JPH08322103A - Motor drive apparatus - Google Patents

Motor drive apparatus

Info

Publication number
JPH08322103A
JPH08322103A JP7145139A JP14513995A JPH08322103A JP H08322103 A JPH08322103 A JP H08322103A JP 7145139 A JP7145139 A JP 7145139A JP 14513995 A JP14513995 A JP 14513995A JP H08322103 A JPH08322103 A JP H08322103A
Authority
JP
Japan
Prior art keywords
motor
battery
voltage
electric motor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145139A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirahama
浩 白浜
Shigeo Matsui
重夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7145139A priority Critical patent/JPH08322103A/en
Publication of JPH08322103A publication Critical patent/JPH08322103A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE: To save energy when a motor is driven by dividing a plurality of batteries in series into two or more units, connecting the units in parallel, connecting both ends to the motor, and regenerating the generating power of the motor. CONSTITUTION: When a motor 2 is driven, switches 3 are set in a discharge mode, and battery units 1a and 1b are connected in series. The voltage of 12V is supplied to the motor 2 from both ends. Meanwhile, when the motor 2 is braked, the switches 3 are turned to the side of a charging mode, and the battery units 1a and 1b are connected in parallel. The voltage between both ends is set at 6V, which is lower than 12V of the rated drive voltage of the motor 2. When the generated voltage by the motor 2 is sufficiently higher than 6V, the generated power of the motor 2 charges the battery units 1a and 1b through a reverse-current preventing diode 4 and a current limiter circuit 5. Thus, the energy is regenerated, and the drive time is elongated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車、電動フォ
ークリフト、電動自転車等のように、バッテリーの蓄電
力を用いて電動機を駆動する電動機駆動装置に関し、特
に、電動機制動時の電動機の発電電力をバッテリーに回
生して、省エネルギー化および駆動時間の延長を図った
電動機駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor drive device for driving an electric motor by using the stored electric power of a battery, such as an electric vehicle, an electric forklift truck, an electric bicycle, and the like, and particularly to electric power generated by the electric motor when braking the electric motor. The present invention relates to an electric motor drive device that recycles electricity into a battery to save energy and extend the drive time.

【0002】[0002]

【従来の技術】電動機と車輪を機械的に連結したまま、
電動機を電源より切り離して電気的負荷を接続し、電機
子の回転により発生する電力を前記負荷に消費させて、
この時生ずる逆トルクにより電動機を制動する方法は知
られている。しかし、電動機が発電する電力を回収蓄電
し動力用電力として利用することは、電動機の発電電圧
が駆動定格電圧より低く、かつ走行条件により広い範囲
で変動するため駆動用電池への充電が困難であるという
理由で実施されていない。なお、制動時の発電電圧を駆
動定格電圧より高くするには、車輪と電動機の間に増速
ギヤを設けて電動機の回転数を上げる方法や、昇圧器に
より電動機の発電電圧を昇圧する方法が考えられるが、
装置が大型かつ重量化するという問題や、電圧の制御が
困難であるという問題がある。電力を回生するために付
加した機構を駆動することにより消費する電力が、回生
される電力より大きくなれば、電力を回生する意味がな
い。
2. Description of the Related Art While an electric motor and wheels are mechanically connected,
Separate the motor from the power supply and connect an electrical load to cause the load to consume the power generated by the rotation of the armature,
A method of braking the electric motor by the reverse torque generated at this time is known. However, it is difficult to charge the drive battery because the generated voltage of the electric motor is lower than the drive rated voltage and fluctuates in a wide range depending on the running condition when the electric power generated by the electric motor is collected and stored and used as power for the electric power. Not implemented because there is. To increase the generated voltage during braking higher than the drive rated voltage, there is a method of increasing the rotation speed of the electric motor by providing a speed increasing gear between the wheel and the electric motor, or a method of boosting the generated voltage of the electric motor with a booster. Conceivable,
There are problems that the device is large and heavy, and that voltage control is difficult. If the power consumed by driving the mechanism added to regenerate the power becomes larger than the regenerated power, there is no point in regenerating the power.

【0003】[0003]

【発明が解決しようとしている課題】本発明は、上述の
問題点に鑑みてなされたもので、バッテリーの蓄電力を
用いて電動機を駆動する電動機駆動装置において、小型
かつ軽量な構成で、制動時に電動機が発電する電力を回
収蓄電し、これを動力用電力として再利用することによ
り、省エネルギー化および駆動時間の延長を図ることを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is an electric motor drive device for driving an electric motor using the stored power of a battery, which has a small and lightweight structure and is used during braking. The purpose of the present invention is to save energy and extend the driving time by collecting and storing the electric power generated by the electric motor and reusing it as power for driving.

【0004】[0004]

【問題を解決するための手段】上記の目的を達成するた
め、本発明では、複数個の蓄電池により電動機を駆動す
る電動機駆動装置において、前記複数個の蓄電池を全数
直列接続してその両端より前記電動機に駆動電力を供給
する放電モードと前記直列接続された複数個の蓄電池を
2個以上の電池ユニットに分割しこれらの電池ユニット
を並列接続してその両端を前記電動機に接続し該電動機
の発電電力を前記蓄電池に回生する充電モードとを切り
換えるスイッチ手段を設けたことを特徴とする。
In order to achieve the above object, in the present invention, in an electric motor drive device for driving an electric motor by a plurality of storage batteries, all of the plurality of storage batteries are connected in series, and both ends of the storage battery are connected in series. A discharge mode for supplying driving power to an electric motor and the plurality of storage batteries connected in series are divided into two or more battery units, the battery units are connected in parallel, and both ends thereof are connected to the electric motor to generate electric power from the electric motor. It is characterized in that a switch means for switching between a charging mode in which electric power is regenerated to the storage battery is provided.

【0005】本発明の好ましい実施例において、前記ス
イッチ手段は、前記充電モード時、前記複数個の蓄電池
を、放電モード時の2分の1の定格電圧を有する2個の
電池ユニットに2等分する。また、他の好ましい実施例
においては、前記充電モード時の前記電動機の発電電圧
を検出する手段をさらに設け、前記スイッチ手段は該検
出出力に応じて前記複数個の蓄電池をさらに検出された
発電電圧より低い定格電圧を有する電池ユニットにn
(但し、nは前記蓄電池の個数の2より大きな約数)等
分する。
In a preferred embodiment of the present invention, the switch means divides the plurality of storage batteries in the charging mode into two battery units having a rated voltage which is one half of that in the discharging mode. To do. Further, in another preferred embodiment, means for detecting a generated voltage of the electric motor in the charging mode is further provided, and the switch means further detects a generated voltage of the plurality of storage batteries according to the detection output. N for battery units with lower rated voltage
(However, n is a divisor larger than 2 which is the number of the storage batteries.)

【0006】[0006]

【作用】上記のように構成された本発明によれば、電動
機駆動車両等の電動機駆動用の蓄電池を該電動機の駆動
定格電圧より低い電圧の複数の電池ユニットに分割し、
放電時(電動機駆動時)には上記電池ユニットを直列接
続して電動機を駆動し、充電時(電動機制動時)は、電
動機の発電電圧が電池電圧より高くなるように電池ユニ
ット間の接続を変更して、慣性走行や下り坂走行による
電動機の発電電力の回生を可能にする。すなわち、電動
機駆動車両が下り勾配等において電動によらず慣性エネ
ルギーで走行する際、電動機に発生する電力を、駆動電
源電池に回収し、駆動電力として再利用することを可能
にする。さらに、登坂時や平地走行時、ペダルに所定量
以上の力がかかったときのみ電動機を駆動してペダル踏
力を軽くするパワーアシスト形の電動自転車等において
は、電池の蓄電量不足時等にペダルにより人力で電池を
充電することもできる。
According to the present invention configured as described above, a storage battery for driving an electric motor of an electric motor driven vehicle or the like is divided into a plurality of battery units having a voltage lower than the drive rated voltage of the electric motor,
When discharging (when driving the electric motor), connect the battery units in series to drive the electric motor, and when charging (when braking the electric motor), change the connection between the battery units so that the generated voltage of the electric motor becomes higher than the battery voltage. Then, the electric power generated by the electric motor can be regenerated by inertial traveling or downhill traveling. That is, when a motor-driven vehicle travels with inertial energy when traveling on a downward slope or the like without using electric power, it is possible to collect the electric power generated in the electric motor in a driving power supply battery and reuse it as driving power. Furthermore, in power-assisted electric bicycles, etc. that drive the electric motor to lighten the pedal effort only when a certain amount of force is applied to the pedal when climbing uphill or running on level ground, the pedal may be used when the amount of battery charge is insufficient. You can also charge the battery manually.

【0007】[0007]

【実施例1】以下、図面を用いて本発明の実施例を説明
する。図1は、本発明の一実施例に係る直流モータ駆動
装置の構成を示す。同図において、1a,1bはそれぞ
れ定格電圧が6Vの電池ユニット、2は定格電圧が12
Vの直流モータ、3(3a,3b,3c)は電池ユニッ
ト1a,1bによりモータ2を駆動する放電モードとモ
ータ2により電池ユニット1a,1bを充電する充電モ
ードとを切り換えるスイッチ、4は逆流防止用ダイオー
ド、5は電流制限回路である。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a DC motor drive device according to an embodiment of the present invention. In the figure, 1a and 1b are battery units each having a rated voltage of 6 V, and 2 is a rated voltage of 12 V.
A DC motor 3 for V (3a, 3b, 3c) is a switch for switching between a discharging mode in which the battery unit 1a, 1b drives the motor 2 and a charging mode for charging the battery unit 1a, 1b in the motor 2; The diode 5 is a current limiting circuit.

【0008】モータ駆動時、切換スイッチ3は図1に点
線で示す放電モード側に切り換えられる。これにより、
電池ユニット1aと1bは直列に接続され、その両端か
ら12Vの電圧がモータ2に供給される。
When the motor is driven, the changeover switch 3 is changed over to the discharge mode side shown by the dotted line in FIG. This allows
The battery units 1a and 1b are connected in series, and a voltage of 12V is supplied to the motor 2 from both ends thereof.

【0009】一方、モータ制動時には、切換スイッチ3
が図1に実線で示す充電モード側に切り換えられる。こ
れにより、電池ユニット1aと1bは並列に接続されて
その両端間の電圧はモータの駆動定格電圧である12V
より低い6Vとなり、モータ2の発電電圧が6Vより充
分に高い間はモータ2の発生する電力が逆流防止用ダイ
オード4および電流制限回路5を介して電池ユニット1
a,1bに充電される。モータ2の発電電圧が並列接続
された電池ユニット1a,1bの端子電圧と逆流防止用
ダイオード4および電流制限回路5の電圧降下との和の
電圧を下回ると、充電は終了する。逆流防止用ダイオー
ド4は、充電モードにおいてモータ2の発電電圧が電池
ユニット1a,1bの端子電圧より低いとき、電流が電
池ユニット1a,1bからモータ2へ逆流するのを防止
するためのものである。また、電流制限回路5は、電池
ユニット1a,1bに過大な電流が流れ込んで、電池ユ
ニット1a,1bを構成する蓄電池を劣化または破壊し
たり、モータ2が急激に制動される(急ブレーキがかか
る)ことを防止するため、充電電流を所定の電流値以下
に制限するものである。電流制限回路5がない場合、回
路の電流制限要素は配線の抵抗やモータ2の巻線抵抗等
からなる微小抵抗のみとなり、モータ2の定格回転時は
モータ2の約12Vと電池ユニットの約6Vの差を上記
微小抵抗で除した電流が電池ユニットに流れ込むことに
なる。電流制限回路5では充電電流が所定電流値以下で
はトランジスタ51を完全にオンさせるが、所定電流値
を越えようとすると、トランジスタ51がアクティブ領
域で動作して抵抗として働き、充電電流を制限する。電
流制限回路としては、逆流防止用ダイオードと直列に抵
抗を接続するだけでもよい。この場合、電力回生効率は
低下するが、回路構成が簡略化する。さらに、電池ユニ
ットの容量(許容電流値)が充分に大きく、かつモータ
制動の程度も装置全体から見て大き過ぎない場合、電流
制限回路5は省略することができる。
On the other hand, during motor braking, the changeover switch 3
Is switched to the charging mode side shown by the solid line in FIG. As a result, the battery units 1a and 1b are connected in parallel, and the voltage across the battery units is 12V which is the drive rated voltage of the motor.
The voltage becomes lower than 6V, and while the generated voltage of the motor 2 is sufficiently higher than 6V, the electric power generated by the motor 2 passes through the backflow prevention diode 4 and the current limiting circuit 5 to the battery unit 1
A and 1b are charged. When the generated voltage of the motor 2 falls below the sum of the terminal voltage of the battery units 1a and 1b connected in parallel and the voltage drop of the backflow prevention diode 4 and the current limiting circuit 5, the charging is terminated. The backflow prevention diode 4 is for preventing current from flowing back from the battery units 1a, 1b to the motor 2 when the generated voltage of the motor 2 is lower than the terminal voltage of the battery units 1a, 1b in the charging mode. . Further, in the current limiting circuit 5, an excessive current flows into the battery units 1a and 1b to deteriorate or destroy the storage batteries forming the battery units 1a and 1b, or the motor 2 is suddenly braked (a sudden braking is applied). In order to prevent this, the charging current is limited to a predetermined current value or less. If the current limiting circuit 5 is not provided, the current limiting element of the circuit is only a small resistance such as a wiring resistance and a winding resistance of the motor 2, and when the motor 2 is rotating at a rated speed of about 12V of the motor 2 and about 6V of the battery unit. A current obtained by dividing the difference of the above by the minute resistance flows into the battery unit. In the current limiting circuit 5, the transistor 51 is completely turned on when the charging current is equal to or lower than the predetermined current value. However, when the current exceeds the predetermined current value, the transistor 51 operates in the active region and functions as a resistor to limit the charging current. As the current limiting circuit, a resistor may be connected in series with the backflow prevention diode. In this case, the power regeneration efficiency is reduced, but the circuit configuration is simplified. Further, when the capacity (allowable current value) of the battery unit is sufficiently large and the degree of motor braking is not too large from the viewpoint of the entire device, the current limiting circuit 5 can be omitted.

【0010】上記切換スイッチ3は、単独で操作できる
ようにしてもよいが、本実施例のモータ駆動装置を電動
車両に適用する場合には、そのブレーキと連動させるこ
とができる。この場合は、例えばブレーキが操作された
とき、そのブレーキの遊びの範囲で上記切換スイッチ3
を充電状態に切り換えるようにすれば良い。さらに、電
流制限回路5の電流検出抵抗52または上記の代用抵抗
として可変抵抗を用いその抵抗値を上記ブレーキに連動
して変化させ電動機によるブレーキ量を調整するように
構成してもよい。
The change-over switch 3 may be operated independently, but when the motor drive device of the present embodiment is applied to an electric vehicle, it can be interlocked with its brake. In this case, for example, when the brake is operated, the changeover switch 3 is operated within the play range of the brake.
Should be switched to the charging state. Furthermore, a variable resistor may be used as the current detection resistor 52 of the current limiting circuit 5 or the substitute resistor, and the resistance value may be changed in conjunction with the brake to adjust the brake amount by the electric motor.

【0011】[0011]

【実施例2】図2は本発明の他の実施例に係る直流モー
タ駆動装置の構成を示す。実施例1の装置は、モータ2
の発電電圧が約7V以下になると、電池ユニット1a,
1bへの充電は停止してしまい、約7V以下の電力は回
生することができない。本実施例2では、12Vの電池
を2Vの電池ユニット(本実施例では個々の単電池)1
−1,‥‥,1−6に6分割し、モータ駆動時は6個の
電池ユニットを直列に接続して12Vの出力を得、モー
タ制動時は先ず3個直列2個並列の6Vとし、モータ2
の発電電圧が下がるにつれて2個直列3個並列の4V、
全数並列の2Vと電池の端子電圧を下げるようにしてい
る。
[Embodiment 2] FIG. 2 shows the configuration of a DC motor drive apparatus according to another embodiment of the present invention. The apparatus according to the first embodiment has a motor 2
When the generated voltage of the battery is about 7V or less, the battery unit 1a,
Charging to 1b is stopped, and electric power of about 7V or less cannot be regenerated. In the second embodiment, a 12V battery is used as a 2V battery unit (in this embodiment, an individual cell) 1.
-1, ..., 1-6 divided into 6 parts, 6 battery units are connected in series when the motor is driven, and 12V output is obtained. At the time of motor braking, 3 units are connected in series and 2 units are connected in parallel to 6V. Motor 2
As the power generation voltage decreases, 2 in series, 3 in parallel, 4V,
All terminals are connected in parallel at 2V and the battery terminal voltage is lowered.

【0012】図2において、6は電圧識別回路、7は電
池切換制御回路、8は電池スイッチング回路である。電
圧識別回路6は、充電式標準電池61、コンパレータ6
2〜64およびAND回路65,66等を具備する。A
ND回路65,66において、丸の付いた入力端子はそ
の入力信号を反転した信号について、丸の付かない入力
端子はその入力信号をそのまま用いて論理積演算を行な
うことを示す。電池切換制御回路7は、6個の2入力O
R回路を具備する。電池スイッチング回路8は、スイッ
チング素子A1 〜A4 ,B1 〜B2 ,C1 〜C2 ,D1
〜D2 ,E,F1 〜F4 および電池ユニット1−1〜1
−6を具備する。スイッチング素子としては、MOS形
パワーFETを用いたICやリレー接点等を用いること
ができる。ここでは、スイッチング素子のオン、オフ時
間のばらつきやずれにより電池が短絡されることのない
ように、オフ時はオン信号消滅後直ちにオフするが、オ
ン時はオン信号入力後数μ秒遅延してオンする遅延回路
付のスイッチングICを用いた。ダイオード9および小
容量の蓄電池10は電圧識別回路6、電池切換制御回路
7および電池スイッチング回路8の動作電源Vccを供
給するためのものである。
In FIG. 2, 6 is a voltage identification circuit, 7 is a battery switching control circuit, and 8 is a battery switching circuit. The voltage identification circuit 6 includes a rechargeable standard battery 61, a comparator 6
2 to 64 and AND circuits 65 and 66. A
In the ND circuits 65 and 66, a circled input terminal indicates an inverted signal of the input signal, and a non-circled input terminal indicates that the input signal is used as it is to perform a logical product operation. The battery switching control circuit 7 has six 2-input O
An R circuit is provided. The battery switching circuit 8 includes switching elements A 1 to A 4 , B 1 to B 2 , C 1 to C 2 , and D 1.
To D 2 , E, F 1 to F 4 and battery units 1-1 to 1
-6 is provided. As the switching element, an IC using a MOS type power FET, a relay contact or the like can be used. Here, in order to prevent the battery from being short-circuited due to variations or deviations in the ON / OFF time of the switching element, it is turned OFF immediately after the ON signal disappears when OFF, but delayed by several μs after the ON signal is input when ON. A switching IC with a delay circuit that turns on is used. The diode 9 and the small-capacity storage battery 10 are for supplying the operating power supply Vcc of the voltage identification circuit 6, the battery switching control circuit 7, and the battery switching circuit 8.

【0013】次に、図2の装置の動作を説明する。切換
スイッチ3を「駆動」にすると、充電式標準電池61の
充電を開始すると同時に、電圧識別回路6の端子dに信
号“1”を出力する。すると、電池切換制御回路7は電
圧識別回路6の端子dの信号に応動し論理回路を経て端
子C,D,Eにオン信号を出力する。これにより、電池
スイッチング回路8のスイッチング素子C1 〜C2 、D
1 〜D2 およびEが導通し、電池ユニット1−1〜1−
6は図3に示すように全数が直列に接続され、モータ2
の駆動に必要な電圧12Vの直流電力を出力する。
Next, the operation of the apparatus shown in FIG. 2 will be described. When the changeover switch 3 is set to “drive”, the charging of the rechargeable standard battery 61 is started, and at the same time, the signal “1” is output to the terminal d of the voltage identification circuit 6. Then, the battery switching control circuit 7 responds to the signal at the terminal d of the voltage identification circuit 6 and outputs an ON signal to the terminals C, D and E via the logic circuit. Thereby, the switching elements C 1 to C 2 , D of the battery switching circuit 8
1 to D 2 and E become conductive, and battery units 1-1 to 1-
6 are all connected in series as shown in FIG.
It outputs the DC power of 12V required for driving.

【0014】次に切換スイッチ3を「充電」にすると、
モータ2は発電機として働き、発電電力を送出すると同
時に、負荷に応じた制動トルクを発生する。電圧識別回
路6は、モータ2の発電電圧が7V以上であれば、その
端子cに信号“1”を出力する。すると、電池切換制御
回路7は電圧識別回路6の端子cの信号“1”に応動し
論理回路を経て端子B,C,Dにオン信号を出力する。
これにより、電池スイッチング回路8のスイッチング素
子B1 〜B2 、C1 〜C2 およびD1 〜D2 が導通し、
電池ユニット1−1〜1−6は図4に示すように電池ユ
ニット1−1〜1−3と1−4〜1−6がそれぞれ直列
に接続され、かつ各直列回路が互いに並列に接続され
る。この3個直列2並列に接続された端子電圧6Vの電
池は逆流防止用ダイオード4を介してモータ2に接続さ
れており、モータ2の出力電圧が7V以上である間、モ
ータ2の発電電力を充電可能する。
Next, when the changeover switch 3 is set to "charge",
The motor 2 functions as a generator, sends out the generated power, and at the same time, generates a braking torque according to the load. If the generated voltage of the motor 2 is 7 V or more, the voltage identification circuit 6 outputs a signal "1" to its terminal c. Then, the battery switching control circuit 7 responds to the signal "1" at the terminal c of the voltage identification circuit 6 and outputs an ON signal to the terminals B, C and D via the logic circuit.
As a result, the switching elements B 1 to B 2 , C 1 to C 2 and D 1 to D 2 of the battery switching circuit 8 become conductive,
As shown in FIG. 4, the battery units 1-1 to 1-6 have battery units 1-1 to 1-3 and 1-4 to 1-6 connected in series, respectively, and each series circuit is connected in parallel with each other. It The three batteries connected in series and in parallel with a terminal voltage of 6 V are connected to the motor 2 via the backflow prevention diode 4, and the generated power of the motor 2 is maintained while the output voltage of the motor 2 is 7 V or more. Can be charged.

【0015】次に、発電電圧が7V未満5V以上の範囲
に入ると、電圧識別回路6は、その端子bに信号“1”
を出力する。すると、電池切換制御回路7は電圧識別回
路6の端子bの信号“1”に応動し論理回路を経て端子
A,C,Eにオン信号を出力する。これにより、電池ス
イッチング回路8のスイッチング素子A1 〜A4 、C1
〜C2 およびEが導通し、電池ユニット1−1〜1−6
は図5に示すように2個ずつ直列に接続され、かつ各直
列回路が互いに並列に接続される。すなわち、電池ユニ
ットは、2個直列3並列に接続されて端子電圧は4Vと
なり、モータ2の5V以上の発電電力を充電可能とな
る。
Next, when the generated voltage falls within the range of less than 7V and 5V or more, the voltage identification circuit 6 outputs a signal "1" to its terminal b.
Is output. Then, the battery switching control circuit 7 responds to the signal "1" at the terminal b of the voltage identification circuit 6 and outputs an ON signal to the terminals A, C and E via the logic circuit. Thereby, the switching elements A 1 to A 4 , C 1 of the battery switching circuit 8
~ C 2 and E conduct, and battery units 1-1 to 1-6
2 are connected in series as shown in FIG. 5, and each series circuit is connected in parallel with each other. That is, two battery units are connected in series and 3 in parallel, the terminal voltage is 4V, and the generated power of 5V or more of the motor 2 can be charged.

【0016】次に、発電電圧が5V未満3V以上の範囲
に入ると、電圧識別回路6は、その端子aに信号“1”
を出力する。すると、電池切換制御回路7は電圧識別回
路6の端子aの信号“1”に応動し論理回路を経て端子
A,B,Fにオン信号を出力する。これにより、電池ス
イッチング回路8のスイッチング素子A1 〜A4 、B1
〜B2 およびEが導通し、電池ユニット1−1〜1−6
は図6に示すように全数が並列に接続される。すなわ
ち、電池ユニットは、端子電圧が2Vとなり、モータ2
の3V以上の発電電力を充電可能となる。
Next, when the generated voltage falls within the range of less than 5V and 3V or more, the voltage identification circuit 6 outputs a signal "1" to its terminal a.
Is output. Then, the battery switching control circuit 7 responds to the signal "1" at the terminal a of the voltage discriminating circuit 6 and outputs an ON signal to the terminals A, B and F through the logic circuit. Thereby, the switching elements A 1 to A 4 , B 1 of the battery switching circuit 8
~ B 2 and E are conducted, and battery units 1-1 to 1-6
Are connected in parallel as shown in FIG. That is, the battery unit has a terminal voltage of 2V and the motor 2
The generated power of 3 V or more can be charged.

【0017】なお、本実施例2においても、必要に応じ
て実施例1のような電流制限回路を用いることができ
る。
Also in the second embodiment, the current limiting circuit as in the first embodiment can be used if necessary.

【0018】[0018]

【実施例3】実施例2において、スイッチング素子とし
て半導体スイッチング素子を用いた場合、1個の半導体
スイッチング素子のオン時の電圧降下を0.12Vとし
ても放電時は5個の半導体スイッチング素子が電池と直
列に介挿されるため、全体の電圧降下は0.6Vとな
り、駆動時の損失が5%増加することになる。これを防
止するためには、装置がやや大型化するが、スイッチン
グ素子C1 〜C2 、D1〜D2 およびEとして常閉形の
リレー接点(NC接点)を用いればよい。この場合、リ
レー接点C1 〜C2 (リレーC)を切り換える(開放さ
せる)信号としては信号Fを、リレー接点D1 〜D2
(リレーD)を切り換える(開放させる)信号としては
信号Aを、そしてリレー接点E(リレーE)を切り換え
る(開放させる)信号としては信号Bを用いることがで
きる。したがって、スイッチング素子A1 〜A4 として
上記リレーDの常開接点(NO接点)を、スイッチング
素子B1 〜B2 としてリレーEの常開接点を、スイッチ
ング素子F1 〜F4 としてリレーCの常開接点を用いる
ことができる。図7にスイッチング素子としてリレー接
点を用いた場合の回路例を示す。
Third Embodiment In the second embodiment, when a semiconductor switching element is used as the switching element, even if the voltage drop when one semiconductor switching element is turned on is 0.12 V, five semiconductor switching elements are battery Therefore, the total voltage drop becomes 0.6V, and the loss during driving increases by 5%. In order to prevent this, the device becomes slightly larger, but normally closed relay contacts (NC contacts) may be used as the switching elements C 1 to C 2 , D 1 to D 2 and E. In this case, switching the relay contact C 1 -C 2 (relay C) a signal F as (open to) the signal, the relay contact D 1 to D 2
The signal A can be used as a signal for switching (opening) the (relay D), and the signal B can be used as a signal for switching (opening) the relay contact E (relay E). Therefore, the normally open contact (NO contact) of the relay D is used as the switching elements A 1 to A 4 , the normally open contact of the relay E is used as the switching elements B 1 to B 2 , and the relay C is used as the switching elements F 1 to F 4 . Normally open contacts can be used. FIG. 7 shows a circuit example when a relay contact is used as a switching element.

【0019】[0019]

【発明の適用範囲】本発明において、モータはいわゆる
インナーロータ形、アウターロータ形のいずれでもよ
い。また、回転子が鉄心を持たないコアレス形のモータ
であってもよい。さらに、ブラシの代わりに半導体スイ
ッチング素子を用いたいわゆるブラシレスモータであっ
てもよい。ブラシレスモータの場合、通常は各半導体ス
イッチング素子に逆並列に接続されたダイオードによ
り、モータの各巻線の発電電圧は整流されて直流化され
るが、そうでないときはモータの各巻線の電圧を整流し
て電池に供給する整流回路を付加する。
Scope of application of the invention In the present invention, the motor may be of a so-called inner rotor type or outer rotor type. Alternatively, the rotor may be a coreless motor having no iron core. Further, it may be a so-called brushless motor using a semiconductor switching element instead of the brush. In the case of a brushless motor, normally the diodes connected in anti-parallel to each semiconductor switching element rectify the generated voltage in each winding of the motor to convert it to DC, but otherwise, rectify the voltage in each winding of the motor. Then, a rectifier circuit for supplying the battery is added.

【0020】本発明において、蓄電池は、鉛蓄電池やN
i−Cd電池はもとより充放電可能な電池であれば、ど
のような電池を用いたものであってもよい。また、単電
池だけでなく複数個の単電池を適宜直列および/または
並列に接続して1つの電池回路を構成するようなもので
あってもよい。
In the present invention, the storage battery is a lead storage battery or N
Not only the i-Cd battery but any battery that can be charged and discharged may be used. Further, not only the unit cell but also a plurality of unit cells may be connected in series and / or in parallel to form one battery circuit.

【0021】本発明において、発電を行なうモータは単
に1基ではなく、複数個のモータであってもよい。回生
時においては各モータを直列に連結することにより、回
生発電の電圧を上げることができ、併せて各モータ別々
に回生する場合に比べ、只1個の回生回路により回生す
ることができる。
In the present invention, the motor for generating power may be a plurality of motors instead of just one motor. At the time of regeneration, by connecting the motors in series, it is possible to increase the voltage of regenerative power generation, and in addition, it is possible to regenerate with one regenerative circuit as compared with the case of regenerating each motor separately.

【0022】[0022]

【発明の効果】以上説明したように、本発明によると、
小型かつ軽量な構成で、モータ制動時のモータの発電電
圧により電池をモータ駆動用の電力として充電すること
ができ、装置の省エネルギー化および駆動時間の延長を
図ることができる。特に、本発明の電動機駆動装置を適
用した電動機駆動車両においては、1充電当たりの走行
距離を伸ばすことができる。
As described above, according to the present invention,
With a compact and lightweight structure, the battery can be charged as electric power for driving the motor by the generated voltage of the motor during braking of the motor, and energy saving of the device and extension of the driving time can be achieved. Particularly, in the electric motor drive vehicle to which the electric motor drive device of the present invention is applied, the traveling distance per charge can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る直流モータ駆動装置
の構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of a DC motor drive device according to an embodiment of the present invention.

【図2】 本発明の他の実施例に係る直流モータ駆動装
置の構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of a DC motor drive device according to another embodiment of the present invention.

【図3】 図2の装置におけるモータ制動時の電池の接
続状態を示す回路図である。
FIG. 3 is a circuit diagram showing a battery connection state during motor braking in the apparatus of FIG.

【図4】 図2の装置のモータ制動時においてモータの
出力電圧が図3の状態より下がった場合の電池の接続状
態を示す回路図である。
4 is a circuit diagram showing a battery connection state when the output voltage of the motor is lower than that in FIG. 3 during motor braking of the device in FIG.

【図5】 図2の装置のモータ制動時においてモータの
出力電圧が図4の状態より下がった場合の電池の接続状
態を示す回路図である。
5 is a circuit diagram showing a battery connection state when the output voltage of the motor is lower than that of FIG. 4 during motor braking of the device of FIG.

【図6】 図2の装置のモータ制動時においてモータの
出力電圧が図5の状態より下がった場合の電池の接続状
態を示す回路図である。
6 is a circuit diagram showing a battery connection state when the output voltage of the motor is lower than that of FIG. 5 during motor braking of the device of FIG.

【図7】 本発明のさらに他の実施例に係る直流モータ
駆動装置の構成を示す回路図である。
FIG. 7 is a circuit diagram showing a configuration of a DC motor drive device according to still another embodiment of the present invention.

【符号の説明】 1a,1b,1−1〜1−6:電池ユニット、2:モ
ータ、3,3a〜3c:切換スイッチ、4:逆流防止ダ
イオード、5:電流制限回路、6:電圧識別回路、7:
電池切換制御回路、8:電池スイッチング回路。
[Explanation of Codes] 1a, 1b, 1-1 to 1-6: Battery unit, 2: Motor, 3, 3a to 3c: Changeover switch, 4: Backflow prevention diode, 5: Current limiting circuit, 6: Voltage identification circuit , 7:
Battery switching control circuit, 8: Battery switching circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の蓄電池により電動機を駆動する
電動機駆動装置において、 前記複数個の蓄電池を全数直列接続してその両端より前
記電動機に駆動電力を供給する放電モードと前記直列接
続された複数個の蓄電池を2個以上の電池ユニットに分
割しこれらの電池ユニットを並列接続してその両端を前
記電動機に接続し該電動機の発電電力を前記蓄電池に回
生する充電モードとを切り換えるスイッチ手段を設けた
ことを特徴とする電動機駆動装置。
1. A motor drive device for driving an electric motor with a plurality of storage batteries, wherein a total number of the plurality of storage batteries are connected in series and a discharge mode in which drive power is supplied to the motor from both ends thereof is connected in series. Each storage battery is divided into two or more battery units, these battery units are connected in parallel, both ends thereof are connected to the electric motor, and switch means for switching between a charging mode for regenerating the electric power generated by the electric motor to the storage battery is provided. An electric motor drive device characterized by the above.
【請求項2】 前記スイッチ手段は、前記充電モード
時、前記複数個の蓄電池を、放電モード時の2分の1の
定格電圧を有する2個の電池ユニットに2等分する請求
項1記載の電動機駆動装置。
2. The switch means divides the plurality of storage batteries into two battery units having a rated voltage of one half of the discharge mode in the charging mode. Electric motor drive.
【請求項3】 前記充電モード時の前記電動機の発電電
圧を検出する手段をさらに設け、前記スイッチ手段は該
検出出力に応じて前記複数個の蓄電池をさらに検出され
た発電電圧より低い定格電圧を有する電池ユニットにn
(但し、nは前記蓄電池の個数の2より大きな約数)等
分する請求項2記載の電動機駆動装置。
3. A means for detecting the power generation voltage of the electric motor in the charging mode is further provided, and the switch means sets the plurality of storage batteries to a rated voltage lower than the detected power generation voltage according to the detection output. N in the battery unit that has
The motor drive device according to claim 2, wherein (where n is a divisor greater than 2 of the number of the storage batteries).
JP7145139A 1995-05-22 1995-05-22 Motor drive apparatus Pending JPH08322103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145139A JPH08322103A (en) 1995-05-22 1995-05-22 Motor drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145139A JPH08322103A (en) 1995-05-22 1995-05-22 Motor drive apparatus

Publications (1)

Publication Number Publication Date
JPH08322103A true JPH08322103A (en) 1996-12-03

Family

ID=15378321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145139A Pending JPH08322103A (en) 1995-05-22 1995-05-22 Motor drive apparatus

Country Status (1)

Country Link
JP (1) JPH08322103A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538615A (en) * 2001-08-08 2004-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for implementing automatic charge state compensation
CN100385767C (en) * 2005-01-14 2008-04-30 杨福义 Multi-functional Ni-H and Ni-Ca battery charger
JP2010028970A (en) * 2008-07-18 2010-02-04 Panasonic Corp Motor bicycle and brake adjustment method therefor
WO2010116672A1 (en) * 2009-03-30 2010-10-14 株式会社日本総合研究所 Charge control device, battery pack, vehicle, and charge control method
WO2018095844A1 (en) * 2016-11-22 2018-05-31 HELLA GmbH & Co. KGaA Two-voltage battery
CN110271423A (en) * 2019-04-03 2019-09-24 苏州阿福机器人有限公司 The series-parallel brake energy recovery circuit and recovery method of electric vehicle
JP2020532260A (en) * 2017-08-17 2020-11-05 ケー2 エナジー ソリューションズ,インコーポレイテッド Cascade contactor drive system
WO2022172632A1 (en) * 2021-02-12 2022-08-18 工機ホールディングス株式会社 Electric device and battery pack

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538615A (en) * 2001-08-08 2004-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for implementing automatic charge state compensation
CN100385767C (en) * 2005-01-14 2008-04-30 杨福义 Multi-functional Ni-H and Ni-Ca battery charger
JP2010028970A (en) * 2008-07-18 2010-02-04 Panasonic Corp Motor bicycle and brake adjustment method therefor
WO2010116672A1 (en) * 2009-03-30 2010-10-14 株式会社日本総合研究所 Charge control device, battery pack, vehicle, and charge control method
JP2010239714A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Charge control device, battery pack, vehicle, and charge control method
US20120013303A1 (en) * 2009-03-30 2012-01-19 The Japan Research Institute, Limited Charge control apparatus, battery pack, and vehicle
US8264196B2 (en) 2009-03-30 2012-09-11 The Japan Research Institute, Limited Charge control apparatus, battery pack, and vehicle
WO2018095844A1 (en) * 2016-11-22 2018-05-31 HELLA GmbH & Co. KGaA Two-voltage battery
US10994632B2 (en) 2016-11-22 2021-05-04 HELLA GmbH & Co. KGaA Dual-voltage battery
JP2020532260A (en) * 2017-08-17 2020-11-05 ケー2 エナジー ソリューションズ,インコーポレイテッド Cascade contactor drive system
CN110271423A (en) * 2019-04-03 2019-09-24 苏州阿福机器人有限公司 The series-parallel brake energy recovery circuit and recovery method of electric vehicle
WO2022172632A1 (en) * 2021-02-12 2022-08-18 工機ホールディングス株式会社 Electric device and battery pack

Similar Documents

Publication Publication Date Title
JP6462027B2 (en) Energy storage system for electric or hybrid vehicles
CN100439196C (en) Bicycle electric power unit
US5283470A (en) Hybrid drive system with regeneration for motor vehicles and the like with a brushless motor
JP5029331B2 (en) Vehicle power supply
JP5865013B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
JP5619115B2 (en) Wheel propulsion system
CN101842957B (en) Power supply device
EP2812992B1 (en) Reconfigurable battery
JPH05328533A (en) Method and apparatus for controlling battery-powered vehicle
JP2001218306A (en) Power supply for hybrid vehicle
JP2001177914A (en) Power system for electric vehicle
JPH08322103A (en) Motor drive apparatus
US6777912B1 (en) Power source system for driving vehicle
JP3612572B2 (en) Motor drive power supply
JP5381360B2 (en) Power supply
JP2006187160A (en) Hybrid car
JP2002281609A (en) Combined secondary battery circuit and regenerative control system
JPH10155243A (en) Electric automobile
KR101663164B1 (en) regenerative current charge apparatus for electric bicycle and charging method of the same
JP2000354304A (en) Motor drive power converter
JPH07231511A (en) Power supply for electric automobile
JPH08251711A (en) Battery apparatus for hybrid automobile
JPH08126119A (en) Electric automobile
JPH0795701A (en) Rotary electric machine controller
JP7030599B2 (en) Battery system and electric vehicle control system