WO2022172792A1 - 症状判定装置及び症状判定プログラム - Google Patents

症状判定装置及び症状判定プログラム Download PDF

Info

Publication number
WO2022172792A1
WO2022172792A1 PCT/JP2022/003452 JP2022003452W WO2022172792A1 WO 2022172792 A1 WO2022172792 A1 WO 2022172792A1 JP 2022003452 W JP2022003452 W JP 2022003452W WO 2022172792 A1 WO2022172792 A1 WO 2022172792A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroencephalogram
symptom
subject
measurement
unit
Prior art date
Application number
PCT/JP2022/003452
Other languages
English (en)
French (fr)
Inventor
靖恵 満倉
泰士郎 岸本
雄基 田澤
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2022580560A priority Critical patent/JPWO2022172792A1/ja
Priority to EP22752621.7A priority patent/EP4292540A1/en
Priority to CA3207959A priority patent/CA3207959A1/en
Priority to CN202280014551.6A priority patent/CN116847789A/zh
Priority to US18/276,827 priority patent/US20240122523A1/en
Publication of WO2022172792A1 publication Critical patent/WO2022172792A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/70ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a symptom determination device and a symptom determination program.
  • judgments of symptoms related to mental disorders have been made mainly by judges such as doctors.
  • the assessor conducts a conversation with the subject, and assesses the symptoms of mental illness based on the subject's state and response during the conversation.
  • An example of technology for assisting such a judge is disclosed in Patent Document 1.
  • the server used by the evaluator and the terminal used by the subject are connected for communication, so that the evaluator takes the lead in determining the symptoms of the subject at a remote location. Supporting.
  • An object of the present invention is to objectively assess symptoms related to mental disorders without relying on the subjectivity of the assessor.
  • a symptom determination device includes: an electroencephalogram detection means for detecting one or more frequency components of an electroencephalogram in a specific brain region of a subject; Depressive symptom determination means for determining a depressive symptom in the subject based on the intensity of the frequency component of the electroencephalogram detected by the electroencephalogram detection means; characterized by comprising
  • FIG. 1 is a block diagram showing an example of the configuration of an electroencephalogram measurement device according to an embodiment of the present invention
  • FIG. It is a block diagram showing an example of composition of a symptom judging device concerning one embodiment of the present invention.
  • 4 is a flow chart showing the flow of measurement processing executed by the electroencephalogram determination device according to one embodiment of the present invention.
  • 4 is a flowchart showing the flow of reference data generation processing executed by the symptom determination device according to one embodiment of the present invention; It is a flow chart which shows a flow of symptom judging processing which a symptom judging device concerning one embodiment of the present invention performs.
  • FIG. 4 is a graph showing comparison results of electroencephalogram features between healthy subjects and depressed patients in an example of the present invention.
  • FIG. 4 is an enlarged graph showing results of comparison of electroencephalogram features between a healthy subject and a depressed patient according to an example of the present invention;
  • FIG. 4 is a graph showing the results of comparison of electroencephalogram features between healthy subjects and depressed patients in terms of relative values in an example of the present invention.
  • FIG. 1 is a block diagram showing the overall configuration of a symptom determination system S according to this embodiment.
  • the symptom determination system S includes an electroencephalogram measurement device 10 and a symptom determination device 20.
  • FIG. FIG. 1 also shows a user U who is a subject of processing performed by the symptom determination system S (that is, a subject whose symptom is to be determined).
  • the electroencephalogram measurement device 10 and the symptom determination device 20 are connected so as to be able to communicate with each other. Communication between these devices may be performed in accordance with any communication method, and the communication method is not particularly limited. Also, the communication connection may be a wired connection or a wireless connection. Furthermore, communication between devices may be performed directly or via a network including a relay device. In this case, the network is realized by, for example, a network such as a LAN (Local Area Network), the Internet, a mobile phone network, or a network combining these.
  • LAN Local Area Network
  • the symptom determination system S uses the user U as a test subject and objectively determines symptoms related to mental illness without relying on the subjectivity of the determiner.
  • the inventor of the present invention as a result of repeated test research on determination of symptoms related to mental illness, found that there is a correlation between symptoms of mental illness and electroencephalograms, based on electroencephalograms, such Based on the idea that it is possible to determine the symptoms of mental disorders, the present invention was completed.
  • the symptom determination system S determines symptoms related to depression, which is one of diseases associated with mental disorders.
  • Determination of depression-related symptoms includes determination of whether or not the user U is suffering from depression, and determination of the severity of the depression symptoms if the user U is suffering from depression.
  • depression is only an example of diseases accompanied by mental disorders, and the use of depression as an example does not mean that the scope of application of the present invention is limited to depression.
  • the electroencephalogram measurement apparatus 10 performs processing such as measuring changes in potential in the head of the user U (ie, electroencephalograms of a specific brain region of the user U) to obtain data corresponding to the electroencephalogram of the user U (hereinafter referred to as “measurement data”).
  • the electroencephalogram measurement device 10 includes a pair of electrodes for measuring the electroencephalogram of the user U, or a larger number of electrodes, and each of these electrodes electrically contacts a predetermined part of the user U. , configured as a headset-type electroencephalograph. Then, the electroencephalogram measurement device 10 generates measurement data by performing processing such as measuring the electroencephalogram of the user U with each of these electrodes.
  • the electroencephalogram measurement device 10 also transmits the generated measurement data to the symptom determination device 20 .
  • the symptom determination device 20 determines the depression-related symptoms of the user U based on the measurement data generated by the electroencephalogram measurement device 10 .
  • the symptom determination device 20 is realized by, for example, a personal computer or a server device. As a specific process, the symptom determination device 20 detects one or more frequency components of electroencephalograms in a specific brain region of the user U who is the subject. Moreover, the symptom determination device 20 determines the depressive symptom of the user U, who is the subject, based on the detected intensity of the frequency component of the electroencephalogram.
  • the electroencephalogram measurement device 10 measures electroencephalograms in specific brain regions of the user U, who is a subject.
  • the symptom determination device 20 determines the depressive symptoms of the subject based on the objective index of electroencephalograms in a specific brain region of the subject. Therefore, according to the symptom determination system S according to the present embodiment, it is possible to objectively determine symptoms related to mental disorders without relying on the subjectivity of the determiner.
  • the symptom determination system S since symptoms related to mental illness are objectively determined in this way, it is possible to solve the problems of general conventional techniques. For example, as described above, it is possible to solve the problem that, when the judge takes the lead in determining the symptoms, the subjectivity of the judge is inevitably reflected in the determination results.
  • the configurations of the electroencephalogram measurement device 10 and the symptom determination device 20 for realizing such processing will be described in more detail.
  • the user corresponding to the user U in FIG. 1 who is subject to the processing performed by the symptom determination system S will be referred to as a "subject" as appropriate.
  • a user who uses the symptom determination system S to determine the symptoms of a subject is appropriately referred to as a "determiner”.
  • FIG. 2 is a block diagram showing an example of the configuration of the electroencephalogram measurement device 10.
  • the electroencephalogram measurement apparatus 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a communication section 14, a storage section 15, An input unit 16 and a measurement unit 17 are provided. These units are connected by signal lines and send and receive signals to each other.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 11 executes various processes (for example, measurement process described later) according to programs recorded in the ROM 12 or programs loaded from the storage unit 15 to the RAM 13 .
  • the RAM 13 also stores data necessary for the CPU 11 to execute various processes.
  • the communication unit 14 performs communication control for the CPU 11 to communicate with another device (for example, the symptom determination device 20).
  • the storage unit 15 is composed of a semiconductor memory such as a DRAM (Dynamic Random Access Memory) and stores various data.
  • the input unit 16 is composed of various buttons and the like, and inputs various kinds of information according to user's instruction operation.
  • the measurement unit 17 measures changes in the potential of the subject's head (here, a person suspected of being a patient or a data provider to the symptom determination system S) as the subject's electroencephalogram.
  • the measurement unit 17 measures unipolar electroencephalograms by the reference electrode derivation method.
  • one end of a pair of electrodes provided in the measurement unit 17 is brought into contact with a position where the potential is close to 0 (for example, the subject's earlobe) to be used as a reference electrode.
  • the other end is brought into contact with a predetermined position on the subject's head (for example, a position corresponding to Fp1 of the subject's left prefrontal cortex defined by the International 10-20 method) as a probe electrode.
  • a predetermined position on the subject's head for example, a position corresponding to Fp1 of the subject's left prefrontal cortex defined by the International 10-20 method
  • the measuring unit 17 measures changes in the potential difference between the reference electrode and the probe electrode over time as electroencephalograms in a predetermined region of the subject's brain at a predetermined sampling frequency (eg, 512 [Hz]).
  • a predetermined sampling frequency eg, 512 [Hz]
  • the electroencephalogram measurement device 10 has a headset type shape, and the pair of electrodes provided in the measurement unit 17 are located at positions suitable for measurement (for example, when the subject wears the electroencephalogram measurement device 10 , the position that contacts the earlobe, and the position that contacts the site corresponding to Fp1).
  • the electroencephalogram measurement apparatus 10 is shaped like a headset, it is possible to perform measurement in a state in which the subject's tension is suppressed without giving such an oppressive feeling. Therefore, according to the electroencephalogram measurement apparatus 10, it is possible to suppress the generation of noise caused by the tension of the subject and perform accurate measurement.
  • the electroencephalogram measurement device 10 these units cooperate to perform "measurement processing".
  • the measurement process is a series of processes of measuring the electroencephalogram of the subject and subjecting the measured electroencephalogram to predetermined preprocessing and the like.
  • a measurement control section 111 When the measurement process is executed, as shown in FIG. 2, in the CPU 11, a measurement control section 111, a preprocessing section 112, and a measurement data transmission section 113 function. Data necessary for realizing processing is appropriately transmitted and received between these functional blocks at appropriate timings, including cases not specifically mentioned below.
  • the measurement control unit 111 allows the measurement unit 17 to measure the subject based on the instruction operation from the subject or the determiner received by the input unit 16 (or the instruction information received from the subject or the determiner received via the communication unit 14). Controls EEG measurements. For example, the measurement control unit 111 controls the timing of starting and ending the measurement by the measurement unit 17, and controls the sampling cycle and the like in the measurement, based on the instruction operation (or instruction information). Then, the measurement control unit 111 outputs the electroencephalogram of the subject obtained by the measurement by the measurement unit 17 to the preprocessing unit 112 .
  • electroencephalogram measurement may be performed in any scene, but in the present embodiment, as an example, the determiner may use the Hamilton Rating Scale for Depression (HAM-D) with the subject. It is assumed that an electroencephalogram is measured in a scene where a conversation corresponding to . However, it does not necessarily have to be such a conversation, and for example, it may be a general conversation such as so-called chat.
  • HAM-D Hamilton Rating Scale for Depression
  • the reason why the measurement is performed during conversation is that the depressed patient may fall asleep while resting, and in this case, the electroencephalogram during sleep will be measured. Therefore, in the present embodiment, by performing measurement during conversation in this way, it is possible to measure the electroencephalogram of a depressed patient in a state of being appropriately awake (that is, in a normal state).
  • noise removal is performed in real time at predetermined time intervals in preprocessing, which will be described later, so that measurement can be performed while removing noise that accompanies body movements and blinks that occur during conversation.
  • the length of time for measurement is also arbitrary, but for example, the length of time for measurement can be from ten minutes to several tens of minutes.
  • the preprocessing unit 112 generates measurement data by preprocessing the electroencephalogram input from the measurement control unit 111 . Specifically, the preprocessing unit 112 first uses a bandpass filter (not shown) to extract frequencies in a predetermined frequency band (for example, 1 to 30 [Hz]) from the electroencephalograms input from the measurement control unit 111. Extract only the components. Next, the preprocessing unit 112 sets a threshold based on the central absolute deviation for each predetermined time unit (for example, one second) for the extracted frequency component of the electroencephalogram. Then, the preprocessing unit 112 removes outliers exceeding the threshold as mixed noise. Thus, the preprocessing unit 112 generates measurement data by performing preprocessing such as extraction of frequency components in a predetermined frequency band and removal of mixed noise. Then, preprocessing section 112 outputs the generated measurement data to measurement data transmission section 113 .
  • a bandpass filter not shown
  • the measurement data transmission unit 113 transmits the electroencephalogram data input from the preprocessing unit 112 to the symptom determination device 20 .
  • the transmission may be performed in real time each time electroencephalogram data is generated by the measurement control unit 111, or the generated electroencephalogram data may be stored in the storage unit 15 and stored in the storage unit 15 after the end of measurement. It is also possible to collectively transmit the electroencephalogram data that are present.
  • FIG. 3 is a block diagram showing an example of the configuration of the symptom determination device 20.
  • the symptom determination device 20 includes a CPU 21, a ROM 22, a RAM 23, a communication section 24, a storage section 25, an input section 26, an output section 27, and a drive 28. . These units are connected by signal lines and send and receive signals to each other.
  • the CPU 21 executes various processes (for example, reference data generation process and symptom determination process, which will be described later) according to programs recorded in the ROM 22 or programs loaded from the storage unit 25 to the RAM 23 .
  • the RAM 23 also stores data necessary for the CPU 21 to execute various processes.
  • the communication unit 24 performs communication control for the CPU 21 to communicate with another device (for example, the electroencephalogram measurement device 10).
  • the storage unit 25 is composed of a semiconductor memory such as a DRAM (Dynamic Random Access Memory) and stores various data.
  • the input unit 26 is composed of external input devices such as various buttons and a touch panel, or a mouse and keyboard, and inputs various information according to user's instruction operations.
  • the output unit 27 includes a display, a speaker, and the like, and outputs images and sounds.
  • the drive 28 is loaded with a removable medium (not shown) such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. A program read from the removable medium by the drive 28 is installed in the storage unit 25 as required.
  • the symptom determination device 20 In the symptom determination device 20, these units cooperate to perform a "reference data generation process" and a "symptom determination process.”
  • the reference data generation process is a series of processes in which the symptom determination device 20 generates reference data, which is a criterion for determining symptoms, based on the measurement data generated by the electroencephalogram measurement device 10 .
  • the symptom determination process is a series of processes in which the symptom determination device 20 performs symptom determination based on the measurement data generated by the electroencephalogram measurement device 10 and the reference data. That is, in the present embodiment, the symptom determination device 20 first generates reference data, and uses the generated reference data to achieve objective depression symptom determination.
  • the determination result output unit 215 function.
  • a measurement data storage unit 251 and a reference data database 252 are provided. Data necessary for realizing processing is appropriately transmitted and received between these functional blocks at appropriate timings, including cases not specifically mentioned below.
  • the measurement data acquisition unit 211 acquires the measurement data transmitted from the electroencephalogram measurement device 10 by receiving it. Then, the measurement data acquisition unit 211 causes the measurement data storage unit 251 to store the acquired measurement data. That is, the measurement data storage unit 251 functions as a storage unit that stores measurement data.
  • the electroencephalogram feature detection unit 212 detects electroencephalogram feature data, which is data indicating the feature of the measurement data stored in the measurement data storage unit 251 (that is, the feature of the frequency component of the electroencephalogram of the subject). As a premise, there are individual differences in the amplitude of electroencephalograms. Therefore, it is not preferable to use it as it is for determining symptoms. Therefore, the electroencephalogram feature detection unit 212 first normalizes the measurement data in order to absorb this individual difference. For example, the electroencephalogram feature detection unit 212 normalizes the measured data using amplitude values that indicate a normal distribution. As a result, the average amplitude value is 0 and the variance is 1.
  • the electroencephalogram feature detection unit 212 performs Fourier transform (for example, Fast Fourier transform (FFT) using a Hamming window) on the measured data whose amplitude values are normalized, and averages the data. , a power spectrum indicating power values of a plurality of frequencies (for example, 1 to 30 [Hz]) is calculated as a plurality of frequency components in the measurement data. Then, the electroencephalogram feature detection unit 212 uses this power spectrum as electroencephalogram feature data. The electroencephalogram feature detection unit 212 detects electroencephalogram feature data in this manner and outputs the detected electroencephalogram feature data. In this case, the output destination is the reference data generation unit 213 during the reference data generation process, and the symptom determination unit 214 during the symptom determination process.
  • FFT Fast Fourier transform
  • the reference data generation unit 213 generates reference data, which is data that serves as a criterion for the symptom determination unit 214 to determine symptoms. Therefore, the reference data generation unit 213 acquires evaluation data of depression-related symptoms of the subject corresponding to the electroencephalogram feature data used to create the reference data.
  • This depression-related symptom evaluation data is not based on the determination by the symptom determination process, but is based on an ordinary method based on an interview by a doctor who is the determiner.
  • determination based on the above-described Hamilton Depression Rating Scale may be performed, or other methods may be used. For example, determination based on other scales such as Montgomery-Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory (BDI) may be performed.
  • MADRS Montgomery-Asberg Depression Rating Scale
  • BDI Beck Depression Inventory
  • the reference data generation unit 213 acquires evaluation data indicating that the person is healthy and suffering from depression, or evaluation data indicating the severity of the depression symptoms in the case of depression.
  • the severity of depressive symptoms may be defined in any number of stages, but can be defined in four stages, for example, mild, moderate, severe, and most severe.
  • the reference data generating unit 213 converts the evaluation data of symptoms related to depression into, for example, an input operation from the determiner received by the input unit 26 (or input information from the determiner received via the communication unit 14). ) to obtain.
  • the reference data generation unit 213 associates the acquired symptom evaluation data related to depression with the corresponding electroencephalogram feature data of the subject to build a reference data database.
  • construction includes not only creating a new database but also updating an existing database with new data.
  • the reference data generation unit 213 stores the constructed reference data database in the reference data database 252 . That is, the reference data database 252 functions as a storage unit that stores a reference data database.
  • the reference data generation unit 213 repeatedly associates the electroencephalogram characteristic data with the evaluation data for a plurality of subjects and stores them in the reference data database 252, thereby making the database stored in the reference data database 252 will be updated.
  • the database created and updated by this is a database showing the tendency of the subject's electroencephalogram feature data corresponding to each of the stages of depression-related symptoms (i.e., a healthy person or what stage of severity) becomes.
  • the symptom determination unit 214 determines symptoms related to depression based on each reference data in the database constructed in this way. Specifically, the symptom determination unit 214 constructs the electroencephalogram characteristic data (that is, the power spectrum indicating the intensity of the frequency component) of the subject to be determined this time, and the reference data generation unit 213, which is stored in the reference data database 252. Depression-related symptoms are determined based on the correlation (that is, the relationship between the power spectrum intensities) with each reference data (that is, the power spectrum that indicates the intensity of the frequency component) in the database that is stored.
  • the symptom determination unit 214 compares the electroencephalogram feature data of the subject to be determined this time with each reference data in the database, and identifies the closest reference data. Then, step-by-step symptoms related to depression (that is, a healthy person or what stage of severity) associated with the most approximate reference data as evaluation data are determined this time. This is the judgment result of the target subject.
  • the symptom determination unit 214 may make a determination by comparing whether or not they are the most similar, rather than whether or not they are different.
  • the reference data associated with the evaluation data of healthy subjects is compared with the electroencephalogram feature data of the subject to be determined this time. Then, if the difference is less than a predetermined standard, it is determined that the patient is not suffering from depression, and if the difference is less than the predetermined standard, it is determined that the patient is suffering from depression. good too.
  • reference data associated with evaluation data indicating that the subject is suffering from depression is compared with electroencephalogram feature data of a subject to be determined this time.
  • the severity of the depressive symptoms may be further determined by specifying the closest reference data. That is, the determination of whether or not the person is suffering from depression and the determination of the severity of the depressive symptoms in the case of being afflicted are treated as separate judgments, and the judgment is made in two stages. good too.
  • the reference data to be compared is all the reference data in the database.
  • it may also be representative reference data generated from all reference data in the database. For example, based on the representative values of all the reference data associated with the evaluation data of healthy subjects, representative reference data about healthy subjects is generated. In this case, the representative value is the average value, mode value, median value, or the like of each reference data.
  • representative reference data for each severity is generated based on a representative value of all reference data associated with evaluation data having the same severity. Then, each of the representative reference data for each symptom may be compared with the electroencephalogram characteristic data of the subject to be determined this time.
  • the correlation of each data can be determined by any method. For example, it can be determined by comparing the power spectrum (that is, frequency component) of each data using a technique such as existing pattern matching.
  • power spectra for all frequencies included in each data may be compared, or only power spectra for predetermined frequencies may be compared.
  • the power spectra for all frequencies are compared, the power spectra for a predetermined frequency may be weighted and given priority as a criterion for comparison.
  • the electroencephalogram feature detection unit 212 does not calculate a power spectrum indicating power values of a plurality of frequencies (for example, 1 to 30 [Hz]) as a plurality of frequency components, but rather As the frequency component, a power spectrum may be calculated that indicates the power value of any frequency (for example, any of 1 to 30 [Hz]). Then, the symptom determination unit 214 uses the power spectrum indicating the intensity of this one frequency component as the electroencephalogram characteristic data of the subject to be determined this time, and the power spectrum that is constructed in the reference data generation unit 213 and stored in the reference data database 252. Depression-related symptoms may be determined based on the correlation with each reference data in the existing database.
  • Symptom determination unit 214 by performing determination in such a manner, for the subject to be determined this time, step-by-step symptoms related to depression (that is, a healthy person, or what stage the severity is or). Symptom determination section 214 then outputs this determination result to determination result output section 215 .
  • the determination result output unit 215 outputs the determination result of symptom determination by the symptom determination unit 214 to the determiner and the subject.
  • This output includes, for example, display on a display included in the output unit 27, audio output from a speaker included in the output unit 27, printing on a paper medium from a printing device via the communication unit 24, 24 to another device (not shown) used by the evaluator or the subject.
  • the symptom determination device 20 can determine the depressive symptoms in the subject based on the objective index of brain waves in a specific brain region of the subject, and output the determination result to the determiner and the subject. .
  • FIG. 4 is a flowchart for explaining the flow of measurement processing executed by the electroencephalogram measurement device 10. As shown in FIG. The measurement process is executed in response to an instruction to start measurement from the subject or the judge.
  • step S11 the measurement control unit 111 controls the measurement of the subject's brain waves by the measurement unit 17, thereby starting the measurement of the brain waves by the measurement unit 17. Then, the measurement control unit 111 outputs the electroencephalogram of the subject obtained by the measurement by the measurement unit 17 to the preprocessing unit 112 .
  • step S12 the preprocessing unit 112 performs preprocessing on the electroencephalogram input from the measurement control unit 111 to generate measurement data. Then, preprocessing section 112 outputs the generated measurement data to measurement data transmission section 113 .
  • step S ⁇ b>13 the measurement data transmission unit 113 transmits the measurement data input from the preprocessing unit 112 to the symptom determination device 20 .
  • measurement data is generated by the measurement control unit 111 and transmitted in real time. As described above, the measurement data stored in the .
  • step S14 the measurement control unit 111 determines whether or not to end the electroencephalogram measurement by the measurement unit 17. For example, the measurement control unit 111 determines to end the electroencephalogram measurement when a predetermined time has passed since the start of the measurement or when the subject or the judging person has instructed to end the measurement. If the electroencephalogram measurement is to be ended, a determination of Yes is made in step S14, and this process ends. On the other hand, if the electroencephalogram measurement is not to be ended, it is determined as No in step S14, and the process is repeated from step S11.
  • the electroencephalogram measurement device 10 can measure electroencephalograms from the subject and transmit measurement data generated based on the measured electroencephalograms to the symptom determination device 20 .
  • FIG. 5 is a flowchart for explaining the flow of reference data generation processing executed by the symptom determination device 20.
  • the reference data generation process is executed in response to an instruction to start reference data generation from the assessor or the administrator of the symptom determination system S.
  • FIG. As a premise of the processing, it is assumed that the measurement data generated by the measurement processing is received by the measurement data acquisition unit 211 and stored in the measurement data storage unit 251 .
  • step S ⁇ b>21 the electroencephalogram feature detection unit 212 detects electroencephalogram feature data from the measurement data stored in the measurement data storage unit 251 .
  • step S22 the reference data generation unit 213 acquires evaluation data for judging depression-related symptoms for the subject corresponding to the electroencephalogram feature data used to create the reference data.
  • step S23 the reference data generation unit 213 associates the acquired evaluation data with the corresponding electroencephalogram feature data of the subject to build a reference data database.
  • construction includes not only creating a new database but also updating an existing database with new data.
  • step S24 the reference data generation unit 213 causes the reference data database 252 to store the constructed reference data database. This completes the processing.
  • the symptom determination device 20 can generate reference data, which is data that serves as a determination standard for the symptom determination unit 214 to determine symptoms.
  • FIG. 6 is a flowchart for explaining the flow of symptom determination processing executed by the symptom determination device 20.
  • the symptom determination process is executed in response to an instruction operation to start symptom determination from a determiner or the like.
  • the measurement data generated by the measurement processing is received by the measurement data acquisition unit 211 and stored in the measurement data storage unit 251 .
  • the reference data database constructed by the reference data generation process is stored in the reference data database 252 .
  • step S ⁇ b>31 the electroencephalogram feature detection unit 212 detects electroencephalogram feature data from the measurement data stored in the measurement data storage unit 251 .
  • step S32 the symptom determination unit 214 determines depression-related symptoms based on the electroencephalogram feature data of the subject in step S32 and each reference data in the database constructed by the reference data generation process described above.
  • step S33 the determination result output unit 215 outputs the determination result of the symptom determination unit 214 in step S32.
  • the symptom determination device 20 determines the depressive symptoms of the subject based on the objective index of electroencephalograms in a specific brain region of the subject. Therefore, according to the symptom determination system S according to the present embodiment, it is possible to objectively determine symptoms related to mental disorders without relying on the subjectivity of the determiner.
  • the symptom determination process since the symptoms related to mental illness are objectively determined in this way, it is possible to solve the problems of general conventional techniques. For example, as described above, it is possible to solve the problem that, when the judge takes the lead in determining the symptoms, the subjectivity of the judge is inevitably reflected in the determination results.
  • FIG. 7 is a graph showing the results of comparing the electroencephalogram features of healthy subjects and depressed patients in this example.
  • FIG. 8 is an enlarged graph showing the result of comparing the electroencephalogram features of healthy subjects and depressed patients in this example.
  • FIG. 9 is a graph showing the results of comparing the electroencephalogram features of healthy subjects and depressed patients in terms of relative values in this example.
  • FIG. 7(a) shows the normalized power spectrum obtained by averaging the electroencephalogram feature data of multiple healthy subjects.
  • FIG. 7(b) shows the normalized power spectrum obtained by averaging the electroencephalogram feature data of a plurality of depressed patients.
  • the frequency of healthy subjects was set to 1, and a two-sample t-test was performed as a significant difference test for each frequency (p ⁇ 0.05).
  • Asterisks that is, star marks
  • FIG. 7(b) indicate frequencies significantly different between healthy subjects and depressed patients in this significance test.
  • the significantly different high frequency region is enlarged and shown in FIG. 8(a). and FIG. 8(b).
  • the power spectrum belonging to the high frequency range is significantly different from the power spectrum belonging to the low frequency range.
  • the symptom determination unit 214 can accurately determine symptoms related to depression by the method described above.
  • FIG. 9 shows the relative values of the power spectrum of the depressed patient in FIG. 7(b) when the power spectrum of the healthy subject in FIG.
  • FIG. 10 is a diagram showing a value obtained by dividing the power spectrum by the power spectrum of a healthy person).
  • the closer the relative value is to 1 the closer to the normal person.
  • the power spectrum belonging to the high frequency range is significantly different than the power spectrum belonging to the low frequency range.
  • the symptom determination unit 214 may, for example, weight the power spectrum of the frequency belonging to the low frequency region as a criterion for comparison and give priority to it.
  • the values of the frequencies f1 and f2 which are the lower and upper limits of the range of the high frequency range, are set to 10 [Hz] and 30 [Hz], respectively. However, this is only a preferred example and is not intended to limit the values of frequencies f1 and f2.
  • the symptom determination unit 214 includes the electroencephalogram characteristic data of the subject to be determined this time (that is, the power spectrum indicating the intensity of the frequency component), the reference data generation unit 213, and the reference data database 252. Based on the correlation (that is, intensity relationship) with each reference data (that is, power spectrum that indicates the intensity of frequency components) in a stored database, depression-related symptoms are determined. You may make it determine by not only this but by another method. For example, as described above with reference to the drawings as examples, the power spectrum belonging to the high frequency range is significantly different than the power spectrum belonging to the low frequency range.
  • the depressed patient has a power spectrum belonging to the low-frequency region equal to or lower than that of the healthy person, whereas the power spectrum belonging to the high-frequency region is higher than that of the healthy person. From this, it can be said that the relative relationship between the power spectrum belonging to the low frequency region and the power spectrum belonging to the high frequency region differs between the depressed patient and the healthy subject. Based on this viewpoint, by comparing the relative relationship between the power spectrum belonging to the low frequency region and the power spectrum belonging to the high frequency region in the electroencephalogram feature data of a certain subject, it is possible to determine whether the patient is depressed or healthy. can determine whether the person is Therefore, according to this modified example, it is possible to determine whether the subject is a depressed patient or a healthy subject without performing comparison with reference data as in the above-described embodiment.
  • ⁇ Second modification> The above-described embodiment may be modified to take into account the effects of medications taken by depressed patients.
  • Depression patients generally take drugs such as benzodiazepines, antidepressants, and antianxiety drugs for the purpose of suppressing symptoms of depression.
  • each drug since each drug has a different action, each drug also has a different action on the subject's electroencephalogram feature data (that is, an effect appearing on the power spectrum). Therefore, by comparing the electroencephalogram feature data with or without medication among depressed patients of the same severity (or before and after administration of the same person), the effect of each drug on the electroencephalogram feature data (i.e., power It is necessary to statistically examine how the effects appearing on the spectrum differ.
  • the symptom determination unit 214 corrects the electroencephalogram characteristic data based on the statistical data that has been investigated when the subject to be determined this time is taking any drug. That is, the power spectrum is corrected so as to cancel out the influence that appears on the power spectrum due to the action of the drug. Then, based on the corrected power spectrum, depression-related symptoms are determined in the same manner as in the above-described embodiment. As a result, it becomes possible to determine depression-related symptoms with higher accuracy after canceling out the effects of the actions of each drug.
  • the unipolar electroencephalogram of Fp1 was measured, but the electroencephalogram of a plurality of poles may be measured.
  • Depression-related symptoms may be determined based on a plurality of electroencephalograms of each pole. In this case, for example, depression-related symptoms may be determined as described above for each electroencephalogram measured from each of a plurality of poles, and an average of the plurality of determination results may be used as the determination result for the user U.
  • the electroencephalogram measurement device 10 and the symptom determination device 20 are realized as separate devices, but the electroencephalogram measurement device 10 and the symptom determination device 20 are integrated into a device. may be implemented as
  • the symptom determination device 20 includes the electroencephalogram feature detection section 212 and the symptom determination section 214 .
  • the electroencephalogram feature detection unit 212 detects one or more frequency components of electroencephalograms in a specific brain region of the subject.
  • the symptom determination unit 214 determines the depressive symptom of the subject based on the intensity of the frequency component of the electroencephalogram detected by the electroencephalogram feature detection unit 212 . In this way, the symptom determination device 20 determines the depressive symptoms of the subject based on the objective index of electroencephalograms in a specific brain region of the subject. Therefore, according to the symptom determination device 20, it is possible to objectively determine symptoms related to mental disorders without relying on the subjectivity of the determiner.
  • the symptom determination unit 214 determines the depressive symptom of the subject based on the correlation between the electroencephalogram frequency component detected by the electroencephalogram feature detection unit 212 and the electroencephalogram frequency component serving as a reference for determining the depressive symptom. .
  • the symptom determination device 20 can more objectively determine symptoms related to mental illness based on predetermined criteria.
  • the electroencephalogram feature detection unit 212 detects a plurality of frequency components of electroencephalograms
  • the symptom determination unit 214 uses the relationship of the intensity of the frequency component of a predetermined frequency among the plurality of frequency components of the electroencephalogram detected by the electroencephalogram feature detection unit 212 as a determination criterion rather than the relationship of the intensity of the frequency component of other frequencies. Depressed state is determined with priority as. As a result, it is possible to determine a symptom of a mental disorder by prioritizing the relationship between the intensities of frequency components of a predetermined frequency, which is considered to be suitable as an index for determination of a depressive state, as a determination criterion.
  • the electroencephalogram feature detection unit 212 detects a plurality of frequency components of electroencephalograms
  • the symptom determination unit 214 compares the intensity of the frequency components belonging to the low-frequency region and the frequency components belonging to the high-frequency region among the plurality of frequency components of the electroencephalogram detected by the electroencephalogram feature detection unit 212. determine depressive symptoms in Thereby, the symptom determination device 20 can objectively determine the symptoms of mental disorders without using brain waves other than those of the subject.
  • the symptom determination unit 214 determines the severity of depressive symptoms in the subject. This makes it possible not only to determine whether or not the subject is suffering from depression, but also to determine the severity of the depressive symptoms if the subject is suffering from depression.
  • the symptom determination unit 214 corrects the criteria for determining depression symptoms in the subject based on the effect of the drug being taken when the subject is taking drugs. As a result, it is possible to make a determination with higher accuracy, taking into account the effect of the drug that the subject is taking.
  • a function for executing a series of processes according to the above-described embodiment can be realized by hardware, software, or a combination thereof. In other words, it is sufficient that the function of executing the series of processes described above is implemented in any one of the symptom determination systems S, and there is no particular limitation as to how this function is implemented.
  • the processor that executes this arithmetic processing is composed of various single processing units such as a single processor, a multiprocessor, and a multicore processor. In addition to these, it also includes a combination of these various processing devices and a processing circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the programs that make up the software are installed in the computer via a network or a recording medium.
  • the computer may be a computer that incorporates dedicated hardware, or a general-purpose computer that can execute a predetermined function by installing a program (for example, a general-purpose personal computer, etc.) general electronic equipment).
  • the steps of writing the program may include only processes that are performed in chronological order, but may also include processes that are performed in parallel or individually. Also, the steps of writing the program may be executed in any order without departing from the gist of the present invention.
  • a recording medium recording such a program may be provided to the user by being distributed separately from the computer main body, or may be provided to the user in a state pre-installed in the computer main body.
  • the storage medium distributed separately from the computer main body is composed of a magnetic disk (including a floppy disk), an optical disk, a magneto-optical disk, or the like.
  • the optical disc is composed of, for example, a CD-ROM (Compact Disc-Read Only Memory), a DVD (Digital Versatile Disc), or a Blu-ray (registered trademark) Disc (Blu-ray Disc).
  • the magneto-optical disc is composed of, for example, an MD (Mini Disc) or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Social Psychology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Educational Technology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】判定者の主観によらず、客観的に精神疾患に関する症状の判定を行う。 【解決手段】症状判定装置20が、脳波特徴検出部212と、症状判定部214と、を備える。脳波特徴検出部212は、被験者の特定の脳領域における脳波の一又は複数の周波数成分を検出する。症状判定部214は、脳波特徴検出部212によって検出された前記脳波の周波数成分の強度に基づいて、前記被験者におけるうつ症状を判定する。この場合に、例えば、症状判定部214は、脳波特徴検出部212によって検出された周波数成分と、うつ症状を判定するための基準となる脳波の周波数成分との相関性に基づいて、被験者におけるうつ症状を判定する。

Description

症状判定装置及び症状判定プログラム
 本発明は、症状判定装置及び症状判定プログラムに関する。
 従来、医師等の判定者が主体となって、うつ病等の精神疾患に関する症状の判定が行われている。例えば、判定者は、被験者との間で会話を行うと共に、会話時の被験者の状態や返答内容等に基づいて、精神疾患に関する症状の判定をする。
 このような判定者を支援するための技術の一例が、特許文献1に開示されている。特許文献1に開示に技術では、判定者の利用するサーバと、被験者の利用する端末とを通信接続することにより、判定者が主体となって遠隔地にいる被験者の症状の判定を行うことを支援している。
特開2016-066317号公報
 しかしながら、上述したように判定者が主体となって症状の判定を行う場合、どうしても判定者の主観が判定結果に反映されてしまう。そのため、例えば、判定者ごとに判定結果が相違してしまうといったことが起こり得る。
 本発明は、このような状況に鑑みてなされたものである。そして、本発明の課題は、判定者の主観によらず、客観的に精神疾患に関する症状の判定を行うことである。
 上記課題を解決するため、本発明の一実施形態に係る症状判定装置は、
 被験者の特定の脳領域における脳波の一又は複数の周波数成分を検出する脳波検出手段と、
 前記脳波検出手段によって検出された前記脳波の周波数成分の強度に基づいて、前記被験者におけるうつ症状を判定するうつ症状判定手段と、
 を備えることを特徴とする。
 本発明によれば、判定者の主観によらず、客観的に精神疾患に関する症状の判定を行うことができる。
本発明の一実施形態に係る症状判定システムの全体構成の一例を示すブロック図である。 本発明の一実施形態に係る脳波測定装置の構成の一例を示すブロック図である。 本発明の一実施形態に係る症状判定装置の構成の一例を示すブロック図である。 本発明の一実施形態に係る脳波判定装置が実行する測定処理の流れを示すフローチャートである。 本発明の一実施形態に係る症状判定装置が実行する基準データ生成処理の流れを示すフローチャートである。 本発明の一実施形態に係る症状判定装置が実行する症状判定処理の流れを示すフローチャートである。 本発明の一実施例における健常者とうつ病患者との脳波特徴の比較結果を示すグラフである。 本発明の一実施例における健常者とうつ病患者との脳波特徴の比較結果を拡大したグラフである。 本発明の一実施例における健常者とうつ病患者との脳波特徴の比較結果を相対値により示したグラフである。
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。
 [システム構成]
 図1は、本実施形態に係る症状判定システムSの全体構成を示すブロック図である。図1に示すように、症状判定システムSは、脳波測定装置10と、症状判定装置20とを含む。また、図1には、症状判定システムSが行う処理の対象者となるユーザU(すなわち、症状の判定の対象となる被験者)も図示する。
 脳波測定装置10と、症状判定装置20とは、相互に通信可能に接続される。この各装置の間での通信は、任意の通信方式に準拠して行われてよく、その通信方式は特に限定されない。また、通信接続は、有線接続であっても、無線接続であってもよい。更に、各装置の間での通信は、直接行われてもよいし、中継装置を含んだネットワークを介して行われてもよい。この場合、ネットワークは、例えば、LAN(Local Area Network)や、インターネットや、携帯電話網といったネットワーク、或いはこれらを組み合わせたネットワークにより実現される。
 症状判定システムSは、ユーザUを被験者として、判定者の主観によらず、客観的に精神疾患に関する症状の判定を行う。ここで、本発明の発明者は、精神疾患に関する症状の判定に関して試験研究を重ねた結果、精神疾患の症状と脳波との間に相関性があることを見出し、脳波に基づいて、このような精神疾患の症状について判定することが可能であると着想し、本発明を成すに至った。これに伴い、本実施形態では、説明のための一例として、症状判定システムSが、精神疾患を伴う疾病の1つである、うつ病に関する症状の判定をすることを想定する。ここで、うつ病に関する症状の判定には、ユーザUがうつ病に罹患しているか否かの判定と、罹患している場合におけるうつ症状の重症度の判定とを含む。
 ただし、うつ病は、精神疾患を伴う疾病の一例に過ぎず、うつ病を例とすることは、本発明の適用範囲をうつ病に限定する趣旨ではない。
 脳波測定装置10は、ユーザUの頭部での電位の変動(すなわち、ユーザUの特定の脳領域の脳波)を測定する等の処理により、ユーザUの脳波に対応するデータ(以下、「測定データ」と称する。)を生成する。脳波測定装置10は、ユーザUの脳波を測定するための一対の電極、又はより多数の複数の電極を備えると共に、これら電極のそれぞれが、電気的にユーザUの所定の部位に接触するような、ヘッドセット型の脳波計として構成される。そして、脳波測定装置10は、これら電極のそれぞれでユーザUの脳波を測定する等の処理を行うことにより、測定データを生成する。また、脳波測定装置10は、生成した測定データを、症状判定装置20に対して送信する。
 症状判定装置20は、脳波測定装置10が生成した測定データに基づいて、ユーザUのうつ病に関する症状を判定する。症状判定装置20は、例えば、パーソナルコンピュータやサーバ装置により実現される。
 具体的な処理として、症状判定装置20は、被験者であるユーザUの特定の脳領域における脳波の一又は複数の周波数成分を検出する。また、症状判定装置20は、検出された脳波の周波数成分の強度に基づいて、被験者であるユーザUにおけるうつ症状を判定する。
 このように、脳波測定装置10は、被験者であるユーザUの、特定の脳領域における脳波を測定する。また、症状判定装置20は、被験者の特定の脳領域における脳波という客観的な指標に基づいて、被験者におけるうつ症状を判定する。
 従って、本実施形態に係る症状判定システムSによれば、判定者の主観によらず、客観的に精神疾患に関する症状の判定を行うことができる。
 また、症状判定システムSによれば、このように客観的に精神疾患に関する症状の判定を行うことから、一般的な従来技術の課題を解決することができる。例えば、上述したように、判定者が主体となって症状の判定を行う場合、どうしても判定者の主観が判定結果に反映されてしまう、という課題等を解消することができる。
 次に、このような処理を実現するための、脳波測定装置10及び症状判定装置20の構成等について、より詳細に説明をする。なお、以下では説明を明確とするために、症状判定システムSが行う処理の対象者となるユーザ(図1におけるユーザUに相当)を、適宜「被験者」と称する。一方で、被験者に対する症状の判定を行うために、症状判定システムSを利用するユーザ(図示を省略する。)を、適宜「判定者」と称する。
 [脳波測定装置の構成]
 次に、脳波測定装置10の構成について、図2を参照して説明をする。図2は、脳波測定装置10の構成の一例を示すブロック図である。
 図2に示すように、脳波測定装置10は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、通信部14と、記憶部15と、入力部16と、測定部17と、を備えている。これら各部は、信号線により接続されており、相互に信号を送受する。
 CPU11は、ROM12に記録されているプログラム、又は、記憶部15からRAM13にロードされたプログラムに従って各種の処理(例えば、後述する測定処理)を実行する。
 RAM13には、CPU11が各種の処理を実行する上において必要なデータ等も適宜記憶される。
 通信部14は、CPU11が、他の装置(例えば、症状判定装置20)との間で通信を行うための通信制御を行う。
 記憶部15は、DRAM(Dynamic Random Access Memory)等の半導体メモリで構成され、各種データを記憶する。
 入力部16は、各種ボタン等で構成され、ユーザの指示操作に応じて各種情報を入力する。
 測定部17は、被験者(ここでは、患者と疑われる人物や、症状判定システムSへのデータ提供者)の頭部の電位の変動を、被験者の脳波として測定する。本実施形態では、測定方法の一例として、測定部17が、基準電極導出法によって、単極の脳波を測定することを想定する。この場合、測定部17の備える一対の電極の一端を、電位が0に近い位置(例えば、被験者の耳朶)に接触させて基準電極とする。また、他端を、被験者の頭部の所定の位置(例えば、被験者の、国際10-20法で定める左前前野のFp1に対応する位置)に接触させて探査電極とする。そして、測定部17は、基準電極と探査電極の電位差の変動を、被験者の脳の所定領域における脳波として、所定のサンプリング周波数(例えば、512[Hz])で経時的に測定する。
 ここで、上述したように脳波測定装置10はヘッドセット型の形状であり、測定部17が備える一対の電極は、被験者が脳波測定装置10を装着した場合に、それぞれ測定に適した位置(例えば、耳朶に接触する位置と、Fp1に対応する部位に接触する位置)に配置される。この点、被験者の頭部に電極ネットを覆いかぶせるような一般的な形状の脳波計を用いる場合、被験者に対して圧迫感を与えてしまい、脳波において緊張に起因するノイズが発生してしまう。これに対して、脳波測定装置10は、ヘッドセット型の形状であることから、このような圧迫感を与えることなく、被験者の緊張を抑制した状態で測定することができる。そのため、脳波測定装置10によれば、被験者の緊張に起因するノイズの発生を抑制して、精度よく測定をすることができる。
 脳波測定装置10では、これら各部が協働することにより、「測定処理」を行なう。
 ここで、測定処理は、被験者の脳波を測定すると共に、測定した脳波に対して所定の前処理等を行う一連の処理である。
 測定処理が実行される場合、図2に示すように、CPU11において、測定制御部111と、前処理部112と、測定データ送信部113と、が機能する。
 以下で特に言及しない場合も含め、これら機能ブロック間では、処理を実現するために必要なデータを、適切なタイミングで適宜送受信する。
 測定制御部111は、入力部16が受け付けた被験者や判定者からの指示操作(又は、通信部14を介して受信した被験者や判定者からの指示情報)に基づいて、測定部17による被験者の脳波の測定を制御する。例えば、測定制御部111は、指示操作(又は、指示情報)に基づいて、測定部17による測定の開始や終了のタイミングを制御したり、測定におけるサンプリング周期等を制御したりする。そして、測定制御部111は、測定部17による測定により得られた被験者の脳波を、前処理部112に対して出力する。
 ここで、脳波の測定は任意の場面で行われてよいが、本実施形態では、一例として、判定者が、被験者との間でハミルトンうつ病評価尺度(HAM-D:Hamilton Rating Scale for Depression)に対応する会話を行っている場面で脳波の測定を行うことを想定する。ただし、必ずしもこのような会話でなくともよく、例えば、いわゆる雑談のような一般的な会話であってもよい。
 このように会話時に測定を行う理由であるが、前提として、うつ病患者は、安静にしていると睡眠してしまうようなことがあり、この場合、睡眠時の脳波が測定されてしまう。そこで、本実施形態では、このように会話時に測定を行うことにより、うつ病患者が適度に覚醒している状態の(すなわち、通常時の状態の)脳波を測定することができる。また、本実施形態では、後述する前処理においてリアルタイムに所定時間単位でノイズ除去を実行することにより、会話中に発生する体の動きや瞬きに伴うノイズを除去しながら測定をすることができる。
 ただし、これは好適な一例に過ぎず、他の場面において脳波の測定を行うようにしてもよい。また、測定する時間の長さについても任意であるが、例えば、10分から数十分程度を測定する時間の長さとすることができる。
 前処理部112は、測定制御部111から入力された脳波に対して前処理を行うことによって、測定データを生成する。具体的には、前処理部112は、まず図示を省略したバンドパスフィルタを用いて、測定制御部111から入力された脳波から、所定の周波数帯(例えば、1~30[Hz])の周波数成分のみを抽出する。次に、前処理部112は、抽出された脳波の周波数成分に対して、所定時間単位(例えば、1秒)ごとに、中央絶対偏差に基づいた閾値を設定する。そして、前処理部112は、閾値を超えた外れ値を、混合ノイズとみなして除去する。前処理部112は、このように、所定の周波数帯の周波数成分の抽出と、混合ノイズの除去とを前処理として行うことにより測定データを生成する。そして、前処理部112は、生成した測定データを測定データ送信部113に対して出力する。
 測定データ送信部113は、前処理部112から入力された脳波データを、症状判定装置20に対して送信する。なお、送信は、測定制御部111による脳波データの生成の都度リアルタイムに行われてもよいし、生成された脳波データを記憶部15に記憶しておき、測定終了後に記憶部15に記憶されている脳波データをまとめて一度に送信するようにしてもよい。
 [症状判定装置の構成]
 次に、症状判定装置20の構成について、図3を参照して説明をする。図3は、症状判定装置20の構成の一例を示すブロック図である。図3に示すように、症状判定装置20は、CPU21と、ROM22と、RAM23と、通信部24と、記憶部25と、入力部26と、出力部27と、ドライブ28と、を備えている。これら各部は、信号線により接続されており、相互に信号を送受する。
 CPU21は、ROM22に記録されているプログラム、又は、記憶部25からRAM23にロードされたプログラムに従って各種の処理(例えば、後述する基準データ生成処理や、症状判定処理)を実行する。
 RAM23には、CPU21が各種の処理を実行する上において必要なデータ等も適宜記憶される。
 通信部24は、CPU21が、他の装置(例えば、脳波測定装置10)との間で通信を行うための通信制御を行う。
 記憶部25は、DRAM(Dynamic Random Access Memory)等の半導体メモリで構成され、各種データを記憶する。
 入力部26は、各種ボタン及びタッチパネル、又はマウス及びキーボード等の外部入力装置で構成され、ユーザの指示操作に応じて各種情報を入力する。
 出力部27は、ディスプレイやスピーカ等で構成され、画像や音声を出力する。
 ドライブ28には、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリ等よりなる、リムーバブルメディア(図示を省略する。)が適宜装着される。ドライブ28よってリムーバブルメディアから読み出されたプログラムは、必要に応じて記憶部25にインストールされる。
 症状判定装置20では、これら各部が協働することにより、「基準データ生成処理」、及び「症状判定処理」を行なう。
 ここで、基準データ生成処理は、症状判定装置20が脳波測定装置10により生成した測定データに基づいて、症状の判定を行うための判定基準である基準データを生成する一連の処理である。
 また、症状判定処理は、症状判定装置20が脳波測定装置10により生成した測定データと、基準データとに基づいて、症状判定を行う一連の処理である。
 すなわち、本実施形態において、症状判定装置20は、まず基準データを生成し、その生成した基準データを利用することにより、客観的なうつ病の症状の判定を実現する。
 これら基準データ生成処理や症状判定処理が実行される場合、図3に示すように、CPU21において、測定データ取得部211と、脳波特徴検出部212と、基準データ生成部213と、症状判定部214と、判定結果出力部215と、が機能する。
 また、記憶部25の一領域には、測定データ記憶部251と、基準データデータベース252と、が設けられる。
 以下で特に言及しない場合も含め、これら機能ブロック間では、処理を実現するために必要なデータを、適切なタイミングで適宜送受信する。
 測定データ取得部211は、脳波測定装置10から送信された測定データを、受信することにより取得する。そして、測定データ取得部211は、取得した測定データを測定データ記憶部251に記憶させる。すなわち、測定データ記憶部251は、測定データを記憶する記憶部として機能する。
 脳波特徴検出部212は、測定データ記憶部251に記憶されている測定データの特徴(すなわち、被験者の脳波の周波数成分の特徴)を示すデータである脳波特徴データを検出する。前提として、脳波の振幅の大きさには個人差がある。そのため、そのまま症状の判定に利用することは好ましくない。そこで、脳波特徴検出部212は、まずこの個人差を吸収するために、測定データの正規化を行う。例えば、脳波特徴検出部212は、測定データに対して、正規分布を示す振幅値で正規化を実行する。これにより、振幅値は平均で0、分散で1となる。
 次に脳波特徴検出部212は、振幅値が正規化された測定データに対して、フーリエ変換(例えば、ハミング窓を適用した高速フーリエ変換(FFT:Fast Fourier transformT))を実行して、平均化を行うことにより、測定データにおける複数の周波数成分として、複数の周波数(例えば、1~30[Hz])それぞれのパワーの値を示すパワースペクトルを算出する。そして、脳波特徴検出部212は、このパワースペクトルを脳波特徴データとする。
 脳波特徴検出部212は、このようにして脳波特徴データを検出し、検出した脳波特徴データを出力する。この場合の出力先は、基準データ生成処理時には基準データ生成部213であり、症状判定処理時には症状判定部214である。
 基準データ生成部213は、後述の症状判定部214が症状の判定を行うための判定基準となるデータである基準データを生成する。そのため、基準データ生成部213は、基準データを作成するために用いる脳波特徴データに対応する被験者についての、うつ病に関する症状の評価データを取得する。このうつ病に関する症状の評価データは、症状判定処理による判定に基づいたものではなく、判定者である医師の問診等に基づいた通常の手法によるものである。通常の手法としては、例えば、上述した、ハミルトンうつ病評価尺度に基づく判定を行うものであってもよいし、他の手法であってもよい。例えば、モンゴメリー-アスバーグうつ病評価尺度(MADRS:Montgomery-Asberg Depression Rating Scale)や、ベックうつ病インベントリ(BDI:Beck Depression Inventory)といった、他の尺度に基づく判定を行うものであってもよい。
 ここで上述したように、本実施形態では、うつ病に関する症状の判定として、ユーザUがうつ病に罹患しているか否かの判定と、罹患している場合におけるうつ症状の重症度の判定とを行う。そこで、基準データ生成部213は、うつ病に罹患している健常者であるという評価データ、或いは、罹患している場合におけるうつ症状の重症度がどの段階であるかという評価データを取得する。なお、うつ症状の重症度は、任意の段階数で定義してよいが、例えば、軽度、中等度、重度、及び最重度といった4つの段階で定義することができる。
 基準データ生成部213は、このようなうつ病に関する症状の評価データを、例えば、入力部26が受け付けた判定者からの入力操作(又は、通信部14を介して受信した判定者からの入力情報)に基づいて、取得する。また、基準データ生成部213は、取得したうつ病に関する症状の評価データと、対応する被験者の脳波特徴データとを対応付けて基準データのデータベースを構築する。ここで、構築とは、新たにデータベースを作成することのみならず、既存のデータベースを新たなデータで更新することも含む。
 そして、基準データ生成部213は、構築した基準データのデータベースを、基準データデータベース252に記憶させる。すなわち、基準データデータベース252は、基準データのデータベースを記憶する記憶部として機能する。
 このようにして、基準データ生成部213は、複数の被験者について、その脳波特徴データと、評価データとを対応付けて基準データデータベース252に記憶させることを繰り返して、基準データデータベース252が記憶するデータベースを更新していく。これにより作成及び更新されたデータベースは、うつ病に関する段階的な症状(すなわち、健常者である、或いは、重症度がどの段階であるか)それぞれに対応する被験者の脳波特徴データの傾向を示すデータベースとなる。
 症状判定部214は、このように構築されたデータベース内の各基準データに基づいて、うつ病に関する症状の判定を行う。具体的に、症状判定部214は、今回判定対象とする被験者の脳波特徴データ(すなわち、周波数成分の強度を示すパワースペクトル)と、基準データ生成部213に構築され、基準データデータベース252に記憶されているデータベース内の各基準データ(すなわち、周波数成分の強度を示すパワースペクトル)との相関性(すなわち、パワースペクトルの強度の関係)に基づいて、うつ病に関する症状の判定を行う。
 例えば、症状判定部214は、今回判定対象とする被験者の脳波特徴データと、データベース内の各基準データとを比較し、最も近似している基準データを特定する。そして、この最も近似している基準データに評価データとして対応付けられている、うつ病に関する段階的な症状(すなわち、健常者である、或いは、重症度がどの段階であるか)を、今回判定対象とする被験者の判定結果とする。
 他にも、例えば、症状判定部214は、最も近似しているのではなく、相違しているか否か比較を行い、判定をしてもよい。例えば、健常者という評価データが対応付けられている基準データと、今回判定対象とする被験者の脳波特徴データとを比較する。そして、所定の基準よりも相違していない場合に、うつ病に罹患していないと判定し、所定の基準よりも相違している場合に、うつ病に罹患していると判定するようにしてもよい。また、同様の考えで、例えば、うつ病に罹患しているという評価データが対応付けられている基準データと、今回判定対象とする被験者の脳波特徴データとを比較する。そして、所定の基準よりも相違していない場合に、うつ病に罹患していると判定し、所定の基準よりも相違している場合に、うつ病に罹患していないと判定するようにしてもよい。
 更に、うつ病に罹患していると判定された後に、上述したように、最も近似している基準データを特定することにより、更に、うつ症状の重症度を判定するようにしてもよい。すなわち、うつ病に罹患しているか否かの判定と、罹患している場合におけるうつ症状の重症度の判定とを、それぞれ別の判定として扱って、二段階に分けて判定を行うようにしてもよい。
 また、最も近似しているのか比較する場合や、相違しているか否か比較する場合の何れの場合であっても、比較の対象とする基準データは、データベース内の全ての基準データそれぞれであってもよいが、データベース内の全ての基準データから生成した代表的な基準データであってもよい。例えば、健常者という評価データが対応付けられている基準データ全ての代表値に基づいて、健常者についての代表的な基準データを生成する。この場合、代表値は、各基準データの平均値や最頻値や中央値等である。同様にして、各重症度それぞれについて、重症度が同一の評価データが対応付けられている基準データ全ての代表値に基づいて、各重症度それぞれについての代表的な基準データを生成する。そして、これら各症状についての代表的な基準データそれぞれを、今回判定対象とする被験者の脳波特徴データと比較するようにしてもよい。
 また、各データの相関性(すなわち、最も近似しているか否か、或いは、相違しているか否か)については、任意の手法により判定することができる。例えば、既存のパターンマッチング等の手法を用いて各データのパワースペクトル(すなわち、周波数成分)を比較することにより判定することができる。この場合に、各データに含まれる全ての周波数についてのパワースペクトルを比較してもよいが、所定の周波数のパワースペクトルのみを比較してもよい。例えば、うつ病に罹患しているか否かによって特に差異がでるような、所定の周波数のパワースペクトルのみを比較してもよい。或いは、全ての周波数についてのパワースペクトルを比較するが、所定の周波数のパワースペクトルについては、重み付けをかけることにより判定基準として優先して、比較をするようにしてもよい。
 他にも、例えば、脳波特徴検出部212は、複数の周波数成分として、複数の周波数(例えば、1~30[Hz])それぞれのパワーの値を示すパワースペクトルを算出するのではなく、1つの周波数成分として、何れかの周波数(例えば、1~30[Hz]の何れか)のパワーの値を示すパワースペクトルを算出するようにしてもよい。
 そして、症状判定部214は、今回判定対象とする被験者の脳波特徴データとして、この1つの周波数成分の強度を示すパワースペクトルと、基準データ生成部213に構築され、基準データデータベース252に記憶されているデータベース内の各基準データとの相関性に基づいて、うつ病に関する症状の判定を行うようにしてもよい。
 症状判定部214は、このような方法で判定を行うことにより、今回判定対象とする被験者についての、うつ病に関する段階的な症状(すなわち、健常者である、或いは、重症度がどの段階であるか)を判定する。そして、症状判定部214は、この判定結果を判定結果出力部215に対して出力する。
 判定結果出力部215は、症状判定部214による症状の判定の判定結果を、判定者や被験者に対して出力する。この出力は、例えば、出力部27に含まれるディスプレイへの表示や、出力部27に含まれるスピーカからの音声出力や、通信部24を介した印刷装置からの紙媒体への印刷や、通信部24を介した判定者や被験者が利用する他の装置(図示を省略する。)への送信であってよい。
 これにより、症状判定装置20は、被験者の特定の脳領域における脳波という客観的な指標に基づいて、被験者におけるうつ症状を判定し、その判定結果を判定者や被験者に対して出力することができる。
 [測定処理]
 次に、図4を参照して、脳波測定装置10が実行する測定処理の流れについて説明する。図4は、脳波測定装置10が実行する測定処理の流れを説明するフローチャートである。測定処理は、被験者や判定者からの、測定開始の指示操作に伴い実行される。
 ステップS11において、測定制御部111は、測定部17による被験者の脳波の測定を制御することにより、測定部17による脳波の測定を開始する。そして、測定制御部111は、測定部17による測定により得られた被験者の脳波を前処理部112に対して出力する。
 ステップS12において、前処理部112は、測定制御部111から入力された脳波に対して前処理を行うことによって、測定データを生成する。そして、前処理部112は、生成した測定データを測定データ送信部113に対して出力する。
 ステップS13において、測定データ送信部113は、前処理部112から入力された測定データを、症状判定装置20に対して送信する。なお、図中では、測定制御部111による測定データを生成と共にリアルタイムに送信を行うことを想定しているが、生成された測定データを記憶部15に記憶しておき、測定終了後に記憶部15に記憶されている測定データをまとめて一度に送信するようにしてもよい点については上述した通りである。
 ステップS14において、測定制御部111は、測定部17による脳波の測定を終了するか否かを判定する。例えば、測定制御部111は、測定の開始から所定時間が経過した場合や、被験者や判定者からの測定終了指示操作があった場合に、脳波の測定を終了すると判定する。脳波の測定を終了する場合は、ステップS14においてYesと判定され、本処理は終了する。一方で、脳波の測定を終了しない場合は、ステップS14においてNoと判定され、処理はステップS11から再度繰り返される。
 以上説明した測定処理により、脳波測定装置10は、被験者から脳波を測定し、測定した脳波に基づいて生成した測定データを、症状判定装置20に対して送信することができる。
 [基準データ生成処理]
 次に、図5参照して、症状判定装置20が実行する基準データ生成処理の流れについて説明する。図5は、症状判定装置20が実行する基準データ生成処理の流れを説明するフローチャートである。基準データ生成処理は、判定者や症状判定システムSの管理者からの、基準データ生成開始の指示操作に伴い実行される。なお、処理の前提として、測定処理により生成された測定データは、測定データ取得部211により受信され、測定データ記憶部251に記憶されているものとする。
 ステップS21において、脳波特徴検出部212は、測定データ記憶部251に記憶されている測定データから脳波特徴データを検出する。
 ステップS22において、基準データ生成部213は、基準データを作成するために用いる脳波特徴データに対応する被験者についての、うつ病に関する症状の判定の評価データを取得する。
 ステップS23において、基準データ生成部213は、取得した評価データと、対応する被験者の脳波特徴データとを対応付けて基準データのデータベースを構築する。なお、上述したように、構築とは、新たにデータベースを作成することのみならず、既存のデータベースを新たなデータで更新することも含む。
 ステップS24において、基準データ生成部213は、構築した基準データのデータベースを、基準データデータベース252に記憶させる。これにより、本処理は終了する。
 以上説明した基準データ生成処理により、症状判定装置20は、症状判定部214が症状の判定を行うための判定基準となるデータである基準データを生成することができる。
 [症状判定処理]
 次に、図6を参照して、症状判定装置20が実行する症状判定処理の流れについて説明する。図6は、症状判定装置20が実行する症状判定処理の流れを説明するフローチャートである。症状判定処理は、判定者等からの、症状判定開始の指示操作に伴い実行される。なお、処理の前提として、測定処理により生成された測定データは、測定データ取得部211により受信され、測定データ記憶部251に記憶されているものとする。また、基準データ生成処理により構築された基準データのデータベースは、基準データデータベース252に記憶されているものとする。
 ステップS31において、脳波特徴検出部212は、測定データ記憶部251に記憶されている測定データから脳波特徴データを検出する。
 ステップS32において、症状判定部214は、ステップS32における被験者の脳波特徴データと、上述の基準データ生成処理により構築されたデータベース内の各基準データとに基づいて、うつ病に関する症状の判定を行う。
 ステップS33において、判定結果出力部215は、ステップS32における症状判定部214の判定結果を出力する。
 以上説明した症状判定処理により、症状判定装置20は、被験者の特定の脳領域における脳波という客観的な指標に基づいて、被験者におけるうつ症状を判定する。
 従って、本実施形態に係る症状判定システムSによれば、判定者の主観によらず、客観的に精神疾患に関する症状の判定を行うことができる。
 また、症状判定処理によれば、このように客観的に精神疾患に関する症状の判定を行うことから、一般的な従来技術の課題を解決することができる。例えば、上述したように、判定者が主体となって症状の判定を行う場合、どうしても判定者の主観が判定結果に反映されてしまう、という課題等を解消することができる。
 [実施例]
 以上、本発明の実施形態について説明した。次に、図7、図8、及び図9を参照して、本発明の実施形態における、一実施例について説明をする。ここで、図7は、本実施例における健常者とうつ病患者との脳波特徴の比較結果を示すグラフである。また、図8は、本実施例における健常者とうつ病患者との脳波特徴の比較結果を拡大したグラフである。更に、図9は、本実施例における健常者とうつ病患者との脳波特徴の比較結果を相対値により示したグラフである。
 まず、図7(a)に複数の健常者の脳波特徴データを平均し、正規化したパワースペクトルを示す。同様に、図7(b)にうつ病に罹患している、複数のうつ病患者の脳波特徴データを平均し、正規化したパワースペクトルを示す。
 本実施例では、健常者の頻度を1として、各頻度に対して有意差検定として2標本t検定を行った(p<0.05)。そして、図7(b)におけるアスタリスク(すなわち、星マーク)は、この有意差検定での健常者と、うつ病患者とで有意に異なる頻度を示す。なお、特に有意に異なる、高周波数領域について(図中における、周波数f1~f2(ここでは、一例として10~30[Hz])に対応する周波数領域)について、拡大して、図8(a)及び図8(b)として示す。このように低周波領域に属するパワースペクトルよりも、高周波領域に属するパワースペクトルの方が、特に有意に異なる。
 なお、このような異なりが、健常者とうつ病患者との違いを意味することを証明するために、健常者間の比較も、2標本t検定を使用して行ったが、この場合には有意差はなかったため(p<0.05)、より高い臨界p値で有意差を検索したが、結果は同じであった。
 従って、図7(b)に示される、この実施例の結果から、健常者の脳波特徴データ(すなわち、周波数成分の強度を示すパワースペクトル)と、うつ病患者の脳波特徴データ(すなわち、周波数成分の強度を示すパワースペクトル)とが有意に異なることは明らかである。このため、症状判定部214は、上述したような方法により、精度高く、うつ病に関する症状の判定をすることができる。
 また、図9は、図7(a)における健常者のパワースペクトルを1とした場合の、図7(b)におけるうつ病患者のパワースペクトルの相対値(すなわち、周波数それぞれにおいて、うつ病患者のパワースペクトルを健常者のパワースペクトルで除算した値)を示す図である。図9では、相対値が1に近いほど、健常者に近似していることとなる。この図からも、低周波領域に属するパワースペクトルよりも、高周波領域に属するパワースペクトルの方が、特に有意に異なることが分かる。この点を考慮して、症状判定部214は、例えば、低周波領域に属する周波数のパワースペクトルについては、重み付けをかけることにより判定基準として優先して、比較をするようにしてもよい。
 なお、図7、図8、及び図9を参照した上述の説明において、高周波数領域の範囲の下限と上限である周波数f1とf2の値を、それぞれ10[Hz]と30[Hz]としたが、これは好適な一例に過ぎず、周波数f1とf2の値を限定する趣旨ではない。
 [変形例]
 以上、本発明の実施形態について説明したが、この実施形態は例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明は、本発明の要旨を逸脱しない範囲で、その他の様々な実施形態を取ることが可能である共に、省略及び置換等種々の変形を行うことができる。この場合に、これら実施形態及びその変形は、本明細書等に記載された発明の範囲及び要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 一例として、以上説明した本発明の実施形態を、以下の変形例のようにして変形してもよい。
 <第1の変形例>
 上述した実施形態において、症状判定部214は、今回判定対象とする被験者の脳波特徴データ(すなわち、周波数成分の強度を示すパワースペクトル)と、基準データ生成部213に構築され、基準データデータベース252に記憶されているデータベース内の各基準データ(すなわち、周波数成分の強度を示すパワースペクトル)との相関性(すなわち、強度の関係)に基づいて、うつ病に関する症状の判定を行っていた。これに限らず、他の方法で判定を行うようにしてもよい。例えば、実施例として図を参照して上述したように、低周波領域に属するパワースペクトルよりも、高周波領域に属するパワースペクトルの方が、特に有意に異なる。
 すなわち、うつ病患者は、低周波領域に属するパワースペクトルが健常者と同等又は低いのに対して、高周波領域に属するパワースペクトルでは健常者よりも高い。このことから、うつ病患者と、健常者とでは、自身の低周波領域に属するパワースペクトルと、自身の高周波領域に属するパワースペクトルの相対的な関係が異なるといえる。
 この観点に基づいて、ある1人の被験者の脳波特徴データにおいて、低周波領域に属するパワースペクトルと、高周波領域に属するパワースペクトルの相対的な関係を比較することにより、うつ病患者であるか健常者であるかを判定することができる。従って、本変形例によれば、上述した実施形態のような基準データとの比較を行うことなく、うつ病患者であるか健常者であるかを判定することができる。
 <第2の変形例>
 上述した実施形態を変形して、うつ病患者が服用している薬剤の作用について考慮するようにしてもよい。一般的に、うつ病患者は、うつ病の症状を抑制する等の目的で、ベンゾジアゼピン、抗うつ薬、及び抗不安薬等の薬剤を服用している。
 この点、これら薬剤ごとに作用が異なることから、薬剤ごとに被験者の脳波特徴データに対して与える作用(すなわち、パワースペクトルに対して現れる影響)も異なる。そこで、同じ重症度のうつ病患者間の服用の有無(或いは、同じ人物の服用の前後)で、脳波特徴データを比較することにより、各薬剤が脳波特徴データに対して与える作用(すなわち、パワースペクトルに対して現れる影響)がどのように異なるかを統計的に調べておく。
 そして、症状判定部214は、今回判定対象とする被験者が何れかの薬剤を服用している場合に、調べておいた統計的なデータに基づいて、脳波特徴データを補正する。すなわち、薬剤の作用によって、パワースペクトルに対して現れる影響を打ち消すようにパワースペクトルを補正する。そして、補正後のパワースペクトルに基づいて、上述した実施形態のようにして、うつ病に関する症状の判定を行う。これにより、各薬剤の作用の影響を打ち消した上で、より精度高く、うつ病に関する症状の判定を行うことが可能となる。
 <他の変形例>
 上述した実施形態では、Fp1の単極の脳波を測定していたが、複数の極の脳波を測定するようにしてもよい。そして、複数の各極の脳波に基づいて、うつ病に関する症状の判定を行うようにしてもよい。この場合、例えば、複数の各極それぞれから測定された脳波それぞれについて上述のようにうつ病に関する症状の判定を行い、その複数の判定結果を平均したものを、そのユーザUに対する判定結果としてもよい。
 また、他にも、上述した実施形態では、脳波測定装置10と、症状判定装置20とが別体の装置として実現されていたが、脳波測定装置10と、症状判定装置20とが一体の装置として実現されてもよい。
 [構成例]
 以上のように、本実施形態に係る症状判定装置20は、脳波特徴検出部212と、症状判定部214と、を備える。
 脳波特徴検出部212は、被験者の特定の脳領域における脳波の一又は複数の周波数成分を検出する。
 症状判定部214は、脳波特徴検出部212によって検出された脳波の周波数成分の強度に基づいて、被験者におけるうつ症状を判定する。
 このように、症状判定装置20は、被験者の特定の脳領域における脳波という客観的な指標に基づいて、被験者におけるうつ症状を判定する。
 従って、症状判定装置20によれば、判定者の主観によらず、客観的に精神疾患に関する症状の判定を行うことができる。
 症状判定部214は、脳波特徴検出部212によって検出された脳波の周波数成分と、うつ症状を判定するための基準となる脳波の周波数成分との相関性に基づいて、被験者におけるうつ症状を判定する。
 これにより、症状判定装置20は、所定の基準に基づいて、より客観的に精神疾患に関する症状の判定を行うことができる。
 脳波特徴検出部212は、脳波の周波数成分を複数検出し、
 症状判定部214は、脳波特徴検出部212によって検出された脳波の複数の周波数成分のうち、所定の周波数の周波数成分の強度の関係を、他の周波数の周波数成分の強度の関係よりも判定基準として優先して、うつ状態の判定を行う。
 これにより、うつ状態の判定の指標として好適と考えられる所定の周波数の周波数成分の強度の関係を、判定基準として優先して精神疾患に関する症状の判定を行うことができる。
 脳波特徴検出部212は、脳波の周波数成分を複数検出し、
 症状判定部214は、脳波特徴検出部212によって検出された脳波の複数の周波数成分のうち、低周波領域に属する周波数成分と、高周波領域に属する周波数成分との強度の比較結果に基づいて、被験者におけるうつ症状を判定する。
 これにより、症状判定装置20は、被験者以外の脳波を用いることなく、客観的に精神疾患に関する症状の判定を行うことができる。
 症状判定部214は、被験者におけるうつ症状の重症度を判定する。
 これにより、うつ病に罹患しているか否かの判定のみならず、罹患している場合におけるうつ症状の重症度の判定を行うことができる。
 症状判定部214は、被験者が薬剤を服用している場合に、被験者におけるうつ症状を判定するための判定基準を、服用している薬剤の作用に基づいて補正する。
 これにより、被験者が服用している薬剤の作用も考慮した上で、より精度高く判定を行うことができる。
 [ハードウェアやソフトウェアによる機能の実現]
 上述した実施形態による一連の処理を実行させる機能は、ハードウェアにより実現することもできるし、ソフトウェアにより実現することもできるし、これらの組み合わせにより実現することもできる。換言すると、上述した一連の処理を実行する機能が、症状判定システムSの何れかにおいて実現されていれば足り、この機能をどのような態様で実現するのかについては、特に限定されない。
 例えば、上述した一連の処理を実行する機能を、演算処理を実行するプロセッサによって実現する場合、この演算処理を実行するプロセッサは、シングルプロセッサ、マルチプロセッサ及びマルチコアプロセッサ等の各種処理装置単体によって構成されるものの他、これら各種処理装置と、ASIC(Application Specific Integrated Circuit)又はFPGA(Field-Programmable Gate Array)等の処理回路とが組み合わせられたものを含む。
 また、例えば、上述した一連の処理を実行する機能を、ソフトウェアにより実現する場合、そのソフトウェアを構成するプログラムは、ネットワーク又は記録媒体を介してコンピュータにインストールされる。この場合、コンピュータは、専用のハードウェアが組み込まれているコンピュータであってもよいし、プログラムをインストールすることで所定の機能を実行することが可能な汎用のコンピュータ(例えば、汎用のパーソナルコンピュータ等の電子機器一般)であってもよい。また、プログラムを記述するステップは、その順序に沿って時系列的に行われる処理のみを含んでいてもよいが、並列的或いは個別に実行される処理を含んでいてもよい。また、プログラムを記述するステップは、本発明の要旨を逸脱しない範囲内において、任意の順番に実行されてよい。
 このようなプログラムを記録した記録媒体は、コンピュータ本体とは別に配布されることによりユーザに提供されてもよく、コンピュータ本体に予め組み込まれた状態でユーザに提供されてもよい。この場合、コンピュータ本体とは別に配布される記憶媒体は、磁気ディスク(フロッピディスクを含む)、光ディスク、又は光磁気ディスク等により構成される。光ディスクは、例えば、CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)、或いはBlu-ray(登録商標) Disc(ブルーレイディスク)等により構成される。光磁気ディスクは、例えば、MD(Mini Disc)等により構成される。これら記憶媒体は、例えば、図3のドライブ28に装着されて、コンピュータ本体に組み込まれる。また、コンピュータ本体に予め組み込まれた状態でユーザに提供される記録媒体は、例えば、プログラムが記録されている図2のROM12、図3のROM22、図2の記憶部15、或いは図3の記憶部25に含まれるハードディスク等により構成される。
10 脳波測定装置、20 症状判定装置、11,21 CPU、12,22 ROM、13,23 RAM、14,24 通信部、15,25 記憶部、16,26 入力部、17 測定部、27 出力部、28 ドライブ、111 測定制御部、112 前処理部、113 測定データ送信部、211 測定データ取得部、212 脳波特徴検出部、213 基準データ生成部、214 症状判定部、215 判定結果出力部、251 測定データ記憶部、252 基準データデータベース、S 症状判定システム、U ユーザ

Claims (7)

  1.  被験者の特定の脳領域における脳波の一又は複数の周波数成分を検出する脳波検出手段と、
     前記脳波検出手段によって検出された前記脳波の周波数成分の強度に基づいて、前記被験者におけるうつ症状を判定するうつ症状判定手段と、
     を備えることを特徴とする症状判定装置。
  2.  前記うつ症状判定手段は、前記脳波検出手段によって検出された前記脳波の周波数成分と、うつ症状を判定するための基準となる脳波の周波数成分との相関性に基づいて、前記被験者におけるうつ症状を判定することを特徴とする請求項1に記載の症状判定装置。
  3.  前記脳波検出手段は、前記脳波の周波数成分を複数検出し、
     前記うつ症状判定手段は、前記脳波検出手段によって検出された前記脳波の複数の周波数成分のうち、所定の周波数の周波数成分の強度の関係を、他の周波数の周波数成分の強度の関係よりも判定基準として優先して、うつ状態の判定を行うことを特徴とする請求項1又は2に記載の症状判定装置。
  4.  前記脳波検出手段は、前記脳波の周波数成分を複数検出し、
     前記うつ症状判定手段は、前記脳波検出手段によって検出された前記脳波の複数の周波数成分のうち、低周波領域に属する周波数成分と、高周波領域に属する周波数成分との強度の比較結果に基づいて、前記被験者におけるうつ症状を判定することを特徴とする請求項1から3の何れか1項に記載の症状判定装置。
  5.  前記うつ症状判定手段は、前記被験者におけるうつ症状の重症度を判定することを特徴とする請求項1から4の何れか1項に記載の症状判定装置。
  6.  前記うつ症状判定手段は、前記被験者が薬剤を服用している場合に、前記被験者におけるうつ症状を判定するための判定基準を、前記服用している薬剤の作用に基づいて補正することを特徴とする請求項1から5の何れか1項に記載の症状判定装置。
  7.  被験者の特定の脳領域における脳波の一又は複数の周波数成分を検出する脳波検出機能と、
     前記脳波検出機能によって検出された前記脳波の周波数成分の強度に基づいて、前記被験者におけるうつ症状を判定するうつ症状判定機能と、
     をコンピュータに実現させることを特徴とする症状判定プログラム。
PCT/JP2022/003452 2021-02-12 2022-01-28 症状判定装置及び症状判定プログラム WO2022172792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022580560A JPWO2022172792A1 (ja) 2021-02-12 2022-01-28
EP22752621.7A EP4292540A1 (en) 2021-02-12 2022-01-28 Symptom evaluation device and symptom evaluation program
CA3207959A CA3207959A1 (en) 2021-02-12 2022-01-28 Symptom determination apparatus and program for determining symptom
CN202280014551.6A CN116847789A (zh) 2021-02-12 2022-01-28 症状判定装置及症状判定程序
US18/276,827 US20240122523A1 (en) 2021-02-12 2022-01-28 Symptom determination apparatus and storage medium for determining symptom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020806 2021-02-12
JP2021-020806 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172792A1 true WO2022172792A1 (ja) 2022-08-18

Family

ID=82838808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003452 WO2022172792A1 (ja) 2021-02-12 2022-01-28 症状判定装置及び症状判定プログラム

Country Status (6)

Country Link
US (1) US20240122523A1 (ja)
EP (1) EP4292540A1 (ja)
JP (1) JPWO2022172792A1 (ja)
CN (1) CN116847789A (ja)
CA (1) CA3207959A1 (ja)
WO (1) WO2022172792A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162387A1 (ja) * 2023-01-31 2024-08-08 国立大学法人筑波大学 うつ度推定装置、うつ度推定モデル生成装置、うつ度測定計、うつ度推定システム、うつ度推定方法、うつ度推定モデル生成方法及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230544A (ja) * 2002-02-08 2003-08-19 Techno Network Shikoku Co Ltd 脳波計
JP2003310564A (ja) * 2002-04-22 2003-11-05 Fuji Xerox Co Ltd 脳波自動解析装置および方法
JP2011172942A (ja) * 2000-02-09 2011-09-08 Cns Response Inc 定量的eegを使用して脳の生理学的不均衡を分類および処置する方法
US20130253362A1 (en) * 2008-04-15 2013-09-26 Christopher Scheib Method and system for monitoring and displaying physiological conditions
JP2016066317A (ja) 2014-09-26 2016-04-28 株式会社ジャパンイノベーション 精神科医療補助システム、サーバー、方法、及び、プログラム
JP2016106940A (ja) * 2014-12-09 2016-06-20 株式会社Nttデータ・アイ 脳疾患診断支援システム、脳疾患診断支援方法及びプログラム
JP2019154789A (ja) * 2018-03-13 2019-09-19 ニプロ株式会社 気分障害測定装置および気分障害測定方法
JP2020503084A (ja) * 2016-10-25 2020-01-30 ブレインズウェイ リミテッド 治療結果を予測するための装置および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172942A (ja) * 2000-02-09 2011-09-08 Cns Response Inc 定量的eegを使用して脳の生理学的不均衡を分類および処置する方法
JP2003230544A (ja) * 2002-02-08 2003-08-19 Techno Network Shikoku Co Ltd 脳波計
JP2003310564A (ja) * 2002-04-22 2003-11-05 Fuji Xerox Co Ltd 脳波自動解析装置および方法
US20130253362A1 (en) * 2008-04-15 2013-09-26 Christopher Scheib Method and system for monitoring and displaying physiological conditions
JP2016066317A (ja) 2014-09-26 2016-04-28 株式会社ジャパンイノベーション 精神科医療補助システム、サーバー、方法、及び、プログラム
JP2016106940A (ja) * 2014-12-09 2016-06-20 株式会社Nttデータ・アイ 脳疾患診断支援システム、脳疾患診断支援方法及びプログラム
JP2020503084A (ja) * 2016-10-25 2020-01-30 ブレインズウェイ リミテッド 治療結果を予測するための装置および方法
JP2019154789A (ja) * 2018-03-13 2019-09-19 ニプロ株式会社 気分障害測定装置および気分障害測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162387A1 (ja) * 2023-01-31 2024-08-08 国立大学法人筑波大学 うつ度推定装置、うつ度推定モデル生成装置、うつ度測定計、うつ度推定システム、うつ度推定方法、うつ度推定モデル生成方法及びプログラム

Also Published As

Publication number Publication date
CA3207959A1 (en) 2022-08-18
US20240122523A1 (en) 2024-04-18
CN116847789A (zh) 2023-10-03
JPWO2022172792A1 (ja) 2022-08-18
EP4292540A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
Zhu et al. A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones
JP6124140B2 (ja) 患者の認知機能の評価
US20180279938A1 (en) Method of diagnosing dementia and apparatus for performing the same
Sokoliuk et al. Covert speech comprehension predicts recovery from acute unresponsive states
Bennett et al. Neural encoding and perception of speech signals in informational masking
CN111671399B (zh) 噪声感知强度的测量方法、装置和电子设备
Dragicevic et al. Oscillatory infrasonic modulation of the cochlear amplifier by selective attention
US20220031242A1 (en) Method and system for collecting and processing bioelectrical signals
McHaney et al. Cortical tracking of speech in delta band relates to individual differences in speech in noise comprehension in older adults
McClaskey et al. Sustained envelope periodicity representations are associated with speech-in-noise performance in difficult listening conditions for younger and older adults
WO2022172792A1 (ja) 症状判定装置及び症状判定プログラム
Altıntop et al. Classification of depth of coma using complexity measures and nonlinear features of electroencephalogram signals
Moore et al. No effect of musical training on frequency selectivity estimated using three methods
Ren et al. Age‐related functional brain connectivity during audio–visual hand‐held tool recognition
Schüller et al. Attentional modulation of the cortical contribution to the frequency-following response evoked by continuous speech
Griffiths et al. Disrupted auditory N1, theta power and coherence suppression to willed speech in people with schizophrenia
Górska et al. Low-and medium-rate auditory steady-state responses in patients with prolonged disorders of consciousness correlate with Coma Recovery Scale-Revised score
Richardson et al. Quantifying signal quality for joint acoustic emissions using graph-based spectral embedding
Gong et al. Estimating hearing thresholds from stimulus-frequency otoacoustic emissions
CN117648617A (zh) 脑卒中识别方法、装置、电子设备和存储介质
Lachowska et al. Simultaneous acquisition of 80 Hz ASSRs and ABRs from quasi ASSRs for threshold estimation
Brittenham et al. Objective frequency analysis of transient visual evoked potentials in autistic children
Xu et al. Frequency difference beyond behavioral limen reflected by frequency following response of human auditory Brainstem
Ananthakrishnan et al. Effects of temporal envelope cutoff frequency, number of channels, and carrier type on brainstem neural representation of pitch in vocoded speech
Dadhich et al. A flexible analytic wavelet transform and ensemble bagged tree model for electroencephalogram-based meditative mind-wandering detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752621

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3207959

Country of ref document: CA

Ref document number: 2022580560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18276827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280014551.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022752621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752621

Country of ref document: EP

Effective date: 20230912