C.
  3. 제1항에 있어서, 상기 나선돌기는 TiO2 로 형성된 것을 특징으로 하는 극자외선 리소그래피용 펠리클.The method of claim 1, wherein the helix is TiO 2 Pellicle for extreme ultraviolet lithography, characterized in that formed with.
  4. 제1항에 있어서, 상기 코어층 상부에 상기 베이스 보호막과 대향되게 판형으로 형성된 마감 보호막;을 더 구비하는 것을 특징으로 하는 극자외선 리소그래피용 펠리클.The pellicle for extreme ultraviolet lithography according to claim 1, further comprising a finish protective film formed in a plate shape to face the base protective film on the core layer.
  5. 제4항에 있어서, 상기 베이스 보호막으로부터 상기 마감 보호막까지의 두께는 1 내지 50nm 인 것을 특징으로 하는 극자외선 리소그래피용 펠리클.[Claim 5] The pellicle for extreme ultraviolet lithography according to claim 4, wherein a thickness from the base passivation layer to the finish passivation layer is 1 to 50 nm.
  6. 판형상으로 형성되며 광투과성 소재로 형성되는 베이스 보호막과, 상기 베이스 보호막에 상호 이격되어 나선형태로 돌출되게 연장된 복수 개의 나선돌기를 갖는 코어층을 구비하는 극자외선 리소그래피용 펠리클의 제조방법에 있어서,In a method for manufacturing a pellicle for extreme ultraviolet lithography comprising a base protective film formed in a plate shape and made of a light-transmitting material, and a core layer having a plurality of helical protrusions that are spaced apart from each other and extend to protrude in a helical form in the base protective film ,
    가. 증착 장비에 의해 제1방향으로 이동하는 증착대상물질에 대해 경사지게 베이스 보호막이 장착된 지지기판을 배치하는 단계와;go. disposing a support substrate on which a base passivation film is mounted to be inclined with respect to a deposition target material moving in a first direction by means of deposition equipment;
    나. 상기 베이스 보호막에 수직한 방향을 따르는 회전중심축을 따라 상기 지지기판을 회전시키면서 상기 증착장비로 증착하여 상기 나선돌기를 다수 형성하는 단계;를 포함하는 것을 특징으로 하는 극자외선 리소그래피용 펠리클의 제조방법.me. and forming a plurality of spiral protrusions by depositing the support substrate with the deposition equipment while rotating the support substrate along a rotational center axis in a direction perpendicular to the base passivation layer.
  7. 제6항에 있어서, 상기 회전중심축과 상기 제1방향과의 사이각은 0°초과 90°미만으로 적용되는 것을 특징으로 하는 극자외선 리소그래피용 펠리클의 제조방법.The method of claim 6 , wherein an angle between the rotational central axis and the first direction is greater than 0° and less than 90°.
PCT/KR2021/001952 2021-02-15 2021-02-16 Pellicle for extreme ultraviolet lithography and method for manufacturing same WO2022173068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0020113 2021-02-15
KR1020210020113A KR102268171B1 (en) 2021-02-15 2021-02-15 pellicle for EUV lithograph and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022173068A1 true WO2022173068A1 (en) 2022-08-18

Family

ID=76600374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001952 WO2022173068A1 (en) 2021-02-15 2021-02-16 Pellicle for extreme ultraviolet lithography and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102268171B1 (en)
WO (1) WO2022173068A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070016570A (en) * 2005-08-04 2007-02-08 인하대학교 산학협력단 Manufacturing method for low refractive index thin film and antireflection coating method using it
KR20150007392A (en) * 2013-07-10 2015-01-21 한양대학교 산학협력단 Method of Manufacturing Thin Film
US20160048079A1 (en) * 2014-08-12 2016-02-18 Su-Young Lee Method, photolithography method, and method of manufacturing a semiconductor device using a pellicle film
KR20190115681A (en) * 2018-04-03 2019-10-14 주식회사 에스앤에스텍 Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for fabricating the same
KR102100029B1 (en) * 2018-03-28 2020-04-10 한양대학교 에리카산학협력단 Pellicle structure and Method of inspecting mask for lithography using the pellicle structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936264B1 (en) * 2008-01-17 2010-01-12 인하대학교 산학협력단 Broadband circular bragg-reflector and its fabrication method
KR20160127218A (en) * 2015-04-23 2016-11-03 한양대학교 에리카산학협력단 Pellicle comprising a heat emission layer, and method of fabricating the same
US11231646B2 (en) * 2017-06-15 2022-01-25 Asml Netherlands B.V. Pellicle and pellicle assembly
KR102115336B1 (en) * 2018-08-08 2020-06-05 국방과학연구소 Preparation method of wire grid polarizer using oblique angle deposition and wire grid polarizer prepared thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070016570A (en) * 2005-08-04 2007-02-08 인하대학교 산학협력단 Manufacturing method for low refractive index thin film and antireflection coating method using it
KR20150007392A (en) * 2013-07-10 2015-01-21 한양대학교 산학협력단 Method of Manufacturing Thin Film
US20160048079A1 (en) * 2014-08-12 2016-02-18 Su-Young Lee Method, photolithography method, and method of manufacturing a semiconductor device using a pellicle film
KR102100029B1 (en) * 2018-03-28 2020-04-10 한양대학교 에리카산학협력단 Pellicle structure and Method of inspecting mask for lithography using the pellicle structure
KR20190115681A (en) * 2018-04-03 2019-10-14 주식회사 에스앤에스텍 Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for fabricating the same

Also Published As

Publication number Publication date
KR102268171B1 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
TWI836072B (en) Extreme ultraviolet mask with embedded absorber layer
JP4935209B2 (en) Polarizing element and manufacturing method thereof
JP5800893B2 (en) Mo / Si multilayer plasma assisted deposition
CN1516827A (en) Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making
US20060292459A1 (en) EUV reflection mask and method for producing it
US20040231971A1 (en) Photo mask blank, photo mask, method and apparatus for manufacturing of a photo mask blank
TW202034062A (en) Extreme ultraviolet mask absorber materials
CN107850831A (en) Method for manufacturing diaphragm assembly
US5372916A (en) X-ray exposure method with an X-ray mask comprising phase shifter sidewalls
TW202215145A (en) Extreme ultraviolet mask absorber materials
TWI845648B (en) Bragg reflector, extreme ultraviolet (euv) mask blank comprising the same, and method of manufacturing the same
TW202141167A (en) Extreme ultraviolet mask absorber materials
NL2024075A (en) A pellicle for euv lithography
CN103018808B (en) Photon sieve and manufacturing method thereof
KR101679476B1 (en) An extreme ultraviolet lithography process and mask
TW202206269A (en) Pellicle for extreme ultraviolet lithography
WO2022173068A1 (en) Pellicle for extreme ultraviolet lithography and method for manufacturing same
JP7447074B2 (en) Reducing defects in extreme ultraviolet mask blanks
US6878950B2 (en) Method of reducing heat-induced distortion of photomasks during lithography
KR102483397B1 (en) Membrane assemblies and particle traps
TW202334733A (en) Pellicle for euv reflective masks and methods of manufacturing thereof
TWI836207B (en) Extreme ultraviolet mask absorber materials
US6869734B1 (en) EUV reflective mask having a carbon film and a method of making such a mask
JP7295260B2 (en) Extreme UV mask blank with multilayer absorber and manufacturing method
JPH09326347A (en) Fine pattern transcribing method and its device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925890

Country of ref document: EP

Kind code of ref document: A1