WO2022172633A1 - Electrical device and battery pack - Google Patents

Electrical device and battery pack Download PDF

Info

Publication number
WO2022172633A1
WO2022172633A1 PCT/JP2021/048539 JP2021048539W WO2022172633A1 WO 2022172633 A1 WO2022172633 A1 WO 2022172633A1 JP 2021048539 W JP2021048539 W JP 2021048539W WO 2022172633 A1 WO2022172633 A1 WO 2022172633A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
cell units
terminal
cell
series
Prior art date
Application number
PCT/JP2021/048539
Other languages
French (fr)
Japanese (ja)
Inventor
智雅 西河
信宏 高野
慎一郎 佐藤
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2022581235A priority Critical patent/JPWO2022172633A5/en
Publication of WO2022172633A1 publication Critical patent/WO2022172633A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/269Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack having a plurality of cell units, electrical equipment using the same as a power source, and electrical equipment operating using a plurality of battery packs as a power source.
  • Patent Document 1 discloses a voltage-switchable battery pack whose output voltage is switchable so that it can be shared between electrical devices with different voltages, and an electrical device using such a voltage-switchable battery pack.
  • Patent Document 2 discloses a power supply device that achieves high voltage and large capacity by using a plurality of battery packs and connecting the plurality of battery packs in series or in parallel.
  • Patent Document 3 discloses a battery pack that has two cell units and can output two types of voltage.
  • the battery pack of Patent Document 1 can output two battery packs of 18V and 36V, but cannot obtain outputs other than these voltages. Moreover, in the power supply device of Patent Document 2, a total output can be obtained by connecting a plurality of battery packs in series. However, it is not possible to obtain an output voltage other than an integral multiple of the battery pack voltage. For example, when two battery packs with a rated voltage of 36 V are used, an output with a rated voltage of 72 V can be obtained, but other voltages cannot be output.
  • An object of the present invention is to solve at least one of the following problems 1 to 4.
  • - Problem 1 To provide a battery pack and an electric device capable of diversifying outputs.
  • - Problem 2 To provide an electric device capable of outputting a voltage other than an integral multiple of the maximum rated voltage of a plurality of battery packs.
  • - Problem 3 To be able to adjust the voltage input to the main body side of an electrical device to which a plurality of battery packs are connected.
  • ⁇ Problem 4 To provide an electric device that uses a plurality of voltage-switchable battery packs capable of outputting low voltage and high voltage, and can change the take-out voltage of each.
  • One aspect of the present invention is an electrical device.
  • This electrical device includes a battery pack including a plurality of cell units, and an electrical device main body connected to the battery pack, and is capable of switching an interconnection state of the plurality of cell units. wherein the switching unit selects an interconnection state of the plurality of cell units from an equal connection state in which the power consumption of each of the plurality of cell units is substantially equal to each other, and an even connection state in which power consumption of each of the plurality of cell units is substantially equal It is possible to switch to a non-uniform connection state in which the power consumptions of some cell units and the other cell units are not substantially equal to each other.
  • This battery pack includes a plurality of cell units and a switching section capable of switching interconnection states of the plurality of cell units, wherein the switching section switches the interconnection state of the plurality of cell units to the plurality of cell units. and an evenly connected state in which the power consumption of each of the cell units is substantially equal to each other, and the power consumption of some cell units and other cell units of the plurality of cell units are not substantially equal to each other. It is possible to switch between a non-uniform connection state and a non-uniform connection state.
  • Yet another aspect of the invention is a battery pack.
  • This battery pack has three cell units and a switching unit capable of switching interconnection states of the three cell units, and the switching unit switches the interconnection state of the three cell units to the three cell units. a state in which all of the three cell units are connected in parallel; a state in which all of the three cell units are connected in series; A state in which another one of the three cell units is connected in series, or a state in which two of the three cell units are connected in series and the three cell units are connected in series with respect to the two cell units. It is possible to switch to a state in which the other one of the cell units is disconnected.
  • an electrical device including a plurality of battery packs having a plurality of cell units and an electrical device main body to which the battery packs can be attached, wherein the electrical device main body includes a plurality of battery packs.
  • a parallel connection portion that connects at least two of the plurality of cell units of the battery pack in parallel, and at least one other cell that is not directly connected to the parallel connection portion among the plurality of cell units that the plurality of battery packs have.
  • a series connection section is provided to allow the units to be connected in series with respect to the parallel connection section. The series connection connects at least two other cell units, which are not directly connected to the parallel connection, among the plurality of cell units in series.
  • the battery pack has at least a first cell unit and a second cell unit as a plurality of cell units, the positive and negative electrodes of the first cell unit and the second cell unit are assigned to independent output terminals, and the plurality of batteries Among the packs, the first cell unit and the second cell unit of one battery pack are connected in parallel, the first cell units and the second cell units of the remaining battery packs are connected in series, and the outputs of these parallel connections are connected in series. and then connect in series.
  • the electric device main body is provided with a plurality of battery pack mounting portions for mounting battery packs, and the plurality of battery pack mounting portions includes a battery pack mounting mechanism and an output terminal, and the electric device main body includes a parallel connection portion. Wiring means for forming a series connection are incorporated in each.
  • a first battery pack and a second battery pack are used as the battery packs, and the electric device main body connects the cell units of the first battery pack in series and the second battery pack.
  • the pack has a wiring section that connects the cell units in parallel.
  • the electric device main body includes a battery pack mounting portion for mounting a battery pack, and an adapter portion detachable from the battery pack mounting portion and capable of connecting a plurality of battery packs to the battery pack mounting portion.
  • the adapter section incorporates wiring means forming a parallel connection and a series connection.
  • a plurality of battery pack mounting portions for mounting battery packs are provided in the electrical equipment body, and a battery pack mounting mechanism and a power terminal are formed in each of the plurality of battery pack mounting portions.
  • the electrical equipment main body is provided with a plurality of switches for switching the connection of a plurality of power terminal groups in parallel or in series, and the connection form of the switches is switched by a control unit housed in the electrical equipment main body.
  • the control unit selects a side to output in a series connection state and a side to output in a parallel connection state among a plurality of battery packs by switching a switch.
  • the main body of the electrical equipment is provided with a detector that can detect the remaining battery level or voltage of a plurality of cell units. Select a unit.
  • the control unit connects the cell units with different voltages in series.
  • the control unit switches the connection form of the switch only when the trigger switch is in the OFF state.
  • the present invention at least one of the above problems 1 to 4 can be solved.
  • a plurality of voltage-switchable battery packs it is possible to realize an electric device capable of extracting an intermediate voltage other than an integral multiple of the maximum voltage.
  • it is possible to combine the connection states of the cell units by setting the connection of the cell units of the attached battery pack in series or in parallel within the main body of the electric device. In this way, it is possible to use a plurality of voltage-switching battery packs to output different voltages as required, thereby improving the workability of using electrical equipment.
  • FIG. (A) is a front view of electrical equipment 501 according to Embodiment 1 of the present invention.
  • (B) is a side view of the electric device 501.
  • FIG. (A) is a schematic circuit block diagram of an electrical device 501;
  • (B) is a table summarizing the relationship between the output voltage of the battery pack 510 and the energization states of the coils of the relays SW1 to SW4 in FIG. 2(A).
  • 4 is a sequence diagram showing an example of the operation of the electrical device 501;
  • (A) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510 outputs 18V.
  • 5(B) is a circuit diagram in which illustration of contacts is omitted from FIG. 5(A);
  • C) is a circuit diagram showing the state of each relay contact when the battery pack 510 outputs 36V.
  • D is a circuit diagram in which illustration of contacts is omitted from FIG. 5(C).
  • (E) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510 outputs 54V.
  • (F) is a circuit diagram in which illustration of contacts is omitted from FIG. 5 (E).
  • (A) is a circuit diagram showing the state of each relay contact when battery pack 510A outputs 18 V according to Embodiment 2 of the present invention.
  • 6(B) is a circuit diagram in which illustration of contacts is omitted from FIG. 6(A);
  • (C) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510A outputs 36V.
  • (D) is a circuit diagram in which illustration of contacts is omitted from FIG. 6(C).
  • (E) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510A outputs 54V.
  • (F) is a circuit diagram in which illustration of contacts is omitted from FIG. 6 (E).
  • (A) is a circuit diagram showing the state of each relay contact when battery pack 510B outputs 18 V according to Embodiment 3 of the present invention.
  • 7(B) is a circuit diagram in which illustration of contacts is omitted from FIG. 7(A);
  • (C) is a circuit diagram of the first pattern showing the state of the contacts of each relay when the battery pack 510B outputs 36V.
  • (D) is a circuit diagram in which illustration of contacts is omitted from FIG. 7(C).
  • (E) is a second pattern circuit diagram showing the state of the contacts of each relay when the battery pack 510B outputs 36V.
  • (F) is a circuit diagram in which illustration of contacts is omitted from FIG. 7 (E).
  • (G) is a circuit diagram of the third pattern showing the state of the contacts of each relay when the battery pack 510B outputs 36V.
  • (H) is a circuit diagram in which illustration of contacts is omitted from FIG. 7 (G).
  • (I) is a circuit diagram showing the state of each relay contact when the battery pack 510B outputs 54V.
  • (J) is a circuit diagram in which illustration of contacts is omitted from FIG. 7(I).
  • (A) is a schematic circuit block diagram of an electric device 501A according to Embodiment 4 of the present invention.
  • FIG. 10 is a perspective view of an electrical equipment main body 1 and a battery pack 100 attached thereto used in Embodiments 5 to 7 of the present invention; 3 is a perspective view of the battery pack 100; FIG. FIG. 2 is an exploded perspective view of the battery pack 100; FIG. 4 is a diagram showing a connection state when the battery pack 100 is attached to the main body of the high-voltage electrical equipment; FIG.
  • FIG. 4 is a diagram showing a connection state when the battery pack 100 is attached to the main body of the low-voltage electrical equipment;
  • the perspective view of the electric equipment 200 which concerns on Embodiment 5 of this invention.
  • FIG. FIG. 2 is a circuit diagram of the electric device 200, showing the connection state between the electric device main body 201 and the two battery packs 100A and 100B.
  • FIG. 11 is a connection circuit diagram between an electrical equipment main body 201A and two battery packs 100A and 100B according to a first modification of the fifth embodiment;
  • FIG. 11 is a connection circuit diagram between an electrical equipment main body 201B and two battery packs 100A and 100B according to a second modification of the fifth embodiment;
  • FIG. 20 is a circuit diagram of an electric device main body 201C according to Embodiment 6 of the present invention, showing a connection state between the electric device main body 201 and two battery packs 100A and 100B.
  • FIG. 20 is a more detailed circuit diagram of the electrical equipment main body 201C shown in FIG. 19;
  • the flowchart which shows the control procedure by the control part 240 of 201 C of electric equipment main bodies.
  • the perspective view of the electric equipment 300 which concerns on Embodiment 7 of this invention.
  • FIG. 11 is a circuit diagram of an electrical device 300 according to Embodiment 7 of the present invention, showing a connection state between an electrical device body 301 and an adapter 400;
  • 4 is a flowchart showing a control procedure by a control unit 440 of the adapter 400;
  • FIGS. 1 to 5 relate to a battery pack 510 and an electric device 501 according to Embodiment 1 of the present invention.
  • 1(A) and 1(B) define the front/rear, up/down, and left/right directions of the electric device 501 that are orthogonal to each other.
  • Electrical device 501 is an impact driver.
  • the electrical equipment 501 has a battery pack 510 and an electrical equipment body 530 .
  • the electrical equipment body 530 has a housing 539 .
  • the housing 539 includes a body portion 539a, a handle portion 539b, and a battery attachment/detachment portion 539c.
  • the body portion 539a is a cylindrical portion whose center axis is parallel to the front-rear direction, and accommodates the motor 540 shown in FIG. 2, a rotary striking mechanism (not shown), and the like.
  • the handle portion 539b extends downward from the middle portion of the body portion 539a.
  • a trigger switch 542 as a main switch is provided at the upper end of the handle portion 539b.
  • a trigger switch 542 is operated by a user to instruct the motor 540 to start and stop.
  • the battery attaching/detaching portion 539c is provided at the lower end portion of the handle portion 539b.
  • the battery pack 510 can be detachably attached to the battery attaching/detaching portion 539c.
  • a control board on which the control unit 533 and the like shown in FIG. 2 are mounted is provided in the battery attaching/detaching portion 539c.
  • the battery pack 510 and the electric device body 530 are electrically connected to each other at the + terminals, the V terminals, the T1 terminals, the T2 terminals, and the - terminals.
  • the + terminal and - terminal of the battery pack 510 form a pair of output terminals for supplying power to the motor 540 of the electrical equipment body 530 .
  • Motor 540 is an output unit that operates on power supplied from battery pack 510 via + and - terminals.
  • the V terminal is a terminal for supplying the output voltage of the cell unit 523 alone to the electrical equipment main body 530 for control system power generation.
  • a T1 terminal and a T2 terminal are terminals for mutual communication between the control units 513 and 533 .
  • the electric device main body 530 has a control section 533 as a main body side control section, a trigger switch 542 , an inverter circuit 543 and a motor 540 .
  • the control unit 533 includes a microcomputer (MCU: Micro Controller Unit), a power supply circuit that generates a power supply voltage (control system power supply voltage) for the microcomputer from the input voltage from the V terminal, a driver IC for driving the inverter circuit 543, and the like. include.
  • the control unit 533 controls driving of the motor 540 by supplying a driving current to the motor 540 by driving control of the inverter circuit 543 .
  • the battery pack 510 has a control section 513 as a battery side control section, cell units 521 to 523, and relays SW1 to SW4 as switching sections.
  • Each of cell units 521-523 includes a plurality of secondary battery cells connected in series.
  • each of the cell units 521 to 523 has a configuration in which five secondary battery cells having a rated output voltage of 3.6V are connected in series, and the rated output voltage is 18V.
  • the control unit 513 includes a microcomputer, a power supply circuit that generates a power supply voltage for the microcomputer from the input voltage from the cell unit 523, and the like. Control unit 513 controls energization and non-energization of each coil of relays SW1 to SW4, and controls the output voltage of battery pack 510.
  • FIG. Relays SW1 and SW2 are C-contact relays, and relays SW3 and SW4 are B-contact relays. That is, the relays SW1 to SW4 include different types of relays.
  • relay SW1 One end of relay SW1 is connected to the positive electrode of cell unit 522 .
  • the other end of relay SW1 is connected to the + terminal of battery pack 510 and the positive electrode of cell unit 521 when the coil of relay SW1 is not energized, and is also connected to the positive electrode of cell unit 523 via relay SW2.
  • the other end of relay SW1 is connected to the negative electrode of cell unit 521 when the coil of relay SW1 is energized.
  • relay SW2 One end of relay SW2 is connected to the positive electrode of cell unit 523 .
  • the other end of relay SW2 is connected to the + terminal of battery pack 510 and the positive electrode of cell unit 521 when the coil of relay SW2 is not energized, and is also connected to the positive electrode of cell unit 522 via relay SW1.
  • the other end of relay SW2 is connected to the negative electrode of cell unit 522 when the coil of relay SW2 is energized.
  • relay SW3 One end of relay SW3 is connected to the negative electrode of cell unit 522 .
  • the other end of relay SW3 is connected to the negative electrode of cell unit 521 when the coil of relay SW3 is not energized.
  • the other end of the relay SW3 is in an open (off) state when the coil of the relay SW3 is energized. That is, when the coil of the relay SW3 is not energized, the negative electrodes of the cell units 521 and 522 are connected (short-circuited), and when the coil of the relay SW3 is energized, the negative electrodes of the cell units 521 and 522 are disconnected.
  • relay SW4 is connected to the negative electrode of cell unit 523 .
  • the other end of relay SW4 is connected to the negative electrode of cell unit 522 when the coil of relay SW4 is not energized.
  • the other end of the relay SW4 is in an open (off) state when the coil of the relay SW4 is energized. That is, the negative electrodes of the cell units 522 and 523 are connected (short-circuited) when the coil of the relay SW4 is not energized, and the negative electrodes of the cell units 522 and 523 are disconnected when the coil of the relay SW4 is energized.
  • the control unit 513 When outputting 18V between the + terminal and the - terminal of the battery pack 510, the control unit 513 deenergizes all the coils of the relays SW1 to SW4. As a result, the cell units 521 to 523 are fully connected in parallel.
  • the full parallel connection state is when power is supplied from the battery pack 510 to the motor 540 of the electric device main body 530, that is, when discharging from the + terminal of the battery pack 510 (hereinafter referred to as “when discharging”), each of the cell units 521 to 523 is an example of an equal connection state in which the power consumptions of are substantially equal to each other.
  • the control unit 513 controls a state in which the battery pack 510 is not connected to the electrical device main body 530 (hereinafter also referred to as “disconnected state”), a state in which the battery pack 510 is connected to the electrical device main body 530 and the trigger switch 542 is off ( Also in a state in which the battery pack 510 is connected to a charger main body (not shown) and in a state in which the battery pack 510 is connected to a charger main body (not shown), all the coils of the relays SW1 to SW4 are similarly deenergized.
  • the control unit 513 When outputting 36 V between the + terminal and the - terminal of the battery pack 510, the control unit 513 deenergizes the coils of the relays SW1 and SW3 and energizes the coils of the relays SW2 and SW4. As a result, the cell units 521 and 522 are connected in parallel, and the cell unit 523 is connected in series with the cell units 521 and 522 connected in parallel.
  • the interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 521 and 522 and the power consumption of the cell unit 523 are not substantially equal when discharging. It is an illustration of a connection state.
  • the power consumption of the cell unit 523 is greater than the power consumption of each of the cell units 521 and 522 when discharging. It should be noted that the cell units 521 and 522 in the parallel connection state are in the equal connection state in which the respective power consumptions during discharging are equal to each other.
  • the full series connection state is an example of an equal connection state in which the power consumption of each of the cell units 521 to 523 is substantially equal to each other when discharging.
  • the equal connection state which is the all-series connection state
  • the all-parallel state the equal connection state
  • FIG. 3 is a sequence diagram showing an example of the operation of electrical device 501.
  • the control unit 513 notifies the control unit 533 of the electric device body 530 that it is in a standby state (S1).
  • the control unit 533 detects that the trigger switch 542 is turned on (S2), the control unit 533 transmits device main body voltage information to the control unit 513 (S3).
  • Control unit 513 determines the output voltage of battery pack 510 based on the received device body voltage information, and switches the energized state of each coil of relays SW1 to SW4 as necessary (S4, S5). Specifically, the control unit 513 starts energizing the coils of the relays SW1 to SW4 that need to be switched (start energizing the coils) according to the determined output voltage. At this time, the energization of the coils of the relays SW3 and SW4 is first started (S4), and then the energization of the coils of the relays SW1 and SW2 is started (S5).
  • the control unit 513 when outputting 36 V, the control unit 513 energizes the coil of the relay SW4 and then energizes the coil of the relay SW2. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 523 when switching the energized state.
  • the control unit 513 When outputting 54V, the control unit 513 energizes the coils of the relays SW3 and SW4, and then energizes the coils of the relays SW1 and SW2. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 522 and a short circuit between the positive electrode and the negative electrode of the cell unit 523 when the energization state is switched.
  • the control unit 513 When the switching of the energized state of each coil of the relays SW1 to SW4 (S4, S5) is completed, the control unit 513 notifies the control unit 533 of completion of drive preparation (S6).
  • the control unit 533 drives the inverter circuit 543 (S7) and supplies the motor 540 with the driving current.
  • the control unit 533 detects that the trigger switch 542 is turned off (S8), it stops driving the inverter circuit 543 (S9) and stops the motor 540.
  • the control unit 533 notifies the control unit 513 of the completion of the stop (S10).
  • control unit 513 When the control unit 513 receives the completion of the stop, it switches the energized state of each coil of the relays SW1 to SW4 as necessary (S11, S12), and deenergizes all the coils of the relays SW1 to SW4. Specifically, the control unit 513 stops energizing the coil of the relay SW1 to SW4 whose coil needs to be switched (the relay whose coil is energized among the relays SW1 to SW4). At this time, the energization of the coils of the relays SW1 and SW2 is first stopped (S11), and then the energization of the coils of the relays SW3 and SW4 is stopped (S12).
  • the control unit 513 stops energizing the coil of the relay SW2 and then stops energizing the coil of the relay SW4. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 523 when switching the energized state.
  • the control unit 513 stops energizing the coils of the relays SW1 and SW2, and then stops energizing the coils of the relays SW3 and SW4. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 522 and a short circuit between the positive electrode and the negative electrode of the cell unit 523 when the energization state is switched.
  • the control unit 513 After completing the switching of the energized states of the coils of the relays SW1 to SW4 (S11, S12), the control unit 513 notifies the control unit 533 of the standby state (S13).
  • FIG. 4 shows the number of cell units, the voltage that can be output, the number of relay contacts, the number of C-contact relays, and the number of B-contact relays in a battery pack 510 or a battery pack with a similar configuration with an increased number of cell units.
  • This is a table summarizing A row with three cell units in this table corresponds to the battery pack 510 .
  • the same number of types of voltage as the number of cell units can be output.
  • n is an integer of 3 or more
  • the types of voltage that can be output are n types
  • the number of relay contacts required is 3 ⁇ (n-1)
  • the required C contact relay and B The number of contact relays is n-1.
  • a B-contact relay may be provided between the negative electrode of the i-th cell unit and the negative electrode of the i+1-th cell unit.
  • a C-contact relay may be provided for switching between connecting the positive electrode of the i+1-th cell unit to the negative electrode of the i-th cell unit and connecting it to the + terminal of the battery pack.
  • the cell unit 521 corresponds to the first, the cell unit 522 to the second, and the cell unit 523 to the third.
  • FIGS. 5A, 5C, and 5E are circuit diagrams showing the states of the contacts of each relay when battery pack 510 outputs 18V, 36V, and 54V.
  • FIGS. 5(B), (D), and (F) omit illustration of the contacts from FIGS. It is the circuit diagram which replaced the contact with opening.
  • the contact P1a is a contact that is turned on when the coil of the relay SW1 is not energized and turned off when the coil of the relay SW1 is energized.
  • the contact P1b is a contact that is turned off when the coil of the relay SW1 is not energized and turned on when the coil of the relay SW1 is energized.
  • the contact P2a is a contact that is turned on when the coil of the relay SW2 is not energized and turned off when the coil of the relay SW2 is energized.
  • the contact P2b is a contact that is turned off when the coil of the relay SW2 is not energized and turned on when the coil of the relay SW2 is energized.
  • a contact P3 is a contact that is turned on when the coil of the relay SW3 is not energized and turned off when the coil of the relay SW3 is energized.
  • a contact P4 is a contact that is turned on when the coil of the relay SW4 is not energized and turned off when the coil of the relay SW4 is energized.
  • One end of contact P1a is connected to the positive electrode of cell unit 522 .
  • One end of contact P2a is connected to the positive electrode of cell unit 523 .
  • the other ends of the contacts P1a and P2a are connected to each other and to the + terminal of the battery pack 510 and the positive electrode of the cell unit 521 .
  • One end of contact P1b is connected to the positive electrode of cell unit 522 .
  • the other end of contact P1b is connected to the negative electrode of cell unit 521 .
  • One end of contact P2b is connected to the positive electrode of cell unit 523 .
  • the other end of contact P2b is connected to the negative electrode of cell unit 522 .
  • One end of contact P3 is connected to the negative electrode of cell unit 521 .
  • the other end of contact P3 is connected to the negative electrode of cell unit 522 .
  • One end of contact P4 is connected to the negative electrode of cell unit 522 .
  • the other end of contact P4 is connected to the negative terminal of cell unit 523 and the negative terminal of battery pack 510 .
  • the battery pack 510 has three cell units 521 to 523 each having a rated output voltage of 18 V. As shown in FIG. and relays SW1 to SW4. Therefore, the interconnection state of the cell units 521 to 523 is not limited to the all-serial equal connection state and all-parallel equal connection state, but also the power consumption of each of the cell units 521 and 522 and the power consumption of the cell unit 523 when discharging. are not substantially equal to each other. As a result, the battery pack 510 can output three voltages of 18V, 36V, and 54V, and can diversify the output compared to a battery pack that can only output two voltages of 18V and 54V.
  • relays SW1 and SW2 are C-contact relays, only four relays are required for the required six contacts, and an increase in cost and number of parts due to diversification of outputs can be suppressed.
  • the number of terminals of the microcomputer of the control unit 513 for outputting relay control signals can be reduced, and the cost of the microcomputer can be reduced.
  • the control unit 513 deenergizes all the coils of the relays SW1 to SW4, and brings the cell units 521 to 523 into a state of all parallel equal connection. Therefore, in each of the non-connection state and the non-output state, among the cell units 521 to 523, the cell unit with the higher voltage is charged to the cell unit with the lower voltage. Therefore, the user can balance the cell units 521 to 523 during the non-connection state or non-output state without intentional operation, and can use a battery pack with stable output. can.
  • the control units 513 and 533 stop for power saving when the battery pack 510 or the electric device main body 530 is not operated for a predetermined time or more. All the coils of SW1 to SW4 are de-energized, and the cell units 521 to 523 are in a state of all-parallel equal connection.
  • the control unit 513 energizes the coils of the relays SW3 and SW4 and then energizes the coils of the relays SW1 and SW2, and stops the energization of the coils of the relays SW1 and SW2 before Since the coils of SW3 and SW4 are controlled in order to stop energization, a short circuit between the positive electrode and the negative electrode of the cell unit 522 and a short circuit between the positive electrode and the negative electrode of the cell unit 523 when the energization state is switched can be reliably prevented. It can be done, and the reliability is improved.
  • the battery pack 510 Since the battery pack 510 has only one pair of output terminals for supplying power to the motor 540, an increase in the number of terminals due to diversification of outputs can be suppressed.
  • FIGS. 6(A), (C), and (E) show the states of the contacts of each relay when the battery pack 510A according to Embodiment 2 of the present invention outputs 18V, 36V, and 54V. It is a circuit diagram showing. 6(B), (D), and (F) omit illustration of contacts from FIGS. It is the circuit diagram which replaced the contact with opening.
  • Battery pack 510A is obtained by replacing contact P4 of battery pack 510 of Embodiment 1 with a short circuit and adding contact P5.
  • One end of contact P5 is connected to the negative electrode of cell unit 522 .
  • the other ends of the contacts P3 and P5 are connected to each other and to the - terminal of the battery pack 510 and the negative electrode of the cell unit 523 .
  • the interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 521 and 522 and the power consumption of the cell unit 523 are not substantially equal when discharging. It is an illustration of a connection state.
  • the power consumption of the cell unit 523 is smaller than the power consumption of each of the cell units 521 and 522 when discharging. It should be noted that the cell units 521 and 522 in the series connection state are in an equal connection state in which their power consumptions are equal to each other when discharging.
  • 36 V can be output between the + terminal and the - terminal by turning on the contacts P1b and P4 and turning off the contacts P1a, P2a, P2b, and P3. .
  • the interconnected state of the cell units 521 to 523 as shown in FIG. 5(D) cannot be realized.
  • 54V is output between the + and - terminals of the battery pack 510A. can.
  • the interconnection state of the cell units 521 to 523 at this time is the same as in the case where the battery pack 510 of the first embodiment outputs 54V.
  • both the contacts P2a and P2b when 36 V is output from the battery pack 510A, both the contacts P2a and P2b must be turned off. Therefore, unlike the first embodiment, the contacts P2a and P2b are two separate relays. There is a need.
  • FIGs. 7(A), (C), (E), (G), and (I) show respective relays according to each output voltage of the battery pack 510B in Embodiment 3 of the present invention. It is a circuit diagram which shows the state of a contact. 7(A) corresponds to an output voltage of 18V, FIGS. 7(C), (E), and (G) correspond to an output voltage of 36V, and FIG. 7(I) corresponds to an output voltage of 54V.
  • Figures 7(B), (D), (F), (H) and (J) are illustrations of contacts from each of Figures 7(A), (C), (E), (G) and (I). is omitted, that is, the on-state contacts are replaced with short-circuits, and the off-state contacts are replaced with open contacts.
  • Battery pack 510B is obtained by adding contact point P6 to battery pack 510A of the second embodiment.
  • One end of contact P6 is connected to the positive electrode of cell unit 523 .
  • the other end of contact P6 is connected to the negative electrode of cell unit 521 .
  • 18 V is applied between the + and - terminals of the battery pack 510B. can be output.
  • the interconnection state of the cell units 521 to 523 at this time is the same as in the case where the battery pack 510A of the second embodiment outputs 18V.
  • a voltage of 36 V is applied between the + and - terminals of the battery pack 510B. can be output.
  • the cell units 522 and 523 are connected in series, and the cell unit 521 is disconnected from the cell units 522 and 523 connected in series.
  • the interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 522 and 523 and the power consumption of the cell unit 521 are not substantially equal when discharging. It is an illustration of a connection state.
  • the power consumption of the cell unit 521 during discharging is smaller than the power consumption of each of the cell units 522 and 523 . It should be noted that the cell units 522 and 523 in the series connection state are in an even connection state in which the respective power consumptions during discharging are equal to each other.
  • the cell units 521 and 523 are connected in series, and the cell unit 522 is disconnected from the cell units 521 and 523 connected in series.
  • the interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 521 and 523 and the power consumption of the cell unit 522 are not substantially equal when discharging. It is an illustration of a connection state.
  • the power consumption of the cell unit 522 is smaller than the power consumption of each of the cell units 521 and 523 when discharging. It should be noted that the cell units 521 and 523 in the series connection state are in the equal connection state in which the respective power consumptions during discharging are equal to each other.
  • FIG. 8(A) is a schematic circuit block diagram of an electric device 501A according to Embodiment 4 of the present invention.
  • FIG. 8(B) is a table summarizing the relationship between the output voltage of the battery pack 510C and the energization states of the coils of the relays SW5 to SW8 in FIG. 8(A).
  • Electrical equipment 501A is obtained by replacing battery pack 510 of Embodiment 1 shown in FIG. 2 with battery pack 510C and electrical equipment main body 530 with electrical equipment main body 530A.
  • the battery pack 510C and the electric device main body 530A are electrically connected to each other at the top + terminals, the middle + terminals, the bottom + terminals, the top ⁇ terminals, the middle ⁇ terminals, and the bottom ⁇ terminals.
  • a battery pack 510C eliminates the relays SW1 to SW4 of the battery pack 510 of Embodiment 1, connects the positive electrode of the cell unit 521 to the upper + terminal, connects the negative electrode to the upper ⁇ terminal, connects the positive electrode of the cell unit 522 to the middle + terminal, The negative electrode is connected to the middle - terminal, the positive electrode of the cell unit 523 is connected to the lower + terminal, and the negative electrode is connected to the lower - terminal.
  • Electrical equipment main body 530A is obtained by adding relays SW5 to SW8 to electrical equipment main body 530 of the first embodiment.
  • the connection of relays SW5-SW8 to cell units 521-523 is the same as the connection of relays SW1-SW4 to cell units 521-523 in the first embodiment.
  • the relationship between the voltage output from battery pack 510C and the energized state of each coil of relays SW5 to SW8 is the same as the relationship between the voltage output from battery pack 510 and the energized state of each coil of relays SW1 to SW4 in the first embodiment. It is the same.
  • the control unit 533 can temporarily set the output voltage of the battery pack 510C to 54 V to obtain a boost effect. .
  • the size of the battery pack 510C can be reduced because it does not have a relay.
  • FIG. 9 is a perspective view of a battery pack 100 used in Embodiments 5 to 7 of the present invention and an electrical equipment body 1 to which the battery pack 100 is attached.
  • an example of a known electric power tool (impact driver) having a rated voltage of 36 V is shown as the electric device main body 1 .
  • the electric device main body 1 uses a detachable battery pack 100 as a power source, and performs tightening work by driving the tip tool 9 using a rotational driving force of a motor (not shown).
  • An electrical equipment main body 1 includes a housing 2 which is an outer frame forming an outer shape.
  • the housing 2 includes a body portion 2a that accommodates a motor and a power transmission mechanism (not shown), a handle portion 2b that extends downward from the body portion 2a, and a battery pack mounting portion 3 that is formed below the handle portion 2b. .
  • a trigger lever 5 for operating a trigger switch (not visible in the figure) is provided in a portion of the handle portion 2b near which the index finger touches when the user grips it.
  • a normal/reverse switching lever 6 for switching the rotation direction of the motor is provided above the trigger lever 5 .
  • An anvil (not visible in the figure) as an output shaft is provided on the front side of the housing 2, and a tip tool holder 8 for attaching a tip tool 9 is provided at the tip of the anvil.
  • a tip tool holder 8 for attaching a tip tool 9 is provided at the tip of the anvil.
  • Rail portions 11a and 11b including grooves and rails extending parallel to the front-rear direction are formed in the inner wall portions on both left and right sides of the battery pack mounting portion 3, and a terminal portion (main body side terminal portion) 20 is provided between them. .
  • the rail portions 11a and 11b constitute a rail mechanism, and the terminal portion 20 is provided with power terminals.
  • the terminal portion 20 is manufactured by integrally molding a non-conductive material such as synthetic resin, and has a plurality of metal terminals such as positive input terminals 22a and 22b, negative input terminals 27a and 27b, and an LD terminal (abnormal signal terminal). 28 is cast.
  • a vertical surface 20a serving as an abutting surface is formed on the rear end side of the terminal portion 20 in the mounting direction (front-rear direction), and a horizontal surface 20b is formed on the upper side of the plurality of terminals.
  • another terminal group (T terminal, V terminal, LS terminal) for signal transmission provided between or adjacent to the positive input terminal 22a and the negative input terminal 27a of the terminal section 20 is omitted.
  • any or all of these terminals may be added to the terminal portion 20.
  • the terminal portion 20 is fixed so as to be sandwiched between opening portions (terminal holding portion: not visible in the figure) of the left and right divided housing 2 .
  • the horizontal surface 20b of the terminal portion 20 is adjacent to and faces the upper surface 115 on the battery pack 100 side when the battery pack 100 is attached.
  • a curved portion 12 is formed on the front side of the horizontal surface 20b to contact the raised portion 132 of the battery pack 100, and a protrusion 14 is formed near the center of the curved portion 12 in the left-right direction.
  • the projecting portion 14 doubles as a boss for screwing the housing of the electrical equipment main body 1, which is divided into two parts in the left-right direction, and also serves as a stopper that restricts the relative movement of the battery pack 100 in the mounting direction.
  • the battery pack 100 is detachable from the corresponding electrical equipment main body 1, and accommodates a plurality of battery cells in a synthetic resin case.
  • a rail mechanism for attaching to the electric device main body 1 that is, rail grooves 138a (not visible in FIG. 9) and 138b are provided.
  • a slot portion 120 is arranged to enable connection to an output terminal and a communication terminal for achieving electrical connection with the electrical equipment main body 1.
  • FIG. A group of connection terminals, which will be described later with reference to FIG. .
  • the latch mechanism includes latch buttons 141a and 141b and locking claws 142a (not visible in FIG. 9) and 142b that move in conjunction with the latch buttons 141a and 141b.
  • the battery pack 100 is a voltage-switching power supply capable of switching and outputting either a low voltage (rated 18V) or a high voltage (rated 36V).
  • the battery pack 100 can be attached to either a rated 18V electrical equipment main body (not shown) or a rated 36V electrical equipment main body 1, and when attached to a rated 18V electrical equipment main body, a rated 18V DC is output, and when it is attached to the 36V electrical equipment main body 1, a rated DC of 36V is output.
  • FIG. 10 is a perspective view of the battery pack 100.
  • the housing of the battery pack 100 is formed by a lower case 101 and an upper case 110 that can be separated vertically.
  • the upper case 110 has a mounting mechanism formed with two rail grooves 138a and 138b for mounting to the battery pack mounting portion 3 (see FIG. 9) of the electrical equipment main body 1.
  • Rail grooves 138 a and 138 b are formed to extend in a direction parallel to the mounting direction of battery pack 100 and to protrude from left and right side surfaces of upper case 110 .
  • the rail grooves 138a and 138b are formed in a shape corresponding to the rail portions 11a and 11b (see FIG.
  • the battery pack 100 is fixed to the electric device body 1 by engaging with the engaging claws 142a and 142b which are the claws of the latch buttons 141a and 141b.
  • pressing the latch buttons 141a and 141b on the left and right sides moves the locking claws 142a and 142b inward to release the locked state. to move the battery pack 100 in the direction opposite to the mounting direction.
  • a lower surface 111 and an upper surface 115 of the upper case 110 are formed to have different heights, and a plurality of slots 121 to 128 extending rearward from the stepped portions are formed.
  • the slots 121 to 128 are cutout portions having a predetermined length in the battery pack mounting direction.
  • a plurality of connection terminals (connection terminal group) that can be fitted with the device-side terminals of (1) are arranged.
  • the slot 121 on the side closer to the rail groove 138a on the right side of the battery pack 100 serves as an insertion port for the charging positive terminal (C+ terminal), and the slot 122 serves as an insertion port for the discharging positive terminal (+ terminal).
  • C+ terminal charging positive terminal
  • the slot 122 serves as an insertion port for the discharging positive terminal (+ terminal).
  • the slot 127 on the side closer to the left rail groove 138b serves as an insertion port for the negative terminal (- terminal).
  • the +terminals and -terminals arranged in the slots 122 and 127 are substantial power terminals.
  • the C+ terminal located in slot 121 is connected to the + terminal via a fuse not visible in the drawing.
  • a plurality of slots 123 to 126 are arranged between the positive terminal and the negative terminal for signal transmission to the battery pack 100, the electrical equipment body 1, and an external charging device (not shown).
  • One signal terminal is provided.
  • the slot 123 is a spare terminal insertion opening, and no terminal is provided in this embodiment.
  • the slot 124 is an insertion opening for a T-terminal for outputting a signal that serves as identification information of the battery pack 100 to the main body of the electrical equipment or the charging device.
  • a slot 125 is an insertion port for a V terminal for receiving a control signal from an external charging device (not shown).
  • the slot 126 is an insertion port for an LS terminal for outputting battery temperature information from a thermistor (temperature sensing element) (not shown) provided in contact with the cell.
  • a slot 128 for an LD terminal is provided on the left side of the slot 127, which serves as an insertion port for the negative terminal (- terminal), for outputting an abnormal stop signal by a battery protection circuit (not
  • a protruding portion 132 is formed on the rear side of the upper step surface 115 so as to protrude.
  • a depressed stopper portion 131 is formed near the center of the raised portion 132 . Stopper portion 131 serves as an abutment surface for projecting portion 14 (see FIG. 9) when battery pack 100 is attached to battery pack attachment portion 3 (see FIG. 9).
  • a notch 111 a for identification is formed in the front left corner of the lower surface 111 to prevent a conventional 18V battery pack from being attached to the 36V electrical equipment main body 1 .
  • a convex portion (not shown) corresponding to the notch portion 111a is formed on the upper wall portion of the battery pack mounting portion 3 in the 36V electric device main body 1, but the conventional 18V battery pack has the notch portion 111a.
  • a portion corresponding to is not formed. The 18V battery pack cannot be attached to the 36V electrical equipment main body 1 because the protrusion formed on the electrical equipment main body 1 side interferes with the end of the lower stage surface 111 .
  • FIG. 11 is an exploded perspective view of the battery pack 100 of FIG. 10.
  • the housing of the battery pack 100 is formed by a vertically separable upper case 110 and a lower case 101, and the inner space of the lower case 101 accommodates ten battery cells.
  • a plurality of battery cells (not shown) are stacked in two tiers, each five in number, and fixed by separators 145 made of a non-conductor such as synthetic resin.
  • the separators 145 hold a plurality of battery cells so that only the left and right sides, which are both ends of the battery cells, are open.
  • the separator 145 is composed of two cells, a first cell unit 146 and a second cell unit 147, with five 3.6V lithium ion battery cells connected in series as one cell unit. By changing the connection method of the two cell units, it is possible to switch between 18V output (low voltage output) and 36V output (high voltage output), a so-called "voltage switching type battery pack".
  • a circuit board 150 is fixed on the upper side of the separator 145 .
  • the circuit board 150 is a printed board for fixing a plurality of connection terminals (161, 162, 164 to 168, 171, 172, 177) by soldering and for electrically connecting these connection terminals to a circuit pattern (not shown). be.
  • the circuit board 150 further mounts various electronic elements (not shown) such as an MPU (Micro Processor Unit), a battery protection IC, a PTC thermistor, a resistor, a capacitor, a fuse, and a light emitting diode.
  • connection terminal group 160 is provided slightly in front of the center of the circuit board 150 in the front-rear direction, and a plurality of connection terminals (161, 162, 164 to 168, 171, 172, 177) are horizontally arranged and fixed there. be done.
  • Three signal terminals are provided between the positive terminals (161, 162, 171, 172) and the negative terminals (167, 177).
  • two sets of horizontally extending arms one set on the left and right on the upper side and one set on the left and right on the lower side, in total, are used as the parts for the power terminals.
  • An LD terminal 168 is provided on the left side of the negative terminal pair (167, 177). All the signal terminals (164 to 166, 168) are fixed by soldering on the back side, with their leg portions penetrating from the front surface to the back surface through a plurality of mounting holes 151a, 151b formed in the circuit board 150. be.
  • resin (not shown) is applied to the surface of the circuit board 150 for waterproofing and dustproofing. applied.
  • the lower case 101 has a substantially rectangular parallelepiped shape with an open upper surface.
  • a slit 104 is provided approximately in the center of the front wall.
  • the slit 134 of the upper case 110 is used as an inlet for introducing cooling air sent from the charging device into the internal space of the battery pack 100 when the battery pack 100 is charged by the charging device. is used as a cooling air outlet.
  • connection drawer tabs 181a, 186a, 187a, and 188a extending upward in a plate shape.
  • Lead wire ends 194b, 196b to 199b from intermediate connection points of the battery cells connected in series are arranged to extend upward and are soldered onto the circuit board.
  • intermediate pull-out tabs 182 a and 183 a from intermediate connection points of the battery cells connected in series are arranged to extend upward so as to be connected to the circuit board 150 .
  • Screw bosses 157 a and 157 b for fixing the circuit board 150 are formed on the upper side of the separator 145 .
  • FIG. 12A is a partial perspective view showing the shapes of the positive terminals (162 and 172) and the negative terminals (167 and 177) of the battery pack 100 used in this embodiment, and a diagram showing a connection circuit when outputting a high voltage.
  • FIG. 12B is a partial perspective view showing the state of connection between the terminal portion 50 of the high-voltage electrical equipment and the terminals on the battery pack 100 side.
  • an upper positive terminal 162 and a lower positive terminal 172 are arranged side by side in the slot 122 (see FIG. 10) of the battery pack 100 .
  • the upper positive electrode terminal 162 and the lower positive electrode terminal 172 are formed by pressing a metal plate, and their legs are firmly fixed to the circuit board 150 by soldering or the like.
  • the upper positive terminal 162 and the lower positive terminal 172 are spaced apart and electrically non-conductive.
  • an upper negative terminal 167 and a lower negative terminal 177 are arranged side by side in the slot 127 (see FIG. 10).
  • the upper positive terminal 162 and the upper negative terminal 167 are the same metal parts, and the lower positive terminal 172 and the lower negative terminal 177 are the same metal parts.
  • the battery pack 100 accommodates a first cell unit 146 and a second cell unit 147 in which five lithium-ion battery cells are connected in series, and the positive electrode of the first cell unit 146 corresponds to a first positive electrode terminal.
  • the negative electrode of the first cell unit 146 is connected to the lower negative terminal 177 corresponding to the first negative terminal.
  • the positive electrode of the second cell unit 147 is connected to the lower positive terminal 172 corresponding to the second positive terminal
  • the negative electrode of the second cell unit 147 is connected to the upper negative terminal 167 corresponding to the second negative terminal.
  • the positive input terminal on the side of the electrical equipment main body 1 is connected to the upper positive terminal 162
  • the negative input terminal is connected to the upper negative terminal 167, and dotted lines 52b, 59, 57b
  • the output of the series connection of the first cell unit 146 and the second cell unit 147 that is, the rated voltage of 36 V will be supplied from the battery pack 100 to the electric device body. It will be output to one load device 18 .
  • the positive output terminal 162 and the lower positive terminal 172 which are electrically independent, are arranged so as to line up in the front-rear direction when viewed from the mounting position (leg position) of the circuit board 150.
  • the upper positive terminal 162 and the lower positive terminal 172 each have an arm assembly (arms 162a and 162b, arms 172a and 172b) extending forward.
  • the arms 162a, 162b and the arms 172a, 172b are separated in the vertical direction, and the fitting portions are shaped so that the longitudinal positions thereof are substantially the same.
  • These positive terminal pairs ( 162 , 172 ) are located within a single slot 122 .
  • the negative terminal pair also has the same shape as the positive terminal pair, and is composed of an upper negative terminal 167 and a lower negative terminal 177 , which negative terminal pairs ( 167 , 177 ) are located inside a single slot 127 . be. Inside the slot 127 , the arm group of the upper negative terminal 167 is arranged on the upper side, and the arm group of the lower negative terminal 177 is arranged on the lower side of the arm group of the upper negative terminal 167 .
  • a pair of positive terminals for charging (upper positive terminal 161 and lower positive terminal 172) is provided on the right side of the positive terminal pair for discharging (upper positive terminal 162 and lower positive terminal 172). 171: see FIG. 12) are arranged.
  • the shape of the positive terminal pair (161, 171) for charging is the same as that of the upper positive terminal 162 and the lower positive terminal 172. As shown in FIG.
  • FIG. 12(B) is a view showing the connection relationship between the terminal portion 50 of the electrical equipment body 1 rated at 36 V and the connection terminals (162, 167, 172, 177) on the battery pack 100 side.
  • the terminal portion 50 has a shape compatible with the terminal portion 20 shown in FIG. 9, and the difference is that signal terminals (54 to 56, 58) are included in FIG. 12(B). It is provided in the battery pack mounting portion 3 of the electrical equipment main body 1 .
  • the terminal portion 50 is provided with device-side terminals (52a, 52b, 54-56, 57a, 57b, 58) corresponding to the slots 121-128 (see FIG. 10) of the battery pack 100, and a synthetic resin base. It is fixed by being cast into 51 .
  • the terminals 52a, 54 to 58 exposed on the upper side of the base 51 and the plate-shaped terminals 52a, 54 to 56, 57a, 58 on the lower side are made of the same metal plate and are electrically connected. No device-side terminal is provided at a position corresponding to the slot 123 (see FIG. 10).
  • positive input terminals 52a and 52b and negative input terminals 57a and 57b for power reception are formed in small sizes.
  • the positive input terminals 52a and 52b are not conducting.
  • the negative input terminals 57a and 57b are not electrically connected.
  • the positive input terminal 52b and the negative input terminal 57b are integrally formed with a U-shaped bent metal plate, manufactured as a so-called short bar, and one end side is exposed from the base 51 as 52b, and the other end side is exposed from the base 51 as 57b.
  • the positive input terminal 52 a fits only with the upper positive terminal 162 and the negative input terminal 57 a fits only with the upper negative terminal 167 .
  • the positive input terminal 52b is fitted only to the lower positive terminal 172, and the negative input terminal 57b is fitted only to the lower negative terminal 177. As shown in FIG.
  • the positive input terminal 52a is composed of a flat plate-shaped terminal body which is a portion to be fitted to the upper positive terminal 162, and a connector extending from the terminal body and protruding upward from the base 51.
  • the positive input terminal 52a is made of synthetic resin. It is cast on a base 51 made of steel. A through hole is formed in the connector projecting upward, and the connector is connected to the circuit board on the side of the electrical equipment main body 1 .
  • the negative input terminal 57a is similar to the positive input terminal 52a, and has a size slightly smaller than half that of the other terminal portions (54 to 56, 58). Other terminal portions (54 to 56, 58) are terminals for signal transmission, and connector portions are exposed above the base 51 made of synthetic resin.
  • the connector of the positive input terminal 52b and the connector of the negative input terminal 57b are exposed to the rear side of the base 51 (Fig. 12 (B )) and configured to be routable.
  • Recesses 51a and 51b are provided on the front and rear sides of a synthetic resin base 51 of the terminal portion 50 so as to be sandwiched by the housing.
  • the battery pack 100 when the battery pack 100 is attached, the battery pack 100 is moved relative to the electrical equipment main body 1 along the insertion direction, and the positive input terminals 52a and 52b are connected to the same slot 122 ( 10), and are fitted to the upper positive terminal 162 and the lower positive terminal 172, respectively.
  • the positive input terminal 52a is press-fitted between the arm portions 162a and 162b of the upper positive terminal 162 so as to widen the space between the fitting portions of the upper positive terminal 162, and the positive input terminal 52b is connected to the lower positive terminal 172. It is press-fitted so as to widen the space between the arms 172a and 172b.
  • the negative input terminals 57a and 57b are inserted through the same slot 127 (see FIG. 10) and fitted to the upper negative terminal 167 and the lower negative terminal 177, respectively.
  • the negative input terminal 57a is press-fitted between the arms 167a and 167b of the upper negative terminal 167 so as to widen the space between the fitting portions.
  • the negative input terminal 57b is press-fitted so as to widen the space between the arms 177a and 177b of the lower negative terminal 177.
  • FIG. By short-circuiting the positive input terminal 52b and the negative input terminal 57b as shown in FIG. will be
  • FIG. 13A and 13B are diagrams showing the connection state when the battery pack 100 used in the present embodiment is attached to the 18V electrical equipment body 1 (see FIG. 11).
  • the positive input terminal 62 and the negative input terminal 67 are formed at the same height as the other input terminals (64 to 67, 68).
  • the terminal portion of the positive input terminal 62 is fitted and press-fitted so as to expand both the open end portions of the upper positive terminal 162 and the lower positive terminal 172.
  • An upper portion of the terminal portion of the positive input terminal 62 contacts the upper positive terminal 162 , and a lower portion thereof contacts the lower positive terminal 172 .
  • the positive input terminal 62 is connected in parallel. functions as
  • the terminal portion of the negative input terminal 67 is fitted and press-fitted so as to expand both the open end portions of the upper negative terminal 167 and the lower negative electrode terminal 177, so that the upper portion of the terminal portion of the negative input terminal 67 is It contacts the upper negative terminal 167 and a part of the lower region contacts the lower negative terminal 177 .
  • the positive input terminal 62 is connected in parallel. functions as As a result, the output of the parallel connection of the first cell unit 146 and the second cell unit 147 , that is, the rated voltage of 18 V is output to the load device 19 in the electrical equipment main body 1 .
  • the battery pack 100 used in the present embodiment is attached to either the 18V electrical equipment main body (not shown) or the 36V electrical equipment main body 1 (see FIG. 9) to The output of the pack 100 switches automatically. This voltage switching is not performed on the battery pack 100 side, but is performed automatically by the shape of the terminal portion on the electrical equipment main body side.
  • the battery pack 100 When the battery pack 100 is charged by an external charging device (not shown), it is preferable to use a dedicated external charging device capable of charging the first cell unit 146 and the second cell unit 147 independently.
  • the first cell unit 146 and the second cell unit 147 can be connected in parallel and charged using a conventional 18V battery pack external charger. If they are charged as separate circuits, even if the remaining capacities of the cell units 146 and 147 are unbalanced, they can be charged to their optimum states.
  • the slot 121 of the battery pack 100 is provided with positive terminals for charging having the same shape as the upper positive terminal 162 and the lower positive terminal 172, instead of the positive terminals for discharging (162, 172), A positive terminal for charging (not shown) may be connected to a positive terminal of an external charging device (not shown).
  • FIG. 14 is a perspective view showing the entire electrical device 200 according to this embodiment.
  • the electrical equipment main body 201 is an electric power tool that operates at a nominal operating voltage of 54 V, and is formed at a body portion 202a of a synthetic resin housing 202, a handle portion 202b extending downward from the body portion 202a, and a lower side of the handle portion 202b. and a battery pack mounting portion 204 for mounting a battery pack.
  • a cylindrical case 203 that houses a power transmission mechanism is connected to the front of the body portion 202a.
  • a rotary shaft (not visible in the figure) protrudes from the front of the case 203, and a tip tool is fixed to the tip of the rotary shaft.
  • a tip tool holding portion 208 is provided for this purpose.
  • Battery pack mounting portion 204 is formed to mount two battery packs 100 (100A, 100B) side by side in the left-right direction.
  • the battery pack 100 two voltage switching type battery packs 100 shown in FIGS. 10 to 13 are used and arranged side by side in the horizontal direction.
  • the battery pack mounting portion 204 has a first mounting portion 204a formed on the right side and a second mounting portion 204b formed on the left side. to a large degree.
  • one battery pack 100 is denoted by 100A and the other by 100B in this specification. good.
  • FIG. 15 is a bottom view of electrical device 200 shown in FIG.
  • the battery packs 100A and 100B arranged side by side in the horizontal direction have the same rated voltage and the same capacity, and have the same appearance.
  • the battery pack mounting portion 204 is provided with two sets of battery pack mounting mechanisms.
  • the battery pack mounting mechanism according to the present embodiment includes body-side rail portions that engage with the rail portions of battery pack 100, and body-side connection terminals including power terminals and signal terminals.
  • battery pack 100 is provided with a latch mechanism for fixing battery pack 100 so as not to fall off electric device 200 when attached to battery pack attachment portion 204 .
  • FIG. 16 is a circuit diagram of electric device 200 according to the present embodiment, and shows a connection state between electric device main body 201 and two battery packs 100A and 100B.
  • Each of the battery packs 100A and 100B accommodates a cell unit in which five lithium ion batteries are connected in series, that is, a first cell unit 146 and a second cell unit 147.
  • FIG. The voltage across the first cell unit 146 is connected to the upper positive terminal 162 and the lower negative terminal 177
  • the voltage across the second cell unit 147 is connected to the upper negative terminal 167 and the lower positive terminal 172 .
  • 36 V direct current is taken out from the battery pack 100A and 18 V direct current is taken out from the battery pack 100B. did.
  • the terminal portion (body-side terminal portion) 50 shown in FIG. 12 is placed in the mounting portion for the battery pack 100A.
  • the terminal portion (body-side terminal portion) 60 shown in FIG. 13 is arranged in the mounting portion for the battery pack 100B.
  • a lead wire 71 which is wiring means for electric power, is connected to the positive terminal (162) of the battery pack 100A and serves as a + side output wire for the DC power of the two battery packs 100A.
  • the lead wire 72 is connected to the negative terminals (167, 177) of the battery pack 100B via the negative input terminal 67, and serves as the - side output line of the series connection of the two battery packs 100B.
  • the lead wire 59 on the terminal section 50 side, the positive input terminal 52b for shorting, and the negative input terminal 57b correspond to the series connection section in the present invention
  • the positive input terminal 62 and the negative input terminal 67 on the terminal section 60 side correspond to the series connection section in the present invention. corresponds to the parallel connection portion in the present invention.
  • the electrical equipment main body 201 uses a power element having the same withstand voltage as the power element used in the known 36 V electrical equipment main body 1 (see FIG. 9). 201 can be configured. If the operating voltage of the main body of the electrical equipment is double the maximum voltage of the battery packs 100A and 100B, that is, DC 72V, the power element used for the main body of the 72V electrical equipment will be an expensive element that can handle high voltages such as 80V and 100V. Therefore, the manufacturing cost of the electrical equipment main body rises greatly.
  • FIG. 17 is a connection circuit diagram between an electrical equipment main body 201A and two battery packs 100A and 100B according to the first modification of the present embodiment.
  • a common terminal portion 50 is used in the electrical equipment main body 201A.
  • the terminal portion 50 is the same as the terminal portion 50 shown in FIG.
  • the output of 36V is ensured by the series connection by the lead wire 79 of the second cell unit 147 of the battery pack 100A and the second cell unit 147 of the battery pack 100B.
  • the first cell unit 146 of the battery pack 100A and the first cell unit 146 of the battery pack 100B are connected in parallel by the lead wires 77, 78 to ensure an output of 18V.
  • the positive side output of the parallel connection of the first cell units 146 of the battery packs 100A and 100B is connected to the lead wire 74 at the connection point a1, and the negative side output is connected to the battery pack 100A from the connection point a2 by the lead wire 76. It is connected to the positive input terminal 52 b of the second cell unit 147 .
  • the negative side of the overall output of battery pack 100A and battery pack 100B is output through lead wire 75 from negative input terminal 57a.
  • a DC voltage of 54 V is output between the lead wires 74 and 75 as in the embodiment shown in FIG.
  • the degree of decrease in the battery capacity of the battery packs 100A and 100B is uniform, but the degree of decrease in the cell units inside the battery packs 100A and 100B is not uniform. power consumption is high. Therefore, even if the remaining capacities of the first cell unit 146 and the second cell unit 147 are unequal, a dedicated external charger capable of charging them independently is prepared to charge the battery packs 100A and 100B. should be charged.
  • the input terminal 52b and the lead wire 76 correspond to the series connection part, the positive input terminal 52a connected to the upper positive terminal 162 of the battery pack 100B, the negative input terminal 57b connected to the lower negative terminal 177 of the battery pack 100B, Lead wire 77, lead wire 78, positive input terminal 52a connected to upper positive terminal 162 of battery pack 100A, and negative input terminal 57b connected to lower negative terminal 177 of battery pack 100A correspond to parallel connection portions.
  • FIG. 18 is a connection circuit diagram between an electrical equipment body 201B and two battery packs 100A and 100B according to a second modification of the present embodiment.
  • the electric equipment main bodies 201A and 201B both use the terminal section 50 for 36V shown in FIG.
  • the positive input terminal 52a of the battery pack 100A side is connected to the positive input terminal of the electrical equipment main body 201B by the lead wire 71, and the positive input terminal 52b is connected to the negative input terminal 57b by the lead wire (or short bar) 59.
  • the negative input terminal 57a on the battery pack 100B side becomes the positive side input of the electrical equipment main body 201B through the lead wire 72.
  • FIG. 18 is a connection circuit diagram between an electrical equipment body 201B and two battery packs 100A and 100B according to a second modification of the present embodiment.
  • the electric equipment main bodies 201A and 201B both use the terminal section 50 for 36V shown in FIG.
  • the positive input terminal 52a of the battery pack 100A side is connected to the positive input
  • the negative input terminal 57a on the battery pack 100A side is connected by a lead wire 73 to the positive input terminal 52b on the battery pack 100B side.
  • the positive input terminal 52a and the negative input terminal 57b on the battery pack 100B side are not wired.
  • 54 VDC power is supplied between leads 71 and 72 . Since one cell unit (first cell unit 146) on the battery pack 100B side is not used, it is not discharged.
  • battery pack 100 is positioned on the right side of battery pack mounting portion 204 (see FIG. 14).
  • Asymmetrical power consumption occurs between battery packs 100A and 100B mounted on the left side or between the first and second cell units of battery pack 100 .
  • Embodiment 6 shown in FIGS. 19 and 20 attempts to solve this problem by switching control by the control unit on the side of the electrical equipment main body.
  • FIG. 19 is a connection circuit diagram between an electrical equipment main body 201C and two battery packs 100A and 100B according to Embodiment 6 of the present invention.
  • the appearance of the electrical equipment main body 201C is the same as the shape shown in FIGS. 14 and 15, and it is novel in that a first relay switch 261 and a second relay switch 262 are provided inside the electrical equipment main body 201C.
  • Each of the first relay switch 261 and the second relay switch 262 is a two-pole relay, and includes two common contacts (first and fourth contacts) and four contacts (2 contacts) selectively connected to each. No., 3, 5 and 6 contacts).
  • the terminal portions 50 and 250 to be fitted with the battery packs 100A and 100B have the same shape, but here, for identification purposes, the numbers are assigned to the 50 series (battery pack 100A side) and the 200 series (battery pack 100B side). Divide.
  • the positive input terminal 52a of the first battery pack 100A is connected to the lead wire 271 and connected to the load portion of the electrical equipment main body 201C as a positive output of 54V output.
  • the positive input terminal 52 b is connected to the first pin of the first relay switch 261 by a lead wire 272 .
  • the negative input terminal 57b of the first battery pack 100A is connected to the 4th pin of the first relay switch 261 by a lead wire 273, and the negative input terminal 57a is connected to the 6th pin of the first relay switch 261 by a lead wire 274.
  • 2 is connected to the positive input terminal 252a on the side of the battery pack 100B.
  • the second pin of the first relay switch 261 is connected to the fifth pin, and the third pin of the first relay switch 261 is connected to the lead wire 271 .
  • the output on the side of the second battery pack 100B is wired in the same way as the output on the side of the first battery pack 100A. That is, the positive input terminal 252a of the second battery pack 100B side is connected to the lead wire 274, and the positive input terminal 252b is connected to the first pin of the second relay switch 262 by the lead wire 275.
  • the negative input terminal 257b is connected to the 4th pin of the second relay switch 261 by a lead wire 276, and the negative input terminal 257a is connected to the 6th pin of the second relay switch 262 and the second battery pack 100B by a lead wire 278. is connected to the load section of the electrical equipment main body 201C as the negative electrode output of the electrical equipment main body 201C.
  • the 2nd pin of the second relay switch 262 is connected to the 5th pin, and the 3rd pin is connected to the lead wire 274 by the lead wire 277 .
  • the contactor connected to the first pin of the first relay switch 261 contacts the second pin, and the contactor connected to the fourth pin contacts the fifth pin.
  • the serial connection voltage (DC 36 V) of the first cell unit 146 and the second cell unit 147 of the battery pack 100A is output between the lead wires 271 and 274 (Fig. 16 battery pack 100A side).
  • the contact connected to the 1st pin contacts the 3rd pin, and the contact connected to the 4th pin contacts the 6th pin.
  • the parallel connection voltage (DC 18V) of the first cell unit 146 and the second cell unit 147 of the battery pack 100B is output between the lead wires 274 and 278 (Fig. 16 battery pack 100B side).
  • the first relay switch 261 and the second relay switch 262 one side of the two battery packs 100A and 100B is set to output the high voltage side, and the other side is set to the output of the low voltage side.
  • the lead wire 274 By connecting the output of the battery pack 100A and the output of the battery pack 100B in series by the lead wire 274, not twice the power of the high voltage side, but the high voltage output (36 V) and the low voltage output (18 V) can be taken out (54V).
  • the contactor of the first relay switch 261 and the contactor of the second relay switch 262 are controlled to be switched in conjunction with each other. That is, when the connection of the contacts of the first relay switch 261 is on the serial output side (1-2 pins are shorted, 4-5th pins are shorted), the connection of the contacts of the second relay switch 261 is opposite. parallel connection side (pins 1-3 are shorted, pins 4-6 are shorted).
  • connection of the contacts of the first relay switch 261 is switched to the parallel connection side (1-3 pins are short-circuited, 4-6 pins are short-circuited)
  • the contact of the second relay switch 261 is The connection is moved to the opposite side and switched to the serial output side (pins 1 and 2 are shorted, pins 4 and 5 are shorted).
  • Such interlocking switching operation is controlled by a control signal from a control section (control circuit) 240 on the side of the electrical equipment main body 201C (a control procedure will be described later with reference to FIG. 20).
  • control section control circuit
  • the switching operation between the contacts of the first relay switch 261 and the contacts of the second relay switch 262 is performed by one of the battery packs 100A, 100B. This is done when the above are connected. In other words, when none of the battery packs 100A and 100B is attached to the electrical equipment main body 201C, not only the relay switches (261, 262) but also the control unit 240 do not operate. When the contactors of the relay switches (261, 262) are switched while the battery packs 100A and 100B are attached, the positive and negative electrodes of the first cell unit 146 are short-circuited depending on the positions of the plurality of contacts.
  • the contactor of the first relay switch 261 and the second relay switch 262 are arranged such that a non-energized section (so-called "off section") always occurs between the contact before switching and the contact after switching. It is better to use a shaped relay switch.
  • the first and second relay switches 261 and 262 can be arbitrarily switched using the first and second relay switches 261 and 262 .
  • the first and second relay switches 261, 262 can be built in the housing 202 of the electrical equipment body 201C. By using these wirings in the electric device main body 201C and the first and second relay switches 261 and 262, it is possible to use a plurality of voltage switching type battery packs 100 and change the take-out voltage of each.
  • the first and second relay switches 261 and 262 are realized by so-called 2-pole 4-contact relays. Also good.
  • an electric circuit using a plurality of semiconductor switching elements to perform the same function as the relay switches 261 and 262 is configured to switch between the high voltage output and the low voltage output side of the battery packs 100A and 100B. Also good.
  • FIG. 20 is a more detailed circuit diagram of the electrical equipment body 201C shown in FIG. Only the power terminal groups (162, 167, 172, 177) of the battery packs 100A, 100B and the power terminal groups (52a, 52b, 57a, 57b, 252a, 252b, 257a, 257b) of the electric device main body 201C are explained in FIG. However, in FIG. 20, in addition to these, the signal terminal group, that is, the connection relationship between the T terminals 164 and LD terminals 168 of the battery packs 100A and 100B and the T terminals 54 and 254 and the LD terminals 58 and 258 on the side of the electrical equipment main body 201C. is also illustrated. Here, only the connection parts not shown in FIG.
  • the signal lines 54a, 58a, 254a, 258a from the signal terminals (54, 58, 254, 258) to the control unit 240 are indicated by dotted lines for clarity, but these dotted lines are electrically wired. It is shown that.
  • a control unit 240 is provided in the electrical equipment main body 201C.
  • the control unit 240 can be configured using a microcomputer such as an MPU (Micro Processor Unit). , 254) are used to control communication with the battery packs 100A and 100B.
  • the microcomputer of the control unit 240 has a plurality of input ports. By measuring the voltage (Vb1) of the positive input terminal 52b and the negative input terminal 57a of the battery pack 100A through lead wires 272a and 274a, the first cell unit ( The voltage of the cell unit 146 of the battery pack 100A (indicated by circle 1 in the figure) is measured.
  • the microcomputer of the control section measures the voltage (Vb2) of the positive input terminal 52a and the negative input terminal 57b of the battery pack 100A through the lead wires 271a and 273a, thereby controlling the second cell unit (the cell of the battery pack 100A). Measure the voltage on unit 147 (indicated by circle 2 in the figure).
  • the microcomputer of the control unit 240 measures the voltage (Vb4) of the positive input terminal 52b and the negative input terminal 57a of the battery pack 100A through the lead wires 274b and 276a, thereby determining the fourth cell unit (the cell unit 146 of the battery pack 100A, 4) is measured.
  • the microcomputer of the control unit 240 uses the measured voltages Vb1, Vb2, Vb3, and Vb4 of the battery cells (146, 147) to send a "relay control signal A” to the first relay switch 261 through the lead wire 241.
  • a switching instruction is issued by sending a “relay control signal B” to the second relay switch 262 through the lead wire 242 .
  • These "relay control signal A” and “relay control signal B” are sent synchronously, and are controlled so that switching timings of the first relay switch 261 and the second relay switch 262 are synchronous.
  • the drain-source of the switching element 215 is made conductive by sending a high signal to the gate of the switching element 215.
  • the gate of the switching element 215 is set low to cut off the drain-source.
  • the current flowing through motor 206 is monitored by controller 240 by measuring the voltage across shunt resistor 216 provided in the current path to motor 206 .
  • the motor 206 is illustrated as a DC motor with brushes, a brushless DC motor using an inverter circuit may be used.
  • a resistor or another switching element may be interposed, but they are not shown in FIG.
  • two signal lines are required for transmitting the voltage across the shunt resistor 216 to the control unit 240, only one line is described here for simplicity.
  • FIG. 21 is a flow chart showing the control procedure of the control section 240 of the electrical equipment main body 201C.
  • battery pack 100A is described as “battery pack A”
  • battery pack 100B is described as “battery pack B”.
  • the procedure shown in control unit 240 is executed in software by executing a program by a microcomputer included in control unit 240 .
  • first relay switch 261 for switching the output of battery pack 100A and second relay switch 262 for switching the output of battery pack 100B are switched in conjunction.
  • the microcomputer detects whether the trigger switch is turned off by not operating the trigger lever 5. (step 282). This is because the fact that the trigger switch is on means that the electrical device main body 201C is in operation and the work is being performed, so the connection state of the battery packs 100A and 100B should not be switched during operation.
  • the trigger switch if the trigger switch is on, it waits until it is turned off. If it is OFF, the microcomputer of the control unit 240 determines whether the output from the LD terminal 168 of the battery pack 100A is a discharge permission, that is, not a ground potential indicating discharge prohibition, but a high potential indicating discharge permission. do.
  • the microcomputer determines whether or not the output from the LD terminal 168 on the battery pack 100B side permits discharging (step 289). In order to inhibit further discharge, the microcomputer turns off the switching element 215 (see FIG. 20) to inhibit rotation of the motor 206 (step 291), and terminates the procedure in the flow chart of FIG. If the battery pack 100B side is in the discharge permission state at step 289 (step 289), the first relay switch 261 connects the battery pack A in parallel, and the second relay switch 262 connects the battery pack 100B side in series. (step 290).
  • step 283 it is determined whether battery pack 100B is in the discharge permitted state (step 284).
  • the battery pack B is in a non-dischargeable state, that is, when the LD signal 168 of the battery pack 100B is at the ground potential
  • the first relay switch 261 sets the battery pack A in a series connection state
  • the second relay switch 262 The battery pack 100B side is brought into a parallel connection state (step 288).
  • the connection at step 288 is the same as the state of the first relay switch 261 and the second relay switch 262 shown in FIG.
  • step 284 when battery pack 100B is in the discharge permission state, the microcomputer in control unit 240 determines that the total voltage of voltage Vb1 of first cell unit 146 and voltage Vb2 of second cell unit 147 of battery pack 100A is , the total voltage of the voltage Vb3 of the first cell unit 146 and the voltage Vb4 of the second cell unit 147 of the battery pack 100B (step 285).
  • the first relay switch 261 connects the battery pack A in series
  • the second relay switch 262 connects the battery pack A to the series connection state.
  • the pack 100B side is brought into a parallel connection state (step 286).
  • the first relay switch 261 sets the battery pack A to a parallel connection state
  • the second relay switch 262 sets the battery pack 100B side to a series connection state (step 284).
  • the first relay switch 261 and the second relay switch are controlled by the microcomputer in the control unit 240 in a non-operating state (a state in which the trigger lever 205 is not pulled) in which the electrical device body 201 is not operating. H.262 switching can be performed. By this switching, the power on the battery pack 100A side and the battery pack 100B side can be consumed without waste. In Embodiment 6, switching between the first relay switch 261 and the second relay switch 262 is performed when the trigger lever 205 is not pulled, not when working with an electric power tool (while the tip tool is operating). .
  • the voltage or remaining capacity of each cell unit of the two battery packs is compared, and the battery pack 100 with the higher voltage and the larger remaining capacity is connected in series, and the one with the lower voltage and the smaller remaining capacity is connected in series.
  • battery packs 100 are connected in parallel, and the switching operation by the first relay switch 261 and the second relay switch 262 is performed once or more, for example, several times, from the time the battery packs 100A and 100B are attached to the time they are removed. good.
  • the first relay switch 261 and the second relay switch 262 are switched by the microcomputer in the control unit 240 to determine whether the output voltage of the battery packs 100A and 100B is "series connection (output 36V)" or "parallel connection (18V)".
  • Various controls are possible by performing by As an example, it is also possible to prioritize switching of the relay switches according to the remaining capacity of the battery pack 100 and periodically perform the switching. First, the remaining capacities of the battery packs 100 are compared, and the battery pack with the larger amount is connected in series, and the battery pack with the lower amount is connected in parallel.
  • the microcomputer in the control unit 240 continues to count the remaining battery capacity of the electrical equipment main body 201C, and when the count of the remaining battery capacity reaches the set threshold value, the connection form of the first relay switch 261 and the second relay switch 262 is changed. switch. For example, when the remaining capacity of the battery pack with the lowest remaining capacity reaches 3/4, the battery pack is replaced, and when the remaining capacity of the battery pack with the lowest remaining capacity reaches 1/2, the battery pack is switched again, and then the remaining capacity is reduced. When the remaining capacity of the smaller battery pack reaches 1/4, the battery packs are switched again, and discharging is allowed until either one (or both) of the battery packs 100A, 100B issues a discharge prohibition signal (LD signal).
  • LD signal discharge prohibition signal
  • the remaining capacity count of these battery packs 100A and 100B is monitored by the controller on the battery pack side.
  • the microcomputer on the side of the main body of the electrical equipment may receive the signal through the communication terminal (V terminal).
  • V terminal communication terminal
  • FIG. 22 is a perspective view of an electric device 300 according to Embodiment 7 of the present invention.
  • a configuration is adopted in which a portion to which two battery packs 100A and 100B are attached is connected to electrical equipment main body 301 via adapter 400 .
  • the adapter 400 is detachable from a battery pack mounting portion 303 for mounting a battery pack on the electrical equipment main body 301 side, and allows a plurality of battery packs 100A and 100B to be connected to the battery pack mounting portion 303 .
  • one battery pack mounting portion 303 is formed in the electrical equipment main body 301, and the adapter 400 is mounted thereon. Battery packs 100A and 100B are attached to adapter 400, respectively.
  • Latch buttons 441 are provided on the left and right side surfaces of the adapter 400 , and the adapter 400 can be removed from the electric device main body 301 by relatively moving the adapter 400 rearward while pressing the latch buttons 441 .
  • Rail portions corresponding to the rail portions of battery packs 100A and 100B are provided on the lower surface side of adapter 400, respectively.
  • Battery pack 100A and battery pack 100B attached to adapter 400 have the same shape, and when battery pack 100A or 100B is relatively moved rearward while pressing respective latch buttons 141a and 141b (not visible in the figure), the adapter Battery packs 100A and 100B can be removed from 400.
  • FIG. 23 is a circuit diagram of electrical equipment main body 301 and adapter 400 according to Embodiment 7, and shows a connection state between electrical equipment main body 301 and adapter 400 .
  • the basic circuit diagram is the same as that of FIG. 21, and the main difference is that the first relay switch 261 and the second relay switch 262 are housed in an adapter 400 that can be separated from the electrical equipment main body 301 .
  • the adapter 400 and the electric device main body 301 are separated from each other, and electric power is transmitted between the positive terminal 457a and the positive input terminal 322, and between the negative terminal 457a and the negative input terminal 327, and a discharge inhibition signal is transmitted through the LD terminals 468 and 328. . Therefore, there is no signal path through which the controller (not shown in FIG.
  • the controller 440 is provided also in the adapter.
  • the control unit 440 can be configured using a microcomputer such as an MPU (Micro Processor Unit), for example, and performs switching control of the first relay switch 261 and the second relay switch 262 by monitoring the voltages of the battery packs 100A and 100B.
  • the method of controlling the first relay switch 261 and the second relay switch 262 is the same as the control of the control section 240 shown in FIG.
  • Control unit 440 further processes the signal received from battery packs 100A and 100B, converts it into a discharge prohibition signal that is transmitted to electrical equipment main body 301, and outputs the signal as LD terminal 468.
  • FIG. Specifically, when the two battery packs 100A and 100B are prohibited from being used, that is, when the state corresponding to step 291 in FIG. 21 is reached, the potential of the LD terminal 468 is dropped to the ground potential.
  • a control unit is also provided on the side of the electrical equipment main body 301 to control the rotation of the motor 306, monitor the current flowing through the motor 206, and control the control unit using other communication terminals (not shown). 440 for indirect communication with the battery packs 100A and 100B.
  • a control unit (not shown) on the side of the electric device main body 301 allows the motor 306 to be driven by conducting the switching element 315 when the potential of the LD terminal 328 is high. It cuts off the drain-source of the switching element 315 .
  • FIG. 24 is a flow chart showing a control procedure by the controller 440 of the adapter 400.
  • FIG. The operation of the control unit 440 is the same as the operation of the control unit 240 shown in FIG. Steps of the same procedure are given the same reference numerals (281 to 291). The difference is the addition of steps 292-296.
  • the controller 440 After the connection form (series connection or parallel connection) between the cell units of the battery packs 100A and 100B is set in steps 286 to 288 and 290, the controller 440 connects the LD terminal of the electrical equipment main body 301 via the LD terminal 468. 328 outputs a discharge enable signal (high potential indicating discharge OK). Further, after the control unit 440 determines in step 291 to stop discharging from the battery packs 100A and 100B, the control unit 440 lowers the LD terminal 468 to the ground potential, thereby to ground potential.
  • adapter 400 accommodates two relay switches 261 and 262, and the built-in controller 440 changes the connection configuration of battery packs 100A and 100B.
  • a voltage 1.5 times higher than that on the high potential side can now be output to the electrical equipment main body 301 .
  • the electrical equipment main body 301 is an electrical equipment that can operate in the rated range of 36V to 54V, further various usage patterns are possible. For example, when high output power of the electric device main body 301 is required, the first cell unit and the second cell unit of one of the battery packs 100A and 100B are connected in parallel, and the first cell unit and the second cell of the other battery pack are connected in parallel.
  • the units can be serially connected and connected in series.
  • the first cell unit and the second cell unit of both the battery packs 100A and 100B are connected in series, and those outputs are connected in parallel. It is also possible to realize double the battery capacity of one battery pack 100 with the same voltage as the battery pack 100 (that is, 36 V).
  • the control unit 533 may acquire the voltage for generating the control system power supply from the input voltage line to the inverter circuit 543 .
  • the V terminal can be omitted.
  • power is not supplied to the main body of the electrical equipment at the timing of turning off the relay, but the microcomputer of the control unit 533 may be activated at the time of re-energization.
  • the control unit 533 may use power stored in a capacitor or the like as power at the timing of turning off when the relay is switched.
  • the step-down method by the power supply circuit of the control unit 533 is not limited to one step, and may be two steps.
  • the power supply circuit of the control unit 533 may be configured to step down the input voltage (18 V, 36 V, or 54 V) to an intermediate voltage such as 12 V, and then step down the intermediate voltage to the power supply voltage (eg, 5 V).
  • the means for switching between series connection and parallel connection has been realized by a plurality of relay switches, but the switching means may be realized by using a plurality of semiconductor switching elements instead of the relay switches.
  • the voltage, the number of cell units, the number of contacts, and the like given as specific numerical values in the embodiments do not limit the scope of the invention, and can be arbitrarily changed according to the required specifications.
  • the electric device main body of the present invention is not limited to the impact driver exemplified in the embodiment, and may be an electric tool or a work machine other than the impact driver, or an electric device such as a radio other than the electric tool or the work machine. There may be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided are a battery pack and an electrical device with which it is possible to diversify output. When outputting 18 V between the + terminal and the – terminal of the battery pack 510, a control unit 513 puts all respective coils of relays SW1-SW4 in a non-energized state and puts the cell units 521-523 in a fully parallel-connected state. When outputting 36 V between the + terminal and the – terminal of the battery pack 510, the control unit 513 puts the respective coils of the relays SW1, SW3 in a non-energized state and energizes the respective coils of the relays SW2, SW4. The cell units 521, 522 are thereby put in a parallel-connected state, and the cell unit 523 is put in a state of being serially connected to the parallel-connected cell units 521, 522. When outputting 54 V between the + terminal and the – terminal of the battery pack 510, the control unit 513 energizes all of the respective coils of the relays SW1-SW4 and puts the cell units 521-523 in a fully serially connected state.

Description

電気機器及び電池パックElectrical equipment and battery packs
本発明は、複数のセルユニットを有する電池パック及びそれを電源とする電気機器、並びに複数の電池パックを電源として稼働する電気機器に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery pack having a plurality of cell units, electrical equipment using the same as a power source, and electrical equipment operating using a plurality of battery packs as a power source.
様々な電気機器が、二次電池を用いた電池パックにて駆動されるようになり、電気機器のコードレス化が進んでいる。また、電気機器の高出力化に伴い、電池パックの大容量化、高電圧化が進んでいる。特許文献1では、出力電圧を切り替え可能として、異なる電圧の電気機器間で共用できるようにした電圧切り替え型電池パックと、そのような電圧切り替え電池パックを使用する電気機器が開示されている。また、特許文献2では、電池パックを複数個用いて、複数の電池パックを直列又は並列接続することによって、高い電圧、大容量を実現した電源装置が開示されている。また、特許文献3では、2つのセルユニットを有して2種類の電圧を出力可能な電池パックが開示されている。 Various electrical devices are driven by battery packs using secondary batteries, and electrical devices are becoming cordless. In addition, with the increase in the output of electrical equipment, the capacity and voltage of battery packs are increasing. Patent Document 1 discloses a voltage-switchable battery pack whose output voltage is switchable so that it can be shared between electrical devices with different voltages, and an electrical device using such a voltage-switchable battery pack. Further, Patent Document 2 discloses a power supply device that achieves high voltage and large capacity by using a plurality of battery packs and connecting the plurality of battery packs in series or in parallel. Further, Patent Document 3 discloses a battery pack that has two cell units and can output two types of voltage.
特開2019-4631号公報JP 2019-4631 A 特開2014-50234号公報JP 2014-50234 A 特開2019-21603号公報Japanese Unexamined Patent Application Publication No. 2019-21603
特許文献1の電池パックは、18Vと36Vの2つの電池パックを出力可能であるが、これらの電圧以外の出力を得ることができない。また、特許文献2の電源装置では、複数の電池パックを直列接続することでのそれらの合計の出力が得ることができる。しかしながら、電池パック電圧の整数倍以外の電圧の出力を得ることはできない。例えば、定格電圧36Vの電池パックを2つ用いた場合には定格電圧72Vの出力は得られるが、それ以外の電圧を出力させることはできなかった。 The battery pack of Patent Document 1 can output two battery packs of 18V and 36V, but cannot obtain outputs other than these voltages. Moreover, in the power supply device of Patent Document 2, a total output can be obtained by connecting a plurality of battery packs in series. However, it is not possible to obtain an output voltage other than an integral multiple of the battery pack voltage. For example, when two battery packs with a rated voltage of 36 V are used, an output with a rated voltage of 72 V can be obtained, but other voltages cannot be output.
本発明は、下記の課題1~4の少なくともいずれかの解決を目的とする。・課題1…出力の多様化が可能な電池パック及び電気機器を提供すること。・課題2…複数の電池パックの最大定格電圧の整数倍以外の電圧の出力を可能とした電気機器を提供すること。・課題3…複数の電池パックを接続する電気機器の本体側に入力される電圧を調整可能とすること。・課題4…低電圧と高電圧の出力を可能とした電圧切替型電池パックを複数用いて、それぞれの取り出し電圧を変えることができる電気機器を提供すること。 An object of the present invention is to solve at least one of the following problems 1 to 4. - Problem 1: To provide a battery pack and an electric device capable of diversifying outputs. - Problem 2: To provide an electric device capable of outputting a voltage other than an integral multiple of the maximum rated voltage of a plurality of battery packs. - Problem 3: To be able to adjust the voltage input to the main body side of an electrical device to which a plurality of battery packs are connected.・Problem 4: To provide an electric device that uses a plurality of voltage-switchable battery packs capable of outputting low voltage and high voltage, and can change the take-out voltage of each.
本発明のある態様は、電気機器である。この電気機器は、複数のセルユニットを備えた電池パックと、前記電池パックに接続される電気機器本体と、を有する電気機器であって、前記複数のセルユニットの相互接続状態を切替え可能な切替え部を有し、前記切替え部は、前記複数のセルユニットの相互接続状態を、前記複数のセルユニットの各々の消費電力が互いに実質的に均等となる均等接続状態と、前記複数のセルユニットのうち一部のセルユニットと他のセルユニットとで消費電力が互いに実質的に均等とならない非均等接続状態と、に切替え可能である。 One aspect of the present invention is an electrical device. This electrical device includes a battery pack including a plurality of cell units, and an electrical device main body connected to the battery pack, and is capable of switching an interconnection state of the plurality of cell units. wherein the switching unit selects an interconnection state of the plurality of cell units from an equal connection state in which the power consumption of each of the plurality of cell units is substantially equal to each other, and an even connection state in which power consumption of each of the plurality of cell units is substantially equal It is possible to switch to a non-uniform connection state in which the power consumptions of some cell units and the other cell units are not substantially equal to each other.
本発明の別の態様は、電池パックである。この電池パックは、複数のセルユニットと、前記複数のセルユニットの相互接続状態を切替え可能な切替え部と、を有し、前記切替え部は、前記複数のセルユニットの相互接続状態を、前記複数のセルユニットの各々の消費電力が互いに実質的に均等となる均等接続状態と、前記複数のセルユニットのうち一部のセルユニットと他のセルユニットとで消費電力が互いに実質的に均等とならない非均等接続状態と、に切替え可能である。 Another aspect of the invention is a battery pack. This battery pack includes a plurality of cell units and a switching section capable of switching interconnection states of the plurality of cell units, wherein the switching section switches the interconnection state of the plurality of cell units to the plurality of cell units. and an evenly connected state in which the power consumption of each of the cell units is substantially equal to each other, and the power consumption of some cell units and other cell units of the plurality of cell units are not substantially equal to each other. It is possible to switch between a non-uniform connection state and a non-uniform connection state.
本発明のさらに別の態様は、電池パックである。この電池パックは、3つのセルユニットと、前記3つのセルユニットの相互接続状態を切替え可能な切替え部と、を有し、前記切替え部は、前記3つのセルユニットの相互接続状態を、前記3つのセルユニットが全て並列接続となる状態と、前記3つのセルユニットが全て直列接続となる状態と、前記3つのセルユニットのうち2つのセルユニットが並列接続で当該2つのセルユニットに対して前記3つのセルユニットのうち他の1つのセルユニットが直列接続となる状態、又は、前記3つのセルユニットのうち2つのセルユニットが直列接続で当該2つのセルユニットに対して前記3つのセルユニットのうち他の1つのセルユニットが非接続となる状態と、に切替え可能である。 Yet another aspect of the invention is a battery pack. This battery pack has three cell units and a switching unit capable of switching interconnection states of the three cell units, and the switching unit switches the interconnection state of the three cell units to the three cell units. a state in which all of the three cell units are connected in parallel; a state in which all of the three cell units are connected in series; A state in which another one of the three cell units is connected in series, or a state in which two of the three cell units are connected in series and the three cell units are connected in series with respect to the two cell units. It is possible to switch to a state in which the other one of the cell units is disconnected.
本発明のさらに他の特徴によれば、複数のセルユニットを有する複数の電池パックと、電池パックが装着可能な電気機器本体により構成される電気機器であって、電気機器本体内に、複数の電池パックが有する複数のセルユニットの少なくとも2つを互いに並列に接続する並列接続部と、複数の電池パックが有する複数のセルユニットのうち並列接続部に直接接続されていない他の少なくとも1つのセルユニットを並列接続部に対して直列に接続可能な直列接続部を設けた。直列接続部は、複数のセルユニットのうち並列接続部に直接接続されていない少なくとも2つの他のセルユニットを互いに直列に接続する。また、電池パックは、複数のセルユニットとして少なくとも第1セルユニット及び第2セルユニットを有し、第1セルユニット及び第2セルユニットの正極と負極が独立した出力端子に割り当てられ、複数の電池パックのうち、一つの電池パックの第1セルユニットと第2セルユニットを並列接続とし、残りの電池パックの第1セルユニットと第2セルユニットを直列接続とし、それら並列接続の出力と直列接続の出力を、さらに直列に接続する。電気機器本体には、電池パックを装着するための複数の電池パック装着部が設けられ、複数の電池パック装着部には、電池パック装着機構と出力端子を含み、電気機器本体に並列接続部と直列接続部を形成する配線手段を、それぞれ内蔵する。 According to still another aspect of the present invention, there is provided an electrical device including a plurality of battery packs having a plurality of cell units and an electrical device main body to which the battery packs can be attached, wherein the electrical device main body includes a plurality of battery packs. A parallel connection portion that connects at least two of the plurality of cell units of the battery pack in parallel, and at least one other cell that is not directly connected to the parallel connection portion among the plurality of cell units that the plurality of battery packs have. A series connection section is provided to allow the units to be connected in series with respect to the parallel connection section. The series connection connects at least two other cell units, which are not directly connected to the parallel connection, among the plurality of cell units in series. Further, the battery pack has at least a first cell unit and a second cell unit as a plurality of cell units, the positive and negative electrodes of the first cell unit and the second cell unit are assigned to independent output terminals, and the plurality of batteries Among the packs, the first cell unit and the second cell unit of one battery pack are connected in parallel, the first cell units and the second cell units of the remaining battery packs are connected in series, and the outputs of these parallel connections are connected in series. and then connect in series. The electric device main body is provided with a plurality of battery pack mounting portions for mounting battery packs, and the plurality of battery pack mounting portions includes a battery pack mounting mechanism and an output terminal, and the electric device main body includes a parallel connection portion. Wiring means for forming a series connection are incorporated in each.
本発明のさらに他の特徴によれば、電池パックとして第1の電池パックと第2の電池パックを用い、電気機器本体は第1の電池パックのセルユニットを直列に接続し、第2の電池パックはセルユニットを並列に接続する配線部を設けた。また、電気機器本体を、電池パックを装着するための電池パック装着部と、電池パック装着部から着脱可能であって電池パック装着部へ複数の電池パックを接続可能とするアダプタ部を含むように構成することも可能であり、その構成ではアダプタ部に並列接続部と直列接続部を形成する配線手段を内蔵する。 According to still another feature of the present invention, a first battery pack and a second battery pack are used as the battery packs, and the electric device main body connects the cell units of the first battery pack in series and the second battery pack. The pack has a wiring section that connects the cell units in parallel. Further, the electric device main body includes a battery pack mounting portion for mounting a battery pack, and an adapter portion detachable from the battery pack mounting portion and capable of connecting a plurality of battery packs to the battery pack mounting portion. A configuration is also possible in which the adapter section incorporates wiring means forming a parallel connection and a series connection.
本発明のさらに他の特徴によれば、電気機器本体に電池パックを装着するための複数の電池パック装着部を設け、複数の電池パック装着部に、それぞれ電池パック装着機構と電力端子を形成し、電気機器本体に、複数の電力端子群の接続を並列または直列に切り替えるための複数のスイッチを設けて、電気機器本体に格納された制御部によってスイッチの接続形態を切り替えるようにした。制御部は、スイッチを切り替えることによって複数の電池パックのうち、直列接続状態で出力させる側と、並列接続状態で出力させる側を選択する。電気機器の本体には、複数のセルユニットの電池残量または電圧を検出可能な検出部を設け、制御部は検出部の検出結果に基づいて直列に接続するセルユニットと、並列に接続するセルユニットを選択する。この際、検出部が複数のセルユニットに異なる電圧のセルユニットが含まれていることを検出すると、制御部は電圧の異なるセルユニット同士を直列に接続する。尚、電気機器としてトリガスイッチを有して先端工具を駆動する電動工具を用いる場合は、制御部は、トリガスイッチがオフ状態においてのみスイッチの接続形態を切り替えるようにする。 According to still another feature of the present invention, a plurality of battery pack mounting portions for mounting battery packs are provided in the electrical equipment body, and a battery pack mounting mechanism and a power terminal are formed in each of the plurality of battery pack mounting portions. The electrical equipment main body is provided with a plurality of switches for switching the connection of a plurality of power terminal groups in parallel or in series, and the connection form of the switches is switched by a control unit housed in the electrical equipment main body. The control unit selects a side to output in a series connection state and a side to output in a parallel connection state among a plurality of battery packs by switching a switch. The main body of the electrical equipment is provided with a detector that can detect the remaining battery level or voltage of a plurality of cell units. Select a unit. At this time, when the detection unit detects that the plurality of cell units include cell units with different voltages, the control unit connects the cell units with different voltages in series. When using an electric power tool having a trigger switch to drive a tip tool as an electric device, the control unit switches the connection form of the switch only when the trigger switch is in the OFF state.
本発明によれば、上記の課題1~4の少なくともいずれかを解決できる。具体的には、本発明によれば、出力の多様化が可能な電池パック及び電気機器を提供できる。又は、電圧切替型電池パックを複数用いて、最大電圧の整数倍以外の中間電圧を引き出すことができる電気機器が実現できる。又は、電気機器本体内で、装着された電池パックのセルユニットの接続を直列又は並列として、セルユニットの接続状況を組み合わせることが可能となる。このように、電圧切替型電池パックを複数用いて必要に応じて異なる電圧を出力することが可能となるので、電気機器を用いた作業性が向上する。 According to the present invention, at least one of the above problems 1 to 4 can be solved. Specifically, according to the present invention, it is possible to provide a battery pack and an electric device capable of diversifying outputs. Alternatively, by using a plurality of voltage-switchable battery packs, it is possible to realize an electric device capable of extracting an intermediate voltage other than an integral multiple of the maximum voltage. Alternatively, it is possible to combine the connection states of the cell units by setting the connection of the cell units of the attached battery pack in series or in parallel within the main body of the electric device. In this way, it is possible to use a plurality of voltage-switching battery packs to output different voltages as required, thereby improving the workability of using electrical equipment.
(A)は、本発明の実施の形態1に係る電気機器501の正面図。(B)は、電気機器501の側面図。(A) is a front view of electrical equipment 501 according to Embodiment 1 of the present invention. (B) is a side view of the electric device 501. FIG. (A)は、電気機器501の概略回路ブロック図。(B)は、図2(A)における電池パック510の出力電圧とリレーSW1~SW4のコイル通電状態との関係をまとめた表。(A) is a schematic circuit block diagram of an electrical device 501; (B) is a table summarizing the relationship between the output voltage of the battery pack 510 and the energization states of the coils of the relays SW1 to SW4 in FIG. 2(A). 電気機器501の動作の一例を示すシーケンス図。4 is a sequence diagram showing an example of the operation of the electrical device 501; FIG. 電池パック510又はそれと同様の構成でセルユニットの数を増やした電池パックにおける、セルユニットの数、出力可能な電圧、リレー接点数、C接点リレーの個数、及びB接点リレーの個数をまとめた表。A table summarizing the number of cell units, the voltage that can be output, the number of relay contacts, the number of C-contact relays, and the number of B-contact relays in the battery pack 510 or a battery pack having a similar configuration with an increased number of cell units. . (A)は、電池パック510が18Vを出力する場合の各リレーの接点の状態を示す回路図。(B)は、図5(A)から接点の図示を省略した回路図。(C)は、電池パック510が36Vを出力する場合の各リレーの接点の状態を示す回路図。(D)は、図5(C)から接点の図示を省略した回路図。(E)は、電池パック510が54Vを出力する場合の各リレーの接点の状態を示す回路図。(F)は、図5(E)から接点の図示を省略した回路図。(A) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510 outputs 18V. 5(B) is a circuit diagram in which illustration of contacts is omitted from FIG. 5(A); (C) is a circuit diagram showing the state of each relay contact when the battery pack 510 outputs 36V. (D) is a circuit diagram in which illustration of contacts is omitted from FIG. 5(C). (E) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510 outputs 54V. (F) is a circuit diagram in which illustration of contacts is omitted from FIG. 5 (E). (A)は、本発明の実施の形態2における電池パック510Aが18Vを出力する場合の各リレーの接点の状態を示す回路図。(B)は、図6(A)から接点の図示を省略した回路図。(C)は、電池パック510Aが36Vを出力する場合の各リレーの接点の状態を示す回路図。(D)は、図6(C)から接点の図示を省略した回路図。(E)は、電池パック510Aが54Vを出力する場合の各リレーの接点の状態を示す回路図。(F)は、図6(E)から接点の図示を省略した回路図。(A) is a circuit diagram showing the state of each relay contact when battery pack 510A outputs 18 V according to Embodiment 2 of the present invention. 6(B) is a circuit diagram in which illustration of contacts is omitted from FIG. 6(A); (C) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510A outputs 36V. (D) is a circuit diagram in which illustration of contacts is omitted from FIG. 6(C). (E) is a circuit diagram showing the state of the contacts of each relay when the battery pack 510A outputs 54V. (F) is a circuit diagram in which illustration of contacts is omitted from FIG. 6 (E). (A)は、本発明の実施の形態3における電池パック510Bが18Vを出力する場合の各リレーの接点の状態を示す回路図。(B)は、図7(A)から接点の図示を省略した回路図。(C)は、電池パック510Bが36Vを出力する場合の各リレーの接点の状態を示す第1パターンの回路図。(D)は、図7(C)から接点の図示を省略した回路図。(E)は、電池パック510Bが36Vを出力する場合の各リレーの接点の状態を示す第2パターンの回路図。(F)は、図7(E)から接点の図示を省略した回路図。(G)は、電池パック510Bが36Vを出力する場合の各リレーの接点の状態を示す第3パターンの回路図。(H)は、図7(G)から接点の図示を省略した回路図。(I)は、電池パック510Bが54Vを出力する場合の各リレーの接点の状態を示す回路図。(J)は、図7(I)から接点の図示を省略した回路図。(A) is a circuit diagram showing the state of each relay contact when battery pack 510B outputs 18 V according to Embodiment 3 of the present invention. 7(B) is a circuit diagram in which illustration of contacts is omitted from FIG. 7(A); (C) is a circuit diagram of the first pattern showing the state of the contacts of each relay when the battery pack 510B outputs 36V. (D) is a circuit diagram in which illustration of contacts is omitted from FIG. 7(C). (E) is a second pattern circuit diagram showing the state of the contacts of each relay when the battery pack 510B outputs 36V. (F) is a circuit diagram in which illustration of contacts is omitted from FIG. 7 (E). (G) is a circuit diagram of the third pattern showing the state of the contacts of each relay when the battery pack 510B outputs 36V. (H) is a circuit diagram in which illustration of contacts is omitted from FIG. 7 (G). (I) is a circuit diagram showing the state of each relay contact when the battery pack 510B outputs 54V. (J) is a circuit diagram in which illustration of contacts is omitted from FIG. 7(I). (A)は、本発明の実施の形態4に係る電気機器501Aの概略回路ブロック図。(B)は、図8(A)における電池パック510Cの出力電圧とリレーSW5~SW8のコイル通電状態との関係をまとめた表。(A) is a schematic circuit block diagram of an electric device 501A according to Embodiment 4 of the present invention. (B) is a table summarizing the relationship between the output voltage of the battery pack 510C and the energization states of the coils of the relays SW5 to SW8 in FIG. 8(A). 本発明の実施の形態5~7に用いられる電気機器本体1と、それに装着される電池パック100の斜視図。FIG. 10 is a perspective view of an electrical equipment main body 1 and a battery pack 100 attached thereto used in Embodiments 5 to 7 of the present invention; 電池パック100の斜視図。3 is a perspective view of the battery pack 100; FIG. 電池パック100の展開斜視図。FIG. 2 is an exploded perspective view of the battery pack 100; 電池パック100を高電圧電気機器本体に装着した際の接続状態を示す図。FIG. 4 is a diagram showing a connection state when the battery pack 100 is attached to the main body of the high-voltage electrical equipment; 電池パック100を低電圧電気機器本体に装着した際の接続状態を示す図。FIG. 4 is a diagram showing a connection state when the battery pack 100 is attached to the main body of the low-voltage electrical equipment; 本発明の実施の形態5に係る電気機器200の斜視図。The perspective view of the electric equipment 200 which concerns on Embodiment 5 of this invention. 電気機器200の底面図。The bottom view of the electric equipment 200. FIG. 電気機器200の回路図であり、電気機器本体201と2つの電池パック100A、100B側との接続状況を示す図。FIG. 2 is a circuit diagram of the electric device 200, showing the connection state between the electric device main body 201 and the two battery packs 100A and 100B. 実施の形態5の第1変形例に係る電気機器本体201Aと2つの電池パック100A、100B側との接続回路図。FIG. 11 is a connection circuit diagram between an electrical equipment main body 201A and two battery packs 100A and 100B according to a first modification of the fifth embodiment; 実施の形態5の第2変形例に係る電気機器本体201Bと2つの電池パック100A、100B側との接続回路図。FIG. 11 is a connection circuit diagram between an electrical equipment main body 201B and two battery packs 100A and 100B according to a second modification of the fifth embodiment; 本発明の実施の形態6に係る電気機器本体201Cの回路図であり、電気機器本体201と2つの電池パック100A、100B側との接続状況を示す図。FIG. 20 is a circuit diagram of an electric device main body 201C according to Embodiment 6 of the present invention, showing a connection state between the electric device main body 201 and two battery packs 100A and 100B. 図19で示す電気機器本体201Cのさらに詳細な回路図。FIG. 20 is a more detailed circuit diagram of the electrical equipment main body 201C shown in FIG. 19; 電気機器本体201Cの制御部240による制御手順を示すフローチャート。The flowchart which shows the control procedure by the control part 240 of 201 C of electric equipment main bodies. 本発明の実施の形態7に係る電気機器300の斜視図。The perspective view of the electric equipment 300 which concerns on Embodiment 7 of this invention. 本発明の実施の形態7に係る電気機器300の回路図であり、電気機器本体301と、アダプタ400との接続状況を示す図。FIG. 11 is a circuit diagram of an electrical device 300 according to Embodiment 7 of the present invention, showing a connection state between an electrical device body 301 and an adapter 400; アダプタ400の制御部440による制御手順を示すフローチャート。4 is a flowchart showing a control procedure by a control unit 440 of the adapter 400;
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。また、本明細書においては、前後、上下の方向は図中に示す方向であるとして説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings below, the same parts are denoted by the same reference numerals, and repeated descriptions are omitted. Further, in this specification, the front-rear and up-down directions are described as the directions shown in the drawings.
(実施の形態1) 図1~図5は、本発明の実施の形態1に係る電池パック510及び電気機器501に関する。図1(A),(B)により、電気機器501の互いに直交する前後、上下、左右の各方向を定義する。電気機器501は、インパクトドライバである。電気機器501は、電池パック510及び電気機器本体530を有する。電気機器本体530は、ハウジング539を有する。ハウジング539は、胴体部539a、ハンドル部539b、及び電池着脱部539cを含む。 (Embodiment 1) FIGS. 1 to 5 relate to a battery pack 510 and an electric device 501 according to Embodiment 1 of the present invention. 1(A) and 1(B) define the front/rear, up/down, and left/right directions of the electric device 501 that are orthogonal to each other. Electrical device 501 is an impact driver. The electrical equipment 501 has a battery pack 510 and an electrical equipment body 530 . The electrical equipment body 530 has a housing 539 . The housing 539 includes a body portion 539a, a handle portion 539b, and a battery attachment/detachment portion 539c.
胴体部539aは、中心軸が前後方向と平行な筒状部であり、図2に示すモータ540や図示しない回転打撃機構等を収容する。ハンドル部539bは、胴体部539aの中間部から下方に延びる。ハンドル部539bの上端部にメインスイッチとしてのトリガスイッチ542が設けられる。トリガスイッチ542は、モータ540の起動及び停止を指示するためにユーザに操作される。電池着脱部539cは、ハンドル部539bの下端部に設けられる。電池着脱部539cに、電池パック510を着脱可能に装着できる。電池着脱部539c内に、図2に示す制御部533等を搭載した制御基板が設けられる。 The body portion 539a is a cylindrical portion whose center axis is parallel to the front-rear direction, and accommodates the motor 540 shown in FIG. 2, a rotary striking mechanism (not shown), and the like. The handle portion 539b extends downward from the middle portion of the body portion 539a. A trigger switch 542 as a main switch is provided at the upper end of the handle portion 539b. A trigger switch 542 is operated by a user to instruct the motor 540 to start and stop. The battery attaching/detaching portion 539c is provided at the lower end portion of the handle portion 539b. The battery pack 510 can be detachably attached to the battery attaching/detaching portion 539c. A control board on which the control unit 533 and the like shown in FIG. 2 are mounted is provided in the battery attaching/detaching portion 539c.
図2に示すように、電池パック510と電気機器本体530は、+端子同士、V端子同士、T1端子同士、T2端子同士、及び-端子同士が互いに電気的に接続される。電池パック510の+端子及び-端子は、電気機器本体530のモータ540に電力供給するための一対の出力端子を構成する。モータ540は、+端子及び-端子を介して電池パック510から供給される電力で動作する出力部である。V端子は、セルユニット523単体の出力電圧を制御系電源生成用に電気機器本体530に供給するための端子である。T1端子及びT2端子は、制御部513、533の相互通信用の端子である。 As shown in FIG. 2, the battery pack 510 and the electric device body 530 are electrically connected to each other at the + terminals, the V terminals, the T1 terminals, the T2 terminals, and the - terminals. The + terminal and - terminal of the battery pack 510 form a pair of output terminals for supplying power to the motor 540 of the electrical equipment body 530 . Motor 540 is an output unit that operates on power supplied from battery pack 510 via + and - terminals. The V terminal is a terminal for supplying the output voltage of the cell unit 523 alone to the electrical equipment main body 530 for control system power generation. A T1 terminal and a T2 terminal are terminals for mutual communication between the control units 513 and 533 .
電気機器本体530は、本体側制御部としての制御部533、トリガスイッチ542、インバータ回路543、及びモータ540を有する。制御部533は、マイコン(MCU:Micro Controller Unit)や、V端子からの入力電圧により前記マイコンの電源電圧(制御系電源電圧)を生成する電源回路、インバータ回路543の駆動用のドライバIC等を含む。制御部533は、インバータ回路543の駆動制御によりモータ540に駆動電流を供給し、モータ540の駆動を制御する。 The electric device main body 530 has a control section 533 as a main body side control section, a trigger switch 542 , an inverter circuit 543 and a motor 540 . The control unit 533 includes a microcomputer (MCU: Micro Controller Unit), a power supply circuit that generates a power supply voltage (control system power supply voltage) for the microcomputer from the input voltage from the V terminal, a driver IC for driving the inverter circuit 543, and the like. include. The control unit 533 controls driving of the motor 540 by supplying a driving current to the motor 540 by driving control of the inverter circuit 543 .
電池パック510は、電池側制御部としての制御部513、セルユニット521~523、及び切替え部としてのリレーSW1~SW4を有する。セルユニット521~523の各々は、直列接続された複数の二次電池セルを含む。ここでは一例として、セルユニット521~523の各々は、定格出力電圧が3.6Vの二次電池セルを5つ直列接続した構成で、定格出力電圧が18Vであるものとする。 The battery pack 510 has a control section 513 as a battery side control section, cell units 521 to 523, and relays SW1 to SW4 as switching sections. Each of cell units 521-523 includes a plurality of secondary battery cells connected in series. Here, as an example, each of the cell units 521 to 523 has a configuration in which five secondary battery cells having a rated output voltage of 3.6V are connected in series, and the rated output voltage is 18V.
制御部513は、マイコンや、セルユニット523からの入力電圧により前記マイコンの電源電圧を生成する電源回路等を含む。制御部513は、リレーSW1~SW4の各コイルの通電、非通電を制御し、電池パック510の出力電圧を制御する。リレーSW1、SW2はC接点リレーであり、リレーSW3、SW4はB接点リレーである。すなわち、リレーSW1~SW4には種類の異なるリレーが含まれる。 The control unit 513 includes a microcomputer, a power supply circuit that generates a power supply voltage for the microcomputer from the input voltage from the cell unit 523, and the like. Control unit 513 controls energization and non-energization of each coil of relays SW1 to SW4, and controls the output voltage of battery pack 510. FIG. Relays SW1 and SW2 are C-contact relays, and relays SW3 and SW4 are B-contact relays. That is, the relays SW1 to SW4 include different types of relays.
リレーSW1の一端は、セルユニット522の正極に接続される。リレーSW1の他端は、リレーSW1のコイル非通電時には、電池パック510の+端子及びセルユニット521の正極に接続され、かつ、リレーSW2を介してセルユニット523の正極に接続される。リレーSW1の他端は、リレーSW1のコイル通電時には、セルユニット521の負極に接続される。 One end of relay SW1 is connected to the positive electrode of cell unit 522 . The other end of relay SW1 is connected to the + terminal of battery pack 510 and the positive electrode of cell unit 521 when the coil of relay SW1 is not energized, and is also connected to the positive electrode of cell unit 523 via relay SW2. The other end of relay SW1 is connected to the negative electrode of cell unit 521 when the coil of relay SW1 is energized.
リレーSW2の一端は、セルユニット523の正極に接続される。リレーSW2の他端は、リレーSW2のコイル非通電時には、電池パック510の+端子及びセルユニット521の正極に接続され、かつ、リレーSW1を介してセルユニット522の正極に接続される。リレーSW2の他端は、リレーSW2のコイル通電時には、セルユニット522の負極に接続される。 One end of relay SW2 is connected to the positive electrode of cell unit 523 . The other end of relay SW2 is connected to the + terminal of battery pack 510 and the positive electrode of cell unit 521 when the coil of relay SW2 is not energized, and is also connected to the positive electrode of cell unit 522 via relay SW1. The other end of relay SW2 is connected to the negative electrode of cell unit 522 when the coil of relay SW2 is energized.
リレーSW3の一端は、セルユニット522の負極に接続される。リレーSW3の他端は、リレーSW3のコイル非通電時には、セルユニット521の負極に接続される。リレーSW3の他端は、リレーSW3のコイル通電時には、開放(オフ)状態となる。すなわち、リレーSW3のコイル非通電時にはセルユニット521、522の負極間が接続(短絡)され、リレーSW3のコイル通電時にはセルユニット521、522の負極間が遮断される。 One end of relay SW3 is connected to the negative electrode of cell unit 522 . The other end of relay SW3 is connected to the negative electrode of cell unit 521 when the coil of relay SW3 is not energized. The other end of the relay SW3 is in an open (off) state when the coil of the relay SW3 is energized. That is, when the coil of the relay SW3 is not energized, the negative electrodes of the cell units 521 and 522 are connected (short-circuited), and when the coil of the relay SW3 is energized, the negative electrodes of the cell units 521 and 522 are disconnected.
リレーSW4の一端は、セルユニット523の負極に接続される。リレーSW4の他端は、リレーSW4のコイル非通電時には、セルユニット522の負極に接続される。リレーSW4の他端は、リレーSW4のコイル通電時には、開放(オフ)状態となる。すなわち、リレーSW4のコイル非通電時にはセルユニット522、523の負極間が接続(短絡)され、リレーSW4のコイル通電時にはセルユニット522、523の負極間が遮断される。 One end of relay SW4 is connected to the negative electrode of cell unit 523 . The other end of relay SW4 is connected to the negative electrode of cell unit 522 when the coil of relay SW4 is not energized. The other end of the relay SW4 is in an open (off) state when the coil of the relay SW4 is energized. That is, the negative electrodes of the cell units 522 and 523 are connected (short-circuited) when the coil of the relay SW4 is not energized, and the negative electrodes of the cell units 522 and 523 are disconnected when the coil of the relay SW4 is energized.
制御部513は、電池パック510の+端子、-端子間に18Vを出力する場合、リレーSW1~SW4の各コイルを全て非通電とする。これにより、セルユニット521~523は互いに全並列接続状態となる。全並列接続状態は、電池パック510から電気機器本体530のモータ540に電力供給する場合、すなわち電池パック510の+端子から放電する場合(以下「放電する場合」)におけるセルユニット521~523の各々の消費電力が互いに実質的に均等となる均等接続状態の例示である。制御部513は、電池パック510が電気機器本体530に接続されていない状態(以下「非接続状態」とも表記)、電池パック510が電気機器本体530に接続され且つトリガスイッチ542がオフの状態(以下「非出力状態」とも表記)、及び、電池パック510が図示しない充電器本体に接続された状態においても、同様にリレーSW1~SW4の各コイルを全て非通電とする。 When outputting 18V between the + terminal and the - terminal of the battery pack 510, the control unit 513 deenergizes all the coils of the relays SW1 to SW4. As a result, the cell units 521 to 523 are fully connected in parallel. The full parallel connection state is when power is supplied from the battery pack 510 to the motor 540 of the electric device main body 530, that is, when discharging from the + terminal of the battery pack 510 (hereinafter referred to as “when discharging”), each of the cell units 521 to 523 is an example of an equal connection state in which the power consumptions of are substantially equal to each other. The control unit 513 controls a state in which the battery pack 510 is not connected to the electrical device main body 530 (hereinafter also referred to as “disconnected state”), a state in which the battery pack 510 is connected to the electrical device main body 530 and the trigger switch 542 is off ( Also in a state in which the battery pack 510 is connected to a charger main body (not shown) and in a state in which the battery pack 510 is connected to a charger main body (not shown), all the coils of the relays SW1 to SW4 are similarly deenergized.
制御部513は、電池パック510の+端子、-端子間に36Vを出力する場合、リレーSW1、SW3の各コイルを非通電とし、リレーSW2、SW4の各コイルに通電する。これにより、セルユニット521、522が並列接続状態となり、並列接続状態とされたセルユニット521、522に対してセルユニット523が直列に接続された状態となる。このセルユニット521~523の相互接続状態は、放電する場合におけるセルユニット521、522の各々の消費電力とセルユニット523の消費電力とが互いに実質的に均等とならない相互接続状態であり、非均等接続状態の例示である。本例の非均等接続状態では、放電する場合におけるセルユニット523の消費電力がセルユニット521、522の各々の消費電力よりも大きい。なお、並列接続状態にあるセルユニット521、522は、放電する場合における各々の消費電力が互いに等しい均等接続状態である。 When outputting 36 V between the + terminal and the - terminal of the battery pack 510, the control unit 513 deenergizes the coils of the relays SW1 and SW3 and energizes the coils of the relays SW2 and SW4. As a result, the cell units 521 and 522 are connected in parallel, and the cell unit 523 is connected in series with the cell units 521 and 522 connected in parallel. The interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 521 and 522 and the power consumption of the cell unit 523 are not substantially equal when discharging. It is an illustration of a connection state. In the non-uniform connection state of this example, the power consumption of the cell unit 523 is greater than the power consumption of each of the cell units 521 and 522 when discharging. It should be noted that the cell units 521 and 522 in the parallel connection state are in the equal connection state in which the respective power consumptions during discharging are equal to each other.
制御部513は、電池パック510の+端子、-端子間に54Vを出力する場合、リレーSW1~SW4の各コイルに全て通電する。これにより、セルユニット521~523は互いに全直列接続状態となる。全直列接続状態は、放電する場合におけるセルユニット521~523の各々の消費電力が互いに実質的に均等となる均等接続状態の例示である。以下、全直列接続状態である均等接続状態を「全直列均等接続状態」、全並列状態である均等接続状態を「全並列均等接続状態」と表記する。 When the control unit 513 outputs 54 V between the + terminal and the - terminal of the battery pack 510, all the coils of the relays SW1 to SW4 are energized. As a result, the cell units 521 to 523 are all connected in series with each other. The full series connection state is an example of an equal connection state in which the power consumption of each of the cell units 521 to 523 is substantially equal to each other when discharging. Hereinafter, the equal connection state, which is the all-series connection state, will be referred to as the "all-series equal connection state", and the all-parallel state, the equal connection state, will be referred to as the "all-parallel equal connection state".
図3は、電気機器501の動作の一例を示すシーケンス図である。初期状態として、リレーSW1~SW4の各コイルを全て非通電としている。制御部513は、電気機器本体530の制御部533に、待機状態である旨を送信する(S1)。制御部533は、トリガスイッチ542のオンを検出すると(S2)、制御部513に機器本体電圧情報を送信する(S3)。 FIG. 3 is a sequence diagram showing an example of the operation of electrical device 501. As shown in FIG. As an initial state, all the coils of the relays SW1 to SW4 are de-energized. The control unit 513 notifies the control unit 533 of the electric device body 530 that it is in a standby state (S1). When the control unit 533 detects that the trigger switch 542 is turned on (S2), the control unit 533 transmits device main body voltage information to the control unit 513 (S3).
制御部513は、受信した機器本体電圧情報に基づいて電池パック510の出力電圧を決定し、必要に応じてリレーSW1~SW4の各コイルの通電状態を切り替える(S4、S5)。具体的には制御部513は、リレーSW1~SW4のうち決定した出力電圧に応じて切替え(コイルへの通電開始)が必要なリレーについてコイルへの通電を開始する。このとき、リレーSW3、SW4の各コイルへの通電を先に開始し(S4)、その後にリレーSW1、SW2の各コイルへの通電を開始する(S5)。 Control unit 513 determines the output voltage of battery pack 510 based on the received device body voltage information, and switches the energized state of each coil of relays SW1 to SW4 as necessary (S4, S5). Specifically, the control unit 513 starts energizing the coils of the relays SW1 to SW4 that need to be switched (start energizing the coils) according to the determined output voltage. At this time, the energization of the coils of the relays SW3 and SW4 is first started (S4), and then the energization of the coils of the relays SW1 and SW2 is started (S5).
例えば36Vを出力する場合、制御部513は、リレーSW4のコイルに通電してからリレーSW2のコイルに通電する。これは、通電状態切替え時におけるセルユニット523の正極、負極間の短絡を確実に防止するためである。54Vを出力する場合、制御部513は、リレーSW3、SW4の各コイルに通電してからリレーSW1、SW2の各コイルに通電する。これは、通電状態切替え時におけるセルユニット522の正極、負極間の短絡、及びセルユニット523の正極、負極間の短絡を確実に防止するためである。 For example, when outputting 36 V, the control unit 513 energizes the coil of the relay SW4 and then energizes the coil of the relay SW2. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 523 when switching the energized state. When outputting 54V, the control unit 513 energizes the coils of the relays SW3 and SW4, and then energizes the coils of the relays SW1 and SW2. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 522 and a short circuit between the positive electrode and the negative electrode of the cell unit 523 when the energization state is switched.
制御部513は、リレーSW1~SW4の各コイルの通電状態の切替え(S4、S5)が完了すると、制御部533に駆動準備完了の旨を送信する(S6)。制御部533は、駆動準備完了の旨を受信すると、インバータ回路543を駆動し(S7)、モータ540に駆動電流を供給する。制御部533は、トリガスイッチ542のオフを検出すると(S8)、インバータ回路543の駆動を停止し(S9)、モータ540を停止する。制御部533は、停止完了の旨を制御部513に送信する(S10)。 When the switching of the energized state of each coil of the relays SW1 to SW4 (S4, S5) is completed, the control unit 513 notifies the control unit 533 of completion of drive preparation (S6). When the control unit 533 receives the notification that the driving preparation is completed, the control unit 533 drives the inverter circuit 543 (S7) and supplies the motor 540 with the driving current. When the control unit 533 detects that the trigger switch 542 is turned off (S8), it stops driving the inverter circuit 543 (S9) and stops the motor 540. The control unit 533 notifies the control unit 513 of the completion of the stop (S10).
制御部513は、停止完了の旨を受信すると、必要に応じてリレーSW1~SW4の各コイルの通電状態を切り替え(S11、S12)、リレーSW1~SW4の各コイルを全て非通電とする。具体的には制御部513は、リレーSW1~SW4のうち切替えが必要なリレー(リレーSW1~SW4のうちコイルに通電されているリレー)についてコイルへの通電を停止する。このとき、リレーSW1、SW2の各コイルへの通電を先に停止し(S11)、その後にリレーSW3、SW4の各コイルへの通電を停止する(S12)。 When the control unit 513 receives the completion of the stop, it switches the energized state of each coil of the relays SW1 to SW4 as necessary (S11, S12), and deenergizes all the coils of the relays SW1 to SW4. Specifically, the control unit 513 stops energizing the coil of the relay SW1 to SW4 whose coil needs to be switched (the relay whose coil is energized among the relays SW1 to SW4). At this time, the energization of the coils of the relays SW1 and SW2 is first stopped (S11), and then the energization of the coils of the relays SW3 and SW4 is stopped (S12).
例えば36Vを出力していた場合、制御部513は、リレーSW2のコイルへの通電を停止してからリレーSW4のコイルへの通電を停止する。これは、通電状態切替え時におけるセルユニット523の正極、負極間の短絡を確実に防止するためである。54Vを出力していた場合、制御部513は、リレーSW1、SW2の各コイルへの通電を停止してからリレーSW3、SW4の各コイルへの通電を停止する。これは、通電状態切替え時におけるセルユニット522の正極、負極間の短絡、及びセルユニット523の正極、負極間の短絡を確実に防止するためである。 For example, when 36 V is being output, the control unit 513 stops energizing the coil of the relay SW2 and then stops energizing the coil of the relay SW4. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 523 when switching the energized state. When 54 V is being output, the control unit 513 stops energizing the coils of the relays SW1 and SW2, and then stops energizing the coils of the relays SW3 and SW4. This is to reliably prevent a short circuit between the positive electrode and the negative electrode of the cell unit 522 and a short circuit between the positive electrode and the negative electrode of the cell unit 523 when the energization state is switched.
制御部513は、リレーSW1~SW4の各コイルの通電状態の切替え(S11、S12)が完了すると、制御部533に待機状態である旨を送信する(S13)。 After completing the switching of the energized states of the coils of the relays SW1 to SW4 (S11, S12), the control unit 513 notifies the control unit 533 of the standby state (S13).
図4は、電池パック510又はそれと同様の構成でセルユニットの数を増やした電池パックにおける、セルユニットの数、出力可能な電圧、リレー接点数、C接点リレーの個数、及びB接点リレーの個数をまとめた表である。この表のうちセルユニットの数が3の行は、電池パック510に対応する。これに対してセルユニットが1つ増える毎にC接点リレーとB接点リレーを1つずつ増やしていくことで、セルユニットの数と同じ種類数の電圧を出力できる。 FIG. 4 shows the number of cell units, the voltage that can be output, the number of relay contacts, the number of C-contact relays, and the number of B-contact relays in a battery pack 510 or a battery pack with a similar configuration with an increased number of cell units. This is a table summarizing A row with three cell units in this table corresponds to the battery pack 510 . On the other hand, by increasing the number of C-contact relays and B-contact relays one by one each time the number of cell units increases, the same number of types of voltage as the number of cell units can be output.
セルユニットの数をn(nは3以上の整数)として一般化すると、出力可能な電圧の種類はn種類、必要なリレー接点数は3×(n-1)、必要なC接点リレーとB接点リレーの数はn-1となる。このとき、n-1以下の自然数iの各々について、i番目のセルユニットの負極とi+1番目のセルユニットの負極との間にB接点リレーを設ければよい。また、i+1番目のセルユニットの正極をi番目のセルユニットの負極に接続するか電池パックの+端子に接続するかを切り替えるC接点リレーを設ければよい。電池パック510の例では、セルユニット521が1番目、セルユニット522が2番目、セルユニット523が3番目に対応する。 Generalizing the number of cell units as n (n is an integer of 3 or more), the types of voltage that can be output are n types, the number of relay contacts required is 3 × (n-1), and the required C contact relay and B The number of contact relays is n-1. At this time, for each natural number i less than or equal to n−1, a B-contact relay may be provided between the negative electrode of the i-th cell unit and the negative electrode of the i+1-th cell unit. Also, a C-contact relay may be provided for switching between connecting the positive electrode of the i+1-th cell unit to the negative electrode of the i-th cell unit and connecting it to the + terminal of the battery pack. In the example of the battery pack 510, the cell unit 521 corresponds to the first, the cell unit 522 to the second, and the cell unit 523 to the third.
図5(A),(C),(E)は、電池パック510が18V、36V、54Vを出力する場合の各リレーの接点の状態を示す回路図である。図5(B),(D),(F)は、図5(A),(C),(E)の各々から接点の図示を省略、すなわちオン状態の接点を短絡に置換しオフ状態の接点を開放に置換した回路図である。 5A, 5C, and 5E are circuit diagrams showing the states of the contacts of each relay when battery pack 510 outputs 18V, 36V, and 54V. FIGS. 5(B), (D), and (F) omit illustration of the contacts from FIGS. It is the circuit diagram which replaced the contact with opening.
接点P1aは、リレーSW1のコイル非通電時にオン、リレーSW1のコイル通電時にオフとなる接点である。接点P1bは、リレーSW1のコイル非通電時にオフ、リレーSW1のコイル通電時にオンとなる接点である。接点P2aは、リレーSW2のコイル非通電時にオン、リレーSW2のコイル通電時にオフとなる接点である。接点P2bは、リレーSW2のコイル非通電時にオフ、リレーSW2のコイル通電時にオンとなる接点である。接点P3は、リレーSW3のコイル非通電時にオン、リレーSW3のコイル通電時にオフとなる接点である。接点P4は、リレーSW4のコイル非通電時にオン、リレーSW4のコイル通電時にオフとなる接点である。 The contact P1a is a contact that is turned on when the coil of the relay SW1 is not energized and turned off when the coil of the relay SW1 is energized. The contact P1b is a contact that is turned off when the coil of the relay SW1 is not energized and turned on when the coil of the relay SW1 is energized. The contact P2a is a contact that is turned on when the coil of the relay SW2 is not energized and turned off when the coil of the relay SW2 is energized. The contact P2b is a contact that is turned off when the coil of the relay SW2 is not energized and turned on when the coil of the relay SW2 is energized. A contact P3 is a contact that is turned on when the coil of the relay SW3 is not energized and turned off when the coil of the relay SW3 is energized. A contact P4 is a contact that is turned on when the coil of the relay SW4 is not energized and turned off when the coil of the relay SW4 is energized.
接点P1aの一端は、セルユニット522の正極に接続される。接点P2aの一端は、セルユニット523の正極に接続される。接点P1a、P2aの他端は、互いに接続されると共に、電池パック510の+端子及びセルユニット521の正極に接続される。接点P1bの一端は、セルユニット522の正極に接続される。接点P1bの他端は、セルユニット521の負極に接続される。接点P2bの一端は、セルユニット523の正極に接続される。接点P2bの他端は、セルユニット522の負極に接続される。接点P3の一端は、セルユニット521の負極に接続される。接点P3の他端は、セルユニット522の負極に接続される。接点P4の一端は、セルユニット522の負極に接続される。接点P4の他端は、セルユニット523の負極及び電池パック510の-端子に接続される。 One end of contact P1a is connected to the positive electrode of cell unit 522 . One end of contact P2a is connected to the positive electrode of cell unit 523 . The other ends of the contacts P1a and P2a are connected to each other and to the + terminal of the battery pack 510 and the positive electrode of the cell unit 521 . One end of contact P1b is connected to the positive electrode of cell unit 522 . The other end of contact P1b is connected to the negative electrode of cell unit 521 . One end of contact P2b is connected to the positive electrode of cell unit 523 . The other end of contact P2b is connected to the negative electrode of cell unit 522 . One end of contact P3 is connected to the negative electrode of cell unit 521 . The other end of contact P3 is connected to the negative electrode of cell unit 522 . One end of contact P4 is connected to the negative electrode of cell unit 522 . The other end of contact P4 is connected to the negative terminal of cell unit 523 and the negative terminal of battery pack 510 .
図5(A),(B)に示すように、接点P1a、P2a、P3、P4をオン、接点P1b、P2bをオフとすることで、電池パック510の+端子、-端子間に18Vを出力できる。図5(C),(D)に示すように、接点P1a、P2b、P3をオン、接点P1b、P2a、P4をオフとすることで、電池パック510の+端子、-端子間に36Vを出力できる。図5(E),(F)に示すように、接点P1b、P2bをオン、接点P1a、P2a、P3、P4をオフとすることで、電池パック510の+端子、-端子間に54Vを出力できる。 As shown in FIGS. 5A and 5B, by turning on contacts P1a, P2a, P3, and P4 and turning off contacts P1b and P2b, 18 V is output between the + and - terminals of the battery pack 510. can. As shown in FIGS. 5(C) and (D), by turning on the contacts P1a, P2b, and P3 and turning off the contacts P1b, P2a, and P4, 36 V is output between the + and - terminals of the battery pack 510. can. As shown in FIGS. 5(E) and (F), by turning on the contacts P1b and P2b and turning off the contacts P1a, P2a, P3 and P4, 54 V is output between the + and - terminals of the battery pack 510. can.
本実施の形態によれば、下記の効果を奏することができる。 According to this embodiment, the following effects can be obtained.
(1) 電池パック510は、それぞれ定格出力電圧が18Vである3つのセルユニット521~523を有する構成において、図2に示すように、セルユニット521~523の相互接続状態を切替え可能な切替え部としてリレーSW1~SW4を有する。このため、セルユニット521~523の相互接続状態を、全直列均等接続状態及び全並列均等接続状態だけでなく、放電する場合におけるセルユニット521、522の各々の消費電力とセルユニット523の消費電力とが互いに実質的に均等とならない非均等接続状態とすることができる。これにより電池パック510は、18V、36V、54Vの3種類の電圧が出力可能となり、18V及び54Vの2種類の電圧しか出力できない電池パックと比較して出力の多様化が可能となる。 (1) The battery pack 510 has three cell units 521 to 523 each having a rated output voltage of 18 V. As shown in FIG. and relays SW1 to SW4. Therefore, the interconnection state of the cell units 521 to 523 is not limited to the all-serial equal connection state and all-parallel equal connection state, but also the power consumption of each of the cell units 521 and 522 and the power consumption of the cell unit 523 when discharging. are not substantially equal to each other. As a result, the battery pack 510 can output three voltages of 18V, 36V, and 54V, and can diversify the output compared to a battery pack that can only output two voltages of 18V and 54V.
(2) リレーSW1、SW2をC接点リレーとしているため、必要な6個の接点に対してリレーの数が4個で済み、出力の多様化に伴うコスト及び部品点数の増大を抑制できる。また、リレー制御用の信号を出力するための制御部513のマイコンの端子数を削減でき、マイコンのコストも抑制できる。 (2) Since the relays SW1 and SW2 are C-contact relays, only four relays are required for the required six contacts, and an increase in cost and number of parts due to diversification of outputs can be suppressed. In addition, the number of terminals of the microcomputer of the control unit 513 for outputting relay control signals can be reduced, and the cost of the microcomputer can be reduced.
(3) 制御部513は、非接続状態及び非出力状態において、リレーSW1~SW4の各コイルを全て非通電とし、セルユニット521~523を全並列均等接続状態とする。このため、非接続状態及び非出力状態の各々において、セルユニット521~523のうち電圧の高いセルユニットから低いセルユニットに充電される。よって、ユーザは、意図的な操作を行わなくても、非接続状態あるいは非出力状態の間にセルユニット521~523間のバランスをとることができ、安定した出力の電池パックを使用することができる。なお、制御部513、533は、電池パック510又は電気機器本体530に対する操作が無い状態が所定時間以上継続すると省電力のために停止するが、制御部513、533が停止している場合もリレーSW1~SW4の各コイルは全て非通電となり、セルユニット521~523は全並列均等接続状態となる。 (3) In the non-connection state and non-output state, the control unit 513 deenergizes all the coils of the relays SW1 to SW4, and brings the cell units 521 to 523 into a state of all parallel equal connection. Therefore, in each of the non-connection state and the non-output state, among the cell units 521 to 523, the cell unit with the higher voltage is charged to the cell unit with the lower voltage. Therefore, the user can balance the cell units 521 to 523 during the non-connection state or non-output state without intentional operation, and can use a battery pack with stable output. can. Note that the control units 513 and 533 stop for power saving when the battery pack 510 or the electric device main body 530 is not operated for a predetermined time or more. All the coils of SW1 to SW4 are de-energized, and the cell units 521 to 523 are in a state of all-parallel equal connection.
(4) 制御部513は、リレーSW3、SW4の各コイルに通電してからリレーSW1、SW2の各コイルに通電するという順番、並びにリレーSW1、SW2の各コイルへの通電を停止してからリレーSW3、SW4の各コイルへの通電を停止するという順番で制御するため、通電状態切替え時におけるセルユニット522の正極、負極間の短絡、及びセルユニット523の正極、負極間の短絡を確実に防止でき、信頼性が高められる。 (4) The control unit 513 energizes the coils of the relays SW3 and SW4 and then energizes the coils of the relays SW1 and SW2, and stops the energization of the coils of the relays SW1 and SW2 before Since the coils of SW3 and SW4 are controlled in order to stop energization, a short circuit between the positive electrode and the negative electrode of the cell unit 522 and a short circuit between the positive electrode and the negative electrode of the cell unit 523 when the energization state is switched can be reliably prevented. It can be done, and the reliability is improved.
(5) モータ540に電力供給するための電池パック510の出力端子が一対のみであるため、出力の多様化に伴う端子数の増大を抑制できる。 (5) Since the battery pack 510 has only one pair of output terminals for supplying power to the motor 540, an increase in the number of terminals due to diversification of outputs can be suppressed.
(実施の形態2) 図6(A),(C),(E)は、本発明の実施の形態2における電池パック510Aが18V、36V、54Vを出力する場合の各リレーの接点の状態を示す回路図である。図6(B),(D),(F)は、図6(A),(C),(E)の各々から接点の図示を省略、すなわちオン状態の接点を短絡に置換しオフ状態の接点を開放に置換した回路図である。 (Embodiment 2) FIGS. 6(A), (C), and (E) show the states of the contacts of each relay when the battery pack 510A according to Embodiment 2 of the present invention outputs 18V, 36V, and 54V. It is a circuit diagram showing. 6(B), (D), and (F) omit illustration of contacts from FIGS. It is the circuit diagram which replaced the contact with opening.
電池パック510Aは、実施の形態1の電池パック510の接点P4を短絡に置換し接点P5を追加したものである。接点P5の一端は、セルユニット522の負極に接続される。接点P5の他端は、接点P3、P5の他端は、互いに接続されると共に、電池パック510の-端子及びセルユニット523の負極に接続される。 Battery pack 510A is obtained by replacing contact P4 of battery pack 510 of Embodiment 1 with a short circuit and adding contact P5. One end of contact P5 is connected to the negative electrode of cell unit 522 . The other ends of the contacts P3 and P5 are connected to each other and to the - terminal of the battery pack 510 and the negative electrode of the cell unit 523 .
図6(A),(B)に示すように、接点P1a、P2a、P3、P5をオン、接点P1b、P2bをオフとすることで、電池パック510Aの+端子、-端子間に18Vを出力できる。このときのセルユニット521~523の相互接続状態は、実施の形態1の電池パック510が18Vを出力する場合と同様である。 As shown in FIGS. 6A and 6B, by turning on contacts P1a, P2a, P3, and P5 and turning off contacts P1b and P2b, 18 V is output between the + and - terminals of the battery pack 510A. can. The interconnection state of the cell units 521 to 523 at this time is the same as in the case where the battery pack 510 of the first embodiment outputs 18V.
図6(C),(D)に示すように、接点P1b、P5をオン、接点P1a、P2a、P2b、P3をオフとすることで、電池パック510Aの+端子、-端子間に36Vを出力できる。このとき、セルユニット521、522が直列接続状態となり、直列接続状態とされたセルユニット521、522に対してセルユニット523が非接続となる。このセルユニット521~523の相互接続状態は、放電する場合におけるセルユニット521、522の各々の消費電力とセルユニット523の消費電力とが互いに実質的に均等とならない相互接続状態であり、非均等接続状態の例示である。本例の非均等接続状態では、放電する場合におけるセルユニット523の消費電力がセルユニット521、522の各々の消費電力よりも小さい。なお、直列接続状態にあるセルユニット521、522は、放電する場合における各々の消費電力が互いに等しい均等接続状態である。 As shown in FIGS. 6(C) and (D), by turning on the contacts P1b and P5 and turning off the contacts P1a, P2a, P2b, and P3, 36 V is output between the + and - terminals of the battery pack 510A. can. At this time, the cell units 521 and 522 are connected in series, and the cell unit 523 is disconnected from the cell units 521 and 522 connected in series. The interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 521 and 522 and the power consumption of the cell unit 523 are not substantially equal when discharging. It is an illustration of a connection state. In the non-uniform connection state of this example, the power consumption of the cell unit 523 is smaller than the power consumption of each of the cell units 521 and 522 when discharging. It should be noted that the cell units 521 and 522 in the series connection state are in an equal connection state in which their power consumptions are equal to each other when discharging.
なお、図5に示す実施の形態1の電池パック510においても、接点P1b、P4をオン、接点P1a、P2a、P2b、P3をオフとすることで、+端子、-端子間に36Vを出力できる。一方、本実施の形態の回路構成では、図5(D)に示すようなセルユニット521~523の相互接続状態は実現できない。 Also in the battery pack 510 of Embodiment 1 shown in FIG. 5, 36 V can be output between the + terminal and the - terminal by turning on the contacts P1b and P4 and turning off the contacts P1a, P2a, P2b, and P3. . On the other hand, in the circuit configuration of this embodiment, the interconnected state of the cell units 521 to 523 as shown in FIG. 5(D) cannot be realized.
図6(E),(F)に示すように、接点P1b、P2bをオン、接点P1a、P2a、P3、P5をオフとすることで、電池パック510Aの+端子、-端子間に54Vを出力できる。このときのセルユニット521~523の相互接続状態は、実施の形態1の電池パック510が54Vを出力する場合と同様である。 As shown in FIGS. 6(E) and (F), by turning on the contacts P1b and P2b and turning off the contacts P1a, P2a, P3 and P5, 54V is output between the + and - terminals of the battery pack 510A. can. The interconnection state of the cell units 521 to 523 at this time is the same as in the case where the battery pack 510 of the first embodiment outputs 54V.
本実施の形態では、電池パック510Aから36Vを出力する場合に接点P2a、P2bを共にオフにする必要があるため、実施の形態1と異なり、接点P2a、P2bは互いに別の2つのリレーとする必要がある。 In this embodiment, when 36 V is output from the battery pack 510A, both the contacts P2a and P2b must be turned off. Therefore, unlike the first embodiment, the contacts P2a and P2b are two separate relays. There is a need.
本実施の形態のその他の点は、実施の形態1と同様である。接点P2a、P2bを別々のリレーとする関係でリレーの数が1個増えるものの、その他の点においては本実施の形態も実施の形態1と同様の効果を奏することができる。 Other points of this embodiment are the same as those of the first embodiment. Since the contacts P2a and P2b are separate relays, the number of relays is increased by one.
(実施の形態3) 図7(A),(C),(E),(G),(I)は、本発明の実施の形態3における電池パック510Bの各出力電圧に応じた各リレーの接点の状態を示す回路図である。図7(A)は出力電圧18V、図7(C),(E),(G)は出力電圧36V、図7(I)は出力電圧54Vに対応する。図7(B),(D),(F),(H),(J)は、図7(A),(C),(E),(G),(I)の各々から接点の図示を省略、すなわちオン状態の接点を短絡に置換しオフ状態の接点を開放に置換した回路図である。 (Embodiment 3) Figs. 7(A), (C), (E), (G), and (I) show respective relays according to each output voltage of the battery pack 510B in Embodiment 3 of the present invention. It is a circuit diagram which shows the state of a contact. 7(A) corresponds to an output voltage of 18V, FIGS. 7(C), (E), and (G) correspond to an output voltage of 36V, and FIG. 7(I) corresponds to an output voltage of 54V. Figures 7(B), (D), (F), (H) and (J) are illustrations of contacts from each of Figures 7(A), (C), (E), (G) and (I). is omitted, that is, the on-state contacts are replaced with short-circuits, and the off-state contacts are replaced with open contacts.
電池パック510Bは、実施の形態2の電池パック510Aに接点P6を追加したものである。接点P6の一端は、セルユニット523の正極に接続される。接点P6の他端は、セルユニット521の負極に接続される。 Battery pack 510B is obtained by adding contact point P6 to battery pack 510A of the second embodiment. One end of contact P6 is connected to the positive electrode of cell unit 523 . The other end of contact P6 is connected to the negative electrode of cell unit 521 .
図7(A),(B)に示すように、接点P1a、P2a、P3、P5をオン、接点P1b、P2b、P6をオフとすることで、電池パック510Bの+端子、-端子間に18Vを出力できる。このときのセルユニット521~523の相互接続状態は、実施の形態2の電池パック510Aが18Vを出力する場合と同様である。 As shown in FIGS. 7A and 7B, by turning on the contacts P1a, P2a, P3, and P5 and turning off the contacts P1b, P2b, and P6, 18 V is applied between the + and - terminals of the battery pack 510B. can be output. The interconnection state of the cell units 521 to 523 at this time is the same as in the case where the battery pack 510A of the second embodiment outputs 18V.
図7(C),(D)に示すように、接点P1b、P5をオン、接点P1a、P2a、P2b、P3、P6をオフとすることで、電池パック510Bの+端子、-端子間に36Vを出力できる。このときのセルユニット521~523の相互接続状態は、実施の形態2の電池パック510Aが36Vを出力する場合と同様である。 As shown in FIGS. 7(C) and 7(D), by turning on the contacts P1b and P5 and turning off the contacts P1a, P2a, P2b, P3 and P6, a voltage of 36 V is applied between the + and - terminals of the battery pack 510B. can be output. The interconnection state of the cell units 521 to 523 at this time is the same as in the case where the battery pack 510A of the second embodiment outputs 36V.
図7(E),(F)に示すように、接点P1a、P2bをオン、接点P1b、P2a、P3、P5、P6をオフとすることで、電池パック510Bの+端子、-端子間に36Vを出力できる。このとき、セルユニット522、523が直列接続状態となり、直列接続状態とされたセルユニット522、523に対してセルユニット521が非接続となる。このセルユニット521~523の相互接続状態は、放電する場合におけるセルユニット522、523の各々の消費電力とセルユニット521の消費電力とが互いに実質的に均等とならない相互接続状態であり、非均等接続状態の例示である。本例の非均等接続状態では、放電する場合におけるセルユニット521の消費電力がセルユニット522、523の各々の消費電力よりも小さい。なお、直列接続状態にあるセルユニット522、523は、放電する場合における各々の消費電力が互いに等しい均等接続状態である。 As shown in FIGS. 7(E) and 7(F), by turning on the contacts P1a and P2b and turning off the contacts P1b, P2a, P3, P5, and P6, a voltage of 36 V is applied between the + and - terminals of the battery pack 510B. can be output. At this time, the cell units 522 and 523 are connected in series, and the cell unit 521 is disconnected from the cell units 522 and 523 connected in series. The interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 522 and 523 and the power consumption of the cell unit 521 are not substantially equal when discharging. It is an illustration of a connection state. In the non-uniform connection state of this example, the power consumption of the cell unit 521 during discharging is smaller than the power consumption of each of the cell units 522 and 523 . It should be noted that the cell units 522 and 523 in the series connection state are in an even connection state in which the respective power consumptions during discharging are equal to each other.
図7(G),(H)に示すように、接点P6をオン、接点P1a、P1b、P2a、P2b、P3、P5をオフとすることで、電池パック510Bの+端子、-端子間に36Vを出力できる。このとき、セルユニット521、523が直列接続状態となり、直列接続状態とされたセルユニット521、523に対してセルユニット522が非接続となる。このセルユニット521~523の相互接続状態は、放電する場合におけるセルユニット521、523の各々の消費電力とセルユニット522の消費電力とが互いに実質的に均等とならない相互接続状態であり、非均等接続状態の例示である。本例の非均等接続状態では、放電する場合におけるセルユニット522の消費電力がセルユニット521、523の各々の消費電力よりも小さい。なお、直列接続状態にあるセルユニット521、523は、放電する場合における各々の消費電力が互いに等しい均等接続状態である。 As shown in FIGS. 7(G) and (H), by turning on the contact P6 and turning off the contacts P1a, P1b, P2a, P2b, P3, and P5, 36 V is applied between the + terminal and the - terminal of the battery pack 510B. can be output. At this time, the cell units 521 and 523 are connected in series, and the cell unit 522 is disconnected from the cell units 521 and 523 connected in series. The interconnection state of the cell units 521 to 523 is an interconnection state in which the power consumption of each of the cell units 521 and 523 and the power consumption of the cell unit 522 are not substantially equal when discharging. It is an illustration of a connection state. In the non-uniform connection state of this example, the power consumption of the cell unit 522 is smaller than the power consumption of each of the cell units 521 and 523 when discharging. It should be noted that the cell units 521 and 523 in the series connection state are in the equal connection state in which the respective power consumptions during discharging are equal to each other.
図7(I),(J)に示すように、接点P1b、P2bをオン、接点P1a、P2a、P3、P5、P6をオフとすることで、電池パック510Bの+端子、-端子間に54Vを出力できる。このときのセルユニット521~523の相互接続状態は、実施の形態2の電池パック510Aが54Vを出力する場合と同様である。 As shown in FIGS. 7(I) and 7(J), by turning on the contacts P1b and P2b and turning off the contacts P1a, P2a, P3, P5 and P6, a voltage of 54 V is applied between the + and - terminals of the battery pack 510B. can be output. The interconnection state of the cell units 521 to 523 at this time is the same as the case where the battery pack 510A of the second embodiment outputs 54V.
本実施の形態のその他の点は、実施の形態2と同様である。本実施の形態によれば、実施の形態2と比較して接点P6を追加で要するものの、電池パック510Bから36Vを出力する場合において放電に使用しないセルユニットを任意に選択できるため、例えばセルユニット521~523のうち出力電圧の最も低いセルユニットを放電に使用しないことでセルユニット521~523間のアンバランスの発生を抑制でき、利便性が高い。 Other points of this embodiment are the same as those of the second embodiment. According to the present embodiment, although the contact point P6 is additionally required compared to the second embodiment, it is possible to arbitrarily select a cell unit that is not used for discharging when outputting 36 V from the battery pack 510B. By not using the cell unit with the lowest output voltage among 521 to 523 for discharging, it is possible to suppress the occurrence of unbalance between the cell units 521 to 523, which is highly convenient.
(実施の形態4) 図8(A)は、本発明の実施の形態4に係る電気機器501Aの概略回路ブロック図である。図8(B)は、図8(A)における電池パック510Cの出力電圧とリレーSW5~SW8のコイル通電状態との関係をまとめた表である。 (Embodiment 4) Fig. 8(A) is a schematic circuit block diagram of an electric device 501A according to Embodiment 4 of the present invention. FIG. 8(B) is a table summarizing the relationship between the output voltage of the battery pack 510C and the energization states of the coils of the relays SW5 to SW8 in FIG. 8(A).
電気機器501Aは、図2に示す実施の形態1の電池パック510が電池パック510Cに替わり、電気機器本体530が電気機器本体530Aに替わったものである。電池パック510Cと電気機器本体530Aは、上+端子同士、中+端子同士、下+端子同士、上-端子同士、中-端子同士、及び下-端子同士が互いに電気的に接続される。 Electrical equipment 501A is obtained by replacing battery pack 510 of Embodiment 1 shown in FIG. 2 with battery pack 510C and electrical equipment main body 530 with electrical equipment main body 530A. The battery pack 510C and the electric device main body 530A are electrically connected to each other at the top + terminals, the middle + terminals, the bottom + terminals, the top − terminals, the middle − terminals, and the bottom − terminals.
電池パック510Cは、実施の形態1の電池パック510のリレーSW1~SW4を無くし、セルユニット521の正極を上+端子、負極を上-端子に接続し、セルユニット522の正極を中+端子、負極を中-端子に接続し、セルユニット523の正極を下+端子、負極を下-端子に接続したものである。 A battery pack 510C eliminates the relays SW1 to SW4 of the battery pack 510 of Embodiment 1, connects the positive electrode of the cell unit 521 to the upper + terminal, connects the negative electrode to the upper − terminal, connects the positive electrode of the cell unit 522 to the middle + terminal, The negative electrode is connected to the middle - terminal, the positive electrode of the cell unit 523 is connected to the lower + terminal, and the negative electrode is connected to the lower - terminal.
電気機器本体530Aは、実施の形態1の電気機器本体530にリレーSW5~SW8を追加したものである。セルユニット521~523に対するリレーSW5~SW8の接続は、実施の形態1におけるセルユニット521~523に対するリレーSW1~SW4の接続と同様である。電池パック510Cから出力する電圧とリレーSW5~SW8の各コイルの通電状態との関係は、実施の形態1における電池パック510から出力する電圧とリレーSW1~SW4の各コイルの通電状態との関係と同様である。 Electrical equipment main body 530A is obtained by adding relays SW5 to SW8 to electrical equipment main body 530 of the first embodiment. The connection of relays SW5-SW8 to cell units 521-523 is the same as the connection of relays SW1-SW4 to cell units 521-523 in the first embodiment. The relationship between the voltage output from battery pack 510C and the energized state of each coil of relays SW5 to SW8 is the same as the relationship between the voltage output from battery pack 510 and the energized state of each coil of relays SW1 to SW4 in the first embodiment. It is the same.
本実施の形態のその他の点は、実施の形態1と同様である。本実施の形態も、実施の形態1と同様の効果を奏することができる。また、本実施の形態によれば、例えば、モータ540の定格入力電圧が36Vの場合に、制御部533が一時的に電池パック510Cの出力電圧を54Vとしてブースト効果を得るといった制御も可能となる。また、電池パック510Cはリレーを有さない分だけサイズを小さくできる。 Other points of this embodiment are the same as those of the first embodiment. This embodiment can also achieve the same effect as the first embodiment. Further, according to the present embodiment, for example, when the rated input voltage of the motor 540 is 36 V, the control unit 533 can temporarily set the output voltage of the battery pack 510C to 54 V to obtain a boost effect. . In addition, the size of the battery pack 510C can be reduced because it does not have a relay.
(実施の形態5) 図9は本発明の実施の形態5~7に用いられる電池パック100と、電池パック100が装着される電気機器本体1の斜視図である。ここでは電気機器本体1として、公知の定格電圧36Vの電動工具(インパクトドライバ)の例を示している。電気機器本体1は、着脱式の電池パック100を電源とし、図示しないモータによる回転駆動力を用いて先端工具9を駆動することにより締め付け作業を行う。電気機器本体1は、外形を形成する外枠たるハウジング2を備える。ハウジング2は、図示しないモータや動力伝達機構を収容する胴体部2aと、胴体部2aから下方に延びるハンドル部2bと、ハンドル部2bの下側に形成される電池パック装着部3により構成される。ハンドル部2bの一部であってユーザが把持した際に人差し指があたる付近には、トリガスイッチ(図では見えない)を操作するためのトリガレバー5が設けられる。トリガレバー5の上方にはモータの回転方向を切り替えるための正逆切替レバー6が設けられる。ハウジング2の前方側には出力軸たるアンビル(図では見えない)が設けられ、アンビルの先端には先端工具9を装着するための先端工具保持部8が設けられる。ここでは先端工具9としてプラスのドライバービットが装着されている状態を示している。 (Embodiment 5) Fig. 9 is a perspective view of a battery pack 100 used in Embodiments 5 to 7 of the present invention and an electrical equipment body 1 to which the battery pack 100 is attached. Here, an example of a known electric power tool (impact driver) having a rated voltage of 36 V is shown as the electric device main body 1 . The electric device main body 1 uses a detachable battery pack 100 as a power source, and performs tightening work by driving the tip tool 9 using a rotational driving force of a motor (not shown). An electrical equipment main body 1 includes a housing 2 which is an outer frame forming an outer shape. The housing 2 includes a body portion 2a that accommodates a motor and a power transmission mechanism (not shown), a handle portion 2b that extends downward from the body portion 2a, and a battery pack mounting portion 3 that is formed below the handle portion 2b. . A trigger lever 5 for operating a trigger switch (not visible in the figure) is provided in a portion of the handle portion 2b near which the index finger touches when the user grips it. A normal/reverse switching lever 6 for switching the rotation direction of the motor is provided above the trigger lever 5 . An anvil (not visible in the figure) as an output shaft is provided on the front side of the housing 2, and a tip tool holder 8 for attaching a tip tool 9 is provided at the tip of the anvil. Here, a state in which a plus driver bit is attached as the tip tool 9 is shown.
電池パック装着部3には、左右両側の内壁部分に前後方向に平行に延びる溝やレールを含むレール部11a、11bが形成され、それらの間にターミナル部(本体側端子部)20が設けられる。レール部11a、11bがレール機構を構成し、ターミナル部20には電力端子が配置される。ターミナル部20は、合成樹脂等の不導体材料の一体成形により製造され、そこに金属製の複数の端子、例えば正極入力端子22a、22b、負極入力端子27a、27b、LD端子(異常信号端子)28を鋳込んだものである。ターミナル部20の装着方向(前後方向)の後端側には突き当て面となる垂直面20aが形成され、複数の端子の上側には水平面20bが形成される。尚、図9では、ターミナル部20のうち正極入力端子22aと負極入力端子27aの間や隣接して設けられる信号伝達用の他の端子群(T端子、V端子、LS端子)の図示を省略しているが、これらの端子の何れか又はすべてをターミナル部20に追加しても良い。 Rail portions 11a and 11b including grooves and rails extending parallel to the front-rear direction are formed in the inner wall portions on both left and right sides of the battery pack mounting portion 3, and a terminal portion (main body side terminal portion) 20 is provided between them. . The rail portions 11a and 11b constitute a rail mechanism, and the terminal portion 20 is provided with power terminals. The terminal portion 20 is manufactured by integrally molding a non-conductive material such as synthetic resin, and has a plurality of metal terminals such as positive input terminals 22a and 22b, negative input terminals 27a and 27b, and an LD terminal (abnormal signal terminal). 28 is cast. A vertical surface 20a serving as an abutting surface is formed on the rear end side of the terminal portion 20 in the mounting direction (front-rear direction), and a horizontal surface 20b is formed on the upper side of the plurality of terminals. In FIG. 9, another terminal group (T terminal, V terminal, LS terminal) for signal transmission provided between or adjacent to the positive input terminal 22a and the negative input terminal 27a of the terminal section 20 is omitted. However, any or all of these terminals may be added to the terminal portion 20. FIG.
ターミナル部20は、左右分割式のハウジング2の開口部分(ターミナル保持部:図では見えない)に挟持されるようにして固定される。ターミナル部20の水平面20bは電池パック100の装着時に、電池パック100側の上段面115と近接、対向する面となる。水平面20bの前方側には、電池パック100の隆起部132と当接する湾曲部12が形成され、湾曲部12の左右中央付近には突起部14が形成される。突起部14は左右方向に2分割で形成される電気機器本体1のハウジングのネジ止め用のボスを兼ねると共に、電池パック100の装着方向への相対移動を制限するストッパの役目も果たす。 The terminal portion 20 is fixed so as to be sandwiched between opening portions (terminal holding portion: not visible in the figure) of the left and right divided housing 2 . The horizontal surface 20b of the terminal portion 20 is adjacent to and faces the upper surface 115 on the battery pack 100 side when the battery pack 100 is attached. A curved portion 12 is formed on the front side of the horizontal surface 20b to contact the raised portion 132 of the battery pack 100, and a protrusion 14 is formed near the center of the curved portion 12 in the left-right direction. The projecting portion 14 doubles as a boss for screwing the housing of the electrical equipment main body 1, which is divided into two parts in the left-right direction, and also serves as a stopper that restricts the relative movement of the battery pack 100 in the mounting direction.
電池パック100は、対応する電気機器本体1に対して着脱式であり、複数本の電池セルを合成樹脂製のケース内に収容する。電池パック100の上部には、電気機器本体1に装着するためのレール機構、即ち、レール溝138a(図9では見えない)、138bが設けられる。レール溝138a、138bの間には、電気機器本体1との電気的な接続を実現するための出力端子や通信端子への接続を可能とするスロット部120が配置される。スロット部120の内側部分は図11で後述する接続端子群が配置され、接続端子群の後方には電気機器本体1との装着状態を維持又は解除するためのラッチ機構(ラッチ部)が設けられる。ラッチ機構は、ラッチボタン141a、141bと、ラッチボタン141a、141bと連動して移動する係止爪142a(図9では見えない)、142bを含んで構成される。 The battery pack 100 is detachable from the corresponding electrical equipment main body 1, and accommodates a plurality of battery cells in a synthetic resin case. At the top of the battery pack 100, a rail mechanism for attaching to the electric device main body 1, that is, rail grooves 138a (not visible in FIG. 9) and 138b are provided. Between the rail grooves 138a and 138b, a slot portion 120 is arranged to enable connection to an output terminal and a communication terminal for achieving electrical connection with the electrical equipment main body 1. As shown in FIG. A group of connection terminals, which will be described later with reference to FIG. . The latch mechanism includes latch buttons 141a and 141b and locking claws 142a (not visible in FIG. 9) and 142b that move in conjunction with the latch buttons 141a and 141b.
電池パック100は、低電圧(定格18V)又は高電圧(定格36V)のいずれかを切り替えて出力できる、電圧切替え型の電源である。電池パック100は、定格18Vの電気機器本体(図示せず)と、定格36Vの電気機器本体1のいずれにも装着可能であり、定格18Vの電気機器本体に装着された場合は定格18Vの直流が出力され、36Vの電気機器本体1に装着された場合は定格36Vの直流が出力される。電池パック100を電気機器本体1から取り外した後は、図示しない外部充電器を用いて充電が可能である。 The battery pack 100 is a voltage-switching power supply capable of switching and outputting either a low voltage (rated 18V) or a high voltage (rated 36V). The battery pack 100 can be attached to either a rated 18V electrical equipment main body (not shown) or a rated 36V electrical equipment main body 1, and when attached to a rated 18V electrical equipment main body, a rated 18V DC is output, and when it is attached to the 36V electrical equipment main body 1, a rated DC of 36V is output. After removing the battery pack 100 from the electric device body 1, it can be charged using an external charger (not shown).
図10は電池パック100の斜視図である。電池パック100の筐体は、上下方向に分割可能な下ケース101と上ケース110により形成される。上ケース110は、電気機器本体1の電池パック装着部3(図9参照)に取り付けるために2本のレール溝138a、138bが形成された装着機構が形成される。レール溝138a、138bは、電池パック100の装着方向と平行な方向に延びるように、且つ、上ケース110の左右側面に突出するように形成される。レール溝138a、138bは、電気機器本体1の電池パック装着部3に形成されたレール部11a、11b(図9参照)と対応した形状に形成され、レール溝138a、138bがレール部11a、11bと嵌合した状態で、ラッチボタン141a、141bの爪となる係止爪142a、142bにて係止することにより電池パック100が電気機器本体1に固定される。電池パック100を電気機器本体1から取り外すときは、左右両側にあるラッチボタン141a、141bを押すことにより、係止爪142a、142bが内側に移動して係止状態が解除されるので、その状態で電池パック100を装着方向と反対側に移動させる。 FIG. 10 is a perspective view of the battery pack 100. FIG. The housing of the battery pack 100 is formed by a lower case 101 and an upper case 110 that can be separated vertically. The upper case 110 has a mounting mechanism formed with two rail grooves 138a and 138b for mounting to the battery pack mounting portion 3 (see FIG. 9) of the electrical equipment main body 1. As shown in FIG. Rail grooves 138 a and 138 b are formed to extend in a direction parallel to the mounting direction of battery pack 100 and to protrude from left and right side surfaces of upper case 110 . The rail grooves 138a and 138b are formed in a shape corresponding to the rail portions 11a and 11b (see FIG. 9) formed in the battery pack mounting portion 3 of the electrical equipment main body 1, and the rail grooves 138a and 138b are aligned with the rail portions 11a and 11b. The battery pack 100 is fixed to the electric device body 1 by engaging with the engaging claws 142a and 142b which are the claws of the latch buttons 141a and 141b. When the battery pack 100 is to be removed from the electric device main body 1, pressing the latch buttons 141a and 141b on the left and right sides moves the locking claws 142a and 142b inward to release the locked state. to move the battery pack 100 in the direction opposite to the mounting direction.
上ケース110の下段面111と上段面115は階段状に高さが異なるように形成され、それらの段差部分から後方側に延びる複数のスロット121~128が形成される。スロット121~128は電池パック装着方向に所定の長さを有するように切り欠かれた部分であって、この切り欠かれた部分の内部には、電気機器本体1又は外部の充電装置(図示せず)の機器側端子と嵌合可能な複数の接続端子(接続端子群)が配設される。スロット121~128は、電池パック100の右側のレール溝138aに近い側のスロット121が充電用正極端子(C+端子)の挿入口となり、スロット122が放電用正極端子(+端子)の挿入口となる。また、左側のレール溝138bに近い側のスロット127が負極端子(-端子)の挿入口となる。スロット122及び127に配置される+端子、-端子が実質的な電力端子となる。スロット121に配置されるC+端子は、図では見えないヒューズを介して+端子に接続される。 A lower surface 111 and an upper surface 115 of the upper case 110 are formed to have different heights, and a plurality of slots 121 to 128 extending rearward from the stepped portions are formed. The slots 121 to 128 are cutout portions having a predetermined length in the battery pack mounting direction. A plurality of connection terminals (connection terminal group) that can be fitted with the device-side terminals of (1) are arranged. Of the slots 121 to 128, the slot 121 on the side closer to the rail groove 138a on the right side of the battery pack 100 serves as an insertion port for the charging positive terminal (C+ terminal), and the slot 122 serves as an insertion port for the discharging positive terminal (+ terminal). Become. Also, the slot 127 on the side closer to the left rail groove 138b serves as an insertion port for the negative terminal (- terminal). The +terminals and -terminals arranged in the slots 122 and 127 are substantial power terminals. The C+ terminal located in slot 121 is connected to the + terminal via a fuse not visible in the drawing.
正極端子と負極端子の間には、電池パック100と電気機器本体1や外部の充電装置(図示せず)への信号伝達用の複数のスロット123~126が配置され、これらスロット内には3つの信号端子が設けられる。スロット123は予備の端子挿入口であり、本実施の形態では端子は設けられない。スロット124は電池パック100の識別情報となる信号を電気機器本体又は充電装置に出力するためのT端子用の挿入口である。スロット125は外部の充電装置(図示せず)からの制御信号が入力されるためのV端子用の挿入口である。スロット126はセルに接触して設けられた図示しないサーミスタ(感温素子)による電池の温度情報を出力するためのLS端子用の挿入口である。負極端子(-端子)の挿入口となるスロット127の左側には、さらに電池パック100内に含まれる電池保護回路(図示せず)による異常停止信号を出力するLD端子用のスロット128が設けられる。 A plurality of slots 123 to 126 are arranged between the positive terminal and the negative terminal for signal transmission to the battery pack 100, the electrical equipment body 1, and an external charging device (not shown). One signal terminal is provided. The slot 123 is a spare terminal insertion opening, and no terminal is provided in this embodiment. The slot 124 is an insertion opening for a T-terminal for outputting a signal that serves as identification information of the battery pack 100 to the main body of the electrical equipment or the charging device. A slot 125 is an insertion port for a V terminal for receiving a control signal from an external charging device (not shown). The slot 126 is an insertion port for an LS terminal for outputting battery temperature information from a thermistor (temperature sensing element) (not shown) provided in contact with the cell. A slot 128 for an LD terminal is provided on the left side of the slot 127, which serves as an insertion port for the negative terminal (- terminal), for outputting an abnormal stop signal by a battery protection circuit (not shown) included in the battery pack 100. .
上段面115の後方側には、隆起するように形成された隆起部132が形成される。隆起部132の中央付近に窪み状のストッパ部131が形成される。ストッパ部131は、電池パック100を、電池パック装着部3(図9参照)に装着した際に突起部14(図9参照)の突き当て面となる。電池パック100が電気機器本体1の所定の位置に装着されると電気機器本体1に配設された複数の端子(機器側端子)と電池パック100に配設された複数の接続端子が接触して導通状態となる。下段面111の前方左側角部には、従来の18V用電池パックを36V用の電気機器本体1に装着できないようにするための、識別用の切り欠き部111aが形成される。36V用の電気機器本体1には切り欠き部111aに対応する凸部(図示せず)が電池パック装着部3の上壁部に形成されるが、従来の18V用電池パックは切り欠き部111aに相当する部分が形成されない。18V用電池パックは、電気機器本体1側に形成された凸部と下段面111の端部が干渉するため、を36V用の電気機器本体1には装着できない。 A protruding portion 132 is formed on the rear side of the upper step surface 115 so as to protrude. A depressed stopper portion 131 is formed near the center of the raised portion 132 . Stopper portion 131 serves as an abutment surface for projecting portion 14 (see FIG. 9) when battery pack 100 is attached to battery pack attachment portion 3 (see FIG. 9). When the battery pack 100 is attached to a predetermined position of the electric device main body 1, a plurality of terminals (apparatus-side terminals) arranged on the electric device main body 1 and a plurality of connection terminals arranged on the battery pack 100 come into contact with each other. becomes conductive. A notch 111 a for identification is formed in the front left corner of the lower surface 111 to prevent a conventional 18V battery pack from being attached to the 36V electrical equipment main body 1 . A convex portion (not shown) corresponding to the notch portion 111a is formed on the upper wall portion of the battery pack mounting portion 3 in the 36V electric device main body 1, but the conventional 18V battery pack has the notch portion 111a. A portion corresponding to is not formed. The 18V battery pack cannot be attached to the 36V electrical equipment main body 1 because the protrusion formed on the electrical equipment main body 1 side interferes with the end of the lower stage surface 111 .
図11は図10の電池パック100の展開斜視図である。電池パック100の筐体は、上下方向に分離可能な上ケース110と下ケース101によって形成され、下ケース101の内部空間には、10本の電池セルが収容される。複数の電池セル(図示せず)は、5本ずつ上下2段にスタックさせた状態で、合成樹脂等の不導体で構成されたセパレータ145にて固定される。セパレータ145は電池セルの両端部となる左右両側だけが開口するようにして複数の電池セルを保持する。セパレータ145には、3.6Vのリチウムイオン電池のセルが5本直列接続されたものを一つのセルユニットとし、第1のセルユニット146と第2のセルユニット147の2つで構成され、2つのセルユニットの接続方法の変更により、18V出力(低電圧出力)と36V出力(高電圧出力)を切り換えることができるもので、いわゆる「電圧切替え型電池パック」である。 11 is an exploded perspective view of the battery pack 100 of FIG. 10. FIG. The housing of the battery pack 100 is formed by a vertically separable upper case 110 and a lower case 101, and the inner space of the lower case 101 accommodates ten battery cells. A plurality of battery cells (not shown) are stacked in two tiers, each five in number, and fixed by separators 145 made of a non-conductor such as synthetic resin. The separators 145 hold a plurality of battery cells so that only the left and right sides, which are both ends of the battery cells, are open. The separator 145 is composed of two cells, a first cell unit 146 and a second cell unit 147, with five 3.6V lithium ion battery cells connected in series as one cell unit. By changing the connection method of the two cell units, it is possible to switch between 18V output (low voltage output) and 36V output (high voltage output), a so-called "voltage switching type battery pack".
セパレータ145の上側には、回路基板150が固定される。回路基板150は複数の接続端子(161、162、164~168、171、172、177)を半田付けによって固定すると共に、これら接続端子と図示しない回路パターンとの電気的な接続を行うプリント基板である。回路基板150にはさらに、MPU(Micro Processor Unit)、電池保護IC、PTCサーミスタ、抵抗、コンデンサ、ヒューズ、発光ダイオード等の様々な電子素子(ここでは図示していない)を搭載する。回路基板150の前後方向の中央よりもやや前側には、接続端子群160が設けられ、そこに複数の接続端子(161、162、164~168、171、172、177)が横方向に並べて固定される。 A circuit board 150 is fixed on the upper side of the separator 145 . The circuit board 150 is a printed board for fixing a plurality of connection terminals (161, 162, 164 to 168, 171, 172, 177) by soldering and for electrically connecting these connection terminals to a circuit pattern (not shown). be. The circuit board 150 further mounts various electronic elements (not shown) such as an MPU (Micro Processor Unit), a battery protection IC, a PTC thermistor, a resistor, a capacitor, a fuse, and a light emitting diode. A connection terminal group 160 is provided slightly in front of the center of the circuit board 150 in the front-rear direction, and a plurality of connection terminals (161, 162, 164 to 168, 171, 172, 177) are horizontally arranged and fixed there. be done.
正極端子(161、162、171、172)と負極端子(167、177)の間には3つの信号端子(T端子164、V端子165、LS端子166)が設けられる。本実施の形態では電力端子用の部品として、水平方向に延びる腕部が上側の左右に1組、下側の左右に1組の合計2組設けられたものを用いる。負極端子対(167、177)の左側にはLD端子168が設けられる。すべての信号端子(164~166、168)は、回路基板150の形成された複数の取付孔151a、151bにそれぞれの脚部を表面から裏面にまで貫通させて、裏面側で半田付けにより固定される。以上のように、回路基板150上に図示しない電子素子が搭載され、複数の接続端子が半田付けにより固定されたあとに、回路基板150の表面に防水防塵のために樹脂(図示せず)が塗布される。 Three signal terminals (T terminal 164, V terminal 165, LS terminal 166) are provided between the positive terminals (161, 162, 171, 172) and the negative terminals (167, 177). In this embodiment, two sets of horizontally extending arms, one set on the left and right on the upper side and one set on the left and right on the lower side, in total, are used as the parts for the power terminals. An LD terminal 168 is provided on the left side of the negative terminal pair (167, 177). All the signal terminals (164 to 166, 168) are fixed by soldering on the back side, with their leg portions penetrating from the front surface to the back surface through a plurality of mounting holes 151a, 151b formed in the circuit board 150. be. As described above, after the electronic elements (not shown) are mounted on the circuit board 150 and the plurality of connection terminals are fixed by soldering, resin (not shown) is applied to the surface of the circuit board 150 for waterproofing and dustproofing. applied.
下ケース101は、上面が開口された略直方体の形状である。前面壁のほぼ中央には、スリット104が設けられる。上ケース110のスリット134は、充電装置にて充電を行う際に電池パック100の内部空間に充電装置側から送出される冷却風を流入させるための流入口として用いられ、下ケース101のスリット104は冷却風の排出口として用いられる。 The lower case 101 has a substantially rectangular parallelepiped shape with an open upper surface. A slit 104 is provided approximately in the center of the front wall. The slit 134 of the upper case 110 is used as an inlet for introducing cooling air sent from the charging device into the internal space of the battery pack 100 when the battery pack 100 is charged by the charging device. is used as a cooling air outlet.
電池セル側からの出力の回路基板150との接続は、上方向に板状に延びる接続用の引出しタブ181a、186a、187a、188aを介して行われる。また直列接続された電池セルの中間接続点からのリード線の端部194b、196b~199bが上方向に延びるように配置され、回路基板上に半田付けされる。さらに、直列接続された電池セルの中間接続点からの中間引出しタブ182a、183aが回路基板150に接続されるべく、上方向に延びるように配置される。セパレータ145の上側には、回路基板150を固定する為のネジボス157a、157bが形成される。 The output from the battery cell side is connected to the circuit board 150 via connection drawer tabs 181a, 186a, 187a, and 188a extending upward in a plate shape. Lead wire ends 194b, 196b to 199b from intermediate connection points of the battery cells connected in series are arranged to extend upward and are soldered onto the circuit board. Further, intermediate pull-out tabs 182 a and 183 a from intermediate connection points of the battery cells connected in series are arranged to extend upward so as to be connected to the circuit board 150 . Screw bosses 157 a and 157 b for fixing the circuit board 150 are formed on the upper side of the separator 145 .
次に図12を用いて電気機器本体1及び電池パック100の2組の電力端子の形状を説明する。図12(A)は本実施の形態に用いられる電池パック100の正極端子(162と172)、負極端子(167と177)の形状を示す部分斜視図と高電圧出力時の接続回路を示す図である。図12(B)は高電圧用電気機器のターミナル部50と、電池パック100側の端子との接続状況を示すための部分斜視図である。図12(A)に示すように、電池パック100のスロット122(図10参照)には、上側正極端子162と下側正極端子172が並んで配置される。上側正極端子162と下側正極端子172は金属板のプレス加工によって形成され、脚部を回路基板150に半田付け等により強固に固定したものである。上側正極端子162と下側正極端子172は距離を隔てて配置され、電気的に非導通状態にある。同様にしてスロット127(図10参照)には、上側負極端子167と下側負極端子177が並んで配置される。上側正極端子162と上側負極端子167は同じ金属部品であり、下側正極端子172と下側負極端子177は同じ金属部品である。 Next, the shapes of the two sets of power terminals of the electrical equipment body 1 and the battery pack 100 will be described with reference to FIG. FIG. 12A is a partial perspective view showing the shapes of the positive terminals (162 and 172) and the negative terminals (167 and 177) of the battery pack 100 used in this embodiment, and a diagram showing a connection circuit when outputting a high voltage. is. FIG. 12B is a partial perspective view showing the state of connection between the terminal portion 50 of the high-voltage electrical equipment and the terminals on the battery pack 100 side. As shown in FIG. 12A, an upper positive terminal 162 and a lower positive terminal 172 are arranged side by side in the slot 122 (see FIG. 10) of the battery pack 100 . The upper positive electrode terminal 162 and the lower positive electrode terminal 172 are formed by pressing a metal plate, and their legs are firmly fixed to the circuit board 150 by soldering or the like. The upper positive terminal 162 and the lower positive terminal 172 are spaced apart and electrically non-conductive. Similarly, an upper negative terminal 167 and a lower negative terminal 177 are arranged side by side in the slot 127 (see FIG. 10). The upper positive terminal 162 and the upper negative terminal 167 are the same metal parts, and the lower positive terminal 172 and the lower negative terminal 177 are the same metal parts.
電池パック100の内部には、5本のリチウムイオン電池セルが直列に接続された第1セルユニット146と第2セルユニット147が収容され、第1セルユニット146の正極が第1正極端子に相当する上側正極端子162に接続され、第1セルユニット146の負極が第1負極端子に相当する下側負極端子177に接続される。同様にして、第2セルユニット147の正極が第2正極端子に相当する下側正極端子172に接続され、第2セルユニット147の負極が第2負極端子に相当する上側負極端子167に接続される。このような電池パック100の形態において、電気機器本体1側の正極用入力端子を上側正極端子162に接続し、負極用入力端子を上側負極端子167に接続するとともに、点線52b、59、57bで示すように下側正極端子172と下側負極端子177を電気的に接続すれば、第1セルユニット146と第2セルユニット147の直列接続の出力、即ち定格36Vが電池パック100から電気機器本体1の負荷装置18に出力されることになる。 The battery pack 100 accommodates a first cell unit 146 and a second cell unit 147 in which five lithium-ion battery cells are connected in series, and the positive electrode of the first cell unit 146 corresponds to a first positive electrode terminal. The negative electrode of the first cell unit 146 is connected to the lower negative terminal 177 corresponding to the first negative terminal. Similarly, the positive electrode of the second cell unit 147 is connected to the lower positive terminal 172 corresponding to the second positive terminal, and the negative electrode of the second cell unit 147 is connected to the upper negative terminal 167 corresponding to the second negative terminal. be. In such a form of the battery pack 100, the positive input terminal on the side of the electrical equipment main body 1 is connected to the upper positive terminal 162, the negative input terminal is connected to the upper negative terminal 167, and dotted lines 52b, 59, 57b If the lower positive terminal 172 and the lower negative terminal 177 are electrically connected as shown, the output of the series connection of the first cell unit 146 and the second cell unit 147, that is, the rated voltage of 36 V will be supplied from the battery pack 100 to the electric device body. It will be output to one load device 18 .
出力用の正極端子は、電気的に独立した上側正極端子162と下側正極端子172が、回路基板150の取り付け位置(脚部の位置)で見ると前後方向に並ぶように配置される。上側正極端子162と下側正極端子172は、それぞれが前方側に延在する腕部組(腕部162aと162b、腕部172aと172b)を有する。ここでは腕部162a、162bと腕部172a、172bが上下方向に離れた位置であって、その嵌合部の前後方向位置がほぼ同一となるような形状とされる。これら正極端子対(162、172)は、単一のスロット122内に配置される。負極端子対も、正極端子対の形状と同じであって、上側負極端子167と下側負極端子177により構成され、これら負極端子対(167、177)が単一のスロット127の内部に配置される。スロット127の内部では、上側に上側負極端子167の腕部組が配置され、上側負極端子167の腕部組の下側に下側負極端子177の腕部組が配置される。尚、図12では図示していないが、放電用の正極端子対(上側正極端子162と下側正極端子172)の右側には、充電用の正極端子対(上側正極端子161と下側正極端子171:図12参照)が配置される。充電用の正極端子対(161、171)の形状は、上側正極端子162と下側正極端子172と同じである。 The positive output terminal 162 and the lower positive terminal 172, which are electrically independent, are arranged so as to line up in the front-rear direction when viewed from the mounting position (leg position) of the circuit board 150. FIG. The upper positive terminal 162 and the lower positive terminal 172 each have an arm assembly ( arms 162a and 162b, arms 172a and 172b) extending forward. Here, the arms 162a, 162b and the arms 172a, 172b are separated in the vertical direction, and the fitting portions are shaped so that the longitudinal positions thereof are substantially the same. These positive terminal pairs ( 162 , 172 ) are located within a single slot 122 . The negative terminal pair also has the same shape as the positive terminal pair, and is composed of an upper negative terminal 167 and a lower negative terminal 177 , which negative terminal pairs ( 167 , 177 ) are located inside a single slot 127 . be. Inside the slot 127 , the arm group of the upper negative terminal 167 is arranged on the upper side, and the arm group of the lower negative terminal 177 is arranged on the lower side of the arm group of the upper negative terminal 167 . Although not shown in FIG. 12, a pair of positive terminals for charging (upper positive terminal 161 and lower positive terminal 172) is provided on the right side of the positive terminal pair for discharging (upper positive terminal 162 and lower positive terminal 172). 171: see FIG. 12) are arranged. The shape of the positive terminal pair (161, 171) for charging is the same as that of the upper positive terminal 162 and the lower positive terminal 172. As shown in FIG.
図12(B)は定格36Vの電気機器本体1のターミナル部50と、電池パック100側の接続端子(162、167、172,177)との接続関係を示す図である。ターミナル部50は、図9で示したターミナル部20と互換形状であり、違いは図12(B)では信号用の端子(54~56、58)が含まれていることである。電気機器本体1の電池パック装着部3に設けられる。ターミナル部50には、電池パック100のスロット121~128(図10参照)に対応する機器側端子(52a、52b、54~56、57a、57b、58)が設けられ、合成樹脂製の基台51に鋳込まれるようにして固定される。基台51の上側に露出する端子52a、54~58と、下側の板状の端子52a、54~56、57a、58は同一の金属板により構成され電気的に導通されている。尚、スロット123(図10参照)に対応する位置には機器側端子は設けられない。電力用の入力端子として、受電用の正極入力端子52aと52b、負極入力端子57aと57bが小さいサイズで形成される。正極入力端子52aと52bは導通していない。また、負極入力端子57aと57bは導通していない。 FIG. 12(B) is a view showing the connection relationship between the terminal portion 50 of the electrical equipment body 1 rated at 36 V and the connection terminals (162, 167, 172, 177) on the battery pack 100 side. The terminal portion 50 has a shape compatible with the terminal portion 20 shown in FIG. 9, and the difference is that signal terminals (54 to 56, 58) are included in FIG. 12(B). It is provided in the battery pack mounting portion 3 of the electrical equipment main body 1 . The terminal portion 50 is provided with device-side terminals (52a, 52b, 54-56, 57a, 57b, 58) corresponding to the slots 121-128 (see FIG. 10) of the battery pack 100, and a synthetic resin base. It is fixed by being cast into 51 . The terminals 52a, 54 to 58 exposed on the upper side of the base 51 and the plate-shaped terminals 52a, 54 to 56, 57a, 58 on the lower side are made of the same metal plate and are electrically connected. No device-side terminal is provided at a position corresponding to the slot 123 (see FIG. 10). As power input terminals, positive input terminals 52a and 52b and negative input terminals 57a and 57b for power reception are formed in small sizes. The positive input terminals 52a and 52b are not conducting. Also, the negative input terminals 57a and 57b are not electrically connected.
電気機器本体が36Vで動作する機器の場合は、正極入力端子52bと負極入力端子57bを、コの字状に曲げられた金属板にて一体に形成し、いわゆるショートバーとして製造し、一端側を52bとして基台51から露出させ、他端側を57bとして基台51から露出させる。電池パック100の装着時において、正極入力端子52aは上側正極端子162だけに嵌合し、負極入力端子57aは上側負極端子167だけに嵌合する。また、正極入力端子52bは下側正極端子172だけに嵌合し、負極入力端子57bは下側負極端子177だけに嵌合する。 In the case of a device whose main body of the electrical device operates at 36V, the positive input terminal 52b and the negative input terminal 57b are integrally formed with a U-shaped bent metal plate, manufactured as a so-called short bar, and one end side is exposed from the base 51 as 52b, and the other end side is exposed from the base 51 as 57b. When the battery pack 100 is attached, the positive input terminal 52 a fits only with the upper positive terminal 162 and the negative input terminal 57 a fits only with the upper negative terminal 167 . Also, the positive input terminal 52b is fitted only to the lower positive terminal 172, and the negative input terminal 57b is fitted only to the lower negative terminal 177. As shown in FIG.
正極入力端子52aは、上側正極端子162と嵌合する部分であって平板状に形成された端子本体と、端子本体から延在して基台51の上方に突出する接続子により構成され合成樹脂製の基台51に鋳込まれる。上方に突出する接続子は、貫通穴が形成され、電気機器本体1側の回路基板側と結線される。負極入力端子57aも正極入力端子52aと同様であって、他の端子部(54~56、58)に比べて半分よりやや小さい程度の大きさとされる。他の端子部(54~56、58)は信号伝達用の端子であり、合成樹脂製の基台51の上方に接続子の部分が露出する。 The positive input terminal 52a is composed of a flat plate-shaped terminal body which is a portion to be fitted to the upper positive terminal 162, and a connector extending from the terminal body and protruding upward from the base 51. The positive input terminal 52a is made of synthetic resin. It is cast on a base 51 made of steel. A through hole is formed in the connector projecting upward, and the connector is connected to the circuit board on the side of the electrical equipment main body 1 . The negative input terminal 57a is similar to the positive input terminal 52a, and has a size slightly smaller than half that of the other terminal portions (54 to 56, 58). Other terminal portions (54 to 56, 58) are terminals for signal transmission, and connector portions are exposed above the base 51 made of synthetic resin.
電気機器本体を本実施の形態の54Vで動作させる場合は、正極入力端子52bの接続子と、負極入力端子57bの接続子は、それぞれ基台51の後側に露出させて(図12(B)では見えない)、配線可能なように構成される。ターミナル部50の合成樹脂製の基台51の前側と後側には、ハウジングによって挟持されるための凹部51aと51bが設けられる。 When the electrical equipment main body is operated at 54 V of this embodiment, the connector of the positive input terminal 52b and the connector of the negative input terminal 57b are exposed to the rear side of the base 51 (Fig. 12 (B )) and configured to be routable. Recesses 51a and 51b are provided on the front and rear sides of a synthetic resin base 51 of the terminal portion 50 so as to be sandwiched by the housing.
図12(B)において、電池パック100を装着する際には、電池パック100を電気機器本体1に対して差し込み方向に沿って相対移動させると、正極入力端子52aと52bが同一のスロット122(図10参照)を通って内部まで挿入され、上側正極端子162と下側正極端子172にそれぞれ嵌合される。このとき、正極入力端子52aが上側正極端子162の嵌合部間を押し広げるようにして上側正極端子162の腕部162aと162bの間に圧入され、正極入力端子52bが下側正極端子172の腕部172aと172bの間を押し広げるようにして圧入される。同様にして、負極入力端子57aと57bが同一のスロット127(図10参照)を通って内部まで挿入され、それぞれ上側負極端子167と下側負極端子177に嵌合される。この際、負極入力端子57aが嵌合部間を押し広げるようにして上側負極端子167の腕部167aと167bの間に圧入される。さらに、負極入力端子57bが下側負極端子177の腕部177aと177bの間を押し広げるようにして圧入される。このように図12に示すように正極入力端子52bと負極入力端子57bを短絡させることによって、第1セルユニット146と第2セルユニット147の直列接続の出力、即ち定格36Vが負荷装置18に出力されることになる。 In FIG. 12(B), when the battery pack 100 is attached, the battery pack 100 is moved relative to the electrical equipment main body 1 along the insertion direction, and the positive input terminals 52a and 52b are connected to the same slot 122 ( 10), and are fitted to the upper positive terminal 162 and the lower positive terminal 172, respectively. At this time, the positive input terminal 52a is press-fitted between the arm portions 162a and 162b of the upper positive terminal 162 so as to widen the space between the fitting portions of the upper positive terminal 162, and the positive input terminal 52b is connected to the lower positive terminal 172. It is press-fitted so as to widen the space between the arms 172a and 172b. Similarly, the negative input terminals 57a and 57b are inserted through the same slot 127 (see FIG. 10) and fitted to the upper negative terminal 167 and the lower negative terminal 177, respectively. At this time, the negative input terminal 57a is press-fitted between the arms 167a and 167b of the upper negative terminal 167 so as to widen the space between the fitting portions. Further, the negative input terminal 57b is press-fitted so as to widen the space between the arms 177a and 177b of the lower negative terminal 177. As shown in FIG. By short-circuiting the positive input terminal 52b and the negative input terminal 57b as shown in FIG. will be
図13(A)及び(B)は、18V用の電気機器本体1(図11参照)に本実施の形態に用いられる電池パック100を装着した際の接続状態を示す図である。図13(B)に示すように、ターミナル部60のうち、正極入力端子62と負極入力端子67は、他の入力端子(64~67、68)と同じ高さに形成される。電池パック100が電気機器本体1に取り付けられるときは、正極入力端子62の端子部は、上側正極端子162と下側正極端子172の開口端部の双方を押し広げるように嵌合圧入されて、正極入力端子62の端子部の上側一部の領域が上側正極端子162と接触し、下側一部の領域が下側正極端子172と接触する。このように正極入力端子62の端子部を上側正極端子162の腕部162a、162bと下側正極端子172の腕部172a、172bを同時に嵌合させることによって、正極入力端子62は並列接続部をして機能する。 13A and 13B are diagrams showing the connection state when the battery pack 100 used in the present embodiment is attached to the 18V electrical equipment body 1 (see FIG. 11). As shown in FIG. 13B, of the terminal portion 60, the positive input terminal 62 and the negative input terminal 67 are formed at the same height as the other input terminals (64 to 67, 68). When the battery pack 100 is attached to the electric device main body 1, the terminal portion of the positive input terminal 62 is fitted and press-fitted so as to expand both the open end portions of the upper positive terminal 162 and the lower positive terminal 172. An upper portion of the terminal portion of the positive input terminal 62 contacts the upper positive terminal 162 , and a lower portion thereof contacts the lower positive terminal 172 . By simultaneously fitting the terminal portion of the positive input terminal 62 into the arm portions 162a and 162b of the upper positive terminal 162 and the arm portions 172a and 172b of the lower positive terminal 172, the positive input terminal 62 is connected in parallel. functions as
負極入力端子67の端子部は、上側負極端子167と下側負極端子177の開口端部の双方を押し広げるように嵌合圧入されて、負極入力端子67の端子部の上側一部の領域が上側負極端子167と接触し、下側一部の領域が下側負極端子177と接触する。このように負極入力端子67の端子部を上側負極端子167の腕部167a、167bと下側負極端子177の腕部177a、177bに同時に嵌合させることによって、正極入力端子62は並列接続部をして機能する。これらの結果、電気機器本体1には第1セルユニット146と第2セルユニット147の並列接続の出力、即ち定格18Vが負荷装置19に出力される。 The terminal portion of the negative input terminal 67 is fitted and press-fitted so as to expand both the open end portions of the upper negative terminal 167 and the lower negative electrode terminal 177, so that the upper portion of the terminal portion of the negative input terminal 67 is It contacts the upper negative terminal 167 and a part of the lower region contacts the lower negative terminal 177 . By simultaneously fitting the terminal portion of the negative input terminal 67 to the arm portions 167a and 167b of the upper negative terminal 167 and the arm portions 177a and 177b of the lower negative terminal 177, the positive input terminal 62 is connected in parallel. functions as As a result, the output of the parallel connection of the first cell unit 146 and the second cell unit 147 , that is, the rated voltage of 18 V is output to the load device 19 in the electrical equipment main body 1 .
以上のように本実施の形態に用いられる電池パック100は、18V用の電気機器本体(図示せず)か36V用の電気機器本体1(図9参照)のいずれかに装着することにより、電池パック100の出力が自動的に切り替わる。この電圧切り替えは電池パック100側にて行うのではなくて、電気機器本体側のターミナル部の形状によって自動的に行われる。 As described above, the battery pack 100 used in the present embodiment is attached to either the 18V electrical equipment main body (not shown) or the 36V electrical equipment main body 1 (see FIG. 9) to The output of the pack 100 switches automatically. This voltage switching is not performed on the battery pack 100 side, but is performed automatically by the shape of the terminal portion on the electrical equipment main body side.
電池パック100を外部充電装置(図示せず)により充電する場合は、第1セルユニット146と第2セルユニット147を独立して充電できる専用の外部充電装置にて充電すると良い。第1セルユニット146と第2セルユニット147を並列接続状態として従来の18V用電池パック用外部充電器を用いて充電することも可能であるが、第1セルユニット146と第2セルユニット147を別々の回路として充電するようにすれば、それらセルユニット146、147の残容量が不均衡であっても、それぞれ最適な状態まで充電することが可能となる。尚、電池パック100のスロット121には、上側正極端子162と下側正極端子172と同等の形状の充電用の正極端子が設けられるので、放電用の正極端子(162、172)の代わりに、充電用の正極端子(図示せず)を外部充電装置(図示せず)の正極端子に接続するようにすれば良い。 When the battery pack 100 is charged by an external charging device (not shown), it is preferable to use a dedicated external charging device capable of charging the first cell unit 146 and the second cell unit 147 independently. The first cell unit 146 and the second cell unit 147 can be connected in parallel and charged using a conventional 18V battery pack external charger. If they are charged as separate circuits, even if the remaining capacities of the cell units 146 and 147 are unbalanced, they can be charged to their optimum states. In addition, since the slot 121 of the battery pack 100 is provided with positive terminals for charging having the same shape as the upper positive terminal 162 and the lower positive terminal 172, instead of the positive terminals for discharging (162, 172), A positive terminal for charging (not shown) may be connected to a positive terminal of an external charging device (not shown).
図14は、本実施の形態に係る電気機器200の全体を示す斜視図である。電気機器本体201は公称動作電圧54Vで稼働する電動工具であって、合成樹脂製のハウジング202の胴体部202aと、胴体部202aから下方に延びるハンドル部202bと、ハンドル部202bの下側に形成され、電池パックを装着するための電池パック装着部204により構成される。胴体部202aの前方には、動力伝達機構を収容する筒状のケース203が接続され、ケース203の前方には回転軸(図では見えない)が突出し、回転軸の先端には先端工具を固定するための先端工具保持部208が設けられる。 FIG. 14 is a perspective view showing the entire electrical device 200 according to this embodiment. The electrical equipment main body 201 is an electric power tool that operates at a nominal operating voltage of 54 V, and is formed at a body portion 202a of a synthetic resin housing 202, a handle portion 202b extending downward from the body portion 202a, and a lower side of the handle portion 202b. and a battery pack mounting portion 204 for mounting a battery pack. A cylindrical case 203 that houses a power transmission mechanism is connected to the front of the body portion 202a. A rotary shaft (not visible in the figure) protrudes from the front of the case 203, and a tip tool is fixed to the tip of the rotary shaft. A tip tool holding portion 208 is provided for this purpose.
電池パック装着部204は左右方向に並べて2つの電池パック100(100A、100B)を装着するために形成される。ここでは電池パック100として、図10~図13で示した電圧切り替え型電池パック100を2つ用い、横方向に並べて配置する。電池パック装着部204は右側に第1装着部204aが形成され、左側に第2装着部204bが形成されるもので、電池パック装着部204の横幅は、電池パック100の2つ分よりもわずかに大きい程度となる。尚、説明の便宜上、本明細書では一方の電池パック100の符号を100A、他方を100Bと付しているが、同一構造、同一電圧の電池パックであるので、装着位置を相互に入れ替えても良い。 Battery pack mounting portion 204 is formed to mount two battery packs 100 (100A, 100B) side by side in the left-right direction. Here, as the battery pack 100, two voltage switching type battery packs 100 shown in FIGS. 10 to 13 are used and arranged side by side in the horizontal direction. The battery pack mounting portion 204 has a first mounting portion 204a formed on the right side and a second mounting portion 204b formed on the left side. to a large degree. For convenience of explanation, one battery pack 100 is denoted by 100A and the other by 100B in this specification. good.
図15は、図14で示した電気機器200の底面図である。図からわかるように左右方向に並べて配置される電池パック100A、100Bは同一定格電圧、同一容量の電池パックであり、同一形状の外観を有する。図15では見えないが、電池パック装着部204には2組の電池パック装着機構が設けられる。本実施の形態における電池パック装着機構は、電池パック100のレール部と嵌合する本体側レール部と、電力端子と信号端子を含む本体側接続端子を有して構成される。また、電池パック100には、電池パック装着部204に装着された際に電気機器200から脱落しないように固定するためのラッチ機構が設けられる。 FIG. 15 is a bottom view of electrical device 200 shown in FIG. As can be seen from the drawing, the battery packs 100A and 100B arranged side by side in the horizontal direction have the same rated voltage and the same capacity, and have the same appearance. Although not visible in FIG. 15, the battery pack mounting portion 204 is provided with two sets of battery pack mounting mechanisms. The battery pack mounting mechanism according to the present embodiment includes body-side rail portions that engage with the rail portions of battery pack 100, and body-side connection terminals including power terminals and signal terminals. In addition, battery pack 100 is provided with a latch mechanism for fixing battery pack 100 so as not to fall off electric device 200 when attached to battery pack attachment portion 204 .
図16は、本実施の形態に係る電気機器200の回路図であり、電気機器本体201と2つの電池パック100A、100B側との接続状況を示す。電池パック100Aと100Bには、それぞれ5本のリチウムイオン電池を直列接続したセルユニット、即ち第1のセルユニット146と、第2のセルユニット147が収容される。第1のセルユニット146の両端電圧は上側正極端子162と下側負極端子177に接続され、第2のセルユニット147の両端電圧は、上側負極端子167と下側正極端子172に接続される。ここでは、電池パック100Aから直流36Vを取り出して、電池パック100Bから直流18Vを取り出して、双方の出力をリード線73により直列に接続して合計54Vの直流を電気機器本体201に供給するようにした。 FIG. 16 is a circuit diagram of electric device 200 according to the present embodiment, and shows a connection state between electric device main body 201 and two battery packs 100A and 100B. Each of the battery packs 100A and 100B accommodates a cell unit in which five lithium ion batteries are connected in series, that is, a first cell unit 146 and a second cell unit 147. FIG. The voltage across the first cell unit 146 is connected to the upper positive terminal 162 and the lower negative terminal 177 , and the voltage across the second cell unit 147 is connected to the upper negative terminal 167 and the lower positive terminal 172 . Here, 36 V direct current is taken out from the battery pack 100A and 18 V direct current is taken out from the battery pack 100B. did.
電池パック100Aから直流36Vを取り出すには、図12で示したターミナル部(本体側端子部)50を電池パック100A用の装着部に配置する。同様にして、他方の電池パック100Bから直流18Vを取り出すには、図13で示したターミナル部(本体側端子部)60を電池パック100B用の装着部に配置する。電力用の配線手段であるリード線71は電池パック100Aの正極端子(162)に接続され、2つの電池パック100の直流電力の+側出力線となる。リード線72は負極入力端子67を介して電池パック100Bの負極端子(167、177)に接続され、2つの電池パック100の直列接続の-側出力線となる。ターミナル部50側のリード線59、短絡用の正極入力端子52b、及び、負極入力端子57bが本発明における直列接続部に該当し、ターミナル部60側の正極入力端子62、及び、負極入力端子67が本発明における並列接続部に該当する。 In order to extract DC 36V from the battery pack 100A, the terminal portion (body-side terminal portion) 50 shown in FIG. 12 is placed in the mounting portion for the battery pack 100A. Similarly, in order to take out DC 18V from the other battery pack 100B, the terminal portion (body-side terminal portion) 60 shown in FIG. 13 is arranged in the mounting portion for the battery pack 100B. A lead wire 71, which is wiring means for electric power, is connected to the positive terminal (162) of the battery pack 100A and serves as a + side output wire for the DC power of the two battery packs 100A. The lead wire 72 is connected to the negative terminals (167, 177) of the battery pack 100B via the negative input terminal 67, and serves as the - side output line of the series connection of the two battery packs 100B. The lead wire 59 on the terminal section 50 side, the positive input terminal 52b for shorting, and the negative input terminal 57b correspond to the series connection section in the present invention, and the positive input terminal 62 and the negative input terminal 67 on the terminal section 60 side correspond to the series connection section in the present invention. corresponds to the parallel connection portion in the present invention.
本実施の形態では、2つの電池パックを用いて、一方の電池パック100Aの第1のセルユニット146と第2のセルユニット147の直列出力と、他方の電池パック100Bの並列出力を合計する(直列に接続する)ことによって中間の電圧たる54Vを生成し、電気機器本体201に供給するようにした。尚、ターミナル部50側には、従来から公知の18V電圧固定型の電池パックは物理的に取り付け不能とすることが重要である。一方、ターミナル部60側には、従来から公知の18V電圧固定型の電池パックを取り付けることが物理的に可能であるし、動作的にも可能である。本実施の形態での電池パック100A、100Bの使用では、電池パック100A側の電力消費が大きいため、電池パック100A側のLD信号(放電停止信号)が、電池パック100Aの制御信号発生回路(具体的には制御部に含まれるマイコン)から送出される。この際、他方の電池パック100Bは、おおよそ電池残量の半分が残ることになる。 In this embodiment, two battery packs are used, and the series output of the first cell unit 146 and the second cell unit 147 of one battery pack 100A and the parallel output of the other battery pack 100B are totaled ( By connecting them in series, an intermediate voltage of 54 V is generated and supplied to the electrical equipment main body 201 . It is important that the conventionally known 18V voltage fixed type battery pack cannot be physically attached to the terminal portion 50 side. On the other hand, it is physically possible and operationally possible to attach a conventionally known 18V fixed voltage type battery pack to the terminal section 60 side. When battery packs 100A and 100B are used in this embodiment, the power consumption of battery pack 100A is large. It is sent from the microcomputer included in the control unit). At this time, the other battery pack 100B has about half of the remaining battery power remaining.
本実施の形態のように電気機器本体201の動作電圧として直流54Vとすると、公知の36V用の電気機器本体1(図9参照)に用いるパワー素子と同じ耐圧のパワー素子を用いて電気機器本体201を構成できる。電気機器本体の動作電圧を電池パック100A、100Bの最大電圧の2倍、即ち直流72Vにすると、72V用電気機器本体に使用するパワー素子として耐圧80Vや100Vのような高電圧対応の高価な素子を使う必要が出るので、電気機器本体の製造コストが大きく上昇することになる。 Assuming that the operating voltage of the electrical equipment main body 201 is 54 V DC as in the present embodiment, the electrical equipment main body 201 uses a power element having the same withstand voltage as the power element used in the known 36 V electrical equipment main body 1 (see FIG. 9). 201 can be configured. If the operating voltage of the main body of the electrical equipment is double the maximum voltage of the battery packs 100A and 100B, that is, DC 72V, the power element used for the main body of the 72V electrical equipment will be an expensive element that can handle high voltages such as 80V and 100V. Therefore, the manufacturing cost of the electrical equipment main body rises greatly.
図17は、本実施の形態の第1変形例に係る電気機器本体201Aと2つの電池パック100A、100B側との接続回路図である。電気機器本体201Aでは、共通するターミナル部50を用いる。ターミナル部50は、図12で示したターミナル部50と同じである。ここでは、電池パック100Aの第2セルユニット147と、電池パック100Bの第2セルユニット147のリード線79による直列接続によって36Vの出力が確保される。また、電池パック100Aの第1セルユニット146と、電池パック100Bの第1セルユニット146がリード線77、78による並列接続によって18Vの出力が確保される。電池パック100Aと100Bのそれぞれの第1セルユニット146の並列接続の正極側出力は、接続点a1にてリード線74に接続され、負極側出力は接続点a2からリード線76によって電池パック100Aの第2セルユニット147の正極入力端子52bに接続される。電池パック100Aと電池パック100Bの全体の出力の負極側は、負極入力端子57aからリード線75により出力される。 FIG. 17 is a connection circuit diagram between an electrical equipment main body 201A and two battery packs 100A and 100B according to the first modification of the present embodiment. A common terminal portion 50 is used in the electrical equipment main body 201A. The terminal portion 50 is the same as the terminal portion 50 shown in FIG. Here, the output of 36V is ensured by the series connection by the lead wire 79 of the second cell unit 147 of the battery pack 100A and the second cell unit 147 of the battery pack 100B. Also, the first cell unit 146 of the battery pack 100A and the first cell unit 146 of the battery pack 100B are connected in parallel by the lead wires 77, 78 to ensure an output of 18V. The positive side output of the parallel connection of the first cell units 146 of the battery packs 100A and 100B is connected to the lead wire 74 at the connection point a1, and the negative side output is connected to the battery pack 100A from the connection point a2 by the lead wire 76. It is connected to the positive input terminal 52 b of the second cell unit 147 . The negative side of the overall output of battery pack 100A and battery pack 100B is output through lead wire 75 from negative input terminal 57a.
第1の変形例においても、図16で示した実施の形態と同じようにリード線74と75の間に54Vの直流電圧が出力されることになる。尚、この構成では、電池パック100Aと100Bの電池容量の減り具合は均等とはなるが、それぞれの電池パック100A、100Bの内部のセルユニット同士の減り具合が均等ではなく、第2セルユニット147側の電力消費が大きい。従って、第1のセルユニット146と第2のセルユニット147の残容量が不均等であっても、それらを独立して充電できるような専用の外部充電器を準備して、電池パック100A、100Bを充電すると良い。電池パック100Bの下側正極端子172と接続する正極入力端子52b、リード線79、電池パック100Aの上側負極端子167と接続する負極入力端子57a、電池パック100Aの下側正極端子172と接続する正極入力端子52b、及び、リード線76が直列接続部に該当し、電池パック100Bの上側正極端子162と接続する正極入力端子52a、電池パック100Bの下側負極端子177と接続する負極入力端子57b、リード線77,リード線78、電池パック100Aの上側正極端子162と接続する正極入力端子52a、及び、電池パック100Aの下側負極端子177と接続する負極入力端子57bが並列接続部に該当する。 Also in the first modification, a DC voltage of 54 V is output between the lead wires 74 and 75 as in the embodiment shown in FIG. In this configuration, the degree of decrease in the battery capacity of the battery packs 100A and 100B is uniform, but the degree of decrease in the cell units inside the battery packs 100A and 100B is not uniform. power consumption is high. Therefore, even if the remaining capacities of the first cell unit 146 and the second cell unit 147 are unequal, a dedicated external charger capable of charging them independently is prepared to charge the battery packs 100A and 100B. should be charged. A positive input terminal 52b connected to the lower positive terminal 172 of the battery pack 100B, a lead wire 79, a negative input terminal 57a connected to the upper negative terminal 167 of the battery pack 100A, and a positive electrode connected to the lower positive terminal 172 of the battery pack 100A. The input terminal 52b and the lead wire 76 correspond to the series connection part, the positive input terminal 52a connected to the upper positive terminal 162 of the battery pack 100B, the negative input terminal 57b connected to the lower negative terminal 177 of the battery pack 100B, Lead wire 77, lead wire 78, positive input terminal 52a connected to upper positive terminal 162 of battery pack 100A, and negative input terminal 57b connected to lower negative terminal 177 of battery pack 100A correspond to parallel connection portions.
図18は、本実施の形態の第2変形例に係る電気機器本体201Bと2つの電池パック100A、100B側との接続回路図である。電気機器本体201A、201Bは、共に図12で示した36V用のターミナル部50を用いる。電池パック100A側の正極入力端子52aはリード線71により電気機器本体201Bの正極側入力となり、正極入力端子52bはリード線(又はショートバー)59により負極入力端子57bに接続される。電池パック100B側の負極入力端子57aはリード線72により電気機器本体201Bの正極側入力となる。電池パック100A側の負極入力端子57aはリード線73によって電池パック100B側の正極入力端子52bと接続される。電池パック100B側の正極入力端子52a、負極入力端子57bは配線されない。このようにしてリード線71と72の間には直流54Vの電力が供給される。尚、電池パック100B側の片方のセルユニット(第1セルユニット146)は利用されないので、放電しないことになる。 FIG. 18 is a connection circuit diagram between an electrical equipment body 201B and two battery packs 100A and 100B according to a second modification of the present embodiment. The electric equipment main bodies 201A and 201B both use the terminal section 50 for 36V shown in FIG. The positive input terminal 52a of the battery pack 100A side is connected to the positive input terminal of the electrical equipment main body 201B by the lead wire 71, and the positive input terminal 52b is connected to the negative input terminal 57b by the lead wire (or short bar) 59. The negative input terminal 57a on the battery pack 100B side becomes the positive side input of the electrical equipment main body 201B through the lead wire 72. As shown in FIG. The negative input terminal 57a on the battery pack 100A side is connected by a lead wire 73 to the positive input terminal 52b on the battery pack 100B side. The positive input terminal 52a and the negative input terminal 57b on the battery pack 100B side are not wired. Thus, 54 VDC power is supplied between leads 71 and 72 . Since one cell unit (first cell unit 146) on the battery pack 100B side is not used, it is not discharged.
以上説明した実施の形態5(図16)と、その第1変形例(図17)及び第2変形例(図18)は、電池パック100を電池パック装着部204(図14参照)の右側と左側に装着する電池パック100Aと100Bの間で、または電池パック100の第1と第2のセルユニット間で非対称な電力消費が生じる。この問題を、電気機器本体側の制御部による切り替え制御により、解決しようとするのが図19及び図20で示す実施の形態6である。実施の形態6では、電池パック100Aと100Bの物理的な入れ替え操作を伴わずに、電力消費の大きい側(36V出力側)と小さい側(18V)の割り当てを電気的に切り替え可能とする。 In the fifth embodiment (FIG. 16) and its first modification (FIG. 17) and second modification (FIG. 18) described above, battery pack 100 is positioned on the right side of battery pack mounting portion 204 (see FIG. 14). Asymmetrical power consumption occurs between battery packs 100A and 100B mounted on the left side or between the first and second cell units of battery pack 100 . Embodiment 6 shown in FIGS. 19 and 20 attempts to solve this problem by switching control by the control unit on the side of the electrical equipment main body. In the sixth embodiment, it is possible to electrically switch the allocation between the large power consumption side (36V output side) and the small power consumption side (18V) without physically exchanging the battery packs 100A and 100B.
(実施の形態6) 図19は本発明の実施の形態6に係る電気機器本体201Cと2つの電池パック100A、100B側との接続回路図である。電気機器本体201Cの外観は図14及び図15で示した形状と同じであり、電気機器本体201Cの内部に第1のリレースイッチ261と、第2のリレースイッチ262が設けられる点が新規である。第1のリレースイッチ261と第2のリレースイッチ262は、それぞれ二極リレーであって、2つのコモン接点(1番、4番接点)と、それぞれに選択的に接続される4つの接点(2番、3番、5番、6番接点)を有する。 (Embodiment 6) Fig. 19 is a connection circuit diagram between an electrical equipment main body 201C and two battery packs 100A and 100B according to Embodiment 6 of the present invention. The appearance of the electrical equipment main body 201C is the same as the shape shown in FIGS. 14 and 15, and it is novel in that a first relay switch 261 and a second relay switch 262 are provided inside the electrical equipment main body 201C. . Each of the first relay switch 261 and the second relay switch 262 is a two-pole relay, and includes two common contacts (first and fourth contacts) and four contacts (2 contacts) selectively connected to each. No., 3, 5 and 6 contacts).
電池パック100A、100Bと嵌合するターミナル部50、250は同一形状ものが用いられるが、ここでは識別のために符号を50番台(電池パック100A側)と、200番台(電池パック100B側)に分けている。第1の電池パック100Aの正極入力端子52aはリード線271に接続されて54V出力の正極出力として電気機器本体201Cの負荷部に接続される。正極入力端子52bはリード線272によって第1のリレースイッチ261の1番ピンに接続される。第1の電池パック100Aの負極入力端子57bはリード線273によって第1のリレースイッチ261の4番ピンに接続され、負極入力端子57aはリード線274によって第1のリレースイッチ261の6番ピンと第2の電池パック100B側の正極入力端子252aに接続される。第1のリレースイッチ261の2番ピンは5番ピンと接続され、第1のリレースイッチ261の3番ピンはリード線271と接続される。 The terminal portions 50 and 250 to be fitted with the battery packs 100A and 100B have the same shape, but here, for identification purposes, the numbers are assigned to the 50 series (battery pack 100A side) and the 200 series (battery pack 100B side). Divide. The positive input terminal 52a of the first battery pack 100A is connected to the lead wire 271 and connected to the load portion of the electrical equipment main body 201C as a positive output of 54V output. The positive input terminal 52 b is connected to the first pin of the first relay switch 261 by a lead wire 272 . The negative input terminal 57b of the first battery pack 100A is connected to the 4th pin of the first relay switch 261 by a lead wire 273, and the negative input terminal 57a is connected to the 6th pin of the first relay switch 261 by a lead wire 274. 2 is connected to the positive input terminal 252a on the side of the battery pack 100B. The second pin of the first relay switch 261 is connected to the fifth pin, and the third pin of the first relay switch 261 is connected to the lead wire 271 .
第2の電池パック100B側の出力は、第1の電池パック100A側の出力と同様に配線される。即ち、第2の電池パック100B側の正極入力端子252aはリード線274に接続され、正極入力端子252bはリード線275によって第2のリレースイッチ262の1番ピンに接続される。また、負極入力端子257bはリード線276によって第2のリレースイッチ261の4番ピンに接続され、負極入力端子257aはリード線278によって第2のリレースイッチ262の6番ピンと第2の電池パック100Bの負極出力として電気機器本体201Cの負荷部に接続される。第2のリレースイッチ262の2番ピンは5番ピンと接続され、3番ピンはリード線277によってリード線274と接続される。 The output on the side of the second battery pack 100B is wired in the same way as the output on the side of the first battery pack 100A. That is, the positive input terminal 252a of the second battery pack 100B side is connected to the lead wire 274, and the positive input terminal 252b is connected to the first pin of the second relay switch 262 by the lead wire 275. The negative input terminal 257b is connected to the 4th pin of the second relay switch 261 by a lead wire 276, and the negative input terminal 257a is connected to the 6th pin of the second relay switch 262 and the second battery pack 100B by a lead wire 278. is connected to the load section of the electrical equipment main body 201C as the negative electrode output of the electrical equipment main body 201C. The 2nd pin of the second relay switch 262 is connected to the 5th pin, and the 3rd pin is connected to the lead wire 274 by the lead wire 277 .
図19において、初期状態では第1のリレースイッチ261の1番ピンに連結される接触子は2番ピンに接触し、4番ピンに連結される接触子は5番ピンに接触する。このリレーの接触子の位置によってリード線271と274の間には、電池パック100Aの第1セルユニット146と第2セルユニット147の直列接続電圧(直流36V)が出力されることになる(図16の電池パック100A側と同じ接続形式)。一方、第2のリレースイッチ262の初期状態では、1番ピンに連結される接触子は3番ピンに接触し、4番ピンに連結される接触子は6番ピンに接触する。このリレーの接触子の位置によってリード線274と278の間には、電池パック100Bの第1セルユニット146と第2セルユニット147の並列接続電圧(直流18V)が出力されることになる(図16の電池パック100B側と同じ接続形式)。このように、第1のリレースイッチ261と第2のリレースイッチ262を用いて、2つある電池パック100A、100Bの一方側を高電圧側の出力とし、他方側を低電圧側の出力としたうえで、電池パック100Aの出力と電池パック100Bの出力をリード線274によって直列に接続することで、高電圧側の2倍の電力でなく、高電圧出力(36V)と低電圧出力(18V)を合計した中間の電圧(54V)を取り出すことができる。 In FIG. 19, in the initial state, the contactor connected to the first pin of the first relay switch 261 contacts the second pin, and the contactor connected to the fourth pin contacts the fifth pin. Depending on the position of the relay contactor, the serial connection voltage (DC 36 V) of the first cell unit 146 and the second cell unit 147 of the battery pack 100A is output between the lead wires 271 and 274 (Fig. 16 battery pack 100A side). On the other hand, in the initial state of the second relay switch 262, the contact connected to the 1st pin contacts the 3rd pin, and the contact connected to the 4th pin contacts the 6th pin. Depending on the position of the relay contactor, the parallel connection voltage (DC 18V) of the first cell unit 146 and the second cell unit 147 of the battery pack 100B is output between the lead wires 274 and 278 (Fig. 16 battery pack 100B side). In this way, using the first relay switch 261 and the second relay switch 262, one side of the two battery packs 100A and 100B is set to output the high voltage side, and the other side is set to the output of the low voltage side. On the other hand, by connecting the output of the battery pack 100A and the output of the battery pack 100B in series by the lead wire 274, not twice the power of the high voltage side, but the high voltage output (36 V) and the low voltage output (18 V) can be taken out (54V).
第1のリレースイッチ261の接触子と、第2のリレースイッチ262の接触子の動作は、連動して切り替えられるように制御される。即ち、第1のリレースイッチ261の接触子の接続が直列出力側(1-2ピンが短絡、4-5番ピンが短絡)の場合は、第2のリレースイッチ261の接触子の接続は反対側に位置するようにして、並列接続側(1-3ピンが短絡、4-6番ピンが短絡)とする。逆に、第1のリレースイッチ261の接触子の接続が並列接続側(1-3ピンが短絡、4-6番ピンが短絡)に切り替えられる場合は、第2のリレースイッチ261の接触子の接続は反対側に移動させて直列出力側(1-2ピンが短絡、4-5番ピンが短絡)に切り替える。このような連動切替動作は、電気機器本体201C側の制御部(制御回路)240からの制御信号によって制御される(制御手順は図20にて後述する)。実施の形態6では、並列接続側が請求項で規定する並列接続部に該当し、直列接続側が請求項で規定する直列接続部に該当する。 The contactor of the first relay switch 261 and the contactor of the second relay switch 262 are controlled to be switched in conjunction with each other. That is, when the connection of the contacts of the first relay switch 261 is on the serial output side (1-2 pins are shorted, 4-5th pins are shorted), the connection of the contacts of the second relay switch 261 is opposite. parallel connection side (pins 1-3 are shorted, pins 4-6 are shorted). Conversely, when the connection of the contacts of the first relay switch 261 is switched to the parallel connection side (1-3 pins are short-circuited, 4-6 pins are short-circuited), the contact of the second relay switch 261 is The connection is moved to the opposite side and switched to the serial output side (pins 1 and 2 are shorted, pins 4 and 5 are shorted). Such interlocking switching operation is controlled by a control signal from a control section (control circuit) 240 on the side of the electrical equipment main body 201C (a control procedure will be described later with reference to FIG. 20). In Embodiment 6, the parallel connection side corresponds to the parallel connection section defined in the claims, and the series connection side corresponds to the series connection section defined in the claims.
リレースイッチ(261、262)の動作には電圧を必要とすることから第1のリレースイッチ261の接触子と第2のリレースイッチ262の接触子の切り替え動作は、電池パック100A、100Bの一つ以上が接続されている時に行われる。つまり、電池パック100A、100Bのいずれも電気機器本体201Cに装着されていない場合は、リレースイッチ(261、262)だけでなく制御部240も動作しない。また、電池パック100A、100Bが装着されている際に、リレースイッチ(261、262)の接触子の切り替えする場合には、複数の接触子の位置によって第1セルユニット146の正極と負極が短絡しないように、第2セルユニット147の正極と負極が短絡しないように構成とすることが重要である。そこで、第1のリレースイッチ261の接触子と第2のリレースイッチ262は、接触子の切り替え前の接点と切り替え後の接点の間に無通電区間(いわゆる「オフ区間」)が必ず生ずるような形状のリレースイッチを用いると良い。 Since the operation of the relay switches (261, 262) requires a voltage, the switching operation between the contacts of the first relay switch 261 and the contacts of the second relay switch 262 is performed by one of the battery packs 100A, 100B. This is done when the above are connected. In other words, when none of the battery packs 100A and 100B is attached to the electrical equipment main body 201C, not only the relay switches (261, 262) but also the control unit 240 do not operate. When the contactors of the relay switches (261, 262) are switched while the battery packs 100A and 100B are attached, the positive and negative electrodes of the first cell unit 146 are short-circuited depending on the positions of the plurality of contacts. In order to prevent this, it is important to configure the positive electrode and the negative electrode of the second cell unit 147 so as not to short-circuit. Therefore, the contactor of the first relay switch 261 and the second relay switch 262 are arranged such that a non-energized section (so-called "off section") always occurs between the contact before switching and the contact after switching. It is better to use a shaped relay switch.
以上のように、実施の形態6では複数の電池パックの高電圧出力と低電圧出力を第1及び第2のリレースイッチ261、262を用いて任意に切り替えることができる。第1及び第2のリレースイッチ261、262は、電気機器本体201Cのハウジング202内に内蔵させることが可能である。これらの電気機器本体201C内の配線と、第1及び第2のリレースイッチ261、262を用いることで、電圧切替型の電池パック100を複数用いて、それぞれの取り出し電圧を変えることもできる。尚、本実施の形態では第1及び第2のリレースイッチ261、262を、いわゆる2極4接点リレーにて実現したが、リレースイッチ261、262以外の他のスイッチ手段を用いるように構成しても良い。例えば、リレースイッチ261、262と同等の機能を果たすように複数の半導体スイッチング素子を用いた電気回路にて、電池パック100A、100Bの高電圧出力と低電圧出力側を切り替えられるように構成しても良い。 As described above, in Embodiment 6, high voltage output and low voltage output of a plurality of battery packs can be arbitrarily switched using the first and second relay switches 261 and 262 . The first and second relay switches 261, 262 can be built in the housing 202 of the electrical equipment body 201C. By using these wirings in the electric device main body 201C and the first and second relay switches 261 and 262, it is possible to use a plurality of voltage switching type battery packs 100 and change the take-out voltage of each. In this embodiment, the first and second relay switches 261 and 262 are realized by so-called 2-pole 4-contact relays. Also good. For example, an electric circuit using a plurality of semiconductor switching elements to perform the same function as the relay switches 261 and 262 is configured to switch between the high voltage output and the low voltage output side of the battery packs 100A and 100B. Also good.
図20は、図19で示す電気機器本体201Cのさらに詳細な回路図である。図19では電池パック100A、100Bの電力端子群(162、167、172、177)と電気機器本体201Cの電力端子群(52a、52b、57a、57b、252a、252b、257a、257b)だけについて説明したが、図20ではそれらに加えて信号端子群、即ち電池パック100A、100BのT端子164、LD端子168と、電気機器本体201C側のT端子54、254とLD端子58、258の接続関係も図示している。ここでは、図19に記載されていなかった結線部分だけを説明する。また、信号端子(54、58、254、258)から制御部240までの信号線54a、58a、254a、258aを、わかりやすいように点線で示しているが、これらの点線は電気的に配線されることを示している。 FIG. 20 is a more detailed circuit diagram of the electrical equipment body 201C shown in FIG. Only the power terminal groups (162, 167, 172, 177) of the battery packs 100A, 100B and the power terminal groups (52a, 52b, 57a, 57b, 252a, 252b, 257a, 257b) of the electric device main body 201C are explained in FIG. However, in FIG. 20, in addition to these, the signal terminal group, that is, the connection relationship between the T terminals 164 and LD terminals 168 of the battery packs 100A and 100B and the T terminals 54 and 254 and the LD terminals 58 and 258 on the side of the electrical equipment main body 201C. is also illustrated. Here, only the connection parts not shown in FIG. 19 will be explained. Also, the signal lines 54a, 58a, 254a, 258a from the signal terminals (54, 58, 254, 258) to the control unit 240 are indicated by dotted lines for clarity, but these dotted lines are electrically wired. It is shown that.
電気機器本体201Cには、制御部240が設けられる。制御部240は例えばMPU(Micro Processor Unit)等のマイコンを用いて構成でき、マイコンによってモータ206の回転制御、電池パック100A、100Bの電圧監視、モータ206に流れる電流監視や、通信端子群(54、254)を用いて電池パック100A、100Bとの通信等の制御を行う。制御部240のマイコンには複数の入力ポートがあって、リード線272a、274aにより電池パック100Aの正極入力端子52bと負極入力端子57aの電圧(Vb1)を測定することによって1番目のセルユニット(電池パック100Aのセルユニット146、図では丸1で示す)の電圧を測定する。同様にして、制御部のマイコンは、リード線271a、273aにより電池パック100Aの正極入力端子52aと負極入力端子57bの電圧(Vb2)を測定することによって2番目のセルユニット(電池パック100Aのセルユニット147、図では丸2で示す)の電圧を測定する。 A control unit 240 is provided in the electrical equipment main body 201C. The control unit 240 can be configured using a microcomputer such as an MPU (Micro Processor Unit). , 254) are used to control communication with the battery packs 100A and 100B. The microcomputer of the control unit 240 has a plurality of input ports. By measuring the voltage (Vb1) of the positive input terminal 52b and the negative input terminal 57a of the battery pack 100A through lead wires 272a and 274a, the first cell unit ( The voltage of the cell unit 146 of the battery pack 100A (indicated by circle 1 in the figure) is measured. Similarly, the microcomputer of the control section measures the voltage (Vb2) of the positive input terminal 52a and the negative input terminal 57b of the battery pack 100A through the lead wires 271a and 273a, thereby controlling the second cell unit (the cell of the battery pack 100A). Measure the voltage on unit 147 (indicated by circle 2 in the figure).
電池パック100B側も同様であり、制御部240のマイコンは、リード線275a、278aにより電池パック100Bの正極入力端子252bと負極入力端子257aの電圧(Vb3)を測定することによって3番目のセルユニット(電池パック100Bのセルユニット146、図では丸3で示す)の電圧を測定する。制御部240のマイコンは、リード線274b、276aにより電池パック100Aの正極入力端子52bと負極入力端子57aの電圧(Vb4)を測定することによって4番目のセルユニット(電池パック100Aのセルユニット146、図では丸4で示す)の電圧を測定する。 The same is true for the battery pack 100B side. (cell unit 146 of battery pack 100B, indicated by circle 3 in the figure) is measured. The microcomputer of the control unit 240 measures the voltage (Vb4) of the positive input terminal 52b and the negative input terminal 57a of the battery pack 100A through the lead wires 274b and 276a, thereby determining the fourth cell unit (the cell unit 146 of the battery pack 100A, 4) is measured.
制御部240のマイコンは、測定された電池セル(146、147)の電圧Vb1、Vb2、Vb3、Vb4を用いて、第1リレースイッチ261にリード線241によって“リレー制御信号A”を送出することにより切り替え指示を行い、第2リレースイッチ262にリード線242によって“リレー制御信号B”を送出することにより切り替え指示を行う。これら、“リレー制御信号A”と“リレー制御信号B”は同期して送出され、第1リレースイッチ261と第2リレースイッチ262の切り替えタイミングが同期するように制御される。制御部240のマイコンは、電池パック100A、100Bからの放電が許可できる状態に有る場合は、スイッチング素子215のゲートにハイ信号を送出することにより、スイッチング素子215のドレイン-ソース間を導通させ、100A、100Bから負荷部(モータ206等)への放電を停止させる場合は、スイッチング素子215のゲートをローにすることにより、ドレイン-ソース間を遮断させる。モータ206に流れる電流は、モータ206への電流経路中に設けられた、シャント抵抗216の両端電圧を測定することにより、制御部240により監視される。尚、図20に示す回路図は、説明の便宜から細かい回路構成などの図示を省略している。例えば、モータ206をブラシ付きの直流モータで図示しているが、インバータ回路を用いたブラシレスDCモータを用いるようにしても良い。また、スイッチング素子215のゲート信号を安定化させるために、抵抗器や更なるスイッチング素子を介在させることがあるが、図20では記載していない。また、シャント抵抗216の両端電圧を制御部240に伝達する信号線は2本必要であるが、ここでは1本で簡易的に記載している。 The microcomputer of the control unit 240 uses the measured voltages Vb1, Vb2, Vb3, and Vb4 of the battery cells (146, 147) to send a "relay control signal A" to the first relay switch 261 through the lead wire 241. A switching instruction is issued by sending a “relay control signal B” to the second relay switch 262 through the lead wire 242 . These "relay control signal A" and "relay control signal B" are sent synchronously, and are controlled so that switching timings of the first relay switch 261 and the second relay switch 262 are synchronous. When the microcomputer of the control unit 240 is in a state in which discharge from the battery packs 100A and 100B can be permitted, the drain-source of the switching element 215 is made conductive by sending a high signal to the gate of the switching element 215. When stopping the discharge from 100A and 100B to the load section (motor 206, etc.), the gate of the switching element 215 is set low to cut off the drain-source. The current flowing through motor 206 is monitored by controller 240 by measuring the voltage across shunt resistor 216 provided in the current path to motor 206 . It should be noted that the circuit diagram shown in FIG. 20 omits illustration of a detailed circuit configuration for convenience of explanation. For example, although the motor 206 is illustrated as a DC motor with brushes, a brushless DC motor using an inverter circuit may be used. Also, in order to stabilize the gate signal of the switching element 215, a resistor or another switching element may be interposed, but they are not shown in FIG. Also, although two signal lines are required for transmitting the voltage across the shunt resistor 216 to the control unit 240, only one line is described here for simplicity.
図21は、電気機器本体201Cの制御部240の制御手順を示すフローチャートである。図21では電池パック100Aを「電池パックA」、電池パック100Bを「電池パックB」として記載している。制御部240に示す手順は、制御部240に含まれるマイコンによってプログラムを実行することによってソフトウェア的に実行される。実施の形態6では電池パック100Aの出力を切り替える第1リレースイッチ261と、電池パック100Bの出力を切り替える第2リレースイッチ262の切り替えを連動して行う。最初に電池パック100A及び100Bが電気機器本体201Cに装着されたか否かを判定し、装着されるまで待機する(ステップ281)。電池パック100Aが装着されないと電気機器本体201Cの制御部240のマイコンが起動しないので、ステップ282以降の処理が実行できないからである。 FIG. 21 is a flow chart showing the control procedure of the control section 240 of the electrical equipment main body 201C. In FIG. 21, battery pack 100A is described as "battery pack A", and battery pack 100B is described as "battery pack B". The procedure shown in control unit 240 is executed in software by executing a program by a microcomputer included in control unit 240 . In Embodiment 6, first relay switch 261 for switching the output of battery pack 100A and second relay switch 262 for switching the output of battery pack 100B are switched in conjunction. First, it is determined whether or not the battery packs 100A and 100B are attached to the electrical equipment body 201C, and the process waits until they are attached (step 281). This is because the microcomputer of the control section 240 of the electrical equipment main body 201C cannot be activated unless the battery pack 100A is attached, so that the processing from step 282 onward cannot be executed.
2つの電池パック100A,100Bが装着され、制御部240(図20参照)中のマイコンが起動すると、マイコンはトリガレバー5が操作されていないことによってトリガスイッチがオフになっているか否かを検出する(ステップ282)。トリガスイッチがオンであることは、電気機器本体201Cが動作して作業が行われている状態であるため、動作中に電池パック100A、100Bの接続状態を切り替えるべきではないからである。ステップ282で、トリガスイッチがオンの場合はオフになるまで待機する。オフの場合は、制御部240のマイコンは、電池パック100AのLD端子168からの出力が放電許可、即ち、放電禁止を示すグランド電位ではなくて、放電許可を示すハイ電位になっているかを判定する。放電禁止の場合は、マイコンは電池パック100B側のLD端子168からの出力が放電許可か否かを判定し(ステップ289)、放電禁止である場合は、制御部240(図20参照)中のマイコンは、さらなる放電を禁止するために、スイッチング素子215(図20参照)をオフにして、モータ206の回転を禁止して(ステップ291)、図21のフローチャートに占める手順を終了する。ステップ289にて電池パック100B側が放電許可状態にある場合は(ステップ289)、第1リレースイッチ261によって電池パックAを並列接続状態として、第2リレースイッチ262によって電池パック100B側を直列接続状態とする(ステップ290)。 When the two battery packs 100A and 100B are attached and the microcomputer in the control unit 240 (see FIG. 20) is activated, the microcomputer detects whether the trigger switch is turned off by not operating the trigger lever 5. (step 282). This is because the fact that the trigger switch is on means that the electrical device main body 201C is in operation and the work is being performed, so the connection state of the battery packs 100A and 100B should not be switched during operation. At step 282, if the trigger switch is on, it waits until it is turned off. If it is OFF, the microcomputer of the control unit 240 determines whether the output from the LD terminal 168 of the battery pack 100A is a discharge permission, that is, not a ground potential indicating discharge prohibition, but a high potential indicating discharge permission. do. If discharging is prohibited, the microcomputer determines whether or not the output from the LD terminal 168 on the battery pack 100B side permits discharging (step 289). In order to inhibit further discharge, the microcomputer turns off the switching element 215 (see FIG. 20) to inhibit rotation of the motor 206 (step 291), and terminates the procedure in the flow chart of FIG. If the battery pack 100B side is in the discharge permission state at step 289 (step 289), the first relay switch 261 connects the battery pack A in parallel, and the second relay switch 262 connects the battery pack 100B side in series. (step 290).
ステップ283にて、電池パック100Aが放電許可状態にある場合は、電池パック100Bが放電許可状態にあるかを判定する(ステップ284)。ここで、電池パックBが放電不可状態、即ち電池パック100BのLD信号168がグランド電位になっている場合は、第1リレースイッチ261によって電池パックAを直列接続状態として、第2リレースイッチ262によって電池パック100B側を並列接続状態とする(ステップ288)。このステップ288による接続は、図20に示した第1リレースイッチ261と第2リレースイッチ262の状態と同じになる。 When battery pack 100A is in the discharge permitted state at step 283, it is determined whether battery pack 100B is in the discharge permitted state (step 284). Here, when the battery pack B is in a non-dischargeable state, that is, when the LD signal 168 of the battery pack 100B is at the ground potential, the first relay switch 261 sets the battery pack A in a series connection state, and the second relay switch 262 The battery pack 100B side is brought into a parallel connection state (step 288). The connection at step 288 is the same as the state of the first relay switch 261 and the second relay switch 262 shown in FIG.
ステップ284にて、電池パック100Bが放電許可状態にある場合は、制御部240中のマイコンは、電池パック100Aの第1セルユニット146の電圧Vb1と第2セルユニット147の電圧Vb2の合計電圧が、電池パック100Bの第1セルユニット146の電圧Vb3と第2セルユニット147の電圧Vb4の合計電圧よりも大きいか否かを判定する(ステップ285)。電池パック100A側の合計電圧(Vb1+Vb2)が、電池パック100B側の合計電圧(Vb3+Vb4)よりも大きいときは、第1リレースイッチ261によって電池パックAを直列接続状態として、第2リレースイッチ262によって電池パック100B側を並列接続状態とする(ステップ286)。また、電池パック100A側の合計電圧(Vb1+Vb2)が、電池パック100B側の合計電圧(Vb3+Vb4)よりも小さいときは、第1リレースイッチ261によって電池パックAを並列接続状態として、第2リレースイッチ262によって電池パック100B側を直列接続状態とする(ステップ284)。 In step 284, when battery pack 100B is in the discharge permission state, the microcomputer in control unit 240 determines that the total voltage of voltage Vb1 of first cell unit 146 and voltage Vb2 of second cell unit 147 of battery pack 100A is , the total voltage of the voltage Vb3 of the first cell unit 146 and the voltage Vb4 of the second cell unit 147 of the battery pack 100B (step 285). When the total voltage (Vb1+Vb2) on the battery pack 100A side is greater than the total voltage (Vb3+Vb4) on the battery pack 100B side, the first relay switch 261 connects the battery pack A in series, and the second relay switch 262 connects the battery pack A to the series connection state. The pack 100B side is brought into a parallel connection state (step 286). When the total voltage (Vb1+Vb2) on the battery pack 100A side is smaller than the total voltage (Vb3+Vb4) on the battery pack 100B side, the first relay switch 261 sets the battery pack A to a parallel connection state, and the second relay switch 262 sets the battery pack 100B side to a series connection state (step 284).
以上の手順を繰り返すことによって、電気機器本体201が動作していない非稼働状態(トリガレバー205が引かれていない状態)において、制御部240中のマイコンによって第1リレースイッチ261と第2リレースイッチ262の切り替えを行うことができる。この切り替えによって、電池パック100A側と電池パック100B側の電力を無駄なく消費することができる。実施の形態6では第1リレースイッチ261と第2リレースイッチ262の切り替えを、電動工具等による作業時(先端工具が動作している時)ではなく、トリガレバー205が引かれていない停止時に行う。具体的には、電池パック100A、100Bが装着された直後や、トリガレバー205が引かれて作業が行われて、その作業が終了してモータが停止した直後に切り替えるようにすると良い。また、2つの電池パックのセルユニットのそれぞれの電圧又は残容量を比較して、電圧が高い方、残容量が多い方の電池パック100を直列接続として、電圧が低い方、残容量が少ない方の電池パック100を並列接続とし、第1リレースイッチ261と第2リレースイッチ262による切り替え動作を、電池パック100A、100Bが装着されてから取り外すまでに1回以上、例えば、数回行うようにすると良い。 By repeating the above procedure, the first relay switch 261 and the second relay switch are controlled by the microcomputer in the control unit 240 in a non-operating state (a state in which the trigger lever 205 is not pulled) in which the electrical device body 201 is not operating. H.262 switching can be performed. By this switching, the power on the battery pack 100A side and the battery pack 100B side can be consumed without waste. In Embodiment 6, switching between the first relay switch 261 and the second relay switch 262 is performed when the trigger lever 205 is not pulled, not when working with an electric power tool (while the tip tool is operating). . Specifically, it is preferable to switch immediately after the battery packs 100A and 100B are attached, or immediately after the trigger lever 205 is pulled and the work is completed and the motor stops. In addition, the voltage or remaining capacity of each cell unit of the two battery packs is compared, and the battery pack 100 with the higher voltage and the larger remaining capacity is connected in series, and the one with the lower voltage and the smaller remaining capacity is connected in series. battery packs 100 are connected in parallel, and the switching operation by the first relay switch 261 and the second relay switch 262 is performed once or more, for example, several times, from the time the battery packs 100A and 100B are attached to the time they are removed. good.
電池パック100A、100Bの出力電圧が“直列接続(出力36V)”か“並列接続(18V)”とするかを制御部240中のマイコンにより第1リレースイッチ261と第2リレースイッチ262を切り替えることにより行うことにより、多様な制御が可能となる。一例として、リレースイッチの切り替えを、電池パック100の残容量に合わせて優先順位を付けて定期的に行うことも可能である。最初に、電池パック100の残容量を比較し、多い方の電池パックを直列接続とし、低い方の電池パックを並列接続とする。制御部240中のマイコンは、電気機器本体201Cの電池残量のカウントを継続し、残容量のカウントが設定された閾値まで来たら、第1リレースイッチ261と第2リレースイッチ262の接続形態を切りかえる。例えば、残容量の少ない方の電池パックの残容量が3/4になったら入れ替えて、次に残容量の少ない方の電池パックの残容量が1/2になったら再度切り替え、さらに残容量の少ない方の電池パックの残容量が1/4になったらまた切り替え、いずれか一方(または双方)の電池パック100A、100Bから放電禁止信号(LD信号)が出されるまで放電を許可する。これら電池パック100A、100Bの残容量カウントは電池パック側の制御部が監視して。その信号を電気機器本体側のマイコンが通信端子(V端子)を経由してもらうようにすれば良い。このように、複数の電池パックを電気機器本体に接続して、直列接続放電と並列接続放電を切り替えながら電池パックの装着から取外しまでの一連の作業を行うようにした電動工具を実現したので、複数の電池パックを非対称の放電形態にて使用することが可能となる。 The first relay switch 261 and the second relay switch 262 are switched by the microcomputer in the control unit 240 to determine whether the output voltage of the battery packs 100A and 100B is "series connection (output 36V)" or "parallel connection (18V)". Various controls are possible by performing by As an example, it is also possible to prioritize switching of the relay switches according to the remaining capacity of the battery pack 100 and periodically perform the switching. First, the remaining capacities of the battery packs 100 are compared, and the battery pack with the larger amount is connected in series, and the battery pack with the lower amount is connected in parallel. The microcomputer in the control unit 240 continues to count the remaining battery capacity of the electrical equipment main body 201C, and when the count of the remaining battery capacity reaches the set threshold value, the connection form of the first relay switch 261 and the second relay switch 262 is changed. switch. For example, when the remaining capacity of the battery pack with the lowest remaining capacity reaches 3/4, the battery pack is replaced, and when the remaining capacity of the battery pack with the lowest remaining capacity reaches 1/2, the battery pack is switched again, and then the remaining capacity is reduced. When the remaining capacity of the smaller battery pack reaches 1/4, the battery packs are switched again, and discharging is allowed until either one (or both) of the battery packs 100A, 100B issues a discharge prohibition signal (LD signal). The remaining capacity count of these battery packs 100A and 100B is monitored by the controller on the battery pack side. The microcomputer on the side of the main body of the electrical equipment may receive the signal through the communication terminal (V terminal). In this way, a power tool is realized in which a series of operations from mounting to removing the battery packs is performed by connecting a plurality of battery packs to the main body of the electrical equipment and switching between series connection discharge and parallel connection discharge. Multiple battery packs can be used with asymmetrical discharge regimes.
(実施の形態7) 図22は本発明の実施の形態7に係る電気機器300の斜視図である。実施の形態7では、2つの電池パック100Aと100Bを装着する部分をアダプタ400を介して電気機器本体301に接続する構成とした。アダプタ400は、電気機器本体301側の電池パックを装着するための電池パック装着部303から着脱可能であって電池パック装着部303へ複数の電池パック100A、100Bを接続可能とする。つまり、電気機器本体301には1つの電池パック装着部303が形成され、そこにアダプタ400が装着される。電池パック100A、100Bはアダプタ400にそれぞれ装着される。アダプタ400の左右側面にはラッチボタン441が設けられ、ラッチボタン441を押しながらアダプタ400を後方側に相対移動させると、アダプタ400を電気機器本体301から取り外すことができる。アダプタ400の下面側には、電池パック100A、100Bのレール部と対応するレール部がそれぞれ設けられる。アダプタ400に取り付けられた電池パック100Aと電池パック100Bは同一形状であり、それぞれのラッチボタン141a、141b(図では見えない)を押しながら電池パック100A又は100Bを後方側に相対移動させると、アダプタ400から電池パック100A、100Bを取り外すことができる。 (Embodiment 7) Fig. 22 is a perspective view of an electric device 300 according to Embodiment 7 of the present invention. In Embodiment 7, a configuration is adopted in which a portion to which two battery packs 100A and 100B are attached is connected to electrical equipment main body 301 via adapter 400 . The adapter 400 is detachable from a battery pack mounting portion 303 for mounting a battery pack on the electrical equipment main body 301 side, and allows a plurality of battery packs 100A and 100B to be connected to the battery pack mounting portion 303 . In other words, one battery pack mounting portion 303 is formed in the electrical equipment main body 301, and the adapter 400 is mounted thereon. Battery packs 100A and 100B are attached to adapter 400, respectively. Latch buttons 441 are provided on the left and right side surfaces of the adapter 400 , and the adapter 400 can be removed from the electric device main body 301 by relatively moving the adapter 400 rearward while pressing the latch buttons 441 . Rail portions corresponding to the rail portions of battery packs 100A and 100B are provided on the lower surface side of adapter 400, respectively. Battery pack 100A and battery pack 100B attached to adapter 400 have the same shape, and when battery pack 100A or 100B is relatively moved rearward while pressing respective latch buttons 141a and 141b (not visible in the figure), the adapter Battery packs 100A and 100B can be removed from 400. FIG.
図23は、実施の形態7に係る電気機器本体301とアダプタ400の回路図であり、電気機器本体301と、アダプタ400との接続状況を示す図である。基本的な回路図は、図21と同様であり、異なる主な点は第1リレースイッチ261と第2リレースイッチ262が電気機器本体301と分離可能なアダプタ400内に収容される点である。アダプタ400と電気機器本体301は分離式であって、正極端子457aと正極入力端子322、負極端子457aと負極入力端子327によって電力が伝達され、LD端子468、328によって放電禁止信号が伝達される。従って、電気機器本体1側の制御部(図23では図示していない)が、第1リレースイッチ261と第2リレースイッチ262を制御する信号経路は存在しない。そこで、実施の形態7ではアダプタ内にも制御部440を設けるようにした。制御部440は、例えばMPU(Micro Processor Unit)等のマイコンを用いて構成でき、電池パック100A、100Bの電圧監視を行って第1リレースイッチ261と第2リレースイッチ262の切り替え制御を行う。第1リレースイッチ261と第2リレースイッチ262の制御の仕方は、図19で示した制御部240の制御と同様である。 FIG. 23 is a circuit diagram of electrical equipment main body 301 and adapter 400 according to Embodiment 7, and shows a connection state between electrical equipment main body 301 and adapter 400 . The basic circuit diagram is the same as that of FIG. 21, and the main difference is that the first relay switch 261 and the second relay switch 262 are housed in an adapter 400 that can be separated from the electrical equipment main body 301 . The adapter 400 and the electric device main body 301 are separated from each other, and electric power is transmitted between the positive terminal 457a and the positive input terminal 322, and between the negative terminal 457a and the negative input terminal 327, and a discharge inhibition signal is transmitted through the LD terminals 468 and 328. . Therefore, there is no signal path through which the controller (not shown in FIG. 23) on the side of the electrical equipment main body 1 controls the first relay switch 261 and the second relay switch 262 . Therefore, in Embodiment 7, the controller 440 is provided also in the adapter. The control unit 440 can be configured using a microcomputer such as an MPU (Micro Processor Unit), for example, and performs switching control of the first relay switch 261 and the second relay switch 262 by monitoring the voltages of the battery packs 100A and 100B. The method of controlling the first relay switch 261 and the second relay switch 262 is the same as the control of the control section 240 shown in FIG.
制御部440は、さらに電池パック100A、100Bから受信される信号を処理して、電気機器本体301側に伝達される放電禁止信号に変換してLD端子468として出力する。具体的には、2つの電池パック100A、100Bの使用が禁止される状態、即ち、図21のステップ291に該当する状態になったらLD端子468の電位をグランド電位に落とすようにする。図23には図示していないが、電気機器本体301側にも制御部が設けられ、モータ306の回転制御、モータ206に流れる電流監視を行い、図示しない他の通信端子群を用いて制御部440を介して電池パック100A、100Bとの間接的な通信を行う。電気機器本体301側の図示しない制御部は、LD端子328の電位がハイの時はスイッチング素子315を導通させてモータ306の駆動を許容するが、LD端子328の電位がグランド電位に落ちると、スイッチング素子315のドレイン-ソース間を遮断する。 Control unit 440 further processes the signal received from battery packs 100A and 100B, converts it into a discharge prohibition signal that is transmitted to electrical equipment main body 301, and outputs the signal as LD terminal 468. FIG. Specifically, when the two battery packs 100A and 100B are prohibited from being used, that is, when the state corresponding to step 291 in FIG. 21 is reached, the potential of the LD terminal 468 is dropped to the ground potential. Although not shown in FIG. 23, a control unit is also provided on the side of the electrical equipment main body 301 to control the rotation of the motor 306, monitor the current flowing through the motor 206, and control the control unit using other communication terminals (not shown). 440 for indirect communication with the battery packs 100A and 100B. A control unit (not shown) on the side of the electric device main body 301 allows the motor 306 to be driven by conducting the switching element 315 when the potential of the LD terminal 328 is high. It cuts off the drain-source of the switching element 315 .
図24はアダプタ400の制御部440による制御手順を示すフローチャートである。制御部440の動作は、図21で示した制御部240の動作と同じである。同じ手順のステップには同じ番号の符号(281~291)を付与している。違う部分はステップ292~296の追加である。ステップ286~288、290で電池パック100A、100Bのセルユニット間の接続形態(直列接続か並列接続か)が設定された後に、制御部440がLD端子468を介して電気機器本体301のLD端子328に放電許可信号(放電OKを示すハイ電位)を出力する。また、ステップ291にて制御部440が電池パック100A、100Bからの放電を停止させると判断した後に、制御部440がLD端子468をグランド電位に落とすことによって、電気機器本体301側のLD端子328をグランド電位にする。 FIG. 24 is a flow chart showing a control procedure by the controller 440 of the adapter 400. FIG. The operation of the control unit 440 is the same as the operation of the control unit 240 shown in FIG. Steps of the same procedure are given the same reference numerals (281 to 291). The difference is the addition of steps 292-296. After the connection form (series connection or parallel connection) between the cell units of the battery packs 100A and 100B is set in steps 286 to 288 and 290, the controller 440 connects the LD terminal of the electrical equipment main body 301 via the LD terminal 468. 328 outputs a discharge enable signal (high potential indicating discharge OK). Further, after the control unit 440 determines in step 291 to stop discharging from the battery packs 100A and 100B, the control unit 440 lowers the LD terminal 468 to the ground potential, thereby to ground potential.
以上、実施の形態7においてはアダプタ400に、2つのリレースイッチ261、262を収容し、内蔵する制御部440によって電池パック100A、100Bの接続形態を変更するので、2つの電池パック100A、100Bの高電位側の1.5倍の電圧を電気機器本体301に出力できるようになった。この構成は電気機器本体301が、定格36V~54Vの範囲で動作可能な電気機器であれば更に多様な使用形態が可能となる。例えば、電気機器本体301の高出力が必要な場合は、電池パック100A、100Bの一方の第1セルユニットと第2セルユニットを並列接続とし、他方の電池パックの第1セルユニットと第2セルユニットを直列接続とし、それらを直列に接続することができる。また、電気機器本体301の高出力が不要で長時間駆動が必要な場合は、電池パック100A、100Bの双方の第1セルユニットと第2セルユニットを直列接続出力とし、それらの出力を並列に接続して、電池パック100と同電圧(つまり36V)で電池パック100の1個分の2倍の電池容量を実現することもできる。 As described above, in Embodiment 7, adapter 400 accommodates two relay switches 261 and 262, and the built-in controller 440 changes the connection configuration of battery packs 100A and 100B. A voltage 1.5 times higher than that on the high potential side can now be output to the electrical equipment main body 301 . With this configuration, if the electrical equipment main body 301 is an electrical equipment that can operate in the rated range of 36V to 54V, further various usage patterns are possible. For example, when high output power of the electric device main body 301 is required, the first cell unit and the second cell unit of one of the battery packs 100A and 100B are connected in parallel, and the first cell unit and the second cell of the other battery pack are connected in parallel. The units can be serially connected and connected in series. In addition, when high output of the electric device main body 301 is unnecessary and long-time driving is required, the first cell unit and the second cell unit of both the battery packs 100A and 100B are connected in series, and those outputs are connected in parallel. It is also possible to realize double the battery capacity of one battery pack 100 with the same voltage as the battery pack 100 (that is, 36 V).
以上、実施の形態に基づいて説明したが、本発明は上述の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。例えば、実施の形態1~4において、制御部533は、制御系電源生成用の電圧を、インバータ回路543への入力電圧ラインから取得してもよい。この場合、V端子を省略できる。また、この場合、リレー切替え時のオフのタイミングで電気機器本体側に電源供給されなくなるが、再通電時に制御部533のマイコンの起動処理を行えばよい。あるいは、制御部533はコンデンサ等に蓄えた電力をリレー切替え時のオフのタイミングにおける電力として利用してもよい。制御部533の電源回路による降圧方式は、1ステップに限定されず、2ステップとしてもよい。例えば、制御部533の電源回路は、入力電圧(18V、36V又は54V)を一旦12V等の中間電圧に降圧し、中間電圧を電源電圧(例えば5V)に更に降圧する構成としてもよい。 Although the above has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, in Embodiments 1 to 4, the control unit 533 may acquire the voltage for generating the control system power supply from the input voltage line to the inverter circuit 543 . In this case, the V terminal can be omitted. Also, in this case, power is not supplied to the main body of the electrical equipment at the timing of turning off the relay, but the microcomputer of the control unit 533 may be activated at the time of re-energization. Alternatively, the control unit 533 may use power stored in a capacitor or the like as power at the timing of turning off when the relay is switched. The step-down method by the power supply circuit of the control unit 533 is not limited to one step, and may be two steps. For example, the power supply circuit of the control unit 533 may be configured to step down the input voltage (18 V, 36 V, or 54 V) to an intermediate voltage such as 12 V, and then step down the intermediate voltage to the power supply voltage (eg, 5 V).
さらに、直列接続、並列接続を切り替える手段として、複数のリレースイッチにより実現したが、リレースイッチの代わりに複数の半導体スイッチング素子を用いて切り替え手段を実現しても良い。さらに、上述の実施の形態5~7では18V/36V切り替え可能な電池パック100を2つ用いたが、電池パック100を3つ用いて2つの電池パックの出力を直列接続とし、1つの電池パックの出力を並列接続とし、それらを直列に接続することによって合計96V(=36V+36V+18V)の出力を得るように構成しても良い。 Furthermore, the means for switching between series connection and parallel connection has been realized by a plurality of relay switches, but the switching means may be realized by using a plurality of semiconductor switching elements instead of the relay switches. Furthermore, in the fifth to seventh embodiments described above, two battery packs 100 capable of switching between 18 V and 36 V are used. may be connected in parallel and connected in series to obtain a total output of 96V (=36V+36V+18V).
実施の形態で具体的な数値として例示した電圧やセルユニットの数、接点数等は、発明の範囲を何ら限定するものではなく、要求される仕様に合わせて任意に変更できる。本発明の電気機器本体は、実施の形態で例示したインパクトドライバに限定されず、インパクトドライバ以外の電動工具や作業機であってもよいし、電動工具や作業機以外のラジオ等の電気機器であってもよい。 The voltage, the number of cell units, the number of contacts, and the like given as specific numerical values in the embodiments do not limit the scope of the invention, and can be arbitrarily changed according to the required specifications. The electric device main body of the present invention is not limited to the impact driver exemplified in the embodiment, and may be an electric tool or a work machine other than the impact driver, or an electric device such as a radio other than the electric tool or the work machine. There may be.
1,1A…電気機器本体、2…ハウジング、2a…胴体部、2b…ハンドル部、3…電池パック装着部、5…トリガレバー、6…正逆切替レバー、8…先端工具保持部、9…先端工具、11a,11b…レール部、12…湾曲部、14…突起部、18,19…負荷装置、20…ターミナル部、20a…垂直面、20b…水平面、22a,22b…正極入力端子、27a,27b…負極入力端子、28…LD端子、50…ターミナル部、51…基台、51a,51b…凹部、52a,52b…正極入力端子、54…T端子、57a,57b…負極入力端子、58…LD端子、59…リード線、60…ターミナル部、62…正極入力端子、67…負極入力端子、71~79…リード線(配線手段)、100,100A,100B…電池パック、101…下ケース、104…スリット、110…上ケース、111…下段面、111a…切り欠き部、115…上段面、120…スロット部、121~128…スロット、131…ストッパ部、132…隆起部、134…スリット、138a,138b…レール溝、141a,141b…ラッチボタン、142a,142b…係止爪、145…セパレータ、146…第1セルユニット、147…第2セルユニット、150…回路基板、151a,151b…取付孔、157a,157b…ネジボス、160…接続端子群、161,162…上側正極端子、162a,162b…腕部、164…T端子、165…V端子、166…LS端子、167…上側負極端子、167a,167b…腕部、168…LD端子、171,172…下側正極端子、172a,172b…腕部、177…下側負極端子、177a,177b…腕部、181a,182a,183a,186a,187a,188a…引出しタブ、194b,196b~199b…リード線の端部、200…電気機器、201,201A,201B,201C…電気機器本体,202…ハウジング、202a…胴体部、202b…ハンドル部、203…ケース、204…電池パック装着部、204a…第1装着部、204b…第2装着部、205…トリガレバー、206…モータ、208…先端工具保持部、215…スイッチング素子、216…シャント抵抗、222…正極入力端子、227…負極入力端子、240…制御部、241,242…リード線、252a,252b…正極入力端子、257a,257b…負極入力端子、261…第1リレースイッチ、262…第2リレースイッチ、271~278…リード線、271a,272a,274b,275a…リード線,300…電気機器、301…電気機器本体、302b…ハンドル部、303…電池パック装着部、306…モータ、315…スイッチング素子、316…シャント抵抗、322…正極入力端子、327…負極入力端子、328…LD端子、400…アダプタ、440…制御部、441…ラッチボタン、457a…正極端子、457a…負極端子、468…LD端子、501,501A…電気機器、510,510A~510C…電池パック、513…制御部、521~523…セルユニット、530…電気機器本体、533…制御部、539…ハウジング、539a…胴体部、539b…ハンドル部、539c…電池着脱部、540…モータ(出力部)、542…トリガスイッチ(メインスイッチ)、543…インバータ回路。 DESCRIPTION OF SYMBOLS 1, 1A... Electric apparatus main body 2... Housing 2a... Body part 2b... Handle part 3... Battery pack mounting part 5... Trigger lever 6... Forward/reverse switching lever 8... Tip tool holding part 9... Tip tool 11a, 11b Rail portion 12 Curved portion 14 Projection 18, 19 Load device 20 Terminal portion 20a Vertical surface 20b Horizontal surface 22a, 22b Positive input terminal 27a , 27b... Negative input terminal, 28... LD terminal, 50... Terminal part, 51... Base, 51a, 51b... Recessed portion, 52a, 52b... Positive input terminal, 54... T terminal, 57a, 57b... Negative input terminal, 58 LD terminal 59 Lead wire 60 Terminal portion 62 Positive input terminal 67 Negative input terminal 71 to 79 Lead wire (wiring means) 100, 100A, 100B Battery pack 101 Lower case , 104... slit, 110... upper case, 111... lower stage surface, 111a... notch portion, 115... upper stage surface, 120... slot portion, 121 to 128... slot, 131... stopper portion, 132... raised portion, 134... slit , 138a, 138b... rail grooves 141a, 141b... latch buttons 142a, 142b... locking claws 145... separators 146... first cell unit 147... second cell unit 150... circuit board 151a, 151b... Mounting hole 157a, 157b Screw boss 160 Connection terminal group 161, 162 Upper positive terminal 162a, 162b Arm 164 T terminal 165 V terminal 166 LS terminal 167 Upper negative terminal , 167a, 167b... Arms 168... LD terminal 171, 172... Lower positive terminal 172a, 172b... Arms 177... Lower negative terminal 177a, 177b... Arms 181a, 182a, 183a, 186a , 187a, 188a... Drawer tabs 194b, 196b to 199b... Ends of lead wires 200... Electric equipment 201, 201A, 201B, 201C... Electric equipment body, 202... Housing, 202a... Body part, 202b... Handle part , 203... Case 204... Battery pack attachment part 204a... First attachment part 204b... Second attachment part 205... Trigger lever 206... Motor 208... Tip tool holding part 215... Switching element 216... Shunt Resistor 222 Positive input terminal 227 Negative input terminal 240 Control unit 241, 242 Lead wires 252a, 252b Positive input terminal 257a, 257b Negative input Terminal 261 First relay switch 262 Second relay switch 271 to 278 Lead wire 271a, 272a, 274b, 275a Lead wire 300 Electrical device 301 Main body of electrical device 302b Handle portion 303... Battery pack mounting part 306... Motor 315... Switching element 316... Shunt resistor 322... Positive input terminal 327... Negative input terminal 328... LD terminal 400... Adapter 440... Control unit 441... Latch Button 457a Positive terminal 457a Negative terminal 468 LD terminal 501, 501A Electrical device 510, 510A to 510C Battery pack 513 Control unit 521 to 523 Cell unit 530 Electrical device main body , 533... Control part, 539... Housing, 539a... Body part, 539b... Handle part, 539c... Battery attaching/detaching part, 540... Motor (output part), 542... Trigger switch (main switch), 543... Inverter circuit.

Claims (12)

  1. 3つのセルユニットと、
    前記3つのセルユニットの相互接続状態を切替え可能な切替え部と、を有し、
    前記切替え部は、前記3つのセルユニットの相互接続状態を、
    前記3つのセルユニットが全て並列接続となる状態と、
    前記3つのセルユニットが全て直列接続となる状態と、
    前記3つのセルユニットのうち2つのセルユニットが並列接続で当該2つのセルユニットに対して前記3つのセルユニットのうち他の1つのセルユニットが直列接続となる状態、又は、前記3つのセルユニットのうち2つのセルユニットが直列接続で当該2つのセルユニットに対して前記3つのセルユニットのうち他の1つのセルユニットが非接続となる状態と、に切替え可能である、電池パック。
    three cell units;
    a switching unit capable of switching interconnection states of the three cell units,
    The switching unit selects an interconnected state of the three cell units by:
    a state in which all of the three cell units are connected in parallel;
    a state in which all of the three cell units are connected in series;
    A state in which two cell units out of the three cell units are connected in parallel and another cell unit out of the three cell units is connected in series to the two cell units, or the three cell units a state in which two cell units are connected in series and another cell unit out of the three cell units is disconnected from the two cell units.
  2. 複数のセルユニットを有する複数の電池パックと、前記電池パックが装着可能な電気機器本体により構成され、
    前記電気機器本体には、前記複数の電池パックが有する前記複数のセルユニットの少なくとも2つを互いに並列に接続する並列接続部と、前記複数の電池パックが有する前記複数のセルユニットのうち前記並列接続部に直接接続されていない他の少なくとも1つのセルユニットを前記並列接続部に対して直列に接続可能な直列接続部を有することを特徴とする電気機器。
    Consists of a plurality of battery packs having a plurality of cell units and an electrical device body to which the battery packs can be attached,
    The electric device main body includes a parallel connection portion for connecting in parallel at least two of the plurality of cell units of the plurality of battery packs, and a parallel connection portion among the plurality of cell units of the plurality of battery packs. 1. An electrical device, comprising a series connection section that allows at least one other cell unit that is not directly connected to the connection section to be connected in series to the parallel connection section.
  3. 前記直列接続部は、前記複数のセルユニットのうち前記並列接続部に直接接続されていない少なくとも2つの他のセルユニットを互いに直列に接続することを特徴とする請求項2に記載の電気機器。 3. The electrical equipment according to claim 2, wherein the series connection section connects in series at least two other cell units that are not directly connected to the parallel connection section among the plurality of cell units.
  4. 複数の前記電池パックは、前記複数のセルユニットとして少なくとも第1セルユニット及び第2セルユニットを有し、前記第1セルユニット及び前記第2セルユニットの正極と負極が独立した出力端子に割り当てられ、
    複数の前記電池パックのうち、一つの前記電池パックの第1セルユニットと第2セルユニットを並列接続とし、残りの前記電池パックの第1セルユニットと第2セルユニットを直列接続とし、
    前記並列接続と前記直列接続を、さらに直列に接続することを特徴とする請求項2又は3に記載の電気機器。
    The plurality of battery packs have at least a first cell unit and a second cell unit as the plurality of cell units, and positive and negative electrodes of the first cell unit and the second cell unit are assigned to independent output terminals. ,
    The first cell unit and the second cell unit of one of the plurality of battery packs are connected in parallel, and the first cell units and the second cell units of the remaining battery packs are connected in series,
    4. The electrical equipment according to claim 2, wherein the parallel connection and the series connection are further connected in series.
  5. 前記電気機器本体は、前記電池パックを装着するための複数の電池パック装着部を含んで構成され、
    複数の前記電池パック装着部には、それぞれ電池パック装着機構と、出力端子を含んで構成され、
    前記電気機器本体に、前記並列接続部と前記直列接続部を形成する配線手段を内蔵することを特徴とすることを特徴とする請求項2から4のいずれか一項に記載の電気機器。
    the electrical device main body includes a plurality of battery pack mounting portions for mounting the battery pack,
    Each of the plurality of battery pack mounting portions includes a battery pack mounting mechanism and an output terminal,
    5. The electrical equipment according to claim 2, wherein the electrical equipment main body includes wiring means for forming the parallel connection portion and the series connection portion.
  6. 前記電池パックとして第1の電池パックと第2の電池パックを用い、
    前記電気機器本体は前記第1の電池パックのセルユニットを直列に接続し、前記第2の電池パックはセルユニットを並列に接続することを特徴とする請求項2から5のいずれか一項に記載の電気機器。
    using a first battery pack and a second battery pack as the battery packs,
    6. The apparatus according to any one of claims 2 to 5, wherein the electric device body connects the cell units of the first battery pack in series, and the cell units of the second battery pack connect in parallel. Electrical equipment as described.
  7. 前記電気機器本体は、前記電池パックを装着するための電池パック装着部と、前記電池パック装着部から着脱可能であって前記電池パック装着部へ複数の前記電池パックを接続可能とするアダプタ部と、を含んで構成され、
    前記アダプタ部に、前記並列接続部と前記直列接続部を形成する配線手段を内蔵することを特徴とすることを特徴とする請求項2から4のいずれか一項に記載の電気機器。
    The electric device main body includes a battery pack mounting portion for mounting the battery pack, and an adapter portion that is detachable from the battery pack mounting portion and allows a plurality of the battery packs to be connected to the battery pack mounting portion. , consisting of
    5. The electrical equipment according to claim 2, wherein wiring means for forming said parallel connection portion and said series connection portion is incorporated in said adapter portion.
  8. 前記電気機器本体は、前記電池パックを装着するための複数の電池パック装着部を有し、
    複数の前記電池パック装着部には、それぞれ電池パック装着機構と電力端子が形成され、
    前記電気機器本体に、複数の電力端子群の接続を並列または直列に切り替えるための複数のスイッチを設け、
    前記電気機器本体に格納された制御部によって前記スイッチの接続形態を切り替えることを特徴とする請求項2から4のいずれか一項に記載の電気機器。
    the electrical device main body has a plurality of battery pack mounting portions for mounting the battery pack,
    A battery pack mounting mechanism and a power terminal are formed in each of the plurality of battery pack mounting portions,
    The electric device body is provided with a plurality of switches for switching connection of a plurality of power terminal groups in parallel or in series,
    5. The electrical equipment according to claim 2, wherein a control unit stored in the electrical equipment main body switches the connection form of the switch.
  9. 前記制御部は、前記スイッチを切り替えることによって複数の前記電池パックのうち、直列接続状態で出力させる側と、並列接続状態で出力させる側を選択することを特徴とする請求項8に記載の電気機器。 9. The electricity according to claim 8, wherein the control unit selects a side to output in a series connection state and a side to output in a parallel connection state among the plurality of battery packs by switching the switch. machine.
  10. 前記電気機器は、トリガスイッチを有して先端工具を駆動する電動工具であって、
    前記制御部は、前記トリガスイッチがオフ状態においてのみ切り替えを行うことを特徴とする請求項9に記載の電気機器。
    The electric device is an electric power tool that has a trigger switch and drives a tip tool,
    10. The electrical device according to claim 9, wherein the control unit performs switching only when the trigger switch is in an off state.
  11. 複数のセルユニットの電池残量または電圧を検出可能な検出部を設け、
    前記制御部は、前記検出部の検出結果に基づいて前記直列に接続するセルユニットと、前記並列に接続するセルユニットを選択することを特徴とする請求項8から10のいずれか一項に記載の電気機器。
    A detection unit capable of detecting the remaining battery level or voltage of a plurality of cell units is provided,
    11. The apparatus according to any one of claims 8 to 10, wherein the control section selects the cell units connected in series and the cell units connected in parallel based on the detection result of the detection section. electrical equipment.
  12. 前記検出部が前記複数のセルユニットに異なる電圧のセルユニットが含まれていることを検出すると、前記制御部は、電圧の異なるセルユニット同士を直列に接続することを特徴とする請求項11に記載の電気機器。 12. The method according to claim 11, wherein when the detection unit detects that the plurality of cell units include cell units with different voltages, the control unit connects the cell units with different voltages in series. Electrical equipment as described.
PCT/JP2021/048539 2021-02-12 2021-12-27 Electrical device and battery pack WO2022172633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022581235A JPWO2022172633A5 (en) 2021-12-27 Electrical equipment, battery packs, electrical equipment bodies, and adapters

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021020551 2021-02-12
JP2021-020551 2021-02-12
JP2021-178365 2021-10-29
JP2021178365 2021-10-29

Publications (1)

Publication Number Publication Date
WO2022172633A1 true WO2022172633A1 (en) 2022-08-18

Family

ID=82837659

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/048539 WO2022172633A1 (en) 2021-02-12 2021-12-27 Electrical device and battery pack
PCT/JP2021/048537 WO2022172632A1 (en) 2021-02-12 2021-12-27 Electric device and battery pack

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048537 WO2022172632A1 (en) 2021-02-12 2021-12-27 Electric device and battery pack

Country Status (1)

Country Link
WO (2) WO2022172633A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129171A1 (en) * 2010-04-12 2011-10-20 株式会社マキタ Electric power tool utilizing battery pack as power source, and adapter for same
US20150333666A1 (en) * 2014-05-16 2015-11-19 Techtronic Power Tools Technology Limited Multi-battery pack for power tools
WO2018079723A1 (en) * 2016-10-31 2018-05-03 日立工機株式会社 Battery pack, electrical device using battery pack, and electrical device system
WO2020066904A1 (en) * 2018-09-28 2020-04-02 工機ホールディングス株式会社 Adapter and electrical device system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236608A (en) * 1992-02-24 1993-09-10 Fuji Electric Co Ltd Main circuit system for electric automobile
JPH08322103A (en) * 1995-05-22 1996-12-03 Hiroshi Shirahama Motor drive apparatus
JP2007274834A (en) * 2006-03-31 2007-10-18 Nissan Motor Co Ltd Power supply apparatus for vehicle
JP7159042B2 (en) * 2018-12-27 2022-10-24 株式会社マキタ battery system
JP2020198183A (en) * 2019-05-31 2020-12-10 株式会社デンソーテン Connection controller and connection control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129171A1 (en) * 2010-04-12 2011-10-20 株式会社マキタ Electric power tool utilizing battery pack as power source, and adapter for same
US20150333666A1 (en) * 2014-05-16 2015-11-19 Techtronic Power Tools Technology Limited Multi-battery pack for power tools
WO2018079723A1 (en) * 2016-10-31 2018-05-03 日立工機株式会社 Battery pack, electrical device using battery pack, and electrical device system
WO2020066904A1 (en) * 2018-09-28 2020-04-02 工機ホールディングス株式会社 Adapter and electrical device system

Also Published As

Publication number Publication date
JPWO2022172633A1 (en) 2022-08-18
JPWO2022172632A1 (en) 2022-08-18
WO2022172632A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US20230318055A1 (en) Electrical apparatus using battery pack
JP6957569B2 (en) Battery pack and battery system
JP4191781B1 (en) Battery pack
US20170346140A1 (en) Jump box for lithium-based starter battery
EP2495843B1 (en) Power supply device
US20120262035A1 (en) Adaptor, assembly of battery pack and adaptor, and electric tool with the same
EP1903657A2 (en) Adaptor, assembly of battery pack and adaptor, and electric tool with the same
CN101051760A (en) Battery pack and electric device using the same
US20080272760A1 (en) Rechargeable Battery for Connection to a Load
US20170317492A1 (en) Jumper cables for lithium-based starter battery
JP7459933B2 (en) Battery pack and electrical device using same
JPWO2021199817A5 (en)
JP2012217329A (en) Charger and electric power supply system
JP2023029337A (en) Electric apparatus
CN217607501U (en) Charger adapted to charge either of first battery pack and second battery pack, and kit
WO2020066904A1 (en) Adapter and electrical device system
JP5500337B2 (en) Charging device for charging the battery pack
CN112109047A (en) Battery pack and electric tool
WO2022172633A1 (en) Electrical device and battery pack
KR20160128792A (en) Battery pack
JP7272430B2 (en) Battery packs and electrical equipment
JP2022107172A (en) Adapter and charging system
JP7259983B2 (en) Battery packs and electrical equipment
CN217334191U (en) Intelligent lithium battery pack and electric tool
KR102078598B1 (en) Modularized battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925875

Country of ref document: EP

Kind code of ref document: A1