WO2022170995A1 - 一种箱体组件和制冷设备 - Google Patents

一种箱体组件和制冷设备 Download PDF

Info

Publication number
WO2022170995A1
WO2022170995A1 PCT/CN2022/074401 CN2022074401W WO2022170995A1 WO 2022170995 A1 WO2022170995 A1 WO 2022170995A1 CN 2022074401 W CN2022074401 W CN 2022074401W WO 2022170995 A1 WO2022170995 A1 WO 2022170995A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference plane
opening
trajectory
reference point
door body
Prior art date
Application number
PCT/CN2022/074401
Other languages
English (en)
French (fr)
Inventor
钟磊
曾国
刘学康
Original Assignee
广东美的白色家电技术创新中心有限公司
合肥美的电冰箱有限公司
合肥华凌股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 合肥美的电冰箱有限公司, 合肥华凌股份有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP22752156.4A priority Critical patent/EP4279840A1/en
Priority to JP2023548351A priority patent/JP2024515927A/ja
Priority to CA3207572A priority patent/CA3207572A1/en
Publication of WO2022170995A1 publication Critical patent/WO2022170995A1/zh
Priority to US18/366,622 priority patent/US20230375252A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D3/00Hinges with pins
    • E05D3/06Hinges with pins with two or more pins
    • E05D3/18Hinges with pins with two or more pins with sliding pins or guides
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/06Devices for limiting the opening movement of hinges
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D5/00Construction of single parts, e.g. the parts for attachment
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D7/00Hinges or pivots of special construction
    • E05D7/08Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions
    • E05D7/081Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions the pivot axis of the wing being situated near one edge of the wing, especially at the top and bottom, e.g. trunnions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D7/00Hinges or pivots of special construction
    • E05D7/08Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions
    • E05D7/082Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions the pivot axis of the wing being situated at a considerable distance from the edges of the wing, e.g. for balanced wings
    • E05D7/084Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions the pivot axis of the wing being situated at a considerable distance from the edges of the wing, e.g. for balanced wings with a movable pivot axis
    • E05D7/085Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions the pivot axis of the wing being situated at a considerable distance from the edges of the wing, e.g. for balanced wings with a movable pivot axis with two or more pivot axes, e.g. used at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/682Pins
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/26Form or shape
    • E05Y2800/292Form or shape having apertures
    • E05Y2800/296Slots
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/306Application of doors, windows, wings or fittings thereof for domestic appliances for freezers
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/31Application of doors, windows, wings or fittings thereof for domestic appliances for refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • F25D2323/024Door hinges

Definitions

  • the present application relates to a box assembly and refrigeration equipment.
  • the door body may squeeze the box body, or the door body may protrude from the side of the box body assembly; this will cause the box body
  • the problem of damage to the cabinet and the interference problem of the installation environment of the cabinet assembly For example, for the embedded installation, the part of the door body beyond the side of the cabinet assembly may interfere with the embedded wall.
  • the present application provides a box body assembly to solve the problems in the prior art that the door body squeezes the box body and protrudes from the side of the box body assembly during the opening process.
  • a box assembly which includes:
  • the box body is used to form an accommodating space with an opening;
  • the door body is used to block the opening
  • a hinge assembly configured to pivotally connect the box body and the door body on the pivot side of the box body
  • the door body has an inner edge and an outer edge on the pivot side, and when the door body is in a closed state relative to the box body, the inner edge is compared with the outer edge.
  • the door body is further provided with a first reference plane and a second reference plane, wherein the first reference plane passes through the inner edge in the closed state and is located with the opening.
  • the plane is parallel to the second reference plane, and the second reference plane passes through the outer edge in the closed state and is perpendicular to the plane where the opening is located;
  • the inner edge moves toward the second inner edge along the trajectory of the first inner edge.
  • the reference plane moves toward one side of the opening
  • the outer edge moves toward the first reference plane along the first outer edge trajectory
  • the curvature radius of the first inner edge trajectory is not less than 100t
  • the first The distance of an inner edge track beyond the first reference plane toward the side of the opening is not greater than a second predetermined distance
  • the curvature radius of the first outer edge track is not less than 5t
  • the first outer edge track is not less than 5t.
  • the distance of the track beyond the second reference plane away from the side of the opening is not greater than the first predetermined distance
  • t is the thickness of the door body.
  • the door body and the box body are pivotally connected by a hinge assembly, and there may be problems that the door body squeezes the box body and the door body protrudes from the side surface of the box body assembly. Therefore, the present application defines the movement trajectory of the inner edge of the pressing box body, and the outer edge exceeding the side of the box body in the process that the door body is opened to the first angle from the closed state relative to the box body under the action of the hinge assembly. movement trajectory.
  • a first reference plane and a second reference plane of the door are defined.
  • the first reference plane passes through the inner edge of the closed state and is parallel to the plane where the box opening is located.
  • the second reference plane The plane passes through the outer edge of the closed state and is perpendicular to the plane where the box opening is located.
  • the inner edge moves to the side of the second reference plane toward the opening, the outer edge moves to the first reference plane, and the inner edge moves to the side of the opening.
  • the radius of curvature of the trajectory of the first inner edge is not less than 100t, the distance beyond the first reference plane toward the opening is not greater than the second predetermined distance, the radius of curvature of the trajectory of the first outer edge of the outer edge is not less than 5t, and the first outer edge
  • the distance of the edge motion trajectory beyond the second reference plane away from the side of the exit is not greater than the first predetermined distance, and t is the thickness of the door body.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the box assembly of the present application
  • Fig. 2 is a schematic diagram of the movement relationship of the door relative to the box in the existing box assembly
  • FIG. 3 is a schematic diagram of the movement trajectory of the edge in the first embodiment of the box assembly shown in FIG. 1;
  • Fig. 4 is a schematic diagram of the opening angle and edge movement trajectory of the door relative to the box in the first embodiment of the box assembly shown in Fig. 1;
  • FIG. 5 is a schematic diagram of the motion trajectory of the reference point in the first embodiment of the box assembly shown in FIG. 1;
  • FIG. 6 is a schematic diagram of the selection range of the internal reference point in the first embodiment of the box assembly shown in FIG. 1;
  • FIG. 7 is a schematic diagram of the selection range of the external reference point in the first embodiment of the box assembly shown in FIG. 1;
  • FIG. 8 is a schematic diagram of the tangential direction angle of the trajectory of the internal reference point in the first embodiment of the box assembly shown in FIG. 1;
  • FIG. 9 is a schematic diagram of the angle of the track tangent direction of the outer reference point in the first embodiment of the box assembly shown in FIG. 1;
  • FIG. 10 is a schematic diagram of the instantaneous center trajectory of the instantaneous center of door movement in the third embodiment of the box assembly shown in FIG. 1;
  • FIG. 11 is a schematic structural diagram of the fourth embodiment of the box assembly of the present application.
  • Fig. 12 is a schematic view of the hinge shaft structure of the hinge assembly in the fourth embodiment of the box assembly shown in Fig. 11;
  • Fig. 13 is a schematic diagram of the hinge groove structure of the hinge assembly in the fourth embodiment of the box assembly shown in Fig. 11;
  • Figure 14 is a schematic view of the state of the hinge assembly when the door body is in a closed state relative to the box body in the fourth embodiment of the box body assembly shown in Figure 11;
  • Fig. 15 is a schematic view of the state of the hinge assembly when the door body is opened to the first opening angle relative to the box body in the fourth embodiment of the box body assembly shown in Fig. 11;
  • Fig. 16 is a schematic view of the state of the hinge assembly when the door body is opened to the second opening angle relative to the box body in the fourth embodiment of the box body assembly shown in Fig. 11;
  • FIG. 17 is a schematic view of the state of the hinge assembly when the door body is opened to a third opening angle relative to the box body in the fourth embodiment of the box body assembly shown in FIG. 11 .
  • FIG. 1 is a schematic structural diagram of a first embodiment of a box assembly of the present application.
  • the box body assembly 100 in this embodiment includes a box body 11 , a door body 12 and a hinge assembly 13 .
  • An accommodating space is formed inside the box body 11, the accommodating space is provided with an opening, the door body 12 is used for blocking or opening, the hinge assembly 13 is arranged on the pivot side of the box body 11, and the hinge assembly 13 pivotally connects the door body 12 and the box body 11.
  • the door body 12 can be opened or closed relative to the box body 11 under the action of the hinge assembly 13.
  • FIG. 2 is a schematic diagram of the movement relationship between the door body and the case body in the prior art case assembly.
  • the side surface of the box body assembly 900 may be the side surface of the box body 91 or The side surface of the door body 92 in the closed state, it is obvious that the hinge assembly 93 in the prior art cannot solve the technical problem of the present application.
  • the movement trajectory of the upper edge of the door body is defined to alleviate the problem that the door body presses against the box body and exceeds the side surface of the box body assembly.
  • the relative motion relationship between the door body and the box body can be determined according to the motion track of the edge, and then the motion track of the fixed point on the box body or the door body can be determined.
  • Design the hinge assembly. Therefore, the hinge assemblies that can realize the edge motion trajectory in the present application are all within the protection scope of the present application.
  • FIG. 3 is a schematic diagram of the movement trajectory of the edge in the first embodiment of the box assembly shown in FIG. 1
  • FIG. 4 is a door relative to the box in the first embodiment of the box assembly shown in FIG. 1 .
  • the door body 12 in this embodiment has an outer edge 121 and an inner edge 122 on the pivot side.
  • the inner edge 122 is closer to the box body than the outer edge 121 11.
  • a second reference plane Y that passes through the outer edge 121 in the closed state is further defined, and the second reference plane Y is perpendicular to the plane where the opening is located.
  • a first reference plane X passing through the inner edge 122 in the closed state is also defined, and the first reference plane X is parallel to the plane where the opening is located.
  • the outer edge 121 moves to the first reference plane X along the first outer edge track A1B1, and the inner edge 121 moves toward the first reference plane X.
  • the edge 122 moves toward the opening side toward the second reference plane Y along the first inner edge trajectory A2B2.
  • the first reference plane X and the second reference plane Y do not move when the door body 12 moves, and are fixed reference planes.
  • the radius of curvature of the first outer edge track A1B1 is greater than or equal to 5t, and the distance beyond the second reference plane Y away from the opening is less than or equal to the first A predetermined distance d1; the curvature radius of the first inner edge track A2B2 is greater than or equal to 100t, and the distance beyond the first reference plane X toward the opening side is less than or equal to a second predetermined distance d2, where t is the thickness of the door.
  • the radius of curvature of the motion trajectory and the distance at which the motion trajectory can exceed the reference plane are limited, so as to ensure that the edge can move smoothly without exceeding the predetermined range.
  • the minimum value of the radius of curvature of the first outer edge track A1B1 and the minimum value of the radius of curvature of the first inner edge track A2B2 are specifically defined, that is, when the minimum value of the radius of curvature is selected, it can be ensured that the door body 12 will not be boxed. 11 causes a large squeeze, and the door body 12 is too much beyond the side of the box assembly.
  • the radius of curvature is selected to be infinite, the trajectory is a straight line, and corresponding to the case where both trajectories are straight, the door body 12 can be opened to a maximum of 90 degrees relative to the box body 11 .
  • the thickness t of the door body is used as the reference standard, the curvature radius of the first outer edge track A1B1 is greater than or equal to 5t, and the curvature radius of the first inner edge track A2B2 is greater than or equal to 100t.
  • the door body thickness t determines the degree of movement of the door body 12 relative to the box body 11 when it is opened. Obviously, the thicker the door body 12 is, the larger the curvature radius of the movement trajectory is. Specifically, the thickness of the door body is at least 2 cm.
  • the relevant limitation of the first preset distance d1 determines the extent to which the outer edge 121 can extend beyond the side of the box assembly 100.
  • the outer edge 121 can be allowed to extend beyond the side of the box assembly 100 to a certain extent.
  • the gap allows the outer edge 121 to extend beyond the side surface of the box body assembly 100 to a certain extent.
  • the relevant limitation of the second preset distance d2 determines the degree to which the inner edge 122 can squeeze the box body 11.
  • the inner edge 122 can be allowed to squeeze the box body 11 to a certain extent, such as the box body 11. If the body 11 is provided with a deformable door seal, the compression of the box body 11 by the inner edge 122 to a certain degree can be ignored.
  • the specific values of the first predetermined distance and the second predetermined distance can be determined according to actual product design requirements.
  • the second predetermined distance is determined according to the thickness or elasticity of the door seal on the box body; in this embodiment, the thickness of the door body is used as a scalar, and the first predetermined distance and the second predetermined distance are defined as 0 to 0.15 times the thickness of the door body. 0 times, which means that the door body does not squeeze the box body and does not exceed the side of the box body assembly. In this embodiment, 0.1 times can be selected, that is, 0.1 times the thickness of the door body is allowed to exceed; it can also be limited according to empirical values.
  • the distance is 0mm to 4mm, and the second predetermined distance is 0mm to 2mm. Similarly, if 0mm is selected, the limit will not exceed; distance.
  • the inner edge 122 moves along the first inner edge trajectory A2B2 during the process from being closed relative to the box body 11 to opening the first opening angle.
  • the outer edge 121 then moves along the first outer edge track A1B1.
  • the radius of curvature of the first inner edge track A2B2 and the first outer edge track A1B1, and the distance relationship between them and the second reference plane Y and the first reference plane X have certain characteristics, and the door body 12 is based on the track. Therefore, the pressing of the door body 12 to the box body 11 can be reduced or even avoided, and the door body 12 can protrude from the side surface of the box body assembly 100 .
  • the end point B2 of the first inner edge track A2B2 is located on the first reference plane X, or the end point B2 is located on the side of the first reference plane X away from the opening and the distance to the first reference plane X is less than or equal to 0.058t;
  • the end point B1 of the first outer edge track A1B1 is located on the second reference plane Y, or the end point B1 is located on the side of the second reference plane Y facing the opening and the distance to the second reference plane Y is less than or equal to 0.135t.
  • the inner edge 122 of the door body 12 will not squeeze the box body 11, and will not move too far away from the box body 11; Do not move too much toward the second reference plane Y toward the opening side. Therefore, there is no obvious displacement problem when the door body 12 is opened, and the movement of the door body 12 is more stable.
  • the door body 12 will There is a situation where it cannot continue to be opened.
  • the maximum opening angle of the door body 12 generally needs to be greater than 90 degrees. Therefore, after the edge of the door body 12 moves along the first edge trajectory until the door body 12 opens less than 90 degrees, other motion trajectories can be used to make It can then be opened more than 90 degrees.
  • the first outer edge track A1B1 is shorter than the first inner edge track A2B2, and the length ratio of the first inner edge track A2B2 to the first outer edge track A1B1 is 3.5 ⁇ 4.5.
  • the door body 12 may move along another trajectory after opening the first opening angle.
  • the outer edge 121 moves toward the first reference plane along the second outer edge track B1C1.
  • X moves, and the inner edge 122 moves along the second inner edge trajectory B2C2 toward the second reference plane Y toward the opening and the first reference plane X away from the opening.
  • the inner edge 122 starts to move toward the opening side toward the second reference plane Y, and the third angle between the tangential direction of the second inner edge movement track B2C2 of the inner edge 122 and the first reference plane X gradually increases, And corresponding to each opening unit angle of the door body 12, the change increases gradually, and the end point C2 is located on the side of the first reference plane X away from the opening. This allows the door body 12 to have room to open a larger angle.
  • the tangent direction of the second outer edge track B1C1 is set perpendicular to the first reference plane X, or at a fourth angle between 70 degrees and 110 degrees. Set obliquely with respect to the first reference plane X.
  • the door 12 will not squeeze the box 11 and will not exceed the side of the box 11 too much.
  • the fourth included angle remains unchanged, that is, the second outer edge trajectory B1C1 is a straight line; or, the second outer edge trajectory B1C1 Monotonically changing in the form of a straight line, the second outer edge trajectory B1C1 is an arc, and the outer edge 121 moves smoothly along the straight or arc-shaped second outer edge trajectory B1C1.
  • the difference between the maximum value and the minimum value of the fourth angle is not less than 10 degrees, that is, the second outer edge trajectory B1C1 is generally smooth, which further ensures the smooth movement of the outer edge 121 along the second outer edge trajectory B1C1 sex.
  • the third included angle gradually increases, that is, the second inner edge track B2C2 is an arc, and the inner edge 122 is along the arc-shaped No.
  • the two inner edge tracks B2C2 move smoothly.
  • the difference between the maximum value and the minimum value of the third angle is greater than or equal to 35 degrees, and the second inner edge trajectory B2C2 is generally smooth, which further ensures the smoothness of the movement of the inner edge 122 along the second inner edge trajectory B2C2.
  • the entire door body 12 moves smoothly during the process of opening the door body 12 from the first opening angle to the second opening angle, avoiding the situation of sliding jamming.
  • the inner edge 122 starts to move toward the opening side toward the second reference plane Y, and the movement trajectory of the inner edge 122 is an arc, the curvature radius of the second inner edge trajectory B2C2 gradually decreases, and its end point C2 is located at
  • the first reference plane X faces away from the opening, and the distance from the first reference plane is greater than or equal to 0.3t. This allows the door body 12 to have room to open a larger angle.
  • the curvature radius of the second outer edge track B1C1 is greater than or equal to 5t, and the distance beyond the second reference plane Y away from the exit is less than or equal to the first preset distance d1. According to the characteristics of the above trajectory, during the opening process of the door body 12 from the first opening angle to the second opening angle, the door body 12 will not squeeze the box body 11, nor will it exceed the side surface of the box body assembly too much. .
  • the second outer edge trajectory B1C1 continues the first outer edge trajectory A1B1, while the second inner edge trajectory B2C2 is to facilitate the subsequent opening of a larger angle, and to make the door open more smoothly Instead, set an arc with a gradually decreasing radius of curvature.
  • the first opening angle here may be the door closing angle, and the second opening angle may be any angle.
  • the second inner edge trajectory may then be A2C2, and the second outer edge trajectory may be A1C1.
  • the movement direction of the inner edge 122 along the second inner edge track is away from the opening of the box body, which can prevent the door body from squeezing the box body; and the curvature radius of the second outer edge track of the outer edge track 121 is greater than or equal to 5t, And the distance beyond the second reference plane away from the side of the opening is less than or equal to the first predetermined distance. According to the above analysis of the trajectory of the first outer edge, this feature can prevent the door from protruding from the side of the box assembly.
  • the difference between the first opening angle and the second opening angle may be defined as 25 degrees to 60 degrees.
  • the door body 12 can also continue to open from the second opening angle to the third opening angle relative to the box body 11.
  • the inner edge 122 opens along the third opening angle.
  • the inner edge track C2D2 moves toward the first reference plane X away from the opening, and the outer edge 121 moves along the third outer edge track C1D1 toward the second reference plane Y toward the opening.
  • the trajectory of this movement direction also corresponds to a larger opening angle of the door body 12 .
  • the third outer edge track C1D1 and the third inner edge track C2D2 are concentric arcs, the curvature radius of the third inner edge track C2D2 is 0.55t-0.67t, and the curvature radius of the third outer edge track C1D1 It is 0.45t-0.55t.
  • the edge of the door body 12 moves along the first inner edge track A2B2 and the first outer edge track A1B1, in order to achieve a larger opening angle, it can also directly follow the third outer edge track C1D1 and the third inner edge track A1B1.
  • the edge track C2D2 moves, thereby solving the problem of squeezing the box 11 and exceeding the sides of the box assembly.
  • the hinge assembly 13 is designed according to the first track and the third track, when the door body 12 is rotated through the hinge assembly 13, it is easy to shake during the rotation process.
  • the first track and the third track The second track is added between the three tracks, so that the movement process of the door body 12 is more stable and smooth.
  • the ratio of the curvature radius of the third inner edge track C2D2 to the third outer edge track C1D1 is 1.22, which can prevent interference problems in the structure of the hinge assembly 13 corresponding to the third track.
  • the first opening angle corresponding to the first track is 25 degrees to 31 degrees
  • the second opening angle corresponding to the second track is 57 degrees to 60 degrees
  • the third opening angle corresponding to the third track The angle is 122 to 132 degrees.
  • the length of the first inner edge track A2B2 is 0.465t, and the length of the first outer edge track A1B1 is 0.115t.
  • the length of the second outer edge track B1C1 is 0.2285t, and the second inner edge track B2C2 is set so that the moving distance of the outer edge 121 on the second outer edge track B1C1 and the rotation angle of the door body 12 relative to the box body 11
  • the following formulas are satisfied:
  • ⁇ 1 is the rotation angle
  • is a preset angle of 100 degrees to 113 degrees
  • t1 is the movement distance
  • the center of the third inner edge track C2D2 is located in the door body 12, and the radius of curvature is 0.61t, and the center of the third outer edge track C1D1 is located in the door body 12, and the radius of curvature is 0.5t.
  • the vertical distance from the center of the circle to the first reference plane X is 0.6t, and the vertical distance from the center of the circle to the second reference plane Y is 0.5t.
  • a reference point can be selected for trajectory design, so as to reserve a tolerance for the edge of the door body 12 to ensure that the door body 12 is prevented from squeezing the box body 11 and exceeding the box body components. 100 sides.
  • Figure 5 is a schematic diagram of the motion trajectory of the reference point in the first embodiment of the box assembly shown in Figure 1
  • Figure 6 is a schematic diagram of the interior of the box assembly shown in Figure 1 in the first embodiment
  • FIG. 7 is a schematic diagram of the selection range of the external reference point in the first embodiment of the box assembly shown in FIG. 1 .
  • an outer reference point R1 and an inner reference point R2 are set, the outer reference point R1 is set adjacent to the outer edge 121 , and the inner reference point R2 is set adjacent to the inner edge 122 .
  • a third reference plane Z is defined. The third reference plane Z is parallel to the first reference plane X and passes through the outer edge 121 in the closed state.
  • the vertical distances from the internal reference point R2 to the second reference plane Y and the first reference plane X are both less than or equal to 0.1t.
  • the selection range of the internal reference point R2 is a rectangular area with the inner edge 122 as the center and a side length of 0.2t.
  • the vertical distances from the external reference point R1 to the second reference plane Y and the third reference plane Z are both less than or equal to 0.1t.
  • the selection range of the outer reference point R1 is a rectangular area with the outer edge 121 as the center and a side length of 0.2t.
  • the outer reference point R1 may be selected on the outer edge 121
  • the inner reference point R2 may be selected on the inner edge 122 .
  • the trajectory design idea of the inner reference point R2 and the outer reference point R1 is also based on the trajectory design idea of the inner edge 122 and the outer edge 121.
  • the possible features of the first inner reference point track E2F2 are similar to those of the first inner edge track A2B2, and the possible features of the first outer reference point track E1F1 are similar to those of the first outer edge track A1B1, and details are not repeated here.
  • the first internal reference point trajectory E2F2 is a straight line
  • the first external reference point trajectory E1F1 is a straight line.
  • the first internal reference point trajectory E2F2 can be parallel to the first reference plane X or along the first reference plane X; and based on the selected position of the external reference point R1, the first external reference point trajectory is parallel to the on the second reference plane Y or along the second reference plane Y.
  • first inner reference point trajectory E2F2 is longer than the first outer reference point trajectory E1F1, and the length ratio between the first inner reference point trajectory E2F2 and the first outer reference point trajectory E1F1 is 3.5 ⁇ 4.5.
  • both the outer reference point R1 and the inner reference point R2 may appear a second track and a third track.
  • the possible features of the second inner reference point track F2G2 are similar to the second inner edge track B2C2
  • the possible features of the second outer reference point track F1G1 are similar to the second outer edge track B1C1
  • the third inner reference point track G2H2 may be
  • the features of the third inner edge track C2D2 are similar, and the possible features of the third outer reference point track G1H1 are similar to the third outer edge track C1D1.
  • the inner reference point R2 moves along the second inner reference point track F2G2 to the second reference plane Y toward the opening side, and the first reference point R2
  • the plane X moves away from the exit, and the outer reference point R1 moves toward the first reference plane X along the second outer reference point trajectory F1G1.
  • the second outer reference point track F1G1 is a straight line, and is set along the second reference plane Y, or is set parallel to the second reference plane Y.
  • the second inner reference point track F2G2 is set so that the movement distance of the outer reference point R1 on the second outer reference point track F1G1 and the rotation angle of the door body 12 satisfy the following formula:
  • ⁇ 1 is the rotation angle
  • is a preset angle of 100 degrees to 113 degrees
  • t1 is the movement distance
  • the present application also alleviates the problem that the door body squeezes the box body and exceeds the side surface of the box body assembly by defining the tangent direction of the movement trajectory of the upper edge of the door body.
  • the relative motion of the door body and the box body can be transformed into the movement in the tangential direction of the motion trajectory.
  • the door body does not excessively squeeze the door seam and the door body does not excessively extend beyond the sides of the box assembly.
  • the movement trajectory of the fixed point on the box body or the door body can be determined according to the movement trajectory of the tangential direction of the edge movement trajectory, and then the hinge assembly can be reversely designed according to the movement trajectory of the fixed point. Therefore, the hinge assemblies that can realize the edge motion trajectory in the present application are all within the protection scope of the present application.
  • FIG. 3 is a schematic diagram of the movement trajectory of the edge in the first embodiment of the box assembly shown in FIG. 1
  • FIG. 4 is a door relative to the box in the first embodiment of the box assembly shown in FIG. 1 . Schematic diagram of the opening angle of the body and the motion trajectory of the edge.
  • the tangential direction of the first outer edge track A1B1 is set perpendicular to the first reference plane X, or the tangent direction of the first outer edge track A1B1 is relative to the first reference plane X at a second angle gradually approaching 90 degrees.
  • the tangent direction of the first inner edge track A2B2 is set along the first reference plane X, or the tangent direction of the first inner edge track A2B2 is inclined relative to the first reference plane X at a first angle less than or equal to 10 degrees set up.
  • the tangent direction of the motion track is defined, and the length ratio of the first inner edge track A2B2 and the first outer edge track A1BA is defined to ensure that the edges can move smoothly without exceeding the predetermined range.
  • the tangential direction of the first outer edge track A1B1 when the tangential direction of the first outer edge track A1B1 is inclined relative to the first reference plane X at a second angle gradually approaching 90 degrees, it can ensure that the door body 12 will not cause a large squeeze on the box body 11 pressure.
  • the tangential direction of the first inner edge track A2B2 is at a maximum value of 10 degrees with respect to the first angle of the first reference plane X, it can ensure that the door body 12 does not exceed the side surface of the box body 11 too much.
  • the two tracks are straight lines, and the The trajectories are all straight lines.
  • the first opening angle can be up to 90 degrees.
  • the first inner edge track A2B2 is longer than the first outer edge track A1B1, and the length of the first inner edge track A2B2 is the same as the length of the first outer edge track A1B1.
  • the ratio of length is 3.5-4.5.
  • the relative limitation of the tangential direction of the first inner edge track A2B2 determines the degree to which the inner edge 122 can squeeze the box body 11.
  • the inner edge 122 can be allowed to squeeze the box body 11 to a certain extent. For example, if the box body 11 is provided with a deformable door seal, the compression of the box body 11 by the inner edge 122 to a certain degree can be ignored.
  • the relevant limitation of the tangential direction of the first outer edge track A1B1 determines the extent to which the outer edge 121 can extend beyond the side surface of the box body 11. In practical applications, the outer edge can be allowed to exceed the side surface of the box body 11 to a certain extent. For the embedded use of the box assembly, there is a certain gap between the box 11 and the wall in which it is embedded, and the gap allows the outer edge 121 to extend beyond the side of the box 11 to a certain extent.
  • the first included angle remains unchanged, that is, the first inner edge trajectory A2B2 is a straight line; or, the first included angle changes monotonically in the form of a straight line.
  • the first inner edge track A2B2 is in an arc, and the inner edge 122 moves smoothly along the straight or arc-shaped first inner edge track A2B2.
  • the difference between the maximum value and the minimum value of the first included angle is less than 5 degrees, that is, the first inner edge trajectory A2B2 is generally smooth, which further ensures the smoothness of the movement of the inner edge 122 along the first inner edge trajectory A2B2 .
  • the second included angle remains unchanged, that is, the first outer edge trajectory A1B1 is a straight line; or, the second included angle gradually approaches 90 degrees, that is
  • the first outer edge track A1B1 is an arc, and the outer edge 121 moves smoothly along the straight or arc-shaped first outer edge track A1B1.
  • the entire door body 12 moves smoothly during the process of opening to the first opening angle, avoiding the situation of sliding and jamming.
  • the inner edge 122 starts to move toward the opening side toward the second reference plane Y, and the movement trajectory of the inner edge 122, the curvature radius of the second inner edge trajectory B2C2 gradually decreases, and its end point C2 is located at the first reference plane.
  • the plane X faces away from the side of the opening, and the distance to the first reference plane X is greater than or equal to 0.3t. This allows the door body 12 to have room to open a larger angle.
  • the curvature radius of the second outer edge track B1C1 is greater than or equal to 5t, and the distance beyond the second reference plane Y away from the opening is less than or equal to the first preset distance d1.
  • the door body 12 when the door body 12 changes from the first opening angle to the second opening angle, the door body 12 will not squeeze the box body 11 and will not exceed the side surface of the box body assembly too much.
  • the door body 12 can also continue to open from the second opening angle to the third opening angle relative to the box body 11.
  • the inner edge 122 moves to the first reference along the third inner edge track C2D2.
  • the plane X moves away from the opening, and the outer edge 121 moves toward the second reference plane Y toward the opening along the third outer edge trajectory C1D1.
  • the trajectory of this movement direction also corresponds to a larger opening angle of the door body 12 .
  • the third outer edge track C1D1 and the third inner edge track C2D2 are concentric arcs, the curvature radius of the third inner edge track C2D2 is 0.55t-0.67t, and the curvature radius of the third outer edge track C1D1 It is 0.45t-0.55t.
  • the edge of the door body 12 moves along the first inner edge track A2B2 and the first outer edge track A1B1, in order to achieve a larger opening angle, it can also directly follow the third outer edge track C1D1 and the third inner edge track A1B1.
  • the edge track C2D2 moves, thereby solving the problem of squeezing the box 11 and exceeding the sides of the box assembly.
  • the hinge assembly 13 according to the first trajectory and the third trajectory, when the door body 12 is rotated through the hinge assembly 13, it is easy to shake during the rotation process.
  • the second track is added between the three tracks, so that the movement process of the door body 12 is more stable and smooth.
  • the ratio of the curvature radius of the third inner edge track C2D2 to the third outer edge track C1D1 is 1.22, which can prevent interference problems in the structure of the hinge assembly 13 corresponding to the third track.
  • the first opening angle corresponding to the first track is 25 degrees to 31 degrees
  • the second opening angle corresponding to the second track is 57 degrees to 60 degrees
  • the third opening angle corresponding to the third track The angle is 122 to 132 degrees.
  • the length of the first inner edge track A2B2 is 0.465t, and the length of the first outer edge track A1B1 is 0.115t.
  • the length of the second outer edge track B1C1 is 0.2285t, and the second inner edge track B2C2 is set so that the moving distance of the outer edge 121 on the second outer edge track B1C1 and the rotation angle of the door body 12 relative to the box body 11
  • the following formulas are satisfied:
  • ⁇ 1 is the rotation angle
  • is a preset angle of 100 degrees to 113 degrees
  • t1 is the movement distance
  • the center of the third inner edge track C2D2 is located in the door body 12, and the radius of curvature is 0.61t, and the center of the third outer edge track C1D1 is located in the door body 12, and the radius of curvature is 0.5t.
  • the vertical distance from the center of the circle to the first reference plane X is 0.6t, and the vertical distance from the center of the circle to the second reference plane Y is 0.5t.
  • a reference point can be selected for trajectory design, so as to reserve a tolerance for the edge of the door body 12 to ensure that the door body 12 is prevented from squeezing the box body 11 and exceeding the box body 11. side.
  • FIG. 5 is a schematic diagram of the motion trajectory of the reference point in the first embodiment of the box assembly shown in FIG. 1
  • FIG. 6 is the internal reference point in the first embodiment of the box assembly shown in FIG. 1
  • Schematic diagram of the selection range FIG. 7 is a schematic diagram of the selection range of the external reference point in the first embodiment of the box assembly shown in FIG. 1
  • FIG. 8 is a schematic diagram of the track tangent direction angle of the internal reference point in the first embodiment of the box assembly shown in FIG. 1
  • FIG. 9 is a schematic diagram of the tangential direction angle of the track of the external reference point in the first embodiment of the box assembly shown in FIG. 1 .
  • an inner reference point R2 and an outer reference point R1 are set, the inner reference point R2 is set adjacent to the inner edge 122 , and the outer reference point R1 is set adjacent to the outer edge 121 .
  • a third reference plane Z is defined. The third reference plane Z is parallel to the first reference plane X and passes through the outer edge 121 in the closed state.
  • the vertical distances from the internal reference point R2 to the second reference plane Y and the first reference plane X are both less than or equal to 0.1t.
  • the selection range of the internal reference point R2 is a rectangular area with the inner edge 122 as the center and a side length of 0.2t.
  • the vertical distances from the external reference point R1 to the second reference plane Y and the third reference plane Z are both less than or equal to 0.1t.
  • the selection range of the outer reference point R1 is a rectangular area with the outer edge 121 as the center and a side length of 0.2t.
  • the outer reference point R1 may be selected on the outer edge 121
  • the inner reference point R2 may be selected on the inner edge 122 .
  • the trajectory design idea of the inner reference point R2 and the outer reference point R1 is also based on the trajectory design idea of the inner edge 122 and the outer edge 121.
  • the possible features of the first inner reference point track E2F2 are similar to the first inner edge track A2B2, and the possible features of the first outer reference point track E1F1 are similar to the first outer edge track A1B1.
  • the first inner reference point will be described in detail below.
  • a coordinate system is established with any point on the inner edge 122 of the door body 12 in the closed state as the origin, and the line passing through the origin on the first reference plane X and perpendicular to the second reference plane Y is
  • the x-axis takes the line passing through the origin on the second reference plane Y and perpendicular to the first reference plane X as the y-axis
  • the internal reference point R2 is taken as (-0.1t, 0.1t), (0, 0.1t) , (0.1t,0.1t), (-0.1t,0)(0,0), (0.1t,0), (-0.1t,-0.1t), (0,-0.1t), (0.1t , 0.1t), corresponding to the first internal reference point trajectory E2F2 is sorted from left to right from the first row in FIG. 8 .
  • the tangential direction of the first internal reference point track E2F2 is set along the first reference plane X, or is set inclined relative to the first reference plane X at a fifth angle less than or equal to 10 degrees.
  • the fifth included angle remains unchanged, or changes monotonically in the form of a straight line, and the difference between the maximum value and the minimum value of the fifth included angle is less than 5 degrees.
  • a coordinate system is established with any point on the outer edge 121 of the door body 12 in the closed state as the origin, and the line passing through the origin on the third reference plane Z and perpendicular to the second reference plane Y is
  • the x-axis is taken as the y-axis passing through the origin on the second reference plane Y and perpendicular to the third reference plane Z
  • the external reference point R1 is taken as (-0.1t, 0.1t), (0, 0.1t) , (0.1t,0.1t), (-0.1t,0)(0,0), (0.1t,0), (-0.1t,-0.1t), (0,-0.1t), (0.1t , 0.1t), corresponding to the first outer reference point track E1F1 is sorted from left to right from the first row in FIG. 9 .
  • the tangent direction of the first outer reference point track E1F1 is perpendicular to the first reference plane X, or inclined relative to the first reference plane X at a sixth angle gradually approaching 90 degrees.
  • the length ratio of the first inner reference point track E2F2 and the first outer reference point track E1F1 is 3.5 ⁇ 4.5.
  • the first internal reference point trajectory E2F2 is a straight line
  • the first external reference point trajectory E1F1 is a straight line.
  • the first internal reference point trajectory E2F2 can be parallel to the first reference plane X or along the first reference plane X; and based on the selected position of the external reference point R1, the first external reference point trajectory is parallel to the on the second reference plane Y or along the second reference plane Y. Therefore, the tangential direction of the first outer reference point track E1F1 is perpendicular to the first reference plane X, and the tangent direction of the first inner reference point track E2F2 is set along the first reference plane X.
  • both the outer reference point R1 and the inner reference point R2 may appear a second track and a third track.
  • the possible features of the second inner reference point track F2G2 are similar to the second inner edge track B2C2
  • the possible features of the second outer reference point track F1G1 are similar to the second outer edge track B1C1
  • the third inner reference point track G2H2 may be
  • the features of the third inner edge track C2D2 are similar, and the possible features of the third outer reference point track G1H1 are similar to the third outer edge track C1D1.
  • a coordinate system is established with any point on the inner edge 122 of the door body 12 in the closed state as the origin, and the line passing through the origin on the first reference plane X and perpendicular to the second reference plane Y is
  • the x-axis takes the line passing through the origin on the second reference plane Y and perpendicular to the first reference plane X as the y-axis
  • the internal reference point R2 is taken as (-0.1t, 0.1t), (0, 0.1t) , (0.1t,0.1t), (-0.1t,0)(0,0), (0.1t,0), (-0.1t,-0.1t), (0,-0.1t), (0.1t , 0.1t), corresponding to the second internal reference point trajectory F2G2 is sorted from left to right from the first row in FIG. 8 .
  • the difference between the maximum value and the minimum value of the seventh included angle is greater than or equal to 35 degrees.
  • a coordinate system is established with any point on the outer edge 121 of the door body 12 in the closed state as the origin, and the line passing through the origin on the third reference plane Z and perpendicular to the second reference plane Y is
  • the x-axis is taken as the y-axis passing through the origin on the second reference plane Y and perpendicular to the third reference plane Z
  • the external reference point R1 is taken as (-0.1t, 0.1t), (0, 0.1t) , (0.1t,0.1t), (-0.1t,0)(0,0), (0.1t,0), (-0.1t,-0.1t), (0,-0.1t), (0.1t , 0.1t), corresponding to the second outer reference point trajectory F1G1 is sorted from left to right from the first row in FIG. 9 .
  • the tangent direction of the second outer reference point track F1G1 is perpendicular to the first reference plane X, or is inclined relative to the first reference plane X at an eighth angle between 70 degrees and 110 degrees.
  • the eighth included angle remains unchanged, or changes monotonically in the form of a straight line, and the difference between the maximum value and the minimum value of the eighth included angle is constant.
  • the difference is less than or equal to 10 degrees.
  • the inner reference point R2 opens along the second inner reference point trajectory F2G2 toward the second reference plane Y toward the opening.
  • One side and the side of the first reference plane X away from the opening move, and the outer reference point R1 moves toward the first reference plane X along the second outer reference point trajectory F1G1.
  • the second outer reference point track F1G1 is a straight line, and is arranged along the second reference plane Y or parallel to the second reference plane Y.
  • the second inner reference point trajectory F2G2 is set so that the movement distance of the outer reference point R1 on the second outer reference point trajectory and the rotation angle of the door body 12 satisfy the following formula:
  • ⁇ 1 is the rotation angle
  • is a preset angle of 100 degrees to 113 degrees
  • t1 is the movement distance
  • the present application also alleviates the problem that the door body squeezes the box body and exceeds the side surface of the box body assembly by defining the movement trajectory of the instantaneous center of the door body movement.
  • the relative motion of the door body and the box body can be converted into the movement of the instantaneous center of the door body in essence. Press the door seam and the door body so that it does not extend too far beyond the sides of the box assembly.
  • the motion trajectory of the fixed point on the box or door can be determined according to the motion trajectory of the instantaneous center, and then the hinge assembly can be reversely designed according to the motion trajectory of the fixed point. Therefore, the hinge assemblies that can realize the motion trajectory of the instantaneous center of motion and the motion trajectory of the edge in the present application are all within the protection scope of the present application.
  • FIG. 10 is a schematic diagram of the instantaneous center trajectory of the instantaneous center of movement of the door body in the third embodiment of the box assembly shown in FIG. 1 .
  • the motion trajectory of the instantaneous center of motion of the door body 12 is defined. Specifically, the outer edge 121 of the instantaneous center of motion is taken as the starting point to move toward the first reference plane X along the first instantaneous center trajectory A3B3, and simultaneously to the second reference plane X. The plane Y moves towards the side of the opening. It can be ensured that the door body 12 will not cause great extrusion to the box body 11 , and that the door body 12 will not exceed the side surface of the box body 11 too much.
  • the relative limitation of the movement trajectory of the instantaneous center of movement of the door body 12 determines the degree to which the inner edge 122 can squeeze the box body 11, and the degree to which the outer edge 121 can extend beyond the side of the box body assembly.
  • the edge 122 squeezes the box body 11 to a certain extent. If a deformable door seal is provided on the box body 11, the inner edge 122 squeezes the box body 11 to a certain extent.
  • the outer edge is allowed to extend beyond the side of the box assembly 100 to a certain extent. For example, for the embedded use of the box assembly, there is a certain gap between the box 11 and the wall in which it is embedded, and the gap allows the outer edge 121 to extend beyond the box.
  • the assembly 100 is lateral to a certain extent.
  • any cross-sectional figure S (or its extension) parallel to a fixed plane on the rigid body is not zero at any instant, there must be a point P' whose velocity is zero, It is called the instantaneous center of speed.
  • the cross-sectional figure (or its extension) appears to be only rotating about a point P on the fixed plane that coincides with P', which is called the instant center of rotation.
  • the instantaneous center of motion in this embodiment may be the instantaneous center of rotation or the instantaneous center of velocity of the door body 12 .
  • the included angle between the vertical line connecting the instantaneous center of motion and the inner edge 122 and the first reference plane X is between 85-95 degrees. Within this range, it is ensured that the first inner edge trajectory A2B2 of the inner edge 122 moves toward the second reference plane Y toward the opening side without causing excessive extrusion of the box body 11 .
  • the maximum and minimum values of the angle between the vertical connection line between the instantaneous center of motion and the inner edge 122 and the first reference plane X during the door opening process are specifically defined, that is, when it is 95 degrees or 85 degrees, the door can be guaranteed The body 12 will not cause great compression to the box body 11 .
  • the included angle between the vertical connection line between the instantaneous center of motion and the outer edge 121 and the second reference plane Y is between 85-95 degrees. Within this range, it is ensured that the first outer edge track A1B1 of the outer edge 122 moves toward the first reference plane X, and does not exceed the side surface of the box body 11 too much.
  • the maximum and minimum values of the included angle between the vertical connection line between the instantaneous center of motion and the outer edge 121 and the second reference plane Y during the door opening process are specifically defined, that is, when it is 95 degrees or 85 degrees, the door can be guaranteed The body 12 does not extend beyond the side of the box body 11 too much.
  • the vertical connection line between the instantaneous center of motion and the inner edge 122 is perpendicular to the first reference plane X.
  • the trajectory of the first inner edge of the inner edge 122 is A2B2 is a straight line and is parallel to the first reference plane X;
  • the vertical connection line between the instantaneous center of motion and the outer edge 121 is perpendicular to the second reference plane Y, and when the door body 12 is opened to the first angle, the outer edge 121
  • the first outer edge track A1B1 of is a straight line and is parallel to the second reference plane Y.
  • the edges can move smoothly, the door body 12 will not squeeze the box body 11, and the door body 12 will not exceed the box body body 11 side.
  • the first instantaneous center trajectory A3B3 of the instantaneous center of movement of the door body 12 is an arc, and the center of the arc is located at the inner edge 122 and the outer edge
  • the midpoint of the vertical connection line of 121, the diameter of the arc is the vertical distance between the inner edge 122 and the outer edge 121.
  • An outer edge track A1B1 is straight and parallel to the second reference plane Y.
  • the edges can move smoothly, and the door body 12 can be guaranteed not to squeeze the box body 11 and the door body 12 to not exceed the side surface of the box body 11 .
  • the included angle between the line connecting the instantaneous center of motion and the center of the circle and the line connecting the center of the circle and the starting point of the first instantaneous center trajectory A3B3 is equal to the actual opening angle of the door body 12 relative to the box body 11 .
  • the movement of the instantaneous center of motion changes regularly with the first opening angle of the door body 12, and the door body 12 moves smoothly in the process of opening to the first opening angle, avoiding the situation of sliding and jamming, and ensuring that the door body 12 does not move smoothly.
  • the box body 11 will be squeezed, and the door body 12 will not protrude from the side of the box body 11 .
  • the first opening angle is between 25 degrees and 31 degrees.
  • the first opening angle may be 25 degrees, 28 degrees, 30 degrees, or 31 degrees. Within the first opening angle, it can be ensured that the door body 12 does not squeeze the box body 11 and the door body 12 does not protrude from the side surface of the box body 11 .
  • the instantaneous center of movement of the door body 12 takes the outer edge 121 as the starting point, It moves toward the first reference plane X along the first instantaneous center track A3B3, and simultaneously moves toward the opening side toward the second reference plane Y.
  • the first instantaneous center trajectory A3B3 has certain characteristics, and the door body 12 moves according to the first instantaneous center trajectory A3B3, thereby reducing or even preventing the door body 12 from squeezing the box body 11, and the door body 12 exceeding the side of the box body 11. .
  • the inner edge 122 of the door body 12 will not squeeze the box body 11 and will not move too far away from the box body 11 ; the outer edge 121 will not exceed the side surface of the box body assembly 100 , and does not move excessively toward the second reference plane Y toward the opening side. Therefore, there is no obvious displacement problem when the door body 12 is opened, and the movement of the door body 12 is more stable.
  • the door body 12 cannot continue to be opened, and the maximum opening of the door body 12 occurs.
  • the angle generally needs to be greater than 90 degrees, so the instantaneous center of the door body 12 moves along the first inner instantaneous center trajectory until the door body 12 opens less than 90 degrees, and then uses other instantaneous center trajectory movements, so that it can be opened later than 90 degrees.
  • the door body 12 may move along another trajectory after opening the first opening angle.
  • the instantaneous center of motion moves toward the first reference plane X along the second instantaneous center trajectory B3C3
  • the included angle between the tangent direction of the second instantaneous center trajectory B3C3 and the first reference plane X is between 85 degrees and 95 degrees.
  • the door body 12 in the process of the door body 12 from the first opening angle to the second opening angle, the door body 12 will not squeeze the box body 11, nor will it exceed the side of the box body 11 too much, so that The door body 12 has room to open a larger angle.
  • the instantaneous center of motion moves toward the first reference plane X along the second instantaneous center trajectory B3C3, and the angle between the tangent direction of the second instantaneous center trajectory B3C3 and the first reference plane X is between 85 degrees and 95 degrees.
  • the instantaneous center of motion is always located on the side of the outer edge 121 away from the second reference plane Y, it is ensured that the outer edge 122 does not exceed the side surface of the box body 11 too much.
  • the second instantaneous center trajectory B3C3 is a straight line and is set perpendicular to the first reference plane X.
  • the second outer edge trajectory of the outer edge 121 B1C1 is a straight line
  • the second outer edge track B1C1 is set parallel to the second reference plane Y, which can ensure that the outer edge 121 does not exceed the side of the box 11 too much; the inner edge 122 moves away from the first reference plane X to ensure that The door body 12 will not press the box body 11 excessively.
  • the end point C2 of the second inner edge track B2C2 is located on the side of the first reference plane X away from the opening, so that the door body 12 has room to open a larger angle.
  • the second instantaneous center trajectory B3C3 of the instantaneous center of motion changes regularly with the second opening angle of the door body 12, and the door body 12 as a whole moves smoothly during the process of opening from the first opening angle to the second opening angle, avoiding the occurrence of Swipe stuck.
  • the included angle between the vertical connection line between the instantaneous center of motion and the outer edge 121 and the second reference plane Y is between 85 degrees and between 95 degrees. Within this range, it is ensured that the second outer edge track B1C1 of the outer edge 122 moves toward the first reference plane X, and does not exceed the side surface of the box body 11 too much.
  • the maximum and minimum values of the included angle between the vertical connection line between the instantaneous center of motion and the outer edge 121 and the second reference plane Y during the door opening process are specifically defined, that is, when it is 95 degrees or 85 degrees, the door can be guaranteed The body 12 does not extend beyond the side of the box body 11 too much.
  • the second outer edge trajectory B1C1 of the outer edge 121 is a straight line and is perpendicular to the first reference plane X, which can ensure that the door body 12 will not. beyond the side of the box 11 .
  • the vertical distance from the inner edge 122 to the instantaneous center of motion decreases gradually, so that the second inner edge trajectory of the inner edge 122
  • the radius of curvature of B2C2 gradually decreases, and its end point C2 is located on the side of the first reference plane X away from the opening, so that the door body 12 has room to open a larger angle, and can ensure that the door body 12 does not squeeze the box body.
  • the door 12 will not squeeze the box 11 and will not exceed the side of the box 11 too much.
  • the second opening angle is between 57 degrees and 60 degrees, and the first opening angle may be 57 degrees, 58 degrees, 59 degrees, or 60 degrees. Within the second opening angle, it can be ensured that the door body 12 will not squeeze the box body 11 and the door body 12 will not protrude from the side surface of the box body 11 .
  • the door body 12 can also continue to open from the second opening angle to the third opening angle relative to the box body 11. During this process, the instantaneous center of movement can remain unchanged, and the door body 12 as a whole moves around the instantaneous movement moment. When the heart rotates, the trajectory of the movement direction also corresponds to the larger opening angle of the door body 12 .
  • the instantaneous center of motion remains unchanged at the end point of the second instantaneous center of motion, and the third The inner edge track C2D2 and the third outer edge track C1D1 of the outer edge 121 are specifically circular arcs arranged concentrically.
  • the door 12 will not squeeze the box 11 and will not exceed the side of the box 11 too much.
  • the door body 12 After the instantaneous center of motion of the door body 12 moves along the first instantaneous center trajectory A3B3, in order to achieve a larger opening angle, the door body 12 can also be realized directly by taking the end point of the first instantaneous center trajectory A3B3 as the third instantaneous center trajectory C3D3. , so as to solve the problem of squeezing the box body 11 and exceeding the side of the box body 11 .
  • the hinge assembly 13 according to the first instantaneous center trajectory A3B3 and the third instantaneous center trajectory, when the door body 12 is rotated through the hinge assembly 13, it is easy to shake during the rotation process.
  • the A second instantaneous center trajectory B3C3 is added between the first instantaneous center trajectory A3B3 and the third instantaneous center trajectory, so that the movement process of the door body 12 is more stable and smooth.
  • FIG. 11 is a schematic structural diagram of the fourth embodiment of the box assembly of the present application
  • Figure 12 is a schematic structural diagram of the hinge shaft of the hinge assembly in the fourth embodiment of the box assembly shown in Figure 11
  • Figure 14 is Fig. 11 is a schematic diagram showing the structure of the hinge groove of the hinge assembly in the fourth embodiment of the box assembly.
  • the fourth embodiment only embodies the structure of the hinge assembly, so the reference numerals continue to use the reference numerals in the first embodiment.
  • the hinge assembly 13 in the box assembly 100 in this embodiment is designed to convert the movement trajectory of the edge of the door body 12 into the movement trajectory of two fixed points on the door body 12 or the box body 11, and then based on the movement trajectory of the two fixed points,
  • the corresponding mechanical structure is designed, and the hinge assembly 13 includes a first guide mechanism 135 and a second guide mechanism 136, respectively realizing the movement trajectory of the two fixed points, that is, the cooperation of the two guide mechanisms can make the edge of the door body 12 move along the preset trajectory.
  • the guiding mechanism is a slot-column matching structure.
  • the guiding mechanism designed based on the trajectory can also be a link structure, a slot column + a link structure, and the like.
  • the hinge assembly 13 in this embodiment is a double shaft and double slot, and the double slot is arranged on the door body 12 , and the double shaft is arranged on the box body 11 .
  • two slots may be provided on the box body 11, and two shafts may be provided on the door body 12;
  • the shaft groove structure on the door body 12 and the box body 11 can be converted into a connecting rod structure, or a shaft + track sliding structure, etc.
  • the hinge assembly 13 in this embodiment includes a first hinge shaft 131 and a second hinge shaft 132 provided on the box body 11 , and a first hinge groove 133 and a second hinge groove 134 provided on the door body 12 .
  • the first hinge shaft 131 moves in the first hinge groove 133, and the two form the first guide mechanism 135;
  • the second hinge shaft 132 moves in the second hinge groove 134, and the two form the second guide mechanism 136;
  • the movement trajectory of the edge of the door body shown in FIG. 3 solves the problem of the door body 12 pressing on the box body 11 and the problem of exceeding the side surface of the box body assembly 100 .
  • Figure 14 is a schematic diagram of the state of the hinge assembly when the door body is in a closed state relative to the box body in the fourth embodiment of the box body assembly shown in Figure 11.
  • 15 is a schematic view of the state of the hinge assembly when the door is opened to the first opening angle relative to the box in the fourth embodiment of the box assembly shown in FIG. 11
  • FIG. 16 is the door relative to the second embodiment of the box assembly shown in FIG. 11 .
  • the state diagram of the hinge assembly when the box body is opened to the second opening angle.
  • FIG. 17 is a state diagram of the hinge assembly when the door body is opened to the third opening angle relative to the box body in the second embodiment of the box body assembly shown in FIG. 11 .
  • the first hinge slot 133 includes a first slot segment 1331 , a second slot segment 1332 and a third slot segment 1333
  • the second hinge slot 134 includes a fourth slot segment 1341 and a fifth slot segment 1342 .
  • the door body 12 is opened from the closed state to the first opening angle relative to the box body 11, the first hinge shaft 131 moves along the first groove section 1331, and the second hinge shaft 132 moves along the fourth groove section 1341, corresponding to the realization of the first a track.
  • the door body 12 is opened from the first opening angle to the second opening angle relative to the box body 11 , the first hinge shaft 131 moves along the second groove section 1332 , and the second hinge shaft 132 moves along the fifth groove section 1342 , corresponding to the realization in FIG. 3 . the second trajectory.
  • the door body 12 is opened from the second opening angle to the third opening angle relative to the box body 11 , the first hinge shaft 131 moves along the third groove section 1333 , and the position of the second hinge shaft 132 does not change at the bottom end of the fifth groove section 1342 , corresponding to the realization of the third trajectory in Figure 3.
  • the first hinge groove 133 and the second hinge groove 134 tend to be separated from each other in the direction toward the first reference plane.
  • the first groove segment 1331 is away from the second reference plane Y and extends toward the second reference plane Y and the first reference plane X.
  • the tangential direction of the first groove segment 1331 is the same as that of the first reference plane.
  • the included angle of the plane X is greater than the included angle between the tangential direction of the fourth groove segment 1341 and the first reference plane X.
  • the design of the hinge assembly 13 in this embodiment enables the door body 12 to be stably and smoothly opened relative to the box body 11 without squeezing the box body 11 or protruding from the side of the box body assembly 100 , which is convenient for embedded use .
  • different hinge assemblies can be designed corresponding to different motion trajectories of the edge of the door body, which can reduce the problem of squeezing the box body and exceeding the side of the box body assembly when the door body is opened.
  • the above design of the box body assembly can be applied to the case where there is a door body, and there are problems of squeezing the box body and interference problems when exceeding the box body assembly, such as refrigerators, cabinets and other products.
  • the present application also proposes a refrigeration device, which includes the above-mentioned box body assembly 100 , that is, the above-mentioned door body 12 , the box body 11 , and the hinge assembly 13 between the door body 12 and the box body 11 .
  • Refrigeration equipment can be refrigerators, freezers, wine cabinets, fresh cabinets, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Refrigerator Housings (AREA)
  • Hinges (AREA)
  • Casings For Electric Apparatus (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Hinge Accessories (AREA)
  • Closures For Containers (AREA)

Abstract

一种箱体组件(100)和制冷设备,箱体组件(100)包括箱体(11)、封堵于箱体开口的门体(12)和铰链组件(13);门体(12)在枢轴侧具有内棱边(122)和外棱边(121)、第一参考平面和第二参考平面;在门体(12)处于关闭状态时,第一参考平面经过内棱边(122)且与开口所在平面平行,第二参考平面经过外棱边(121)且与开口所在平面垂直;当门体(12)从关闭状态相对箱体(11)打开至第一角度的过程中,内棱边(122)向第二参考平面朝向开口的一侧运动,外棱边(121)向第一参考平面运动,内棱边(122)轨迹的曲率半径不小于100t,其超出第一参考平面朝向开口一侧的距离不大于第一距离,外棱边(121)轨迹的曲率半径不小于5t,其超出第二参考平面背离开口一侧的距离不大于第二距离,t为门体(12)厚度。可减弱门体(12)打开时挤压箱体(11)及超出箱体组件(100)侧面的问题。

Description

一种箱体组件和制冷设备
本申请要求于2021年02月09日提交的申请号为2021101793640,发明名称为“一种箱体组件”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021104383173,发明名称为“一种箱体组件和制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021104371227,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021208441239,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021104383027,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为202120844146X,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021104383099,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021208442871,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为202110437127X,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021208440804,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021104382857,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权;要求于2021年04月22日提交的申请号为2021208441224,发明名称为“一种箱体组件及制冷设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及一种箱体组件和制冷设备。
【背景技术】
对于具有门体和箱体的箱体组件,在门体相对箱体打开时,门体可能会对箱体造成挤压,也可能会出现门体超出箱体组件侧面的情况;这样会导致箱体损坏问题,以及箱体组件安装环境的干涉问题,例如对于嵌入式安装,超出箱体组件侧面的门体部分可能与嵌入墙体发生干涉问题。
【发明内容】
本申请提供一种箱体组件,以解决现有技术中门体在打开过程中挤压箱体以及超出箱体组件侧面的问题。
为解决上述技术问题,本申请提供一种箱体组件,其包括:
箱体,所述箱体用于形成具有开口的容纳空间;
门体,所述门体用于封堵所述开口;
铰链组件,设置成在所述箱体的枢轴侧枢转连接所述箱体和所述门体;
其中,所述门体在所述枢轴侧具有内棱边和外棱边,在所述门体相对于所述箱体处于关闭状态时,所述内棱边相较于所述外棱边更靠近所述箱体,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直;
其中,当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外棱边沿第一外棱边轨迹向所述第一参考平面运动,所述第一内棱边轨迹的曲 率半径不小于100t,且所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离,所述第一外棱边轨迹的曲率半径不小于5t,且所述第一外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,t为所述门体的厚度。
本申请箱体组件中门体与箱体由铰链组件枢转连接,可能会出现门体挤压箱体和门体超出箱体组件侧面的问题。因而本申请中限定了门体在铰链组件作用下由关闭状态相对箱体打开到第一角度的过程中,挤压箱体的内棱边的运动轨迹,以及超出箱体组件侧面的外棱边的运动轨迹。
具体的,为方便描述运动轨迹的特征,限定了门体的第一参考平面和第二参考平面,第一参考平面经过关闭状态时的内棱边且与箱体开口所在平面平行,第二参考平面则经过关闭状态时的外棱边且与箱体开口所在平面垂直。
为了减弱门体对箱体的挤压以及门体超出箱体组件侧面的问题,内棱边向第二参考平面朝向开口的一侧运动,外棱边向第一参考平面运动,内棱边的第一内棱边轨迹的曲率半径不小于100t,超出第一参考平面朝向开口的距离不大于第二预定距离,外棱边的第一外棱边轨迹曲率半径不小于5t,且第一外棱边运动轨迹超出第二参考平面背离开口一侧的距离不大于第一预定距离,t为门体厚度。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请箱体组件第一实施例的结构示意图;
图2是现有箱体组件中门体相对箱体的运动关系示意图;
图3是图1所示箱体组件第一实施例中棱边的运动轨迹示意图;
图4是图1所示箱体组件第一实施例中门体相对箱体打开角度与棱边运动轨迹的示意图;
图5是图1所示箱体组件第一实施例中参考点的运动轨迹示意图;
图6是图1所示箱体组件第一实施例中内参考点的选取范围示意图;
图7是图1所示箱体组件第一实施例中外参考点的选取范围示意图;
图8是图1所示箱体组件第一实施例中内参考点的轨迹切线方向角度示意图;
图9是图1所示箱体组件第一实施例中外参考点的轨迹切线方向角度示意图;
图10是图1所示箱体组件第三实施例中门体运动瞬心的瞬心轨迹示意图;
图11是本申请箱体组件第四实施例的结构示意图;
图12是图11所示箱体组件第四实施例中铰链组件的铰链轴结构示意图;
图13是图11所示箱体组件第四实施例中铰链组件的铰链槽结构示意图;
图14是图11所示箱体组件第四实施例中门体相对箱体处于关闭状态时铰链组件的状态示意图;
图15是图11所示箱体组件第四实施例中门体相对箱体打开至第一打开角度时铰链组件的状态示意图;
图16是图11所示箱体组件第四实施例中门体相对箱体打开至第二打开角度时铰链组件的状态示意图;
图17是图11所示箱体组件第四实施例中门体相对箱体打开至第三打开角度时铰链组件的状态示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地 描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1是本申请箱体组件第一实施例的结构示意图。本实施例箱体组件100包括箱体11、门体12和铰链组件13。箱体11内部形成容纳空间,容纳空间设有开口,门体12用于封堵或开口,铰链组件13设置成在箱体11的枢轴侧,铰链组件13枢转连接门体12和箱体11,门体12即可在铰链组件13的作用下相对箱体11打开或关闭。
实现门体和箱体相对转动的铰链组件有多种形式,铰链组件的设置决定了门体和箱体的相对运动关系。对于现有技术中的箱体组件900,如图2所示,图2是现有箱体组件中门体相对箱体的运动关系示意图。其中,在门体92打开到一定角度时,出现了门体92对箱体91造成挤压和门体92超出箱体组件900侧面的问题,箱体组件900侧面可能是箱体91的侧面或门体92关闭状态时的侧面,显然现有技术中的铰链组件93不能解决本申请的技术问题。
本申请中通过限定门体上棱边的运动轨迹,来缓解门体挤压箱体和超出箱体组件侧面的问题。而基于相对运动的计算原理,可根据棱边的运动轨迹确定门体和箱体的相对运动关系,继而确定箱体或门体上固定点的运动轨迹,根据固定点的运动轨迹继而可反推设计出铰链组件。因而能够实现本申请中棱边运动轨迹的铰链组件均在本申请的保护范围内。
具体请参阅图3和图4,图3是图1所示箱体组件第一实施例中棱边的运动轨迹示意图,图4是图1所示箱体组件第一实施例中门体相对箱体打开角度与棱边运动轨迹的示意图。
本实施例门体12在枢轴侧具有外棱边121和内棱边122,在门体12相对于箱体11处于关闭状态时,内棱边122相较于外棱边121更靠近箱体11。本实施例中还进一步定义有经过处于关闭状态时的外棱边121的第二参考平面Y,且第二参考平面Y与开口所在平面呈垂直设置。还定义有经过处于关闭状态时的内棱边122的第一参考平面X,且第一参考平面X与开口所在平面呈平行设置。
门体12在铰链组件13作用下,从相对箱体11关闭的状态到打开第一打开角度的过程中,外棱边121沿着第一外棱边轨迹A1B1向第一参考平面X运动,内棱边122沿第一内棱边轨迹A2B2向第二参考平面Y朝开口一侧运动。第一参考平面X和第二参考平面Y在门体12运动时,并不会随之移动,是固定的参考平面。而在门体12和箱体11枢转连接的关系下,门体12打开过程中,内棱边122相对第二参考平面Y的最终运动方向,外棱边121相对第一参考平面X的最终运动方向必然是以上所述的方向。
进一步的,对于外棱边121和内棱边122在各自方向上的运动,第一外棱边轨迹A1B1的曲率半径大于等于5t,且超出第二参考平面Y背离开口一侧的距离小于等于第一预定距离d1;第一内棱边轨迹A2B2的曲率半径大于等于100t,且超出第一参考平面X朝开口一侧的距离小于等于第二预定距离d2,其中t为门体厚度。
本实施例中限定了运动轨迹的曲率半径,以及运动轨迹能够超出参考平面的距离,保证棱边能够平稳运动且不超出预定范围。其中,具体限定了第一外棱边轨迹A1B1曲率半径的最小值和第一内棱边轨迹A2B2曲率半径的最小值,即在曲率半径选取该最小值时,能够保证门体12不会箱体11造成较大的挤压,以及门体12过多的超出箱体组件侧面。并且,但曲率半径选为无穷大时,轨迹即为直线,而对应于两轨迹均为直线的情况,门体12相对箱体11最大可打开到90度。
以上在限定曲率半径时,以门体厚度t为参考标准,第一外棱边轨迹A1B1的曲率半径大于等于5t,第一内棱边轨迹A2B2的曲率半径大于等于100t。这是因为门体厚度t决定了门体12相对箱体11打开时的运动程度,显然门体12越厚,运动轨迹的曲率半径越大。具体地,门体厚度至少为2厘米。
第一预设距离d1的相关限定决定了外棱边121可以超出箱体组件100侧面的程度,在实际应用中,可以允许外棱边121超出箱体组件100侧面一定程度,如对于箱体组件100的嵌入式使用,箱体11与其所嵌入的墙体之间具有一定的间隙,该间隙则允许外棱边121超出箱体组件100侧面一定程度。
同样,第二预设距离d2的相关限定决定了内棱边122可以挤压箱体11的程度,在实际应用中,可以允许内棱边122对箱体11有一定程度的挤压,如箱体11上若设置有可变形的门封,内棱边122对箱体11一定程度的挤压是可以忽略的。
因而,第一预定距离和第二预定距离的具体数值可以根据实际产品设计需要来确定,例如可根据箱体组件所嵌入的墙体和箱体组件之间的距离来确定第一预定距离,可以根据箱体上门封的厚度或弹性来确定第二预定距离;本实施例中采用门体厚度来进行标量,限定第一预定距离和第二预定距离为门体厚度的0~0.15倍,若选0倍,即限定门体不挤压箱体以及不超出箱体组件侧面,本实施例中具体可选0.1倍,即允许超出门体厚度的0.1倍;还可根据经验值限定,第一预定距离为0mm~4mm,第二预定距离为0mm~2mm,同样,若都选0mm,即限定不会超出;本实施例中第一预定距离为3mm,第二预定距离为1mm,即允许超出的距离。
总体来说,本实施例中门体12在铰链组件13作用下,从相对箱体11关闭的状态到打开第一打开角度的过程中,内棱边122沿第一内棱边轨迹A2B2运动,外棱边121则沿第一外棱边轨迹A1B1运动。其中,第一内棱边轨迹A2B2和第一外棱边轨迹A1B1的曲率半径,以及其和第二参考平面Y和第一参考平面X的距离关系均有一定的特征,门体12依据该轨迹运动,从而可减弱甚至避免门体12对箱体11造成挤压,以及门体12超出箱体组件100侧面。
进一步的,本实施例中第一内棱边轨迹A2B2的终点B2位于第一参考平面X上,或者终点B2位于第一参考平面X背离开口的一侧且到第一参考平面X的距离小于等于0.058t;第一外棱边轨迹A1B1的终点B1位于第二参考平面Y上,或者终点B1位于第二参考平面Y朝开口的一侧且到第二参考平面Y的距离小于等于0.135t。
即门体12打开第一打开角度后,门体12的内棱边122不会挤压箱体11,且不过度远离箱体11运动;外棱边121则不超出箱体组件100侧面,且不过度的向第二参考平面Y朝开口一侧运动。使得门体12在打开时不会出现明显的移位问题,门体12的运动更为稳定。
在本实施例中,若门体12外棱边121沿着第一外棱边轨迹A1B1,内棱边122和第一内棱边轨迹A2B2,运动至门体12打开90度,门体12会出现无法继续打开的情况。
然后为了满足日常使用需求,门体12的最大打开角度一般需要大于90度,因而门体12棱边沿着第一棱边轨迹运动至门体12打开小于90度后,可采用其他运动轨迹,使得其之后能够打开大于90度。而门体12打开小于90度的情况下,第一外棱边轨迹A1B1短于第一内棱边轨迹A2B2,且第一内棱边轨迹A2B2与第一外棱边轨迹A1B1的长度比例为3.5~4.5。
如前所述,门体12可能在打开第一打开角度后,沿着另外的轨迹运动。本实施例中门体12在铰链组件13作用下,相对箱体11从第一打开角度打开到第二打开角度的过程中,外棱边121沿第二外棱边轨迹B1C1向第一参考平面X运动,内棱边122则沿第二内棱边轨迹B2C2向第二参考平面Y朝开口一侧以及第一参考平面X背离开口一侧运动。
内棱边122开始朝向第二参考平面Y朝开口一侧运动,内棱边122的第二内棱边运动轨迹B2C2的切线方向与第一参考平面X之间的第三夹角逐渐增大,且对应于门体12的 每打开单位角度的变化增幅逐渐增大,其终点C2位于第一参考平面X背离开口的一侧。使得门体12有空间打开更大的角度。
与此同时,依据第一外棱边轨迹A1B1的设计,第二外棱边轨迹B1C1的切线方向垂直于第一参考平面X设置,或者以介于70度-110度之间的第四夹角相对于第一参考平面X倾斜设置。
依据上述轨迹的特征,在门体12由第一打开角度到第二打开角度的过程中,门体12不会对箱体11产生挤压,也不会过多的超出箱体11侧面。
进一步的,在门体12从第一打开角度打开至第二打开角度的过程中,第四夹角保持不变,即第二外棱边轨迹B1C1呈直线;或者,第二外棱边轨迹B1C1以直线形式单调变化,第二外棱边轨迹B1C1呈弧线,外棱边121沿直线或者弧线形的第二外棱边轨迹B1C1运动顺畅。
并且,第四夹角的最大值和最小值之间的差值不小于10度,即第二外棱边轨迹B1C1整体平缓,进一步保证外棱边121沿第二外棱边轨迹B1C1运动的流畅性。
同样,在门体12从第一打开角度打开到第二打开角度的过程中,第三夹角逐渐增加,即第二内棱边轨迹B2C2呈弧线,内棱边122沿弧线形的第二内棱边轨迹B2C2运动顺畅。且第三夹角的最大值和最小值之间的差值大于等于35度,第二内棱边轨迹B2C2整体平缓,进一步保证内棱边122沿第二内棱边轨迹B2C2运动的流畅性。
从而门体12整体从第一打开角度打开到第二打开角度的过程中运动顺畅,避免出现滑动卡顿的情况。
进一步的,内棱边122开始朝向第二参考平面Y朝开口一侧运动,且内棱边122的运动轨迹为弧线,第二内棱边轨迹B2C2的曲率半径逐渐减小,其终点C2位于第一参考平面X背离开口的一侧,且到第一参考平面的距离大于等于0.3t。使得门体12有空间打开更大的角度。
在这个过程中,依据第一外棱边轨迹A1B1的设计,第二外棱边轨迹B1C1的曲率半径大于等于5t,且其超出第二参考平面Y背离开口一侧的距离小于等于第一预设距离d1。依据上述轨迹的特征,在门体12由第一打开角度打开到第二打开角度的打开过程中,门体12不会对箱体11产生挤压,也不会过多的超出箱体组件侧面。
根据以上的轨迹特征分析,第二外棱边轨迹B1C1还是延续第一外棱边轨迹A1B1,而第二内棱边轨迹B2C2则是为了方便后续打开更大的角度,并且为了使开门更加顺滑而设置的曲率半径逐渐减小的弧线。
同理,综合第一轨迹和第二轨迹,即将A1C1和A2C2看作一个整体,本申请还有另一设计思路,即当门体12相对箱体11由第一打开角度打开到第二打开角度的过程中,内棱边122沿第二内棱边轨迹B2C2向第二参考平面Y朝向开口的一侧以及第一参考平面X背离开口的一侧运动,第二内棱边轨迹B2C2的曲率半径逐渐减小;外棱边121沿第二外棱边轨迹B1C1向第一参考平面X运动,第二外棱边轨迹的曲率半径大于等于5t,且第二外棱边轨迹B1C1超出第二参考平面Y背离开口一侧的距离小于等于第一预定距离。
这里的第一打开角度可以是关门角度,第二打开角度可以为任意角度。第二内棱边轨迹则可以是A2C2,第二外棱边轨迹则为A1C1。其中内棱边122沿着第二内棱边轨迹的运动方向为远离箱体开口,可以避免门体挤压箱体;而外棱边轨迹121的第二外棱边轨迹曲率半径大于等于5t,且超出第二参考平面背离开口一侧的距离小于等于第一预定距离,根据以上对第一外棱边轨迹的分析,该特征可避免门体超出箱体组件的侧面。
另外,为了便于后续通过其他轨迹使门体打开更大角度,可限定第一打开角度和第二打开角度之间的差值为25度-60度。
基于以上两个设计思路,在铰链组件13的作用下,门体12还可以相对箱体11继续从第二打开角度打开至第三打开角度,在此过程中,内棱边122则沿第三内棱边轨迹C2D2向第一参考平面X背离开口一侧运动,外棱边121则沿第三外棱边轨迹C1D1向第二参考 平面Y朝开口一侧运动。该运动方向的轨迹也对应门体12更大的打开角度。
第三外棱边轨迹C1D1和第三内棱边轨迹C2D2具体为同心设置的圆弧,第三内棱边轨迹C2D2的曲率半径为0.55t-0.67t,第三外棱边轨迹C1D1的曲率半径为0.45t-0.55t。
在门体12的棱边沿着第一内棱边轨迹A2B2和第一外棱边轨迹A1B1运动后,为了实现更大的开门角度,也可直接沿着第三外棱边轨迹C1D1和第三内棱边轨迹C2D2运动,从而解决挤压箱体11和超出箱体组件侧面的问题。
但在依据第一轨迹加第三轨迹设计铰链组件13后,门体12通过铰链组件13实现转动时,容易在转动过程中出现晃动现象,为进一步优化,解决晃动问题,在第一轨迹和第三轨迹之间加入第二轨迹,使得门体12的运动过程更加的稳定顺畅。
并且考虑到铰链组件13的设计,第三内棱边轨迹C2D2与第三外棱边轨迹C1D1的曲率半径比值为1.22,能够防止铰链组件13上对应第三轨迹的结构出现干涉问题。
具体来说,三段轨迹的设计,第一轨迹对应的第一打开角度为25度~31度,第二轨迹对应的第二打开角度是57度~60度,第三轨迹对应的第三打开角度是122度~132度。
第一内棱边轨迹A2B2的长度是0.465t,第一外棱边轨迹A1B1的长度是0.115t。
第二外棱边轨迹B1C1的长度为0.2285t,第二内棱边轨迹B2C2设置为使得外棱边121在第二外棱边轨迹B1C1上的运动距离与门体12相对箱体11的转动角度满足以下公式:
Figure PCTCN2022074401-appb-000001
其中,θ1为转动角度,θ为100度-113度的预设角度,t1为运动距离。
第三内棱边轨迹C2D2的圆心位于门体12内,且曲率半径是0.61t,第三外棱边轨迹C1D1的圆心位于门体12内,且曲率半径是0.5t。圆心到第一参考平面X的垂直距离为0.6t,且圆心到第二参考平面Y的垂直距离为0.5t。
在进行实际设计时,考虑到安装变形等问题,可以选取参考点进行轨迹设计,从而为门体12上的棱边预留公差,保证避免门体12挤压箱体11,以及超出箱体组件100侧面。
如图5、图6和图7所示,图5是图1所示箱体组件第一实施例中参考点的运动轨迹示意图,图6是图1所示箱体组件第一实施例中内参考点的选取范围示意图,图7是图1所示箱体组件第一实施例中外参考点的选取范围示意图。
本实施例中设置外参考点R1和内参考点R2,外参考点R1与外棱边121相邻设置,内参考点R2与内棱边122相邻设置。首先定义第三参考平面Z,第三参考平面Z与第一参考平面X平行,且其经过处于关闭状态时的外棱边121。
具体来说,内参考点R2到第二参考平面Y和第一参考平面X的垂直距离均小于等于0.1t。内参考点R2的选取范围为以内棱边122为中心,边长0.2t的矩形区域。
同样,外参考点R1到第二参考平面Y和第三参考平面Z的垂直距离均小于等于0.1t。外参考点R1的选取范围为以外棱边121为中心,边长0.2t的矩形区域。
外参考点R1可以选取在外棱边121,内参考点R2可以选取在内棱边122上。
内参考点R2和外参考点R1的轨迹设计思路也是依据以上内棱边122和外棱边121的轨迹设计思路,当门体12在铰链组件13作用下,相对箱体11从关闭状态打开到第一打开角度的过程中,内参考点R2沿第一内参考点轨迹E2F2向第二参考平面Y朝开口一侧运动,外参考点R1沿第一外参考点轨迹E1F1朝第一参考平面X运动。
第一内参考点轨迹E2F2可能的特征与第一内棱边轨迹A2B2均类似,第一外参考点轨迹E1F1可能的特征与第一外棱边轨迹A1B1均类似,具体不再赘述。
为方便设计,在本实施例中,第一内参考点轨迹E2F2为直线,第一外参考点轨迹E1F1为直线。基于内参考点R2的选取位置,第一内参考点轨迹E2F2可以平行于第一参考平面X或沿着第一参考平面X;而基于外参考点R1的选取位置,第一外参考点轨迹平行于第二参考平面Y或沿着第二参考平面Y。
进一步的,第一内参考点轨迹E2F2长于第一外参考点轨迹E1F1,且第一内参考点轨迹E2F2与第一外参考点轨迹E1F1的长度比值为3.5~4.5。
同样的,对应于内棱边122和外棱边121,外参考点R1和内参考点R2均可能出现第二轨迹和第三轨迹。其中,第二内参考点轨迹F2G2可能的特征与第二内棱边轨迹B2C2类似,第二外参考点轨迹F1G1可能的特征与第二外棱边轨迹B1C1类似;第三内参考点轨迹G2H2可能的特征与第三内棱边轨迹C2D2类似,第三外参考点轨迹G1H1可能的特征与第三外棱边轨迹C1D1类似。
当门体12相对箱体11从第一打开角度打开至第二打开角度的过程中,内参考点R2沿第二内参考点轨迹F2G2向第二参考平面Y朝开口一侧、以及第一参考平面X背离开口一侧运动,外参考点R1沿第二外参考点轨迹F1G1朝第一参考平面X运动。
其中,为方便设计,第二外参考点轨迹F1G1为直线,沿第二参考平面Y设置,或者平行于第二参考平面Y设置。第二内参考点轨迹F2G2设置成使得外参考点R1在第二外参考点轨迹F1G1上的运动距离与门体12的转动角度满足以下公式:
Figure PCTCN2022074401-appb-000002
其中,θ1为转动角度,θ为100度-113度的预设角度,t1为运动距离。
进一步的,本申请还通过限定门体上棱边的运动轨迹的切线方向,来缓解门体挤压箱体和超出箱体组件侧面的问题。门体和箱体的相对运动从运动本质上可转换为运动轨迹的切线方向的运动,通过设计棱边运动轨迹的切线方向运动轨迹,可限定门体和箱体的相对运动关系,即可限定门体不过度挤压门缝以及门体不过度超出箱体组件的侧面。继而可根据棱边运动轨迹的切线方向运动轨迹确定箱体或门体上固定点的运动轨迹,根据固定点的运动轨迹继而可反推设计出铰链组件。因而能够实现本申请中棱边运动轨迹的铰链组件均在本申请的保护范围内。
本第二实施例相较于第一实施例仅从另外的角度--门体棱边运动轨迹的轨迹切线方向—来进行设计,因此继续沿用第一实施例中的附图和标号。具体请参阅图3和图4,图3是图1所示箱体组件第一实施例中棱边的运动轨迹示意图,图4是图1所示箱体组件第一实施例中门体相对箱体打开角度与棱边运动轨迹的示意图。
进一步的,第一外棱边轨迹A1B1的切线方向垂直于第一参考平面X设置,或者第一外棱边轨迹A1B1的切线方向以逐渐接近90度的第二夹角相对于第一参考平面X倾斜设置,第一内棱边轨迹A2B2的切线方向沿第一参考平面X设置,或者第一内棱边轨迹A2B2的切线方向以小于等于10度的第一夹角相对于第一参考平面X倾斜设置。
本实施例中限定了运动轨迹的切线方向,同时配合限定了第一内棱边轨迹A2B2和第一外棱边轨迹A1BA的长度比例,保证棱边能够平稳运动且不超出预定范围。
其中,当第一外棱边轨迹A1B1的切线方向,以逐渐接近90度的第二夹角相对于第一参考平面X倾斜设置,能够保证门体12不会对箱体11造成较大的挤压。第一内棱边轨迹A2B2的切线方向,相对于第一参考平面X的第一夹角为最大值10度时,能够保证门体12不会过多的超出箱体11侧面。
并且,当第一外棱边轨迹A1B1的切线方向垂直于第一参考平面X,第一内棱边轨迹A2B2的切线方向沿第一参考平面X设置时,两轨迹即为直线,而对应于两轨迹均为直线的情况。第一打开角度最大可达到90度,此种情况下,第一内棱边轨迹A2B2长于第一外棱边轨迹A1B1,且第一内棱边轨迹A2B2的长度与第一外棱边轨迹A1B1的长度的比例为3.5-4.5。
第一内棱边轨迹A2B2的切线方向的相关限定决定了内棱边122可以挤压箱体11的程度,在实际应用中,可以允许内棱边122对箱体11有一定程度的挤压,比如箱体11上若设置有可变形的门封,内棱边122对箱体11一定程度的挤压是可以忽略的。
同样,第一外棱边轨迹A1B1的切线方向的相关限定决定了外棱边121可以超出箱体11侧面的程度,在实际应用中,可以允许外棱边超出箱体11侧面一定程度,比如对于箱体组件的嵌入式使用,箱体11与其所嵌入的墙体之间具有一定的间隙,该间隙则允许外棱边121超出箱体11侧面一定程度。
进一步的,在门体12从关闭状态打开到第一打开角度的过程中,第一夹角保持不变,即第一内棱边轨迹A2B2呈直线;或者,第一夹角以直线形式单调变化,第一内棱边轨迹A2B2呈弧线,内棱边122沿直线或弧线形的第一内棱边轨迹A2B2运动顺畅。
并且,第一夹角的最大值和最小值之间的差值小于5度,即第一内棱边轨迹A2B2整体平缓,进一步保证内棱边122沿第一内棱边轨迹A2B2运动的流畅性。
同样,在门体12从关闭状态打开至第一打开角度的过程中,第二夹角保持不变,即第一外棱边轨迹A1B1呈直线;或者,第二夹角逐渐接近90度,即第一外棱边轨迹A1B1呈弧线,外棱边121沿直线或弧线形的第一外棱边轨迹A1B1运动顺畅。
从而门体12整体在打开至第一打开角度的过程中运动顺畅,避免出现滑动卡顿的情况。
进一步的,内棱边122开始朝向第二参考平面Y朝开口一侧运动,且内棱边122的运动轨迹,第二内棱边轨迹B2C2的曲率半径逐渐减小,其终点C2位于第一参考平面X背离开口的一侧,且到第一参考平面X的距离大于等于0.3t。使得门体12有空间打开更大的角度。
在这个过程中,依据第一外棱边轨迹A1B1的设计,第二外棱边轨迹B1C1的曲率半径大于等于5t,且超出第二参考平面Y背离开口一侧的距离小于等于第一预设距离d1。
依据上述轨迹的特征,在门体12由第一打开角度到第二打开角度的过程中,门体12不会对箱体11产生挤压,也不会过多的超出箱体组件侧面。
在铰链组件13的作用下,门体12还可以相对箱体11继续从第二打开角度打开至第三打开角度,在此过程,内棱边122沿第三内棱边轨迹C2D2向第一参考平面X背离开口一侧运动,外棱边121沿第三外棱边轨迹C1D1向第二参考平面Y朝开口一侧运动。该运动方向的轨迹也对应门体12更大的打开角度。
第三外棱边轨迹C1D1和第三内棱边轨迹C2D2具体为同心设置的圆弧,第三内棱边轨迹C2D2的曲率半径为0.55t-0.67t,第三外棱边轨迹C1D1的曲率半径为0.45t-0.55t。
在门体12的棱边沿着第一内棱边轨迹A2B2和第一外棱边轨迹A1B1运动后,为了实现更大的开门角度,也可直接沿着第三外棱边轨迹C1D1和第三内棱边轨迹C2D2运动,从而解决挤压箱体11和超出箱体组件侧面的问题。
但在依据第一轨迹加第三轨迹设计铰链组件13后,门体12通过铰链组件13实现转动时,容易在转动过程中出现晃动现象,为进一步优化,解决晃动问题,在第一轨迹和第三轨迹之间加入第二轨迹,使得门体12的运动过程更加的稳定顺畅。
并且考虑到铰链组件13的设计,第三内棱边轨迹C2D2与第三外棱边轨迹C1D1的曲率半径比值为1.22,能够防止铰链组件13上对应第三轨迹的结构出现干涉问题。
具体来说,三段轨迹的设计,第一轨迹对应的第一打开角度为25度~31度,第二轨迹对应的第二打开角度是57度~60度,第三轨迹对应的第三打开角度是122度~132度。
第一内棱边轨迹A2B2的长度是0.465t,第一外棱边轨迹A1B1的长度是0.115t。
第二外棱边轨迹B1C1的长度为0.2285t,第二内棱边轨迹B2C2设置为使得外棱边121在第二外棱边轨迹B1C1上的运动距离与门体12相对箱体11的转动角度满足以下公式:
Figure PCTCN2022074401-appb-000003
其中,θ1为转动角度,θ为100度-113度的预设角度,t1为运动距离。
第三内棱边轨迹C2D2的圆心位于门体12内,且曲率半径是0.61t,第三外棱边轨迹C1D1的圆心位于门体12内,且曲率半径是0.5t。圆心到第一参考平面X的垂直距离为0.6t,且圆心到第二参考平面Y的垂直距离为0.5t。
在进行实际设计时,考虑到安装变形等问题,可以选取参考点进行轨迹设计,从而为门体12上的棱边预留公差,保证避免门体12挤压箱体11,以及超出箱体11侧面。
如图5至图9所示,图5是图1所示箱体组件第一实施例中参考点的运动轨迹示意图,图6是图1所示箱体组件第一实施例中内参考点的选取范围示意图,图7是图1所示箱体 组件第一实施例中外参考点的选取范围示意图,图8是图1所示箱体组件第一实施例中内参考点的轨迹切线方向角度示意图,图9是图1所示箱体组件第一实施例中外参考点的轨迹切线方向角度示意图。
本实施例中设置内参考点R2和外参考点R1,内参考点R2与内棱边122相邻设置,外参考点R1与外棱边121相邻设置。首先定义第三参考平面Z,第三参考平面Z与第一参考平面X平行,且其经过处于关闭状态时的外棱边121。
具体来说,内参考点R2到第二参考平面Y和第一参考平面X的垂直距离均小于等于0.1t。内参考点R2的选取范围为以内棱边122为中心,边长0.2t的矩形区域。
同样,外参考点R1到第二参考平面Y和第三参考平面Z的垂直距离均小于等于0.1t。外参考点R1的选取范围为以外棱边121为中心,边长0.2t的矩形区域。
外参考点R1可以选取在外棱边121,内参考点R2可以选取在内棱边122上。
内参考点R2和外参考点R1的轨迹设计思路也是依据以上内棱边122和外棱边121的轨迹设计思路,当门体12在铰链组件13作用下,相对箱体11从关闭状态打开至第一打开角度的过程中,内参考点R2沿第一内参考点轨迹E2F2向第二参考平面Y朝开口一侧运动,外参考点R1沿第一外参考点轨迹E1F1朝第一参考平面X运动。
第一内参考点轨迹E2F2可能的特征与第一内棱边轨迹A2B2均类似,第一外参考点轨迹E1F1可能的特征与第一外棱边轨迹A1B1均类似,以下具体说明第一内参考点轨迹E2F2和第二外参考点轨迹E1F1的切线方向:
参见图6和图8,以门体12在关闭状态下的内棱边122上任一点为原点建立坐标系,以经过原点的位于第一参考平面X上,且垂直第二参考平面Y的直线为x轴,以经过原点的位于第二参考平面Y上,且垂直于第一参考平面X的直线为y轴,内参考点R2分别取(-0.1t,0.1t)、(0,0.1t)、(0.1t,0.1t)、(-0.1t,0)(0,0)、(0.1t,0)、(-0.1t,-0.1t)、(0,-0.1t)、(0.1t,0.1t),对应第一内参考点轨迹E2F2在图8上从第一排起由左向右依次排序。
由图可知,第一内参考点轨迹E2F2的切线方向沿第一参考平面X设置,或者以小于等于10度的第五夹角相对于第一参考平面X倾斜设置。
进一步的,在门体12从关闭状态打开到第一打开角度的过程中,第五夹角保持不变,或以直线形式单调变化,第五夹角的最大值和最小值之间的差值小于5度。
参见图7和图9,以门体12在关闭状态下的外棱边121上任一点为原点建立坐标系,以经过原点的位于第三参考平面Z上,且垂直第二参考平面Y的直线为x轴,以经过原点的位于第二参考平面Y上,且垂直于第三参考平面Z的直线为y轴,外参考点R1分别取(-0.1t,0.1t)、(0,0.1t)、(0.1t,0.1t)、(-0.1t,0)(0,0)、(0.1t,0)、(-0.1t,-0.1t)、(0,-0.1t)、(0.1t,0.1t),对应第一外参考点轨迹E1F1在图9上从第一排起由左向右依次排序。
由图可知,第一外参考点轨迹E1F1的切线方向垂直于第一参考平面X设置,或者以逐渐接近90度的第六夹角相对于第一参考平面X倾斜设置。
进一步的,且第一内参考点轨迹E2F2与第一外参考点轨迹E1F1的长度比值为3.5~4.5。
为方便设计,在一具体实施方式中,第一内参考点轨迹E2F2为直线,第一外参考点轨迹E1F1为直线。基于内参考点R2的选取位置,第一内参考点轨迹E2F2可以平行于第一参考平面X或沿着第一参考平面X;而基于外参考点R1的选取位置,第一外参考点轨迹平行于第二参考平面Y或沿着第二参考平面Y。从而第一外参考点轨迹E1F1切线方向垂直于第一参考平面X,第一内参考点轨迹E2F2切线方向沿第一参考平面X设置。
同样的,对应于内棱边122和外棱边121,外参考点R1和内参考点R2均可能出现第二轨迹和第三轨迹。其中,第二内参考点轨迹F2G2可能的特征与第二内棱边轨迹B2C2类似,第二外参考点轨迹F1G1可能的特征与第二外棱边轨迹B1C1类似;第三内参考点轨迹G2H2可能的特征与第三内棱边轨迹C2D2类似,第三外参考点轨迹G1H1可能的特征与第三外棱边轨迹C1D1类似。
以下具体说明第二内参考点轨迹F2G2和第二外参考点轨迹F1G1的切线方向:
参见图6和图8,以门体12在关闭状态下的内棱边122上任一点为原点建立坐标系,以经过原点的位于第一参考平面X上,且垂直第二参考平面Y的直线为x轴,以经过原点的位于第二参考平面Y上,且垂直于第一参考平面X的直线为y轴,内参考点R2分别取(-0.1t,0.1t)、(0,0.1t)、(0.1t,0.1t)、(-0.1t,0)(0,0)、(0.1t,0)、(-0.1t,-0.1t)、(0,-0.1t)、(0.1t,0.1t),对应第二内参考点轨迹F2G2在图8上从第一排起由左向右依次排序。
由图可知,第二内参考点轨迹F2G2的切线方向与第一参考平面X之间的第七夹角逐渐增大,且对应于门体12的每打开单位角度的变化幅度逐渐增大。
进一步的,第七夹角的最大值和最小值之间的差值大于等于35度。
参见图7和图9,以门体12在关闭状态下的外棱边121上任一点为原点建立坐标系,以经过原点的位于第三参考平面Z上,且垂直第二参考平面Y的直线为x轴,以经过原点的位于第二参考平面Y上,且垂直于第三参考平面Z的直线为y轴,外参考点R1分别取(-0.1t,0.1t)、(0,0.1t)、(0.1t,0.1t)、(-0.1t,0)(0,0)、(0.1t,0)、(-0.1t,-0.1t)、(0,-0.1t)、(0.1t,0.1t),对应第二外参考点轨迹F1G1在图9上从第一排起由左向右依次排序。
由图可知,第二外参考点轨迹F1G1的切线方向垂直于第一参考平面X,或者以介于70度-110度之间的第八夹角相对于第一参考平面X倾斜设置。
进一步的,在门体12从第一打开角度打开至第二打开角度的过程中,第八夹角保持不变,或以直线形式单调变化,第八夹角的最大值和最小值之间的差值小于等于10度。
在铰链组件13作用下,当门体12相对箱体11从第一打开角度打开到第二打开角度的过程中,内参考点R2沿第二内参考点轨迹F2G2向第二参考平面Y朝开口一侧以及第一参考平面X背离开口的一侧运动,外参考点R1沿第二外参考点轨迹F1G1朝第一参考平面X运动。
为方便设计,在一具体实施方式中,第二外参考点轨迹F1G1为直线,沿第二参考平面Y或平行于第二参考平面Y设置。第二内参考点轨迹F2G2设置成使得外参考点R1在第二外参考点轨迹上的运动距离与门体12的转动角度满足以下公式:
Figure PCTCN2022074401-appb-000004
其中,θ1为转动角度,θ为100度-113度的预设角度,t1为运动距离。
进一步的,本申请还通过限定门体运动瞬心的运动轨迹,来缓解门体挤压箱体和超出箱体组件侧面的问题。门体和箱体的相对运动从运动本质上可转换为门体瞬心的运动,通过设计瞬心的运动轨迹,可限定门体和箱体的相对运动关系,即可限定门体不过度挤压门缝以及门体不过度超出箱体组件的侧面。而在设计瞬心的运动轨迹后,继而可根据运动瞬心的运动轨迹确定箱体或门体上固定点的运动轨迹,根据固定点的运动轨迹继而可反推设计出铰链组件。因而能够实现本申请中运动瞬心运动轨迹及棱边运动轨迹的铰链组件均在本申请的保护范围内。
本第三实施例相较于第一实施例仅从另外的角度--门体运动瞬心的运动轨迹—来进行设计,因此继续沿用第一实施例中的附图和标号。具体请参阅图10,图10是图1所示箱体组件第三实施例中门体运动瞬心的瞬心轨迹示意图。
本实施例中限定了门体12的运动瞬心的运动轨迹,具体地,运动瞬心以外棱边121为起点沿第一瞬心轨迹A3B3向第一参考平面X运动,并同时向第二参考平面Y朝开口一侧运动。能够保证门体12不会对箱体11造成较大的挤压,以及门体12不会过多的超出箱体11侧面。
门体12的运动瞬心的运动轨迹的相关限定决定了内棱边122可以挤压箱体11的程度,以及外棱边121可以超出箱体组件侧面的程度,在实际应用中,可以允许内棱边122对箱体11有一定程度的挤压,若箱体11上若设置有可变形的门封,内棱边122对箱体11一定程度的挤压是可以忽略的;同样的,可以允许外棱边超出箱体组件100侧面一定程度,例如对于箱体组件的嵌入式使用,箱体11与其所嵌入的墙体之间具有一定的间隙,该间隙则允许外棱边121超出箱体组件100侧面一定程度。
需要说明的是,在刚体平面运动中,只要刚体上任一平行于某固定平面的截面图形S(或其延伸)在任何瞬时的角速度ω不为零,就必有速度为零的一点P',称为速度瞬心。在该瞬时,就速度分布而言,截面图形(或其延伸)好像只是在绕固定平面上重合于P'的一点P而转动,点P称为转动瞬心。本实施例中的运动瞬心可以是门体12的转动瞬心或速度瞬心。
进一步的,运动瞬心和内棱边122的垂直连线与第一参考平面X之间的夹角介于85-95度之间。在此范围内,保证内棱边122的第一内棱边轨迹A2B2向第二参考平面Y朝开口一侧运动,且不会对箱体11造成过度挤压。其中,具体限定了开门过程中运动瞬心和内棱边122的垂直连线与第一参考平面X之间的夹角的最大值和最小值,即为95度或85度时,能够保证门体12不会对箱体11造成较大的挤压。
同样的,运动瞬心和外棱边121的垂直连线与第二参考平面Y之间的夹角介于85-95度之间。在此范围内,保证外棱边122的第一外棱边轨迹A1B1向第一参考平面X运动,且不会过多的超出箱体11侧面。其中,具体限定了开门过程中运动瞬心和外棱边121的垂直连线与第二参考平面Y之间的夹角的最大值和最小值,即为95度或85度时,能够保证门体12不会过多的超出箱体11侧面。
在一实施例中,运动瞬心和内棱边122的垂直连线垂直于第一参考平面X,在门体12打开至第一角度的过程中,内棱边122的第一内棱边轨迹A2B2呈直线,且平行于第一参考平面X;运动瞬心和外棱边121的垂直连线垂直于第二参考平面Y,在门体12打开至第一角度的过程中,外棱边121的第一外棱边轨迹A1B1呈直线,且平行于第二参考平面Y。本实施例通过限定运动瞬心与内棱边122和外棱边121的位置关系,保证棱边能够平稳运动,能够保证门体12不会挤压箱体11,以及门体12不会超出箱体11侧面。
在一实施例中,在门体12打开至第一角度的过程中,门体12的运动瞬心的第一瞬心轨迹A3B3为圆弧,圆弧的圆心位于内棱边122和外棱边121的垂直连线的中点,圆弧的直径为内棱边122和外棱边121之间的垂直距离。当门体12的运动瞬心沿第一瞬心轨迹A3B3移动的过程中,内棱边122的第一内棱边轨迹A2B2呈直线,且平行于第一参考平面X,外棱边121的第一外棱边轨迹A1B1呈直线,且平行于第二参考平面Y。本实施例通过限定运动瞬心的第一瞬心运动轨迹,保证棱边能够平稳运动,能够保证门体12不会挤压箱体11,以及门体12不会超出箱体11侧面。
进一步的,运动瞬心和圆心的连线与圆心和第一瞬心轨迹A3B3的起始点的连线之间的夹角等于门体12相对于箱体11的实际打开角度。运动瞬心的移动与门体12的第一打开角度呈规律性变化,门体12整体在打开至第一打开角度的过程中运动顺畅,避免出现滑动卡顿的情况,并且保证门体12不会挤压箱体11,以及门体12不会超出箱体11侧面。具体的,第一打开角度介于25度至31度之间,例如第一打开角度可以为25度、28度、30度或者31度等。在第一打开角度内,可保证门体12不会挤压箱体11,以及门体12不会超出箱体11侧面。
总体来说,在铰链组件13的作用下,本实施例中门体12相对箱体11从关闭状态打开至第一打开角度的过程中,门体12的运动瞬心以外棱边121为起点,沿第一瞬心轨迹A3B3向第一参考平面X运动,并同时向第二参考平面Y朝开口一侧运动。其中,第一瞬心轨迹A3B3具有一定的特征,门体12依据第一瞬心轨迹A3B3运动,从而可减弱甚至避免门体12对箱体11造成挤压,以及门体12超出箱体11侧面。
即门体12打开至第一打开角度过程中,门体12的内棱边122不会挤压箱体11,且不过度远离箱体11运动;外棱边121则不超出箱体组件100侧面,且不过度向第二参考平面Y朝开口一侧运动。使得门体12在打开时不会出现明显的移位问题,门体12的运动更为稳定。
在本实施例中,若门体12的运动瞬心沿着第一运动瞬心轨迹运动至门体12打开90度,则会出现门体12无法继续打开的情况,而门体12的最大打开角度一般需要大于90 度,因而门体12运动瞬心沿着第一内瞬心轨迹运动至门体12打开小于90度后,采用其他瞬心轨迹运动,使得其之后能够打开大于90度。
如前所述,门体12可能在打开第一打开角度后,沿着另外的轨迹运动。本实施例中在铰链组件13作用下,门体12相对箱体11从第一打开角度打开到第二打开角度的过程中,运动瞬心沿第二瞬心轨迹B3C3朝向第一参考平面X运动,第二瞬心轨迹B3C3的切线方向与第一参考平面X的夹角介于85度至95度之间。
依据上述轨迹的特征,在门体12由第一打开角度到第二打开角度的过程中,门体12不会对箱体11产生挤压,也不会过多的超出箱体11侧面,使得门体12有空间打开更大的角度。
其中,运动瞬心沿第二瞬心轨迹B3C3朝向第一参考平面X运动,且第二瞬心轨迹B3C3的切线方向与第一参考平面X的夹角介于85度至95度之间。在此范围内,由于运动瞬心始终位于外棱边121背离第二参考平面Y一侧,保证外棱边122不会过多的超出箱体11侧面。由于运动瞬心始终位于内棱边121背离第一参考平面X一侧,保证内棱边122的第一内棱边轨迹A2B2向第二参考平面Y朝开口一侧运动,且不会对箱体11造成过度挤压。
进一步的,第二瞬心轨迹B3C3为直线且垂直于第一参考平面X设置,在门体12由第一打开角度到第二打开角度的过程中,外棱边121的第二外棱边轨迹B1C1呈直线,且第二外棱边轨迹B1C1平行于第二参考平面Y设置,能够保证外棱边121不会过多超出箱体11侧面;内棱边122远离第一参考平面X移动,保证门体12不会过度挤压箱体11。第二内棱边轨迹B2C2的终点C2位于第一参考平面X背离开口的一侧,使得门体12有空间打开更大的角度。并且,运动瞬心的第二瞬心轨迹B3C3与门体12的第二打开角度呈规律性变化,门体12整体在由第一打开角度打开到第二打开角度的过程中运动顺畅,避免出现滑动卡顿的情况。
进一步的,在门体12从第一打开角度打开到第二打开角度的过程中,运动瞬心和外棱边121的垂直连线与第二参考平面Y之间的夹角介于85度至95度之间。在此范围内,保证外棱边122的第二外棱边轨迹B1C1朝第一参考平面X运动,且不会过多的超出箱体11侧面。其中,具体限定了开门过程中运动瞬心和外棱边121的垂直连线与第二参考平面Y之间的夹角的最大值和最小值,即为95度或85度时,能够保证门体12不会过多的超出箱体11侧面。而当运动瞬心和外棱边121的垂直连线垂直于第二参考平面Y时,即运动瞬心和外棱边121的垂直连接于第二参考平面之间的夹角为90度时,门体12的运动瞬心沿第二瞬心轨迹B3C3移动的过程中,外棱边121的第二外棱边轨迹B1C1呈直线,且垂直于第一参考平面X,能够保证门体12不会超出箱体11侧面。
与此同时,在门体12从第一打开角度打开到第二打开角度的过程中,内棱边122到运动瞬心的垂直距离逐渐减小,从而内棱边122的第二内棱边轨迹B2C2的曲率半径逐渐减小,其终点C2位于第一参考平面X背离开口的一侧,使得门体12有空间打开更大的角度,并能够保证门体12不会对箱体产生挤压。
依据上述轨迹的特征,在门体12由第一打开角度到第二打开角度的过程中,门体12不会对箱体11产生挤压,也不会过多的超出箱体11侧面。
具体的,第二打开角度介于57度至60度之间,第一打开角度可以为57度、58度、59度或者60度等。在第二打开角度内,可保证门体12不会挤压箱体11,以及门体12不会超出箱体11侧面。
在铰链组件13的作用下,门体12还可以相对箱体11继续从第二打开角度打开至第三打开角度,在此过程中,运动瞬心可保持不变,门体12整体绕运动瞬心转动,该运动方向的轨迹也对应门体12更大的打开角度。
如前所述,在门体12相对箱体11由第二打开角度打开到第三打开角度的过程中,运动瞬心以第二运动瞬心的终点保持不变,内棱边122的第三内棱边轨迹C2D2和外棱边121 的第三外棱边轨迹C1D1具体为同心设置的圆弧。
依据上述轨迹的特征,在门体12由第二打开角度到第三打开角度的过程中,门体12不会对箱体11产生挤压,也不会过多的超出箱体11侧面。
在门体12的运动瞬心沿着第一瞬心轨迹A3B3运动后,为了实现更大的开门角度,也可直接以第一瞬心轨迹A3B3的终点为第三瞬心轨迹C3D3实现门体12的转动,从而解决挤压箱体11和超出箱体11侧面的问题。
但在依据第一瞬心轨迹A3B3加第三瞬心轨迹设计铰链组件13后,门体12通过铰链组件13实现转动时,容易在转动过程中出现晃动现象,为进一步优化,解决晃动问题,在第一瞬心轨迹A3B3和第三瞬心轨迹之间加入第二瞬心轨迹B3C3,使得门体12的运动过程更加的稳定顺畅。
从门体12棱边的轨迹设计出发,基于相对运动的设计原理,可设计多种铰链组件结构。如图11-13所示,图11是本申请箱体组件第四实施例的结构示意图,图12是图11所示箱体组件第四实施例中铰链组件的铰链轴结构示意图,图14是图11所示箱体组件第四实施例中铰链组件的铰链槽结构示意图。
本第四实施例相较于图1所示第一实施例仅具体化了铰链组件的结构,因此标号继续沿用第一实施例中的标号。本实施例箱体组件100中铰链组件13的设计是将门体12棱边的运动轨迹转化为门体12或箱体11上两个固定点的运动轨迹,然后基于两个固定点的运动轨迹,设计相应的机械结构,铰链组件13包括第一导向机构135和第二导向机构136,分别实现两个固定点的运动轨迹,即两导向机构配合可以使得门体12棱边沿着预设轨迹运动。
在图11-13中导向机构为槽柱配合结构。显然,基于轨迹设计出的导向机构还可以是连杆结构,槽柱+连杆结构等。
本实施例中的铰链组件13为双轴双槽,且双槽设置在门体12上,双轴设置在箱体11上。同理,其他实施例中,也可双槽设置在箱体11上,双轴设置在门体12上;或者门体12上设置一轴一槽,对应箱体11也设置一轴一槽;或者如前所述,可将门体12和箱体11上的轴槽结构转化连杆结构,或轴+轨道滑动结构等。
具体来说,本实施例铰链组件13包括设置在箱体11上的第一铰链轴131和第二铰链轴132,以及设置在门体12上的第一铰链槽133和第二铰链槽134。其中,第一铰链轴131在第一铰链槽133内运动,二者构成第一导向机构135;第二铰链轴132在第二铰链槽134内运动,二者构成第二导向机构136;实现如图3所示门体棱边的运动轨迹,继而解决门体12对箱体11的挤压问题,以及超出箱体组件100侧面的问题。
门体12打开过程中,铰链组件13的运动状态如图14-17,图14是图11所示箱体组件第四实施例中门体相对箱体处于关闭状态时铰链组件的状态示意图,图15是图11所示箱体组件第四实施例中门体相对箱体打开到第一打开角度时铰链组件的状态示意图,图16是图11所示箱体组件第二实施例中门体相对箱体打开到第二打开角度时铰链组件的状态示意图,图17是图11所示箱体组件第二实施例中门体相对箱体打开到第三打开角度时铰链组件的状态示意图。
本实施例中第一铰链槽133包括第一槽段1331、第二槽段1332和第三槽段1333,第二铰链槽134则包括第四槽段1341和第五槽段1342。
门体12相对箱体11由关闭状态打开至第一打开角度,第一铰链轴131沿第一槽段1331运动,第二铰链轴132沿第四槽段1341运动,对应实现图3中的第一轨迹。
门体12相对箱体11由第一打开角度打开至第二打开角度,第一铰链轴131沿第二槽段1332运动,第二铰链轴132沿第五槽段1342运动,对应实现图3中的第二轨迹。
门体12相对箱体11由第二打开角度打开至第三打开角度,第一铰链轴131沿第三槽段1333运动,第二铰链轴132在第五槽段1342的底端不发生位置变动,对应实现图3中的第三轨迹。
其中,第一铰链槽133与第二铰链槽134,在朝第一参考平面的方向上有彼此分离的趋势。第一槽段1331相较于第四槽段1341背离第二参考平面Y的一侧,且向第二参考平面Y和第一参考平面X延伸,第一槽段1331的切线方向与第一参考平面X的夹角大于第四槽段1341的切线方向与第一参考平面X的夹角。
本实施例中铰链组件13的设计使得门体12可稳定顺畅的相对箱体11打开,并且不会对箱体11造成挤压,也不会超出箱体组件100的侧边,便于嵌入式使用。
综上,对于本申请来说,对应于门体棱边的不同的运动轨迹,可对应设计不同的铰链组件,均可减弱门体打开时挤压箱体及超出箱体组件侧面的问题。以上箱体组件的设计可应用于具有门体,且存在挤压箱体问题和超出箱体组件时干涉问题的情况,如冰箱,柜子等产品。
本申请还提出一种制冷设备,制冷设备中包括上述箱体组件100,即采用上述门体12、箱体11以及门体12和箱体11之间的铰链组件13。制冷设备可以是冰箱、冷柜、酒柜、生鲜柜等。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (100)

  1. 一种箱体组件,其特征在于,所述箱体组件包括:
    箱体,所述箱体用于形成具有开口的容纳空间;
    门体,所述门体用于封堵所述开口;
    铰链组件,设置成在所述箱体的枢轴侧,枢转连接所述箱体和所述门体;
    其中,所述门体在所述枢轴侧具有内棱边和外棱边,在所述门体相对于所述箱体处于关闭状态时,所述内棱边相较于所述外棱边更靠近所述箱体,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直;
    其中,当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外棱边沿第一外棱边轨迹向所述第一参考平面运动,所述第一外棱边轨迹的曲率半径不小于5t,且所述第一外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第一内棱边轨迹的曲率半径不小于100t,且所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离,t为所述门体的厚度。
  2. 根据权利要求1所述的箱体组件,其特征在于,所述第一打开角度为25度至31度,所述第一预定距离为3mm,所述第二预定距离为1.5mm。
  3. 根据权利要求1所述的箱体组件,其特征在于,所述第一内棱边轨迹的终点位于所述第一参考平面上,或者所述第一内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧且到所述第一参考平面的距离不大于0.058t,所述第一外棱边轨迹的终点位于所述第二参考平面上,或者所述第一外棱边轨迹的终点位于所述第二参考平面朝向所述开口的一侧且到所述第二参考平面的距离不大于0.135t。
  4. 根据权利要求1所述的箱体组件,其特征在于,所述第一内棱边轨迹的长度大于所述第一外棱边轨迹的长度,且所述第一内棱边轨迹的长度与所述第一外棱边轨迹的长度的比例为3.5-4.5。
  5. 根据权利要求1所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内参考点沿第一内参考点轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外参考点沿第一外参考点轨迹向所述第一参考平面运动,其中所述第一内参考点轨迹和所述第一外参考点轨迹为直线。
  6. 根据权利要求5所述的箱体组件,其特征在于,所述第一内参考点轨迹沿所述第一参考平面设置或平行于所述第一参考平面设置,所述第一外参考点轨迹沿所述第二参考平面设置或平行于所述第二参考平面设置。
  7. 根据权利要求6所述的箱体组件,其特征在于,所述第一内参考点轨迹的长度大于所述第一外参考点轨迹的长度,且所述第一内参考点轨迹的长度与所述第一外参考点的长度的比例为3.5-4.5。
  8. 根据权利要求5所述的箱体组件,其特征在于,所述内参考点到所述第一参考平面的垂直距离不大于0.1t,且到所述第二参考平面的垂直距离不大于0.1t;所述外参考点到第二参考平面的垂直距离不大于0.1t,到第三参考平面的垂直距离不大于0.1t,所述第三参考平面为经过处于所述关闭状态时的所述外棱边且与所述第一参考平面平行。
  9. 根据权利要求8所述的箱体组件,其特征在于,所述内参考点位于所述内棱边上,所述外参考点位于所述外棱边上。
  10. 根据权利要求1所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下 从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内棱边沿第二内棱边轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外棱边沿第二外棱边轨迹向所述第一参考平面运动,所述第二外棱边轨迹的曲率半径不小于5t,且所述第二外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于所述第一预定距离,所述第二内棱边轨迹的曲率半径逐渐减小,所述第二内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧,且到所述第一参考平面的距离不小于0.3t。
  11. 根据权利要求10所述的箱体组件,其特征在于,所述第二打开角度为57度-60度。
  12. 根据权利要求10所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体在所述铰链组件作用下从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内参考点沿第二内参考点轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外参考点沿第二外参考点轨迹向所述第一参考平面运动,其中所述第二外参考点轨迹为直线,所述第二内参考点轨迹设置成使得所述外参考点在所述第二外参考点轨迹上的运动距离与所述门体的转动角度满足以下公式:
    Figure PCTCN2022074401-appb-100001
    其中,θ1为所述转动角度,t1为运动距离,θ为100度-113度的预设角度。
  13. 根据权利要求12所述的箱体组件,其特征在于,所述第二外参考点轨迹沿所述第二参考平面设置,或者平行于所述第二参考平面设置。
  14. 根据权利要求10所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下从所述第二打开角度相对所述箱体打开至第三打开角度的过程中,所述内棱边沿第三内棱边轨迹向所述第一参考平面背离所述开口的一侧运动,所述外棱边沿第三外棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,其中所述第三内棱边轨迹和所述第三外棱边轨迹为同心设置的圆弧,且所述第三内棱边轨迹的曲率半径为0.55t-0.67t;所述第三外棱边轨迹的曲率半径为0.45t-0.55t。
  15. 根据权利要求14所述的箱体组件,其特征在于,所述第三内棱边轨迹的曲率半径与所述第三外棱边轨迹的曲率半径的比值为1.22。
  16. 根据权利要求14所述的箱体组件,其特征在于,所述第三内棱边轨迹和所述第三外棱边轨迹的圆心位于所述门体内,所述圆心到所述第一参考平面的距离为0.6t,且到所述第二参考平面的距离为0.5t。
  17. 根据权利要求14所述的箱体组件,其特征在于,所述第三打开角度为122度-132度。
  18. 根据权利要求1所述的箱体组件,其特征在于,所述门体的厚度大于等于2厘米。
  19. 一种箱体组件,其特征在于,所述箱体组件包括:
    箱体,所述箱体用于形成具有开口的容纳空间;
    门体,所述门体用于封堵所述开口;
    铰链组件,设置成在所述箱体的枢轴侧,枢转连接所述箱体和所述门体;
    其中,所述门体在所述枢轴侧具有内棱边和外棱边,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直,所述第一参考平面和第二参考平面在所述门体相对所述箱体的打开过程中相对于所述箱体保持静止;
    其中,当所述门体在所述铰链组件作用下从第一打开角度相对箱体打开至第二打开角度的过程中,所述内棱边沿第二内棱边轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外棱边沿第二外棱边轨迹向所述第一参 考平面运动,所述第二外棱边轨迹的曲率半径不小于5t,且所述第二外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第二内棱边轨迹的曲率半径逐渐减小。
  20. 根据权利要求19所述的箱体组件,其特征在于,所述第二内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧,且到所述第一参考平面的距离不小于0.3t。
  21. 根据权利要求19所述的箱体组件,其特征在于,所述第二打开角度与所述第一打开角度之间的差值介于25度-60度之间。
  22. 根据权利要求19所述的箱体组件,其特征在于,所述第一打开角度为25度至31度,所述第二打开角度为57度-60度,所述第一预定距离为0mm~4mm。
  23. 根据权利要求19所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体在所述铰链组件作用下从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内参考点沿第二内参考点轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外参考点沿第二外参考点轨迹向所述第一参考平面运动,其中所述第二外参考点轨迹为直线,所述第二内参考点轨迹设置成使得所述外参考点在所述第二外参考点轨迹上的运动距离与所述门体的转动角度满足以下公式:
    Figure PCTCN2022074401-appb-100002
    其中,θ1为所述转动角度,t1为运动距离,θ为100度-113度的预设角度。
  24. 根据权利要求23所述的箱体组件,其特征在于,所述第二外参考点轨迹沿所述第二参考平面设置,或者平行于所述第二参考平面设置。
  25. 根据权利要求23所述的箱体组件,其特征在于,所述内参考点到所述第一参考平面的垂直距离不大于0.1t,且到所述第二参考平面的垂直距离不大于0.1t;所述外参考点到第二参考平面的垂直距离不大于0.1t,到第三参考平面的垂直距离不大于0.1t,所述第三参考平面为经过处于所述关闭状态时的所述外棱边且与所述第一参考平面平行。
  26. 根据权利要求25所述的箱体组件,其特征在于,所述内参考点位于所述内棱边上,所述外参考点位于所述外棱边上。
  27. 根据权利要求19所述的箱体组件,其特征在于,所述当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外棱边沿第一外棱边轨迹向所述第一参考平面运动,所述第一外棱边轨迹的曲率半径不小于5t,且所述第一外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第一内棱边轨迹的曲率半径不小于100t,且所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离,t为所述门体的厚度。
  28. 根据权利要求27所述的箱体组件,其特征在于,所述第二预定距离为0mm~2mm。
  29. 根据权利要求27所述的箱体组件,其特征在于,所述第一内棱边轨迹的终点位于所述第一参考平面上,或者所述第一内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧且到所述第一参考平面的距离不大于0.058t,所述第一外棱边轨迹的终点位于所述第二参考平面上,或者所述第一外棱边轨迹的终点位于所述第二参考平面朝向所述开口的一侧且到所述第二参考平面的距离不大于0.135t。
  30. 根据权利要求27所述的箱体组件,其特征在于,所述第一内棱边轨迹的长度大于所述第一外棱边轨迹的长度,且所述第一内棱边轨迹的长度与所述第一外棱边轨迹的长度的比例为3.5-4.5。
  31. 根据权利要求27所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打 开角度的过程中,所述内参考点沿第一内参考点轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外参考点沿第一外参考点轨迹向所述第一参考平面运动,其中所述第一内参考点轨迹和所述第一外参考点轨迹为直线。
  32. 根据权利要求31所述的箱体组件,其特征在于,所述第一内参考点轨迹沿所述第一参考平面设置或平行于所述第一参考平面设置,所述第一外参考点轨迹沿所述第二参考平面设置或平行于所述第二参考平面设置。
  33. 根据权利要求32所述的箱体组件,其特征在于,所述第一内参考点轨迹的长度大于所述第一外参考点轨迹的长度,且所述第一内参考点轨迹的长度与所述第一外参考点的长度的比例为3.5-4.5。
  34. 根据权利要求19所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下从所述第二打开角度相对所述箱体打开至第三打开角度的过程中,所述内棱边沿第三内棱边轨迹向所述第一参考平面背离所述开口的一侧运动,所述外棱边沿第三外棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,其中所述第三内棱边轨迹和所述第三外棱边轨迹为同心设置的圆弧,且所述第三内棱边轨迹的曲率半径为0.55t-0.67t;所述第三外棱边轨迹的曲率半径为0.45t-0.55t。
  35. 根据权利要求34所述的箱体组件,其特征在于,所述第三内棱边轨迹的曲率半径与所述第三外棱边轨迹的曲率半径的比值为1.22。
  36. 根据权利要求34所述的箱体组件,其特征在于,所述第三内棱边轨迹和所述第三外棱边轨迹的圆心位于所述门体内,所述圆心到所述第一参考平面的距离为0.6t,且到所述第二参考平面的距离为0.5t。
  37. 根据权利要求34所述的箱体组件,其特征在于,所述第三打开角度为122度-132度。
  38. 根据权利要求19所述的箱体组件,其特征在于,所述门体的厚度大于等于2厘米。
  39. 一种箱体组件,其特征在于,所述箱体组件包括:
    箱体,所述箱体用于形成具有开口的容纳空间;
    门体,所述门体用于封堵所述开口;
    铰链组件,设置成在所述箱体的枢轴侧,枢转连接所述箱体和所述门体;
    其中,所述门体在所述枢轴侧具有内棱边和外棱边,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直,所述第一参考平面和第二参考平面在所述门体相对所述箱体的打开过程中相对于所述箱体保持静止;
    当所述门体在所述铰链组件作用下从关闭状态相对所述门体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动;所述第一内棱边轨迹的曲率半径不小于100t,且所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离,t为所述门体的厚度;
    当所述门体在所述铰链作用下从所述第一打开角度相对箱体打开至第二打开角度的过程中,所述内棱边沿第二内棱边轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动;所述第二内棱边轨迹的曲率半径逐渐减小,所述第二内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧,且到所述第一参考平面的距离不小于0.3t;
    当所述门体在所述铰链作用下从所述第二打开角度相对所述箱体打开至第三打开角度的过程中,所述内棱边沿第三内棱边轨迹向所述第一参考平面背离所述开口的一侧运动;所述第三内棱边轨迹为曲率半径为0.55t-0.67t的圆弧,所述第三内棱边的圆心位于所述门体内。
  40. 根据权利要求39所述的箱体组件,其特征在于,所述第一打开角度为25度至31 度,所述第二打开角度为57度-60度,所述第三打开角度为122度-132度。
  41. 根据权利要求39所述的箱体组件,其特征在于,所述第一内棱边轨迹的终点位于所述第一参考平面上,或者所述第一内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧且到所述第一参考平面的距离不大于0.058t。
  42. 根据权利要求39所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度以及从第一打开角度相对所述箱体打开至第二打开角度的过程中,所述外棱边分别沿第一外棱边轨迹和第二外棱边轨迹向所述第一参考平面运动;所述第一外棱边轨迹和所述第二外棱边轨迹的曲率半径不小于5t,且所述第一外棱边轨迹和所述第二外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离;
    当所述门体在所述铰链组件作用下从所述第二打开角度相对所述箱体打开至第三打开角度的过程中,所述外棱边沿第三外棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述第三内棱边轨迹和所述第三外棱边轨迹为同心设置的圆弧,且所述第三外棱边轨迹的曲率半径为0.45t-0.55t。
  43. 根据权利要求42所述的箱体组件,其特征在于,所述第一预定距离为0-4mm,所述第二预定距离为0-2mm。
  44. 根据权利要求42所述的箱体组件,其特征在于,所述第一外棱边轨迹的终点位于所述第二参考平面上,或者所述第一外棱边轨迹的终点位于所述第二参考平面朝向所述开口的一侧且到所述第二参考平面的距离不大于0.135t。
  45. 根据权利要求42所述的箱体组件,其特征在于,所述第一内棱边轨迹的长度大于所述第一外棱边轨迹的长度,且所述第一内棱边轨迹的长度与所述第一外棱边轨迹的长度的比例为3.5-4.5。
  46. 根据权利要求42所述的箱体组件,其特征在于,所述第三内棱边轨迹的曲率半径与所述第三外棱边轨迹的曲率半径的比值为1.22。
  47. 根据权利要求42所述的箱体组件,其特征在于,所述圆心到所述第一参考平面的距离为0.6t,且到所述第二参考平面的距离为0.5t。
  48. 根据权利要求39所述的箱体组件,其特征在于,所述门体进一步设置有内参考点,所述内参考点与所述内棱边相邻设置;
    当所述门体在所述铰链组件的作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内参考点沿第一内参考点轨迹向所述第二参考平面朝向所述开口的一侧运动,所述第一内参考点轨迹为直线;
    当所述门体在所述铰链组件作用下从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内参考点沿第二内参考点轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述第二内参考点轨迹设置成使得所述外参考点在所述第二外参考点轨迹上的运动距离与所述门体的转动角度满足以下公式:
    Figure PCTCN2022074401-appb-100003
    其中,θ1为所述转动角度,t1为运动距离,θ为100度-113度的预设角度。
  49. 根据权利要求48所述的箱体组件,其特征在于,所述门体进一步设置有外参考点,所述外参考点与所述外棱边相邻设置;
    当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度以及从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述外参考点分别沿第一外参考点轨迹和第二外参考点轨迹向所述第一参考平面运动,所述第一外参考点轨迹和所述第二外参考点轨迹均为直线。
  50. 根据权利要求49所述的箱体组件,其特征在于,所述内参考点到所述第一参考平面的垂直距离不大于0.1t,且到所述第二参考平面的垂直距离不大于0.1t;所述外参考点 到第二参考平面的垂直距离不大于0.1t,到第三参考平面的垂直距离不大于0.1t,所述第三参考平面为经过处于所述关闭状态时的所述外棱边且与所述第一参考平面平行。
  51. 根据权利要求50所述的箱体组件,其特征在于,所述内参考点位于所述内棱边上,所述外参考点位于所述外棱边上。
  52. 根据权利要求49所述的箱体组件,其特征在于,所述第一内参考点轨迹沿所述第一参考平面设置或平行于所述第一参考平面设置,所述第一外参考点轨迹沿所述第二参考平面设置或平行于所述第二参考平面设置;所述第二外参考点轨迹沿所述第二参考平面设置,或者平行于所述第二参考平面设置。
  53. 根据权利要求49所述的箱体组件,其特征在于,所述第一内参考点轨迹的长度大于所述第一外参考点轨迹的长度,且所述第一内参考点轨迹的长度与所述第一外参考点的长度的比例为3.5-4.5。
  54. 根据权利要求39所述的箱体组件,其特征在于,所述门体的厚度大于等于2厘米。
  55. 一种箱体组件,其特征在于,所述箱体组件包括:
    箱体,所述箱体用于形成具有开口的容纳空间;
    门体,所述门体用于封堵所述开口;
    铰链组件,设置成在所述箱体的枢轴侧,枢转连接所述箱体和所述门体;
    其中,所述门体在所述枢轴侧具有内棱边和外棱边,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直,所述第一参考平面和第二参考平面在所述门体相对所述箱体的打开过程中相对于所述箱体保持静止;
    当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度以及从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述外棱边分别沿第一外棱边轨迹和第二外棱边轨迹向所述第一参考平面运动;所述第一外棱边轨迹和所述第二外棱边轨迹的曲率半径不小于5t,且所述第一外棱边轨迹和所述第二外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,t为所述门体的厚度;
    当所述门体在所述铰链组件作用下从所述第二打开角度相对所述箱体打开至第三打开角度的过程中,所述外棱边沿第三外棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述第三外棱边轨迹为曲率半径为0.45t-0.55t的圆弧,所述第三外棱边的圆心位于所述门体内。
  56. 根据权利要求55所述的箱体组件,其特征在于,所述第一打开角度为25度至31度,所述第二打开角度为57度-60度,所述第三打开角度为122度-132度。
  57. 根据权利要求55所述的箱体组件,其特征在于,所述第一外棱边轨迹的终点位于所述第二参考平面上,或者所述第一外棱边轨迹的终点位于所述第二参考平面朝向所述开口的一侧且到所述第二参考平面的距离不大于0.135t。
  58. 根据权利要求56所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下从关闭状态相对所述门体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动;所述第一内棱边轨迹的曲率半径不小于100t,且所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离;
    当所述门体在所述铰链作用下从所述第一打开角度相对箱体打开至第二打开角度的过程中,所述内棱边沿第二内棱边轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动;所述第二内棱边轨迹的曲率半径逐渐减小,所述第二内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧,且到所述第一参考平面的距离不小于0.3t;
    当所述门体在所述铰链作用下从所述第二打开角度相对所述箱体打开至第三打开角 度的过程中,所述内棱边沿第三内棱边轨迹向所述第一参考平面背离所述开口的一侧运动;所述第三内棱边轨迹和所述第三外棱边轨迹为同心设置的圆弧,所述第三内棱边的曲率半径为0.55t-0.67t。
  59. 根据权利要求58所述的箱体组件,其特征在于,所述第一内棱边轨迹的终点位于所述第一参考平面上,或者所述第一内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧且到所述第一参考平面的距离不大于0.058t。
  60. 根据权利要求58所述的箱体组件,其特征在于,所述第一预定距离为0-4mm,所述第二预定距离为0-2mm。
  61. 根据权利要求58所述的箱体组件,其特征在于,所述第一内棱边轨迹的长度大于所述第一外棱边轨迹的长度,且所述第一内棱边轨迹的长度与所述第一外棱边轨迹的长度的比例为3.5-4.5。
  62. 根据权利要求58所述的箱体组件,其特征在于,所述第三内棱边轨迹的曲率半径与所述第三外棱边轨迹的曲率半径的比值为1.22。
  63. 根据权利要求58所述的箱体组件,其特征在于,所述圆心到所述第一参考平面的距离为0.6t,且到所述第二参考平面的距离为0.5t。
  64. 根据权利要求55所述的箱体组件,其特征在于,所述门体进一步设置有外参考点,所述外参考点与所述外棱边相邻设置;
    当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度以及从第一打开角度相对所述箱体打开至第二打开角度的过程中,所述外参考点分别沿第一外参考点轨迹和第二外参考点轨迹向所述第一参考平面运动,所述第一外参考点轨迹和所述第二外参考点轨迹均为直线。
  65. 根据权利要求64所述的箱体组件,其特征在于,所述门体进一步设置有内参考点,所述内参考点与所述内棱边相邻设置;
    当所述门体在所述铰链组件的作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内参考点沿第一内参考点轨迹向所述第二参考平面朝向所述开口的一侧运动,所述第一内参考点轨迹为直线;
    当所述门体在所述铰链组件作用下从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内参考点沿第二内参考点轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述第二内参考点轨迹设置成使得所述外参考点在所述第二外参考点轨迹上的运动距离与所述门体的转动角度满足以下公式:
    Figure PCTCN2022074401-appb-100004
    其中,θ1为所述转动角度,t1为运动距离,θ为100度-113度的预设角度。
  66. 根据权利要求65所述的箱体组件,其特征在于,所述内参考点到所述第一参考平面的垂直距离不大于0.1t,且到所述第二参考平面的垂直距离不大于0.1t;所述外参考点到第二参考平面的垂直距离不大于0.1t,到第三参考平面的垂直距离不大于0.1t,所述第三参考平面为经过处于所述关闭状态时的所述外棱边且与所述第一参考平面平行。
  67. 根据权利要求66所述的箱体组件,其特征在于,所述内参考点位于所述内棱边上,所述外参考点位于所述外棱边上。
  68. 根据权利要求65所述的箱体组件,其特征在于,所述第一内参考点轨迹沿所述第一参考平面设置或平行于所述第一参考平面设置,所述第一外参考点轨迹沿所述第二参考平面设置或平行于所述第二参考平面设置;所述第二外参考点轨迹沿所述第二参考平面设置,或者平行于所述第二参考平面设置。
  69. 根据权利要求65所述的箱体组件,其特征在于,所述第一内参考点轨迹的长度大于所述第一外参考点轨迹的长度,且所述第一内参考点轨迹的长度与所述第一外参考点的长度的比例为3.5-4.5。
  70. 根据权利要求55所述的箱体组件,其特征在于,所述门体的厚度大于等于2厘米。
  71. 一种箱体组件,其特征在于,所述箱体组件包括:
    箱体,所述箱体用于形成具有开口的容纳空间;
    门体,所述门体用于封堵所述开口;
    铰链组件,设置成在所述箱体的枢轴侧,枢转连接所述箱体和所述门体;
    其中,所述门体在所述枢轴侧具有内棱边和外棱边,在所述门体相对于所述箱体处于关闭状态时,所述内棱边相较于所述外棱边更靠近所述箱体,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直,所述第一参考平面和第二参考平面在所述门体相对所述箱体的打开过程中相对于所述箱体保持静止;
    其中,当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外棱边沿第一外棱边轨迹向所述第一参考平面运动,所述第一内棱边轨迹的切线方向沿所述第一参考平面设置或者以不大于10度的第一夹角相对于所述第一参考平面倾斜设置,所述第一外棱边轨迹的切线方向垂直于所述第一参考平面设置,或者以逐渐接近90度的第二夹角相对于所述第一参考平面倾斜设置,所述第一内棱边轨迹的长度与所述第一外棱边轨迹的长度的比例为3.5-4.5。
  72. 根据权利要求71所述的箱体组件,其特征在于,在所述门体从所述关闭状态打开至第一打开角度的过程中,所述第一夹角保持不变,或以直线形式单调变化。
  73. 根据权利要求72所述的箱体组件,其特征在于,所述第一夹角的最大值和最小值之间的差值小于5度。
  74. 根据权利要求71所述的箱体组件,其特征在于,所述第一外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离,所述第一打开角度为25度至31度,所述第一预定距离为0mm~4mm,所述第二预定距离为0mm~2mm。
  75. 根据权利要求71所述的箱体组件,其特征在于,所述第一内棱边轨迹的终点位于所述第一参考平面上,或者所述第一内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧且到所述第一参考平面的距离不大于0.058t,所述第一外棱边轨迹的终点位于所述第二参考平面上,或者所述第一外棱边轨迹的终点位于所述第二参考平面朝向所述开口的一侧且到所述第二参考平面的距离不大于0.135t。
  76. 根据权利要求71所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体从所述关闭状态打开至第一打开角度的过程中,所述内参考点沿第一内参考点轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外参考点沿第一外参考点轨迹向所述第一参考平面运动,其中所述第一内参考点轨迹和所述第一外参考点轨迹为直线,所述第一内参考点轨迹沿所述第一参考平面设置或平行于所述第一参考平面设置,所述第一外参考点轨迹沿所述第二参考平面设置或平行于所述第二参考平面设置。
  77. 根据权利要求76所述的箱体组件,其特征在于,所述内参考点到所述第一参考平面的垂直距离不大于0.1t,且到所述第二参考平面的垂直距离不大于0.1t;所述外参考点到第二参考平面的垂直距离不大于0.1t,到第三参考平面的垂直距离不大于0.1t,所述第三参考平面为经过处于所述关闭状态时的所述外棱边且与所述第一参考平面平行。
  78. 根据权利要求71所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下从所述第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内棱边沿第二内棱边轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外棱边沿第二外棱边轨迹向所述第一参考平面运动,所述第二内棱边轨 迹的切线方向与所述第一参考平面之间的第三夹角逐渐增大,且对应于所述门体的每打开单位角度的变化幅度逐渐增大,所述第二外棱边轨迹的切线方向垂直于所述第一参考平面设置,或者以介于70度-110度之间的第四夹角相对于所述第一参考平面倾斜设置。
  79. 根据权利要求78所述的箱体组件,其特征在于,在所述门体从所述第一打开角度打开至所述第二打开角度的过程中,所述第四夹角保持不变,或以直线形式单调变化。
  80. 根据权利要求79所述的箱体组件,其特征在于,所述第三夹角的最大值和最小值之间的差值不小于35度,所述第四夹角的最大值和最小值之间的差值不大于10度。
  81. 根据权利要求80所述的箱体组件,其特征在于,所述第二外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第二内棱边轨迹的曲率半径逐渐减小,所述第二内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧,且到所述第一参考平面的距离不小于0.3t。
  82. 根据权利要求80所述的箱体组件,其特征在于,所述第二打开角度为57度-60度。
  83. 根据权利要求80所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体从所述第一打开角度打开至第二打开角度的过程中,所述内参考点沿第二内参考点轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外参考点沿第二外参考点轨迹向所述第一参考平面运动,其中所述第二外参考点轨迹为直线,且沿所述第二参考平面设置,或者平行于所述第二参考平面设置,所述第二内参考点轨迹设置成使得所述外参考点在所述第二外参考点轨迹上的运动距离与所述门体的转动角度满足以下公式:
    Figure PCTCN2022074401-appb-100005
    其中,θ1为所述转动角度,t1为运动距离,θ为100度-113度的预设角度。
  84. 根据权利要求71所述的箱体组件,其特征在于,所述门体的厚度大于等于2厘米。
  85. 一种箱体组件,其特征在于,所述箱体组件包括:
    箱体,所述箱体用于形成具有开口的容纳空间;
    门体,所述门体用于封堵所述开口;
    铰链组件,设置成在所述箱体的枢轴侧,枢转连接所述箱体和所述门体;
    其中,所述门体在所述枢轴侧具有内棱边和外棱边,在所述门体相对于所述箱体处于关闭状态时,所述内棱边相较于所述外棱边更靠近所述箱体,所述门体进一步设置有第一参考平面和第二参考平面,其中所述第一参考平面经过处于所述关闭状态时的所述内棱边且与所述开口所在的平面平行,所述第二参考平面经过处于所述关闭状态时的所述外棱边且与所述开口所在的平面垂直,所述第一参考平面和第二参考平面在所述门体相对所述箱体的打开过程中相对于所述箱体保持静止;
    当所述门体在所述铰链组件作用下从第一打开角度相对所述箱体打开至第二打开角度的过程中,所述内棱边沿第二内棱边轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外棱边沿第二外棱边轨迹向所述第一参考平面运动,所述第二内棱边轨迹的切线方向与所述第一参考平面之间的第三夹角逐渐增大,且对应于所述门体的每打开单位角度的变化幅度逐渐增大,所述第二外棱边轨迹的切线方向垂直于所述第一参考平面设置,或者以介于70度-110度之间的第四夹角相对于所述第一参考平面倾斜设置。
  86. 根据权利要求85所述的箱体组件,其特征在于,在所述门体从所述第一打开角度打开至所述第二角度的过程中,所述第四夹角保持不变,或以直线形式单调变化。
  87. 根据权利要求86所述的箱体组件,其特征在于,所述第三夹角的最大值和最小值之间的差值不小于35度,所述第四夹角的最大值和最小值之间的差值不大于10度。
  88. 根据权利要求87所述的箱体组件,其特征在于,所述第二外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第二内棱边轨迹的曲率半 径逐渐减小,所述第二内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧,且到所述第一参考平面的距离不小于0.3t。
  89. 根据权利要求87所述的箱体组件,其特征在于,所述第二打开角度为57度-60度。
  90. 根据权利要求87所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体从所述第一打开角度打开至第二打开角度的过程中,所述内参考点沿第二内参考点轨迹向所述第二参考平面朝向所述开口的一侧以及所述第一参考平面背离所述开口的一侧运动,所述外参考点沿第二外参考点轨迹向所述第一参考平面运动,其中所述第二外参考点轨迹为直线,且沿所述第二参考平面设置,或者平行于所述第二参考平面设置,所述第二内参考点轨迹设置成使得所述外参考点在所述第二外参考点轨迹上的运动距离与所述门体的转动角度满足以下公式:
    Figure PCTCN2022074401-appb-100006
    其中,θ1为所述转动角度,t1为运动距离,θ为100度-113度的预设角度。
  91. 根据权利要求86所述的箱体组件,其特征在于,当所述门体在所述铰链组件作用下从所述关闭状态相对所述箱体打开至第一打开角度的过程中,所述内棱边沿第一内棱边轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外棱边沿第一外棱边轨迹向所述第一参考平面运动,所述第一内棱边轨迹的切线方向沿所述第一参考平面设置或者以不大于10度的第一夹角相对于所述第一参考平面倾斜设置,所述第一外棱边轨迹的切线方向垂直于所述第一参考平面设置,或者以逐渐接近90度的第二夹角相对于所述第一参考平面倾斜设置。
  92. 根据权利要求91所述的箱体组件,其特征在于,在所述门体从所述关闭状态打开至第一打开角度的过程中,所述第一夹角保持不变,或以直线形式单调变化。
  93. 根据权利要求92所述的箱体组件,其特征在于,所述第一夹角的最大值和最小值之间的差值小于5度。
  94. 根据权利要求91所述的箱体组件,其特征在于,所述第一内棱边轨迹的长度与所述第一外棱边轨迹的长度的比例为3.5-4.5。
  95. 根据权利要求91所述的箱体组件,其特征在于,所述第一外棱边轨迹超出所述第二参考平面背离所述开口一侧的距离不大于第一预定距离,所述第一内棱边轨迹超出所述第一参考平面朝向所述开口一侧的距离不大于第二预定距离,所述第一打开角度为25度至31度,所述第一预定距离为0mm~4mm,所述第二预定距离为0mm~2mm。
  96. 根据权利要求91所述的箱体组件,其特征在于,所述第一内棱边轨迹的终点位于所述第一参考平面上,或者所述第一内棱边轨迹的终点位于所述第一参考平面背离所述开口的一侧且到所述第一参考平面的距离不大于0.058t,所述第一外棱边轨迹的终点位于所述第二参考平面上,或者所述第一外棱边轨迹的终点位于所述第二参考平面朝向所述开口的一侧且到所述第二参考平面的距离不大于0.135t。
  97. 根据权利要求91所述的箱体组件,其特征在于,所述门体进一步设置有内参考点和外参考点,其中所述内参考点与所述内棱边相邻设置,所述外参考点与所述外棱边相邻设置,其中当所述门体从所述关闭状态打开至第一打开角度的过程中,所述内参考点沿第一内参考点轨迹向所述第二参考平面朝向所述开口的一侧运动,所述外参考点沿第一外参考点轨迹向所述第一参考平面运动,其中所述第一内参考点轨迹和所述第一外参考点轨迹为直线,所述第一内参考点轨迹沿所述第一参考平面设置或平行于所述第一参考平面设置,所述第一外参考点轨迹沿所述第二参考平面设置或平行于所述第二参考平面设置。
  98. 根据权利要求97所述的箱体组件,其特征在于,所述内参考点到所述第一参考平面的垂直距离不大于0.1t,且到所述第二参考平面的垂直距离不大于0.1t;所述外参考点到第二参考平面的垂直距离不大于0.1t,到第三参考平面的垂直距离不大于0.1t,所述第三参考平面为经过处于所述关闭状态时的所述外棱边且与所述第一参考平面平行。
  99. 根据权利要求85所述的箱体组件,其特征在于,所述门体的厚度大于等于2厘米。
  100. 一种制冷设备,其特征在于,所述制冷设备包括权利要求1-99中任一项所述的箱体组件。
PCT/CN2022/074401 2021-02-09 2022-01-27 一种箱体组件和制冷设备 WO2022170995A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22752156.4A EP4279840A1 (en) 2021-02-09 2022-01-27 Box body assembly and refrigeration apparatus
JP2023548351A JP2024515927A (ja) 2021-02-09 2022-01-27 箱体アセンブリ及び冷凍装置
CA3207572A CA3207572A1 (en) 2021-02-09 2022-01-27 Case assembly and refrigeration device
US18/366,622 US20230375252A1 (en) 2021-02-09 2023-08-07 Case assembly and refrigeration device

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
CN202110179364.0 2021-02-09
CN202110179364 2021-02-09
CN202110438317.3 2021-04-22
CN202120844287.1U CN215638198U (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202110437127.XA CN114909839A (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202110438302.7A CN114909841A (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202120844146.XU CN215983419U (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202110437122.7A CN114909838A (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202120844146.X 2021-04-22
CN202120844080.4U CN215638196U (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202110437127.X 2021-04-22
CN202110437122.7 2021-04-22
CN202110438317.3A CN114909049A (zh) 2021-02-09 2021-04-22 一种箱体组件
CN202110438302.7 2021-04-22
CN202110438285.7 2021-04-22
CN202120844122.4 2021-04-22
CN202120844122.4U CN215638197U (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202120844287.1 2021-04-22
CN202110438309.9 2021-04-22
CN202120844080.4 2021-04-22
CN202110438309.9A CN114909842A (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202120844123.9U CN215983418U (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备
CN202120844123.9 2021-04-22
CN202110438285.7A CN114909840A (zh) 2021-02-09 2021-04-22 箱体组件及制冷设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/366,622 Continuation-In-Part US20230375252A1 (en) 2021-02-09 2023-08-07 Case assembly and refrigeration device

Publications (1)

Publication Number Publication Date
WO2022170995A1 true WO2022170995A1 (zh) 2022-08-18

Family

ID=79936346

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/074402 WO2022170996A1 (zh) 2021-02-09 2022-01-27 一种箱体组件和制冷设备
PCT/CN2022/074401 WO2022170995A1 (zh) 2021-02-09 2022-01-27 一种箱体组件和制冷设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074402 WO2022170996A1 (zh) 2021-02-09 2022-01-27 一种箱体组件和制冷设备

Country Status (6)

Country Link
US (2) US20230383582A1 (zh)
EP (2) EP4279840A1 (zh)
JP (2) JP2024508248A (zh)
CN (22) CN215632370U (zh)
CA (2) CA3207572A1 (zh)
WO (2) WO2022170996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371332A (zh) * 2022-08-31 2022-11-22 海信冰箱有限公司 冰箱

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215632370U (zh) * 2021-02-09 2022-01-25 广东美的白色家电技术创新中心有限公司 一种箱体组件和制冷设备
CN115839586A (zh) * 2021-09-18 2023-03-24 海信(山东)冰箱有限公司 冰箱
CN116642295A (zh) * 2022-02-16 2023-08-25 青岛海尔智能技术研发有限公司 嵌入式冰箱
WO2023159929A1 (zh) * 2022-02-28 2023-08-31 青岛海信电子技术服务有限公司 冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122498A (ko) * 2005-05-27 2006-11-30 엘지전자 주식회사 냉장고의 도어 개폐 장치
CN201653042U (zh) * 2009-06-18 2010-11-24 博西华家用电器有限公司 用于冰箱的门以及具有这种门的冰箱
CN202792778U (zh) * 2012-06-30 2013-03-13 海信容声(广东)冰箱有限公司 一种活动式的门体安装结构及冰箱
CN110243127A (zh) * 2016-08-05 2019-09-17 青岛海尔股份有限公司 冰箱
CN215638197U (zh) * 2021-02-09 2022-01-25 广东美的白色家电技术创新中心有限公司 箱体组件及制冷设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7730937U1 (de) * 1977-10-06 1978-01-19 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart Zweiteiliger scharnierbausatz fuer die schwenktuer eines gehaeuses
US6493906B2 (en) * 2001-02-02 2002-12-17 Charles Matteau Hinge structure
GB2439328B (en) * 2006-06-22 2012-07-04 Panasonic Mfg Uk Ltd Domestic appliance with concealed hinge
DE202009003379U1 (de) * 2009-03-09 2010-07-29 MACO Vermögensverwaltung GmbH Beschlaganordnung und Fenster oder Tür mit einer solchen Beschlaganordnung
NO341467B1 (en) * 2016-05-31 2017-11-20 To3Design Torbjoern Oestrem Elevation hinge
CN112282544B (zh) * 2019-07-23 2022-11-18 青岛海尔电冰箱有限公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122498A (ko) * 2005-05-27 2006-11-30 엘지전자 주식회사 냉장고의 도어 개폐 장치
CN201653042U (zh) * 2009-06-18 2010-11-24 博西华家用电器有限公司 用于冰箱的门以及具有这种门的冰箱
CN202792778U (zh) * 2012-06-30 2013-03-13 海信容声(广东)冰箱有限公司 一种活动式的门体安装结构及冰箱
CN110243127A (zh) * 2016-08-05 2019-09-17 青岛海尔股份有限公司 冰箱
CN215638197U (zh) * 2021-02-09 2022-01-25 广东美的白色家电技术创新中心有限公司 箱体组件及制冷设备
CN215638196U (zh) * 2021-02-09 2022-01-25 广东美的白色家电技术创新中心有限公司 箱体组件及制冷设备
CN215638198U (zh) * 2021-02-09 2022-01-25 广东美的白色家电技术创新中心有限公司 箱体组件及制冷设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371332A (zh) * 2022-08-31 2022-11-22 海信冰箱有限公司 冰箱
CN115371332B (zh) * 2022-08-31 2023-08-11 海信冰箱有限公司 冰箱

Also Published As

Publication number Publication date
EP4279840A1 (en) 2023-11-22
US20230375252A1 (en) 2023-11-23
CN114909841A (zh) 2022-08-16
CN114909049A (zh) 2022-08-16
CN216142596U (zh) 2022-03-29
CN114909842A (zh) 2022-08-16
EP4279690A1 (en) 2023-11-22
CN114909840A (zh) 2022-08-16
WO2022170996A1 (zh) 2022-08-18
JP2024508248A (ja) 2024-02-26
CN215983419U (zh) 2022-03-08
CN114909048A (zh) 2022-08-16
CN114909047A (zh) 2022-08-16
CN215632370U (zh) 2022-01-25
CA3207350A1 (en) 2022-08-18
CA3207572A1 (en) 2022-08-18
CN215983418U (zh) 2022-03-08
CN114909839A (zh) 2022-08-16
CN215638196U (zh) 2022-01-25
CN114909045A (zh) 2022-08-16
CN215638198U (zh) 2022-01-25
CN114909044A (zh) 2022-08-16
CN215632369U (zh) 2022-01-25
CN216142595U (zh) 2022-03-29
CN215632371U (zh) 2022-01-25
CN114909838A (zh) 2022-08-16
US20230383582A1 (en) 2023-11-30
CN114909046A (zh) 2022-08-16
CN216517461U (zh) 2022-05-13
CN215638197U (zh) 2022-01-25
JP2024515927A (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2022170995A1 (zh) 一种箱体组件和制冷设备
US20210372180A1 (en) Refrigerator
US11320871B2 (en) Seamless hinge and electronic device having the same
US11416039B2 (en) Complex moving/rotating pivot shaft device
CN207005077U (zh) 运用于移动终端上的双轴铰链机构及移动终端
CN112640399A (zh) 铰链装置及电子装置
WO2023221705A1 (zh) 铰链组件以及终端产品
WO2018049769A1 (zh) 翻转机构
WO2023193592A1 (zh) 同轴反转连接机构
CN215978928U (zh) 箱体组件及制冷设备
CN215332212U (zh) 一种滑撑铰链
CN108064469A (zh) 屏蔽罩
CN218668946U (zh) 一种铰链结构及冷柜
CN218623798U (zh) 一种能够辅助双开门冰箱门体稳定及限位的结构
US20230403810A1 (en) Hinged device
CN212249623U (zh) 折叠门连接组件
CN203905700U (zh) 一种液压缓冲合页
CN208380291U (zh) 一种锁芯盖的翻盖结构
CN115492480A (zh) 一种安装有防夹门缝铰链的嵌入式冰箱
CN114777397A (zh) 翻转梁组件、门组件、对开门组件及储物柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3207572

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023548351

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022752156

Country of ref document: EP

Effective date: 20230818

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202305987X

Country of ref document: SG