WO2022172319A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2022172319A1
WO2022172319A1 PCT/JP2021/004751 JP2021004751W WO2022172319A1 WO 2022172319 A1 WO2022172319 A1 WO 2022172319A1 JP 2021004751 W JP2021004751 W JP 2021004751W WO 2022172319 A1 WO2022172319 A1 WO 2022172319A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooler
chamber
air
switchable
Prior art date
Application number
PCT/JP2021/004751
Other languages
French (fr)
Japanese (ja)
Inventor
毅 山村
剛広 山田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022581042A priority Critical patent/JP7387037B2/en
Priority to PCT/JP2021/004751 priority patent/WO2022172319A1/en
Publication of WO2022172319A1 publication Critical patent/WO2022172319A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate

Definitions

  • the present disclosure relates to refrigerators equipped with temperature switching compartments.
  • heat transfer tubes are arranged perpendicular to the air flow, and a large number of heat transfer tubes are attached to the outer surface of the heat transfer tubes and arranged in parallel at predetermined intervals so that air flow paths are formed between them. Coolers having fins that
  • This type of cooler is used as an evaporator in a vapor compression refrigeration cycle and cools the air circulating inside the refrigerator. That is, in the cooler, heat is exchanged between the refrigerant flowing inside the heat transfer tubes and the air flowing outside the heat transfer tubes via the tube walls and fins of the heat transfer tubes, and the refrigerant evaporates to cool the air. be done.
  • frost build-up on the fins increases the air flow resistance and reduces the air volume, increases the thermal resistance on the air side of the fins, impedes heat exchange, and is a factor that reduces the cooling efficiency of the cooler. becomes. Therefore, some refrigerators equipped with this type of cooler are equipped with defrosting means such as an electric heater to melt and remove the frost adhering to the fins of the cooler.
  • Patent Document 1 proposes a method of reducing energy loss in heat exchange by providing three coolers with different evaporation temperatures in a refrigerator having a temperature switching compartment in addition to a refrigerating compartment and a freezing compartment. According to the method of Patent Literature 1, cold air in each of the refrigerator compartment, freezer compartment, and temperature switchable compartment is returned to each of the three coolers.
  • Refrigerators equipped with temperature switchable compartments are configured so that the set temperature of the temperature switchable compartment can be switched over a wide range from the freezing temperature range to the refrigerating temperature range.
  • the temperature difference between the air and the cooler surfaces with which it exchanges heat changes. For this reason, as disclosed in Patent Document 1, even if a method of returning cold air from each of the refrigerator, freezer, and temperature switchable storage compartments to each of the three coolers is adopted, setting the temperature switchable compartments Energy losses in heat exchange or temperature differences occur when the temperature is switched. Therefore, there is a problem that frost adheres to the cooler and the heat exchange efficiency is lowered.
  • the present disclosure has been made to solve the above problems, and aims to provide a refrigerator capable of suppressing a decrease in cooling efficiency.
  • a refrigerator has a temperature switchable chamber whose set temperature is switched in a temperature range from a refrigerating temperature range to a freezing temperature range lower than the refrigerating temperature range, and a plurality of fins to cool air.
  • a cooler chamber that houses a cooler and a blower that sends air cooled by the cooler to the temperature switching chamber; a plurality of temperature-switching chamber return ports that open at positions different from each other, are switched to any one based on the temperature range of the temperature-switching chamber, and flow the return air from the temperature-switching chamber; includes a notched fin provided with a notch as an area where frost accumulates, and the notched fin is a temperature switchable chamber return opening having a temperature range closest to the refrigerating temperature range among a plurality of temperature switchable chamber return ports. It is arranged at a position facing the return port of the temperature switching chamber through which air is led.
  • the notch fin facing the temperature switchable chamber return port through which the temperature switchable chamber return air having a temperature range closest to the refrigerating temperature range is guided is provided with a notch as a region where frost accumulates. Therefore, even if frost forms on the cooler, a decrease in cooling efficiency is suppressed.
  • FIG. 1 is a front view of a refrigerator according to Embodiment 1;
  • FIG. FIG. 2 is a schematic diagram of a plane taken along line II-II of FIG. 1; 1 is a schematic diagram of a refrigerating cycle of a refrigerator according to Embodiment 1;
  • FIG. 4 is a rear view schematically showing the structure of the cooler chamber of the refrigerator according to Embodiment 1.
  • FIG. 2 is a schematic diagram illustrating the inside of the cooler chamber of the refrigerator according to Embodiment 1.
  • FIG. 2 is a block diagram showing a control configuration of the refrigerator according to Embodiment 1;
  • FIG. 3 is a functional block diagram related to temperature control by the control device for the refrigerator according to Embodiment 1.
  • FIG. 3 is a diagram showing an example of a hardware configuration of a processing circuit of the refrigerator according to Embodiment 1;
  • FIG. FIG. 4 is a schematic diagram illustrating a refrigerator according to a modification of Embodiment 1;
  • FIG. 4 is a schematic diagram illustrating details of a cooler of a refrigerator according to a modification of Embodiment 1;
  • 7 is a graph for explaining the cooling efficiency of the cooler of the refrigerator according to the modified example of Embodiment 1.
  • FIG. FIG. 11 is a schematic diagram of the periphery of a temperature switching chamber return air passage of a refrigerator according to Embodiment 3;
  • FIG. 11 is a block diagram showing a control configuration of a refrigerator according to Embodiment 3;
  • Embodiment 1 BEST MODE FOR CARRYING OUT THE INVENTION
  • the same reference numerals are given to the same or corresponding parts, and the description thereof will be omitted or simplified as appropriate.
  • the shape, size, arrangement, etc. of the configuration described in each figure can be appropriately changed within the scope of the present invention.
  • the positional relationship (for example, vertical relationship) of each component in the specification is, in principle, when the refrigerator 1 is installed in a usable state.
  • the dimensional relationship and shape of each constituent member may differ from the actual ones.
  • FIG. 1 is a front view of refrigerator 1 according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram of a plane taken along line II-II of FIG.
  • the refrigerator 1 includes a body portion 2 in which a refrigerating chamber 3, a temperature switching chamber 4, and a freezing chamber 5 are provided.
  • the refrigerator compartment 3, the temperature switchable compartment 4, and the freezer compartment 5 are storage compartments for storing objects to be cooled such as food.
  • the refrigerator compartment 3 is provided on the uppermost stage of the main body portion 2 .
  • Freezer compartment 5 is provided at the bottom of main body 2 .
  • the temperature switchable chamber 4 is provided between the refrigerating chamber 3 and the freezing chamber 5 in the body portion 2 .
  • the main body 2 is a box-like body having heat insulating properties and is composed of an outer box, an inner box, and a heat insulating member.
  • the outer box is made of metal such as steel and has an opening in the front.
  • the inner box is made of resin and is fitted into the outer box through the opening of the outer box.
  • the interior of the inner box is divided into storage compartments by partition walls 17 and 18 having heat insulating properties. Specifically, the inside of the inner box is partitioned into the refrigerator compartment 3 and the temperature switching compartment 4 by a partition wall 17 .
  • the interior of the inner box is partitioned into the temperature switching compartment 4 and the freezer compartment 5 by a partition wall 18 .
  • the heat insulating member is made of urethane foam, for example, and fills the space between the outer box and the inner box.
  • a control device 90 is provided in the upper part of the back side of the refrigerator 1 . Control device 90 controls the operation of refrigerator 1 .
  • the refrigerator compartment 3, the temperature switching compartment 4, and the freezer compartment 5 are each provided with a door for opening and closing each storage compartment.
  • a refrigerating chamber door 13 which is a single door of a one-sided opening type, is provided so as to be freely opened and closed.
  • a drawer-type temperature switching chamber door 14 is provided in front of the temperature switching chamber 4 so as to be freely opened and closed back and forth.
  • a drawer-type freezer compartment door 15 is provided in front of the freezer compartment 5 so as to be freely opened and closed back and forth.
  • the drawer-type temperature switching compartment door 14 and the freezer compartment door 15 are arranged by sliding a frame fixed to the door main body against rails horizontally formed on the left and right inner wall surfaces of each storage compartment.
  • the refrigerating compartment door 13 may be a double-opening type or a double door type
  • the temperature switching compartment door 14 and the freezing compartment door 15 may be single-opening type single doors.
  • a shelf (not shown) is provided in the refrigerator compartment 3 for placing items to be cooled such as food.
  • the temperature switching chamber 4 is provided with a storage container (not shown) that can be pulled out to store an object to be cooled.
  • the storage container is supported by the frame of the temperature switching chamber door 14 and configured to slide in the front-rear direction in conjunction with the opening and closing of the temperature switching chamber door 14 .
  • the freezer chamber 5 is provided with a storage container (not shown) capable of storing an object to be cooled, which can be pulled out.
  • the refrigerator compartment 3 is set to the refrigerator temperature range.
  • the refrigeration temperature zone is, for example, a temperature zone of 3°C or higher and 5°C or lower.
  • Freezer compartment 5 is set to a freezing temperature range.
  • the freezing temperature zone is a temperature zone lower than the refrigerating temperature zone.
  • the freezing temperature zone is a temperature zone below 0°C, for example, a temperature zone between -20°C and -18°C.
  • the temperature switchable chamber 4 can switch the set temperature in the range from the refrigerating temperature range to the freezing temperature range.
  • the temperature range in the room is switched according to the application.
  • the temperature switchable chamber 4 is adjusted to three temperature zones, for example, a chilled temperature zone, a supercooled temperature zone, and a soft freezing temperature zone. Note that the temperature switchable chamber 4 may be adjusted to a temperature zone other than these three temperature zones.
  • the set temperature of the temperature switchable chamber 4 can be selected by the user of the refrigerator 1 . Therefore, the user can adjust the set temperature of the temperature switchable chamber 4 according to his or her lifestyle, thereby improving convenience for the user.
  • a chilled temperature range is a temperature range of 0°C or higher and less than 3°C, for example, a temperature range of around 1°C.
  • the temperature switchable chamber 4 can be used as a chilled chamber.
  • the method of using the temperature switchable chamber 4 as a chilled chamber is intended for users who lack the capacity of the refrigerating chamber 3 or users who consume a large amount of food on the day.
  • the supercooling temperature zone is a temperature zone that is lower than the refrigerating compartment 3 and that food is in a supercooled state.
  • a supercooled state means that even if the temperature of the food reaches the freezing point or below the freezing temperature, the food does not start to freeze and the food maintains a non-freezing state.
  • the supercooling temperature range is, for example, a temperature range of ⁇ 3° C. or more and less than 0° C., which is below the freezing point of food.
  • the temperature switchable chamber 4 can be used as a supercooled storage chamber for storing food in a supercooled state. In order to preserve food while maintaining its quality, it is desirable to maintain food at a temperature as low as possible without freezing.
  • the temperature switchable compartment 4 as a supercooled storage compartment, the user can store fresh food such as meat or fish or processed food with a short shelf life without freezing.
  • the soft freezing temperature range is a temperature range between -10°C and -5°C, for example, around -7°C.
  • the temperature switchable chamber 4 can be used as a soft freezing chamber. In the soft freezing temperature range, even if the food is stored for a long time, the surface does not become too hard, so the food can be easily crushed or broken. Therefore, the user can immediately use the food stored in the soft freezing chamber.
  • the method of using the temperature switchable chamber 4 as the soft freezing chamber is intended for users who simply use the freezing chamber.
  • An operation panel 6 is provided on the refrigerator compartment door 13 .
  • the operation panel 6 is composed of an operation section for setting the temperature in each storage compartment, and a display section for displaying temperature information such as the temperature in each storage compartment and the set temperature, or inventory information in the storage compartment.
  • the operation unit is configured by, for example, operation switches, etc.
  • the display unit is configured by, for example, a liquid crystal display.
  • the refrigerator 1 has a cooler 21 and a blower 22.
  • a cooler chamber 23 that accommodates a cooler 21 and a blower 22 is provided in the main body 2 .
  • Cooler 21 cools the air.
  • the air blower 22 sends the air cooled by the cooler 21 to each storage compartment, that is, the refrigerator compartment 3 , the temperature switching compartment 4 and the freezer compartment 5 .
  • the air cooled by the cooler 21 is appropriately referred to as "cold air”.
  • Cold air for cooling the inside of each storage compartment is generated by the cooler 21 and the generated cold air is sent to each storage compartment by the blower 22 .
  • Cooler chamber 23 is provided in a portion of main body 2 corresponding to the back side of refrigerator 1 . Inside the cooler chamber 23 , the blower 22 is provided above the cooler 21 .
  • FIG. 3 is a schematic diagram of refrigerating cycle 27 of refrigerator 1 according to Embodiment 1.
  • cooler 21 constitutes refrigeration cycle 27 of refrigerator 1 together with compressor 24 , condenser 25 and decompression device 26 .
  • a compressor 24, a condenser 25, a decompression device 26 and a cooler 21 are connected in this order by refrigerant pipes.
  • Solid arrows in FIG. 3 indicate directions in which the refrigerant circulates in the refrigeration cycle 27 .
  • the compressor 24 compresses the refrigerant into a high temperature and high pressure gas state.
  • Compressor 24 is arranged in machine room 28 provided below cooler room 23 on the back side of refrigerator 1, as shown in FIG.
  • the high-temperature and high-pressure refrigerant that has flowed out of the compressor 24 flows into the condenser 25 .
  • the condenser 25 dissipates the heat of the refrigerant flowing from the compressor 24 to condense the refrigerant.
  • the condenser 25 is composed of, for example, a fin-and-tube heat exchanger.
  • the refrigerant condensed by the condenser 25 flows into the decompression device 26 .
  • the decompression device 26 decompresses the refrigerant that has flowed in from the condenser 25 into a two-phase state of liquid and gas.
  • the decompression device 26 is composed of, for example, a capillary tube.
  • the two-phase refrigerant of liquid and gas that has flowed out of the decompression device 26 flows into the cooler 21 .
  • the cooler 21 evaporates the two-phase refrigerant decompressed by the decompression device 26, and cools the air around the cooler 21 by the heat absorption effect of the evaporation of the refrigerant. That is, cooler 21 functions as an evaporator in refrigerating cycle 27 .
  • the cooler 21 is composed of, for example, a fin-and-tube heat exchanger.
  • the refrigerant that has flowed out of cooler 21 returns to compressor 24 .
  • the refrigeration cycle 27 described above cools the air around the cooler 21 to generate cool air for cooling the inside of each storage chamber.
  • the main body 2 is provided with a cool air passage 29 for supplying the air cooled by the cooler 21 to each storage compartment.
  • Cold air passage 29 connects each of refrigerator compartment 3 , temperature switchable compartment 4 and freezer compartment 5 to cooler compartment 23 .
  • the air is caused to flow in an air flow direction D ⁇ b>1 upward from below the cooler 21 by driving the blower 22 .
  • the inlet of the cool air passage 29 communicates with the downstream side of the blower 22 in the cooler chamber 23 .
  • the cool air passage 29 branches from the inlet and connects to each storage compartment.
  • a refrigerating chamber damper 31 that opens and closes the outlet of the cool air duct 29 to the refrigerating chamber 3 is provided at the connecting portion between the cool air duct 29 and the refrigerating chamber 3 .
  • the degree of opening of refrigerating compartment damper 31 By changing the degree of opening of refrigerating compartment damper 31, the amount of cold air supplied to refrigerating compartment 3 can be adjusted.
  • a temperature switching chamber damper 32 that opens and closes the outlet of the cold air passage 29 to the temperature switching chamber 4 is provided at the connecting portion between the cold air passage 29 and the temperature switching chamber 4 .
  • a freezer compartment damper 33 that opens and closes the outlet of the cold airflow path 29 to the freezer compartment 5 is provided at the connecting portion between the cool airway 29 and the freezer compartment 5 .
  • the air volume of the cool air supplied to the freezer compartment 5 can be adjusted. Cool air generated by the cooler 21 is blown to the cool air path 29 by the blower 22 .
  • the cool air is supplied from the cold air passage 29 through the cold air passage 29 to the refrigerator chamber 3 through the cold air passage 29 , through the temperature switching chamber damper 32 to the temperature switching chamber 4 , and from the cold air passage 29 . It is supplied to the freezer compartment 5 through the freezer compartment damper 33 .
  • a refrigerator compartment temperature sensor 34 for detecting the temperature inside the refrigerator compartment 3 is provided in the refrigerator compartment 3 .
  • the refrigerator compartment temperature sensor 34 is provided, for example, on the inner wall surface on the back side of the refrigerator compartment 3 .
  • the temperature switchable chamber 4 is provided with a temperature switchable chamber temperature sensor 35 for detecting the temperature inside the temperature switchable chamber 4 .
  • the temperature switchable chamber temperature sensor 35 is provided, for example, on the inner wall surface of the temperature switchable chamber 4 on the back side.
  • a freezer compartment temperature sensor 36 for detecting the temperature in the freezer compartment 5 is provided in the freezer compartment 5 .
  • the freezer compartment temperature sensor 36 is provided, for example, on the inner wall surface on the back side of the freezer compartment 5 .
  • the refrigerator compartment temperature sensor 34, the temperature switching compartment temperature sensor 35, and the freezer compartment temperature sensor 36 are composed of, for example, thermistors.
  • the main body 2 is provided with a refrigerator compartment return air path 40 , a temperature switching chamber return air path 50 , and a freezer compartment return air path 60 .
  • the refrigerating compartment return air duct 40 is an air duct for guiding the air inside the refrigerating compartment 3 to the cooler compartment 23 .
  • the temperature switchable chamber return air passage 50 is an air passage for guiding the air inside the temperature switchable chamber 4 to the cooler chamber 23 .
  • the freezer compartment return air duct 60 is an air duct for guiding the air inside the freezer compartment 5 to the cooler compartment 23 .
  • the refrigerator compartment return air path 40, the temperature switching compartment return air path 50, and the freezer compartment return air path 60 are provided independently of each other.
  • the refrigerating compartment return air duct 40 has a refrigerating compartment return air duct entrance 42 that opens to the refrigerating compartment 3 .
  • the refrigerating-compartment return air passage inlet 42 is provided in the refrigerating chamber 3 away from the outlet of the cool air passage 29 .
  • a refrigerating compartment return air passage inlet 42 is provided on the inner wall surface of the refrigerating compartment 3 on the back side.
  • the refrigerating compartment return air passage 40 has a refrigerating compartment return port 41 that opens to the cooler compartment 23 .
  • the refrigerator compartment return port 41 is formed, for example, in a front wall 223 that is a wall on the front side of the cooler compartment 23 .
  • the refrigerating chamber return port 41 is provided upstream of the cooler 21 in the cooler chamber 23 with respect to the air flow direction D1.
  • the air in the refrigerator compartment 3 flows from the refrigerator compartment return air path entrance 42 through the refrigerator compartment return air path 40 and into the cooler chamber 23 from the refrigerator compartment return port 41 .
  • a plurality of temperature switching chamber return air passages 50 are provided, and at least two are provided.
  • the temperature switchable chamber return air passage 50 includes, for example, a first temperature switchable chamber return air passage 50A, a second temperature switchable chamber return air passage 50B, and a third temperature switchable chamber return air passage 50C.
  • the temperature switchable chamber return air passage 50 has a temperature switchable chamber return air passage inlet 52 that opens into the temperature switchable chamber 4 .
  • a plurality of temperature switchable chamber return air passages 50 are provided, but only one temperature switchable chamber return air passage inlet 52 is provided. This is because the temperature switchable chamber return air passage inlet 52 is configured in common for the plurality of temperature switchable chamber return air passages 50 .
  • the temperature switchable chamber return air passage 50 is configured to branch from one temperature switchable chamber return air passage inlet 52 to the cooler chamber 23 and connect to each of the temperature switchable chamber return ports 51 . ing.
  • the temperature switchable chamber return air passage inlet 52 is provided on the inner wall surface of the temperature switchable chamber 4 on the back side.
  • the temperature switchable chamber return air passage inlet 52 is provided in the temperature switchable chamber 4 apart from the outlet of the cold air passage 29 .
  • the air in the temperature switchable chamber 4 flows from the temperature switchable chamber return air passage inlet 52 through any one of the plurality of temperature switchable chamber return air passages 50 into the cooler chamber 23 from the temperature switchable chamber return port 51 .
  • the temperature switchable chamber return air passages 50 may each have an independent temperature switchable chamber return air passage inlet 52, and each temperature switchable chamber return air passage 50 may be configured independently of each other.
  • the temperature switchable chamber return air passage 50 has a temperature switchable chamber return port 51 that opens to the front wall 223 of the cooler chamber 23 .
  • the first temperature switchable chamber return air passage 50A has a first temperature switchable chamber return port 51A
  • the second temperature switchable chamber return air passage 50B has a second temperature switchable chamber return port 51B
  • a third temperature switchable chamber return port 51B is a third temperature switching chamber return port 51C.
  • Each temperature switching chamber return port 51 is provided in the cooler chamber 23 at different positions facing the cooler 21 with respect to the air flow direction D1.
  • 51 A of 1st temperature switching chamber return ports are arrange
  • a second temperature switchable chamber return port 51B is arranged upstream of the first temperature switchable chamber return port 51A.
  • a third temperature switchable chamber return port 51C is arranged upstream of the second temperature switchable chamber return port 51B. All of the first temperature switchable chamber return port 51A, the second temperature switchable chamber return port 51B, and the third temperature switchable chamber return port 51C are located downstream of the refrigerating chamber return port 41 with respect to the air flow direction D1 and on the below-described refrigerating chamber return port. It is arranged upstream of the chamber return port 61 . That is, each temperature switchable chamber return port 51 is formed from the upstream side toward the downstream side in the air flow direction D1.
  • the freezer compartment return air duct 60 has a freezer compartment return air duct inlet 62 that opens to the freezer compartment 5 .
  • the freezer compartment return air passage inlet 62 is provided in the freezer compartment 5 away from the outlet of the cool air passage 29 .
  • the freezer compartment return air passage entrance 62 may be provided on the inner wall surface on the back side of the freezer compartment 5 .
  • the freezer compartment return air passage 60 has a freezer compartment return port 61 that opens to the front wall 223 of the cooler compartment 23 .
  • the freezer compartment return port 61 is provided at a position facing the cooler 21 in the cooler chamber 23 on the downstream side of the refrigerator compartment return port 41 with respect to the air flow direction D ⁇ b>1 .
  • the freezer compartment return port 61 is provided downstream of the refrigerator compartment return port 41 in the air flow direction D1 in the cooler chamber 23 and further downstream of the first temperature switching chamber return port 51A.
  • the air in the freezer compartment 5 flows from the freezer compartment return air path inlet 62 through the freezer compartment return air path 60 and into the cooler chamber 23 from the freezer compartment return port 61 .
  • FIG. 4 is a rear view schematically showing the structure of the cooler chamber 23 of the refrigerator 1 according to Embodiment 1.
  • FIG. The arrangement of the refrigerator compartment return port 41, the temperature switching compartment return port 51, and the freezer compartment return port 61 in the cooler chamber 23 will be described in detail with reference to FIG.
  • the cooler 21 arranged in the cooler chamber 23 includes a plurality of heat transfer tubes 71 provided with a plurality of fins 211, a plurality of U-shaped connecting tubes 72, have The heat transfer tubes 71 are arranged vertically. For example, eight heat transfer tubes 71 are arranged in the vertical direction. Two vertically adjacent heat transfer tubes 71 are connected at one end in the left-right direction by a connecting tube 72 . Thereby, a continuous refrigerant pipe is formed. The refrigerant flowing through the refrigerant pipes of the cooler 21 flows from the cooler inlet side 73 connected to the lowermost heat transfer pipe 71 to the cooler outlet side 74 connected to the uppermost heat transfer pipe 71 .
  • the lowest heat transfer tube 71 is arranged on the most upstream side among the plurality of heat transfer tubes 71 with respect to the air flow direction D1.
  • the heat transfer tube 71 in the uppermost stage is arranged on the most downstream side among the plurality of heat transfer tubes 71 with respect to the air flow direction D1. Therefore, the low-temperature gas-liquid two-phase refrigerant flowing from the pressure reducing device 26 flows from the cooler inlet side 73 through the heat transfer tubes 71 on the most upstream side in the air flow direction D1, and gradually flows downstream. heat transfer tube 71 and reaches the cooler outlet side 74 .
  • the two-phase refrigerant flowing through the cooler 21 exchanges heat with the air flowing outside the heat transfer tubes 71 as it proceeds from the cooler inlet side 73 to the cooler outlet side 74 .
  • the two-phase refrigerant flows through the heat transfer tubes 71 while the liquid phase in the refrigerant evaporates.
  • the temperature of the coolant at the cooler inlet side 73 is lower than the temperature of the coolant at the cooler outlet side 74 .
  • cooler chamber bottom region 75 cooler lower region 76, cooler middle lower region 77, cooler middle upper region 78, and cooler upper region 79.
  • the lowermost region 75 of the cooler chamber is a region located below the cooler 21 in the cooler chamber 23, and is a region located on the most upstream side in the cooler chamber 23 with respect to the air flow direction D1.
  • the lower cooler region 76 , the middle lower cooler region 77 , the middle upper cooler region 78 , and the upper cooler region 79 are all regions that overlap the cooler 21 in the cooler chamber 23 .
  • a cooler lower region 76 is positioned at the lowest position, a lower middle cooler region 77 is positioned above the lower cooler region 76, and an upper middle cooler region 78 is positioned above the lower middle cooler region 77. .
  • a cooler top region 79 is the uppermost of these four regions. With respect to the air flow direction D1, a lower cooler region 76, a lower middle cooler region 77, an upper middle cooler region 78, and an upper cooler region 79 are arranged in this order from the upstream side.
  • the refrigerating chamber return port 41 is provided, for example, in the lowermost region 75 of the cooler chamber as a position on the upstream side of the cooler 21 with respect to the air flow direction D1 in the cooler chamber 23 .
  • the freezer compartment return port 61 is provided, for example, in the cooler upper region 79 as a position facing the cooler 21 downstream of the refrigerator compartment return port 41 with respect to the air flow direction D1 in the cooler chamber 23 . be done.
  • a plurality of temperature switching chamber return ports 51 are provided in the cooler chamber 23 at positions opposite to the cooler 21 and different from each other with respect to the air flow direction D1. They are provided respectively in the upper region 78 of the vessel.
  • the first temperature switchable chamber return port 51A is provided in the cooler middle upper region 78
  • the second temperature switchable chamber return port 51B is provided in the cooler middle lower region 77
  • the third temperature switchable chamber return port 51B is provided in the cooler middle upper region 77.
  • a return port 51 ⁇ /b>C is provided in the cooler lower region 76 .
  • the "heat exchange distance” which is the distance for heat exchange between the air returning from each storage compartment to the cooler compartment 23 flowing into the cooler 21 and flowing out, changes.
  • the heat transfer area where the air returning from the room and the cooler 21 exchange heat changes.
  • the temperature inside the refrigerator 1 has a relationship of temperature inside the refrigerator compartment 3>temperature inside the temperature switchable compartment 4>temperature inside the freezer compartment 5.
  • FIG. For this reason, it is necessary to cool the "refrigerating chamber return air”, which is the air returning from the refrigerating chamber 3 to the cooler chamber 23, the most, followed by the "temperature switching chamber”, which is the air returning from the temperature switching chamber 4 to the cooler chamber 23. It is necessary to cool a lot of "return air”. Then, the amount of cooling of the "freezer-compartment return air", which is the air returning from the freezer compartment 5 to the cooler compartment 23, is considered to be minimized.
  • the refrigerating chamber return air passage 40 By providing the refrigerating chamber return port 41 of the refrigerating chamber return air passage 40 in the cooler chamber lowermost region 75, the refrigerating chamber return air flows from the inlet to the outlet of the cooler 21, that is, the cooler 21 in the air flow direction D1. from its upstream end to its downstream end. Therefore, the heat exchange distance between the refrigerating compartment return air and the cooler 21 becomes the longest, and the heat transfer area with the cooler 21 also becomes the largest.
  • the freezer-compartment return port 61 of the freezer-compartment return air passage 60 in the cooler upper region 79, the freezer-compartment return air is distributed between the upstream end of the cooler 21 and the downstream end of the cooler 21 in the air flow direction D1. It passes from the part between the ends to the downstream end. Therefore, the heat exchange distance between the freezer compartment return air and the cooler 21 becomes relatively short, and the heat transfer area with the cooler 21 can be suppressed. This prevents the freezer compartment return air from being excessively cooled by the cooler 21 , and the heat load of the cooler 21 is reduced by performing the minimum necessary heat exchange.
  • the temperature switchable chamber return port 51 of the temperature switchable chamber return air passage 50 is provided between the cooler lower region 76 and the cooler middle upper region 78 . Therefore, the heat exchange distance between the temperature switchable compartment return air and the cooler 21 is shorter than the heat exchange distance between the refrigerating compartment return air and the cooler 21, and is longer than the heat exchange distance between the freezer compartment return air and the cooler 21. become longer. As a result, the temperature switchable chamber return air can be cooled with a cooling amount between the cooling amount of the refrigerating compartment return air and the cooling amount of the freezer compartment return air in the cooler 21 . By optimizing and minimizing the heat exchange amount in this manner, the temperature difference between the cooler 21 and the air can be optimized, and frost formation on the cooler 21 can be suppressed.
  • FIG. 5 is a schematic diagram explaining the inside of the cooler chamber 23 of the refrigerator 1 according to Embodiment 1.
  • each of the plurality of fins 211 attached to the cooler 21 of the cooler chamber 23 has a rectangular parallelepiped plate shape in cross section in the depth direction of the cooler chamber 23 .
  • Each of the plurality of fins 211 is arranged such that the longitudinal direction of the section in the depth direction is along the depth direction of the refrigerator 1 .
  • Each of the plurality of fins 211 is arranged such that the lateral direction of the cross section in the depth direction is along the height direction of the refrigerator 1 .
  • a plurality of fins 211 are stacked in the height direction of refrigerator 1 .
  • the plurality of fins 211 face a front wall 223 , which is a wall on the front side of the cooler chamber 23 , in a state where the cooler 21 is housed in the cooler chamber 23 .
  • the plurality of fins 211 are arranged so as to face the temperature switching chamber return port 51 formed in the front wall 223 of the cooler chamber 23 . Further, the plurality of fins 211 are arranged so as to partially face the freezer compartment return port 61 formed in the front wall 223 of the cooler compartment 23 . Further, the rear surfaces of the plurality of fins 211 face a rear wall 224 that is the rear wall of the cooler chamber 23 when the cooler 21 is accommodated in the cooler chamber 23 .
  • a plurality of fins 211 attached to the cooler 21 include notched fins 213 and smooth fins 214 .
  • the notched fin 213 is arranged at a position facing the third temperature switching chamber return port 51C.
  • the third temperature switchable chamber return port 51C is located on the most upstream side of the plurality of temperature switchable chamber return ports 51 in the air flow direction D1.
  • the notched fin 213 has a notched surface which is a cross section obtained by cutting out the notched portion 212a of the rectangular parallelepiped corner.
  • the notched fin 213 has a shape in which a notched portion 212a, which is a corner portion extending to the lower surface, is cut from a portion of the lower portion of the front surface, which is the surface facing the front wall 223.
  • the notched fin 213 has a trapezoidal shape in the cross section of the cooler chamber 23 in the depth direction.
  • the smooth fin 214 is arranged at a position facing the first temperature switching chamber return port 51A.
  • the first temperature switchable chamber return port 51A is positioned on the most downstream side of the plurality of temperature switchable chamber return ports 51 in the air flow direction D1.
  • the smooth fin 214 has a parallelogram shape in which the cutout portion 212a is not cut in the cross section of the cooler chamber 23 in the depth direction.
  • the area of the smooth fins 214 is larger than that of the notched fins 213 in the cross section of the cooler chamber 23 in the depth direction.
  • the plurality of fins 211 includes two types of fins 211 having different shapes and different areas in the cross section of the cooler chamber 23 in the depth direction.
  • it faces the second temperature switchable chamber return port 51B located upstream of the first temperature switchable chamber return port 51A and downstream of the third temperature switchable chamber return port 51C.
  • the notched fin 213 may be arranged at the position where the cutout fin 213 is formed.
  • a smooth fin 214 is arranged at a position downstream of the first temperature switchable chamber return port 51A in the air flow direction D1 and facing the second temperature switchable chamber return port 51B located at the most downstream position. It is good if it is.
  • the refrigerator 1 is provided with air passage switching means 80, as shown in FIGS.
  • the air path switching means 80 switches the air path through which the air in the temperature switchable chamber 4 returns to the cooler chamber 23 to any one of the plurality of temperature switchable chamber return air paths 50 .
  • the air passage switching means 80 is composed of, for example, a damper as a switching mechanism for opening and closing the temperature switching chamber return air passage 50 .
  • the air passage switching means 80 has a first temperature switching chamber return air passage damper 81A, a second temperature switching chamber return air passage damper 81B, and a third temperature switching chamber return air passage damper 81C. is doing.
  • the first temperature switchable chamber return air passage damper 81A is provided in the first temperature switchable chamber return air passage 50A, and is a damper that opens and closes the first temperature switchable chamber return port 51A of the first temperature switchable chamber return air passage 50A. be.
  • the second temperature switchable chamber return air passage damper 81B is provided in the second temperature switchable chamber return air passage 50B, and is a damper that opens and closes the second temperature switchable chamber return port 51B of the second temperature switchable chamber return air passage 50B. be.
  • the third temperature switchable chamber return air passage damper 81C is provided in the third temperature switchable chamber return air passage 50C, and is a damper that opens and closes the third temperature switchable chamber return port 51C of the third temperature switchable chamber return air passage 50C. be.
  • the air passage switching means 80 opens any one of the first temperature switchable chamber return port 51A, the second temperature switchable chamber return port 51B, and the third temperature switchable chamber return port 51C, and closes the remaining two. , it is possible to switch to any one of the plurality of temperature switchable chamber return air paths 50 .
  • FIG. 6 is a block diagram showing the control configuration of refrigerator 1 according to Embodiment 1.
  • the control device 90 includes the operation panel 6, the blower 22, the compressor 24, the refrigerator damper 31, the temperature switchable damper 32, the freezer damper 33, the refrigerator temperature sensor 34, the temperature switchable chamber temperature sensor. 35, the freezer compartment temperature sensor 36, the first temperature switching compartment return air passage damper 81A, the second temperature switching compartment return air passage damper 81B, and the third temperature switching chamber return air passage damper 81C, respectively, are electrically connected, for example, by signal lines. It is connected to the.
  • Control device 90 receives detection signals from each of refrigerator compartment temperature sensor 34 , temperature switching compartment temperature sensor 35 and freezer compartment temperature sensor 36 and an operation signal from the operation section of operation panel 6 .
  • the control device 90 performs compression in accordance with a pre-stored operation program so that the interiors of the refrigerator compartment 3, the temperature switchable compartment 4, and the freezer compartment 5 are maintained at the respective set temperatures based on the respective input signals. It controls the output of the air blower 24, the amount of air blown by the air blower 22, and the opening of each damper.
  • the control device 90 outputs a display signal regarding the temperature of each storage chamber to the display section of the operation panel 6 based on each input signal.
  • FIG. 7 is a functional block diagram related to temperature control by the control device 90 of the refrigerator 1 according to Embodiment 1.
  • the control device 90 has a temperature setting section 91 , a temperature comparison section 92 , a device control section 93 and a storage section 94 .
  • the storage unit 94 stores various data and operation programs used for temperature control.
  • the temperature setting unit 91 sets the preset temperatures of the refrigerator compartment 3 , the temperature switching compartment 4 and the freezer compartment 5 according to the operation signal from the operation part of the operation panel 6 .
  • the temperature comparison unit 92 compares the set temperature of each storage compartment set by the temperature setting unit 91 with the room temperature detected by the temperature sensor provided in each storage compartment, and outputs the comparison result to the equipment control unit 93. Output.
  • a temperature comparison unit 92 compares the set temperature of the refrigerator compartment 3 with the room temperature detected by the refrigerator compartment temperature sensor 34 . Also, the temperature comparison unit 92 compares the set temperature of the temperature switchable chamber 4 with the indoor temperature detected by the temperature switchable chamber temperature sensor 35 .
  • the temperature comparison unit 92 compares the set temperature of the freezer compartment 5 with the room temperature detected by the freezer compartment temperature sensor 36 . Based on the result of the comparison by the temperature comparing unit 92, the device control unit 93 controls the compressor 24, the blower 22, and the cold storage damper 31 so that the room temperature detected by the temperature sensor provided in each storage room becomes the set temperature. , the temperature switching compartment damper 32 and the freezer compartment damper 33 .
  • the control device 90 controls the air passage switching means 80 to switch the temperature switchable chamber return air passage 50 based on the reference temperature of the temperature switchable chamber 4 .
  • the reference temperature of the temperature switchable chamber 4 As the reference temperature of the temperature switchable chamber 4, the set temperature of the temperature switchable chamber 4 set by the temperature setting unit 91 is used, and the temperature switchable chamber return air passage 50 to be switched is selected based on this set temperature.
  • the storage unit 94 for example, data in which the set temperature of the temperature switchable chamber 4 and the temperature switchable chamber return air passage 50 suitable for the set temperature are associated is stored in advance.
  • the equipment control section 93 refers to the set temperature of the temperature switchable chamber 4 set by the temperature setting section 91 and the data stored in the storage section 94, and selects the temperature switchable chamber return air passage 50 to be switched.
  • the equipment control section 93 controls the first temperature switchable chamber return air passage damper 81A, the second temperature switchable chamber return air passage damper 81B, and the second temperature switchable chamber return air passage damper 81B of the air passage switching means 80 so as to switch to the selected temperature switchable chamber return air passage 50. Controls the 3-temperature switching chamber return air passage damper 81C.
  • the set temperature of the temperature switchable chamber 4 and the temperature switchable chamber return air passage 50 are associated, for example, as follows.
  • Each of the plurality of temperature switchable chamber return air passages 50 has a temperature switchable chamber return port 51 provided at a different position with respect to the air flow direction D1.
  • the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 positioned further upstream in the air flow direction D1 is associated.
  • the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 positioned further downstream in the air flow direction D1 is associated.
  • the heat exchange distance in the cooler 21 is sufficient. to provide the necessary cooling.
  • the air returning from the temperature switchable chamber 4 is sent to the cooler from the temperature switchable chamber return port 51 located on the downstream side with respect to the air flow direction D1. 21.
  • the heat exchange distance in the cooler 21 does not extend more than necessary, and the minimum necessary heat exchange distance can be secured, and the heat load of the cooler 21 can be reduced.
  • the temperature switchable chamber 4 can be adjusted to three temperature ranges, and is provided with a temperature switchable chamber return air passage 50 through which air in three temperature ranges circulates.
  • a temperature switchable chamber return air passage 50 through which air in three temperature ranges circulates.
  • the third temperature switchable chamber having the third temperature switchable chamber return port 51C disposed on the most upstream side with respect to the air flow direction D1 It is set so that the return air path 50C is selected.
  • the temperature switchable chamber return air passage 50 is arranged upstream of the third temperature switchable chamber return port 51C with respect to the air flow direction D1.
  • the second temperature-switchable chamber return air passage 50B having the second temperature-switchable chamber return port 51B is selected.
  • the temperature switchable chamber return air passage 50 is set to the first temperature switchable chamber which is arranged on the most downstream side with respect to the air flow direction D1. It is set to select the first temperature switchable chamber return air passage 50A having the return port 51A.
  • the heat exchange distance the heat exchange distance between the temperature switchable chamber return air and the cooler 21 is the longest when the temperature switchable chamber 4 is set in the chilled temperature zone, and the temperature switchable chamber 4 is set in the supercooled temperature zone.
  • the heat exchange distance between the return air from the temperature switching chamber and the cooler 21 is the next longest. Then, the heat exchange distance between the return air from the temperature switchable chamber and the cooler 21 is the shortest when the temperature switchable chamber 4 is set in the soft freezing temperature range.
  • the control device 90 switches between the three temperature-switching chamber return air paths 50. For example, when the set temperature of the temperature switchable chamber 4 is in the first temperature range included in the chilled temperature range, the control device 90 causes the air passage switching means 80 to set the third temperature among the plurality of temperature switchable chamber return air passages 50 . Control is performed to switch to the third temperature switchable chamber return air passage 50C having the switchable chamber return port 51C. Further, when the set temperature of the temperature switchable chamber 4 is in the second temperature range included in the supercooled temperature range lower than the first temperature range, the control device 90 causes the air path switching means 80 to set a plurality of temperature switchable chamber return temperature ranges. Control is performed to switch the air passage 50 to the second temperature switchable chamber return air passage 50B. The second temperature switchable chamber return air passage 50B has a second temperature switchable chamber return port 51B located downstream of the third temperature switchable chamber return port 51C in the air flow direction D1.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the processing circuit of the refrigerator 1 according to Embodiment 1.
  • the functions of the control device 90 are realized, for example, as a processing circuit configured in hardware.
  • the functions of the control device 90 are implemented, for example, by the processor 95 executing programs stored in the memory 96 .
  • the functions of the control device 90 may be realized by cooperation of a plurality of processors and a plurality of memories.
  • part of the functions of the control device 90 may be implemented as an electronic circuit, and other parts may be realized using the processor 95 and the memory 96 .
  • the refrigerator 1 is configured so that the set temperature of the air from the temperature switchable chamber 4 can be switched over a wide range from the refrigerating temperature range to the freezing temperature range.
  • the air path through which the air from the temperature switchable chamber 4 returns to the cooler chamber 23 is selected from among the temperature switchable chamber return ports 51 that open at different positions with respect to the air flow direction D1 based on the set temperature of the temperature switchable chamber 4. is switched to the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 at a position. Accordingly, the distance and heat transfer area for heat exchange between the air returning from the temperature switchable chamber 4 to the cooler chamber 23 and the cooler 21 can be appropriately secured according to the set temperature of the temperature switchable chamber 4 .
  • the temperature switchable chamber return ports 51 of the plurality of temperature switchable chamber return air passages 50 are all arranged downstream of the refrigerator chamber return port 41 and upstream of the freezer chamber return port 61 with respect to the air flow direction D1. ing.
  • the distance for heat exchange between the air returning from the temperature switching chamber 4 to the cooler chamber 23 and the cooler 21 is set to and the distance for heat exchange between the air returning from the freezer compartment 5 to the cooler compartment 23 and the cooler 21 .
  • the air returning from the temperature switchable chamber 4 to the cooler chamber 23 and the cooler 21 exchange heat according to the temperature range from the refrigeration temperature range to the freezer temperature range that can be set in the temperature switchable chamber 4 . You can keep your distance.
  • the temperature switchable chamber 4 has a chilled temperature range of 0°C or more and less than 3°C, a supercooled temperature range of -3°C or more and less than 0°C, and a soft freezing temperature range of -10°C or more and -5°C or less. Switchable between at least three temperature zones.
  • the temperature switchable chamber 4 can be used as a chilled chamber, a supercooled storage chamber, or a soft freezing chamber.
  • a chilled room it is possible to make up for the capacity shortage of the refrigerating room 3, and when it is used as a supercooling storage room, it is possible to store perishable foods while maintaining their quality.
  • use as a soft freezing chamber allows food to be frozen and stored in a manner ready for immediate use. Therefore, convenience for the user of the refrigerator 1 can be improved.
  • Refrigerating chamber return air from the refrigerating chamber 3 , temperature switching chamber return air from the temperature switching chamber 4 , and freezer chamber return air from the freezing chamber 5 flow into the cooler chamber 23 .
  • the air returned to the refrigeration compartment is air in the refrigeration temperature range.
  • the refrigerating chamber return air flows into the refrigerating chamber 23 from the refrigerating chamber return port 41 formed in the front wall 223 of the cooler chamber 23 and reaches the most upstream position of the cooler 21 .
  • the air that has flowed in from the refrigerator compartment return port 41 moves upward in the cooler compartment 23 and reaches the most upstream side of the cooler 21 to exchange heat with the cooler 21 .
  • the temperature switchable chamber return air is air in a temperature range corresponding to the set temperature of the temperature switchable chamber 4 set from the refrigerating temperature range to the freezing temperature range.
  • the return air from the temperature switchable chamber is supplied to a plurality of temperature switchable chamber return ports formed in the front wall 223 of the cooler chamber 23 by switching the temperature switchable chamber return air passage 50 to any one by the air passage switching means 80 . 51 into cooler chamber 23 .
  • the plurality of temperature switchable chamber return ports 51 guide the temperature switchable chamber return air having a temperature range closest to the refrigerating temperature range on the upstream side in the air flow direction D1, and the temperature range is further reduced toward the downstream side in the air flow direction D1.
  • the temperature switchable chamber return air in a temperature range close to the temperature zone is introduced.
  • the temperature switchable chamber return air flows from the third temperature switchable chamber return port 51C formed in the front wall 223 of the cooler chamber 23 to the cooler. It flows into chamber 23 .
  • the temperature switchable chamber 4 is set to the temperature range closest to the refrigerating temperature range, it is set to the chilled temperature range, for example.
  • the temperature switchable chamber return air from the third temperature switchable chamber return port 51C is the temperature switchable chamber return air in the relatively highest temperature range.
  • the third temperature switchable chamber return port 51C is arranged downstream of the refrigerating chamber return port 41 in the air flow direction D1 and most upstream of the plurality of temperature switchable chamber return ports 51 .
  • the air that has flowed in from the third temperature switchable chamber return port 51C reaches the notched fin 213 attached at a position facing the third temperature switchable chamber return port 51C, and passes through the notched fin 213 to the cooler 21 and heat. make an exchange.
  • the temperature switchable chamber return air flows into the cooler chamber 23 from the second temperature switchable chamber return port 51B.
  • the temperature switchable chamber 4 is set in the intermediate temperature range between the refrigerating temperature range and the freezing temperature range, for example, it is set in the supercooling temperature range.
  • the second temperature switchable chamber return port 51B is located downstream of the third temperature switchable chamber return port 51C and upstream of the first temperature switchable chamber return port 51A in the air flow direction D1. mouth 51; The air that has flowed in from the second temperature switchable chamber return port 51B exchanges heat with the cooler 21 via the notched fins 213 attached to the position facing the second temperature switchable chamber return port 51B.
  • the temperature switchable chamber return air flows into the cooler chamber 23 from the first temperature switchable chamber return port 51A.
  • the temperature switchable chamber return air from the first temperature switchable chamber return port 51A is the temperature switchable chamber return air in the lowest temperature range.
  • the first temperature switchable chamber return port 51A is downstream of the second temperature switchable chamber return port 51B in the air flow direction D1, and is the most downstream of the plurality of temperature switchable chamber return ports 51 in the air flow direction D1. It is the temperature switching chamber return port 51 arranged on the side.
  • the air that has flowed in from the first temperature switchable chamber return port 51A exchanges heat with the cooler 21 via smooth fins 214 attached to positions facing the first temperature switchable chamber return port 51A.
  • the freezer compartment return air is in the freezing temperature range.
  • the freezer compartment return air flows into the cooler compartment 23 from the freezer compartment return port 61 formed in the front wall 223 of the cooler compartment 23 and located at the most downstream side of the cooler 21 in the air flow direction D1.
  • the air flowing in from the freezer compartment return port 61 reaches the smooth fins 214 provided at a position facing the freezer compartment return port 61 and exchanges heat with the cooler 21 via the smooth fins 214 .
  • the air led from the refrigerator compartment return port 41, the third temperature switchable chamber return port 51C, and the second temperature switchable chamber return port 51B has a relatively high temperature range among the temperature switchable chamber return air. .
  • the air led from the first temperature switchable chamber return port 51A and the freezer compartment return port 61 has a relatively low temperature range among the temperature switchable chamber return air.
  • the temperature difference between the air in the relatively high range and the cooler 21 that exchanges heat with this air is the temperature difference between the air in the relatively low range and the heat from the air. Since the temperature difference is greater than that of the cooler 21 to be replaced, frost is likely to occur.
  • notches are provided at positions of the cooler 21 facing the refrigerating chamber return port 41, the third temperature switchable chamber return port 51C, and the second temperature switchable chamber return port 51B as areas where frost accumulates.
  • a notched fin 213 is attached. Frost generated by heat exchange between the return air and the cooler 21 adheres to the notched surfaces of the notched fins 213 and can accumulate on the notched surfaces of the notched fins 213 . As a result, the frost caused by the heat exchange between the return air and the cooler 21 does not hinder the circulation of the air flowing through the cooler 21, and the decrease in cooling efficiency due to the increase in air flow resistance can be suppressed.
  • the air having a temperature in a relatively low range has a temperature difference between the air having a temperature in a relatively high range and the cooler 21 that exchanges heat with this air. It is smaller than the temperature difference between and frost.
  • air having a relatively low temperature range passes through the cooler 21 without being frosted even if it is cooled. Therefore, smooth fins 214 that are not provided with areas where frost accumulates are attached to positions facing the first temperature switching chamber return port 51A and the freezer compartment return port 61 .
  • a smooth fin 214 that does not have a cutout portion 212a is provided at a position where the frost amount is smaller than that at other positions, because heat exchange is not hindered by frost formation. As a result, a region effective for heat exchange is maintained in the cooler 21, and a decrease in heat exchange efficiency is suppressed.
  • the notched fins 213 are arranged at positions facing the third temperature switchable chamber return port 51C and the second temperature switchable chamber return port 51B through which the return air from the temperature switchable chamber 4 whose temperature is maintained in the plus temperature range is led.
  • the temperature switchable chamber 4 is maintained in a positive temperature range, that is, when the refrigerating temperature range is closer than the freezing temperature range, the temperature of the switching chamber return air is relatively high, and this air and the cooling
  • the temperature difference with the vessel 21 increases. Since the notched fins 213 are provided at positions where the temperature difference is relatively large and more frost occurs, the frost generated in the cooler 21 may adhere to the notched surfaces of the notched fins 213 . can.
  • by providing the notched surface even if frost adheres to the notched fins 213 and grows, blocking between the notched fins 213 is reduced, and air flow resistance increases. is suppressed.
  • Smooth fins are provided at positions facing the first temperature switchable chamber return port 51A and the freezer chamber return port 61 through which the air from the temperature switchable chamber 4, which is kept at a temperature closer to the freezing temperature range than the refrigerating temperature range, is guided. 214 is attached.
  • the temperature switchable chamber 4 is kept at a temperature closer to the freezing temperature range than the refrigerating temperature range, the temperature difference between the air led from the temperature switching chamber 4 and the cooler 21 is reduced. This is because when the temperature difference is reduced, the frost amount is also reduced.
  • the notched fins 213 or the smooth fins 214 to the cooler 21 according to the temperature of the air guided to the cooler 21, the reduction in cooling efficiency due to frost formation can be efficiently suppressed.
  • FIG. 9 is a schematic diagram illustrating refrigerator 1 according to a modification of the first embodiment. As shown in FIG. 9 , refrigerator 1 according to Modification 1 differs from Embodiment 1 in the configurations of cooler 21 and cooler chamber 23 .
  • the cooler 21 is provided with a first notched fin 213a, a second notched fin 213b, and a third notched fin 213c as the plurality of notched fins 213.
  • the first notched fin 213a, the second notched fin 213b, and the third notched fin 213c have different shapes in cross sections of the cooler chamber 23 in the depth direction.
  • the first notched fin 213a is arranged on the most downstream side in the air flow direction D1.
  • the third notched fin 213c is arranged on the most upstream side in the air flow direction D1.
  • the second notched fin 213b is arranged upstream of the first notched fin 213a and downstream of the third notched fin 213c.
  • the first notched fin 213a has a shape in which a corner notched portion 212a extending from a portion of the lower portion of the front surface, which is the surface facing the front wall 223, to a portion of the lower surface is cut.
  • the second notched fin 213b has a corner notched portion 212b extending from a part of the lower front surface facing the front wall 223 to a part of the lower surface. It has a truncated shape.
  • the cutout portion 212b of the second cutout fin 213b has a larger area than the cutout portion 212a of the first cutout fin 213a in the cross section of the cooler chamber 23 in the depth direction.
  • the third notched fin 213c has a shape in which a corner notched portion 212c formed by the lower portion of the surface facing the temperature switching chamber return port 51 and the entire lower surface is cut off. That is, the area of the cutout portion 212c of the third cutout fin 213c arranged on the most upstream side is the cutout portion 212a of the first cutout fin 213a on the downstream side of the third cutout fin 213c and the cutout portion 212a of the second cutout fin 213a on the downstream side. It is larger than the area of the notched portion 212b of the notched fin 213b.
  • the first notched fin 213a, the second notched fin 213b, and the third notched fin 213c have different areas in cross sections of the cooler chamber 23 in the depth direction.
  • the third notched fin 213c on the upstream side in the air flow direction D1 has a shape obtained by cutting out the notched portion 212c having the largest area in the depth direction of the cooler chamber 23.
  • the notched portion 212b facing downstream and the notched portion 212a and the depth direction area of the cooler chamber 23 are reduced. It is a shape that That is, the first cut-out fin 213a, the second cut-out fin 213b, and the third cut-out fin 213c become cooler in the cooler chamber 23 as the temperature difference between the returning air from the switching chamber and the cooler 21 decreases. It has a shape in which the area of the cut portion in the depth direction decreases.
  • the bypass distance which is the distance of the first clearance d1
  • the distance of the first clearance d1 is the distance between the front wall 223 of the cooler chamber 23 and the front side of the cooler 21 .
  • the distance of the second clearance d2 is the distance between the rear wall 224 of the cooler chamber 23 and the rear side of the cooler 21 .
  • Return air from the temperature switchable chamber 4 is led from the temperature switchable chamber return port 51 to the front side of the cooler 21 .
  • the air cooled by the cooler 21 is led to the back side of the cooler 21 .
  • the temperature difference between the air and the cooler 21 is larger than the temperature difference between the air on the back side of the cooler 21 and the cooler 21, so frosting occurs more than the back side of the cooler 21. becomes a large amount. Since the first clearance d1 is larger than the second clearance d2, the area where frost generated on the cooler 21 can accumulate increases. Therefore, even if frost adheres to the cooler 21, the air passing through the cooler 21 is not hindered by the accumulated frost, and a decrease in cooling efficiency is suppressed.
  • the distance of the first clearance d1 decreases toward the downstream side of the air flow direction D1, that is, toward the top of the refrigerator 1.
  • a front wall 223 of the cooler chamber 23 has an inclination 223 a with respect to the height direction of the refrigerator 1 .
  • the distance of the second clearance d2 decreases toward the downstream side of the air flow direction D1, that is, toward the upper side of the refrigerator 1 .
  • a rear wall 224 of the cooler chamber 23 has an inclination 224 a with respect to the height direction of the refrigerator 1 .
  • the temperature difference between the air and the cooler 21 decreases, and the amount of frost formation decreases, so the first clearance d1 and the second clearance d2 also decrease. . Therefore, no extra gap is formed between the cooler 21, which is less susceptible to frost formation, and the rear wall 224 of the cooler chamber 23, and the cooling efficiency of the cooler 21 is improved.
  • the inclination 223a of the front wall 223 of the cooler chamber 23 larger than the inclination 224a of the rear wall 224, the first clearance d1 where the amount of frost is increasing increases, and the area where frost accumulates increases. As a result, the deterioration of the cooling efficiency due to frost formation is suppressed. Further, by making the slope 223a of the front wall 223 of the cooler chamber 23 wider than the slope 224a of the rear wall 224, the increase in the second clearance d2 with a small amount of frost formation is suppressed, and an extra gap is not generated. The cooling efficiency of the cooler 21 is improved.
  • the first notched fin 213a has the smallest first notched area S1 among the plurality of notched fins 213.
  • the cutout area is the area of the surface facing the plurality of temperature switching chamber return ports 51, and is the area of the cut surface of the cutout portion when the cutout fin 213 is viewed in the direction of arrow A.
  • the first notch area S1 means that the first notch fin 213a is formed by cutting the notch 212a from the rectangular parallelepiped smooth fin 214. It is the area of the cut surface.
  • the cut surface area of the notch fin 213 can be considered as a parameter of cooling efficiency.
  • the surface area of each of the plurality of notched fins 213 contributes to heat exchange in the cooler 21, but the height and depth dimensions or the shape of the plurality of notched fins 213 are different from those of the refrigerator 1 or the cooling device. This is because it can be set according to the shape of the vessel 21 and varies.
  • the cooling efficiency of the notched fins 213 can be evaluated regardless of the shape of the refrigerator 1 or the cooler 21 by using the area of the cut surface of the plurality of notched fins 213 as a parameter of the cooling efficiency. can.
  • the plurality of notched fins 213 have a cross-sectional shape when viewed from the front wall 223 of the cooler chamber 23 to the back wall 224 side, or a cross-sectional shape of a cut surface viewed from the direction of arrow A in the height direction.
  • the dimensions are greatest at the front side of cooler 21 and decrease toward the rear side.
  • the frost amount is also the largest. Since the dimension of the cross-sectional shape in the height direction is the largest on the front side of the cooler 21, a region where frost accumulates is ensured.
  • the air led from the temperature switching chamber return port 51 is cooled toward the back side, the temperature difference with the cooler 21 is reduced, and the frost amount is also reduced.
  • the notched portions 212a of the plurality of notched fins 213 have a shape in which the height dimension of the notched portions 212a decreases from the front surface to the rear surface, thereby reducing the area where frost accumulates and effective for heat exchange. Heat exchange efficiency is improved due to the increased area.
  • FIG. 11 is a graph explaining the cooling efficiency of the cooler 21 of the refrigerator 1 according to the modified example of the first embodiment.
  • the horizontal axis indicates the notch area
  • the vertical axis indicates the ratio between the case with the notch and the case without the notch.
  • the solid line and black circles represent the heat absorption ratio with respect to the notch area of a certain notched fin 213
  • the dashed line and rhombuses represent the surface area A ratio
  • the alternate long and short dash line and squares represent the temperature difference ⁇ T ratio
  • the h ratio of the heat transfer coefficient are indicated by double-dotted lines and triangles.
  • the heat absorption ratio sharply decreases in the area where the cutout area of the cutout fin 213 is larger than 10 mm 2 .
  • the heat absorption amount ratio is the ratio of the heat absorption amount of the cooler 21 to which the notched fins 213 are attached to the heat absorption amount of the cooler 21 to which the smooth fins 214 are attached.
  • the amount of heat absorbed is the amount of heat that the cooler 21 exchanges heat with the return air and finally absorbs.
  • the heat absorption ratio can be obtained from the product of the heat transfer coefficient h ratio, the surface area A ratio, and the temperature difference ⁇ T ratio. If the heat absorption ratio exceeds 100%, it can be considered that the cooling efficiency has improved. If the heat absorption ratio is less than 100%, it can be considered that the cooling efficiency has decreased.
  • the notch area of the notch fin 213 is preferably 10 mm 2 or less. can be suppressed.
  • the notch is provided in the cooler 21 at a position facing the third temperature switchable chamber return port 51C located upstream in the air flow direction D1.
  • a notched fin 213 having a shape obtained by cutting out the portion 211a is arranged. In a temperature range where the temperature of the return air from the temperature switching chamber is relatively high, the fins 211 are likely to be frosted.
  • the notched fin 213 is arranged at a position facing the third temperature switching chamber return port 51C through which air having a relatively high temperature range is introduced, so that the notched portion 211a of the notched fin 213 is cut off. Frost can adhere to the surface.
  • first notched fin 213a, the second notched fin 213b, and the third notched fin 213c move in the depth direction of the cooler chamber 23 as the temperature difference between the return air from the temperature switching chamber and the surface of the cooler 21 decreases.
  • the area of the case where it is seen is decreasing.
  • frost adheres to the surface where the notch portion 212c of the third notch fin 213c with an increased area is cut, so that the air flow is not obstructed and the cooling efficiency is improved. is prevented from decreasing.
  • the area of the notch portion 212a of the first notch fin 213a when viewed in the depth direction of the cooler chamber 23 is suppressed. Exchange efficiency can be maintained.
  • the distance of the first clearance d1 between the front wall 223 of the cooler chamber 23 and the cooler 21 is longer than the distance of the second clearance d2 between the rear wall 224 of the cooler chamber 23 and the cooler 21. big. Therefore, by forming the first clearance d1 larger than the second clearance d2 on the front surface of the cooler 21, which is more susceptible to frost formation than the back surface of the cooler 21, more frost adheres to the front surface of the cooler 21. space can be secured. In addition, the heat exchange efficiency of the cooler 21 can be maintained by reducing the distance of the second clearance d2 on the back surface of the cooler 21 where frost formation is less likely to occur.
  • the temperature switching chamber return port 51 is arranged downstream of the refrigerator chamber return port 41 and upstream of the freezer chamber return port 61 . Therefore, the heat exchange distance between the temperature switchable compartment return air and the cooler 21 is shorter than the heat exchange distance between the refrigerator compartment return air and the cooler 21, and the heat exchange distance between the freezer compartment return air and the cooler 21 is shorter than the heat exchange distance between the freezer compartment return air and the cooler 21. also longer. As a result, the temperature switchable chamber return air can be cooled with a cooling amount between the cooling amount of the refrigerating compartment return air and the cooling amount of the freezer compartment return air in the cooler 21 .
  • the refrigerator 1 has the refrigerator compartment 3, the temperature switchable compartment 4, and the freezer compartment 5, which are arranged in this order from the top, the number, types, and arrangement of the storage compartments of the refrigerator 1 are not limited to this.
  • the refrigerator 1 may have other refrigerating compartments in addition to the refrigerating compartment 3, or may have other types of storage compartments.
  • a freezer compartment may be provided in the upper part of the refrigerator 1 .
  • the temperature switching compartment 4 and the freezer compartment 5 may be configured to open and close with a common door.
  • control device 90 controls the air path switching means 80 based on the set temperature as the reference temperature of the temperature switching chamber 4, the present invention is not limited to this.
  • the reference temperature of the temperature switchable chamber 4 may be the measured indoor temperature of the temperature switchable chamber 4 .
  • the control device 90 may control the air passage switching means 80 based on the room temperature detected by the temperature switchable room temperature sensor 35 that detects the temperature inside the temperature switchable room 4 .
  • the reference temperature of the temperature switchable chamber 4 may be, for example, the average value of the set temperature of the temperature switchable chamber 4 and the measured room temperature.
  • the reference temperature of the temperature switchable chamber 4 may be based on at least one of the set temperature of the temperature switchable chamber 4 and the measured room temperature.
  • the 3-temperature-switchable chamber return air passage 150C has a 3rd temperature-switchable chamber return port 151C.
  • the temperature switchable chamber return port 151 is composed of a third temperature switchable chamber return port 151C, a second temperature switchable chamber return port 151B, and a first temperature switchable chamber return port from the upstream side with respect to the air flow direction D1 in the cooler chamber . 151A.
  • the temperature switchable chamber return air passage 150 branches from one temperature switchable chamber return air passage inlet 52 to the cooler chamber 23 to form a temperature switchable chamber. It is configured to connect to each of the return ports 151 .
  • the third temperature switchable chamber return air passage 150C is connected to the first temperature switchable chamber return air passage 150A and the second temperature switchable chamber return air passage 150A. It branches off from the return air path 150B. Further, at a second branch portion 154 on the downstream side of the first branch portion 153, the first temperature switchable chamber return air passage 150A and the second temperature switchable chamber return air passage 150B are branched.
  • the plurality of temperature switchable chamber return air passages 150 branch from the temperature switchable chamber return air passage inlet 52 that opens to the temperature switchable chamber 4 to the cooler chamber 23 , and branch to each of the temperature switchable chamber return ports 151 .
  • the air passage switching means 180 also has a first switching valve 182 and a second switching valve 183 for switching the temperature switching chamber return air passages 150 at the branched portions of the plurality of temperature switching chamber return air passages 150 .
  • FIG. 14 is a schematic diagram of temperature switchable chamber return air passage 150 and its surroundings in refrigerator 201 according to the third embodiment.
  • Refrigerator 201 according to Embodiment 3 differs from refrigerator 101 according to Embodiment 2 in that it further includes heating means for preventing the switching mechanism from freezing.
  • parts common to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the refrigerator 201 includes a first anti-freezing heater 184 and a second anti-freezing heater 185 as heating means.
  • the heating means is composed of, for example, an electric heater.
  • the first anti-freezing heater 184 and the second anti-freezing heater 185 are operated all the time, the power consumption will increase, and the temperature switching chamber return air passage 150 will be overheated, which may hinder the cooling of the temperature switching chamber return air. There is Therefore, by operating the first anti-freezing heater 184 and the second anti-freezing heater 185 during the defrosting of the cooler 21, the first anti-freezing heater 184 and the second anti-freezing heater 184 and the second anti-freezing heater are operated in accordance with the temperature rise around the cooler 21 by the defrosting heater. 2 Antifreeze heater 185 is heated. The heating of the first anti-freezing heater 184 becomes the minimum amount of heating, and the anti-freezing of the first switching valve 182 and the second switching valve 183 can be implemented without impeding the cooling of the return air from the temperature switching chamber.
  • the object to be cooled stored in the storage chamber is food, but the object is not limited to this.
  • the object to be cooled may be collected from the natural world such as raw meat of small animals that are not edible, or raw meat of experimental animals such as cloned animals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention provides a refrigerator comprising: a temperature-switching compartment in which the set temperature can be switched within a temperature range from a refrigeration temperature zone to a freezing temperature zone lower in temperature than the refrigeration temperature zone; a cooler compartment that houses a cooler having a plurality of fins and that cools air and a blower that blows the air cooled by the cooler to the temperature-switching compartment; and a plurality of temperature-switching compartment return ports opening at positions in the cooler compartment that face the cooler and that differ with respect to the airflow direction, one of the temperature-switching compartment return ports guiding temperature-switching compartment return air, the temperature-switching compartment return port that guides the temperature-switching compartment return air being switched on the basis of the temperature range of the temperature-switching compartment. The plurality of fins include a cutout fin provided with a cutout as a region where frost accumulates. The cutout fin is disposed at a position facing the temperature-switching compartment return port guiding the temperature-switching compartment return air in a temperature range nearest to the refrigeration temperature zone, from among the plurality of temperature-switching compartment return ports.

Description

冷蔵庫refrigerator
 本開示は、温度切替室を備えた冷蔵庫に関する。 The present disclosure relates to refrigerators equipped with temperature switching compartments.
 冷蔵庫に用いられる冷却器として、空気流に直交するように配列される伝熱管と、この伝熱管の外面に装着されて相互間に空気流路が形成されるよう所定の間隔で多数平行に並べられるフィンと、を有する冷却器が周知である。 As a cooler used in a refrigerator, heat transfer tubes are arranged perpendicular to the air flow, and a large number of heat transfer tubes are attached to the outer surface of the heat transfer tubes and arranged in parallel at predetermined intervals so that air flow paths are formed between them. Coolers having fins that
 この種の冷却器は、蒸気圧縮式冷凍サイクルの蒸発器として用いられ、冷蔵庫の内部を循環する空気を冷却する。即ち、冷却器では、伝熱管の管壁およびフィンを介して、伝熱管の内部を流れる冷媒と伝熱管の外部を流れる空気との間で熱交換が行われ、冷媒の蒸発作用によって空気が冷却される。 This type of cooler is used as an evaporator in a vapor compression refrigeration cycle and cools the air circulating inside the refrigerator. That is, in the cooler, heat is exchanged between the refrigerant flowing inside the heat transfer tubes and the air flowing outside the heat transfer tubes via the tube walls and fins of the heat transfer tubes, and the refrigerant evaporates to cool the air. be done.
 その際、伝熱管の外面およびフィンの表面には、空気中の水分が冷却されることによって凝結して付着し、その水分がさらに冷却されて霜が生成される。このようなフィンへの着霜は、空気の流動抵抗を増大させて風量を低下させるとともに、フィンの空気側の熱抵抗を増大させて熱交換を阻害し、冷却器の冷却効率を低下させる要因となる。そのため、この種の冷却器を備えた冷蔵庫では、冷却器のフィンに付着した霜を溶かして除去するために、例えば、電気加熱式ヒータなどの除霜手段を備えたものがある。 At that time, moisture in the air condenses and adheres to the outer surface of the heat transfer tube and the surface of the fins as it cools, and the moisture is further cooled to form frost. Such frost build-up on the fins increases the air flow resistance and reduces the air volume, increases the thermal resistance on the air side of the fins, impedes heat exchange, and is a factor that reduces the cooling efficiency of the cooler. becomes. Therefore, some refrigerators equipped with this type of cooler are equipped with defrosting means such as an electric heater to melt and remove the frost adhering to the fins of the cooler.
 また、冷蔵庫の冷却器への着霜、又は、着霜による冷却効率の低下を抑制するため、冷却器の包絡体積自体に傾斜をつけた構成が提案されている。この構成は、例えば、冷蔵庫の各貯蔵室を冷却した冷気を全て合流させ、一括して冷却器に再流入させる構成の冷蔵庫に採用されている。このような構成によれば、冷却器に付着した水分が重力により落ちやすくなり、着霜、熱交換の阻害、および、風量の低下が抑制され、着霜に耐え得る冷蔵庫が得られる。また、一定間隔で配置されたフィンの一部に規則的な切り欠きを設けた構成とすることで、着霜による影響を改善することが提案されている。 In addition, in order to suppress the formation of frost on the cooler of the refrigerator or the decrease in cooling efficiency caused by the formation of frost, a configuration in which the enveloping volume of the cooler itself is inclined has been proposed. This configuration is employed, for example, in a refrigerator having a configuration in which the cool air that has cooled the storage compartments of the refrigerator is all merged and reflowed into the cooler all at once. According to such a configuration, the moisture adhering to the cooler is easily removed by gravity, and frost formation, inhibition of heat exchange, and reduction in airflow are suppressed, and a refrigerator that can withstand frost formation can be obtained. Further, it has been proposed to improve the effect of frost formation by providing a structure in which regular cutouts are provided in some of the fins arranged at regular intervals.
 一方、様々な生活スタイルの変化に伴い、冷蔵室、冷凍室、野菜室といった各貯蔵室の温度で部屋を分け保存容量を増大させることを主体とせず、各ユーザーの好みおよび食材に適した温度で保存でき、細かな温度調整が可能な切替室を備えた冷蔵庫も提案されている。 On the other hand, along with various changes in lifestyles, we did not focus on increasing the storage capacity by dividing the storage compartments such as the refrigerator, freezer, and vegetable compartments according to the temperature, but rather adjusted the temperature according to each user's preference and food ingredients. Refrigerators equipped with switchable compartments that can store food at room temperature and allow fine temperature control have also been proposed.
 冷凍室から野菜室まで切り替え可能な様々な温度に設定できる切替室を備える冷蔵庫では、省エネ性、又は、冷却性を最適化する技術の適用が望まれている。  In refrigerators equipped with switchable compartments that can be set to various temperatures from the freezer compartment to the vegetable compartment, it is desired to apply technology that optimizes energy saving or cooling performance.
 特許文献1では、冷蔵室および冷凍室に加えて温度切替室を備える冷蔵庫において、蒸発温度が異なる3つの冷却器が設けられ、熱交換におけるエネルギー損失を低減させる方法が提案されている。特許文献1の方法によれば、冷蔵室、冷凍室および温度切替室の各貯蔵室の冷気が3つの冷却器の各々に戻される構成になる。 Patent Document 1 proposes a method of reducing energy loss in heat exchange by providing three coolers with different evaporation temperatures in a refrigerator having a temperature switching compartment in addition to a refrigerating compartment and a freezing compartment. According to the method of Patent Literature 1, cold air in each of the refrigerator compartment, freezer compartment, and temperature switchable compartment is returned to each of the three coolers.
特開2015-64153号公報JP 2015-64153 A
 温度切替室を備えた冷蔵庫は、温度切替室の設定温度が冷凍温度帯から冷蔵温度帯までの広範囲にわたって切替えられる構成であるため、温度切替室内の温度の変化に応じて、温度切替室から戻る空気とこの空気と熱交換を行う冷却器表面との温度差が変化する。このため、特許文献1に開示されているように、冷蔵室、冷凍室および温度切替室の各貯蔵室の冷気を3つの冷却器の各々に戻す方法を採用したとしても、温度切替室の設定温度が切り替えられると、熱交換におけるエネルギー損失、又は、温度差が生じる。そのため、冷却器へ付着する霜が生じ、熱交換効率が低下してしまうという問題がある。 Refrigerators equipped with temperature switchable compartments are configured so that the set temperature of the temperature switchable compartment can be switched over a wide range from the freezing temperature range to the refrigerating temperature range. The temperature difference between the air and the cooler surfaces with which it exchanges heat changes. For this reason, as disclosed in Patent Document 1, even if a method of returning cold air from each of the refrigerator, freezer, and temperature switchable storage compartments to each of the three coolers is adopted, setting the temperature switchable compartments Energy losses in heat exchange or temperature differences occur when the temperature is switched. Therefore, there is a problem that frost adheres to the cooler and the heat exchange efficiency is lowered.
 本開示は、上記課題を解決するためになされたものであり、冷却効率の低下を抑制できる冷蔵庫を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a refrigerator capable of suppressing a decrease in cooling efficiency.
 本開示に係る冷蔵庫は、冷蔵温度帯から、前記冷蔵温度帯よりも温度が低い冷凍温度帯までの温度範囲で設定温度が切り替えられる温度切替室と、複数のフィンを有して空気を冷却する冷却器と、前記冷却器で冷却された空気を前記温度切替室に送る送風機と、を収容する冷却器室と、前記冷却器室において前記冷却器に対向しかつ前記空気の流れ方向に対して互いに異なる位置に開口し、前記温度切替室の温度範囲に基づいて、いずれか1つに切り替えられ、温度切替室戻り空気が導かれる複数の温度切替室戻り口と、を備え、前記複数のフィンは、霜が堆積する領域として切欠きが設けられた切欠きフィンを含み、前記切欠きフィンは、複数の温度切替室戻り口のうち、前記冷蔵温度帯に最も近い温度範囲の温度切替室戻り空気が導かれる温度切替室戻り口と対向する位置に配置されている。 A refrigerator according to the present disclosure has a temperature switchable chamber whose set temperature is switched in a temperature range from a refrigerating temperature range to a freezing temperature range lower than the refrigerating temperature range, and a plurality of fins to cool air. a cooler chamber that houses a cooler and a blower that sends air cooled by the cooler to the temperature switching chamber; a plurality of temperature-switching chamber return ports that open at positions different from each other, are switched to any one based on the temperature range of the temperature-switching chamber, and flow the return air from the temperature-switching chamber; includes a notched fin provided with a notch as an area where frost accumulates, and the notched fin is a temperature switchable chamber return opening having a temperature range closest to the refrigerating temperature range among a plurality of temperature switchable chamber return ports. It is arranged at a position facing the return port of the temperature switching chamber through which air is led.
 本開示に係る冷蔵庫によれば、冷蔵温度帯に最も近い温度範囲の温度切替室戻り空気が導かれる温度切替室戻り口と対向する切欠きフィンに、霜が堆積する領域として切欠きが設けられているため、冷却器に霜が生じても冷却効率の低下が抑制される。 According to the refrigerator according to the present disclosure, the notch fin facing the temperature switchable chamber return port through which the temperature switchable chamber return air having a temperature range closest to the refrigerating temperature range is guided is provided with a notch as a region where frost accumulates. Therefore, even if frost forms on the cooler, a decrease in cooling efficiency is suppressed.
実施の形態1に係る冷蔵庫の正面図である。1 is a front view of a refrigerator according to Embodiment 1; FIG. 図1のII-II線に沿った面の模式図である。FIG. 2 is a schematic diagram of a plane taken along line II-II of FIG. 1; 実施の形態1に係る冷蔵庫の冷凍サイクルの概略図である。1 is a schematic diagram of a refrigerating cycle of a refrigerator according to Embodiment 1; FIG. 実施の形態1に係る冷蔵庫の冷却器室の構造を模式的に示す背面図である。4 is a rear view schematically showing the structure of the cooler chamber of the refrigerator according to Embodiment 1. FIG. 実施の形態1に係る冷蔵庫の冷却器室の内部を説明する模式図である。2 is a schematic diagram illustrating the inside of the cooler chamber of the refrigerator according to Embodiment 1. FIG. 実施の形態1に係る冷蔵庫の制御構成を示すブロック図である。2 is a block diagram showing a control configuration of the refrigerator according to Embodiment 1; FIG. 実施の形態1に係る冷蔵庫の制御装置による温度制御に関連する機能ブロック図である。3 is a functional block diagram related to temperature control by the control device for the refrigerator according to Embodiment 1. FIG. 実施の形態1に係る冷蔵庫の処理回路のハードウェア構成の一例を示す図である。3 is a diagram showing an example of a hardware configuration of a processing circuit of the refrigerator according to Embodiment 1; FIG. 実施の形態1の変形例に係る冷蔵庫を説明する模式図である。FIG. 4 is a schematic diagram illustrating a refrigerator according to a modification of Embodiment 1; 実施の形態1の変形例に係る冷蔵庫の冷却器の詳細を説明する模式図である。FIG. 4 is a schematic diagram illustrating details of a cooler of a refrigerator according to a modification of Embodiment 1; 実施の形態1の変形例に係る冷蔵庫の冷却器における冷却効率を説明するグラフである。7 is a graph for explaining the cooling efficiency of the cooler of the refrigerator according to the modified example of Embodiment 1. FIG. 実施の形態2に係る冷蔵庫の温度切替室戻り風路周辺の模式図である。FIG. 10 is a schematic diagram of the periphery of the temperature switchable chamber return air passage of the refrigerator according to Embodiment 2; 実施の形態2に係る冷蔵庫の制御構成を示すブロック図である。8 is a block diagram showing a control configuration of a refrigerator according to Embodiment 2; FIG. 実施の形態3に係る冷蔵庫の温度切替室戻り風路周辺の模式図である。FIG. 11 is a schematic diagram of the periphery of a temperature switching chamber return air passage of a refrigerator according to Embodiment 3; 実施の形態3に係る冷蔵庫の制御構成を示すブロック図である。FIG. 11 is a block diagram showing a control configuration of a refrigerator according to Embodiment 3;
 実施の形態1.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、各図において、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさ、および配置などは、この発明の範囲内で適宜変更することができる。また、明細書中における各構成部材の位置関係(例えば、上下関係など)は、原則として、冷蔵庫1を使用可能な状態に設置したときのものである。ここで、図1を含む以下の図においては、各構成部材の寸法の関係および形状などが実際のものとは異なる場合がある。
Embodiment 1.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same reference numerals are given to the same or corresponding parts, and the description thereof will be omitted or simplified as appropriate. Moreover, the shape, size, arrangement, etc. of the configuration described in each figure can be appropriately changed within the scope of the present invention. In addition, the positional relationship (for example, vertical relationship) of each component in the specification is, in principle, when the refrigerator 1 is installed in a usable state. Here, in the following drawings including FIG. 1, the dimensional relationship and shape of each constituent member may differ from the actual ones.
 図1は、実施の形態1に係る冷蔵庫1の正面図である。図2は、図1のII-II線に沿った面の模式図である。 FIG. 1 is a front view of refrigerator 1 according to Embodiment 1. FIG. FIG. 2 is a schematic diagram of a plane taken along line II-II of FIG.
 図1及び図2に示すように、実施の形態1に係る冷蔵庫1は、冷蔵室3と、温度切替室4と、冷凍室5と、が設けられた本体部2を備える。冷蔵室3、温度切替室4および冷凍室5は、食品などの被冷却物を収納するための貯蔵室である。冷蔵室3は、本体部2の最上段に設けられている。冷凍室5は、本体部2の最下段に設けられている。温度切替室4は、本体部2において冷蔵室3と冷凍室5との間に設けられている。本体部2は、外箱と、内箱と、断熱部材と、から構成された断熱性を有する箱体である。外箱は、鋼などの金属で形成されており、前面に開口を有する。内箱は、樹脂で形成されており、外箱の開口から外箱内に嵌め込まれている。内箱の内部は、断熱性を有する仕切壁17、18で各貯蔵室が区画されている。具体的には、内箱の内部は、仕切壁17によって、冷蔵室3と温度切替室4とが区画されている。また、内箱の内部は、仕切壁18によって、温度切替室4と冷凍室5とが区画されている。断熱部材は、例えば発泡ウレタンで構成されており、外箱と内箱との間の空間に充填されている。冷蔵庫1の背面側の上部には、制御装置90が設けられている。制御装置90は、冷蔵庫1の動作を制御する。 As shown in FIGS. 1 and 2, the refrigerator 1 according to Embodiment 1 includes a body portion 2 in which a refrigerating chamber 3, a temperature switching chamber 4, and a freezing chamber 5 are provided. The refrigerator compartment 3, the temperature switchable compartment 4, and the freezer compartment 5 are storage compartments for storing objects to be cooled such as food. The refrigerator compartment 3 is provided on the uppermost stage of the main body portion 2 . Freezer compartment 5 is provided at the bottom of main body 2 . The temperature switchable chamber 4 is provided between the refrigerating chamber 3 and the freezing chamber 5 in the body portion 2 . The main body 2 is a box-like body having heat insulating properties and is composed of an outer box, an inner box, and a heat insulating member. The outer box is made of metal such as steel and has an opening in the front. The inner box is made of resin and is fitted into the outer box through the opening of the outer box. The interior of the inner box is divided into storage compartments by partition walls 17 and 18 having heat insulating properties. Specifically, the inside of the inner box is partitioned into the refrigerator compartment 3 and the temperature switching compartment 4 by a partition wall 17 . The interior of the inner box is partitioned into the temperature switching compartment 4 and the freezer compartment 5 by a partition wall 18 . The heat insulating member is made of urethane foam, for example, and fills the space between the outer box and the inner box. A control device 90 is provided in the upper part of the back side of the refrigerator 1 . Control device 90 controls the operation of refrigerator 1 .
 冷蔵室3、温度切替室4および冷凍室5には、各貯蔵室を開閉するための扉がそれぞれ設けられている。例えば、冷蔵室3の前方には、片開き式の1枚扉である冷蔵室扉13が開閉自在に設けられている。温度切替室4の前方には、引出し式の温度切替室扉14が前後に開閉自在に設けられている。冷凍室5の前方には、引出し式の冷凍室扉15が前後に開閉自在に設けられている。引出し式の温度切替室扉14および冷凍室扉15は、扉本体に固定して設けられたフレームを各貯蔵室の左右の内壁面に水平に形成されたレールに対してスライドさせることにより、冷蔵庫1の前後方向に開閉できるように構成されている。なお、上述した各貯蔵室の扉の構成は一例であり、これに限らない。例えば、冷蔵室扉13は両開き式、又は、観音式の2枚扉であってもよいし、温度切替室扉14および冷凍室扉15は片開き式の1枚扉であってもよい。 The refrigerator compartment 3, the temperature switching compartment 4, and the freezer compartment 5 are each provided with a door for opening and closing each storage compartment. For example, in front of the refrigerating chamber 3, a refrigerating chamber door 13, which is a single door of a one-sided opening type, is provided so as to be freely opened and closed. A drawer-type temperature switching chamber door 14 is provided in front of the temperature switching chamber 4 so as to be freely opened and closed back and forth. A drawer-type freezer compartment door 15 is provided in front of the freezer compartment 5 so as to be freely opened and closed back and forth. The drawer-type temperature switching compartment door 14 and the freezer compartment door 15 are arranged by sliding a frame fixed to the door main body against rails horizontally formed on the left and right inner wall surfaces of each storage compartment. 1 can be opened and closed in the front-rear direction. In addition, the structure of the door of each storage room mentioned above is an example, and it does not restrict to this. For example, the refrigerating compartment door 13 may be a double-opening type or a double door type, and the temperature switching compartment door 14 and the freezing compartment door 15 may be single-opening type single doors.
 冷蔵室3には、食品などの被冷却物を載置する、不図示の棚が設けられている。温度切替室4には、被冷却物を内部に収納できる、不図示の収納容器が引き出し自在に設けられている。収納容器は、温度切替室扉14のフレームによって支持されており、温度切替室扉14の開閉に連動して前後方向にスライドするように構成されている。温度切替室4と同様に、冷凍室5には、被冷却物を内部に収納できる、不図示の収納容器が引き出し自在に設けられている。 A shelf (not shown) is provided in the refrigerator compartment 3 for placing items to be cooled such as food. The temperature switching chamber 4 is provided with a storage container (not shown) that can be pulled out to store an object to be cooled. The storage container is supported by the frame of the temperature switching chamber door 14 and configured to slide in the front-rear direction in conjunction with the opening and closing of the temperature switching chamber door 14 . Similar to the temperature switchable chamber 4, the freezer chamber 5 is provided with a storage container (not shown) capable of storing an object to be cooled, which can be pulled out.
 冷蔵室3は、冷蔵温度帯に設定されている。冷蔵温度帯は、例えば3℃以上5℃以下の温度帯である。冷凍室5は、冷凍温度帯に設定されている。冷凍温度帯は、冷蔵温度帯よりも低い温度帯である。冷凍温度帯は、0℃未満の温度帯であり、例えば-20℃以上-18℃以下の温度帯である。 The refrigerator compartment 3 is set to the refrigerator temperature range. The refrigeration temperature zone is, for example, a temperature zone of 3°C or higher and 5°C or lower. Freezer compartment 5 is set to a freezing temperature range. The freezing temperature zone is a temperature zone lower than the refrigerating temperature zone. The freezing temperature zone is a temperature zone below 0°C, for example, a temperature zone between -20°C and -18°C.
 温度切替室4は、冷蔵温度帯から冷凍温度帯までの範囲で設定温度を切り替えることができる。温度切替室4では、用途に応じて室内の温度帯が切り替えられる。温度切替室4は、例えば、チルド温度帯、過冷却温度帯およびソフトフリージング温度帯の3つの温度帯に調整される。なお、温度切替室4は、これら3つの温度帯以外の温度帯に調整されてもよい。また、温度切替室4の設定温度は、冷蔵庫1の使用者が選択できる。よって、使用者が自身の生活スタイルに合わせて温度切替室4の設定温度を調整できるので、使用者の利便性を向上させることができる。 The temperature switchable chamber 4 can switch the set temperature in the range from the refrigerating temperature range to the freezing temperature range. In the temperature switchable room 4, the temperature range in the room is switched according to the application. The temperature switchable chamber 4 is adjusted to three temperature zones, for example, a chilled temperature zone, a supercooled temperature zone, and a soft freezing temperature zone. Note that the temperature switchable chamber 4 may be adjusted to a temperature zone other than these three temperature zones. Also, the set temperature of the temperature switchable chamber 4 can be selected by the user of the refrigerator 1 . Therefore, the user can adjust the set temperature of the temperature switchable chamber 4 according to his or her lifestyle, thereby improving convenience for the user.
 チルド温度帯は、0℃以上3℃未満の温度帯であり、例えば1℃前後の温度帯である。温度切替室4内の温度をこの温度帯に設定することで、温度切替室4をチルド室として利用することができる。チルド室として温度切替室4を利用する方法は、冷蔵室3の容量が不足する使用者、又は、当日に消費する食品が多い使用者を対象としている。 A chilled temperature range is a temperature range of 0°C or higher and less than 3°C, for example, a temperature range of around 1°C. By setting the temperature in the temperature switchable chamber 4 within this temperature range, the temperature switchable chamber 4 can be used as a chilled chamber. The method of using the temperature switchable chamber 4 as a chilled chamber is intended for users who lack the capacity of the refrigerating chamber 3 or users who consume a large amount of food on the day.
 過冷却温度帯は、冷蔵室3よりも低温であり、食品が過冷却状態となる温度帯である。過冷却状態とは、食品の温度が凍結点または凍結温度以下に達していても、食品の凍結が開始せず、食品が非凍結の状態を保っていることをいう。過冷却温度帯は、例えば、食品の凍結点以下となる-3℃以上0℃未満の温度帯である。温度切替室4内の温度をこの温度帯に設定することで、温度切替室4を、食品を過冷却状態で保存する過冷却保存室として利用することができる。品質を維持したまま食品を保存するためには、食品をできるだけ低温でかつ凍結させずに維持することが望ましいところ、過冷却保存室によってこのような食品の保存を実現できる。温度切替室4を過冷却保存室として利用することによって、使用者は、肉または魚等の生鮮食品またはこれらの加工品等の保存日数の短い食品を冷凍せずに保存することができる。 The supercooling temperature zone is a temperature zone that is lower than the refrigerating compartment 3 and that food is in a supercooled state. A supercooled state means that even if the temperature of the food reaches the freezing point or below the freezing temperature, the food does not start to freeze and the food maintains a non-freezing state. The supercooling temperature range is, for example, a temperature range of −3° C. or more and less than 0° C., which is below the freezing point of food. By setting the temperature in the temperature switchable chamber 4 to this temperature range, the temperature switchable chamber 4 can be used as a supercooled storage chamber for storing food in a supercooled state. In order to preserve food while maintaining its quality, it is desirable to maintain food at a temperature as low as possible without freezing. By using the temperature switchable compartment 4 as a supercooled storage compartment, the user can store fresh food such as meat or fish or processed food with a short shelf life without freezing.
 ソフトフリージング温度帯は、-10℃以上-5℃以下の温度帯であり、例えば-7℃前後の温度帯である。温度切替室4内の温度をこの温度帯に設定することで、温度切替室4をソフトフリージング室として利用することができる。ソフトフリージング温度帯では、食品が長時間保存されていても、表面が固くなり過ぎないので、食品を容易に破砕したり破断したりすることが可能である。よって、使用者は、ソフトフリージング室に保存された食品を即座に使用することができる。ソフトフリージング室として温度切替室4を利用する方法は、簡易的に冷凍室を使用する使用者を対象としている。 The soft freezing temperature range is a temperature range between -10°C and -5°C, for example, around -7°C. By setting the temperature in the temperature switchable chamber 4 within this temperature range, the temperature switchable chamber 4 can be used as a soft freezing chamber. In the soft freezing temperature range, even if the food is stored for a long time, the surface does not become too hard, so the food can be easily crushed or broken. Therefore, the user can immediately use the food stored in the soft freezing chamber. The method of using the temperature switchable chamber 4 as the soft freezing chamber is intended for users who simply use the freezing chamber.
 冷蔵室扉13には、操作パネル6が設けられている。操作パネル6は、各貯蔵室内の温度設定などを行うための操作部と、各貯蔵室内の温度、設定温度などの温度情報または庫内の在庫情報などの表示を行う表示部とから構成されている。操作部は、例えば操作スイッチ等で構成され、表示部は、例えば液晶ディスプレイで構成されている。 An operation panel 6 is provided on the refrigerator compartment door 13 . The operation panel 6 is composed of an operation section for setting the temperature in each storage compartment, and a display section for displaying temperature information such as the temperature in each storage compartment and the set temperature, or inventory information in the storage compartment. there is The operation unit is configured by, for example, operation switches, etc., and the display unit is configured by, for example, a liquid crystal display.
 冷蔵庫1は、冷却器21と、送風機22と、を有している。本体部2には、冷却器21および送風機22を収容する冷却器室23が設けられている。冷却器21は、空気を冷却する。送風機22は、冷却器21で冷却された空気を各貯蔵室、すなわち冷蔵室3、温度切替室4および冷凍室5へ送られる。以下では、冷却器21で冷却された空気を「冷気」と適宜称する。冷却器21によって各貯蔵室内を冷却する冷気が生成され、生成された冷気が送風機22よって各貯蔵室へ送られる。冷却器室23は、冷蔵庫1の背面側にあたる本体部2の部分に設けられている。冷却器室23内において、送風機22は、冷却器21の上側に設けられている。 The refrigerator 1 has a cooler 21 and a blower 22. A cooler chamber 23 that accommodates a cooler 21 and a blower 22 is provided in the main body 2 . Cooler 21 cools the air. The air blower 22 sends the air cooled by the cooler 21 to each storage compartment, that is, the refrigerator compartment 3 , the temperature switching compartment 4 and the freezer compartment 5 . Hereinafter, the air cooled by the cooler 21 is appropriately referred to as "cold air". Cold air for cooling the inside of each storage compartment is generated by the cooler 21 and the generated cold air is sent to each storage compartment by the blower 22 . Cooler chamber 23 is provided in a portion of main body 2 corresponding to the back side of refrigerator 1 . Inside the cooler chamber 23 , the blower 22 is provided above the cooler 21 .
 <冷凍サイクルの構成>
 図3は、実施の形態1に係る冷蔵庫1の冷凍サイクル27の概略図である。図3に示すように、冷却器21は、圧縮機24、凝縮器25および減圧装置26とともに冷蔵庫1の冷凍サイクル27を構成する。冷凍サイクル27では、圧縮機24、凝縮器25、減圧装置26および冷却器21が、この順で冷媒配管によって接続されている。図3における実線の矢印は、冷凍サイクル27において冷媒が循環する方向を示している。
<Configuration of refrigeration cycle>
FIG. 3 is a schematic diagram of refrigerating cycle 27 of refrigerator 1 according to Embodiment 1. As shown in FIG. As shown in FIG. 3 , cooler 21 constitutes refrigeration cycle 27 of refrigerator 1 together with compressor 24 , condenser 25 and decompression device 26 . In the refrigeration cycle 27, a compressor 24, a condenser 25, a decompression device 26 and a cooler 21 are connected in this order by refrigerant pipes. Solid arrows in FIG. 3 indicate directions in which the refrigerant circulates in the refrigeration cycle 27 .
 圧縮機24は、冷媒を圧縮して高温および高圧の気体の状態にする。圧縮機24は、図2に示すように、冷蔵庫1の背面側において冷却器室23の下部に設けられた機械室28に配置されている。圧縮機24から流出した高温および高圧の状態の冷媒は、凝縮器25に流入する。凝縮器25は、圧縮機24から流入した冷媒の熱を放散させて、冷媒を凝縮させる。凝縮器25は、例えばフィンアンドチューブ型熱交換器で構成される。凝縮器25で凝縮された冷媒は、減圧装置26に流入する。減圧装置26は、凝縮器25から流入した冷媒を減圧して液体と気体の二相の状態にする。減圧装置26は、例えば毛細管で構成される。減圧装置26から流出した液体と気体の二相の状態の冷媒は、冷却器21に流入する。冷却器21は、減圧装置26で減圧された二相状態の冷媒を蒸発させ、冷媒の蒸発による吸熱作用で冷却器21周辺の空気を冷却する。すなわち、冷却器21は、冷凍サイクル27において蒸発器として機能する。冷却器21は、例えばフィンアンドチューブ型熱交換器で構成される。冷却器21から流出した冷媒は、圧縮機24に戻る。以上の冷凍サイクル27によって、冷却器21周辺の空気が冷却され、各貯蔵室内を冷却する冷気が生成される。 The compressor 24 compresses the refrigerant into a high temperature and high pressure gas state. Compressor 24 is arranged in machine room 28 provided below cooler room 23 on the back side of refrigerator 1, as shown in FIG. The high-temperature and high-pressure refrigerant that has flowed out of the compressor 24 flows into the condenser 25 . The condenser 25 dissipates the heat of the refrigerant flowing from the compressor 24 to condense the refrigerant. The condenser 25 is composed of, for example, a fin-and-tube heat exchanger. The refrigerant condensed by the condenser 25 flows into the decompression device 26 . The decompression device 26 decompresses the refrigerant that has flowed in from the condenser 25 into a two-phase state of liquid and gas. The decompression device 26 is composed of, for example, a capillary tube. The two-phase refrigerant of liquid and gas that has flowed out of the decompression device 26 flows into the cooler 21 . The cooler 21 evaporates the two-phase refrigerant decompressed by the decompression device 26, and cools the air around the cooler 21 by the heat absorption effect of the evaporation of the refrigerant. That is, cooler 21 functions as an evaporator in refrigerating cycle 27 . The cooler 21 is composed of, for example, a fin-and-tube heat exchanger. The refrigerant that has flowed out of cooler 21 returns to compressor 24 . The refrigeration cycle 27 described above cools the air around the cooler 21 to generate cool air for cooling the inside of each storage chamber.
 再び図2に戻り、本体部2には、冷却器21によって冷却された空気を各貯蔵室に供給するための冷気風路29が設けられている。冷気風路29は、冷蔵室3、温度切替室4および冷凍室5の各々と冷却器室23とを接続する。冷却器室23において、空気は、送風機22の駆動によって冷却器21の下方から上方に向かう空気の流れ方向D1に流れるようになっている。冷気風路29の入口は、冷却器室23において送風機22の下流側に連通している。冷気風路29は、入口から途中で分岐して各貯蔵室に接続している。冷気風路29と冷蔵室3との接続部分には、冷気風路29の冷蔵室3への吹出口を開閉する冷蔵室ダンパ31が設けられている。冷蔵室ダンパ31の開度を変化させることによって、冷蔵室3に供給される冷気の風量を調節することができる。 Returning to FIG. 2 again, the main body 2 is provided with a cool air passage 29 for supplying the air cooled by the cooler 21 to each storage compartment. Cold air passage 29 connects each of refrigerator compartment 3 , temperature switchable compartment 4 and freezer compartment 5 to cooler compartment 23 . In the cooler chamber 23 , the air is caused to flow in an air flow direction D<b>1 upward from below the cooler 21 by driving the blower 22 . The inlet of the cool air passage 29 communicates with the downstream side of the blower 22 in the cooler chamber 23 . The cool air passage 29 branches from the inlet and connects to each storage compartment. A refrigerating chamber damper 31 that opens and closes the outlet of the cool air duct 29 to the refrigerating chamber 3 is provided at the connecting portion between the cool air duct 29 and the refrigerating chamber 3 . By changing the degree of opening of refrigerating compartment damper 31, the amount of cold air supplied to refrigerating compartment 3 can be adjusted.
 冷気風路29と温度切替室4との接続部分には、冷気風路29の温度切替室4への吹出口を開閉する温度切替室ダンパ32が設けられている。温度切替室ダンパ32の開度を変化させることによって、温度切替室4に供給される冷気の風量を調節することができる。冷気風路29と冷凍室5との接続部分には、冷気風路29の冷凍室5への吹出口を開閉する冷凍室ダンパ33が設けられている。冷凍室ダンパ33の開度を変化させることによって、冷凍室5に供給される冷気の風量を調節することができる。冷却器21によって生成された冷気は、送風機22によって冷気風路29に送風される。そして、冷気は、冷気風路29から冷蔵室ダンパ31を通って冷蔵室3に供給され、冷気風路29から温度切替室ダンパ32を通って温度切替室4に供給され、冷気風路29から冷凍室ダンパ33を通って冷凍室5に供給される。 A temperature switching chamber damper 32 that opens and closes the outlet of the cold air passage 29 to the temperature switching chamber 4 is provided at the connecting portion between the cold air passage 29 and the temperature switching chamber 4 . By changing the degree of opening of the temperature switchable chamber damper 32, the amount of cold air supplied to the temperature switchable chamber 4 can be adjusted. A freezer compartment damper 33 that opens and closes the outlet of the cold airflow path 29 to the freezer compartment 5 is provided at the connecting portion between the cool airway 29 and the freezer compartment 5 . By changing the degree of opening of the freezer compartment damper 33, the air volume of the cool air supplied to the freezer compartment 5 can be adjusted. Cool air generated by the cooler 21 is blown to the cool air path 29 by the blower 22 . The cool air is supplied from the cold air passage 29 through the cold air passage 29 to the refrigerator chamber 3 through the cold air passage 29 , through the temperature switching chamber damper 32 to the temperature switching chamber 4 , and from the cold air passage 29 . It is supplied to the freezer compartment 5 through the freezer compartment damper 33 .
 冷蔵室3には、冷蔵室3内の温度を検出するための冷蔵室温度センサ34が設けられている。冷蔵室温度センサ34は、例えば冷蔵室3の背面側の内壁面に設けられている。温度切替室4には、温度切替室4内の温度を検出するための温度切替室温度センサ35が設けられている。温度切替室温度センサ35は、例えば温度切替室4の背面側の内壁面に設けられている。冷凍室5には、冷凍室5内の温度を検出するための冷凍室温度センサ36が設けられている。冷凍室温度センサ36は、例えば冷凍室5の背面側の内壁面に設けられている。冷蔵室温度センサ34、温度切替室温度センサ35および冷凍室温度センサ36は、例えばサーミスタで構成される。 A refrigerator compartment temperature sensor 34 for detecting the temperature inside the refrigerator compartment 3 is provided in the refrigerator compartment 3 . The refrigerator compartment temperature sensor 34 is provided, for example, on the inner wall surface on the back side of the refrigerator compartment 3 . The temperature switchable chamber 4 is provided with a temperature switchable chamber temperature sensor 35 for detecting the temperature inside the temperature switchable chamber 4 . The temperature switchable chamber temperature sensor 35 is provided, for example, on the inner wall surface of the temperature switchable chamber 4 on the back side. A freezer compartment temperature sensor 36 for detecting the temperature in the freezer compartment 5 is provided in the freezer compartment 5 . The freezer compartment temperature sensor 36 is provided, for example, on the inner wall surface on the back side of the freezer compartment 5 . The refrigerator compartment temperature sensor 34, the temperature switching compartment temperature sensor 35, and the freezer compartment temperature sensor 36 are composed of, for example, thermistors.
 本体部2には、冷蔵室戻り風路40と、温度切替室戻り風路50と、冷凍室戻り風路60と、が設けられている。 The main body 2 is provided with a refrigerator compartment return air path 40 , a temperature switching chamber return air path 50 , and a freezer compartment return air path 60 .
 冷蔵室戻り風路40は、冷蔵室3内の空気を冷却器室23に導くための風路である。温度切替室戻り風路50は、温度切替室4内の空気を冷却器室23に導くための風路である。冷凍室戻り風路60は、冷凍室5内の空気を冷却器室23に導くための風路である。冷蔵室戻り風路40、温度切替室戻り風路50および冷凍室戻り風路60は、互いに独立して設けられている。 The refrigerating compartment return air duct 40 is an air duct for guiding the air inside the refrigerating compartment 3 to the cooler compartment 23 . The temperature switchable chamber return air passage 50 is an air passage for guiding the air inside the temperature switchable chamber 4 to the cooler chamber 23 . The freezer compartment return air duct 60 is an air duct for guiding the air inside the freezer compartment 5 to the cooler compartment 23 . The refrigerator compartment return air path 40, the temperature switching compartment return air path 50, and the freezer compartment return air path 60 are provided independently of each other.
 冷蔵室戻り風路40は、冷蔵室3に開口する冷蔵室戻り風路入口42を有する。冷蔵室戻り風路入口42は、冷蔵室3において冷気風路29の吹出口とは離れて設けられている。冷蔵室戻り風路入口42は、冷蔵室3の背面側の内壁面に設けられている。冷蔵室戻り風路40は、冷却器室23に開口する冷蔵室戻り口41を有する。冷蔵室戻り口41は、例えば、冷却器室23の前面側の壁である前面壁223に形成されている。冷蔵室戻り口41は、冷却器室23において空気の流れ方向D1に対して冷却器21よりも上流側の位置に設けられている。冷蔵室3内の空気は、冷蔵室戻り風路入口42から冷蔵室戻り風路40を通って、冷蔵室戻り口41から冷却器室23へ流入する。 The refrigerating compartment return air duct 40 has a refrigerating compartment return air duct entrance 42 that opens to the refrigerating compartment 3 . The refrigerating-compartment return air passage inlet 42 is provided in the refrigerating chamber 3 away from the outlet of the cool air passage 29 . A refrigerating compartment return air passage inlet 42 is provided on the inner wall surface of the refrigerating compartment 3 on the back side. The refrigerating compartment return air passage 40 has a refrigerating compartment return port 41 that opens to the cooler compartment 23 . The refrigerator compartment return port 41 is formed, for example, in a front wall 223 that is a wall on the front side of the cooler compartment 23 . The refrigerating chamber return port 41 is provided upstream of the cooler 21 in the cooler chamber 23 with respect to the air flow direction D1. The air in the refrigerator compartment 3 flows from the refrigerator compartment return air path entrance 42 through the refrigerator compartment return air path 40 and into the cooler chamber 23 from the refrigerator compartment return port 41 .
 温度切替室戻り風路50は、複数設けられており、少なくとも2つ設けられている。温度切替室戻り風路50は、例えば、第1温度切替室戻り風路50A、第2温度切替室戻り風路50Bおよび第3温度切替室戻り風路50Cを含む。温度切替室戻り風路50は、温度切替室4に開口する温度切替室戻り風路入口52を有する。温度切替室戻り風路50は複数設けられるが、温度切替室戻り風路入口52は1つだけ設けられている。温度切替室戻り風路入口52は、複数の温度切替室戻り風路50に対して共通に構成されているためである。 A plurality of temperature switching chamber return air passages 50 are provided, and at least two are provided. The temperature switchable chamber return air passage 50 includes, for example, a first temperature switchable chamber return air passage 50A, a second temperature switchable chamber return air passage 50B, and a third temperature switchable chamber return air passage 50C. The temperature switchable chamber return air passage 50 has a temperature switchable chamber return air passage inlet 52 that opens into the temperature switchable chamber 4 . A plurality of temperature switchable chamber return air passages 50 are provided, but only one temperature switchable chamber return air passage inlet 52 is provided. This is because the temperature switchable chamber return air passage inlet 52 is configured in common for the plurality of temperature switchable chamber return air passages 50 .
 具体的には、温度切替室戻り風路50は、1つの温度切替室戻り風路入口52から冷却器室23に至る途中で分岐して温度切替室戻り口51の各々につながるように構成されている。温度切替室戻り風路入口52は、温度切替室4の背面側の内壁面に設けられている。温度切替室戻り風路入口52は、温度切替室4において冷気風路29の吹出口とは離れて設けられている。温度切替室4内の空気は、温度切替室戻り風路入口52から複数の温度切替室戻り風路50のいずれか1つを通って、温度切替室戻り口51から冷却器室23へ流入する。なお、温度切替室戻り風路50がそれぞれ独立した温度切替室戻り風路入口52を有し、各温度切替室戻り風路50が互いに独立して構成されていてもよい。 Specifically, the temperature switchable chamber return air passage 50 is configured to branch from one temperature switchable chamber return air passage inlet 52 to the cooler chamber 23 and connect to each of the temperature switchable chamber return ports 51 . ing. The temperature switchable chamber return air passage inlet 52 is provided on the inner wall surface of the temperature switchable chamber 4 on the back side. The temperature switchable chamber return air passage inlet 52 is provided in the temperature switchable chamber 4 apart from the outlet of the cold air passage 29 . The air in the temperature switchable chamber 4 flows from the temperature switchable chamber return air passage inlet 52 through any one of the plurality of temperature switchable chamber return air passages 50 into the cooler chamber 23 from the temperature switchable chamber return port 51 . . The temperature switchable chamber return air passages 50 may each have an independent temperature switchable chamber return air passage inlet 52, and each temperature switchable chamber return air passage 50 may be configured independently of each other.
 また、温度切替室戻り風路50は、冷却器室23の前面壁223に開口する温度切替室戻り口51を有する。第1温度切替室戻り風路50Aは、第1温度切替室戻り口51Aを有し、第2温度切替室戻り風路50Bは、第2温度切替室戻り口51Bを有し、第3温度切替室戻り風路50Cは、第3温度切替室戻り口51Cを有する。各温度切替室戻り口51は、冷却器室23において冷却器21に対向しかつ空気の流れ方向D1に対して互いに異なる位置に設けられている。冷却器室23において空気の流れ方向D1に対して最も下流側には、第1温度切替室戻り口51Aが配置されている。第1温度切替室戻り口51Aの上流側には、第2温度切替室戻り口51Bが配置されている。第2温度切替室戻り口51Bの上流側には、第3温度切替室戻り口51Cが配置されている。第1温度切替室戻り口51A、第2温度切替室戻り口51Bおよび第3温度切替室戻り口51Cはいずれも、空気の流れ方向D1に対して冷蔵室戻り口41の下流側かつ後述する冷凍室戻り口61の上流側に配置されている。つまり、各温度切替室戻り口51は、空気の流れ方向D1の上流側から下流側に向かって形成されている。 Also, the temperature switchable chamber return air passage 50 has a temperature switchable chamber return port 51 that opens to the front wall 223 of the cooler chamber 23 . The first temperature switchable chamber return air passage 50A has a first temperature switchable chamber return port 51A, the second temperature switchable chamber return air passage 50B has a second temperature switchable chamber return port 51B, and a third temperature switchable chamber return port 51B. The chamber return air passage 50C has a third temperature switching chamber return port 51C. Each temperature switching chamber return port 51 is provided in the cooler chamber 23 at different positions facing the cooler 21 with respect to the air flow direction D1. 51 A of 1st temperature switching chamber return ports are arrange|positioned in the cooler chamber 23 most downstream with respect to the flow direction D1 of air. A second temperature switchable chamber return port 51B is arranged upstream of the first temperature switchable chamber return port 51A. A third temperature switchable chamber return port 51C is arranged upstream of the second temperature switchable chamber return port 51B. All of the first temperature switchable chamber return port 51A, the second temperature switchable chamber return port 51B, and the third temperature switchable chamber return port 51C are located downstream of the refrigerating chamber return port 41 with respect to the air flow direction D1 and on the below-described refrigerating chamber return port. It is arranged upstream of the chamber return port 61 . That is, each temperature switchable chamber return port 51 is formed from the upstream side toward the downstream side in the air flow direction D1.
 冷凍室戻り風路60は、冷凍室5に開口する冷凍室戻り風路入口62を有する。冷凍室戻り風路入口62は、冷凍室5において冷気風路29の吹出口とは離れて設けられている。冷凍室戻り風路入口62は、冷凍室5の背面側の内壁面に設けられていればよい。冷凍室戻り風路60は、冷却器室23の前面壁223に開口する冷凍室戻り口61を有する。冷凍室戻り口61は、冷却器室23において空気の流れ方向D1に対して冷蔵室戻り口41の下流側であって冷却器21に対向する位置に設けられている。冷凍室戻り口61は、冷却器室23において空気の流れ方向D1に対して冷蔵室戻り口41の下流側であり、さらに第1温度切替室戻り口51Aの下流側に設けられている。冷凍室5内の空気は、冷凍室戻り風路入口62から冷凍室戻り風路60を通って、冷凍室戻り口61から冷却器室23へ流入する。 The freezer compartment return air duct 60 has a freezer compartment return air duct inlet 62 that opens to the freezer compartment 5 . The freezer compartment return air passage inlet 62 is provided in the freezer compartment 5 away from the outlet of the cool air passage 29 . The freezer compartment return air passage entrance 62 may be provided on the inner wall surface on the back side of the freezer compartment 5 . The freezer compartment return air passage 60 has a freezer compartment return port 61 that opens to the front wall 223 of the cooler compartment 23 . The freezer compartment return port 61 is provided at a position facing the cooler 21 in the cooler chamber 23 on the downstream side of the refrigerator compartment return port 41 with respect to the air flow direction D<b>1 . The freezer compartment return port 61 is provided downstream of the refrigerator compartment return port 41 in the air flow direction D1 in the cooler chamber 23 and further downstream of the first temperature switching chamber return port 51A. The air in the freezer compartment 5 flows from the freezer compartment return air path inlet 62 through the freezer compartment return air path 60 and into the cooler chamber 23 from the freezer compartment return port 61 .
 図4は、実施の形態1に係る冷蔵庫1の冷却器室23の構造を模式的に示す背面図である。図4を参照して、冷却器室23内における冷蔵室戻り口41、温度切替室戻り口51および冷凍室戻り口61の配置について詳述する。 4 is a rear view schematically showing the structure of the cooler chamber 23 of the refrigerator 1 according to Embodiment 1. FIG. The arrangement of the refrigerator compartment return port 41, the temperature switching compartment return port 51, and the freezer compartment return port 61 in the cooler chamber 23 will be described in detail with reference to FIG.
 図4に示すように、冷却器室23内に配置された冷却器21は、複数のフィン211が設けられた複数の伝熱管71と、U字状に形成された複数の連結管72と、を有する。伝熱管71は、上下方向に配列されている。伝熱管71は、例えば、上下方向に沿って8本配列されている。上下に隣接する2本の伝熱管71は、左右方向の一端が連結管72によって連結されている。これにより、ひと繋がりの冷媒管が形成されている。冷却器21の冷媒管内を流通する冷媒は、最下段の伝熱管71につながる冷却器入口側73から、最上段の伝熱管71につながる冷却器出口側74へ流れる。空気の流れ方向D1は、冷却器21の下方から上方に向かう方向であるため、最下段の伝熱管71は、空気の流れ方向D1に対して複数の伝熱管71のうち最上流側に配置されている。また、最上段の伝熱管71は、空気の流れ方向D1に対して複数の伝熱管71のうち最下流側に配置されている。よって、減圧装置26から流入してくる低温の気液二相状態の冷媒は、冷却器入口側73から空気の流れ方向D1に対して最上流側の伝熱管71を流通し、段々と下流側の伝熱管71を流れて冷却器出口側74に至る。冷却器21を流れる二相状態の冷媒は、冷却器入口側73から冷却器出口側74に進むにつれて、伝熱管71の外側を流れる空気と熱交換を行う。これにより、二相状態の冷媒は、冷媒内の液相が蒸発しながら伝熱管71内を流れる。通常、冷却器入口側73における冷媒の温度は、冷却器出口側74における冷媒の温度よりも低い。 As shown in FIG. 4, the cooler 21 arranged in the cooler chamber 23 includes a plurality of heat transfer tubes 71 provided with a plurality of fins 211, a plurality of U-shaped connecting tubes 72, have The heat transfer tubes 71 are arranged vertically. For example, eight heat transfer tubes 71 are arranged in the vertical direction. Two vertically adjacent heat transfer tubes 71 are connected at one end in the left-right direction by a connecting tube 72 . Thereby, a continuous refrigerant pipe is formed. The refrigerant flowing through the refrigerant pipes of the cooler 21 flows from the cooler inlet side 73 connected to the lowermost heat transfer pipe 71 to the cooler outlet side 74 connected to the uppermost heat transfer pipe 71 . Since the air flow direction D1 is the direction from the bottom to the top of the cooler 21, the lowest heat transfer tube 71 is arranged on the most upstream side among the plurality of heat transfer tubes 71 with respect to the air flow direction D1. ing. In addition, the heat transfer tube 71 in the uppermost stage is arranged on the most downstream side among the plurality of heat transfer tubes 71 with respect to the air flow direction D1. Therefore, the low-temperature gas-liquid two-phase refrigerant flowing from the pressure reducing device 26 flows from the cooler inlet side 73 through the heat transfer tubes 71 on the most upstream side in the air flow direction D1, and gradually flows downstream. heat transfer tube 71 and reaches the cooler outlet side 74 . The two-phase refrigerant flowing through the cooler 21 exchanges heat with the air flowing outside the heat transfer tubes 71 as it proceeds from the cooler inlet side 73 to the cooler outlet side 74 . As a result, the two-phase refrigerant flows through the heat transfer tubes 71 while the liquid phase in the refrigerant evaporates. Typically, the temperature of the coolant at the cooler inlet side 73 is lower than the temperature of the coolant at the cooler outlet side 74 .
 冷却器室23には、冷却器室最下部領域75、冷却器下部領域76、冷却器中下部領域77、冷却器中上部領域78および冷却器上部領域79の5つの領域が設定されている。冷却器室最下部領域75は、冷却器室23において冷却器21の下方に位置する領域であり、空気の流れ方向D1に対しては冷却器室23において最上流側に位置する領域である。冷却器下部領域76、冷却器中下部領域77、冷却器中上部領域78および冷却器上部領域79は、いずれも冷却器室23において冷却器21と重なる位置にある領域である。冷却器下部領域76が最も下方に位置し、冷却器下部領域76の上方に冷却器中下部領域77が位置し、冷却器中下部領域77の上方に冷却器中上部領域78が位置している。冷却器上部領域79は、これら4つの領域のうち最も上方に位置している。空気の流れ方向D1に対しては、上流側から冷却器下部領域76、冷却器中下部領域77、冷却器中上部領域78、冷却器上部領域79が、この順に並んでいる。 In the cooler chamber 23, five regions are set: cooler chamber bottom region 75, cooler lower region 76, cooler middle lower region 77, cooler middle upper region 78, and cooler upper region 79. The lowermost region 75 of the cooler chamber is a region located below the cooler 21 in the cooler chamber 23, and is a region located on the most upstream side in the cooler chamber 23 with respect to the air flow direction D1. The lower cooler region 76 , the middle lower cooler region 77 , the middle upper cooler region 78 , and the upper cooler region 79 are all regions that overlap the cooler 21 in the cooler chamber 23 . A cooler lower region 76 is positioned at the lowest position, a lower middle cooler region 77 is positioned above the lower cooler region 76, and an upper middle cooler region 78 is positioned above the lower middle cooler region 77. . A cooler top region 79 is the uppermost of these four regions. With respect to the air flow direction D1, a lower cooler region 76, a lower middle cooler region 77, an upper middle cooler region 78, and an upper cooler region 79 are arranged in this order from the upstream side.
 冷蔵室戻り口41は、冷却器室23において空気の流れ方向D1に対して冷却器21の上流側の位置として、例えば冷却器室最下部領域75に設けられる。また、冷凍室戻り口61は、冷却器室23において空気の流れ方向D1に対して冷蔵室戻り口41の下流側であって冷却器21に対向する位置として、例えば冷却器上部領域79に設けられる。複数の温度切替室戻り口51は、冷却器室23において冷却器21に対向しかつ空気の流れ方向D1に対して互いに異なる位置として、例えば冷却器下部領域76、冷却器中下部領域77および冷却器中上部領域78にそれぞれ設けられる。具体的には、第1温度切替室戻り口51Aは、冷却器中上部領域78に設けられ、第2温度切替室戻り口51Bは、冷却器中下部領域77に設けられ、第3温度切替室戻り口51Cは、冷却器下部領域76に設けられる。 The refrigerating chamber return port 41 is provided, for example, in the lowermost region 75 of the cooler chamber as a position on the upstream side of the cooler 21 with respect to the air flow direction D1 in the cooler chamber 23 . The freezer compartment return port 61 is provided, for example, in the cooler upper region 79 as a position facing the cooler 21 downstream of the refrigerator compartment return port 41 with respect to the air flow direction D1 in the cooler chamber 23 . be done. A plurality of temperature switching chamber return ports 51 are provided in the cooler chamber 23 at positions opposite to the cooler 21 and different from each other with respect to the air flow direction D1. They are provided respectively in the upper region 78 of the vessel. Specifically, the first temperature switchable chamber return port 51A is provided in the cooler middle upper region 78, the second temperature switchable chamber return port 51B is provided in the cooler middle lower region 77, and the third temperature switchable chamber return port 51B is provided in the cooler middle upper region 77. A return port 51</b>C is provided in the cooler lower region 76 .
 このような配置の違いにより、各貯蔵室から冷却器室23に戻る空気が冷却器21に流入してから流出するまでの熱交換を行う距離である「熱交換距離」が変化し、各貯蔵室から戻る空気と冷却器21とが熱交換を行う伝熱面積が変化する。通常、冷蔵庫1内の温度には、冷蔵室3内の温度>温度切替室4内の温度>冷凍室5内の温度という関係がある。このため、冷蔵室3から冷却器室23に戻る空気である「冷蔵室戻り空気」を最も多く冷却する必要があり、次いで温度切替室4から冷却器室23に戻る空気である「温度切替室戻り空気」を多く冷却する必要がある。そして、冷凍室5から冷却器室23に戻る空気である「冷凍室戻り空気」を冷却する量は、最小になると考えられる。 Due to such a difference in arrangement, the "heat exchange distance", which is the distance for heat exchange between the air returning from each storage compartment to the cooler compartment 23 flowing into the cooler 21 and flowing out, changes. The heat transfer area where the air returning from the room and the cooler 21 exchange heat changes. Normally, the temperature inside the refrigerator 1 has a relationship of temperature inside the refrigerator compartment 3>temperature inside the temperature switchable compartment 4>temperature inside the freezer compartment 5. FIG. For this reason, it is necessary to cool the "refrigerating chamber return air", which is the air returning from the refrigerating chamber 3 to the cooler chamber 23, the most, followed by the "temperature switching chamber", which is the air returning from the temperature switching chamber 4 to the cooler chamber 23. It is necessary to cool a lot of "return air". Then, the amount of cooling of the "freezer-compartment return air", which is the air returning from the freezer compartment 5 to the cooler compartment 23, is considered to be minimized.
 冷蔵室戻り風路40の冷蔵室戻り口41を冷却器室最下部領域75に設けることにより、冷蔵室戻り空気は、冷却器21の入口から出口まで、すなわち空気の流れ方向D1における冷却器21の上流側の端部から下流側の端部まで通過する。よって、冷蔵室戻り空気と冷却器21との熱交換距離が最長になり、冷却器21との伝熱面積も最大になる。 By providing the refrigerating chamber return port 41 of the refrigerating chamber return air passage 40 in the cooler chamber lowermost region 75, the refrigerating chamber return air flows from the inlet to the outlet of the cooler 21, that is, the cooler 21 in the air flow direction D1. from its upstream end to its downstream end. Therefore, the heat exchange distance between the refrigerating compartment return air and the cooler 21 becomes the longest, and the heat transfer area with the cooler 21 also becomes the largest.
 一方、冷凍室戻り風路60の冷凍室戻り口61を冷却器上部領域79に設けることにより、冷凍室戻り空気は、空気の流れ方向D1における冷却器21の上流側の端部と下流側の端部との間の部分から下流側の端部まで通過する。よって、冷凍室戻り空気と冷却器21との熱交換距離が比較的短くなり、冷却器21との伝熱面積を抑制することができる。これにより、冷凍室戻り空気が冷却器21によって冷やされ過ぎることが防止され、必要最小限の熱交換が行われることで、冷却器21の熱負荷が低減される。 On the other hand, by providing the freezer-compartment return port 61 of the freezer-compartment return air passage 60 in the cooler upper region 79, the freezer-compartment return air is distributed between the upstream end of the cooler 21 and the downstream end of the cooler 21 in the air flow direction D1. It passes from the part between the ends to the downstream end. Therefore, the heat exchange distance between the freezer compartment return air and the cooler 21 becomes relatively short, and the heat transfer area with the cooler 21 can be suppressed. This prevents the freezer compartment return air from being excessively cooled by the cooler 21 , and the heat load of the cooler 21 is reduced by performing the minimum necessary heat exchange.
 さらに、温度切替室戻り風路50の温度切替室戻り口51は、冷却器下部領域76から冷却器中上部領域78までの間に設けられている。そのため、温度切替室戻り空気と冷却器21との熱交換距離が、冷蔵室戻り空気と冷却器21との熱交換距離よりも短く、冷凍室戻り空気と冷却器21との熱交換距離よりも長くなる。これにより、冷却器21における冷蔵室戻り空気の冷却量と冷凍室戻り空気の冷却量の間の冷却量で、温度切替室戻り空気を冷却することができる。そして、このように熱交換量を最適化し、最小限に抑えることで、冷却器21と空気との温度差も最適化でき、冷却器21への着霜を抑制することが可能となる。 Furthermore, the temperature switchable chamber return port 51 of the temperature switchable chamber return air passage 50 is provided between the cooler lower region 76 and the cooler middle upper region 78 . Therefore, the heat exchange distance between the temperature switchable compartment return air and the cooler 21 is shorter than the heat exchange distance between the refrigerating compartment return air and the cooler 21, and is longer than the heat exchange distance between the freezer compartment return air and the cooler 21. become longer. As a result, the temperature switchable chamber return air can be cooled with a cooling amount between the cooling amount of the refrigerating compartment return air and the cooling amount of the freezer compartment return air in the cooler 21 . By optimizing and minimizing the heat exchange amount in this manner, the temperature difference between the cooler 21 and the air can be optimized, and frost formation on the cooler 21 can be suppressed.
 図5は、実施の形態1に係る冷蔵庫1の冷却器室23の内部を説明する模式図である。図5に示すように、冷却器室23の冷却器21に取り付けられた複数のフィン211は、それぞれ、冷却器室23の奥行き方向の断面において直方体形状のプレート型である。複数のフィン211は、それぞれ、奥行き方向の断面における長手方向が冷蔵庫1の奥行き方向に沿うように配置されている。複数のフィン211は、それぞれ、奥行き方向の断面における短手方向が冷蔵庫1の高さ方向に沿うように配置されている。複数のフィン211は、冷蔵庫1の高さ方向に積層されている。複数のフィン211は、冷却器21が冷却器室23に収容された状態で、前面が冷却器室23の前面側の壁である前面壁223に対向している。複数のフィン211は、冷却器室23の前面壁223に形成された温度切替室戻り口51と対向するように配置されている。また、複数のフィン211は、一部が冷却器室23の前面壁223に形成された冷凍室戻り口61と対向するように配置されていている。また、複数のフィン211は、冷却器21が冷却器室23に収容された状態で、背面が、冷却器室23の背面側の壁である背面壁224に対向している。 FIG. 5 is a schematic diagram explaining the inside of the cooler chamber 23 of the refrigerator 1 according to Embodiment 1. FIG. As shown in FIG. 5 , each of the plurality of fins 211 attached to the cooler 21 of the cooler chamber 23 has a rectangular parallelepiped plate shape in cross section in the depth direction of the cooler chamber 23 . Each of the plurality of fins 211 is arranged such that the longitudinal direction of the section in the depth direction is along the depth direction of the refrigerator 1 . Each of the plurality of fins 211 is arranged such that the lateral direction of the cross section in the depth direction is along the height direction of the refrigerator 1 . A plurality of fins 211 are stacked in the height direction of refrigerator 1 . The plurality of fins 211 face a front wall 223 , which is a wall on the front side of the cooler chamber 23 , in a state where the cooler 21 is housed in the cooler chamber 23 . The plurality of fins 211 are arranged so as to face the temperature switching chamber return port 51 formed in the front wall 223 of the cooler chamber 23 . Further, the plurality of fins 211 are arranged so as to partially face the freezer compartment return port 61 formed in the front wall 223 of the cooler compartment 23 . Further, the rear surfaces of the plurality of fins 211 face a rear wall 224 that is the rear wall of the cooler chamber 23 when the cooler 21 is accommodated in the cooler chamber 23 .
 冷却器21に取り付けられた複数のフィン211は、切欠きフィン213と、平滑フィン214とを含む。切欠きフィン213は、第3温度切替室戻り口51Cと対向する位置に配置されている。第3温度切替室戻り口51Cは、複数の温度切替室戻り口51のうち、空気の流れ方向D1の最も上流側に位置している。切欠きフィン213は、直方体形状の角部の切欠き部分212aが切り取られた断面である切欠き面を有する。具体的には、切欠きフィン213は、前面壁223に対向している面である前面の下部の一部から、下面にかけた角部である切欠き部分212aが切り取られた形状である。切欠きフィン213は、冷却器室23の奥行き方向の断面において台形状である。 A plurality of fins 211 attached to the cooler 21 include notched fins 213 and smooth fins 214 . The notched fin 213 is arranged at a position facing the third temperature switching chamber return port 51C. The third temperature switchable chamber return port 51C is located on the most upstream side of the plurality of temperature switchable chamber return ports 51 in the air flow direction D1. The notched fin 213 has a notched surface which is a cross section obtained by cutting out the notched portion 212a of the rectangular parallelepiped corner. Specifically, the notched fin 213 has a shape in which a notched portion 212a, which is a corner portion extending to the lower surface, is cut from a portion of the lower portion of the front surface, which is the surface facing the front wall 223. As shown in FIG. The notched fin 213 has a trapezoidal shape in the cross section of the cooler chamber 23 in the depth direction.
 平滑フィン214は、第1温度切替室戻り口51Aに対向する位置に配置されている。第1温度切替室戻り口51Aは、複数の温度切替室戻り口51のうち、空気の流れ方向D1の最も下流側に位置している。平滑フィン214は、冷却器室23の奥行き方向の断面において、切欠き部分212aが切り取られた形状ではない平行四辺形状である。平滑フィン214の面積は、冷却器室23の奥行き方向の断面において、切欠きフィン213よりも大きい。 The smooth fin 214 is arranged at a position facing the first temperature switching chamber return port 51A. The first temperature switchable chamber return port 51A is positioned on the most downstream side of the plurality of temperature switchable chamber return ports 51 in the air flow direction D1. The smooth fin 214 has a parallelogram shape in which the cutout portion 212a is not cut in the cross section of the cooler chamber 23 in the depth direction. The area of the smooth fins 214 is larger than that of the notched fins 213 in the cross section of the cooler chamber 23 in the depth direction.
 このように、複数のフィン211は、冷却器室23の奥行き方向の断面において、形状が異なり、面積も異なる2種類を含む。なお、空気の流れ方向D1において、第1温度切替室戻り口51Aよりも上流側で、且つ、第3温度切替室戻り口51Cよりも下流側に位置する第2温度切替室戻り口51Bに対向する位置には、切欠きフィン213が配置されていればよい。また、空気の流れ方向D1において、第1温度切替室戻り口51Aよりも下流側であって、最下流に位置する第2温度切替室戻り口51Bに対向する位置には、平滑フィン214が配置されていればよい。 In this way, the plurality of fins 211 includes two types of fins 211 having different shapes and different areas in the cross section of the cooler chamber 23 in the depth direction. In addition, in the air flow direction D1, it faces the second temperature switchable chamber return port 51B located upstream of the first temperature switchable chamber return port 51A and downstream of the third temperature switchable chamber return port 51C. The notched fin 213 may be arranged at the position where the cutout fin 213 is formed. In addition, a smooth fin 214 is arranged at a position downstream of the first temperature switchable chamber return port 51A in the air flow direction D1 and facing the second temperature switchable chamber return port 51B located at the most downstream position. It is good if it is.
 また、冷蔵庫1は、図4及び図5に示すように、風路切替手段80を備えている。風路切替手段80は、温度切替室4内の空気が冷却器室23に戻る風路を、複数の温度切替室戻り風路50のうちのいずれか1つに切り替える。風路切替手段80は、例えば、温度切替室戻り風路50を開閉する切替機構としてのダンパで構成されている。具体的には、風路切替手段80は、第1温度切替室戻り風路ダンパ81Aと、第2温度切替室戻り風路ダンパ81Bと、第3温度切替室戻り風路ダンパ81Cと、を有している。第1温度切替室戻り風路ダンパ81Aは、第1温度切替室戻り風路50Aに設けられており、第1温度切替室戻り風路50Aの第1温度切替室戻り口51Aを開閉するダンパである。第2温度切替室戻り風路ダンパ81Bは、第2温度切替室戻り風路50Bに設けられており、第2温度切替室戻り風路50Bの第2温度切替室戻り口51Bを開閉するダンパである。第3温度切替室戻り風路ダンパ81Cは、第3温度切替室戻り風路50Cに設けられており、第3温度切替室戻り風路50Cの第3温度切替室戻り口51Cを開閉するダンパである。風路切替手段80は、第1温度切替室戻り口51A、第2温度切替室戻り口51Bおよび第3温度切替室戻り口51Cのうちのいずれか1つを開き、残りの2つを閉じることで、複数の温度切替室戻り風路50のうちのいずれか1つに切り替えることができる。 In addition, the refrigerator 1 is provided with air passage switching means 80, as shown in FIGS. The air path switching means 80 switches the air path through which the air in the temperature switchable chamber 4 returns to the cooler chamber 23 to any one of the plurality of temperature switchable chamber return air paths 50 . The air passage switching means 80 is composed of, for example, a damper as a switching mechanism for opening and closing the temperature switching chamber return air passage 50 . Specifically, the air passage switching means 80 has a first temperature switching chamber return air passage damper 81A, a second temperature switching chamber return air passage damper 81B, and a third temperature switching chamber return air passage damper 81C. is doing. The first temperature switchable chamber return air passage damper 81A is provided in the first temperature switchable chamber return air passage 50A, and is a damper that opens and closes the first temperature switchable chamber return port 51A of the first temperature switchable chamber return air passage 50A. be. The second temperature switchable chamber return air passage damper 81B is provided in the second temperature switchable chamber return air passage 50B, and is a damper that opens and closes the second temperature switchable chamber return port 51B of the second temperature switchable chamber return air passage 50B. be. The third temperature switchable chamber return air passage damper 81C is provided in the third temperature switchable chamber return air passage 50C, and is a damper that opens and closes the third temperature switchable chamber return port 51C of the third temperature switchable chamber return air passage 50C. be. The air passage switching means 80 opens any one of the first temperature switchable chamber return port 51A, the second temperature switchable chamber return port 51B, and the third temperature switchable chamber return port 51C, and closes the remaining two. , it is possible to switch to any one of the plurality of temperature switchable chamber return air paths 50 .
 図6は、実施の形態1に係る冷蔵庫1の制御構成を示すブロック図である。図6に示すように、制御装置90は、操作パネル6、送風機22、圧縮機24、冷蔵室ダンパ31、温度切替室ダンパ32、冷凍室ダンパ33、冷蔵室温度センサ34、温度切替室温度センサ35、冷凍室温度センサ36、第1温度切替室戻り風路ダンパ81A、第2温度切替室戻り風路ダンパ81Bおよび第3温度切替室戻り風路ダンパ81Cのそれぞれと、例えば信号線により電気的に接続されている。制御装置90には、冷蔵室温度センサ34、温度切替室温度センサ35および冷凍室温度センサ36の各々による検出信号と、操作パネル6の操作部からの操作信号と、が入力される。制御装置90は、入力される各信号に基づいて、冷蔵室3、温度切替室4および冷凍室5の室内がそれぞれ設定された温度に維持されるように、予め記憶された動作プログラムに従って、圧縮機24の出力、送風機22の送風量および各ダンパの開度を制御する。制御装置90は、入力される各信号に基づいて、操作パネル6の表示部に各貯蔵室の温度などに関する表示信号を出力する。 FIG. 6 is a block diagram showing the control configuration of refrigerator 1 according to Embodiment 1. As shown in FIG. As shown in FIG. 6, the control device 90 includes the operation panel 6, the blower 22, the compressor 24, the refrigerator damper 31, the temperature switchable damper 32, the freezer damper 33, the refrigerator temperature sensor 34, the temperature switchable chamber temperature sensor. 35, the freezer compartment temperature sensor 36, the first temperature switching compartment return air passage damper 81A, the second temperature switching compartment return air passage damper 81B, and the third temperature switching chamber return air passage damper 81C, respectively, are electrically connected, for example, by signal lines. It is connected to the. Control device 90 receives detection signals from each of refrigerator compartment temperature sensor 34 , temperature switching compartment temperature sensor 35 and freezer compartment temperature sensor 36 and an operation signal from the operation section of operation panel 6 . The control device 90 performs compression in accordance with a pre-stored operation program so that the interiors of the refrigerator compartment 3, the temperature switchable compartment 4, and the freezer compartment 5 are maintained at the respective set temperatures based on the respective input signals. It controls the output of the air blower 24, the amount of air blown by the air blower 22, and the opening of each damper. The control device 90 outputs a display signal regarding the temperature of each storage chamber to the display section of the operation panel 6 based on each input signal.
 図7は、実施の形態1に係る冷蔵庫1の制御装置90による温度制御に関連する機能ブロック図である。図7に示すように、本実施の形態では、制御装置90は、温度設定部91と、温度比較部92と、機器制御部93と、記憶部94と、を有する。記憶部94には、温度制御に用いられる各種データおよび動作プログラムが記憶されている。 FIG. 7 is a functional block diagram related to temperature control by the control device 90 of the refrigerator 1 according to Embodiment 1. As shown in FIG. As shown in FIG. 7 , in this embodiment, the control device 90 has a temperature setting section 91 , a temperature comparison section 92 , a device control section 93 and a storage section 94 . The storage unit 94 stores various data and operation programs used for temperature control.
 温度設定部91は、操作パネル6の操作部からの操作信号に従って、冷蔵室3、温度切替室4および冷凍室5の各貯蔵室の設定温度を設定する。温度比較部92は、温度設定部91によって設定された各貯蔵室の設定温度と、各貯蔵室に設けられた温度センサによって検出された室内温度とを比較し、比較結果を機器制御部93へ出力する。温度比較部92は、冷蔵室3の設定温度と冷蔵室温度センサ34によって検出された室内温度とを比較する。また、温度比較部92は、温度切替室4の設定温度と温度切替室温度センサ35によって検出された室内温度とを比較する。また、温度比較部92は、冷凍室5の設定温度と冷凍室温度センサ36によって検出された室内温度とを比較する。機器制御部93は、温度比較部92による比較結果に基づき、各貯蔵室に設けられた温度センサによって検出された室内温度が設定温度となるように、圧縮機24、送風機22、冷蔵室ダンパ31、温度切替室ダンパ32および冷凍室ダンパ33を制御する。 The temperature setting unit 91 sets the preset temperatures of the refrigerator compartment 3 , the temperature switching compartment 4 and the freezer compartment 5 according to the operation signal from the operation part of the operation panel 6 . The temperature comparison unit 92 compares the set temperature of each storage compartment set by the temperature setting unit 91 with the room temperature detected by the temperature sensor provided in each storage compartment, and outputs the comparison result to the equipment control unit 93. Output. A temperature comparison unit 92 compares the set temperature of the refrigerator compartment 3 with the room temperature detected by the refrigerator compartment temperature sensor 34 . Also, the temperature comparison unit 92 compares the set temperature of the temperature switchable chamber 4 with the indoor temperature detected by the temperature switchable chamber temperature sensor 35 . Also, the temperature comparison unit 92 compares the set temperature of the freezer compartment 5 with the room temperature detected by the freezer compartment temperature sensor 36 . Based on the result of the comparison by the temperature comparing unit 92, the device control unit 93 controls the compressor 24, the blower 22, and the cold storage damper 31 so that the room temperature detected by the temperature sensor provided in each storage room becomes the set temperature. , the temperature switching compartment damper 32 and the freezer compartment damper 33 .
 制御装置90は、温度切替室4の基準温度に基づいて、風路切替手段80に温度切替室戻り風路50を切り替えさせる制御を行う。温度切替室4の基準温度としては、温度設定部91によって設定された温度切替室4の設定温度が用いられ、この設定温度に基づいて、切り替える温度切替室戻り風路50が選択される。記憶部94には、例えば、温度切替室4の設定温度とその設定温度に適した温度切替室戻り風路50とが関連付けられたデータが予め記憶されている。機器制御部93は、温度設定部91によって設定された温度切替室4の設定温度と記憶部94に記憶されている当該データとを参照して、切り替える温度切替室戻り風路50を選択する。そして、機器制御部93は、選択した温度切替室戻り風路50に切り替わるように風路切替手段80の第1温度切替室戻り風路ダンパ81A、第2温度切替室戻り風路ダンパ81Bおよび第3温度切替室戻り風路ダンパ81Cを制御する。 The control device 90 controls the air passage switching means 80 to switch the temperature switchable chamber return air passage 50 based on the reference temperature of the temperature switchable chamber 4 . As the reference temperature of the temperature switchable chamber 4, the set temperature of the temperature switchable chamber 4 set by the temperature setting unit 91 is used, and the temperature switchable chamber return air passage 50 to be switched is selected based on this set temperature. In the storage unit 94, for example, data in which the set temperature of the temperature switchable chamber 4 and the temperature switchable chamber return air passage 50 suitable for the set temperature are associated is stored in advance. The equipment control section 93 refers to the set temperature of the temperature switchable chamber 4 set by the temperature setting section 91 and the data stored in the storage section 94, and selects the temperature switchable chamber return air passage 50 to be switched. Then, the equipment control section 93 controls the first temperature switchable chamber return air passage damper 81A, the second temperature switchable chamber return air passage damper 81B, and the second temperature switchable chamber return air passage damper 81B of the air passage switching means 80 so as to switch to the selected temperature switchable chamber return air passage 50. Controls the 3-temperature switching chamber return air passage damper 81C.
 温度切替室4の設定温度と温度切替室戻り風路50とは、例えば次のように関連付けられる。複数の温度切替室戻り風路50はそれぞれ、空気の流れ方向D1に対して互いに異なる位置に設けられた温度切替室戻り口51を有している。温度切替室4の設定温度が相対的に高い場合には、空気の流れ方向D1においてより上流側に位置する温度切替室戻り口51を有する温度切替室戻り風路50が関連付けられる。温度切替室4の設定温度が相対的に低い場合には、空気の流れ方向D1においてより下流側に位置する温度切替室戻り口51を有する温度切替室戻り風路50が関連付けられ。温度切替室4の設定温度が相対的に高い場合、温度切替室4から冷却器室23に戻る空気を冷却するのに必要な冷却量が増大すると考えられる。よって、温度切替室4から戻る空気を、空気の流れ方向D1に対してより上流側に位置する温度切替室戻り口51から冷却器21に流入させることで、冷却器21における熱交換距離が十分に確保され、必要な冷却を行うことができる。一方で、温度切替室4の設定温度が相対的に低い場合には、温度切替室4から戻る空気を、空気の流れ方向D1に対して下流側に位置する温度切替室戻り口51から冷却器21に流入させる。これより、冷却器21における熱交換距離が必要以上に延長することなく、必要最小限の熱交換距離を確保するにとどめられ、冷却器21の熱負荷を低減させることができる。 The set temperature of the temperature switchable chamber 4 and the temperature switchable chamber return air passage 50 are associated, for example, as follows. Each of the plurality of temperature switchable chamber return air passages 50 has a temperature switchable chamber return port 51 provided at a different position with respect to the air flow direction D1. When the set temperature of the temperature switchable chamber 4 is relatively high, the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 positioned further upstream in the air flow direction D1 is associated. When the set temperature of the temperature switchable chamber 4 is relatively low, the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 positioned further downstream in the air flow direction D1 is associated. When the set temperature of the temperature switchable chamber 4 is relatively high, it is considered that the amount of cooling required to cool the air returning from the temperature switchable chamber 4 to the cooler chamber 23 increases. Therefore, by allowing the air returning from the temperature switchable chamber 4 to flow into the cooler 21 from the temperature switchable chamber return port 51 positioned further upstream in the air flow direction D1, the heat exchange distance in the cooler 21 is sufficient. to provide the necessary cooling. On the other hand, when the set temperature of the temperature switchable chamber 4 is relatively low, the air returning from the temperature switchable chamber 4 is sent to the cooler from the temperature switchable chamber return port 51 located on the downstream side with respect to the air flow direction D1. 21. As a result, the heat exchange distance in the cooler 21 does not extend more than necessary, and the minimum necessary heat exchange distance can be secured, and the heat load of the cooler 21 can be reduced.
 温度切替室4は、3つの温度帯に調整でき、3つの温度範囲の空気が流通する温度切替室戻り風路50が設けられている。例えば、温度切替室4がチルド温度帯に設定されている場合には、空気の流れ方向D1に対して最も上流側に配置されている第3温度切替室戻り口51Cを有する第3温度切替室戻り風路50Cが選択されるように設定される。温度切替室4が過冷却温度帯に設定されている場合には、温度切替室戻り風路50は、空気の流れ方向D1に対して第3温度切替室戻り口51Cの次に上流側に配置されている第2温度切替室戻り口51Bを有する第2温度切替室戻り風路50Bが選択される。また、温度切替室4がソフトフリージング温度帯に設定されている場合には、温度切替室戻り風路50は、空気の流れ方向D1に対して最も下流側に配置されている第1温度切替室戻り口51Aを有する第1温度切替室戻り風路50Aを選択するように設定される。熱交換距離は、温度切替室4がチルド温度帯に設定されている場合の温度切替室戻り空気と冷却器21との熱交換距離が最長であり、温度切替室4が過冷却温度帯に設定されている場合の温度切替室戻り空気と冷却器21との熱交換距離が次いで長い。そして、温度切替室4がソフトフリージング温度帯に設定されている場合の温度切替室戻り空気と冷却器21との熱交換距離が最短となる。 The temperature switchable chamber 4 can be adjusted to three temperature ranges, and is provided with a temperature switchable chamber return air passage 50 through which air in three temperature ranges circulates. For example, when the temperature switchable chamber 4 is set to the chilled temperature zone, the third temperature switchable chamber having the third temperature switchable chamber return port 51C disposed on the most upstream side with respect to the air flow direction D1 It is set so that the return air path 50C is selected. When the temperature switchable chamber 4 is set in the supercooled temperature zone, the temperature switchable chamber return air passage 50 is arranged upstream of the third temperature switchable chamber return port 51C with respect to the air flow direction D1. The second temperature-switchable chamber return air passage 50B having the second temperature-switchable chamber return port 51B is selected. Further, when the temperature switchable chamber 4 is set to the soft freezing temperature zone, the temperature switchable chamber return air passage 50 is set to the first temperature switchable chamber which is arranged on the most downstream side with respect to the air flow direction D1. It is set to select the first temperature switchable chamber return air passage 50A having the return port 51A. As for the heat exchange distance, the heat exchange distance between the temperature switchable chamber return air and the cooler 21 is the longest when the temperature switchable chamber 4 is set in the chilled temperature zone, and the temperature switchable chamber 4 is set in the supercooled temperature zone. The heat exchange distance between the return air from the temperature switching chamber and the cooler 21 is the next longest. Then, the heat exchange distance between the return air from the temperature switchable chamber and the cooler 21 is the shortest when the temperature switchable chamber 4 is set in the soft freezing temperature range.
 このような関係に基づいて、制御装置90は、3つの温度切替室戻り風路50を切り替える。例えば、制御装置90は、温度切替室4の設定温度がチルド温度帯に含まれる第1温度帯である場合、風路切替手段80に、複数の温度切替室戻り風路50のうち第3温度切替室戻り口51Cを有する第3温度切替室戻り風路50Cに切り替えさせる制御を行う。また、制御装置90は、温度切替室4の設定温度が第1温度帯よりも低い過冷却温度帯に含まれる第2温度帯である場合、風路切替手段80に、複数の温度切替室戻り風路50のうちの、第2温度切替室戻り風路50Bに切り替えさせる制御を行う。第2温度切替室戻り風路50Bは、第3温度切替室戻り口51Cよりも空気の流れ方向D1に対して下流側に位置する第2温度切替室戻り口51Bを有する。 Based on this relationship, the control device 90 switches between the three temperature-switching chamber return air paths 50. For example, when the set temperature of the temperature switchable chamber 4 is in the first temperature range included in the chilled temperature range, the control device 90 causes the air passage switching means 80 to set the third temperature among the plurality of temperature switchable chamber return air passages 50 . Control is performed to switch to the third temperature switchable chamber return air passage 50C having the switchable chamber return port 51C. Further, when the set temperature of the temperature switchable chamber 4 is in the second temperature range included in the supercooled temperature range lower than the first temperature range, the control device 90 causes the air path switching means 80 to set a plurality of temperature switchable chamber return temperature ranges. Control is performed to switch the air passage 50 to the second temperature switchable chamber return air passage 50B. The second temperature switchable chamber return air passage 50B has a second temperature switchable chamber return port 51B located downstream of the third temperature switchable chamber return port 51C in the air flow direction D1.
 図8は、実施の形態1に係る冷蔵庫1の処理回路のハードウェア構成の一例を示す図である。図8に示すように、制御装置90の機能は、例えば、ハードウェア構成の処理回路として実現される。制御装置90の機能は、例えば、プロセッサ95がメモリ96に記憶されたプログラムを実行することにより、実現される。また、制御装置90の機能は、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、制御装置90の機能のうち一部を電子回路として実装し、他の部分をプロセッサ95およびメモリ96を用いて実現するようにしてもよい。 FIG. 8 is a diagram showing an example of the hardware configuration of the processing circuit of the refrigerator 1 according to Embodiment 1. As shown in FIG. As shown in FIG. 8, the functions of the control device 90 are realized, for example, as a processing circuit configured in hardware. The functions of the control device 90 are implemented, for example, by the processor 95 executing programs stored in the memory 96 . Further, the functions of the control device 90 may be realized by cooperation of a plurality of processors and a plurality of memories. Also, part of the functions of the control device 90 may be implemented as an electronic circuit, and other parts may be realized using the processor 95 and the memory 96 .
 このように、冷蔵庫1は、温度切替室4から空気が冷蔵温度帯から冷凍温度帯までの広い範囲で設定温度を切り替えられる構成である。温度切替室4から空気が冷却器室23へ戻る風路は、温度切替室4の設定温度に基づいて、空気の流れ方向D1に対して異なる位置に開口する温度切替室戻り口51のうち適切な位置にある温度切替室戻り口51を有する温度切替室戻り風路50に切り替えられる。これにより、温度切替室4の設定温度に応じて、温度切替室4から冷却器室23に戻る空気と冷却器21とが熱交換を行う距離および伝熱面積を適切に確保できる。このように温度切替室4から冷却器室23に戻る空気と冷却器21とが必要最小限の熱交換を行うことで、冷却器21の熱負荷を抑制させることができ、これに伴い冷却器21とともに冷凍サイクル27を構成する圧縮機24の仕事量を抑制することができる。 In this way, the refrigerator 1 is configured so that the set temperature of the air from the temperature switchable chamber 4 can be switched over a wide range from the refrigerating temperature range to the freezing temperature range. The air path through which the air from the temperature switchable chamber 4 returns to the cooler chamber 23 is selected from among the temperature switchable chamber return ports 51 that open at different positions with respect to the air flow direction D1 based on the set temperature of the temperature switchable chamber 4. is switched to the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 at a position. Accordingly, the distance and heat transfer area for heat exchange between the air returning from the temperature switchable chamber 4 to the cooler chamber 23 and the cooler 21 can be appropriately secured according to the set temperature of the temperature switchable chamber 4 . In this way, the air returning from the temperature switchable chamber 4 to the cooler chamber 23 and the cooler 21 exchange the necessary minimum amount of heat, so that the heat load on the cooler 21 can be suppressed. The amount of work of the compressor 24 which constitutes the refrigerating cycle 27 together with the compressor 21 can be suppressed.
 また、複数の温度切替室戻り風路50の温度切替室戻り口51はいずれも、空気の流れ方向D1に対して冷蔵室戻り口41の下流側かつ冷凍室戻り口61の上流側に配置されている。このような構成により、温度切替室4から冷却器室23に戻る空気と冷却器21とが熱交換を行う距離を、冷蔵室3から冷却器室23に戻る空気と冷却器21とが熱交換を行う距離と、冷凍室5から冷却器室23に戻る空気と冷却器21とが熱交換を行う距離と、の間の範囲に調整することができる。これにより、温度切替室4に設定され得る冷蔵温度帯から冷凍温度帯までの範囲の温度に対応して、温度切替室4から冷却器室23に戻る空気と冷却器21とが熱交換を行う距離を確保することができる。 The temperature switchable chamber return ports 51 of the plurality of temperature switchable chamber return air passages 50 are all arranged downstream of the refrigerator chamber return port 41 and upstream of the freezer chamber return port 61 with respect to the air flow direction D1. ing. With such a configuration, the distance for heat exchange between the air returning from the temperature switching chamber 4 to the cooler chamber 23 and the cooler 21 is set to and the distance for heat exchange between the air returning from the freezer compartment 5 to the cooler compartment 23 and the cooler 21 . As a result, the air returning from the temperature switchable chamber 4 to the cooler chamber 23 and the cooler 21 exchange heat according to the temperature range from the refrigeration temperature range to the freezer temperature range that can be set in the temperature switchable chamber 4 . You can keep your distance.
 また、温度切替室4は、0℃以上3℃未満のチルド温度帯と、-3℃以上0℃未満の過冷却温度帯と、-10℃以上-5℃以下のソフトフリージング温度帯と、の少なくとも3つの温度帯に切り替え可能である。このような構成によって、温度切替室4を、チルド室、過冷却保存室またはソフトフリージング室として利用できる。例えば、チルド室としての利用では、冷蔵室3の容量不足を補うことなどができ、過冷却保存室としての利用では、生鮮食品等を品質を維持したまま保存することができる。また、ソフトフリージング室としての利用では、食品を即座に使用できるような態様で冷凍保存することができる。したがって、冷蔵庫1の使用者の利便性を向上させることができる。 In addition, the temperature switchable chamber 4 has a chilled temperature range of 0°C or more and less than 3°C, a supercooled temperature range of -3°C or more and less than 0°C, and a soft freezing temperature range of -10°C or more and -5°C or less. Switchable between at least three temperature zones. With such a configuration, the temperature switchable chamber 4 can be used as a chilled chamber, a supercooled storage chamber, or a soft freezing chamber. For example, when it is used as a chilled room, it is possible to make up for the capacity shortage of the refrigerating room 3, and when it is used as a supercooling storage room, it is possible to store perishable foods while maintaining their quality. Also, use as a soft freezing chamber allows food to be frozen and stored in a manner ready for immediate use. Therefore, convenience for the user of the refrigerator 1 can be improved.
 次に、冷却器室23における空気の動きについて説明する。冷却器室23には、冷蔵室3からの冷蔵室戻り空気、温度切替室4からの温度切替室戻り空気、および、冷凍室5からの冷凍室戻り空気が流入する。 Next, the movement of air in the cooler chamber 23 will be described. Refrigerating chamber return air from the refrigerating chamber 3 , temperature switching chamber return air from the temperature switching chamber 4 , and freezer chamber return air from the freezing chamber 5 flow into the cooler chamber 23 .
 冷蔵室戻り空気は、冷蔵温度帯の空気である。冷蔵室戻り空気は、冷却器室23の前面壁223に形成された冷蔵室戻り口41から冷却器室23に流入し、冷却器21の最も上流側の位置に到達する。冷蔵室戻り口41から流入した空気は、冷却器室23の上方に移動して冷却器21の最も上流側に到達し、冷却器21と熱交換を行う。 The air returned to the refrigeration compartment is air in the refrigeration temperature range. The refrigerating chamber return air flows into the refrigerating chamber 23 from the refrigerating chamber return port 41 formed in the front wall 223 of the cooler chamber 23 and reaches the most upstream position of the cooler 21 . The air that has flowed in from the refrigerator compartment return port 41 moves upward in the cooler compartment 23 and reaches the most upstream side of the cooler 21 to exchange heat with the cooler 21 .
 温度切替室戻り空気は、冷蔵温度帯から冷凍温度帯までで設定された温度切替室4の設定温度に応じた温度範囲の空気である。温度切替室戻り空気は、温度切替室戻り風路50が風路切替手段80によりいずれか1つに切替られることで、冷却器室23の前面壁223に形成された複数の温度切替室戻り口51のいずれか1つから冷却器室23に流入する。複数の温度切替室戻り口51は、空気の流れ方向D1の上流側で冷蔵温度帯に最も近い温度範囲の温度切替室戻り空気を導き、空気の流れ方向D1の下流側にいくにつれて、より冷凍温度帯に近い温度範囲の温度切替室戻り空気を導く。 The temperature switchable chamber return air is air in a temperature range corresponding to the set temperature of the temperature switchable chamber 4 set from the refrigerating temperature range to the freezing temperature range. The return air from the temperature switchable chamber is supplied to a plurality of temperature switchable chamber return ports formed in the front wall 223 of the cooler chamber 23 by switching the temperature switchable chamber return air passage 50 to any one by the air passage switching means 80 . 51 into cooler chamber 23 . The plurality of temperature switchable chamber return ports 51 guide the temperature switchable chamber return air having a temperature range closest to the refrigerating temperature range on the upstream side in the air flow direction D1, and the temperature range is further reduced toward the downstream side in the air flow direction D1. The temperature switchable chamber return air in a temperature range close to the temperature zone is introduced.
 温度切替室4が冷蔵温度帯に最も近い温度範囲に設定されている場合、温度切替室戻り空気は、冷却器室23の前面壁223に形成された第3温度切替室戻り口51Cから冷却器室23に流入する。温度切替室4が冷蔵温度帯に最も近い温度範囲に設定されている場合は、例えば、チルド温度帯に設定されている場合である。第3温度切替室戻り口51Cからの温度切替室戻り空気は、相対的に最も高い温度範囲の温度切替室戻り空気である。第3温度切替室戻り口51Cは、空気の流れ方向D1において冷蔵室戻り口41の下流側で、且つ、複数の温度切替室戻り口51のうち、最も上流側に配置されている。第3温度切替室戻り口51Cから流入した空気は、第3温度切替室戻り口51Cと対向する位置に取り付けられた切欠きフィン213に到達し、切欠きフィン213を介し、冷却器21と熱交換を行う。 When the temperature switchable chamber 4 is set in the temperature range closest to the refrigerating temperature range, the temperature switchable chamber return air flows from the third temperature switchable chamber return port 51C formed in the front wall 223 of the cooler chamber 23 to the cooler. It flows into chamber 23 . When the temperature switchable chamber 4 is set to the temperature range closest to the refrigerating temperature range, it is set to the chilled temperature range, for example. The temperature switchable chamber return air from the third temperature switchable chamber return port 51C is the temperature switchable chamber return air in the relatively highest temperature range. The third temperature switchable chamber return port 51C is arranged downstream of the refrigerating chamber return port 41 in the air flow direction D1 and most upstream of the plurality of temperature switchable chamber return ports 51 . The air that has flowed in from the third temperature switchable chamber return port 51C reaches the notched fin 213 attached at a position facing the third temperature switchable chamber return port 51C, and passes through the notched fin 213 to the cooler 21 and heat. make an exchange.
 温度切替室4が冷蔵温度帯と冷凍温度帯との中間の温度範囲に設定されている場合、温度切替室戻り空気は、第2温度切替室戻り口51Bから冷却器室23に流入する。温度切替室4が冷蔵温度帯と冷凍温度帯との中間の温度範囲に設定されている場合は、例えば、過冷却温度帯に設定されている場合である。第2温度切替室戻り口51Bは、空気の流れ方向D1において第3温度切替室戻り口51Cの下流側であって、第1温度切替室戻り口51Aの上流側に配置された温度切替室戻り口51である。第2温度切替室戻り口51Bから流入した空気は、第2温度切替室戻り口51Bと対向する位置に取り付けられた切欠きフィン213を介し、冷却器21と熱交換を行う。 When the temperature switchable chamber 4 is set in the intermediate temperature range between the refrigeration temperature range and the freezer temperature range, the temperature switchable chamber return air flows into the cooler chamber 23 from the second temperature switchable chamber return port 51B. When the temperature switchable chamber 4 is set in the intermediate temperature range between the refrigerating temperature range and the freezing temperature range, for example, it is set in the supercooling temperature range. The second temperature switchable chamber return port 51B is located downstream of the third temperature switchable chamber return port 51C and upstream of the first temperature switchable chamber return port 51A in the air flow direction D1. mouth 51; The air that has flowed in from the second temperature switchable chamber return port 51B exchanges heat with the cooler 21 via the notched fins 213 attached to the position facing the second temperature switchable chamber return port 51B.
 温度切替室4が冷凍温度帯に最も近い温度範囲に設定されている場合、温度切替室戻り空気は、第1温度切替室戻り口51Aから冷却器室23に流入する。温度切替室4が冷凍温度帯に最も近い温度範囲に設定されている場合は、例えば、ソフトフリージング温度帯に設定されている場合である。第1温度切替室戻り口51Aからの温度切替室戻り空気は、最も低い温度範囲の温度切替室戻り空気である。第1温度切替室戻り口51Aは、空気の流れ方向D1において第2温度切替室戻り口51Bの下流側であって、複数の温度切替室戻り口51のうち、空気の流れ方向D1の最も下流側に配置された温度切替室戻り口51である。第1温度切替室戻り口51Aから流入した空気は、第1温度切替室戻り口51Aと対向する位置に取り付けられた平滑フィン214を介し、冷却器21と熱交換を行う。 When the temperature switchable chamber 4 is set in the temperature range closest to the freezing temperature range, the temperature switchable chamber return air flows into the cooler chamber 23 from the first temperature switchable chamber return port 51A. When the temperature switchable chamber 4 is set to the temperature range closest to the freezing temperature range, it is, for example, set to the soft freezing temperature range. The temperature switchable chamber return air from the first temperature switchable chamber return port 51A is the temperature switchable chamber return air in the lowest temperature range. The first temperature switchable chamber return port 51A is downstream of the second temperature switchable chamber return port 51B in the air flow direction D1, and is the most downstream of the plurality of temperature switchable chamber return ports 51 in the air flow direction D1. It is the temperature switching chamber return port 51 arranged on the side. The air that has flowed in from the first temperature switchable chamber return port 51A exchanges heat with the cooler 21 via smooth fins 214 attached to positions facing the first temperature switchable chamber return port 51A.
 冷凍室戻り空気は、冷凍温度帯の空気である。冷凍室戻り空気は、空気の流れ方向D1において冷却器室23の前面壁223に形成され冷却器21の最も下流側に位置する冷凍室戻り口61から冷却器室23に流入する。冷凍室戻り口61から流入した空気は、冷凍室戻り口61と対向する位置に設けられた平滑フィン214に到達し、平滑フィン214を介し、冷却器21と熱交換を行う。 The freezer compartment return air is in the freezing temperature range. The freezer compartment return air flows into the cooler compartment 23 from the freezer compartment return port 61 formed in the front wall 223 of the cooler compartment 23 and located at the most downstream side of the cooler 21 in the air flow direction D1. The air flowing in from the freezer compartment return port 61 reaches the smooth fins 214 provided at a position facing the freezer compartment return port 61 and exchanges heat with the cooler 21 via the smooth fins 214 .
 冷蔵室戻り口41、第3温度切替室戻り口51C、および、第2温度切替室戻り口51Bから導かれる空気は、温度切替室戻り空気のうち、相対的に高い範囲の温度の空気である。第1温度切替室戻り口51A、および、冷凍室戻り口61から導かれる空気は、温度切替室戻り空気のうち、相対的に低い範囲の温度の空気である。温度切替室戻り空気のうち、相対的に高い範囲の温度の空気と、この空気と熱交換を行う冷却器21との温度差は、相対的に低い範囲の温度の空気と、この空気と熱交換を行う冷却器21との温度差よりも大きいため、霜が生じやすい。そのため、冷却器21の、冷蔵室戻り口41、第3温度切替室戻り口51C、および、第2温度切替室戻り口51Bと対向する位置には、霜が堆積する領域として切欠きが設けられた切欠きフィン213が取り付けられている。切欠きフィン213の切欠き面には、戻り空気と冷却器21との熱交換により生じた霜が付着し、切欠きフィン213の切欠き面に堆積することができる。これにより、戻り空気と冷却器21との熱交換により生じた霜が、冷却器21を流れる空気の流通を阻害することがなく、空気の流動抵抗の増大による冷却効率の低下を抑制できる。 The air led from the refrigerator compartment return port 41, the third temperature switchable chamber return port 51C, and the second temperature switchable chamber return port 51B has a relatively high temperature range among the temperature switchable chamber return air. . The air led from the first temperature switchable chamber return port 51A and the freezer compartment return port 61 has a relatively low temperature range among the temperature switchable chamber return air. Of the temperature switchable chamber return air, the temperature difference between the air in the relatively high range and the cooler 21 that exchanges heat with this air is the temperature difference between the air in the relatively low range and the heat from the air. Since the temperature difference is greater than that of the cooler 21 to be replaced, frost is likely to occur. Therefore, notches are provided at positions of the cooler 21 facing the refrigerating chamber return port 41, the third temperature switchable chamber return port 51C, and the second temperature switchable chamber return port 51B as areas where frost accumulates. A notched fin 213 is attached. Frost generated by heat exchange between the return air and the cooler 21 adheres to the notched surfaces of the notched fins 213 and can accumulate on the notched surfaces of the notched fins 213 . As a result, the frost caused by the heat exchange between the return air and the cooler 21 does not hinder the circulation of the air flowing through the cooler 21, and the decrease in cooling efficiency due to the increase in air flow resistance can be suppressed.
 一方、温度切替室戻り空気のうち、相対的に低い範囲の温度の空気は、この空気と熱交換を行う冷却器21との温度差が、相対的に高い範囲の温度の空気と冷却器21との温度差よりも小さく、霜が発生しにくい。温度切替室戻り空気のうち、相対的に低い範囲の温度の空気は、冷却器21において冷却されても、霜にならずに通過する。そのため、第1温度切替室戻り口51A、および、冷凍室戻り口61と対向する位置には、霜が堆積する領域が設けられていない平滑フィン214が取り付けられている。他の位置と比較して着霜量が少量である位置では、着霜による熱交換の阻害が生じないため、切欠き部分212aが切り取られた形状を有しない平滑フィン214が設けられている。これにより、冷却器21において熱交換に有効となる領域が維持され、熱交換効率の低下が抑制される。 On the other hand, among the return air from the temperature switchable chamber, the air having a temperature in a relatively low range has a temperature difference between the air having a temperature in a relatively high range and the cooler 21 that exchanges heat with this air. It is smaller than the temperature difference between and frost. Of the temperature switchable chamber return air, air having a relatively low temperature range passes through the cooler 21 without being frosted even if it is cooled. Therefore, smooth fins 214 that are not provided with areas where frost accumulates are attached to positions facing the first temperature switching chamber return port 51A and the freezer compartment return port 61 . A smooth fin 214 that does not have a cutout portion 212a is provided at a position where the frost amount is smaller than that at other positions, because heat exchange is not hindered by frost formation. As a result, a region effective for heat exchange is maintained in the cooler 21, and a decrease in heat exchange efficiency is suppressed.
 このように、凡そプラスの温度範囲に保たれた温度切替室4からの戻り空気が導かれる第3温度切替室戻り口51Cおよび第2温度切替室戻り口51Bに対向する位置では、切欠きフィン213が配置されている。温度切替室4が、凡そプラスの温度範囲に保たれている場合、つまり、冷凍温度帯よりも冷蔵温度帯に近い場合には、切替室戻り空気の温度が相対的に高く、この空気と冷却器21との温度差が増大する。温度差が相対的に大きく、霜がより多く発生する位置に切欠きフィン213が設けられていることで、冷却器21で生じた霜が、切欠きフィン213の切欠き面に付着することができる。また、切欠き面を設けることで、切欠きフィン213に霜が付着して成長しても、切欠きフィン213同士の間が閉塞されてしまうことが低減され、空気の流通抵抗が増大することが抑制される。 In this way, at positions facing the third temperature switchable chamber return port 51C and the second temperature switchable chamber return port 51B through which the return air from the temperature switchable chamber 4 whose temperature is maintained in the plus temperature range is led, the notched fins 213 are arranged. When the temperature switchable chamber 4 is maintained in a positive temperature range, that is, when the refrigerating temperature range is closer than the freezing temperature range, the temperature of the switching chamber return air is relatively high, and this air and the cooling The temperature difference with the vessel 21 increases. Since the notched fins 213 are provided at positions where the temperature difference is relatively large and more frost occurs, the frost generated in the cooler 21 may adhere to the notched surfaces of the notched fins 213 . can. In addition, by providing the notched surface, even if frost adheres to the notched fins 213 and grows, blocking between the notched fins 213 is reduced, and air flow resistance increases. is suppressed.
 また、冷蔵温度帯よりも冷凍温度帯に近い温度に保たれた温度切替室4からの空気が導かれる第1温度切替室戻り口51Aおよび冷凍室戻り口61に対向する位置には、平滑フィン214が取り付けられている。温度切替室4が冷蔵温度帯よりも冷凍温度帯に近い温度に保たれている場合には、温度切替室4から導かれる空気の温度と冷却器21との温度差が低減する。温度差が低減すると、着霜量も低減するためである。このように、冷却器21に導かれる空気の温度に応じて、冷却器21に適宜切欠きフィン213又は平滑フィン214を取り付けることで、効率的に着霜による冷却効率の低下が抑制される。 Smooth fins are provided at positions facing the first temperature switchable chamber return port 51A and the freezer chamber return port 61 through which the air from the temperature switchable chamber 4, which is kept at a temperature closer to the freezing temperature range than the refrigerating temperature range, is guided. 214 is attached. When the temperature switchable chamber 4 is kept at a temperature closer to the freezing temperature range than the refrigerating temperature range, the temperature difference between the air led from the temperature switching chamber 4 and the cooler 21 is reduced. This is because when the temperature difference is reduced, the frost amount is also reduced. In this manner, by appropriately attaching the notched fins 213 or the smooth fins 214 to the cooler 21 according to the temperature of the air guided to the cooler 21, the reduction in cooling efficiency due to frost formation can be efficiently suppressed.
 <変形例>
 図9は、実施の形態1の変形例に係る冷蔵庫1を説明する模式図である。図9に示すように、変形例1に係る冷蔵庫1は、冷却器21および冷却器室23の構成が実施の形態1と相違している。
<Modification>
FIG. 9 is a schematic diagram illustrating refrigerator 1 according to a modification of the first embodiment. As shown in FIG. 9 , refrigerator 1 according to Modification 1 differs from Embodiment 1 in the configurations of cooler 21 and cooler chamber 23 .
 まず、変形例1に係る冷蔵庫1の冷却器21の構成について説明する。図9に示すように、冷却器21には、複数の切欠きフィン213として、第1切欠きフィン213aと、第2切欠きフィン213bと、第3切欠きフィン213cと、が取り付けられている。第1切欠きフィン213a、第2切欠きフィン213bおよび第3切欠きフィン213cは、冷却器室23の奥行き方向の断面において、それぞれ異なる形状を有する。 First, the configuration of the cooler 21 of the refrigerator 1 according to Modification 1 will be described. As shown in FIG. 9, the cooler 21 is provided with a first notched fin 213a, a second notched fin 213b, and a third notched fin 213c as the plurality of notched fins 213. . The first notched fin 213a, the second notched fin 213b, and the third notched fin 213c have different shapes in cross sections of the cooler chamber 23 in the depth direction.
 第1切欠きフィン213aは、空気の流れ方向D1の最も下流側に配置されている。第3切欠きフィン213cは、空気の流れ方向D1の最も上流側に配置されている。第2切欠きフィン213bは、第1切欠きフィン213aの上流側であり、第3切欠きフィン213cの下流側に配置されている。 The first notched fin 213a is arranged on the most downstream side in the air flow direction D1. The third notched fin 213c is arranged on the most upstream side in the air flow direction D1. The second notched fin 213b is arranged upstream of the first notched fin 213a and downstream of the third notched fin 213c.
 第1切欠きフィン213aは、前面壁223に対向している面である前面の下部の一部から、下面の一部にかけた角部の切欠き部分212aが切り取られた形状を有する。第2切欠きフィン213bは、第1切欠きフィン213aと同様、前面壁223に対向している面である前面の下部の一部から、下面の一部にかけた角部の切欠き部分212bが切り取られた形状を有する。第2切欠きフィン213bの切欠き部分212bは、冷却器室23の奥行き方向の断面において第1切欠きフィン213aの切欠き部分212aよりも大きな面積を有する。また、第1切欠きフィン213aの前面の上下方向の幅は、第2切欠きフィン213bの前面の上下方向の幅よりも減少している。つまり、冷却器室23の奥行き方向の断面において、上流側の第2切欠きフィン213bの切欠き部分212bの面積は、下流側の第1切欠きフィン213aの切欠き部分212aの面積よりも大きい。 The first notched fin 213a has a shape in which a corner notched portion 212a extending from a portion of the lower portion of the front surface, which is the surface facing the front wall 223, to a portion of the lower surface is cut. As with the first notched fin 213a, the second notched fin 213b has a corner notched portion 212b extending from a part of the lower front surface facing the front wall 223 to a part of the lower surface. It has a truncated shape. The cutout portion 212b of the second cutout fin 213b has a larger area than the cutout portion 212a of the first cutout fin 213a in the cross section of the cooler chamber 23 in the depth direction. In addition, the vertical width of the front surface of the first notched fin 213a is smaller than the vertical width of the front surface of the second notched fin 213b. That is, in the cross section of the cooler chamber 23 in the depth direction, the area of the cutout portion 212b of the second cutout fin 213b on the upstream side is larger than the area of the cutout portion 212a of the first cutout fin 213a on the downstream side. .
 第3切欠きフィン213cは、温度切替室戻り口51に対向する面の下部と、下面の全面と、により形成された角部の切欠き部分212cが切り取られた形状を有する。つまり、最も上流側に配置された第3切欠きフィン213cは、切欠き部分212cの面積が、第3切欠きフィン213cよりも下流側の第1切欠きフィン213aの切欠き部分212a及び第2切欠きフィン213bの切欠き部分212bの面積よりも大きい。第1切欠きフィン213a、第2切欠きフィン213bおよび第3切欠きフィン213cは、冷却器室23の奥行き方向の断面において、それぞれ異なる面積を有する。 The third notched fin 213c has a shape in which a corner notched portion 212c formed by the lower portion of the surface facing the temperature switching chamber return port 51 and the entire lower surface is cut off. That is, the area of the cutout portion 212c of the third cutout fin 213c arranged on the most upstream side is the cutout portion 212a of the first cutout fin 213a on the downstream side of the third cutout fin 213c and the cutout portion 212a of the second cutout fin 213a on the downstream side. It is larger than the area of the notched portion 212b of the notched fin 213b. The first notched fin 213a, the second notched fin 213b, and the third notched fin 213c have different areas in cross sections of the cooler chamber 23 in the depth direction.
 空気の流れ方向D1の最も上流側に位置している第3温度切替室戻り口51Cから導かれる温度切替室戻り空気は、他の第2温度切替室戻り口51B、又は、第1温度切替室戻り口51Aから導かれる温度切替室戻り空気よりも温度が高い。つまり、温度切替室戻り空気は、第3温度切替室戻り口51Cから導かれる温度切替室戻り空気の温度が最も高く、第3温度切替室戻り口51Cから下流側にいくにつれて温度切替室戻り空気の温度が低くなっている。そのため、第3温度切替室戻り口51Cと対向している第3切欠きフィン213cに到達する温度切替室戻り空気は、冷却器21との温度差が最も大きい。また、最も下流側の第1温度切替室戻り口51Aと対向している位置の第2切欠きフィン213bに到達する空気は、第3切欠きフィン213cに到達する温度切替室戻り空気よりも、冷却器21との温度差が減少している。更に、第1温度切替室戻り口51Aよりも下流側に形成された冷凍室戻り口61に対向している位置の第1切欠きフィン213aに到達する空気は、冷却器21との温度差が、最も小さい。 The temperature switchable chamber return air guided from the third temperature switchable chamber return port 51C located on the most upstream side in the air flow direction D1 flows through the other second temperature switchable chamber return port 51B or the first temperature switchable chamber. The temperature is higher than the temperature switching chamber return air led from the return port 51A. That is, the temperature switchable chamber return air led from the third temperature switchable chamber return port 51C has the highest temperature switchable chamber return air, and the temperature switchable chamber return air increases as it goes downstream from the third temperature switchable chamber return port 51C. temperature is low. Therefore, the temperature changeable chamber return air reaching the third notch fin 213c facing the third temperature changeable chamber return port 51C has the largest temperature difference with the cooler 21 . In addition, the air reaching the second notched fin 213b at the position facing the first temperature switching chamber return port 51A on the most downstream side is faster than the temperature switching chamber return air reaching the third notched fin 213c. The temperature difference with cooler 21 is reduced. Furthermore, the air reaching the first notched fin 213a at a position facing the freezer compartment return port 61 formed downstream of the first temperature switching chamber return port 51A has a temperature difference with the cooler 21. , the smallest.
 そのため、空気の流れ方向D1の上流側の第3切欠きフィン213cは、冷却器室23の奥行き方向の面積が最大の切欠き部分212cが切り取られた形状である。第3切欠きフィン213cより下流側の第1切欠きフィン213aおよび第2切欠きフィン213bは、下流側にむかい切欠き部分212bそして切欠き部分212aと冷却器室23の奥行き方向の面積が減少する形状である。つまり、第1切欠きフィン213a、第2切欠きフィン213bおよび第3切欠きフィン213cは、到達する切替室戻り空気と、冷却器21との温度差の減少に伴って、冷却器室23の奥行き方向における切り取られた部分の面積が減少する形状になっている。 Therefore, the third notched fin 213c on the upstream side in the air flow direction D1 has a shape obtained by cutting out the notched portion 212c having the largest area in the depth direction of the cooler chamber 23. In the first notched fin 213a and the second notched fin 213b on the downstream side of the third notched fin 213c, the notched portion 212b facing downstream and the notched portion 212a and the depth direction area of the cooler chamber 23 are reduced. It is a shape that That is, the first cut-out fin 213a, the second cut-out fin 213b, and the third cut-out fin 213c become cooler in the cooler chamber 23 as the temperature difference between the returning air from the switching chamber and the cooler 21 decreases. It has a shape in which the area of the cut portion in the depth direction decreases.
 このように、温度切替室4から導かれる空気と、冷却器21との温度差が増大する位置には、冷却器室23の奥行き方向の断面における切欠き部分212cの面積が最大である第3切欠きフィン213cを取り付ける。また、温度切替室4から導かれる空気と、冷却器21との温度差の減少に伴い、第2切欠きフィン213bの切欠き部分212b、そして、第1切欠きフィン213aと、冷却器室23の奥行き方向の断面が減少する構成になっている。つまり、第1切欠きフィン213a、第2切欠きフィン213bおよび第3切欠きフィン213cの形状は、それぞれが対向している温度切替室戻り口51の、空気の流れ方向D1における位置に応じて決定される。これにより、冷却器21と空気との温度差が最適化され、着霜量に応じて霜が堆積する領域が確保されるため、空気の流動抵抗が増大せず、着霜による冷却効率の低下を抑制することができる。なお、複数の切欠きフィン213は、第1切欠きフィン213a、第2切欠きフィン213b及び第3切欠きフィン213cの3種類の形状である例を説明しているが、複数の切欠きフィン213は、3種類以上の形状を有する構成であってもよい。また、複数の切欠きフィン213に加え、平滑フィン214が設けられた構成とすることもできる。 In this way, at the position where the temperature difference between the air led from the temperature switchable chamber 4 and the cooler 21 increases, the area of the cutout portion 212c in the cross section of the cooler chamber 23 in the depth direction is the largest. Install the notched fins 213c. In addition, as the temperature difference between the air led from the temperature switching chamber 4 and the cooler 21 decreases, the notched portion 212b of the second notched fin 213b, the first notched fin 213a, and the cooler chamber 23 It is configured such that the cross section in the depth direction of is reduced. That is, the shapes of the first notched fin 213a, the second notched fin 213b, and the third notched fin 213c are determined according to the positions of the temperature switching chamber return ports 51 facing each other in the air flow direction D1. It is determined. As a result, the temperature difference between the cooler 21 and the air is optimized, and a region where frost accumulates according to the amount of frost is secured, so air flow resistance does not increase and cooling efficiency is reduced due to frost. can be suppressed. In addition, although the plurality of notched fins 213 have three types of shapes, namely, the first notched fin 213a, the second notched fin 213b, and the third notched fin 213c, an example has been described. 213 may be configured to have three or more types of shapes. Further, in addition to the plurality of notched fins 213, a configuration in which smooth fins 214 are provided can also be used.
 次に、実施の形態1の変形例に係る冷蔵庫1の冷却器室23の構成について説明する。
 図9に示すように、実施の形態1の変形例に係る冷蔵庫1の冷却器室23は、第1クリアランスd1の距離であるバイパス距離が、第2クリアランスd2の距離よりも増大されている。第1クリアランスd1の距離は、冷却器室23の前面壁223と冷却器21の前面側との距離である。第2クリアランスd2の距離は、冷却器室23の背面壁224と冷却器21の背面側との距離である。冷却器21の前面側には、温度切替室4の戻り空気が温度切替室戻り口51から導かれる。冷却器21の背面側には、冷却器21で冷却された空気が導かれる。
Next, a configuration of cooler chamber 23 of refrigerator 1 according to a modification of Embodiment 1 will be described.
As shown in FIG. 9, in the cooler chamber 23 of the refrigerator 1 according to the modification of the first embodiment, the bypass distance, which is the distance of the first clearance d1, is longer than the distance of the second clearance d2. The distance of the first clearance d1 is the distance between the front wall 223 of the cooler chamber 23 and the front side of the cooler 21 . The distance of the second clearance d2 is the distance between the rear wall 224 of the cooler chamber 23 and the rear side of the cooler 21 . Return air from the temperature switchable chamber 4 is led from the temperature switchable chamber return port 51 to the front side of the cooler 21 . The air cooled by the cooler 21 is led to the back side of the cooler 21 .
 冷却器21の前面側では、空気と冷却器21との温度差が、冷却器21の背面側の空気と冷却器21との温度差よりも大きいため、冷却器21の背面側よりも着霜が多量となる。第1クリアランスd1が、第2クリアランスd2よりも増大されていることで、冷却器21に生じた霜が堆積し得る領域が増大する。そのため、冷却器21に霜が付着しても、冷却器21を通る空気が堆積した霜により阻害されることがなく、冷却効率が低下することが抑制される。 On the front side of the cooler 21, the temperature difference between the air and the cooler 21 is larger than the temperature difference between the air on the back side of the cooler 21 and the cooler 21, so frosting occurs more than the back side of the cooler 21. becomes a large amount. Since the first clearance d1 is larger than the second clearance d2, the area where frost generated on the cooler 21 can accumulate increases. Therefore, even if frost adheres to the cooler 21, the air passing through the cooler 21 is not hindered by the accumulated frost, and a decrease in cooling efficiency is suppressed.
 また、第1クリアランスd1の距離は、空気の流れ方向D1の下流側、つまり、冷蔵庫1の上方に向かい減少している。冷却器室23の前面壁223は、冷蔵庫1の高さ方向に対し、傾斜223aを有する。第2クリアランスd2の距離は、空気の流れ方向D1の下流側、つまり、冷蔵庫1の上方に向かい減少している。冷却器室23の背面壁224は、冷蔵庫1の高さ方向に対し、傾斜224aを有する。 Also, the distance of the first clearance d1 decreases toward the downstream side of the air flow direction D1, that is, toward the top of the refrigerator 1. A front wall 223 of the cooler chamber 23 has an inclination 223 a with respect to the height direction of the refrigerator 1 . The distance of the second clearance d2 decreases toward the downstream side of the air flow direction D1, that is, toward the upper side of the refrigerator 1 . A rear wall 224 of the cooler chamber 23 has an inclination 224 a with respect to the height direction of the refrigerator 1 .
 空気の流れ方向D1の上流側では、温度切替室4からの空気と冷却器21との温度差が最大であり、空気が下流側に進むにつれて、空気と冷却器21との温度差が低減していく。前面壁223の傾斜223aにより、空気と冷却器21との温度差が最大であり、着霜が多量である空気の流れ方向D1の上流側では、第1クリアランスd1および第2クリアランスd2が最大になっている。このため、冷却器21に生じた霜が堆積する領域が確保され、冷却器21に着霜が生じても冷却器21における空気の流通が阻害されにくく、冷却効率が維持される。また、空気の流れ方向D1の下流側に向かい、空気と冷却器21との温度差が低減し、着霜量が低減するのに伴い、第1クリアランスd1および第2クリアランスd2も減少している。このため、着霜が生じにくい冷却器21と冷却器室23の背面壁224との間に、余分な隙間が生じることがなく、冷却器21による冷却効率が向上する。 The temperature difference between the air from the temperature switchable chamber 4 and the cooler 21 is maximum on the upstream side in the air flow direction D1, and the temperature difference between the air and the cooler 21 decreases as the air moves downstream. To go. Due to the inclination 223a of the front wall 223, the first clearance d1 and the second clearance d2 are maximized on the upstream side of the air flow direction D1 where the temperature difference between the air and the cooler 21 is the largest and the amount of frost is large. It's becoming Therefore, a region where frost formed on the cooler 21 accumulates is secured, and even if frost forms on the cooler 21, air circulation in the cooler 21 is less likely to be hindered, and cooling efficiency is maintained. Further, toward the downstream side of the air flow direction D1, the temperature difference between the air and the cooler 21 decreases, and the amount of frost formation decreases, so the first clearance d1 and the second clearance d2 also decrease. . Therefore, no extra gap is formed between the cooler 21, which is less susceptible to frost formation, and the rear wall 224 of the cooler chamber 23, and the cooling efficiency of the cooler 21 is improved.
 さらに、前面壁223の傾斜223aは、背面壁224の傾斜224aよりも大きい。つまり、前面壁223の傾斜223aは、背面壁224の傾斜224aよりも緩い。冷却器21の前面側では、温度切替室4から導かれた空気が冷却器21に流れるため、空気と冷却器21との温度差が、冷却器21の背面側よりも大きい。温度切替室4から導かれた空気は、冷却器21を通りながら冷却されるため、冷却器21の背面側に向かうとともに、空気と冷却器21との温度差が減少していき、冷却器21の背面側では、前面側に比べ、冷却器21と空気との温度差が減少している。 Furthermore, the slope 223a of the front wall 223 is greater than the slope 224a of the rear wall 224. That is, the slope 223a of the front wall 223 is gentler than the slope 224a of the rear wall 224. As shown in FIG. On the front side of the cooler 21 , the air led from the temperature switching chamber 4 flows to the cooler 21 , so the temperature difference between the air and the cooler 21 is greater than on the back side of the cooler 21 . Since the air led from the temperature switchable chamber 4 is cooled while passing through the cooler 21, the temperature difference between the air and the cooler 21 decreases as it moves toward the back side of the cooler 21, and the cooler 21 The temperature difference between the cooler 21 and the air is smaller on the back side than on the front side.
 従って、冷却器室23の前面壁223の傾斜223aを、背面壁224の傾斜224aよりも拡大させることで、着霜量が増量している第1クリアランスd1が増大し、霜が堆積する領域が確保されて着霜による冷却効率の低下が抑制される。また、冷却器室23の前面壁223の傾斜223aを、背面壁224の傾斜224aよりも拡大させることで、着霜が少量の第2クリアランスd2の増大が抑制され、余分な隙間が生じることがなくなり、冷却器21による冷却効率が向上する。 Therefore, by making the inclination 223a of the front wall 223 of the cooler chamber 23 larger than the inclination 224a of the rear wall 224, the first clearance d1 where the amount of frost is increasing increases, and the area where frost accumulates increases. As a result, the deterioration of the cooling efficiency due to frost formation is suppressed. Further, by making the slope 223a of the front wall 223 of the cooler chamber 23 wider than the slope 224a of the rear wall 224, the increase in the second clearance d2 with a small amount of frost formation is suppressed, and an extra gap is not generated. The cooling efficiency of the cooler 21 is improved.
 図10は、実施の形態1の変形例に係る冷蔵庫1の冷却器21の詳細を説明する模式図である。図10は、複数のフィン211を奥行き方向に断面視した場合を示している。 FIG. 10 is a schematic diagram explaining the details of the cooler 21 of the refrigerator 1 according to the modification of the first embodiment. FIG. 10 shows a cross-sectional view of the plurality of fins 211 in the depth direction.
 図10に示すように、第1切欠きフィン213aは、複数の切欠きフィン213のうち、最小の第1切欠き面積S1を有する。切欠き面積とは、複数の温度切替室戻り口51と対向する面の面積であって、切欠きフィン213を、矢印Aの方向に見た場合の切り取られた部分の切断面の面積である。第1切欠き面積S1とは、第1切欠きフィン213aが、直方体形状の平滑フィン214から切欠き部分212aが切り取られて形成されていると考えた場合に、切欠き部分212aが切り取られた切断面の面積である。 As shown in FIG. 10, the first notched fin 213a has the smallest first notched area S1 among the plurality of notched fins 213. As shown in FIG. The cutout area is the area of the surface facing the plurality of temperature switching chamber return ports 51, and is the area of the cut surface of the cutout portion when the cutout fin 213 is viewed in the direction of arrow A. . The first notch area S1 means that the first notch fin 213a is formed by cutting the notch 212a from the rectangular parallelepiped smooth fin 214. It is the area of the cut surface.
 第2切欠きフィン213bは、第1切欠き面積S1よりも大きい第2切欠き面積S2を有する。第3切欠きフィン213cは、第2切欠き面積S2よりも大きい第3切欠き面積S3であって、最大の第3切欠き面積S3を有する。つまり、第1切欠きフィン213a、第2切欠きフィン213b、および、第3切欠きフィン213cの切欠き面積は、第3切欠き面積S3>第2切欠き面積S2>第1切欠き面積S1の大小関係にある。 The second cutout fin 213b has a second cutout area S2 that is larger than the first cutout area S1. The third cutout fin 213c has a third cutout area S3 that is larger than the second cutout area S2 and has the largest third cutout area S3. That is, the notch areas of the first notch fin 213a, the second notch fin 213b, and the third notch fin 213c are: third notch area S3>second notch area S2>first notch area S1. There is a size relationship between
 ここで、切欠きフィン213における切り取られた切断面の面積は、冷却効率のパラメータと考えることができる。冷却器21における熱交換には、複数の切欠きフィン213それぞれの表面積が寄与しているが、複数の切欠きフィン213の高さおよび奥行きの寸法、又は、形状は、冷蔵庫1、又は、冷却器21の形状に応じて設定が可能であり、変動するためである。複数の切欠きフィン213における切り取られた切断面の面積を冷却効率のパラメータとすることで、冷蔵庫1、又は、冷却器21の形状によらず、切欠きフィン213による冷却効率を評価することができる。 Here, the cut surface area of the notch fin 213 can be considered as a parameter of cooling efficiency. The surface area of each of the plurality of notched fins 213 contributes to heat exchange in the cooler 21, but the height and depth dimensions or the shape of the plurality of notched fins 213 are different from those of the refrigerator 1 or the cooling device. This is because it can be set according to the shape of the vessel 21 and varies. The cooling efficiency of the notched fins 213 can be evaluated regardless of the shape of the refrigerator 1 or the cooler 21 by using the area of the cut surface of the plurality of notched fins 213 as a parameter of the cooling efficiency. can.
 また、複数の切欠きフィン213は、冷却器室23の前面壁223から背面壁224側を見た断面形状、又は、矢印Aの方向から見た切り取られた面の断面形状における高さ方向の寸法が、冷却器21の前面側で最大であり、背面側に近づくにつれて減少している。冷却器21の前面側では、温度切替室戻り口51から導かれた空気と、冷却器21との温度差が最大であるため、着霜量も最大となる。断面形状の高さ方向の寸法が、冷却器21の前面側で最大であることで、霜が堆積する領域が確保される。このため、複数の切欠きフィン213の前面側の着霜量が増加しても、霜が複数の切欠きフィン213の切欠き面に付着し、着霜により空気の流路が阻害されて冷却能力が低下することが抑制される。 In addition, the plurality of notched fins 213 have a cross-sectional shape when viewed from the front wall 223 of the cooler chamber 23 to the back wall 224 side, or a cross-sectional shape of a cut surface viewed from the direction of arrow A in the height direction. The dimensions are greatest at the front side of cooler 21 and decrease toward the rear side. On the front side of the cooler 21, since the temperature difference between the air led from the temperature switching chamber return port 51 and the cooler 21 is the largest, the frost amount is also the largest. Since the dimension of the cross-sectional shape in the height direction is the largest on the front side of the cooler 21, a region where frost accumulates is ensured. Therefore, even if the amount of frost on the front side of the plurality of notched fins 213 increases, the frost adheres to the notched surfaces of the plurality of notched fins 213, and the frost obstructs the flow path of the air, resulting in cooling. Decrease in ability is suppressed.
 温度切替室戻り口51から導かれた空気は、背面側に向かうにつれて冷却され、冷却器21との温度差が減少し、着霜量も減少する。複数の切欠きフィン213の切欠き部分212aの高さ方向の寸法が、前面から背面に向かうにつれて減少する形状になっていることで、霜が堆積する領域が縮小するとともに、熱交換に有効な領域が増大するため、熱交換効率が向上する。 The air led from the temperature switching chamber return port 51 is cooled toward the back side, the temperature difference with the cooler 21 is reduced, and the frost amount is also reduced. The notched portions 212a of the plurality of notched fins 213 have a shape in which the height dimension of the notched portions 212a decreases from the front surface to the rear surface, thereby reducing the area where frost accumulates and effective for heat exchange. Heat exchange efficiency is improved due to the increased area.
 なお、複数の切欠きフィン213における切欠き面積は、少なくとも10mm以下であることが好ましい。切欠き面積は、少なくとも10mm以下であることで、冷却器21による戻り空気の冷却効率が、平滑フィン214を用いた場合の冷却効率と比較して過大とならないためである。なお、平滑フィン214は、切欠きフィン213における切欠き面積がゼロである場合に相当すると考えればよい。 In addition, it is preferable that the notched area of the plurality of notched fins 213 is at least 10 mm 2 or less. This is because the notch area is at least 10 mm 2 or less so that the cooling efficiency of the return air by the cooler 21 does not become excessive compared to the cooling efficiency when the smooth fins 214 are used. It should be noted that the smooth fin 214 can be considered to correspond to the case where the cutout area of the cutout fin 213 is zero.
 図11は、実施の形態1の変形例に係る冷蔵庫1の冷却器21における冷却効率を説明するグラフである。図11において、横軸は切欠き面積を示し、縦軸は切欠き有りの場合と切欠き無しの場合との比率を示している。また、図11において、ある切欠きフィン213における切欠き面積に対する吸熱量比は実線および黒丸で、表面積A比は破線および菱形で、温度差ΔT比は一点鎖線および四角で、熱伝達率h比は二点鎖線および三角で示している。 FIG. 11 is a graph explaining the cooling efficiency of the cooler 21 of the refrigerator 1 according to the modified example of the first embodiment. In FIG. 11, the horizontal axis indicates the notch area, and the vertical axis indicates the ratio between the case with the notch and the case without the notch. In FIG. 11, the solid line and black circles represent the heat absorption ratio with respect to the notch area of a certain notched fin 213, the dashed line and rhombuses represent the surface area A ratio, the alternate long and short dash line and squares represent the temperature difference ΔT ratio, and the h ratio of the heat transfer coefficient are indicated by double-dotted lines and triangles.
 図11に示すように、吸熱量比は、切欠きフィン213の切欠き面積が、10mmよりも大きくなる領域で、急激に低下する。吸熱量比は、平滑フィン214が取り付けられた冷却器21における吸熱量に対する、切欠きフィン213が取り付けられた冷却器21の吸熱量の比である。吸熱量とは、冷却器21が戻り空気と熱交換を行い最終的に吸収する熱量である。吸熱量比は、熱伝達率h比、表面積A比および温度差ΔT比の積から求めることができる。吸熱量比が、100%を上回る場合には、冷却効率が改善したと考えることができる。吸熱量比が、100%を下回る場合には、冷却効率が低下したと考えることができる。 As shown in FIG. 11, the heat absorption ratio sharply decreases in the area where the cutout area of the cutout fin 213 is larger than 10 mm 2 . The heat absorption amount ratio is the ratio of the heat absorption amount of the cooler 21 to which the notched fins 213 are attached to the heat absorption amount of the cooler 21 to which the smooth fins 214 are attached. The amount of heat absorbed is the amount of heat that the cooler 21 exchanges heat with the return air and finally absorbs. The heat absorption ratio can be obtained from the product of the heat transfer coefficient h ratio, the surface area A ratio, and the temperature difference ΔT ratio. If the heat absorption ratio exceeds 100%, it can be considered that the cooling efficiency has improved. If the heat absorption ratio is less than 100%, it can be considered that the cooling efficiency has decreased.
 このため、切欠きフィン213の切欠き面積は、10mm以下であることが好ましく、10mm以下とすることで、冷却器21における吸熱量を低下させることなく、着霜による冷却効率の低下を抑制できる。 Therefore, the notch area of the notch fin 213 is preferably 10 mm 2 or less. can be suppressed.
 以上説明した、実施の形態1に係る冷蔵庫1によれば、冷却器21の、空気の流れ方向D1の上流側に位置している第3温度切替室戻り口51Cに対向する位置に、切欠き部分211aが切り取られた形状を有する切欠きフィン213が配置されている。温度切替室戻り空気の温度が相対的に高い温度範囲では、複数のフィン211に着霜が生じやすい。温度が相対的に高い温度範囲の空気が導かれる第3温度切替室戻り口51Cに対向する位置に切欠きフィン213が配置されていることで、切欠きフィン213の切欠き部分211aが切り取られた面に霜が付着することができる。そのため、冷却器21で着霜が生じても空気の流れが阻害されにくく、冷却器21における着霜による熱交換効率の低下を抑制し、多量に着霜が生じても耐え得る冷蔵庫1が提供できる。 According to the refrigerator 1 according to Embodiment 1 described above, the notch is provided in the cooler 21 at a position facing the third temperature switchable chamber return port 51C located upstream in the air flow direction D1. A notched fin 213 having a shape obtained by cutting out the portion 211a is arranged. In a temperature range where the temperature of the return air from the temperature switching chamber is relatively high, the fins 211 are likely to be frosted. The notched fin 213 is arranged at a position facing the third temperature switching chamber return port 51C through which air having a relatively high temperature range is introduced, so that the notched portion 211a of the notched fin 213 is cut off. Frost can adhere to the surface. Therefore, even if frost formation occurs in the cooler 21, the flow of air is less likely to be obstructed, a decrease in heat exchange efficiency due to frost formation in the cooler 21 is suppressed, and the refrigerator 1 that can withstand a large amount of frost formation is provided. can.
 また、第1切欠きフィン213a、第2切欠きフィン213bおよび第3切欠きフィン213cは、温度切替室戻り空気と、冷却器21表面との温度差の低減に伴い冷却器室23の奥行き方向にみた場合の面積が減少している。温度差が増大し着霜が増大した位置では、面積が増大した第3切欠きフィン213cの切欠き部分212cが切り取られた面に霜が付着するため、空気の流れが阻害されず、冷却効率の低減が防止される。また、温度差が低減し着霜が減少した位置では、第1切欠きフィン213aの切欠き部分212aにおける冷却器室23の奥行き方向にみた場合の面積が抑制されるため、冷却器21の熱交換効率が維持できる。 In addition, the first notched fin 213a, the second notched fin 213b, and the third notched fin 213c move in the depth direction of the cooler chamber 23 as the temperature difference between the return air from the temperature switching chamber and the surface of the cooler 21 decreases. The area of the case where it is seen is decreasing. At the position where the temperature difference increases and the frost formation increases, frost adheres to the surface where the notch portion 212c of the third notch fin 213c with an increased area is cut, so that the air flow is not obstructed and the cooling efficiency is improved. is prevented from decreasing. Further, at the position where the temperature difference is reduced and the frost formation is reduced, the area of the notch portion 212a of the first notch fin 213a when viewed in the depth direction of the cooler chamber 23 is suppressed. Exchange efficiency can be maintained.
 また、冷却器室23の前面壁223と冷却器21との間の第1クリアランスd1の距離は、冷却器室23の背面壁224と冷却器21との間の第2クリアランスd2の距離よりも大きい。このため、冷却器21の背面よりも着霜が生じやすい冷却器21の前面に、第2クリアランスd2よりも大きい第1クリアランスd1を形成することで、冷却器21の前面により多く霜が付着する余地を確保できる。また、着霜が生じにくい冷却器21の背面では、第2クリアランスd2の距離を減少させることで、冷却器21の熱交換効率が維持できる。 Also, the distance of the first clearance d1 between the front wall 223 of the cooler chamber 23 and the cooler 21 is longer than the distance of the second clearance d2 between the rear wall 224 of the cooler chamber 23 and the cooler 21. big. Therefore, by forming the first clearance d1 larger than the second clearance d2 on the front surface of the cooler 21, which is more susceptible to frost formation than the back surface of the cooler 21, more frost adheres to the front surface of the cooler 21. space can be secured. In addition, the heat exchange efficiency of the cooler 21 can be maintained by reducing the distance of the second clearance d2 on the back surface of the cooler 21 where frost formation is less likely to occur.
 また、冷却器室23の前面壁223および背面壁224は、垂直方向に対する傾斜223a、224aを有し、前面壁223の傾斜223aの角度が、背面壁224の傾斜224aの角度よりも大きい。このため、前面壁223における着霜による冷却効率の低下を抑制しながら、背面壁224における余分な隙間が排除されるため、冷却器21における冷却効率が向上する。 Also, the front wall 223 and the rear wall 224 of the cooler chamber 23 have inclinations 223a, 224a with respect to the vertical direction, and the angle of the inclination 223a of the front wall 223 is larger than the angle of the inclination 224a of the rear wall 224. For this reason, the cooling efficiency of the cooler 21 is improved because the excess gap in the rear wall 224 is eliminated while the deterioration of the cooling efficiency due to frost formation on the front wall 223 is suppressed.
 また、空気の流れ方向D1の上流側配置された第3切欠きフィン213cの第3切欠き面積S3は、空気の流れ方向D1の下流側に配置された第2切欠きフィン213bの第2切欠き面積S2、および、第1切欠きフィン213aの第1切欠き面積S1よりも大きい。また、第2切欠きフィン213bの第2切欠き面積S2は、第2切欠きフィン213bよりも空気の流れ方向D1の下流側に配置された第1切欠きフィン213aの第1切欠き面積S1よりも大きい。そのため、温度切替室戻り空気と、冷却器21との温度差が増大し着霜が増量した位置では、霜により空気の流れが阻害されることがなく、温度差が低減しており着霜が減少した位置では、冷却器21における熱交換効率が維持できる。 Further, the third cutout area S3 of the third cutout fin 213c arranged on the upstream side in the air flow direction D1 corresponds to the second cutout area S3 of the second cutout fin 213b arranged on the downstream side in the air flow direction D1. It is larger than the cutout area S2 and the first cutout area S1 of the first cutout fin 213a. In addition, the second cutout area S2 of the second cutout fin 213b is equal to the first cutout area S1 of the first cutout fin 213a arranged downstream in the air flow direction D1 from the second cutout fin 213b. bigger than Therefore, at the position where the temperature difference between the return air from the temperature switchable chamber and the cooler 21 increases and the amount of frost increases, the flow of air is not hindered by the frost, and the temperature difference is reduced and the frost does not occur. At the reduced position, heat exchange efficiency in the cooler 21 can be maintained.
 また、温度切替室戻り口51は、冷蔵室戻り口41の下流側で、且つ、冷凍室戻り口61の上流側に配置されている。このため、温度切替室戻り空気と冷却器21との熱交換距離が、冷蔵室戻り空気と冷却器21との熱交換距離よりも短く、冷凍室戻り空気と冷却器21との熱交換距離よりも長くなる。これにより、冷却器21における冷蔵室戻り空気の冷却量と冷凍室戻り空気の冷却量の間の冷却量で、温度切替室戻り空気を冷却することができる。 Also, the temperature switching chamber return port 51 is arranged downstream of the refrigerator chamber return port 41 and upstream of the freezer chamber return port 61 . Therefore, the heat exchange distance between the temperature switchable compartment return air and the cooler 21 is shorter than the heat exchange distance between the refrigerator compartment return air and the cooler 21, and the heat exchange distance between the freezer compartment return air and the cooler 21 is shorter than the heat exchange distance between the freezer compartment return air and the cooler 21. also longer. As a result, the temperature switchable chamber return air can be cooled with a cooling amount between the cooling amount of the refrigerating compartment return air and the cooling amount of the freezer compartment return air in the cooler 21 .
 温度切替室4は、用途に応じて室内の温度帯が切り替えられるため、使用者が自身の生活スタイルに合わせて温度切替室4の設定温度を調整でき、使用者の利便性が向上する。 The temperature switchable room 4 can switch the indoor temperature zone according to the application, so that the user can adjust the set temperature of the temperature switchable room 4 according to his/her own lifestyle, improving the user's convenience.
 また、制御装置90は、温度切替室4の温度に基づいて、風路切替手段80に複数の温度切替室戻り口51をいずれか1つの温度切替室戻り口51に切り替えさせる制御を行う。このため、冷却器21における熱交換が最適化され、最小限に抑えられることで、冷却器21と空気の温度差も最適化でき、冷却器21への着霜を抑制することが可能となる。 The control device 90 also controls the air path switching means 80 to switch the plurality of temperature switchable chamber return ports 51 to any one of the temperature switchable chamber return ports 51 based on the temperature of the temperature switchable chamber 4 . Therefore, by optimizing and minimizing the heat exchange in the cooler 21, the temperature difference between the cooler 21 and the air can be optimized, and frost formation on the cooler 21 can be suppressed. .
 また、制御装置90は、風路切替手段80を制御し、これにより温度切替室戻り風路50が形成される。これにより、温度切替室戻り空気が、風路切替手段80の制御により1つの温度切替室戻り口51を経て冷却器室23に至ることができるため、温度切替室戻り空気と、冷却器21との温度差で霜が生じても冷却器21の冷却効率の低下が抑制できる。 The controller 90 also controls the air passage switching means 80 to form the temperature switching chamber return air passage 50 . As a result, the temperature switchable chamber return air can reach the cooler chamber 23 through one temperature switchable chamber return port 51 under the control of the air path switching means 80, so that the temperature switchable chamber return air and the cooler 21 Even if frost occurs due to the temperature difference between the two, a decrease in the cooling efficiency of the cooler 21 can be suppressed.
 なお、冷蔵庫1は、冷蔵室3、温度切替室4および冷凍室5を有し、上からこの順で配置されていたが、冷蔵庫1が有する貯蔵室の数や種類、配置はこれに限らない。例えば、冷蔵庫1は、冷蔵室3に加えてさらに他の冷蔵室を有してもよいし、他の種類の貯蔵室を有してもよい。また、例えば、冷凍室が冷蔵庫1の上部に設けられていてもよい。加えて、各貯蔵室に1つの扉が設けられていたが、これに限らず、例えば、温度切替室4と冷凍室5とを共通の扉で開閉するように構成されていてもよい。 Although the refrigerator 1 has the refrigerator compartment 3, the temperature switchable compartment 4, and the freezer compartment 5, which are arranged in this order from the top, the number, types, and arrangement of the storage compartments of the refrigerator 1 are not limited to this. . For example, the refrigerator 1 may have other refrigerating compartments in addition to the refrigerating compartment 3, or may have other types of storage compartments. Also, for example, a freezer compartment may be provided in the upper part of the refrigerator 1 . In addition, although one door is provided in each storage compartment, the temperature switching compartment 4 and the freezer compartment 5 may be configured to open and close with a common door.
 また、制御装置90は、温度切替室4の基準温度として設定温度に基づいて、風路切替手段80を制御していたが、これに限らない。温度切替室4の基準温度は、測定された温度切替室4の室内温度であってもよい。例えば、制御装置90は、温度切替室4内の温度を検出する温度切替室温度センサ35によって検出された室内温度に基づいて、風路切替手段80を制御してもよい。このような構成により、温度切替室4が開かれて外気が流入し、室内温度が大きく上昇した場合に、その上昇した温度に応じて温度切替室戻り風路50を切り替えることができる。また、その上昇した温度に対応した冷却量で温度切替室戻り空気と冷却器21との熱交換を行うことができる。さらに、温度切替室4の基準温度は、例えば、温度切替室4の設定温度と測定された室内温度との平均値であってもよい。温度切替室4の基準温度は、温度切替室4の設定温度と測定された室内温度との少なくとも一方に基づくものであればよい。 Also, although the control device 90 controls the air path switching means 80 based on the set temperature as the reference temperature of the temperature switching chamber 4, the present invention is not limited to this. The reference temperature of the temperature switchable chamber 4 may be the measured indoor temperature of the temperature switchable chamber 4 . For example, the control device 90 may control the air passage switching means 80 based on the room temperature detected by the temperature switchable room temperature sensor 35 that detects the temperature inside the temperature switchable room 4 . With such a configuration, when the temperature switchable chamber 4 is opened and outside air flows in and the indoor temperature rises significantly, the temperature switchable chamber return air passage 50 can be switched according to the increased temperature. Further, heat exchange between the temperature switchable chamber return air and the cooler 21 can be performed with a cooling amount corresponding to the increased temperature. Furthermore, the reference temperature of the temperature switchable chamber 4 may be, for example, the average value of the set temperature of the temperature switchable chamber 4 and the measured room temperature. The reference temperature of the temperature switchable chamber 4 may be based on at least one of the set temperature of the temperature switchable chamber 4 and the measured room temperature.
 温度切替室4において調整される温度帯の数と温度切替室戻り風路50との数は、上述した説明では一致していたが、特に限定されない。例えば、温度切替室4において調整される温度帯の数が3つに対して、温度切替室戻り風路50との数が2つであってもよい。この場合、一例としては、温度切替室4の温度帯がチルド温度帯および過冷却温度帯のいずれかの場合に、冷却器室23において空気の流れ方向D1に対して上流側に位置する温度切替室戻り口51を有する温度切替室戻り風路50に切り替えるようにしてもよい。また、温度切替室4の温度帯がソフトフリージング温度帯の場合には、空気の流れ方向D1に対して下流側に位置する温度切替室戻り口51を有する温度切替室戻り風路50に切り替えるようにしてもよい。 Although the number of temperature zones adjusted in the temperature switchable chamber 4 and the number of temperature switchable chamber return air passages 50 are the same in the above description, they are not particularly limited. For example, while the number of temperature zones adjusted in the temperature switchable chamber 4 is three, the number of the temperature switchable chamber return air passages 50 may be two. In this case, as an example, when the temperature zone of the temperature switchable chamber 4 is either the chilled temperature zone or the supercooled temperature zone, the temperature switchable temperature switch located upstream in the air flow direction D1 in the cooler chamber 23 It may be switched to the temperature switching chamber return air passage 50 having the chamber return port 51 . Further, when the temperature zone of the temperature switchable chamber 4 is the soft freezing temperature zone, the temperature switchable chamber return air passage 50 having the temperature switchable chamber return port 51 positioned downstream with respect to the air flow direction D1 is used. can be
 実施の形態2.
 図12は、実施の形態2に係る冷蔵庫101の温度切替室戻り風路150周辺の模式図である。実施の形態2に係る冷蔵庫101は、風路切替手段180が、温度切替室戻り風路150に設けられた切替機構としての切替弁で構成されている点で実施の形態1と異なる。実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略する。
Embodiment 2.
FIG. 12 is a schematic diagram of temperature switchable chamber return air passage 150 and its surroundings in refrigerator 101 according to the second embodiment. Refrigerator 101 according to Embodiment 2 differs from Embodiment 1 in that air passage switching means 180 is composed of a switching valve as a switching mechanism provided in temperature switching chamber return air passage 150 . In the second embodiment, parts common to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図12に示すように、冷蔵庫101には、複数の温度切替室戻り風路150として、第1温度切替室戻り風路150Aと、第2温度切替室戻り風路150Bと、第3温度切替室戻り風路150Cと、が設けられている。複数の温度切替室戻り風路150は、冷却器室23に設けられた温度切替室戻り口151を有する。具体的には、第1温度切替室戻り風路150Aは第1温度切替室戻り口151Aを有し、第2温度切替室戻り風路150Bは第2温度切替室戻り口151Bを有し、第3温度切替室戻り風路150Cは第3温度切替室戻り口151Cを有する。温度切替室戻り口151は、冷却器室23において、空気の流れ方向D1に対して上流側から第3温度切替室戻り口151C、第2温度切替室戻り口151Bおよび第1温度切替室戻り口151Aの順で配置されている。温度切替室戻り風路150は、実施の形態1の温度切替室戻り風路50と同様に、1つの温度切替室戻り風路入口52から冷却器室23に至る途中で分岐して温度切替室戻り口151の各々につながるように構成されている。具体的には、温度切替室戻り風路入口52の下流側にある第1分岐部分153において、第3温度切替室戻り風路150Cが第1温度切替室戻り風路150Aおよび第2温度切替室戻り風路150Bと分岐している。また、第1分岐部分153の下流側にある第2分岐部分154において、第1温度切替室戻り風路150Aと第2温度切替室戻り風路150Bとが分岐している。 As shown in FIG. 12, the refrigerator 101 includes a plurality of temperature switchable chamber return air passages 150 including a first temperature switchable chamber return air passage 150A, a second temperature switchable chamber return air passage 150B, and a third temperature switchable chamber return air passage 150B. A return air path 150C is provided. The plurality of temperature-switchable chamber return air passages 150 have a temperature-switchable chamber return port 151 provided in the cooler chamber 23 . Specifically, the first temperature switchable chamber return air passage 150A has a first temperature switchable chamber return port 151A, the second temperature switchable chamber return air passage 150B has a second temperature switchable chamber return port 151B, and a second temperature switchable chamber return port 151B. The 3-temperature-switchable chamber return air passage 150C has a 3rd temperature-switchable chamber return port 151C. The temperature switchable chamber return port 151 is composed of a third temperature switchable chamber return port 151C, a second temperature switchable chamber return port 151B, and a first temperature switchable chamber return port from the upstream side with respect to the air flow direction D1 in the cooler chamber . 151A. Similarly to the temperature switchable chamber return air passage 50 of Embodiment 1, the temperature switchable chamber return air passage 150 branches from one temperature switchable chamber return air passage inlet 52 to the cooler chamber 23 to form a temperature switchable chamber. It is configured to connect to each of the return ports 151 . Specifically, at the first branch portion 153 on the downstream side of the temperature switchable chamber return air passage inlet 52, the third temperature switchable chamber return air passage 150C is connected to the first temperature switchable chamber return air passage 150A and the second temperature switchable chamber return air passage 150A. It branches off from the return air path 150B. Further, at a second branch portion 154 on the downstream side of the first branch portion 153, the first temperature switchable chamber return air passage 150A and the second temperature switchable chamber return air passage 150B are branched.
 図13は、実施の形態2に係る冷蔵庫101の制御構成を示すブロック図である。図13に示すように、制御装置90は、第1切替弁182および第2切替弁183のそれぞれと、例えば信号線により電気的に接続されている。制御装置90は、実施の形態1と同様に、温度切替室4の設定温度に基づいて、風路切替手段180に温度切替室戻り風路150を切り替えさせる制御を行う。このとき、制御装置90は、温度切替室4の設定温度に基づいて切り替える温度切替室戻り風路150を選択し、選択した温度切替室戻り風路150に切り替わるように第1切替弁182および第2切替弁183を制御する。 FIG. 13 is a block diagram showing the control configuration of refrigerator 101 according to the second embodiment. As shown in FIG. 13, the control device 90 is electrically connected to each of the first switching valve 182 and the second switching valve 183 by signal lines, for example. As in the first embodiment, the control device 90 controls the air passage switching means 180 to switch the temperature switchable chamber return air passage 150 based on the set temperature of the temperature switchable chamber 4 . At this time, the control device 90 selects the temperature-switchable chamber return air passage 150 to be switched based on the set temperature of the temperature-switchable chamber 4, and switches to the selected temperature-switchable chamber return air passage 150. 2 switching valve 183 is controlled.
 このように、複数の温度切替室戻り風路150は、温度切替室4に開口する温度切替室戻り風路入口52から冷却器室23に至る途中で分岐して温度切替室戻り口151の各々につながるように構成されている。また、風路切替手段180は、複数の温度切替室戻り風路150の分岐した部分において温度切替室戻り風路150を切り替える第1切替弁182および第2切替弁183を有する。このような構成にすることで、温度切替室戻り風路150の各温度切替室戻り口151にダンパなどの切替機構を設ける場合に比べて、切替機構の個数を減らすことができ、より安価に風路切替手段180を構成することができる。 In this manner, the plurality of temperature switchable chamber return air passages 150 branch from the temperature switchable chamber return air passage inlet 52 that opens to the temperature switchable chamber 4 to the cooler chamber 23 , and branch to each of the temperature switchable chamber return ports 151 . configured to lead to The air passage switching means 180 also has a first switching valve 182 and a second switching valve 183 for switching the temperature switching chamber return air passages 150 at the branched portions of the plurality of temperature switching chamber return air passages 150 . By adopting such a configuration, the number of switching mechanisms can be reduced compared to the case where switching mechanisms such as dampers are provided at each temperature switching chamber return port 151 of the temperature switching chamber return air passage 150, and the cost can be reduced. Air path switching means 180 can be configured.
 実施の形態3.
 図14は、実施の形態3に係る冷蔵庫201の温度切替室戻り風路150周辺の模式図である。実施の形態3に係る冷蔵庫201は、実施の形態2における冷蔵庫101に対して、切替機構の凍結を防止する加熱手段をさらに備える点で異なっている。実施の形態3では、実施の形態1と共通する部分は同一の符号を付して説明を省略する。
Embodiment 3.
FIG. 14 is a schematic diagram of temperature switchable chamber return air passage 150 and its surroundings in refrigerator 201 according to the third embodiment. Refrigerator 201 according to Embodiment 3 differs from refrigerator 101 according to Embodiment 2 in that it further includes heating means for preventing the switching mechanism from freezing. In the third embodiment, parts common to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図14に示すように、本実施の形態では、冷蔵庫201は、加熱手段として、第1凍結防止ヒータ184と、第2凍結防止ヒータ185と、を備える。加熱手段は、例えば電気ヒータで構成される。 As shown in FIG. 14, in this embodiment, the refrigerator 201 includes a first anti-freezing heater 184 and a second anti-freezing heater 185 as heating means. The heating means is composed of, for example, an electric heater.
 第1凍結防止ヒータ184は、第1切替弁182の凍結を防止するため、第1分岐部分153の周囲に設けられている。第2凍結防止ヒータ185は、第2切替弁183の凍結を防止するため、第2分岐部分154の周囲に設けられている。第1切替弁182および第2切替弁183は、温度切替室戻り風路150の内壁と直接接することで風路の切替えを行う。第1切替弁182または第2切替弁183は、長期間にわたって動作しない場合、風路内壁と接した状態で凍結する可能性がある。第1凍結防止ヒータ184および第2凍結防止ヒータ185によって、第1分岐部分153および第2分岐部分154がそれぞれ加熱されて凍結が防止される。 The first anti-freezing heater 184 is provided around the first branch portion 153 to prevent the first switching valve 182 from freezing. A second antifreeze heater 185 is provided around the second branch portion 154 to prevent the second switching valve 183 from freezing. The first switching valve 182 and the second switching valve 183 switch the air path by being in direct contact with the inner wall of the temperature switching chamber return air path 150 . If the first switching valve 182 or the second switching valve 183 does not operate for a long period of time, it may freeze in contact with the inner wall of the air passage. The first branch portion 153 and the second branch portion 154 are respectively heated by the first antifreeze heater 184 and the second antifreeze heater 185 to prevent freezing.
 図15は、実施の形態3に係る冷蔵庫201の制御構成を示すブロック図である。図15に示すように、制御装置90は、第1凍結防止ヒータ184および第2凍結防止ヒータ185の各々と、例えば信号線により電気的に接続されている。制御装置90は、第1凍結防止ヒータ184および第2凍結防止ヒータ185の各々を通電制御することによって、各々を加熱動作させる。制御装置90は、第1切替弁182および第2切替弁183の凍結を防止するため、例えば、一定期間毎に第1凍結防止ヒータ184および第2凍結防止ヒータ185を動作させる。 FIG. 15 is a block diagram showing the control configuration of refrigerator 201 according to the third embodiment. As shown in FIG. 15, the control device 90 is electrically connected to each of the first anti-freezing heater 184 and the second anti-freezing heater 185 by signal lines, for example. Control device 90 heats each of first anti-freezing heater 184 and second anti-freezing heater 185 by controlling energization of each. In order to prevent freezing of the first switching valve 182 and the second switching valve 183, the control device 90 operates the first anti-freezing heater 184 and the second anti-freezing heater 185 at regular intervals, for example.
 なお、第1凍結防止ヒータ184および第2凍結防止ヒータ185を加熱させるタイミングは、冷却器21の霜取り時と同期させてもよい。冷却器室23に流入する空気に含まれた水蒸気は、霜として冷却器21に付着する。冷却器21に過大量の霜が付着すると、冷凍サイクル27の熱交換効率が低下し、その結果、冷蔵庫201冷却効率が大幅に低下する。このため、冷却器21には、霜取りのための不図示の除霜ヒータが設けられている。冷却器21の霜取り時には、この除霜ヒータが動作する。 The timing of heating the first anti-freezing heater 184 and the second anti-freezing heater 185 may be synchronized with the defrosting of the cooler 21 . Water vapor contained in the air flowing into the cooler chamber 23 adheres to the cooler 21 as frost. When an excessive amount of frost adheres to the cooler 21, the heat exchange efficiency of the refrigerating cycle 27 is lowered, and as a result, the cooling efficiency of the refrigerator 201 is significantly lowered. For this reason, the cooler 21 is provided with a defrosting heater (not shown) for defrosting. When defrosting the cooler 21, the defrosting heater operates.
 第1凍結防止ヒータ184および第2凍結防止ヒータ185を常時動作させると消費電力の増加を招くとともに、温度切替室戻り風路150が過熱され、温度切替室戻り空気の冷却が阻害される可能性がある。そこで、冷却器21の霜取り中に第1凍結防止ヒータ184および第2凍結防止ヒータ185を動作させることにより、除霜ヒータによる冷却器21周りの昇温に合わせて第1凍結防止ヒータ184および第2凍結防止ヒータ185が加熱される。第1凍結防止ヒータ184の加熱が最小限の加熱となり、温度切替室戻り空気の冷却の阻害とならずに、第1切替弁182および第2切替弁183の凍結防止が実施できる。 If the first anti-freezing heater 184 and the second anti-freezing heater 185 are operated all the time, the power consumption will increase, and the temperature switching chamber return air passage 150 will be overheated, which may hinder the cooling of the temperature switching chamber return air. There is Therefore, by operating the first anti-freezing heater 184 and the second anti-freezing heater 185 during the defrosting of the cooler 21, the first anti-freezing heater 184 and the second anti-freezing heater 184 and the second anti-freezing heater are operated in accordance with the temperature rise around the cooler 21 by the defrosting heater. 2 Antifreeze heater 185 is heated. The heating of the first anti-freezing heater 184 becomes the minimum amount of heating, and the anti-freezing of the first switching valve 182 and the second switching valve 183 can be implemented without impeding the cooling of the return air from the temperature switching chamber.
 以上説明した、実施の形態3に係る冷蔵庫201は、第1切替弁182および第2切替弁183の凍結を防止する第1凍結防止ヒータ184および第2凍結防止ヒータ185をさらに備える。このような構成により、温度切替室戻り風路150の分岐した部分に設けられた第1切替弁182および第2切替弁183が凍結して動作できなくなることが防止される。 Refrigerator 201 according to Embodiment 3 described above further includes first anti-freezing heater 184 and second anti-freezing heater 185 that prevent first switching valve 182 and second switching valve 183 from freezing. Such a configuration prevents the first switching valve 182 and the second switching valve 183 provided at the branched portion of the temperature switching chamber return air passage 150 from freezing and becoming inoperable.
 なお、各実施の形態を、適宜、組み合わせたり、変形、又は、省略したりすることも、実施の形態で示された技術的思想の範囲に含まれる。また、これまでの説明で貯蔵室内に収納される被冷却物は食品であるとして述べたが、これに限らない。例えば、被冷却物は、食用ではない小動物の生肉等のように自然界から採取されるものでもよいし、クローン動物等の実験用の動物の生肉であってもよい。 Appropriate combination, modification, or omission of each embodiment is also included within the scope of the technical ideas shown in the embodiment. Also, in the description so far, it has been described that the object to be cooled stored in the storage chamber is food, but the object is not limited to this. For example, the object to be cooled may be collected from the natural world such as raw meat of small animals that are not edible, or raw meat of experimental animals such as cloned animals.
 1 冷蔵庫、2 本体部、3 冷蔵室、4 温度切替室、5 冷凍室、6 操作パネル、13 冷蔵室扉、14 温度切替室扉、15 冷凍室扉、17 仕切壁、18 仕切壁、21 冷却器、22 送風機、23 冷却器室、24 圧縮機、25 凝縮器、26 減圧装置、27 冷凍サイクル、28 機械室、29 冷気風路、31 冷蔵室ダンパ、32 温度切替室ダンパ、33 冷凍室ダンパ、34 冷蔵室温度センサ、35 温度切替室温度センサ、36 冷凍室温度センサ、40 冷蔵室戻り風路、41 冷蔵室戻り口、42 冷蔵室戻り風路入口、50 温度切替室戻り風路、50A 第1温度切替室戻り風路、50B 第2温度切替室戻り風路、50C 第3温度切替室戻り風路、51 温度切替室戻り口、51A 第1温度切替室戻り口、51B 第2温度切替室戻り口、51C 第3温度切替室戻り口、52 温度切替室戻り風路入口、60 冷凍室戻り風路、61 冷凍室戻り口、62 冷凍室戻り風路入口、71 伝熱管、72 連結管、73 冷却器入口側、74 冷却器出口側、75 冷却器室最下部領域、76 冷却器下部領域、77 冷却器中下部領域、78 冷却器中上部領域、79 冷却器上部領域、80 風路切替手段、81A 第1温度切替室戻り風路ダンパ、81B 第2温度切替室戻り風路ダンパ、81C 第3温度切替室戻り風路ダンパ、90 制御装置、91 温度設定部、92 温度比較部、93 機器制御部、94 記憶部、95 プロセッサ、96 メモリ、101 冷蔵庫、150 温度切替室戻り風路、150A 第1温度切替室戻り風路、150B 第2温度切替室戻り風路、150C 第3温度切替室戻り風路、151 温度切替室戻り口、151A 第1温度切替室戻り口、151B 第2温度切替室戻り口、151C 第3温度切替室戻り口、153 第1分岐部分、154 第2分岐部分、180 風路切替手段、182 第1切替弁、183 第2切替弁、184 第1凍結防止ヒータ、185 第2凍結防止ヒータ、201 冷蔵庫、211 フィン、211a 切欠き部分、212a 切欠き部分、212b 切欠き部分、212c 切欠き部分、213 切欠きフィン、213a 第1切欠きフィン、213b 第2切欠きフィン、213c 第3切欠きフィン、214 平滑フィン、223 前面壁、223a 傾斜、224 背面壁、224a 傾斜、S1 第1切欠き面積、S2 第2切欠き面積、S3 第3切欠き面積、d1 第1クリアランス、d2 第2クリアランス。 1 refrigerator, 2 main body, 3 refrigerator, 4 temperature switchable chamber, 5 freezer, 6 operation panel, 13 refrigerator door, 14 temperature switcher door, 15 freezer door, 17 partition wall, 18 partition wall, 21 cooling vessel, 22 blower, 23 cooler room, 24 compressor, 25 condenser, 26 decompression device, 27 refrigeration cycle, 28 machine room, 29 cold air passage, 31 cold room damper, 32 temperature switching room damper, 33 freezer room damper , 34 refrigerating chamber temperature sensor, 35 temperature switching chamber temperature sensor, 36 freezing chamber temperature sensor, 40 refrigerating chamber return air passage, 41 refrigerating chamber return port, 42 refrigerating chamber return air passage inlet, 50 temperature switching chamber return air passage, 50A 1st temperature switching chamber return air path, 50B 2nd temperature switching chamber return air path, 50C 3rd temperature switching chamber return air path, 51 temperature switching chamber return port, 51A 1st temperature switching chamber return port, 51B 2nd temperature switching Room return port, 51C Third temperature switching chamber return port, 52 Temperature switching chamber return air passage inlet, 60 Freezing chamber return air passage, 61 Freezing chamber return port, 62 Freezing chamber return air passage inlet, 71 Heat transfer tube, 72 Connecting pipe , 73 Cooler inlet side, 74 Cooler outlet side, 75 Cooler chamber lowermost region, 76 Cooler lower region, 77 Cooler middle lower region, 78 Cooler middle upper region, 79 Cooler upper region, 80 Air passage Switching means 81A First temperature switching chamber return air passage damper 81B Second temperature switching chamber return air passage damper 81C Third temperature switching chamber return air passage damper 90 Control device 91 Temperature setting unit 92 Temperature comparison unit 93 Equipment control unit, 94 storage unit, 95 processor, 96 memory, 101 refrigerator, 150 temperature switching chamber return air passage, 150A first temperature switching chamber return air passage, 150B second temperature switching chamber return air passage, 150C third temperature Switching chamber return air path 151 Temperature switching chamber return port 151A First temperature switching chamber return port 151B Second temperature switching chamber return port 151C Third temperature switching chamber return port 153 First branch portion 154 Second branch portion, 180 air path switching means, 182 first switching valve, 183 second switching valve, 184 first anti-freezing heater, 185 second anti-freezing heater, 201 refrigerator, 211 fins, 211a notched portion, 212a notched portion, 212b notched portion, 212c notched portion, 213 notched fin, 213a first notched fin, 213b second notched fin, 213c third notched fin, 214 smooth fin, 223 front wall, 223a inclined, 224 rear wall , 224a inclination, S1 first notch area, S2 second notch area, S3 third notch area, d1 first clearance, d2 second clearance.

Claims (10)

  1.  冷蔵温度帯から、前記冷蔵温度帯よりも温度が低い冷凍温度帯までの温度範囲で設定温度が切り替えられる温度切替室と、
     複数のフィンを有して空気を冷却する冷却器と、前記冷却器で冷却された空気を前記温度切替室に送る送風機と、を収容する冷却器室と、
     前記冷却器室において前記冷却器に対向しかつ前記空気の流れ方向に対して互いに異なる位置に開口し、前記温度切替室の温度範囲に基づいて、いずれか1つに切り替えられ、温度切替室戻り空気が導かれる複数の温度切替室戻り口と、
     を備え、
     前記複数のフィンは、霜が堆積する領域として切欠きが設けられた切欠きフィンを含み、
     前記切欠きフィンは、複数の温度切替室戻り口のうち、前記冷蔵温度帯に最も近い温度範囲の温度切替室戻り空気が導かれる温度切替室戻り口と対向する位置に配置されている
     冷蔵庫。
    a temperature switchable chamber in which the set temperature can be switched within a temperature range from a refrigeration temperature range to a freezing temperature range lower in temperature than the refrigeration temperature range;
    a cooler chamber that houses a cooler that has a plurality of fins to cool air; and a blower that sends the air cooled by the cooler to the temperature switching chamber;
    The cooler chamber faces the cooler and opens at positions different from each other with respect to the air flow direction, and is switched to one of them based on the temperature range of the temperature switchable chamber, and returns to the temperature switchable chamber. a plurality of temperature switching chamber return ports through which air is directed;
    with
    the plurality of fins includes notched fins provided with notches as frost-accumulating regions;
    The notched fin is arranged at a position facing the temperature switchable chamber return port, from among the plurality of temperature switchable chamber return ports, to which temperature switchable chamber return air having a temperature range closest to the refrigerating temperature range is guided.
  2.  前記切欠きフィンは、前記切欠きの面積が異なる複数の前記切欠きフィンを含み、
     前記冷却器との温度差が最も大きい温度範囲の前記温度切替室戻り空気が導かれる温度切替室戻り口に対向する位置の前記切欠きフィンにおいて、前記切欠きの面積が最も大きく、
     前記冷却器との温度差が減少するほど、温度切替室戻り口に対向する位置の前記切欠きフィンにおいて、前記切欠きの面積が減少している
     請求項1に記載の冷蔵庫。
    The notched fin includes a plurality of notched fins with different notch areas,
    In the notched fin at a position facing the temperature switchable chamber return port through which the temperature switchable chamber return air having the largest temperature difference with the cooler is led, the notched fin has the largest area,
    2. The refrigerator according to claim 1, wherein the cutout area of the cutout fin at a position facing the return port of the temperature switching chamber decreases as the temperature difference with the cooler decreases.
  3.  前記冷却器室は、
     前記複数の温度切替室戻り口と対向する前記冷却器の前面と、前記複数の温度切替室戻り口が形成された前記冷却器室の前面壁と、の間の第1クリアランスと、
     前記前面と反対側の前記冷却器の背面と、前記冷却器室の背面壁と、の第2クリアランスと、を有し、
     前記第1クリアランスの距離は、前記第2クリアランスの距離よりも大きい
     請求項1又は2に記載の冷蔵庫。
    The cooler chamber is
    a first clearance between a front surface of the cooler facing the plurality of temperature switching chamber return ports and a front wall of the cooler chamber in which the plurality of temperature switching chamber return ports are formed;
    a second clearance between a back surface of the cooler opposite the front surface and a back wall of the cooler chamber;
    The refrigerator according to claim 1 or 2, wherein the first clearance distance is greater than the second clearance distance.
  4.  前記冷却器室の前記前面壁と、前記背面壁とは、
     前記第1クリアランスおよび前記第2クリアランスの距離が、前記空気の流れ方向において変化するように、垂直方向に対する傾斜を有し、
     前記前面壁の傾斜の角度が、前記背面壁の傾斜の角度よりも大きい
     請求項3に記載の冷蔵庫。 
    The front wall and the rear wall of the cooler chamber are:
    having an inclination with respect to the vertical such that the distance between the first clearance and the second clearance varies in the direction of flow of the air;
    4. The refrigerator according to claim 3, wherein the inclination angle of the front wall is greater than the inclination angle of the rear wall.
  5.  前記冷蔵温度帯に最も近い温度範囲が設定された温度切替室戻り空気が導かれる前記温度切替室戻り口と対向している前記切欠きフィンにおける前記切欠きの切断面の面積を第1切欠き面積S1とし、
     前記冷蔵温度帯に最も近い温度範囲よりも前記冷凍温度帯に近い温度範囲が設定された温度切替室戻り空気が導かれる前記温度切替室戻り口と対向している前記切欠きフィンにおける前記切欠きの切断面の面積を第2切欠き面積S2とした場合、
     第2切欠き面積S2>第1切欠き面積S1の関係が成立する
     請求項1~4のいずれか一項に記載の冷蔵庫。
    A first notch is defined as the area of the cut surface of the notch in the notched fin facing the temperature switchable chamber return port through which the temperature switchable chamber return air whose temperature range is set closest to the refrigerating temperature range is guided. Let the area be S1,
    The notch in the notch fin facing the temperature switchable chamber return port through which the temperature switchable chamber return air having a temperature range closer to the freezing temperature range than the temperature range closest to the refrigerating temperature range is guided. When the area of the cut surface of is the second notch area S2,
    5. The refrigerator according to any one of claims 1 to 4, wherein a relation of second notch area S2>first notch area S1 is established.
  6.  前記冷蔵温度帯に設定される冷蔵室と、
     前記冷凍温度帯に設定される冷凍室と、をさらに備え、
     前記冷却器室には、
     前記冷却器よりも前記空気の流れの上流側に配置され、前記冷蔵温度帯の前記冷蔵室からの空気が導かれる冷蔵室戻り口と、
     前記冷却器に対向し、前記複数の温度切替室戻り口よりも前記空気の流れの上流側に配置され、前記冷凍温度帯の前記冷凍室からの空気が導かれる冷凍室戻り口と、
     が形成されており、
     前記複数の温度切替室戻り口は、
     前記空気の流れ方向に対して、前記冷蔵室戻り口の下流側で、且つ、前記冷凍室戻り口の上流側に配置されている
     請求項1~5のいずれか一項に記載の冷蔵庫。
    a refrigerating room set in the refrigerating temperature zone;
    a freezer compartment set in the freezer temperature zone,
    In the cooler chamber,
    a refrigerating chamber return port disposed on the upstream side of the air flow relative to the cooler and through which air from the refrigerating chamber in the refrigerating temperature range is guided;
    a freezer compartment return port that faces the cooler and is arranged on the upstream side of the air flow relative to the plurality of temperature switchable compartment return ports, through which air from the freezer compartment in the freezing temperature range is guided;
    is formed and
    The plurality of temperature switching chamber return ports are
    6. The refrigerator according to any one of claims 1 to 5, wherein the refrigerator is arranged downstream of the refrigeration compartment return port and upstream of the freezer compartment return port with respect to the air flow direction.
  7.  前記温度切替室は、0℃以上3℃未満のチルド温度帯と、-3℃以上0℃未満の過冷却温度帯と、-10℃以上-5℃以下のソフトフリージング温度帯と、の少なくとも3つの温度帯に切り替え可能である
     請求項1~6のいずれか一項に記載の冷蔵庫。
    The temperature switchable chamber has at least three of a chilled temperature zone of 0°C or higher and lower than 3°C, a supercooled temperature zone of -3°C or higher and lower than 0°C, and a soft freezing temperature zone of -10°C or higher and -5°C or lower. 7. The refrigerator according to any one of claims 1 to 6, which is switchable between two temperature zones.
  8.  前記温度切替室の温度に基づいて、前記複数の温度切替室戻り口をいずれか1つの温度切替室戻り口に切り替える風路切替手段と、
     前記温度切替室の温度に基づいて、前記風路切替手段に前記複数の温度切替室戻り口をいずれか1つに切り替えさせる制御を行う制御装置と、
     をさらに備え、
     前記制御装置は、前記風路切替手段に、
     前記温度切替室の温度が第1温度帯に含まれる場合、前記複数の温度切替室戻り口のうちの第1温度切替室戻り口に切り替えさせ、
     前記温度切替室の温度が前記第1温度帯よりも低い第2温度帯に含まれる場合、前記複数の温度切替室戻り口のうちの前記第1温度切替室戻り口よりも前記空気の流れ方向の下流側に位置する第2温度切替室戻り口に切り替えさせる制御を行う
     請求項1~7のいずれか一項に記載の冷蔵庫。
    air path switching means for switching the plurality of temperature switchable chamber return ports to one of the temperature switchable chamber return ports based on the temperature of the temperature switchable chamber;
    a control device for controlling the air passage switching means to switch one of the plurality of temperature switchable chamber return ports based on the temperature of the temperature switchable chamber;
    further comprising
    The control device causes the air path switching means to
    when the temperature of the temperature switchable chamber is included in the first temperature zone, switching to the first temperature switchable chamber return port among the plurality of temperature switchable chamber return ports;
    When the temperature of the temperature switchable chamber is included in a second temperature zone that is lower than the first temperature zone, the direction of the air flow is greater than the first temperature switchable chamber return port among the plurality of temperature switchable chamber return ports. 8. The refrigerator according to any one of claims 1 to 7, wherein control is performed to switch to the second temperature switchable chamber return port located downstream of the second temperature switchable chamber.
  9.  前記制御装置により前記風路切替手段が、前記1つの温度切替室戻り口に切り替えることで、前記温度切替室に開口する温度切替室戻り風路入口から、前記1つの温度切替室戻り口を経て前記冷却器室に至る温度切替室戻り風路が形成されている
     請求項8に記載の冷蔵庫。
    By switching the air passage switching means to the one temperature switchable chamber return port by the control device, the temperature switchable chamber return air passage inlet opening to the temperature switchable chamber passes through the one temperature switchable chamber return port. The refrigerator according to claim 8, wherein a temperature switching chamber return air passage leading to the cooler chamber is formed.
  10.  前記風路切替手段の凍結を防止する加熱手段をさらに備える請求項9に記載の冷蔵庫。 The refrigerator according to claim 9, further comprising heating means for preventing freezing of the air passage switching means.
PCT/JP2021/004751 2021-02-09 2021-02-09 Refrigerator WO2022172319A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022581042A JP7387037B2 (en) 2021-02-09 2021-02-09 refrigerator
PCT/JP2021/004751 WO2022172319A1 (en) 2021-02-09 2021-02-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004751 WO2022172319A1 (en) 2021-02-09 2021-02-09 Refrigerator

Publications (1)

Publication Number Publication Date
WO2022172319A1 true WO2022172319A1 (en) 2022-08-18

Family

ID=82838436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004751 WO2022172319A1 (en) 2021-02-09 2021-02-09 Refrigerator

Country Status (2)

Country Link
JP (1) JP7387037B2 (en)
WO (1) WO2022172319A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265497A (en) * 1985-05-20 1986-11-25 Matsushita Electric Ind Co Ltd Heat exchanger
JPH11264631A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Heat exchanger
JP2000180018A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerator
JP2011158250A (en) * 2011-04-15 2011-08-18 Mitsubishi Electric Corp Heat exchanger and refrigerator-freezer mounted with the heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265497A (en) * 1985-05-20 1986-11-25 Matsushita Electric Ind Co Ltd Heat exchanger
JPH11264631A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Heat exchanger
JP2000180018A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerator
JP2011158250A (en) * 2011-04-15 2011-08-18 Mitsubishi Electric Corp Heat exchanger and refrigerator-freezer mounted with the heat exchanger

Also Published As

Publication number Publication date
JP7387037B2 (en) 2023-11-27
JPWO2022172319A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP3576103B2 (en) refrigerator
JP4954484B2 (en) Cooling storage
JP5530852B2 (en) refrigerator
EP3637020B1 (en) Heat conduction unit and refrigerator including the same
JP4867758B2 (en) refrigerator
WO2020175825A1 (en) Refrigerator control method
CN104101154A (en) Refrigerator
JP6563273B2 (en) refrigerator
TWI716636B (en) refrigerator
JP5847198B2 (en) refrigerator
JP2003090667A (en) Icemaking chamber constitution for refrigerator
WO2020175823A1 (en) Method for controlling refrigerator
JP5175705B2 (en) refrigerator
WO2022172319A1 (en) Refrigerator
JP2004293820A (en) Refrigerator
JP6492291B2 (en) refrigerator
JP7286008B2 (en) refrigerator
JP2008111640A (en) Refrigerator
KR20080068233A (en) Method and apparatus for prevention supercooling of refrigerator
JP2005098605A (en) Refrigerator
JP6940424B2 (en) refrigerator
KR101872608B1 (en) Refrigerator
JP2017026210A (en) refrigerator
WO2024024018A1 (en) Refrigerator
JP2007127394A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925573

Country of ref document: EP

Kind code of ref document: A1