WO2022170942A1 - 距离调节装置和距离调节装置的控制方法 - Google Patents

距离调节装置和距离调节装置的控制方法 Download PDF

Info

Publication number
WO2022170942A1
WO2022170942A1 PCT/CN2022/073247 CN2022073247W WO2022170942A1 WO 2022170942 A1 WO2022170942 A1 WO 2022170942A1 CN 2022073247 W CN2022073247 W CN 2022073247W WO 2022170942 A1 WO2022170942 A1 WO 2022170942A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
component
move
adjusting device
spring
Prior art date
Application number
PCT/CN2022/073247
Other languages
English (en)
French (fr)
Inventor
倪刚
孙宇飞
张慧敏
廖人晖
许得心
张旭海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22752104.4A priority Critical patent/EP4279983A4/en
Priority to US18/264,825 priority patent/US20240117796A1/en
Publication of WO2022170942A1 publication Critical patent/WO2022170942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1066Constructional aspects of the interconnection between earpiece and earpiece support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/064Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by its use
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C5/00Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps
    • A44C5/0007Bracelets specially adapted for other functions or with means for attaching other articles
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C5/00Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps
    • A44C5/02Link constructions
    • A44C5/04Link constructions extensible
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C5/00Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps
    • A44C5/14Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps characterised by the way of fastening to a wrist-watch or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06145Springs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts
    • G02C5/14Side-members
    • G02C5/20Side-members adjustable, e.g. telescopic
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts
    • G02C5/22Hinges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06143Wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/066Actuator control or monitoring
    • F03G7/0665Actuator control or monitoring controlled displacement, e.g. by using a lens positioning actuator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0152Head-up displays characterised by mechanical features involving arrangement aiming to get lighter or better balanced devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the technical field of terminal equipment, in particular to a distance adjustment device and a control method of the distance adjustment device.
  • Wearable devices generally refer to miniature electronic devices that can be worn on the body for activities, which can be used independently or as a portable accessory of a mobile terminal.
  • Some wearable devices can be worn through a fixed strap, for example, a headset can be worn on the user's head through a connecting part, and a smart watch or a wristband can be worn on the user's wrist through a connecting part.
  • a headset can be worn on the user's head through a connecting part
  • a smart watch or a wristband can be worn on the user's wrist through a connecting part.
  • a certain gap needs to be left between the connecting part and the user. Due to the individual differences of users, adaptive adjustment of wearing comfort is an important method to improve the user experience of wearable devices.
  • the present application provides a distance adjustment device and a control method of the distance adjustment device, which can adjust the length of a connecting part electrically and steplessly.
  • the present application provides a distance adjustment device, the distance adjustment device includes a first part and a second part, the first part is connected with the second part, and a memory alloy is provided in the connection area between the first part and the second part The parts, the memory alloy parts are controlled by the current to drive the first part and the second part to move relative to and/or to move relative to each other.
  • the memory alloy component includes a first memory alloy component and a second memory alloy component, wherein: one end of the first memory alloy component is fixed to the first component, and the other end drives the second component to the first component relative to the first component. Move in one direction; when the temperature of the first memory alloy part is lower than the set threshold, the first memory alloy part is in the first state; when the temperature of the first memory alloy part is higher than the set threshold, the first memory alloy part is in the first state
  • One end of the second memory alloy component is fixed to the first component, and the other end drives the second component to move in the second direction relative to the first component, and the first direction is opposite to the second direction; when the temperature of the second memory alloy component is lower than When the threshold is set, the second memory alloy part is in the second form; when the temperature of the first memory alloy
  • the specific adjusting device further includes an elastic material layer which is superposed and fixed with the first memory alloy part in one-to-one correspondence; and an elastic material layer which is superimposed and fixed in a one-to-one correspondence with the second memory alloy part.
  • the above-mentioned memory alloy components include a plurality of first memory alloy components and a plurality of second memory alloy components.
  • the first memory alloy component and the second memory alloy component may be located on the same side of the second component; or, the second memory alloy component may be located between the first memory alloy component and the second memory alloy component, that is, the first memory alloy component
  • the alloy part and the second memory alloy part are located on both sides of the second part.
  • the above-mentioned distance adjusting device may further comprise an auxiliary part, the auxiliary part is arranged between the second part and the first part, and when the auxiliary part is in the first state, the first memory alloy part or the second memory alloy part can be in contact with the second part;
  • the auxiliary part is in the second state, there is a gap between the first memory alloy part or the second memory alloy part and the second part;
  • the first memory alloy part and the second memory alloy part are bent in the second direction in the first state, Bend in the first direction in the second form;
  • the first memory alloy part changes from the first form to the second form, driving the second part to move in the first direction;
  • the second memory alloy part changes from the second form to the first form , the second component is driven to move in the second direction.
  • the auxiliary part When the auxiliary part is specifically arranged, one end of the auxiliary part is fixed to the first part, the other end faces the second part, and the first memory alloy part and the second memory alloy part are arranged between the first part and the second part; In the second state, the second component is driven to move away from the surface of the first component, and there is a gap between the first memory alloy component and the second memory alloy component and the second component.
  • the auxiliary part When the second part is located between the first memory alloy part and the second memory alloy part; one end of the auxiliary part is fixed to the first part, and the other end faces the second part; the auxiliary part includes a first auxiliary part and a second auxiliary part, The first auxiliary part and the first driving part are located on the same side, and the second auxiliary part and the second driving part are located on the same side; when the first auxiliary part is in the second state, the second part is driven to move away from the first driving part, There is a gap between the first driving part and the second part; when the second auxiliary part is in the second state, it drives the second part to move away from the second driving part, and there is a gap between the first driving part and the second part.
  • the auxiliary part may include a first memory alloy spring, and the first memory alloy spring is connected with two electrodes; when the temperature of the first memory alloy spring is lower than the set threshold, the first memory alloy spring is the first length; when the temperature of the first memory alloy spring is higher than the set threshold, the first memory alloy spring extends toward the second component to a second length, and the second length is greater than the first length, driving the second component to move away from The direction of the surface of the first part moves.
  • the above-mentioned auxiliary part further includes a first return spring, the first return spring is arranged in parallel with the first memory alloy spring, when the first memory alloy spring has a first length, the first return spring is in a state of releasing energy, and the first memory alloy spring is in a state of releasing energy. When it is the second length, the first return spring is in an energy storage state.
  • an end of the first memory alloy component facing the second component has an elastic layer
  • an end of the second memory alloy component facing the second component has an elastic layer
  • the first memory alloy component and the second memory alloy component are parallel to the first direction in the first form, and are bent in a direction away from the second component in the second form;
  • the first memory alloy component includes a direction along the The first end and the second end distributed in the second direction, the first end is fixed to the first component, and the second end is connected with a first linkage rod;
  • the first linkage rod includes a third end and a fourth end distributed along the second direction , the second end is rotatably connected with the fourth end;
  • the second end is fixed with a first baffle, the first memory alloy component changes from the second form to the first form, the fourth end is in contact with the first baffle, and the third end drives
  • the second component moves to the first direction;
  • the second memory alloy component includes a fifth end and a sixth end distributed along the second direction, the sixth end is fixed to the first component, and the fifth end is connected with a second linkage rod;
  • the second The linkage rod includes a seventh end and an eighth end distributed along the second direction,
  • the third end of the first linkage rod has an elastic layer
  • the eighth part of the second linkage rod has an elastic layer. The ends have an elastic layer.
  • the distance adjusting device further includes a stop structure, the stop structure is arranged between the second part and the first part, when the stop structure is in the first state, the second part can move relative to the first part; the stop structure is in the first state; In the second state, the stop structure fixedly connects the second part and the first part.
  • the stop structure includes a rack, a gear, a clip, an elastic member and a memory alloy structure, wherein the gear is adapted to the rack; the clip can be engaged with the gear; the rack is fixedly arranged on the first A part, the rotating shaft of the gear is fixedly arranged on the second part; the elastic part is arranged between the clip and the second part, and the memory alloy structure is connected between the clip and the second part; or the rack is fixed on the second part , the rotating shaft of the gear is fixedly arranged on the first part; the elastic part is arranged between the clip and the first part, and the memory alloy structure is connected between the clip and the first part; when the temperature of the memory alloy structure is lower than the set threshold , the memory alloy structure is in the first state, and the elastic member drives the clip to engage with the gear; when the temperature of the memory alloy structure is higher than the set threshold, the memory alloy structure is in the second state, the driving clip moves away from the gear, and the gear can be relatively
  • the gear is adapted to the rack
  • the clip can
  • the distance adjusting device further includes a second return spring and a stop structure, and the memory alloy component is a second memory alloy spring, wherein: one end of the second memory alloy spring is connected to the first component, and the other end is connected to the first component.
  • the second part is connected, and the second memory alloy spring is connected with two electrodes; when the temperature of the second memory alloy spring is lower than the set threshold, the second memory alloy spring has the first length; when the temperature of the second memory alloy spring is high
  • the threshold is set, the second memory alloy spring is telescopically deformed along the first direction to a second length, the second length is different from the first length, and drives the second component to move in the first direction relative to the first component;
  • the second return spring One end is connected with the first part, and the other end is connected with the second part; when the second memory alloy spring has the second length, the second return spring can drive the second part to move relative to the first part in the second direction, the first
  • the specific material of the above-mentioned second return spring is not limited, and may be a common spring. Alternatively, the above-mentioned second return spring may also be a second return spring made of memory alloy material.
  • the distance adjusting device further includes a first guide member, the first guide member extends along the first direction, and the second return spring and the second memory alloy spring are installed on the first guide member, thereby improving the second return Stability of the movement of the spring and the second memory alloy spring.
  • the above distance adjusting device includes at least three second memory alloy springs and second return springs in total.
  • the second memory alloy springs and the second return springs are arranged at intervals one by one; or, the second memory alloy springs are arranged symmetrically about the symmetry axis of the second component, and the second return springs are symmetrical about the symmetry axis of the second component. arranged with the axis of symmetry extending along the first direction.
  • the above-mentioned stop structure specifically includes a rack, a gear, a clip, an elastic member and a memory alloy structure, wherein the gear is adapted to the rack; the clip can be engaged with the gear; the rack is fixedly arranged on the first part, and the rotating shaft of the gear fixedly arranged on the second part; the elastic part is arranged between the clip and the second part, and the memory alloy structure is connected between the clip and the second part; or, the rack is fixedly arranged on the second part, and the rotating shaft of the gear is fixedly arranged the first part; the elastic part is arranged between the clip and the first part, and the memory alloy structure is connected between the clip and the first part; when the temperature of the memory alloy structure is lower than the set threshold, the memory alloy structure is in the first In the first form, the elastic member drives the clip to engage with the gear; when the temperature of the memory alloy structure is higher than the set threshold, the memory alloy structure is in the second form, the clip is driven to move away from the gear, the gear can mesh with the rack, and
  • the above-mentioned distance adjustment device includes a wearable device, and the wearable device is provided with a first sensor, a power supply module and a controller, wherein the first sensor is provided on the wearable device and is used to detect the pressure value between the wearable device and the user; power supply;
  • the module is connected with the memory alloy part for driving the deformation of the memory alloy part;
  • the controller is connected with the power supply module and the first sensor, and is used for controlling the current input by the power supply module to the memory alloy part according to the pressure value detected by the first sensor to drive the first sensor One part and the second part move relative to or toward each other.
  • the specific type of the above-mentioned first sensor is not limited, and may include a force sensor and a distance sensor, and the above-mentioned distance sensor may include a capacitive proximity sensor, an ultrasonic distance sensor, a laser distance sensor, an infrared distance sensor, and a light sensing sensor.
  • the above-mentioned first sensor can acquire the positional relationship between the wearable device and the human body, so that the controller can control the relative or relative movement between the first part and the second part according to the above-mentioned positional relationship.
  • the distance adjusting device includes at least two first sensors, so that the accuracy of detecting the positional relationship between the distance adjusting device and the user can be improved.
  • the distance adjusting device includes at least two first sensors
  • at least two types of first sensors may be included, for example, a force sensor and a distance sensor may be included, and the force sensor and the distance sensor may be arranged in sequence and spaced apart.
  • the above-mentioned wearable device is further provided with a second sensor, the second sensor is connected to the controller, the second sensor is used to send a use state signal to the controller when the wearable device is in use state, and the controller is used to receive the use state signal when the use state signal is received. After that, the current input to the memory alloy part by the power supply module is controlled.
  • the distance adjustment device includes a wearable device, and the wearable device is provided with a power supply module and a voice controller, wherein the power supply module is connected to the memory alloy part for driving the deformation of the memory alloy part; the voice controller is connected to the power supply The module is used for receiving the user's voice command, and according to the voice command, it controls the current input by the power supply module to the memory alloy part, and drives the first part and the second part to move relatively or toward each other.
  • the present application also provides a control method for a distance adjustment device, the control method includes: acquiring a positional relationship signal between a wearable device and a user; judging whether the above-mentioned positional relationship signal is within a set range, and if so, controlling The memory alloy component stops working; if not, the memory alloy component is controlled to drive the first component and the second component to move relatively or move toward each other.
  • the length of the wearable device can be adjusted according to the positional relationship between the wearable device and the user, so that the user can wear the above-mentioned wearable device more comfortably.
  • the above-mentioned positional relationship signal includes a pressure value or a distance value, or includes both a pressure value and a distance value.
  • the above control method may specifically include: first obtaining the distance value between the wearable device and the user; judging whether the above distance value is within the first set range, and if so, controlling the memory alloy The component stops working; if not, control the memory alloy component to drive the first component and the second component to move relatively or move toward each other;
  • the controlling the memory alloy component to stop working includes: acquiring the pressure value between the wearable device and the user; judging whether the pressure value is in the second set range, if yes, controlling the memory alloy component to stop working; if not, controlling The memory alloy component drives the first component and the second component to move relatively or move toward each other.
  • the distance between the wearable device and the user is first adjusted by the distance value, and then according to the pressure value between the wearable device and the user, it is further judged whether the user wears the wearable device comfortably.
  • obtaining the positional relationship signal between the wearable device and the user before including: obtaining the use state signal of the wearable device. That is to say, when the wearable device is in use, the positional relationship between the wearable device and the user is obtained, and the memory alloy component is further controlled to drive the first component and the second component to move or stop working.
  • the above control method further includes forming user information in a self-learning manner, and controlling the memory alloy component to drive the first component and the second component to a set position according to the user information.
  • the control method can obtain the positional relationship between the first part and the second part when the user wears it comfortably, as the set position.
  • the above-mentioned first part and the second part can be directly adjusted to a set position. This solution can improve the adjustment speed of the wearable device.
  • 1 is a schematic structural diagram of a distance adjustment device in an embodiment of the application.
  • FIG. 2 is another schematic structural diagram of the distance adjusting device in the embodiment of the application.
  • FIG. 3 is a schematic diagram of a partial structure of the distance adjusting device in the embodiment of the application.
  • FIG. 4 is another schematic structural diagram of the distance adjusting device in the embodiment of the present application.
  • 5 is a schematic diagram of the partial structure of the distance adjustment device in the technical solution of the application.
  • FIG. 6 is a schematic structural diagram of a distance adjusting device in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a memory alloy component in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a partial structure of the distance adjusting device in the embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional structure diagram of the distance adjusting device in the embodiment of the present application.
  • FIG. 10 is another schematic cross-sectional structure diagram of the distance adjusting device in the embodiment of the application.
  • FIG. 11 is a schematic diagram of an action process of the first driving part in the embodiment of the application.
  • FIG. 12 is a schematic diagram of an action process of the second driving part in the embodiment of the application.
  • 13 is another schematic structural diagram of the distance adjusting device in the embodiment of the application.
  • FIG. 15 is a schematic diagram of an action process of the second driving part in the embodiment of the application.
  • 16 is a schematic structural diagram of a stop bit structure according to an embodiment of the present application.
  • FIG. 17 is a schematic cross-sectional structure diagram of a stop position structure according to an embodiment of the present application.
  • 19 is a schematic diagram of a partial structure of a specific adjustment device in an embodiment of the application.
  • FIG. 21 is a flowchart of a control method of a distance adjusting device in an embodiment of the present application.
  • references in this specification to "one embodiment” or “a particular embodiment” or the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the above-mentioned distance adjusting device may be a terminal device or a module assembly, and the above-mentioned terminal device may be any terminal device that needs to adjust the length of a part of the structure, especially a wearable device.
  • the terminal device may include a device body and a connection part, and by adjusting the length of the connection part, the use state of the entire terminal device can be adjusted. Taking a wearable device as an example, the user needs to adjust the length of the connecting component so that the user can wear the wearable device comfortably.
  • the wearable device has a sensor for detection
  • the sensor can be brought into contact with the user at a suitable pressure.
  • the length of the connecting parts is usually adjusted manually.
  • many connecting parts cannot achieve stepless length adjustment, which makes it difficult for users to achieve a more comfortable level; There is a situation where the operation is inconvenient.
  • the present application provides a distance adjusting device and a control method of the distance adjusting device, so that the length of the connecting member can be adjusted steplessly by electric power.
  • FIG. 1 is a schematic structural diagram of a distance adjusting device in an embodiment of the present application
  • FIG. 2 is another structural schematic diagram of a distance adjusting device in an embodiment of the present application.
  • the above-mentioned distance adjusting device includes a device body 100 and a connecting member 200 connected to the above-mentioned device body 100 .
  • the connecting member 200 includes a first connecting member 210, a second connecting member 220, and a memory alloy member 3, wherein the memory alloy member 3 is disposed between the first connecting member 210 and the second connecting member 220 and can drive the first connecting member 220.
  • the connecting parts 210 are moved relatively and/or toward each other, thereby adjusting the length of the connecting parts 200 .
  • the above distance adjustment device can be a wearable device, such as a headset, a watch, a bracelet, or AR/VR glasses, etc., and can also be a belt, shoelace, testing equipment, monitor brackets, and other devices that need to adjust the distance.
  • the specific type this application does not limit.
  • the wearable device is a headphone, as shown in FIG. 1
  • the two headphone parts of the headphone can be considered as the device body 100
  • the head beam connected to the two headphone parts is the connecting part 200 .
  • the wearable device is a watch, as shown in FIG. 2
  • the dial of the watch is the device body 100
  • the strap is the above-mentioned connecting component 200 .
  • the main functional component of the distance adjusting device is the device body 100, and the connecting component 200 mainly plays the role of connection.
  • the length of the connection part 200 can be adjusted by the memory alloy part 3, so that the position of the device body 100 can be adjusted; or, when the distance adjusting device is a wearable device, the pressure value between the wearable device and the user can be adjusted, that is, the comfort level Or, when the distance adjusting device is a detection device, the pressure value between the detection device and the user can be adjusted, which is beneficial to improve the detection accuracy of the detection device.
  • first connecting member 210 and the second connecting member 220 in the embodiment of the present application may be of a separate structure, or may be connected by a soft material, that is to say, the first connecting member 210 and the second connecting member 220 are connected.
  • An integrated structure; or the first connecting member 210 and the second connecting member 220 are two parts independent of each other, both of which are applicable to the technical solutions of the present application.
  • FIG. 3 is a schematic structural diagram of the distance adjusting device in the embodiment of the application. Please refer to FIG. 3 .
  • the distance adjusting device 230 specifically includes a first part 1 , a second part 2 and a memory alloy part 3 .
  • the memory alloy part 3 can It conducts electricity, and the current can cause the temperature of the memory alloy part 3 to increase. Specifically, the memory alloy member 3 is in the first state when the temperature is lower than the set threshold, and the memory alloy member 3 is in the second state when the temperature is higher than the set threshold. By controlling the magnitude or on-off of the current, the temperature of the memory alloy part 3 can be controlled, so that the memory alloy part 3 can be changed in shape.
  • the memory alloy part 3 is connected between the first part 1 and the second part 2, then the memory alloy part 3
  • the first component 1 and the second component 2 can be driven to move relative to each other and/or move toward each other.
  • the first member 1 is fixedly arranged with the first connecting member 210
  • the second member 2 is fixedly arranged with the second connecting member 220.
  • the first member 1 is equivalent to the first connecting member 210
  • the second member 2 is It is equivalent to the second connecting member 220 and is not limited in this application. Therefore, when the shape of the memory alloy member 3 is changed, the first connecting member 210 can be driven to move relatively and/or move toward each other.
  • the memory alloy member 3 can be driven by controlling the current, thereby adjusting the length of the connecting member 200 of the distance adjusting device, without manually adjusting the length of the connecting member 200 by pushing and pulling, which can simplify the operation.
  • the solution can also use the memory alloy components 3 to achieve stepless adjustment, which is beneficial to improve the user's experience and comfort.
  • FIG. 4 is another schematic structural diagram of the distance adjustment device in the embodiment of the present application. Please refer to FIGS. 2 and 4 .
  • the distance adjustment device may further include a first sensor 240 , a power supply module 250 and a controller 260 .
  • the above-mentioned first sensor 240 is disposed in the distance adjustment device, and specifically, the specific position of the above-mentioned first sensor 240 in the distance adjustment device can be designed according to actual product requirements.
  • the distance adjustment device is an earphone
  • the first sensor 240 can be arranged on the head beam, that is, the connecting part 200, to monitor the pressure value between the head beam and the user's head, so that the user can wear the earphone comfortably
  • the distance adjustment device is a watch
  • the first sensor 240 can be set on the device body 100, and the first sensor 240 can be set on the dial or the strap, that is, on the device body 100 or the connecting part 200; , in order to ensure that the detection part of the detection equipment fits well with the user and improve the detection effect.
  • the above-mentioned power supply module 250 is connected to the memory alloy part 3 of the distance adjusting device 230, so that current can be input to the memory alloy part 3 to control the temperature of the memory alloy part 3, and then control the memory alloy part 3 between the first form and the second form.
  • the shape is changed between the first part 1 and the second part 2 to drive the first part 1 and the second part 2 to move relatively or move toward each other, so that the first connection part 210 and the second connection part 220 move relatively or move toward each other.
  • the above-mentioned controller 260 is connected to the power supply module 250 and the first sensor 240, and is used to control the current input by the power supply module 250 to the memory alloy part 3 according to the positional relationship signal detected by the first sensor 240, and to drive the first connection part 210 and the second connection part 210.
  • the connecting parts 220 move relatively or move toward each other. Specifically, a more suitable range may be set as the set range, and the controller determines whether the positional relationship signal detected by the first sensor 240 is within the set range.
  • the memory alloy part 3 drives the first connection part 210 and the second connection part 220 Move relatively or move toward each other until the positional relationship signal detected by the first sensor 240 is within the set range.
  • the type of the above-mentioned first sensor 240 is not limited, and may be at least one of a force sensor, a capacitive proximity sensor, an ultrasonic distance sensor, a laser distance sensor, an infrared distance sensor, and a light sensor sensor. a type. Specifically, an appropriate type of the first sensor 240 may be selected according to the actual situation.
  • the above-mentioned positional relationship is the pressure between the wearable device and the user
  • the positional relationship signal is a pressure value.
  • the controller controls the distance adjusting device 230 to drive the first connecting part 210 and the second connecting part 220 to move relatively, so as to reduce the length of the connecting part 200 .
  • the pressure value detected by the first sensor 240 is greater than the set range, it means that the length of the connecting member 200 is too small.
  • the controller controls the distance adjusting device 230 to drive the first connecting part 210 and the second connecting part 220 to move toward each other, so as to increase the length of the connecting part 200 .
  • the controller controls the distance adjusting device 230 to stop driving the first connecting member 210 and the second connecting member 220 to move, so that the positional relationship between the first connecting member 210 and the second connecting member 220 remains fixed.
  • the distance adjustment device can be set in contact with the user, so that the pressure value between the distance adjustment device and the user directly affects the user's comfort for wearable devices; accuracy.
  • the controller controls the current input by the power supply module to the memory alloy part 3 according to the pressure value obtained by the first sensor 240 , and further controls the distance adjusting device 230 to adjust the length of the connecting part 200 .
  • the distance adjusting device can achieve a better working state, and the user experience can be improved.
  • this solution does not require manual adjustment of the length of the connecting member 200, and the operation process is relatively simple and intelligent.
  • the wearable device may include at least two first sensors, so as to improve the cooperation effect between the wearable device and the user, and improve the comfort of the user wearing the wearable device.
  • the wearable device includes at least two first sensors
  • specific types of the first sensors may be different.
  • the wearable device can be made to include force sensors and distance sensors.
  • the force sensor and the distance sensor may be arranged at intervals.
  • the wearable device can control different types of first sensors to work together, or select a certain type of first sensors to work according to requirements.
  • the distance adjusting device may have an operation button, and the operation button is used to control the current input by the power supply module to the memory alloy part 3 , thereby controlling the distance adjusting device 230 to adjust the length of the connecting part 200 .
  • the distance adjusting device may further include a power supply module and a voice controller, wherein the power supply module is connected to the memory alloy part 3 of the distance adjusting device 230, so that current can be input to the memory alloy part 3, In order to control the temperature of the memory alloy part 3, and then control the memory alloy part 3 to change shape between the first form and the second form, to drive the first part 1 and the second part 2 to move relatively or move toward each other, so that the distance adjusting device 230 The first connecting member 210 and the second connecting member 220 can be driven to move relatively or move toward each other.
  • the above-mentioned voice controller is connected with the above-mentioned power supply module, and is used for receiving the voice command of the user, and controls the current that the power supply module inputs to the memory alloy part 3 according to the received voice command, and drives the first connecting part 210 and the second connecting part 220 to move relative to each other. Or move towards each other.
  • the voice controller controls the power supply module to input the current of the memory alloy part 3, and drives the first connecting part 210 and the second connecting part 220 to move toward each other, so as to adjust the length of the connection
  • the length of the part 200 the voice command received by the voice controller is "shorten”, and the voice controller controls the power supply module to input the current of the memory alloy part 3, and drives the first connecting part 210 and the second connecting part 220 to move relative to each other to shorten
  • the length of the connecting member 200 Specifically, the specific content of the above voice command can be set according to the actual situation.
  • the above distance adjusting device further includes a second sensor, the second sensor is connected to the controller, the second sensor is used to send a use state signal to the controller when the distance adjusting device is in use state, and the controller is used to After receiving the use state signal, the current power input to the memory alloy part 3 by the power supply module is controlled.
  • the second sensor can be used to first determine whether the current distance adjusting device is in use state, and only when the distance adjusting device is in use state, the controller will control the distance adjusting device 230 of the mobile terminal to adjust the length of the connecting member 200 to Improve the reliability of the distance adjustment device.
  • the specific type of the above-mentioned second sensor is not limited, and may be a capacitive sensor, or may also be an optical sensor, as long as it can detect whether the distance adjusting device is in use.
  • FIG. 4 is a specific embodiment of the distance adjustment device in the embodiment of the application.
  • the distance adjustment device in this embodiment is glasses, the device body 100 of the distance adjustment device is a lens, and the connecting components 200 are a frame and temples , it can be considered that the frame is the first connecting part 210 and the temple is the second connecting part 220 .
  • the distance adjusting device 230 is disposed between the temples and the frame, and there is a distance adjusting device 230 between each temple and the frame.
  • Fig. 5 is a schematic diagram of the partial structure of the distance adjusting device in the technical solution of the application. Please refer to Fig. 4 and Fig. 5.
  • the distance between the two temples can be adjusted by the distance adjusting device 230, that is to say, the user wears
  • the tightness between the temples and the side of the head can be adjusted to improve the wearing experience of the user.
  • the above-mentioned first connecting member 210 and the second connecting member 220 are hinged, and the fitting place is the contact fit between the convex arc surface 270 and the plane 280, so that the linear distance of the distance adjusting device 230 can be adjusted and converted into a swing angle adjustment.
  • the temples and the mirror frame are hinged, and the fitting position is the contact fitting between the convex arc surface 270 and the flat surface 280 .
  • the distance adjusting device can drive the temple and the frame to move relative to each other, then under the action of the convex arc surface 270, the temple and the frame rotate. , so that the temples swing in the direction close to the side of the head, so that the pressure between the temples and the side of the head increases.
  • the distance adjusting device can drive the temples and the frame to move toward each other, then under the action of the convex arc surface 270, the temples and the frame rotate, so that the temples move away from the head Swing in the direction of the side to increase the pressure on the temple and the side of the head.
  • FIG. 6 is a schematic structural diagram of the distance adjusting device in the embodiment of the application.
  • the above-mentioned distance adjusting device includes a first part 1 and a second part 2 , a first drive part 4 and a second drive part 5, wherein the second part 2 is movably mounted on the first part 1, that is, the second part 2 can move relative to the first part 1, approaching each other or away from each other.
  • One end of the first driving part 4 is fixed to the first member 1 , and the other end is capable of driving the second member 2 to move in the first direction relative to the first member 1 .
  • One end of the second driving part 5 is fixed to the first member 1 , and the other end can drive the second member 2 to move relative to the first member 1 in a second direction opposite to the first direction.
  • the above-mentioned first driving part 4 includes a first memory alloy member 41.
  • the first memory alloy member 41 When the temperature of the first memory alloy member 41 is lower than the set threshold, the first memory alloy member 41 is in the first form; when the first memory alloy member 41 is in the first form When the temperature of 41 is higher than the set threshold, the first memory alloy member 41 is in the second state.
  • the shape of the first memory alloy part 41 can change with temperature, that is, as the temperature changes above and below the set threshold, the first memory alloy part 41 changes from one shape to another shape, Since one end of the first memory alloy part 41 is relatively fixed to the first part 1 , during the deformation process of the first memory alloy part 41 , the other end can drive the second part 2 to move relative to the first part 1 .
  • the first memory alloy part 41 is connected with two electrodes, and the first memory alloy part 41 can be connected to the circuit by using the above two electrodes, that is, a current can be input to the first memory alloy part 41, and the current will cause the first memory alloy part 41 to be connected to the circuit.
  • the temperature of the memory alloy member 41 changes, and further by controlling the magnitude or on-off of the current, the first memory alloy member 41 can be controlled to be in the first form or the second form, and then the first memory alloy member 41 can be in the first form. It changes from the second form to drive the second member 2 to move in the first direction relative to the first member 1 .
  • the second driving part 5 is similar to the first driving part 4. One end of the second driving part 5 is fixed to the first member 1, and the other end drives the second member 2 to move in the second direction relative to the first member 1. One direction is opposite to the second direction, that is, the first driving part 4 and the second driving part 5 respectively drive the second component 2 to move in opposite directions relative to the first component 1 .
  • the second driving part 5 also includes a second memory alloy part 51 , when the temperature of the second memory alloy part 51 is lower than the set threshold, the second memory alloy part 51 is in the second state; when the temperature of the second memory alloy part 51 is in the second state; When the value is higher than the set threshold, the second memory alloy part 51 is in the first form; the second memory alloy part 51 is connected with two electrodes, and the second memory alloy part 51 of the second driving part 5 can be in the first form and the second memory alloy part 51 Changes between the forms drive the second member 2 to move in the second direction relative to the first member 1 .
  • the second memory alloy part 51 is also similar to the first memory alloy part 41 , and details are not described here.
  • the memory alloy component 3 can conduct electricity, and after the current affects the temperature of the memory alloy component 3, the memory alloy component 3 can change the shape of the characteristics, and the memory alloy component 3 is applied to the distance adjusting device to utilize the memory alloy component 3.
  • the deformation of the alloy part 3 drives the movement of the second part 2 relative to the first part 1 .
  • the distance adjusting device includes a first driving part 4 and a second driving part 5 , so that the second part 2 can be respectively driven relative to the first part 1 along the first direction and the second direction opposite to each other. so that the distance adjusting device can adjust the length of the connecting part 200 to shorten and increase.
  • the length of the connecting member 200 can be adjusted by controlling the distance adjusting device with an electrical signal, so that the mobile terminal can be located in a more suitable position, the working effect of the mobile terminal can be improved, and the user's comfort in using the mobile terminal can be improved.
  • the present application can also realize the adjustment of the length of the connecting member 200 with a small stroke, which can almost reach the level of stepless adjustment, so it can overcome the difficulty in connecting the connection caused by the adjustment method with a large fixed step in the prior art.
  • the problem of achieving a comfortable length of the component 200 For example, the watch strap has a plurality of through holes arranged in sequence, and each through hole has a fixed interval. Each time the length of the watch strap is adjusted, at least the length of the fixed interval is adjusted, and the present application does not have this problem.
  • FIG. 7 is a schematic structural diagram of a memory alloy component in an embodiment of the present application.
  • the above-mentioned memory alloy component 3 is also fixedly stacked with an elastic material layer 31 .
  • the first memory alloy parts 41 of the first driving part 4 are stacked and fixed with the elastic material layers 31 in a one-to-one correspondence
  • the second memory alloy parts 51 of the second driving part 5 are also stacked and fixed with an elastic material in a one-to-one correspondence.
  • Layer 31 In this solution, both the first memory alloy component 41 and the second memory alloy component 51 have an elastic material layer 31.
  • the elastic material layer 31 and the elastic material layer 31 are high-toughness materials and have certain elasticity.
  • the elastic material layer 31 drives the first memory alloy part 41 and the second memory alloy part 51 to quickly restore the original state, so that the first memory alloy part 41 and the second memory alloy part 51 are driven to deform next time.
  • the material of the first memory alloy part 41 and the second memory alloy part 51 can be NiTi memory alloy. Through the matching design of temperature and shape, the first memory alloy part 41 and the second memory alloy part 51 can be set at the set temperature. deformed below.
  • the elastic material layer 31 is an elastic material layer 31 made of a high-toughness material.
  • the high-toughness material may specifically be an organic substance such as light-sensitive epoxy resin (SU-8), or a high-strength material such as copper, steel or iron, that is, an elastic material.
  • Layer 31 may be a light sensitive epoxy resin elastic material layer, a copper elastic material layer, a steel or iron elastic material layer.
  • FIG. 8 is a partial schematic diagram of the distance adjusting device in the embodiment of the application.
  • the distance adjusting device may include a plurality of first driving parts 4 and a plurality of second driving parts 5, and a plurality of first driving parts 4.
  • the second part 2 is driven to move relative to the first part 1, so that the structure design of the first driving part 4 can be made smaller and still have sufficient driving force, so that the second driving part 5 can adjust the second
  • the steps of movement of the part 2 relative to the first part 1 are small, tending to stepless adjustment.
  • the second driving part 5 can also be designed to be smaller, which will not be repeated here. In essence, the size of the first driving part 4 and the second driving part 5 can be the same, or even different in structure, and different fixing methods can be used to achieve different direction drive.
  • the first memory alloy parts 41 of the above-mentioned plurality of first driving parts 4 may share a set of electrodes, that is, a power supply device can be used to supply power to the plurality of first memory alloy parts 41 at the same time, and several first memory alloy parts 41 deformation at the same time.
  • a power supply device can be used to supply power to the plurality of first memory alloy parts 41 at the same time, and several first memory alloy parts 41 deformation at the same time.
  • This solution can simplify the control process of the distance adjusting device, and can improve the driving force of the first driving part 4 .
  • the second memory alloy parts 51 of the above-mentioned plurality of second driving parts 5 may share a set of electrodes, that is, one power supply device can be used to supply power to the plurality of second memory alloy parts 51 at the same time, and several second memory alloy parts 51 can be powered simultaneously. The part 51 is deformed at the same time.
  • This solution can simplify the control process of the distance adjusting device, and can improve the driving force of the second driving
  • FIG. 9 is a schematic cross-sectional structure diagram of the distance adjusting device in the embodiment of the application
  • FIG. 10 is another cross-sectional structural schematic diagram of the distance adjusting device in the embodiment of the application. direction.
  • the above-mentioned second component 2 is located between the first driving part 4 and the second driving part 5 , that is, the first driving part 4 and the second driving part 5 are located at two sides of the second component 2 . so that the first driving part 4 on one side of the second part 2 drives the second part 2 to move in the first direction relative to the first part 1 , and the second driving part 5 on the other side of the second part 2 drives the second part 2 to move in the first direction relative to the first part 1 .
  • the first part 1 can be U-shaped, as shown in FIG. 7 ; or, the first part 1 can also be tubular, as shown in FIG. 8 , and the second part 2 passes through the middle of the first part 1 .
  • the above-mentioned first component 1 can also be any structure that enables the first driving part 4 and the second driving part 5 to be arranged on both sides of the second component 2 , which is not limited in this application.
  • the distance adjusting device further includes an auxiliary part 6 , and the auxiliary part 6 is arranged between the second part 2 and the first part 1 , when the auxiliary part 6 is in the first state, the first driving part 4 or the second driving part 5 can contact the second part 2, and then drive the second part 2 to move relative to the first part 1; the auxiliary part 6 is in the second state When there is a gap between the first driving part 4 or the second driving part 5 and the second member 2 , the first driving part 4 or the second driving part 5 cannot be in contact with the second member 2 and thus cannot generate a driving force for the second member 2 .
  • the first memory alloy member 41 is bent in the second direction in the first form, and is bent in the first direction in the second form.
  • first memory alloy member 41 When the first memory alloy member 41 is in the first form or the second form, it cannot communicate with the second member. 2 contact, but when the first memory alloy part 41 changes from the first form to the second form, the first memory alloy part 41 needs to be straightened during the transition process.
  • the auxiliary part 6 is in the first state, and the first memory alloy part 41 is in the first state. 41 will come into contact with the second part 2 .
  • the first memory alloy member 41 is in the first form, that is, the first memory alloy member 41 is bent in the second direction, as shown in FIG. 11 .
  • the first memory alloy member 41 when the first memory alloy member 41 is energized, as the temperature rises above the set threshold, the first memory alloy member 41 changes from the first form to the second form, that is, the first form A memory alloy part 41 is deformed from bending in the second direction to bending in the first direction; the auxiliary part 6 is in the first shape, the first memory alloy part 41 can be in contact with the second part 2 during the deformation process, and the auxiliary part 6 is in the first shape.
  • the second member 2 generates a friction force towards the first direction, as shown in FIG. 11(b), which drives the second member 2 to move in the first direction; after that, the first memory alloy member 41 is bent in the first direction, as shown in (b) of FIG. 11 .
  • FIG. 11(b) As shown in (c) of FIG.
  • the first memory alloy part 41 is deformed once, and the second part 2 moves toward the first direction by a small distance relative to the first part 1 .
  • the current in the first memory alloy part 41 is controlled, for example, a square wave current is input, and the first memory alloy part 41 can be deformed multiple times to drive the second part 2 to move to an appropriate position relative to the first part 1 .
  • FIG. 12 is a schematic diagram of an action process of the second driving part in the embodiment of the application.
  • the deformation process of the second memory alloy part 51 of the second driving part 5 is the same as the The deformation process of the first memory alloy member 41 is reversed.
  • the second memory alloy member 51 is bent in the second direction in the first form, and is bent in the first direction in the second form.
  • the second memory alloy member 51 is in the second form or the first form, it cannot be connected with the second member. 2 contact, but when the second memory alloy part 51 changes from the second form to the first form, the second memory alloy part 51 needs to be straightened during the transition process.
  • the auxiliary part 6 is in the first state, and the second memory alloy part 51 is in the first state. 51 will come into contact with the second part 2 .
  • the second memory alloy member 51 is in the second form, that is, the second memory alloy member 51 is bent in the first direction, as shown in FIG. 12 .
  • the second memory alloy part 51 when the second memory alloy part 51 is energized, as the temperature rises above the set threshold, the second memory alloy part 51 changes from the second shape to the first shape, that is, the first shape
  • the two memory alloy parts 51 are deformed from bending in the first direction to bending in the second direction; the auxiliary part 6 is in the first shape, and the second memory alloy part 51 can abut against the second part 2 during the deformation process, and is opposite to the second part 2 .
  • the second part 2 generates a friction force towards the second direction, as shown in FIG. 12(b), which drives the second part 2 to move in the second direction; after that, the second memory alloy part 51 is bent in the second direction, as shown in (b) of FIG. 12 .
  • FIG. 12(b) As shown in (c) of FIG.
  • the second memory alloy part 51 when the current in the second memory alloy part 51 is reduced or the power is cut off, the temperature of the second memory alloy part 51 decreases, and after the temperature is lower than the set threshold, the second memory alloy part 51 will When changing from the first shape to the second shape, that is, from bending toward the second direction to bending toward the first direction, the auxiliary portion 6 is in the second state, and the second memory alloy component 51 is also in the same deformation state during the deformation process. There is a certain gap in the second part 2, as shown in (d) of FIG.
  • the distance adjusting device can generate a driving force in the first direction and a driving force in the second direction for the second component 2, and both directions can be actively adjusted, that is, the connecting component 200 can be adjusted to extend or contract. , the use scene is more abundant, and the sense of use is good.
  • FIG. 13 is another structural schematic diagram of the distance adjusting device in the embodiment of the application. Please refer to FIG. 13 .
  • the first driving part 4 and the second driving part 5 can be arranged on the same side of the second part 2.
  • the auxiliary part 6 may have one end fixed to the first member 1 and the other end facing the second member 2 .
  • the auxiliary part 6 When the auxiliary part 6 is in the first state, the length of the auxiliary part 6 along the direction from the first part 1 to the second part 2 is the first length, and the first driving part 4 and the second driving part 5 can contact the second part 2; When the auxiliary part 6 is in the second state, the length of the auxiliary part 6 in the direction from the first part 1 to the second part 2 is the second length, and the second length is greater than the first length, at this time, the auxiliary part 6 can drive the second part 2 is moved away from the surface of the first part 1 so that there is a gap between the first driving part 4 and the second driving part 5 and the second part 2 .
  • the second part 2 is located between the first driving part 4 and the second driving part 5 , one end of the auxiliary part 6 is fixed to the first part 1 , and the other end faces the second part 2.
  • the above-mentioned auxiliary part 6 includes a first auxiliary part and a second auxiliary part, wherein the first auxiliary part and the first driving part 4 are located on the same side, and cooperate with the first driving part 4 to act, and the second auxiliary part and the second driving part
  • the part 5 is located on the same side and cooperates with the second driving part 5 .
  • the first auxiliary part when the first auxiliary part is in the first state, the length of the first auxiliary part in the direction from the first part 1 to the second part 2 is the first length, and the first driving part 4 can contact the second part 2;
  • the first auxiliary part when the first auxiliary part is in the second state, the length of the first auxiliary part in the direction from the first part 1 to the second part 2 is the second length, and the second length is greater than the first length, and the first auxiliary part can be driven at this time.
  • the second member 2 moves in a direction away from the first driving part 4 , and there is a gap between the first driving part 4 and the second member 2 , when the first memory alloy member 41 changes from the second form to the first form, the first The memory alloy member 41 does not generate a driving force for the second member 2 .
  • the second auxiliary part when the second auxiliary part is in the first state, the length of the first auxiliary part in the direction from the first part 1 to the second part 2 is the first length, and the second driving part 5 can contact the second part 2; the first When the auxiliary part is in the second state, the length of the second auxiliary part in the direction from the first part 1 to the second part 2 is the second length, and the second length is greater than the first length. At this time, the second auxiliary part can drive the second auxiliary part.
  • the member 2 moves away from the second driving part 5 and there is a gap between the first driving part 4 and the second member 2
  • the second memory alloy member 51 changes from the first form to the second form
  • the second memory alloy The part 51 does not generate a driving force for the second part 2 .
  • the auxiliary part 6 when the auxiliary part 6 is specifically arranged, the auxiliary part 6 includes a first memory alloy spring 61 , and the first memory alloy spring 61 is connected with two electrodes.
  • the first memory alloy spring 61 can use The above-mentioned two electrodes are connected to an electric circuit, so that the temperature of the above-mentioned first memory alloy spring 61 is controlled by an electric current.
  • the first memory alloy spring 61 when the temperature of the first memory alloy spring 61 is lower than the set threshold, the first memory alloy spring 61 is not energized or the energized amount is small, the first memory alloy spring 61 has a first length, and the auxiliary portion 6 In the first state; when the temperature of the first memory alloy spring 61 is higher than the set threshold, the first memory alloy spring 61 is energized or the energization is large, and the first memory alloy spring 61 extends toward the second component 2 to The second length, the second length is greater than the first length, and the auxiliary part 6 is in the second state, the first memory alloy spring 61 can drive the second part 2 to move away from the surface of the first part 1 .
  • the deformation of the first memory alloy spring 61 can be controlled by controlling the current in the first memory alloy spring 61.
  • the first memory alloy spring 61 and the first driving part 4 or the second memory alloy spring 61 can be used in conjunction with it.
  • the square wave of the current of the driving part 5 is opposite, that is to say, when the current of the first driving part 4 or the second driving part 5 is relatively large, the current in the corresponding first memory alloy spring 61 is relatively small or there is no current; when When the current of the first driving part 4 or the second driving part 5 is small or there is no current, the current in the corresponding first memory alloy spring 61 is relatively large.
  • the above-mentioned auxiliary part 6 further includes a first return spring 62 , and the first return spring 62 may be a common spring.
  • the first return spring 62 is arranged in parallel with the first memory alloy spring 61.
  • the first return spring 62 is in a state of releasing energy.
  • the alloy spring 61 does not have the effect of force; when the first memory alloy spring 61 is of the second length, the first return spring 62 is in an energy storage state, and when the current of the first memory alloy spring 61 is reduced or disconnected, the above-mentioned first return spring 62 is in a state of energy storage.
  • a memory alloy spring 61 can quickly return to the first state, that is, the first length, under the action of the first return spring 62 . This solution is beneficial to reduce the influence of the first memory alloy spring 61 on the position of the second component 2 . It is convenient to enable the next action cycle of the first driving part 4 and the second driving part 5 to be performed as soon as possible, thereby improving the adjustment efficiency of the distance adjustment device.
  • the elastic layer 7 may be provided at one end of the first driving part 4 toward the second component 2 , and the elastic layer 7 may be provided at the end of the second driving part 5 toward the second component 2 .
  • the above-mentioned elastic layer 7 may be copper or iron. Compared with the material of the memory alloy part 3, the elastic layer 7 is more elastic, and can generate a larger frictional force with the second part 2, so as to facilitate the first driving part 4 and the second part 2.
  • the two driving parts 5 drive the second member 2 to move relative to the first member 1 .
  • FIG. 14 is a schematic diagram of an action process of the first driving part in the embodiment of the application. Please refer to FIG. 14 .
  • the first memory alloy component 41 When the first memory alloy component 41 is not energized or the energization amount is small, the first memory alloy component 41 is in the first state. Specifically, the first memory alloy member 41 is parallel to the first direction, as shown in (a) of FIG. 14 ; when the above-mentioned first memory alloy member 41 has a relatively large current, the first memory alloy member 41 is in the second form Specifically, the second memory alloy member 51 is bent in a direction away from the second member 2 , as shown in (b) of FIG. 14 .
  • the first memory alloy component 41 includes a first end 411 and a second end 412 distributed along the second direction, that is, the second end 412 is located in the second direction of the first end 411, and the first end 411 is fixed to the first end 411.
  • One part 1 The above-mentioned first driving part 4 also includes a first linkage rod 42 , and the first linkage rod 42 includes a third end 421 and a fourth end 422 distributed along the second direction, that is, the fourth end 422 is located at the third end 421 . two directions.
  • the second end 412 is rotatably connected to the fourth end 422 , the first linkage rod 42 can rotate relative to the first memory alloy member 41 , and the second end 412 is fixed with the first baffle plate 43 , when the first memory alloy member 41 From the second form to the first form, the fourth end 422 is in contact with the first baffle 43 , the third end 421 is in contact with the second member 2 , and the third end 421 drives the second member 2 to move in the first direction. Specifically, when the first memory alloy member 41 is not energized, the first memory alloy member 41 is in the first form, that is, the first memory alloy member 41 is parallel to the first direction, as shown in (a) of FIG.
  • the first memory alloy member 41 changes from the first form to the second form, that is, the first memory alloy member 41 is bent in a direction away from the second member 2 , such as As shown in (b) of FIG. 14 , during this process, since the first linkage rod 42 is rotationally connected to the first memory alloy member 41 , the frictional force between the first linkage rod 42 and the second member 2 is relatively small, The second part 2 will not move in the second direction; after that, the energization amount of the first memory alloy part 41 is reduced or the power is cut off, and the first memory alloy part 41 changes from the second form to the first form, that is, the first form.
  • the memory alloy part 41 changes from the bent state to the straight state.
  • the fourth end 422 of the first linkage rod 42 is in contact with the first baffle plate 43, and the third end 421 is in contact with the second part 2, resulting in a large friction force
  • the first driving part 4 can drive the second part 2 to move in the first direction relative to the first part 1, as shown in (c) of FIG. 14; after that, the first memory alloy part 41 returns to the first A form, as shown in (d) of FIG. 14 .
  • the first memory alloy part 41 is deformed once, and the second part 2 moves toward the first direction by a small distance relative to the first part 1 .
  • controlling the current in the first memory alloy part 41 such as inputting a square wave current, can deform the first memory alloy part 41 multiple times to drive the second part 2 to move to an appropriate position relative to the first part 1 .
  • FIG. 15 is a schematic diagram of an action process of the second driving part in the embodiment of the application. Please refer to FIG. 15 .
  • the second memory alloy part 51 When the second memory alloy part 51 is not energized or the energization is small, the temperature of the second memory alloy part 51 is lower than the setting When the threshold value is set, the second memory alloy part 51 is in the first form. Specifically, the second memory alloy part 51 is parallel to the first direction, as shown in (a) of FIG. 15 ; When the temperature is larger, the temperature of the second memory alloy part 51 is higher than the set threshold, and the second memory alloy part 51 is in the second shape. Specifically, the second memory alloy part 51 is bent in a direction away from the second part 2 , such as shown in (b) of FIG. 15 .
  • the second memory alloy component 51 includes a fifth end 511 and a sixth end 512 distributed along the second direction, that is, the sixth end 512 is located in the second direction of the fifth end 511 , and the sixth end 512 is fixed on the first part 1.
  • the above-mentioned second driving part 5 further includes a second linkage rod 52 , and the second linkage rod 52 includes a seventh end 521 and an eighth end 522 distributed along the second direction, that is, the eighth end 522 is located at the first end of the seventh end 521 . two directions.
  • the fifth end 511 is rotatably connected to the seventh end 521 , so that the second linkage rod 52 can rotate relative to the second memory alloy member 51 , and the fifth end 511 is fixed with a second baffle 53 , when the second memory alloy member 51
  • the seventh end 521 abuts against the second baffle 53
  • the eighth end 522 abuts against the second member 2
  • the eighth end 522 drives the second member 2 to move in the second direction.
  • the second memory alloy member 51 is not energized
  • the second memory alloy member 51 is in the first form, that is, the second memory alloy member 51 is parallel to the first direction, as shown in (a) of FIG.
  • the second memory alloy member 51 changes from the first shape to the second shape, that is, the second memory alloy member 51 is bent in a direction away from the second member 2 , such as As shown in part (b) of FIG. 15 , during this process, since the second linkage rod 52 is rotationally connected to the second memory alloy member 51, the frictional force between the second linkage rod 52 and the second member 2 is small, The second part 2 will not move in the second direction; after that, the energization amount of the second memory alloy part 51 is reduced or the power is cut off, and the second memory alloy part 51 changes from the second form to the first form, that is, the second form.
  • the memory alloy part 51 changes from the bent state to the straight state.
  • the seventh end 521 of the second linkage rod 52 is in contact with the second baffle plate 53, and the eighth end 522 is in contact with the second part 2, resulting in a large friction force
  • the second driving part 5 can drive the second part 2 to move in the second direction relative to the first part 1, as shown in (c) of FIG. 15; after that, the second memory alloy part 51 returns to the first A form, as shown in (d) of FIG. 15 .
  • the second memory alloy part 51 is deformed once, and the second part 2 moves toward the second direction by a small distance relative to the first part 1 .
  • controlling the current in the second memory alloy part 51 such as inputting a square wave current, can deform the second memory alloy part 51 multiple times to drive the second part 2 to move to an appropriate position relative to the first part 1 .
  • the elastic layer 7 can be provided at one end of the first driving part 4 toward the second component 2 , that is, the third end 421 of the first linkage rod 42 has the elastic layer 7 .
  • An elastic layer 7 is also provided at the end of the second driving part 5 facing the second component 2, that is, the eighth section of the second linkage rod 52 also has an elastic layer 7.
  • the above-mentioned elastic layer 7 may be copper or iron.
  • the elastic layer 7 has greater elasticity and can generate a greater frictional force with the second component 2, thereby facilitating the first driving part 4 and the second driving part 4.
  • the drive unit 5 drives the second member 2 to move relative to the first member 1 .
  • FIG. 16 is a schematic structural diagram of the stop structure according to the embodiment of the application.
  • the distance adjusting device further includes a stop structure 8 , and the stop structure 8 is arranged between the first part 1 and the second part 2 .
  • the stop structure 8 When the stop structure 8 is in the first state, the second part 2 can move relative to the first part 1 , that is, the distance adjusting device can adjust the distance between the first part 1 and the second part 2 .
  • the stop structure 8 is fixedly connected to the second part 2 and the first part 1 , that is, the second part 2 and the first part 1 cannot move relative to each other, and the distance adjusting device cannot be driven. The distance between the first part 1 and the second part 2.
  • the stop structure 8 is in the first state, and the length of the connecting member 200 is adjusted by the distance adjusting device.
  • the stop structure 8 is placed in the second state, so that the connecting member 200 can be maintained at the required length.
  • FIG. 17 is a schematic cross-sectional structure diagram of the stop position structure according to the embodiment of the present application. Please refer to FIG. 16 and FIG. 17 .
  • the memory alloy structure 85 may also be used in the stop position structure 8 to avoid The action of the stop structure 8 is electrically driven, so that the stop structure 8 can be controlled by the controller to realize the stop role after the adjustment of the position adjusting device is completed. As shown in FIG.
  • the above-mentioned stop structure 8 includes a gear 81 , a rack 82 , a clamping member 83 , an elastic member 84 and a memory alloy structure 85 , wherein the gear 81 and the rack 82 are adapted, and the gear 81 can be connected to the rack 82 Scroll on engagement.
  • the rack 82 is fixed to the first member 1, and the rotating shaft 811 of the gear 81 is fixed to the second member 2.
  • the gear 81 is rotatably connected to the rotating shaft 811, that is, when the gear 81 rotates, the rotating shaft 811 does not rotate. , but when the gear 81 rotates, it will move relative to the rack 82 at the same time.
  • the shaft 811 can move with the gear 81, so as to drive the second part 2 and the first part 1 to move relative to each other. If the gear 81 cannot rotate, then The rotating shaft 811 cannot move with the gear 81 , and the first part 1 and the second part 2 are relatively fixed to achieve the stop function.
  • the clip 83 of the stop structure 8 can be engaged with the gear 81 , the memory alloy structure 85 is connected between the clip 83 and the second component 2 , and the elastic member 84 is also arranged between the clip 83 and the second component 2 .
  • the temperature of the memory alloy structure 85 can be lower than the set threshold value
  • the memory alloy structure 85 is in the first state
  • the clip 83 is engaged with the gear 81
  • the elastic member 84 drives the clamping member 83 to engage with the gear 81, so that the driving force of the first driving part 4 or the driving force of the second driving part 5 cannot overcome the clamping effect of the clamping member 83, so that the first component 1 and the The second part 2 is relatively reliably in the stop state;
  • the temperature of the memory alloy structure 85 can be higher than the above-mentioned set threshold, the memory alloy structure 85 is
  • the clip 83 is disengaged from the gear 81.
  • the gear 81 can engage and move relative to the rack 82.
  • the distance adjusting device can drive the second part 2 to move relative to the first part 1.
  • the elastic member 84 In the energy storage state; when the current in the memory alloy structure 85 is reduced or cut off, the temperature of the memory alloy structure 85 decreases, and when the temperature of the memory alloy structure 85 is lower than the above-mentioned set threshold, in the energy storage state Under the action of the elastic member 84 , the clamping member 83 moves toward the gear 81 and engages with the gear 81 , thereby realizing the stop function of the stop structure 8 .
  • the rack 82 can be fixedly arranged on the second part 2, the rotating shaft 811 of the gear 81 can be fixedly arranged on the first part 1; the elastic part 84 can be arranged between the clip 83 and the first part 1,
  • the memory alloy structure 85 is connected between the clip 83 and the first component 1 .
  • the elastic member 84 , the memory alloy structure 85 and the gear 81 are arranged on the same component, and they are all arranged on the first component 1 or all arranged on the second component 2 . The startup process is similar and will not be repeated here.
  • it may include two groups of gears 81 and racks 82 that move synchronously, that is, two gears 81 and two racks 82 , and the clip 83 can be connected with the two gears at the same time. 81 is engaged, so that the stop structure 8 has better stability.
  • the specific structure of the memory alloy structure 85 is not limited, as long as it can drive the clip 83 to move.
  • the memory alloy structure 85 is a memory alloy wire. By controlling the deformation of the memory alloy wire, the clip 83 can be pulled to disengage the clip 83 from the gear 81 .
  • the stop structure 8 can also be other specific structures, such as a bayonet snap assembly or a cylinder assembly, etc., as long as the stop function can be achieved. .
  • FIG. 18 is another schematic structural diagram of the distance adjusting device in the embodiment of the application
  • FIG. 19 is a partial structural schematic diagram of the specific adjusting device in the embodiment of the application.
  • the present application also provides another A distance adjusting device
  • Fig. 19 shows the structure of the device when the stop structure is not provided.
  • the above-mentioned distance adjusting device includes a first part 1, a second part 2, a second memory alloy spring 44, a second return spring 54 and a stop structure 8, wherein the second part 2 is movably installed on the above-mentioned first part 1, and also That is, the above-mentioned second member 2 can move relative to the first member 1 to approach or move away from each other.
  • the second memory alloy spring 44 corresponds to the first drive part 4
  • the second return spring 54 corresponds to the second drive part 5 .
  • the second memory alloy spring 44 can drive the second member 2 to move in the first direction relative to the first member 1
  • the second return spring 54 can drive the second member 2 to move in the second direction corresponding to the first member 1
  • the first One direction is opposite to the second direction.
  • one end of the second memory alloy spring 44 is connected to the first component 1
  • the other end is connected to the second component 2 .
  • the second memory alloy spring 44 is connected with two electrodes, the second memory alloy spring 44 can be connected to the circuit by using the two electrodes, and a certain current is passed into the second memory alloy spring 44, which can make the second memory alloy spring 44
  • the temperature of the spring 44 is increased and then deformed to drive the first member 1 to move in the first direction relative to the first member 1 .
  • the second return spring 54 is also connected to the first member 1 at one end and connected to the second member 2 at the other end.
  • the second member 2 is driven to move relative to the first member 1 .
  • the second return spring 54 can drive the second member 2 to move in the second direction, which is equivalent to the movement of the first member 1 , and the first direction is opposite to the second direction.
  • the stop structure 8 is arranged between the first part 1 and the second part 2. When the stop structure 8 is in the first state, the second part 2 can move relative to the first part 1, that is, the distance adjustment device The distance between the first part 1 and the second part 2 can be adjusted.
  • the stop structure 8 When the stop structure 8 is in the second state, the stop structure 8 is fixedly connected to the second part 2 and the first part 1 , that is, the second part 2 and the first part 1 cannot move relative to each other, and the distance adjusting device cannot be driven. The distance between the first part 1 and the second part 2. Therefore, when the length of the connecting member 200 of the distance adjusting device needs to be adjusted, the stop structure 8 is in the first state, and the length of the connecting member 200 is adjusted by the distance adjusting device. When the distance adjusting device adjusts the length of the connecting member 200 to meet the needs of use, the stop structure 8 is placed in the second state, so that the connecting member 200 can be maintained at the required length.
  • the second memory alloy spring 44 when the second memory alloy spring 44 is not supplied with current or the current is small, the temperature of the second memory alloy spring 44 is lower than the set threshold, and the second memory alloy spring 44 The alloy spring 44 is the first length, and the distance adjusting device is considered to be in the initial state at this time; the stop structure 8 is in the first state, after a certain amount of current is passed to the second memory alloy spring 44, the above-mentioned second memory alloy spring 44 When the temperature of the second memory alloy spring 44 increases and the temperature of the second memory alloy spring 44 is higher than the set threshold value, the second memory alloy spring 44 is stretched and deformed along the first direction to the second length, and the second length is different from the first length.
  • the two memory alloy springs 44 can drive the second part 2 to move in the first direction relative to the first part 1 ; when the second part 2 moves to the set position in the first direction relative to the first part 1 , the stop structure can be 8 Switch to the second state, so that the second part 2 and the first part 1 are relatively fixed, and the second memory alloy spring 44 can be de-energized at this time; when the second part 2 needs to be moved in the second direction relative to the first part 1 When moving, the stop structure 8 is switched to the first state, and the second return spring 54 drives the second part 2 to move in the second direction relative to the first part 1; when the second part 2 moves in the second direction relative to the first part 1 When moving to the set position, the stop structure 8 can be switched to the second state, so that the second part 2 and the first part 1 are relatively fixed.
  • the connecting member 200 can be in a relatively suitable length.
  • the above-mentioned second memory alloy spring 44 can be arranged between the first part 1 and the second part 2, that is, a set of second memory alloy spring 44 and second return spring 54 is used to drive the second part 2 relative to the first part 1 Moves relative or towards each other.
  • the second memory alloy spring 44 can be made to provide thrust to the second component 2, and at this time, the second length is greater than the first length;
  • the two components 2 provide a pulling force, and at this time, the second length is smaller than the first length, which is not limited in this application.
  • the distance adjusting device may include two sets of second memory alloy springs 44 and second return springs 54 , and two sets of the second memory alloy springs 44 and the second return springs are symmetrically arranged at both ends of the second component 2 Spring 54.
  • the second component 2 includes a first end and a second end, a set of second memory alloy springs 44 and second return springs 54 are connected to the first end, and another second memory alloy spring 44 and a second memory alloy spring 54 are connected to the first end.
  • the return spring 54 is connected to the aforementioned second end.
  • the first part 1 of the specific adjusting device includes two parts, namely a first part and a second part, and the second part 2 is disposed between the first part and the second part of the first part 1 .
  • the second part 2 and the first part are connected by a set of second memory alloy springs 44 and second return springs 54
  • the second part 2 and the second part are connected by another set of second memory alloy springs 44 and second return springs 54 .
  • Return spring 54 is connected.
  • two sets of driving structures can be used to drive the second part 2 to move relatively or move relative to the first part 1 .
  • the second memory alloy springs 44 at both ends of the second component 2 drive the second component 2 to move at the same time.
  • one set of the second memory alloy springs 44 is extended to provide thrust, and the other set of the second memory alloy springs Spring 44 contracts, providing tension.
  • the working process of the second return spring 54 is similar.
  • the second return spring 54 drives the second part 2 to return, among the two sets of second return springs 54 at both ends of the second part 2, one set of the second return springs 54 provides thrust, and the other A set of second return springs 54 provide tension.
  • the specific structure of the above-mentioned second return spring 54 is not limited, and can be a common spring. After the second part 2 is moved under the driving of the second memory alloy spring 44, the common spring can store energy to drive the second part 2 relative to the second memory alloy spring 44. The first part 1 moves in the second direction.
  • the above-mentioned second return spring 54 can also be a second return spring 54 made of memory alloy material, and the second return spring 54 made of memory alloy material can include two electrodes, which are used for passing current to make the second return spring 54 made of memory alloy material. The spring 54 is deformed to drive the second part 2 to move in the second direction relative to the first part 1 .
  • the second return spring 54 can also be made of memory alloy material, so that the second return spring 54 can be controlled by an electrical signal to work, that is, the second part 2 can move in both directions relative to the first part 1
  • the use of electrical signal control is beneficial to improve the controllability of the distance adjusting device.
  • the distance adjustment device when the distance adjustment device is specifically set, the distance adjustment device further includes a first guide member 9 , the first guide member 9 extends along the first direction, and the second return spring 54 and the second memory alloy spring 44 are installed on the first guide member 9 .
  • the above-mentioned first guide member 9 can provide a guiding effect for the second return spring 54 and the second memory alloy spring 44, so as to improve the direction reliability of the telescopic deformation of the second return spring 54 and the second memory alloy spring 44, that is, it can ensure the first The two memory alloy springs 44 expand and contract along the first direction and the second direction, and the second return spring 54 expands and contracts along the first direction and the second direction, so that distortion is not easy to occur, thereby improving the stability of the distance adjusting device.
  • the total number of the above-mentioned second memory alloy springs 44 and second return springs 54 is at least three, for example, including two second memory alloy springs 44 and one second return spring 54, including one second memory alloy spring 44 and two second memory alloy springs.
  • the two return springs 54 include two second memory alloy springs 44 and two second return springs 54 , including two second memory alloy springs 44 and three second return springs 54 , etc., which are not listed in this application.
  • the cooperation of the plurality of second memory alloy springs 44 and the second return springs 54 is beneficial to improve the reliability of the distance adjusting device, and the second component 2 is not prone to deflection.
  • the above-mentioned second memory alloy springs 44 may share a set of electrodes, that is, a plurality of second memory alloy springs 44 may be powered by one power supply device, and several second memory alloy springs 44 may be deformed simultaneously.
  • the solution can simplify the control process of the distance adjusting device.
  • the second return spring 54 is a memory alloy material, it also shares a set of electrodes.
  • the specific arrangement position of the above-mentioned electrodes is not limited, and can be arranged according to the actual structure.
  • the arrangement of the second memory alloy springs 44 and second return springs 54 is not limited.
  • the above-mentioned second memory alloy springs 44 and the second return springs 54 are arranged at intervals one by one, so that the driving force of the second member 2 relative to the first member 1 in the first direction is relatively uniform, and the second member 2 is relatively uniform.
  • the driving force of the first component 1 along the second direction is also relatively uniform.
  • the above-mentioned second memory alloy springs 44 are arranged symmetrically with respect to the symmetry axis of the second component 2
  • the second return springs 54 are symmetrically arranged with respect to the symmetry axis of the second component 2
  • the symmetry axis extends along the first direction.
  • the memory alloy structure 85 can also be used in the stop structure 8 to realize the action of the electrically driven stop structure 8 , so that the controller can control the stop structure 8 .
  • the position structure 8 can realize the function of stop position after the adjustment of the position adjusting device is completed.
  • the above-mentioned stop structure 8 includes a gear 81 , a rack 82 , a clamping member 83 , an elastic member 84 and a memory alloy structure 85 , wherein the gear 81 and the rack 82 are adapted, and the gear 81 can be connected to the rack 82 Scroll on engagement.
  • the rack 82 is fixed to the first member 1, and the rotating shaft 811 of the gear 81 is fixed to the second member 2.
  • the gear 81 is rotatably connected to the rotating shaft 811, that is, when the gear 81 rotates, the rotating shaft 811 does not rotate. , but when the gear 81 rotates, it will move relative to the rack 82 at the same time.
  • the shaft 811 can move with the gear 81, so as to drive the second part 2 and the first part 1 to move relative to each other. If the gear 81 cannot rotate, then The rotating shaft 811 cannot move with the gear 81 , and the first part 1 and the second part 2 are relatively fixed to achieve the stop position.
  • the clip 83 of the stop structure 8 can be engaged with the gear 81 , the memory alloy structure 85 is connected between the clip 83 and the second component 2 , and the elastic member 84 is also arranged between the clip 83 and the second component 2 .
  • the temperature of the memory alloy structure 85 can be lower than the set threshold value
  • the memory alloy structure 85 is in the first state
  • the clip 83 is engaged with the gear 81
  • the elastic member 84 drives the clamping member 83 to engage with the gear 81, so that the driving force of the first driving part 4 or the driving force of the second driving part 5 cannot overcome the clamping effect of the clamping member 83, so that the first component 1 and the The second part 2 is relatively reliably in the stop state;
  • the temperature of the memory alloy structure 85 can be higher than the above-mentioned set threshold, the memory alloy structure 85 is
  • the clip 83 is disengaged from the gear 81.
  • the gear 81 can engage and move relative to the rack 82.
  • the distance adjusting device can drive the second part 2 to move relative to the first part 1.
  • the elastic member 84 In the energy storage state; when the current in the memory alloy structure 85 is reduced or cut off, the temperature of the memory alloy structure 85 decreases, and when the temperature of the memory alloy structure 85 is lower than the above-mentioned set threshold, in the energy storage state Under the action of the elastic member 84 , the clamping member 83 moves toward the gear 81 and engages with the gear 81 , thereby realizing the stop function of the stop structure 8 .
  • the rack 82 can be fixedly arranged on the second part 2, the rotating shaft 811 of the gear 81 can be fixedly arranged on the first part 1; the elastic part 84 can be arranged between the clip 83 and the first part 1,
  • the memory alloy structure 85 is connected between the clip 83 and the first component 1 .
  • the elastic member 84 , the memory alloy structure 85 and the gear 81 are arranged on the same component, and they are all arranged on the first component 1 or all arranged on the second component 2 . The startup process is similar and will not be repeated here.
  • the surface of the rack 82 adapted to the gear 81 may be prepared on the surface of the second part 2 or the first part 1 , thereby facilitating the simplification of the structure of the distance adjusting device.
  • the stop structure 8 can also be other specific structures, such as a bayonet snap assembly or a cylinder assembly, etc., as long as the stop function can be achieved. .
  • FIG. 20 is a flowchart of the control method for the distance adjusting device in the embodiment of the present application. Please refer to FIG. 20 .
  • the above-mentioned control method includes the following steps:
  • Step S101 acquiring the positional relationship signal between the connecting component and the user
  • the above-mentioned wearable device may include a first sensor, and the first sensor can monitor the positional relationship between the wearable device and the user, and generate a positional relationship signal.
  • the controller acquires the above-mentioned positional relationship signal, so as to determine whether the user is comfortable to wear according to the above-mentioned positional relationship signal, or to meet the working requirements of the wearable device.
  • the type of the above-mentioned first sensor is not limited, and may be at least one type of force sensor, capacitive proximity sensor, ultrasonic distance sensor, laser ranging sensor, infrared ranging sensor and light sensing sensor. Specifically, an appropriate type of the first sensor may be selected according to the actual situation.
  • the number of the first sensors set in the wearable device is not limited, and more first sensors can be set to obtain more positional relationship signals and improve the comfort of the user wearing the wearable device.
  • Step S102 judging whether the positional relationship signal is within the set range, if yes, go to step S103, if not, go to step S104;
  • Step S103 controlling the memory alloy components to stop working
  • Step S104 controlling the memory alloy component to drive the first component and the second component to move relatively or move toward each other.
  • the memory alloy components can be controlled to stop working, and the connecting components of the wearable device are fixed here. length of time.
  • the memory alloy component is controlled to drive the first component and the second component to move relatively or move toward each other , until the position relationship signal detected by the first sensor is within the set range, so that the user can wear the wearable device more comfortably.
  • the distance adjustment device is only used to adjust the shortening of the connecting part.
  • the distance adjustment device is a watch, and the watch strap has a tendency to elongate in a natural state. Therefore, the distance adjustment device is only used to adjust the connection. Parts can be shortened.
  • the distance adjusting device can adjust the shortening of the connecting part, and also can adjust the elongation of the connecting part.
  • the distance adjusting device is controlled to drive the first part and the second part to move relatively or move toward each other, which specifically includes: when the positional relationship signal detected by the first sensor is smaller than the set range, the connection part is too long, and the control memory
  • the alloy component drives the first component and the second component to move relatively, so that the connecting component is shortened; when the positional relationship signal detected by the first sensor is greater than the set range, the connecting component is too short, and the memory alloy component is controlled to drive the first component and the second component. Move towards each other so that the connecting parts extend.
  • the positional relationship signal detected by the first sensor is within the set range, the length of the connecting part is appropriate, and the memory alloy part is controlled to stop working, so that the connecting part maintains the current length.
  • the type of the above-mentioned first sensor is not limited, and the type of the positional relationship signal is also not limited.
  • the positional relationship signal may be a pressure value or a distance value, or both a pressure value and a distance value.
  • the positional relationship signal is a pressure value.
  • the memory alloy part is controlled to drive the first connecting part and the second connecting part to move relatively, so as to reduce the length of the connecting part.
  • the control distance adjusting device drives the first connecting member and the second connecting member to move toward each other, so as to increase the length of the connecting member.
  • the control memory alloy part stops working, so that the connecting part maintains the current length.
  • the above control method further acquires the use status signal of the wearable device before step S101.
  • the above-mentioned wearable device further includes a second sensor, the second sensor is connected to the controller, and the second sensor is used to send a use state signal to the controller when the wearable device is in a use state, and the controller obtains the above-mentioned use state signal. After the status signal, the current power input by the power supply module to the memory alloy part is controlled.
  • the second sensor can be used to determine whether the current wearable device is in use state, and only when the wearable device is in use state, the controller will control the memory alloy part of the wearable device to adjust the length of the connecting part, so as to improve the Reliability of wearable devices in adjusting the length of connected components.
  • control method may further include forming user information by self-learning, and controlling the memory alloy component to drive the first component and the second component to a set position according to the user information.
  • the user's head shape characteristic data can be formed by self-learning, and the length of the connecting part can be quickly adjusted according to the user's head shape characteristic data, so as to improve the speed of the user to adjust the length of the connecting part of the wearable device.
  • the wearable device is a headset
  • the connecting component is the head beam of the headset
  • the memory alloy component includes a second return spring and a stop structure
  • the memory alloy component is a second memory alloy spring
  • the second memory alloy component is a second memory alloy spring.
  • the return spring is a second return spring made of memory alloy material.
  • the above-mentioned memory alloy parts are arranged on both sides of the head beam, close to the position of the earmuffs.
  • the head beam of the headset is equipped with a force sensor, which is used to sense the pressure of the position where the user wears the headset, and then controls the memory alloy part to automatically adjust the length of the connecting part.
  • the above-mentioned force sensor is the first sensor.
  • the above-mentioned headphone further includes a second sensor for detecting whether the headphone is in a wearing state, and the second sensor may be a capacitive sensor. Whether the earphone is worn can be determined by the change in the capacitance value of the capacitive sensor during the process of putting on and taking off the earphone.
  • other sensors can also be used to detect the wearing of the headset, such as optical sensors.
  • the memory alloy components on both sides are not energized, and the stop structure fixes the second memory alloy spring at the topmost position, that is, the head beam is at the topmost position.
  • the force sensor senses the pressure value between the user's head and the head beam.
  • the second memory alloy spring needs to pull the head beam to move down, that is, shorten the length of the head beam.
  • the control stop structure pops up, and the second memory alloy spring is energized and heated to pull the head beam to move down.
  • the method of starting to energize and heat the second memory alloy spring is to use power management to control the circuit, including turning on and off the power.
  • the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit.
  • the pressure sensor on the head beam continuously senses the pressure value between the user's head and the head beam, and detects when the pressure value increases and is within the set range.
  • the second memory alloy spring is controlled to stop working, the power is cut off or the current power is reduced for the second memory alloy spring;
  • the second return spring is controlled to push the head beam to move upward.
  • the stop structure is controlled to pop out, and the second return spring is energized and heated to push the head beam to move upward.
  • the method of starting to energize and heat the second return spring is to use power management to control the circuit, including turning on the power and turning off the power; optionally, the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit. .
  • the force sensor on the head beam continuously senses the pressure value between the user's head and the head beam, and when the pressure value is detected to become smaller and within the set range, it controls the second return spring to stop working, that is, to reset the second return spring.
  • the spring is de-energized or the current power is reduced; and the stop structure is controlled to fall, and the current head beam position is stuck.
  • the stop structure when it is detected that the user takes off the earphone, the stop structure can be controlled to cancel the fixation, and the second return spring can be controlled to push the head beam to move upward. After the extension of the second return spring is completed, the fixed head beam of the stop structure is located at the highest position.
  • control process is similar to the above-mentioned process.
  • the first sensor is a distance sensor
  • the above-mentioned pressure value is replaced with a distance value.
  • the wearable device is still taken as an example of a headset.
  • the connecting component is the head beam of the headphone
  • the memory alloy component includes a second return spring and a stop structure
  • the memory alloy component is a second memory alloy spring
  • the second return spring is a second return spring made of memory alloy material. return spring.
  • the above-mentioned memory alloy parts are arranged on both sides of the head beam, close to the position of the earmuffs.
  • the head beam of the headphone is equipped with a distance sensor, which is used to sense the distance between the position where the user wears the earphone and the head beam of the earphone, and then controls the memory alloy part to automatically adjust the length of the connecting part.
  • the above distance sensor is the first sensor, and the headset further includes a second sensor for detecting whether the headset is in a wearing state, and the second sensor may be a capacitive sensor. Whether the earphone is worn can be determined by the change in the capacitance value of the capacitive sensor during the process of putting on and taking off the earphone.
  • other sensors can also be used to detect the wearing of the headset, such as optical sensors.
  • the memory alloy components on both sides are not energized, and the stop structure fixes the second memory alloy spring at the topmost position, that is, the head beam is at the topmost position.
  • the distance sensor senses the distance value between the user's head and the head beam.
  • the second memory alloy spring needs to pull the head beam to move down, that is, shorten the length of the head beam.
  • the control stop structure pops up, and the second memory alloy spring is energized and heated to pull the head beam to move down.
  • the method of starting to energize and heat the second memory alloy spring is to use power management to control the circuit, including turning on and off the power.
  • the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit.
  • the distance sensor on the head beam continuously senses the distance value between the user's head and the head beam, and detects when the distance value becomes smaller and is within the set range.
  • the second memory alloy spring is controlled to stop working, the power is cut off or the current power is reduced for the second memory alloy spring;
  • the second return spring is controlled to push the head beam to move upward.
  • the stop structure is controlled to pop out, and the second return spring is energized and heated to push the head beam to move upward.
  • the method of starting to energize and heat the second return spring is to use power management to control the circuit, including turning on the power and turning off the power; optionally, the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit. .
  • the distance sensor on the head beam continuously senses the distance value between the user's head and the head beam, and when it detects that the distance value becomes smaller and is within the set range, it controls the second return spring to stop working, that is, to reset the second return spring.
  • the spring is de-energized or the current power is reduced; and the stop structure is controlled to fall, and the current head beam position is stuck.
  • the stop structure when it is detected that the user takes off the earphone, the stop structure can be controlled to cancel the fixation, and the second return spring can be controlled to push the head beam to move upward. After the extension of the second return spring is completed, the fixed head beam of the stop structure is located at the highest position.
  • the wearable may further include a plurality of first sensors, and the types of the first sensors may be different.
  • the above-mentioned head beam may be provided with a force sensor and a distance sensor, and the force sensor and the distance sensor may be arranged at intervals in sequence. Then, the length of the head beam can be adjusted according to the distance sensor first, and then the length of the head beam can be adjusted according to the force sensor. It is beneficial to improve the comfort of the user wearing the wearable device.
  • FIG. 21 is a flowchart of a control method of a distance adjusting device in an embodiment of the present application. Referring to FIG. 21 , the above method includes the following steps:
  • Step S201 obtaining the distance value between the wearable device and the user
  • Step S202 judging whether the distance value is within the first set range, if yes, go to step S203, if not, go to step S204;
  • Step S203 controlling the memory alloy components to stop working
  • Step S204 controlling the memory alloy component to drive the first component and the second component to move relatively or move toward each other;
  • Step S205 obtaining the pressure value between the wearable device and the user
  • Step S206 judging whether the pressure value is in the second setting range, if yes, go to step S203 , if not, go to step S204 .
  • the wearable device is a headset
  • the connecting component is a head beam of the headset
  • the memory alloy component includes a second return spring and a stop structure
  • the memory alloy component is a second memory alloy spring
  • the memory alloy component is a second memory alloy spring.
  • the second return spring is a second return spring made of memory alloy material.
  • the head beam of the headset is equipped with a distance sensor, which is used to sense the distance between the position where the user wears the headset and the head beam of the headset, and then controls the memory alloy part to automatically adjust the length of the connecting part;
  • the head beam is also equipped with a force sensor to sense the pressure between the position where the user wears the headset and the head beam of the headset.
  • the above-mentioned pressure sensors and distance sensors may be arranged alternately.
  • the headset further includes a second sensor for detecting whether the headset is in a wearing state, and the second sensor may be a capacitive sensor. Whether the earphone is worn can be determined by the change in the capacitance value of the capacitive sensor during the process of putting on and taking off the earphone.
  • other sensors can also be used to detect the wearing of the headset, such as optical sensors.
  • the memory alloy components on both sides are not energized, and the stop structure fixes the second memory alloy spring at the topmost position, that is, the head beam is at the topmost position.
  • the second sensor detects that the user is wearing the headset, the distance sensor senses the distance value between the user's head and the head beam, and the pressure sensor senses the pressure value between the user's head and the head beam.
  • the second memory alloy spring needs to pull the head beam to move down, that is, shorten the length of the head beam.
  • the control stop structure pops up, and the second memory alloy spring is energized and heated to pull the head beam to move down.
  • the method of starting to energize and heat the second memory alloy spring is: using power management to control the circuit, including turning on and off the power.
  • the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit.
  • the distance sensor on the head beam continuously senses the distance value between the user's head and the head beam, and detects that the distance value becomes smaller until it is within the first set range.
  • the second return spring is controlled to push the head beam to move upward.
  • the stop structure is controlled to pop out, and the second return spring is energized and heated to push the head beam to move upward.
  • the method of starting to energize and heat the second return spring is to use power management to control the circuit, including turning on the power and turning off the power; optionally, the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit. .
  • the distance sensor on the head beam continuously senses the distance value between the user's head and the head beam, and detects that the distance value becomes smaller until it is within the first set range.
  • the pressure sensor on the head beam continuously senses the pressure value between the user's head and the head beam. If the pressure value is not within the second set range, the second memory alloy spring is activated. The pressure value detected by the pressure sensor is small, and the second memory alloy spring needs to pull the head beam to move down, that is, shorten the length of the head beam. At this time, the control stop structure pops up, and the second memory alloy spring is energized and heated to pull the head beam to move down.
  • the method of starting to energize and heat the second memory alloy spring is to use power management to control the circuit, including turning on and off the power. In addition, the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit.
  • the pressure sensor on the head beam continuously senses the pressure value between the user's head and the head beam, and detects when the pressure value increases and is within the second set range.
  • the second memory alloy spring is controlled to stop working, the power is cut off or the current power is reduced for the second memory alloy spring;
  • the second return spring is controlled to push the head beam to move upward.
  • the stop structure is controlled to pop out, and the second return spring is energized and heated to push the head beam to move upward.
  • the method of starting to energize and heat the second return spring is to use power management to control the circuit, including turning on the power and turning off the power; optionally, the control circuit can increase the instantaneous output power of the circuit and increase the heating speed through the power amplifier circuit. .
  • the force sensor on the head beam continuously senses the pressure value between the user's head and the head beam, and when it detects that the pressure value becomes smaller and is within the second set range, it controls the second return spring to stop working, that is, to the first return spring.
  • the return spring is powered off or the current power is reduced; and the stop structure is controlled to fall down and the current head beam position is stuck.
  • the stop structure when it is detected that the user takes off the earphone, the stop structure can be controlled to cancel the fixation, and the second return spring can be controlled to push the head beam to move upward. After the extension of the second return spring is completed, the fixed head beam of the stop structure is located at the highest position.
  • the above-mentioned control method may also perform self-learning, and during the process of wearing the wearable device, the user may acquire user information in a self-learning manner. Thereby, the user information is formed by self-learning, so as to understand the wearing habits of the user. Then, according to the above user information, the memory alloy part is controlled to drive the first part and the second part to the set position. This solution can quickly and accurately adjust the length of the adjustable connecting part of the wearable device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Manufacturing & Machinery (AREA)
  • Otolaryngology (AREA)
  • Springs (AREA)
  • Coating Apparatus (AREA)

Abstract

一种距离调节装置和距离调节装置的控制方法,距离调节装置包括连接部件(200),连接部件包括第一部件(1)、第二部件(2),上述第一部件(1)与第二部件(2)连接,且上述第一部件(1)与第二部件(2)的连接区域设置有记忆合金部件(3)。记忆合金部件(3)受电流控制驱动第一部件(1)与第二部件(2)相对移动和/或相向移动。从而调节第一部件(1)与第二部件(2)之间的距离,可以调节连接部件的长度,可以实现电动且无级调节连接部件的长度。

Description

距离调节装置和距离调节装置的控制方法
相关申请的交叉引用
本申请要求在2021年02月10日提交中国专利局、申请号为202110185526.1、申请名称为“距离调节装置和距离调节装置的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年08月06日提交中国专利局、申请号为202110900779.2、申请名称为“距离调节装置和距离调节装置的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端设备技术领域,具体为距离调节装置和距离调节装置的控制方法。
背景技术
可穿戴设备一般指可穿戴于身上进行活动的微型电子设备,可独立使用,也可以作为移动终端的便携式配件进行使用。某些可穿戴设备可以通过固定带进行佩戴,例如头戴耳机可以通过连接部件佩戴与使用者头部,智能手表或手环可以通过连接部件佩戴于使用者的腕部。可穿戴设备在其佩戴过程中,为保证使用者的佩戴舒适度,连接部件与使用者之间需留有一定间隙。由于用户的个体差异,自适应调节佩戴舒适度是提升穿戴设备用户体验的重要方法。
例如,头戴耳机如何能够舒适佩戴者用户头部;智能手表或者手环如何可以根据用户手腕的粗细自适应调整松紧;AR/VR眼镜如何可以根据佩戴用户的头部或者眼睛距离调整镜腿或者镜框之间的距离等等,都是亟需解决的问题。现有的穿戴设备中多使用手动方式调整,无法自适应的无级调整。
此外,在目前的智能手表或手环产品中,多设有用于检测使用者的心率或血压的传感器,此类传感器一般设置于智能手表、手环产品的后盖位置,在进行心率或血压检测时,为提高检测精度,要求传感器紧贴使用者的腕部,然而,由于连接部件与使用者手腕之间存在间隙,会降低传感器与手腕的贴合度,进而导致智能手表、手环产品的检测精度降低。且由于上述结构的几类固定带在进行长度调节时均存在不便,如采用在检测过程中手动收紧固定带以提高传感器的贴合度的方法,则会使检测过程复杂化,降低了终端设备产品的使用便利性,且降低了使用者的用户体验。
发明内容
本申请提供一种距离调节装置和距离调节装置的控制方法,可以电动的无级调节连接部件的长度。
第一方面,本申请提供了一种距离调节装置,该距离调节装置包括第一部件、第二部件,第一部件与第二部件连接,第一部件与第二部件的连接区域设置有记忆合金部件,记忆合金部件受电流控制驱动第一部件与第二部件相对移动和/或相向移动。
具体的技术方案中,记忆合金部件包括第一记忆合金部件和第二记忆合金部件,其中: 第一记忆合金部件的一端固定于第一部件,另一端驱动第二部件相对于第一部件向第一方向移动;当第一记忆合金部件的温度低于设定阈值时,第一记忆合金部件处于第一形态;当第一记忆合金部件的温度高于设定阈值时,第一记忆合金部件处于第二形态;第一记忆合金部件连接有两个电极,第一记忆合金部件能够受电流控制在第一形态与第二形态之间变化,驱动第二部件相对于第一部件向第一方向移动;第二记忆合金部件的一端固定于第一部件,另一端驱动第二部件相对于第一部件向第二方向移动,第一方向与第二方向相反;当第二记忆合金部件的温度低于设定阈值时,第二记忆合金部件处于第二形态;当第二记忆合金部件的温度高于设定阈值时,第二记忆合金部件处于第一形态;第二记忆合金部件连接有两个电极,第二驱动部的第二记忆合金部件能够受电流控制在第一形态与第二形态之间变化,驱动第二部件相对于第一部件向第二方向移动。
具体设置上述距离调节装置时,具体调节装置还包括与第一记忆合金部件一一对应叠置固定的弹性材料层;以及与第二记忆合金部件一一对应叠置固定的弹性材料层。
具体技术方案中,上述记忆合金部件包括多个第一记忆合金部件和多个第二记忆合金部件。
上述第一记忆合金部件与第二记忆合金部件可以位于第二部件的同一侧;或者,上述第二部件位于第一记忆合金部件与第二记忆合金部件之间,也就是说,上述第一记忆合金部件与第二记忆合金部件位于第二部件的两侧。
上述距离调节装置还可以包括辅助部,辅助部设置于第二部件与第一部件之间,辅助部处于第一状态时,第一记忆合金部件或者第二记忆合金部件能够与第二部件接触;辅助部处于第二状态时,第一记忆合金部件或者第二记忆合金部件与第二部件之间具有缝隙;第一记忆合金部件和第二记忆合金部件在第一形态向第二方向弯折,在第二形态向第一方向弯折;第一记忆合金部件从第一形态变化至第二形态,驱动第二部件向第一方向移动;第二记忆合金部件从第二形态变化至第一形态,驱动第二部件向第二方向移动。
具体设置上述辅助部时,辅助部的一端固定于第一部件,另一端朝向第二部件,第一记忆合金部件与第二记忆合金部件设置于第一部件与第二部件之间;辅助部处于第二状态时,驱动第二部件向远离第一部件表面的方向移动,第一记忆合金部件和第二记忆合金部件与第二部件之间具有缝隙。
当上述第二部件位于第一记忆合金部件与第二记忆合金部件之间;辅助部的一端固定于第一部件,另一端朝向第二部件;辅助部包括第一辅助部和第二辅助部,第一辅助部与第一驱动部位于同一侧,第二辅助部与第二驱动部位于同一侧;第一辅助部处于第二状态时,驱动第二部件向远离第一驱动部的方向移动,第一驱动部与第二部件之间具有缝隙;第二辅助部处于第二状态时,驱动第二部件向远离第二驱动部的方向移动,第一驱动部与第二部件之间具有缝隙。
具体设置上述辅助部的结构时,辅助部可以包括第一记忆合金弹簧,第一记忆合金弹簧连接有两个电极;当第一记忆合金弹簧的温度低于设定阈值时,第一记忆合金弹簧为第一长度;当第一记忆合金弹簧的温度高于设定阈值时,第一记忆合金弹簧朝向第二部件伸长至第二长度,第二长度大于第一长度,驱动第二部件向远离第一部件表面的方向移动。
此外,上述辅助部还包括第一复位弹簧,第一复位弹簧与第一记忆合金弹簧平行设置,第一记忆合金弹簧为第一长度时,第一复位弹簧处于释能状态,第一记忆合金弹簧为第二长度时,第一复位弹簧处于蓄能状态。
具体设置上述记忆合金部件时,第一记忆合金部件朝向第二部件的一端具有弹性层,第二记忆合金部件朝向第二部件的一端具有弹性层。
另一种技术方案中,上述第一记忆合金部件和第二记忆合金部件在第一形态平行于第一方向,在第二形态向背离第二部件的方向弯折;第一记忆合金部件包括沿第二方向分布的第一端和第二端,第一端固定于第一部件,第二端连接有第一联动杆;第一联动杆包括沿第二方向分布的第三端和第四端,第二端与第四端转动连接;第二端固定有第一挡板,第一记忆合金部件从第二形态变化至第一形态,第四端与第一挡板相抵,第三端驱动第二部件向第一方向移动;第二记忆合金部件包括沿第二方向分布的第五端和第六端,第六端固定于第一部件,第五端连接有第二联动杆;第二联动杆包括沿第二方向分布的第七端和第八端,第五端与第七端转动连接;第五端固定有第二挡板,第二记忆合金部件从第二形态变化至第一形态,第七端与第二挡板相抵,第八端驱动第二部件向第二方向移动。
为了增强第一联动杆与第二部件之间的摩擦力,提高第二联动杆与第二部件之间的摩擦力,第一联动杆的第三端具有弹性层,第二联动杆的第八端具有弹性层。
上述距离调节装置还包括止位结构,止位结构设置于第二部件与第一部件之间,止位结构处于第一状态时,第二部件能够相对于第一部件移动;止位结构处于第二状态时,止位结构固定连接第二部件与第一部件。
具体设置上述止位结构时,止位结构包括齿条、齿轮、卡件、弹性件和记忆合金结构,其中,齿轮与齿条适配;卡件能够与齿轮卡合;齿条固定设置于第一部件,齿轮的转轴固定设置于第二部件;弹性件设置于卡件与第二部件之间,记忆合金结构连接于卡件与第二部件之间;或者,齿条固定设置于第二部件,齿轮的转轴固定设置于第一部件;弹性件设置于卡件与第一部件之间,记忆合金结构连接于卡件与第一部件之间;当记忆合金结构的温度低于设定阈值时,记忆合金结构处于第一形态,弹性件驱动卡件与齿轮卡合;当记忆合金结构的温度高于设定阈值时,记忆合金结构处于第二形态,驱动卡件远离齿轮运动,齿轮能够相对齿条啮合运动,弹性件处于蓄能状态。
另一种技术方案中,上述距离调节装置还包括第二复位弹簧和止位结构,记忆合金部件为第二记忆合金弹簧,其中:第二记忆合金弹簧的一端与第一部件连接,另一端与第二部件连接,第二记忆合金弹簧连接有两个电极;当第二记忆合金弹簧的温度低于设定阈值时,第二记忆合金弹簧为第一长度;当第二记忆合金弹簧的温度高于设定阈值时,第二记忆合金弹簧沿第一方向伸缩变形至第二长度,第二长度与第一长度不同,驱动第二部件相对于第一部件向第一方向移动;第二复位弹簧的一端与第一部件连接,另一端与第二部件连接;当第二记忆合金弹簧为第二长度时,第二复位弹簧能够驱动第二部件沿第二方向相对于第一部件移动,第一方向与第二方向相反;止位结构设置于第二部件与第一部件之间,止位结构处于第一状态时,第二部件能够相对于第一部件移动;止位结构处于第二状态时,止位结构固定连接第二部件与第一部件。
上述第二复位弹簧的具体材质不做限制,可以为普通弹簧。或者,上述第二复位弹簧还可以为记忆合金材质的第二复位弹簧。
具体设置上述距离调节装置时,距离调节装置还包括第一导向件,第一导向件沿第一方向延伸,第二复位弹簧和第二记忆合金弹簧安装于第一导向件,从而提高第二复位弹簧和第二记忆合金弹簧运动的稳定性。
上述距离调节装置包括第二记忆合金弹簧和第二复位弹簧的总数至少为3个。
具体技术方案中,第二记忆合金弹簧与第二复位弹簧一一间隔设置;或者,第二记忆合金弹簧关于第二部件的对称轴对称排布,第二复位弹簧关于第二部件的对称轴对称排布,对称轴沿第一方向延伸。
上述止位结构具体包括齿条、齿轮、卡件、弹性件和记忆合金结构,其中,齿轮与齿条适配;卡件能够与齿轮卡合;齿条固定设置于第一部件,齿轮的转轴固定设置于第二部件;弹性件设置于卡件与第二部件之间,记忆合金结构连接于卡件与第二部件之间;或者,齿条固定设置于第二部件,齿轮的转轴固定设置于第一部件;弹性件设置于卡件与第一部件之间,记忆合金结构连接于卡件与第一部件之间;当记忆合金结构的温度低于设定阈值时,记忆合金结构处于第一形态,弹性件驱动卡件与齿轮卡合;当记忆合金结构的温度高于设定阈值时,记忆合金结构处于第二形态,驱动卡件远离齿轮运动,齿轮能够相对齿条啮合运动,弹性件处于蓄能状态。
上述距离调节装置包括可穿戴设备,可穿戴设备设置有第一传感器、供电模块和控制器,其中,第一传感器设置于可穿戴设备,用于检测可穿戴设备与用户之间的压力值;供电模块与记忆合金部件连接,用于驱动记忆合金部件变形;控制器与供电模块和第一传感器连接,用于根据第一传感器检测的压力值,控制供电模块输入至记忆合金部件的电流,驱动第一部件与第二部件相对移动或者相向移动。
上述第一传感器的具体类型不做限制,可以包括力传感器和距离传感器,上述距离传感器可以包括电容近距离传感、超声波距离传感、激光测距传感、红外线测距传感和光线感应传感器。总之,上述第一传感器可以获取可穿戴设备与人体之间的位置关系,从而控制器可以根据上述位置关系来控制第一部件与第二部件之间相对或者相向移动。
具体的技术方案中,上述距离调节装置包括至少两个第一传感器,从而可以提升检测距离调节装置与用户之间位置关系的准确性。
当距离调节装置包括至少两个第一传感器时,可以包括至少两种类型的第一传感器、例如,可以包括力传感器和距离传感器,可以使得力传感器和距离传感器依次间隔设置。
上述可穿戴设备还设置有第二传感器,第二传感器与控制器连接,第二传感器用于在可穿戴设备处于使用状态时,向控制器发送使用状态信号,控制器用于在接收到使用状态信号之后,控制供电模块输入至记忆合金部件的电流。
另一种技术方案中,距离调节装置包括可穿戴设备,可穿戴设备设置有供电模块和语音控制器,其中,供电模块与记忆合金部件连接,用于驱动记忆合金部件变形;语音控制器与供电模块,用于接收用户的语音指令,根据语音指令控制供电模块输入至记忆合金部件的电流,驱动第一部件与第二部件相对移动或者相向移动。
第二方面,本申请还提供了一种距离调节装置的控制方法,该控制方法包括:获取可穿戴设备与用户之间的位置关系信号;判断上述位置关系信号是否位于设定范围,若是,控制记忆合金部件停止工作;若否,控制记忆合金部件驱动第一部件与第二部件相对移动或者相向移动。该方案可以根据可穿戴设备与用户之间的位置关系,来调节可穿戴设备的长度,以使得用户可以较为舒适的佩戴上述可穿戴设备。
具体的技术方案中,上述位置关系信号包括压力值或者距离值,或者,既包括压力值,又包括距离值。
当位置信息包括压力值,又包括距离值时,上述控制方法具体可以包括:先获取可穿戴设备与用户之间的距离值;判断上述距离值是否位于第一设定范围,若是,控制记忆合 金部件停止工作;若否,控制记忆合金部件驱动第一部件与第二部件相对移动或者相向移动;
所述控制所述记忆合金部件停止工作,之后包括:获取可穿戴设备与用户之间的压力值;判断压力值是否位于第二设定范围,若是,控制记忆合金部件停止工作;若否,控制记忆合金部件驱动第一部件与第二部件相对移动或者相向移动。该方案中,先通过距离值来调节可穿戴设备与用户之间的距离,再根据可穿戴设备与用户之间的压力值,进一步判断用户是否舒适的佩戴可穿戴设备。
此外,上述控制方法中:获取可穿戴设备与用户之间的位置关系信号,之前包括:获取可穿戴设备的使用状态信号。也就是说,当可穿戴设备处于使用状态下,才会获取可穿戴设备与用户之间的位置关系,并进一步控制记忆合金部件驱动第一部件和第二部件移动或者停止工作。
上述控制方法还包括自学习的方式形成用户信息,根据上述用户信息控制记忆合金部件驱动第一部件与第二部件至设定位置。用户长期多次佩戴可穿戴设备以后,该控制方法可以获取用户佩戴舒适时第一部件与第二部件之间的位置关系,作为设定位置。控制方法可以在用户佩戴可穿戴设备时,可以直接调节上述第一部件和第二部件至设定位置。该方案可以提升调节可穿戴设备的调节速度。
附图说明
图1为本申请实施例中距离调节装置的一种结构示意图;
图2为本申请实施例中距离调节装置的另一种结构示意图;
图3为本申请实施例中距离调节装置的一种局部结构示意图;
图4为本申请实施例中距离调节装置的另一种结构示意图;
图5为本申请技术方案中距离调节装置的局部结构示意图;
图6为本申请实施例中距离调节装置的一种结构示意图;
图7为本申请实施例中记忆合金部件的一种结构示意图;
图8为本申请实施例中距离调节装置的一种局部结构示意图;
图9为本申请实施例中距离调节装置的一种截面结构示意图;
图10为本申请实施例中距离调节装置的另一种截面结构示意图;
图11为本申请实施例中第一驱动部的一种动作过程示意图;
图12为本申请实施例中第二驱动部的一种动作过程示意图;
图13为本申请实施例中距离调节装置的另一种结构示意图;
图14为本申请实施例中第一驱动部的一种动作过程示意图;
图15为本申请实施例中第二驱动部的一种动作过程示意图;
图16为本申请实施例中止位结构的一种结构示意图;
图17为本申请实施例中止位结构的一种剖面结构示意图;
图18为本申请实施例中距离调节装置的另一种结构示意图;
图19为本申请实施例中具体调节装置的局部结构示意;
图20为本申请实施例中距离调节装置的一种控制方法的流程图;
图21为本申请实施例中距离调节装置的控制方法的流程图。
附图标记:
100-设备本体;                                    200-连接部件;
210-第一连接部件;                                220-第二连接部件;
230-距离调节装置;                                240-第一传感器;
250-供电模块;                                    260-控制器;
270-凸圆弧面;                                    280-平面;
1-第一部件;                                      2-第二部件;
3-记忆合金部件;                                  31-弹性材料层;
4-第一驱动部;                                    41-第一记忆合金部件;
411-第一端;                                      412-第二端;
42-第一联动杆;                                   421-第三端;
422-第四端;                                      43-第一挡板;
44-第二记忆合金弹簧;                             5-第二驱动部;
51-第二记忆合金部件;                             511-第五端;
512-第六端;                                      52-第二联动杆;
521-第七端;                                      522-第八端;
53-第二挡板;                                     54-第二复位弹簧;
6-辅助部;                                        61-第一记忆合金弹簧;
62-第一复位弹簧;                                 7-弹性层;
8-止位结构;                                      81-齿轮;
811-转轴;                                        82-齿条;
83-卡件;                                         84-弹性件;
85-记忆合金结构;                                 9-第一导向件。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“具体的实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了方便理解本申请实施例提供的距离调节装置和距离调节装置的控制方法,下面首先介绍一下其应用场景。上述距离调节装置可以为终端设备或者模块组件,上述终端设备可以为任何需要调节部分结构的长度的终端设备,尤其为可穿戴设备。终端设备可以包括设备本体和连接部件,通过调节上述连接部件的长度,可以调节整个终端设备的使用状态。以可穿戴设备为例,用户需要调节连接部件的长度,才可以使用户能够舒适的佩戴可穿戴设备。特别对于可穿戴设备具有检测用传感器时,可以使传感器与用户以较为合适的压力接触。现有技术中,通常人工手动调节连接部件的长度,一方面,很多连接部件不能实现无级调整长度,导致用户难以达到较为舒适的水平;另一方面,手动调节操作较为繁琐, 且有些时候可能存在操作不便的情况。为此,本申请提供了一种距离调节装置和距离调节装置的控制方法,从而可以电动的无级调节连接部件的长度。
图1为本申请实施例中距离调节装置的一种结构示意图,图2为本申请实施例中距离调节装置的另一种结构示意图。如图1和图2所示,上述距离调节装置包括设备本体100和与上述设备本体100连接的连接部件200。上述连接部件200包括第一连接部件210、第二连接部件220和记忆合金部件3,其中,记忆合金部件3设置于第一连接部件210与第二连接部件220之间,且能够驱动上述第一连接部件210相对移动和/或相向移动,从而调节连接部件200的长度。
上述距离调节装置可以为可穿戴设备,例如头戴式耳机、手表、手环或者AR/VR眼镜等等,还可以为腰带、鞋带、检测设备和显示器支架等需要调节距离的装置,具体类型,本申请不做限制。当可穿戴设备为头戴式耳机时,如图1所示,可以认为头戴式耳机的两个耳机部分为设备本体100,连接在两个耳机部分的头梁即为连接部件200。当可穿戴设备为手表时,如图2所示,可以认为手表的表盘为设备本体100,表带即为上述连接部件200。总之,距离调节装置主要功能部件为设备本体100,连接部件200主要起连接作用。通过记忆合金部件3调节连接部件200的长度,从而可以调节设备本体100的位置;或者,当距离调节装置为可穿戴设备时,可以调节可穿戴设备与用户之间的压力值,也就是舒适度;或者,当距离调节装置为检测设备时,可以调节检测设备与用户之间的压力值,有利于提高检测设备的检测精度。
值得说明的是,本申请实施例中的第一连接部件210和第二连接部件220可以为分体结构,也可以软性材质连接,也就是说第一连接部件210和第二连接部件220连接成一体结构;或者第一连接部件210与第二连接部件220为相互独立的两部分,都适用本申请技术方案。
图3为本申请实施例中距离调节装置的一种结构示意图,请参考图3,上述距离调节装置230具体包括第一部件1、第二部件2和记忆合金部件3,上述记忆合金部件3能够导电,且电流可以导致记忆合金部件3温度升高。具体的,上述记忆合金部件3在温度低于设定阈值时,处于第一形态,记忆合金部件3在温度高于设定阈值时,处于第二形态。通过控制电流的大小或者通断,可以控制记忆合金部件3的温度,从而可以使记忆合金部件3变化形态,上述记忆合金部件3连接于第一部件1与第二部件2之间,则记忆合金部件3变化形态时,可以驱动上述第一部件1与第二部件2相对移动和/或相向移动。上述第一部件1与第一连接部件210固定设置,第二部件2与第二连接部件220固定设置,或者,上述第一部件1即相当于上述第一连接部件210,上述第二部件2即相当于第二连接部件220,本申请不做限制。因此,上述记忆合金部件3变化形态时,能够驱动上述第一连接部件210相对移动和/或相向移动。可以理解的,当第一连接部件210与第二连接部件220相对移动时,连接部件200整体长度变短,当第一连接部件210与第二连接部件220相向移动时,连接部件200整体长度变长。该方案中,可以通过控制电流,来驱动记忆合金部件3,从而调节距离调节装置的连接部件200的长度,而无需人工采用推拉等方式来调节连接部件200的长度,可以简化操作。此外,该方案还可以利用记忆合金部件3实现无级调节,有利于提升用户的使用体验,以及舒适性。
图4为本申请实施例中距离调节装置的另一种结构示意图,请参考图2和图4,上述距离调节装置还可以包括第一传感器240、供电模块250和控制器260。上述第一传感器 240设置于距离调节装置,具体可以根据实际产品需求,设计上述第一传感器240在距离调节装置的具体位置。例如,距离调节装置为耳机,可以将第一传感器240设置于头梁,即连接部件200,监测头梁与用户头部之间的压力值,以使用户舒适的佩戴耳机;距离调节装置为手表时,可以将第一传感器240设置于表盘或者表带,即可以设置于设备本体100,也可以设置于连接部件200;距离调节装置为检测设备时,可以将第一传感器240设置于设备本体100,以保证检测设备的检测部分与用户较好的贴合,提高检测效果。
上述供电模块250与距离调节装置230的记忆合金部件3连接,从而能够向记忆合金部件3输入电流,以控制记忆合金部件3的温度,进而控制记忆合金部件3在第一形态和第二形态之间变化形状,以驱动第一部件1与第二部件2相对移动或相向移动,使得第一连接部件210与第二连接部件220相对移动或者相向移动。上述控制器260与供电模块250和第一传感器240连接,用于根据第一传感器240检测的位置关系信号,控制供电模块250输入至记忆合金部件3的电流,驱动第一连接部件210与第二连接部件220相对移动或者相向移动。具体的,可以设定较为合适的范围作为设定范围,控制器判断第一传感器240检测的位置关系信号是否位于设定范围。若是,认为当前连接部件200的状态较为合适,控制记忆合金部件3停止工作;若否,认为当前连接部件200的状态不合适,则记忆合金部件3驱动第一连接部件210与第二连接部件220相对移动或者相向移动,直至第一传感器240检测的位置关系信号位于设定范围内。
具体技术方案中,上述第一传感器240的类型不做限制,可以为力传感器、电容近距离传感、超声波距离传感、激光测距传感、红外线测距传感和光线感应传感器中的至少一种类型。具体可以根据实际情况,选择合适类型的第一传感器240的类型。
具体的,以上述第一传感器240是力传感器为例,则上述位置关系为可穿戴设备与用户之间的压力,位置关系信号为压力值。当第一传感器240检测的压力值小于设定范围时,说明连接部件200的长度过大。控制器控制距离调节装置230驱动第一连接部件210与第二连接部件220相对移动,以使连接部件200的长度减小。当第一传感器240检测的压力值大于设定范围时,说明连接部件200的长度过小。控制器控制距离调节装置230驱动第一连接部件210与第二连接部件220相向移动,以使连接部件200的长度增长。当第一传感器240检测的压力值位于设定范围内时,说明连接部件200的长度合适。控制器控制距离调节装置230停止驱动第一连接部件210与第二连接部件220移动,使得第一连接部件210与第二连接部件220之间的位置关系保持固定。
上述距离调节装置可以与用户接触设置,从而上述距离调节装置与用户之间的压力值的大小,对于可穿戴设备来讲,直接影响了用户的舒适性;对于检测设备来讲,直接影响了检测的精度。控制器根据上述第一传感器240获取的压力值控制供电模块输入至记忆合金部件3的电流,进而控制距离调节装置230调节连接部件200的长度。可以使距离调节装置达到较好的工作状态,且可以提高用户体验。此外,该方案无需人工调节连接部件200的长度,操作过程较为简便且智能。
可穿戴设备可以包括至少两个第一传感器,从而提升可穿戴设备与用户之间的配合效果,提升用户佩戴可穿戴设备的舒适性。
当可穿戴设备包括至少两个第一传感器时,第一传感器的具体类型可以不同。例如,可以使得可穿戴设备包括力传感器和距离传感器。具体布局上述力传感器和距离传感器时,力传感器与距离传感器可以间隔布局。可穿戴设备可以控制不同类型的第一传感器共同工 作,或者,根据需求选择其中某种类型的第一传感器工作。
此外,另一种实施例中,上述距离调节装置可以具有操作按钮,利用操作按钮来控制供电模块输入至记忆合金部件3的电流,进而控制距离调节装置230调节连接部件200的长度。
或者,另一种实施例中,上述距离调节装置还可以包括供电模块和语音控制器,其中,上述供电模块与距离调节装置230的记忆合金部件3连接,从而能够向记忆合金部件3输入电流,以控制记忆合金部件3的温度,进而控制记忆合金部件3在第一形态和第二形态之间变化形状,以驱动第一部件1与第二部件2相对移动或相向移动,使得距离调节装置230能够驱动第一连接部件210与第二连接部件220相对移动或者相向移动。上述语音控制器与上述供电模块连接,用于接收用户的语音指令,根据接收到的语音指令控制供电模块输入至记忆合金部件3的电流,驱动第一连接部件210与第二连接部件220相对移动或者相向移动。例如,语音控制器接收到的语音指令为“调长”,语音控制器则控制供电模块输入记忆合金部件3的电流,驱动第一连接部件210与第二连接部件220相向移动,以调长连接部件200的长度;语音控制器接收到的语音指令为“缩短”,语音控制器则控制供电模块输入记忆合金部件3的电流,驱动第一连接部件210与第二连接部件220相对移动,以缩短连接部件200的长度。具体的,上述语音指令的具体内容可以根据实际情况进行设定。
一种实施例中,上述距离调节装置还包括第二传感器,第二传感器与控制器连接,第二传感器用于在距离调节装置处于使用状态时,向控制器发送使用状态信号,控制器用于在接收到使用状态信号之后,控制供电模块输入至记忆合金部件3的电流功率。该方案中,可以先利用第二传感器判断当前距离调节装置是否处于使用状态,只有当距离调节装置处于使用状态时,控制器才会控制移动终端的距离调节装置230调节连接部件200的长度,以提高距离调节装置的可靠性。
具体的实施例中,上述第二传感器的具体类型不做限制,可以为电容式传感器,或者,也可以为光学传感器,只要能够检测距离调节装置是否处于使用状态即可。
请参考图4,为本申请实施例中距离调节装置的一种具体实施例,该实施例中的距离调节装置为眼镜,距离调节装置的设备本体100为镜片,连接部件200为镜框和镜腿,可以认为其中镜框为第一连接部件210,镜腿为第二连接部件220。上述距离调节装置230设置于镜腿与镜框之间,且每个镜腿与镜框之间具有一个距离调节装置230。
图5为本申请技术方案中距离调节装置的局部结构示意图,请结合图4和图5,上述技术方案中,可以利用距离调节装置230调节两个镜腿之间的距离,也就是说用户佩戴上述眼镜时,可以调节镜腿与头部侧面的松紧度,提高用户佩戴体验。具体的,上述第一连接部件210与第二连接部件220之间铰接,且配合处为凸圆弧面270与平面280的接触配合,从而可以将距离调节装置230直线距离调节,转换成摆动角度的调节。也就是镜腿与镜框之间铰接,且配合处为凸圆弧面270与平面280的接触配合。以眼镜处于佩戴状态为例,当镜腿与头部侧面的压力较小时,可以使距离调节装置驱动镜腿与镜框相对移动,则在凸圆弧面270的作用下,镜腿与镜框发生转动,使得镜腿向靠近头部侧面的方向摆动,以使镜腿与头部侧面的压力增大。当镜腿与头部侧面的压力较小时,可以使距离调节装置驱动镜腿与镜框相向移动,则在凸圆弧面270的作用下,镜腿与镜框发生转动,使得镜腿向远离头部侧面的方向摆动,以使镜腿与头部侧面的压力增大。
下面列举几种距离调节装置的具体结构实施例,图6为本申请实施例中距离调节装置的一种结构示意图,如图6所示,上述距离调节装置包括第一部件1、第二部件2、第一驱动部4和第二驱动部5,其中,第二部件2可移动安装于上述第一部件1,也就是说,上述第二部件2能够相对于第一部件1移动,相互靠近或者相互远离。上述第一驱动部4的一端固定于上述第一部件1,另一端能够驱动第二部件2相对于第一部件1向第一方向移动。上述第二驱动部5的一端固定于上述第一部件1,另一端能够驱动第二部件2相对于第一部件1向第二方向移动,第二方向与第一方向相反。
具体的,上述第一驱动部4包括第一记忆合金部件41,当第一记忆合金部件41的温度低于设定阈值时,第一记忆合金部件41处于第一形态;当第一记忆合金部件41的温度高于设定阈值时,第一记忆合金部件41处于第二形态。可以理解的,上述第一记忆合金部件41的形状可以随温度变化,也就是说,随着温度在上述设定阈值上下变化,第一记忆合金部件41从一种形状变化至另一种形状,由于第一记忆合金部件41的一端与第一部件1相对固定,因此,第一记忆合金部件41在变形过程中,另一端可以驱动第二部件2相对于第一部件1移动。上述第一记忆合金部件41连接有两个电极,可以利用上述两个电极将第一记忆合金部件41连接至电路中,也就是可以向第一记忆合金部件41输入电流,该电流会导致第一记忆合金部件41的温度发生变化,进而通过控制电流的大小或者通断,可以控制上述第一记忆合金部件41处于第一形态或者第二形态,进而可以使第一记忆合金部件41在第一形态与第二形态之间变化,以驱动第二部件2相对于第一部件1向第一方向移动。
上述第二驱动部5与上述第一驱动部4类似,第二驱动部5的一端固定于第一部件1,另一端驱动第二部件2相对于第一部件1向第二方向移动,上述第一方向与第二方向相反,也就是第一驱动部4和第二驱动部5分别驱动第二部件2相对于第一部件1向相反的方向移动。第二驱动部5也包括第二记忆合金部件51,当第二记忆合金部件51的温度低于设定阈值时,第二记忆合金部件51处于第二形态;当第二记忆合金部件51的温度高于设定阈值时,第二记忆合金部件51处于第一形态;第二记忆合金部件51连接有两个电极,第二驱动部5的第二记忆合金部件51能够在第一形态与第二形态之间变化,驱动第二部件2相对于第一部件1向第二方向移动。该第二记忆合金部件51与第一记忆合金部件41也类似,此处不进行赘述。
本申请技术方案中,利用记忆合金部件3能够导电,且电流影响记忆合金部件3的温度后,记忆合金部件3可以变化形状的特性,将记忆合金部件3应用于距离调节装置中,以利用记忆合金部件3的变形来驱动第二部件2相对于第一部件1移动。具体的,上述技术方案中,距离调节装置包括第一驱动部4和第二驱动部5,从而可以分别驱动上述第二部件2相对于第一部件1沿第一方向和第二方向两个相反的方向移动,使得距离调节装置可以调节连接部件200的长度缩短和增加。该方案中,可以利用电信号控制距离调节装置来调节连接部件200的长度,以使移动终端能够位于较为合适的位置,提高移动终端的工作效果,提高用户使用移动终端的舒适性。此外,本申请还可以实现较小行程的调节连接部件200的长度,几乎可以达到无级调节的程度,因此可以克服现有技术中,较大的固定步长的调节方式带来的难以使连接部件200达到舒适长度的问题。例如表带具有多个依次设置的通孔,每个通孔之间具有固定间隔,每次调节表带长度,都至少调节上述固定间隔的长度,本申请就不存在该问题。
图7为本申请实施例中记忆合金部件的结构示意图,如图7所示,上述记忆合金部件3还固定叠置有弹性材料层31。具体的,上述第一驱动部4的第一记忆合金部件41一一对应叠置固定有弹性材料层31,第二驱动部5的第二记忆合金部件51也一一对应叠置固定有弹性材料层31。该方案中,无论是第一记忆合金部件41还是第二记忆合金部件51,都具有弹性材料层31,上述弹性材料层31,弹性材料层31为高韧性材质,具有一定的弹性,具体可以用于在第一记忆合金部件41和第二记忆合金部件51变形后提供复位力,当第一记忆合金部件41和第二记忆合金部件51发生变形的驱动力削弱或者消失后,也就是温度低于设定阈值时,弹性材料层31驱动第一记忆合金部件41和第二记忆合金部件51快速恢复原状,以便于下一次驱动第一记忆合金部件41和第二记忆合金部件51发生变形。
上述第一记忆合金部件41和第二记忆合金部件51的材质具体可以为镍钛记忆合金,通过温度与形状的匹配设计,第一记忆合金部件41和第二记忆合金部件51可以在设定温度下发生形变。弹性材料层31为高韧性材质制备的弹性材料层31,上述高韧性材质具体可以为光感环氧树脂(SU-8)等有机物,也可以铜、钢或者铁等高强度材料,即弹性材料层31可以为光感环氧树脂弹性材料层、铜弹性材料层、钢或者铁弹性材料层。
图8为本申请实施例中距离调节装置的一种局部示意图,如图8所示,距离调节装置可以包括多个第一驱动部4和多个第二驱动部5,多个第一驱动部4同时驱动第二部件2相对于第一部件1移动,从而可以使第一驱动部4的结构设计的较小,仍能具有足够的驱动力,进而使第二驱动部5每次调节第二部件2相对于第一部件1移动的步长较小,以趋向于无级调节。第二驱动部5同样可以设计的较小,此处不进行赘述,实质上,可以使第一驱动部4与第二驱动部5的尺寸相同,甚至结构不同,通过不同的固定方式以实现不同方向的驱动。
上述多个第一驱动部4的第一记忆合金部件41可以共用一组电极,也就是说,可以利用一个供电装置同时给多个第一记忆合金部件41供电,几个第一记忆合金部件41同时变形。该方案可以简化距离调整装置的控制过程,且可以提高第一驱动部4的驱动力。同样,上述多个第二驱动部5的第二记忆合金部件51可以共用一组电极,也就是说,可以利用一个供电装置同时给多个第二记忆合金部件51供电,几个第二记忆合金部件51同时变形。该方案可以简化距离调整装置的控制过程,且可以提高第二驱动部5的驱动力。上述电极的具体设置位置不做限制,根据实际结构设置即可。
图9为本申请实施例中距离调节装置的一种截面结构示意图,图10为本申请实施例中距离调节装置的另一种截面结构示意图,其中,图9和图10的截面垂直于第一方向。请参考图9和图10,上述第二部件2位于第一驱动部4与第二驱动部5之间,也就是说,第一驱动部4和第二驱动部5位于第二部件2的两侧,从而第二部件2一侧的第一驱动部4驱动第二部件2相对第一部件1向第一方向移动,第二部件2另一侧的第二驱动部5驱动第二部件2相对于第一部件1向第二方向移动。该方案有利于减少距离调节装置占用的面积,且相对设置的第一驱动部4和第二驱动部5还可以相互配合工作。该方案中,第一部件1可以为U型,如图7所示;或者,上述第一部件1也可以为管状,如图8所示,第二部件2从第一部件1中间穿过。当然,上述第一部件1还可以为任何能够使第一驱动部4和第二驱动部5设置于第二部件2两侧的结构,本申请不做限制。
图11为本申请实施例中第一驱动部的一种动作过程示意图,请参考图11,距离调节装置还包括辅助部6,该辅助部6设置于第二部件2与第一部件1之间,辅助部6处于第 一状态时,第一驱动部4或者第二驱动部5能够与第二部件2接触,进而驱动第二部件2相对于第一部件1移动;辅助部6处于第二状态时,第一驱动部4或者第二驱动部5与第二部件2之间具有缝隙,则无法与第二部件2接触,也就无法对第二部件2产生驱动力。上述第一记忆合金部件41在第一形态向第二方向弯折,在第二形态向第一方向弯折,第一记忆合金部件41处于第一形态或者第二形态时,无法与第二部件2接触,但是第一记忆合金部件41从第一形态变化至第二形态时,第一记忆合金部件41过渡过程中需要伸直,此时,辅助部6处于第一状态,第一记忆合金部件41会与第二部件2接触。具体的,当第一记忆合金部件41的温度低于设定阈值时,第一记忆合金部件41处于第一形态,也就是说,第一记忆合金部件41向第二方向弯折,如图11中(a)所示;当第一记忆合金部件41通电后,随着温度升高至高于上述设定阈值,第一记忆合金部件41从第一形态变化至第二形态,也就是说,第一记忆合金部件41从向第二方向弯折开始变形至向第一方向弯折;辅助部6处于第一形态,第一记忆合金部件41在变形过程中能够与第二部件2相抵,且对第二部件2产生朝向第一方向的摩擦力,如图11中(b)所示,驱动第二部件2向第一方向移动;之后,第一记忆合金部件41向第一方向弯折,如图11中(c)所示;当第一记忆合金部件41内的电流减小或者断电之后,第一记忆合金部件41的温度降低,低于设定阈值后,第一记忆合金部件41会从第二形态变化至第一形态,也就是从朝向第一方向弯折变化至朝向第二方向弯折,此时辅助部6处于第二状态,第一记忆合金部件41在变形过程中也与第二部件2存在一定的间隙,如图11(d)所示,因此,不会产生朝向第二方向的驱动力,从而保证第一驱动部4仅仅可以驱动第二部件2相对于第一部件1向第一方向移动;之后第一记忆合金部件41恢复至第一形态,如图11(e)所示。以此,第一记忆合金部件41完成一次变形,第二部件2相对于第一部件1朝向第一方向移动一小段较为微小的距离。根据需求,控制第一记忆合金部件41内的电流,例如输入方形波电流,可以是第一记忆合金部件41进行多次变形,以驱动第二部件2相对第一部件1移动至合适的位置。
图12为本申请实施例中第二驱动部的一种动作过程示意图,如图12中的(a)到(e)所示,第二驱动部5的第二记忆合金部件51的变形过程与第一记忆合金部件41的变形过程相反。上述第二记忆合金部件51在第一形态向第二方向弯折,在第二形态向第一方向弯折,第二记忆合金部件51处于第二形态或者第一形态时,无法与第二部件2接触,但是第二记忆合金部件51从第二形态变化至第一形态时,第二记忆合金部件51过渡过程中需要伸直,此时,辅助部6处于第一状态,第二记忆合金部件51会与第二部件2接触。具体的,当第二记忆合金部件51的温度低于设定阈值时,第二记忆合金部件51处于第二形态,也就是说,第二记忆合金部件51向第一方向弯折,如图12中(a)所示;当第二记忆合金部件51通电后,随着温度升高至高于上述设定阈值,第二记忆合金部件51从第二形态变化至第一形态,也就是说,第二记忆合金部件51从向第一方向弯折开始变形至向第二方向弯折;辅助部6处于第一形态,第二记忆合金部件51在变形过程中能够与第二部件2相抵,且对第二部件2产生朝向第二方向的摩擦力,如图12中(b)所示,驱动第二部件2向第二方向移动;之后,第二记忆合金部件51向第二方向弯折,如图12中(c)所示;当第二记忆合金部件51内的电流减小或者断电之后,第二记忆合金部件51的温度降低,低于设定阈值后,第二记忆合金部件51会从第一形态变化至第二形态,也就是从朝向第二方向弯折变化至朝向第一方向弯折,此时辅助部6处于第二状态,第二记忆合金 部件51在变形过程中也与第二部件2存在一定的间隙,如图12中(d)所示,因此,不会产生朝向第一方向的驱动力,从而保证第二驱动部5仅仅可以驱动第二部件2相对于第一部件1向第二方向移动;之后第二记忆合金部件51恢复至第二形态,如图12中(e)所示。以此,第二记忆合金部件51完成一次变形,第二部件2相对于第一部件1朝向第二方向移动一小段较为微小的距离。根据需求,控制第二记忆合金部件51内的电流,例如输入方形波电流,可以使第二记忆合金部件51进行多次变形,以驱动第二部件2相对第一部件1移动至合适的位置。该实施例示出了第一驱动部4与第二驱动部5设置于第二部件2两侧的实施例。
该技术方案中,距离调节装置对于第二部件2可以产生第一方向的驱动力和第二方向的驱动力,两个方向都可以进行主动调节,也就是说可以调节连接部件200伸长或者收缩,使用场景较为丰富,且使用感较好。
图13为本申请实施例中距离调节装置的另一种结构示意图,请参考图13,上述第一驱动部4和第二驱动部5可以设置于第二部件2的同一侧,此时,设置上述辅助部6,辅助部6可以一端固定于第一部件1,另一端朝向第二部件2。辅助部6处于第一状态时,辅助部6沿从第一部件1朝向第二部件2的方向的长度为第一长度,第一驱动部4和第二驱动部5能够接触第二部件2;辅助部6处于第二状态时,辅助部6沿从第一部件1朝向第二部件2的方向的长度为第二长度,第二长度大于第一长度,此时辅助部6能够驱动第二部件2向远离第一部件1表面的方向移动,使得第一驱动部4和第二驱动部5与第二部件2之间具有缝隙。则无论第一记忆合金部件41和第二记忆合金部件51如何变形,都不会对第二部件2产生作用力,从而可以使第一记忆合金部件41和第二记忆合金部件51分别对第二部件2产生一个方向的作用力。
另一种实施例中,请参考图12,上述第二部件2位于第一驱动部4与第二驱动部5之间,辅助部6的一端固定于第一部件1,另一端朝向第二部件2。具体的,上述辅助部6包括第一辅助部和第二辅助部,其中第一辅助部与第一驱动部4位于同一侧,与第一驱动部4配合动作,第二辅助部与第二驱动部5位于同一侧,与第二驱动部5配合动作。具体的,上述第一辅助部处于第一状态时,第一辅助部沿从第一部件1朝向第二部件2的方向的长度为第一长度,第一驱动部4能够接触第二部件2;第一辅助部处于第二状态时,第一辅助部沿从第一部件1朝向第二部件2的方向的长度为第二长度,第二长度大于第一长度,此时第一辅助部能够驱动第二部件2向远离第一驱动部4的方向移动,第一驱动部4与第二部件2之间具有缝隙,则第一记忆合金部件41从第二形态变化至第一形态时,第一记忆合金部件41不会对第二部件2产生驱动力。同样,第二辅助部处于第一状态时,第一辅助部沿从第一部件1朝向第二部件2的方向的长度为第一长度,第二驱动部5能够接触第二部件2;第一辅助部处于第二状态时,第二辅助部沿从第一部件1朝向第二部件2的方向的长度为第二长度,第二长度大于第一长度,此时第二辅助部能够驱动第二部件2向远离第二驱动部5的方向移动,第一驱动部4与第二部件2之间具有缝隙,则第二记忆合金部件51从第一形态变化至第二形态时,第二记忆合金部件51不会对第二部件2产生驱动力。
请继续参考图11和图12,具体设置上述辅助部6时,上述辅助部6包括第一记忆合金弹簧61,上述第一记忆合金弹簧61连接有两个电极,第一记忆合金弹簧61可以利用上述两个电极连接至电路中,从而通过电流来控制上述第一记忆合金弹簧61的温度。具体 的,当上述第一记忆合金弹簧61的温度低于设定阈值时,此时第一记忆合金弹簧61未通电或者通电量较小,第一记忆合金弹簧61为第一长度,辅助部6处于第一状态;当第一记忆合金弹簧61的温度高于设定阈值时,此时第一记忆合金弹簧61通电或者通电量较大,第一记忆合金弹簧61朝向第二部件2伸长至第二长度,上述第二长度大于第一长度,辅助部6处于第二状态,则第一记忆合金弹簧61可以驱动第二部件2向远离第一部件1表面的方向移动。该方案中,可以通过控制第一记忆合金弹簧61内的电流来控制第一记忆合金弹簧61变形,具体的,可以使第一记忆合金弹簧61和与其配合使用的第一驱动部4或者第二驱动部5的电流的方形波相反,也就是说,当第一驱动部4或者第二驱动部5的电流较大时,对应的第一记忆合金弹簧61内的电流较小或者没有电流;当第一驱动部4或者第二驱动部5的电流较小或者没有电流时,对应的第一记忆合金弹簧61内的电流较大。
请继续参考图11和图12,上述辅助部6还包括第一复位弹簧62,该第一复位弹簧62可以为普通弹簧。上述第一复位弹簧62与上述第一记忆合金弹簧61平行设置,第一记忆合金弹簧61为第一长度时,第一复位弹簧62处于释能状态,此时第一复位弹簧62对第一记忆合金弹簧61不存在力的作用;上述第一记忆合金弹簧61为第二长度时,第一复位弹簧62处于蓄能状态,则第一记忆合金弹簧61的电流减小或者断开时,上述第一记忆合金弹簧61可以在第一复位弹簧62的作用下,较快的恢复至第一状态,也就是第一长度。该方案有利于减少第一记忆合金弹簧61对第二部件2的位置的影响。便于使第一驱动部4和第二驱动部5下一动作周期能够尽快进行,从而提高距离调节装置的调节效率。
此外,请继续参考图11和图12,为了提高第一驱动部4和第二驱动部5驱动第二部件2时的摩擦力,提高驱动效率。可以使第一驱动部4朝向第二部件2的一端设置弹性层7,第二驱动部5朝向第二部件2的一端设置弹性层7。上述弹性层7具体可以为铜或者铁,弹性层7与记忆合金部件3的材质相比,弹性较大,可以与第二部件2产生较大的摩擦力,从而便于第一驱动部4和第二驱动部5驱动第二部件2相对于第一部件1移动。
图14为本申请实施例中第一驱动部的一种动作过程示意图,请参考图14,上述第一记忆合金部件41未通电或者通电量较小时,第一记忆合金部件41处于第一形态,具体的,第一记忆合金部件41平行于第一方向,如图14中的(a)所示;上述第一记忆合金部件41在通电量较大时,第一记忆合金部件41处于第二形态,具体的,第二记忆合金部件51向背离第二部件2的方向弯折,如图14中的(b)所示。具体的,上述第一记忆合金部件41包括沿第二方向分布的第一端411和第二端412,也就是第二端412位于第一端411的第二方向,第一端411固定于第一部件1。上述第一驱动部4还包括第一联动杆42,该第一联动杆42包括沿第二方向分布的第三端421和第四端422,也就是第四端422位于第三端421的第二方向。上述第二端412与上述第四端422转动连接,则第一联动杆42能够相对于第一记忆合金部件41转动,第二端412固定有第一挡板43,当第一记忆合金部件41从第二形态变化至第一形态,第四端422与第一挡板43相抵,第三端421与第二部件2相抵,且第三端421驱动第二部件2向第一方向移动。具体的,第一记忆合金部件41未通电时,上述第一记忆合金部件41处于第一形态,也就是第一记忆合金部件41平行于第一方向,如图14中的(a)所示;上述第一记忆合金部件41在通电量较大时,第一记忆合金部件41从第一形态变化至第二形态,也就是第一记忆合金部件41向背离第二部件2的方向弯折,如图14中的(b)所示,在此过程中,由于第一联动杆42与第一记忆合金部 件41转动连接,则第一联动杆42与第二部件2之间的摩擦力较小,不会使第二部件2向第二方向移动;之后,第一记忆合金部件41的通电量减小或者断电,第一记忆合金部件41从第二形态变化至第一形态,也就是第一记忆合金部件41从弯折状态变化至平直状态,此时,第一联动杆42的第四端422与第一挡板43相抵,则第三端421与第二部件2相抵,产生较大的摩擦力,则第一驱动部4能够驱动第二部件2相对于第一部件1向第一方向移动,如图14中的(c)所示;之后,第一记忆合金部件41恢复至第一形态,如图14中的(d)所示。以此,第一记忆合金部件41完成一次变形,第二部件2相对于第一部件1朝向第一方向移动一小段较为微小的距离。根据需求,控制第一记忆合金部件41内的电流,例如输入方形波电流,可以使第一记忆合金部件41进行多次变形,以驱动第二部件2相对第一部件1移动至合适的位置。
图15为本申请实施例中第二驱动部的一种动作过程示意图,请参考图15,上述第二记忆合金部件51未通电或者通电量较小时,第二记忆合金部件51的温度低于设定阈值,第二记忆合金部件51处于第一形态,具体的,第二记忆合金部件51平行于第一方向,如图15中的(a)所示;上述第二记忆合金部件51在通电量较大时,第二记忆合金部件51的温度高于设定阈值,第二记忆合金部件51处于第二形态,具体的,第二记忆合金部件51向背离第二部件2的方向弯折,如图15中的(b)所示。具体的,上述第二记忆合金部件51包括沿第二方向分布的第五端511和第六端512,也就是第六端512位于第五端511的第二方向,上述第六端512固定于第一部件1。上述第二驱动部5还包括第二联动杆52,该第二联动杆52包括沿第二方向分布的第七端521和第八端522,也就是第八端522位于第七端521的第二方向。上述第五端511与上述第七端521转动连接,则第二联动杆52能够相对于第二记忆合金部件51转动,第五端511固定有第二挡板53,当第二记忆合金部件51从第二形态变化至第一形态时,第七端521与第二挡板53相抵,第八端522与第二部件2相抵,且第八端522驱动第二部件2向第二方向移动。具体的,第二记忆合金部件51未通电时,上述第二记忆合金部件51处于第一形态,也就是第二记忆合金部件51平行于第一方向,如图15中的(a)所示;上述第二记忆合金部件51在通电量较大时,第二记忆合金部件51从第一形态变化至第二形态,也就是第二记忆合金部件51向背离第二部件2的方向弯折,如图15中的(b)所示,在此过程中,由于第二联动杆52与第二记忆合金部件51转动连接,则第二联动杆52与第二部件2之间的摩擦力较小,不会使第二部件2向第二方向移动;之后,第二记忆合金部件51的通电量减小或者断电,第二记忆合金部件51从第二形态变化至第一形态,也就是第二记忆合金部件51从弯折状态变化至平直状态,此时,第二联动杆52的第七端521与第二挡板53相抵,则第八端522与第二部件2相抵,产生较大的摩擦力,则第二驱动部5能够驱动第二部件2相对于第一部件1向第二方向移动,如图15中的(c)所示;之后,第二记忆合金部件51恢复至第一形态,如图15中的(d)所示。以此,第二记忆合金部件51完成一次变形,第二部件2相对于第一部件1朝向第二方向移动一小段较为微小的距离。根据需求,控制第二记忆合金部件51内的电流,例如输入方形波电流,可以使第二记忆合金部件51进行多次变形,以驱动第二部件2相对第一部件1移动至合适的位置。
此外,请继续参考图14和图15,为了提高第一驱动部4和第二驱动部5驱动第二部件2时的摩擦力,提高驱动效率。可以使第一驱动部4朝向第二部件2的一端设置弹性层7,也就是第一联动杆42的第三端421具有弹性层7。第二驱动部5朝向第二部件2的一 端也设置弹性层7,也就是第二联动杆52的第八段也具有弹性层7。上述弹性层7具体可以为铜或者铁,弹性层7与记忆合金部件的材质相比,弹性较大,可以与第二部件2产生较大的摩擦力,从而便于第一驱动部4和第二驱动部5驱动第二部件2相对于第一部件1移动。
图16为本申请实施例中止位结构的一种结构示意图,请参考图16,距离调节装置还包括止位结构8,该止位结构8设置于第一部件1与第二部件2之间,上述止位结构8处于第一状态时,第二部件2能够相对于第一部件1移动,也就是说,距离调整装置可以调节第一部件1与第二部件2之间的距离。上述止位结构8处于第二状态时,止位结构8固定连接第二部件2与第一部件1,也就是说,第二部件2与第一部件1无法相对移动,距离调整装置也无法驱动第一部件1与第二部件2之间的距离。因此,当距离调节装置的连接部件200需要调节长度时,止位结构8处于第一状态,利用距离调整装置调节连接部件200的长度。当距离调整装置将连接部件200的长度调节至满足使用需求时,使止位结构8处于第二状态,从而使连接部件200保持在需要的长度。
图17为本申请实施例中止位结构的一种剖面结构示意图,请结合图16和图17,在具体设置上述止位结构8时,可以在止位结构8中也利用记忆合金结构85,来实现电驱动止位结构8的动作,以便于利用控制器控制止位结构8能够在位置调节装置调节完成之后实现止位的作用。如图16所示,上述止位结构8包括齿轮81、齿条82、卡件83、弹性件84和记忆合金结构85,其中,齿轮81和齿条82适配,齿轮81能够在齿条82上啮合滚动。上述齿条82固定于第一部件1,齿轮81的转轴811固定设置于第二部件2,具体的,上述齿轮81与转轴811转动连接,也就是说,齿轮81转动时,转轴811不发生转动,但是齿轮81转动过程中,会同时相对于齿条82移动,此时转轴811可以随齿轮81移动,从而可以带动第二部件2与第一部件1相对移动,而若齿轮81无法转动,则转轴811无法随齿轮81移动,第一部件1与第二部件2之间也就相对固定,实现了止位作用。
上述止位结构8的卡件83能够与齿轮81卡合,记忆合金结构85连接于卡件83与第二部件2之间,且弹性件84也设置于卡件83与第二部件2之间。当上述记忆合金结构85未通入电流或者通入的电流较小时,可以使记忆合金结构85的温度低于设定阈值,记忆合金结构85处于第一形态,卡件83与齿轮81卡合,此时弹性件84驱动卡件83与齿轮81卡合,从而第一驱动部4的驱动力或者第二驱动部5的驱动力无法克服卡件83的卡合作用,可以使第一部件1与第二部件2较为可靠的处于止位状态;当上述记忆合金结构85通入一定的电流时,可以使记忆合金结构85的温度高于上述设定阈值时,记忆合金结构85处于第二形态,能够驱动卡件83远离齿轮81运动,此时卡件83与齿轮81脱离,齿轮81能够相对齿条82啮合运动,距离调节装置可以驱动第二部件2相对于第一部件1移动,弹性件84处于蓄能状态;当记忆合金结构85内的电流减小或者断掉之后,记忆合金结构85的温度降低,当记忆合金结构85的温度低于上述设定阈值时,在处于蓄能状态下的弹性件84的作用下,卡件83向齿轮81运动并与齿轮81卡合,从而实现止位结构8的止位作用。
在另一种实施例中,可以使齿条82固定设置于第二部件2,齿轮81的转轴811固定设置于第一部件1;弹性件84设置于卡件83与第一部件1之间,记忆合金结构85连接于卡件83与第一部件1之间。总之,弹性件84、记忆合金结构85和齿轮81设置于同一部件,均设置于第一部件1或者均设置于第二部件2。启动过程类似,此处不进行赘述。
请继续参考图16,在具体的实施例中,可以包括两组同步运动的齿轮81和齿条82,也就是包括两个齿轮81和两个齿条82,卡件83可以同时与两个齿轮81卡合,从而可以使止位结构8具有较好的稳定性。
具体实施例中,上述记忆合金结构85的具体结构不做限制,只要能够驱动上述卡件83移动即可。如图16所示的实施例中,上述记忆合金结构85为记忆合金丝,通过控制记忆合金丝变形,可以拉动卡件83,使卡件83与齿轮81脱离。
上述实施例仅为具体实施例,在其他实施例中,止位结构8还可以为其它具体的结构,例如卡口卡扣组件或者气缸组件等任意形式均可,只要能够实现止位作用即可。
图18为本申请实施例中距离调节装置的另一种结构示意图,图19为本申请实施例中具体调节装置的局部结构示意,如图18和图19所示,本申请还提供了另一种距离调节装置,图19示出了该装置未设置止位结构时的结构。上述距离调节装置包括第一部件1、第二部件2、第二记忆合金弹簧44、第二复位弹簧54和止位结构8,其中,第二部件2可移动安装于上述第一部件1,也就是说,上述第二部件2能够相对于第一部件1移动,相互靠近或者相互远离。上述第二记忆合金弹簧44相当于第一驱动部4,上述第二复位弹簧54相当于第二驱动部5。
上述第二记忆合金弹簧44能够驱动第二部件2相对于第一部件1向第一方向移动,第二复位弹簧54能够驱动第二部件2相当于第一部件1向第二方向移动,上述第一方向与第二方向相反。具体的,上述第二记忆合金弹簧44的一端与第一部件1连接,另一端与第二部件2连接。上述第二记忆合金弹簧44连接有两个电极,第二记忆合金弹簧44可以利用上述两个电极连接至电路中,上述第二记忆合金弹簧44中通入一定的电流,可以使第二记忆合金弹簧44的温度升高,进而发生变形,以驱动第一部件1相对于第一部件1向第一方向移动。上述第二复位弹簧54也是一端与第一部件1连接,另一端与第二部件2连接,当上述第二记忆合金弹簧44在温度升高之后,驱动第二部件2相对于第一部件1向第一方向移动之后,第二复位弹簧54能够驱动第二部件2相当于第一部件1向第二方向移动,上述第一方向与第二方向相反。上述止位结构8设置于第一部件1与第二部件2之间,上述止位结构8处于第一状态时,第二部件2能够相对于第一部件1移动,也就是说,距离调整装置可以调节第一部件1与第二部件2之间的距离。上述止位结构8处于第二状态时,止位结构8固定连接第二部件2与第一部件1,也就是说,第二部件2与第一部件1无法相对移动,距离调整装置也无法驱动第一部件1与第二部件2之间的距离。因此,当距离调节装置的连接部件200需要调节长度时,止位结构8处于第一状态,利用距离调整装置调节连接部件200的长度。当距离调整装置将连接部件200的长度调节至满足使用需求时,使止位结构8处于第二状态,从而使连接部件200保持在需要的长度。
下面介绍上述距离调节装置的工作过程,具体的实施例中,当第二记忆合金弹簧44未通入电流或者电流量较小时,第二记忆合金弹簧44的温度低于设定阈值,第二记忆合金弹簧44为第一长度,此时认为距离调节装置处于初始状态;止位结构8处于第一状态,当向第二记忆合金弹簧44通入一定量的电流之后,上述第二记忆合金弹簧44的温度升高,第二记忆合金弹簧44的温度高于设定阈值时,第二记忆合金弹簧44沿第一方向伸缩变形至第二长度,第二长度与第一长度不同,因此,上述第二记忆合金弹簧44可以带动第二部件2相对于第一部件1向第一方向移动;当第二部件2相对于第一部件1向第一方向移动至设定位置时,可以使止位结构8切换至第二状态,使第二部件2与第一部件1相对固 定,此时可以使第二记忆合金弹簧44断电;当需要将第二部件2相对于第一部件1向第二方向移动时,止位结构8切换至第一状态,第二复位弹簧54驱动第二部件2相对于第一部件1向第二方向移动;当第二部件2相对于第一部件1向第二方向移动至设定位置时,可以使止位结构8切换至第二状态,使第二部件2与第一部件1相对固定。通过第二记忆合金弹簧44、第二复位弹簧54和止位结构8的配合,可以使连接部件200处于较为合适的长度。
上述第二记忆合金弹簧44可以设置于第一部件1与第二部件2之间,也就是利用一组第二记忆合金弹簧44和第二复位弹簧54来驱动第二部件2相对于第一部件1相对或者相向移动。根据上述第二记忆合金弹簧44的安装位置,可以使第二记忆合金弹簧44向第二部件2提供推力,此时,第二长度大于第一长度;也可以使第二记忆合金弹簧44向第二部件2提供拉力,此时,第二长度小于第一长度,本申请对此不进行限制。
另一种实施例中,距离调节装置可以包括两组第二记忆合金弹簧44和第二复位弹簧54,上述第二部件2的两端对称设置上述两组第二记忆合金弹簧44和第二复位弹簧54。具体的,上述第二部件2包括第一端和第二端,一组第二记忆合金弹簧44和第二复位弹簧54与上述第一端连接,另一种第二记忆合金弹簧44和第二复位弹簧54与上述第二端连接。该方案中,可以认为具体调节装置的第一部件1包括两个部分,分别为第一部分和第二部分,上述第二部件2设置于第一部件1的第一部分与第二部分之间。具体的,上述第二部件2与第一部分通过一组第二记忆合金弹簧44和第二复位弹簧54连接,上述第二部件2与第二部分通过另一组第二记忆合金弹簧44和第二复位弹簧54连接。该方案中,可以利用两组驱动结构驱动第二部件2相对于第一部件1相对移动或者相向移动。当实际工作时,上述第二部件2两端的第二记忆合金弹簧44同时驱动第二部件2移动,例如,其中一组第二记忆合金弹簧44伸长,提供推力,另一组第二记忆合金弹簧44收缩,提供拉力。第二复位弹簧54的工作过程类似,当第二复位弹簧54驱动第二部件2复位时,第二部件2两端的两组第二复位弹簧54中,一组第二复位弹簧54提供推力,另一组第二复位弹簧54提供拉力。
上述第二复位弹簧54的具体结构不做限制,可以为普通弹簧,当第二部件2在第二记忆合金弹簧44的驱动下移动之后,普通弹簧可以蓄能,以驱动第二部件2相对于第一部件1向第二方向移动。上述第二复位弹簧54也可以为记忆合金材质的第二复位弹簧54,该记忆合金材质的第二复位弹簧54可以包括两个电极,用于通入电流,以使记忆合金材质的第二复位弹簧54变形,以驱动第二部件2相对于第一部件1向第二方向移动。该方案中,第二复位弹簧54也可以利用记忆合金材质来制备,从而利用电信号控制第二复位弹簧54工作,也就是第二部件2相对于第一部件1朝向两个方向的移动都可以利用电信号控制,有利于提高距离调节装置的可控性。
请参考图18,在具体设置上述距离调节装置时,距离调节装置还包括第一导向件9,上述第一导向件9沿第一方向延伸,第二复位弹簧54和第二记忆合金弹簧44安装于第一导向件9。上述第一导向件9可以为第二复位弹簧54和第二记忆合金弹簧44提供导向作用,以提高第二复位弹簧54和第二记忆合金弹簧44伸缩变形的方向可靠性,也就是可以保证第二记忆合金弹簧44沿第一方向和第二方向伸缩,第二复位弹簧54沿第一方向和第二方向伸缩,不易出现歪曲,从而提高距离调节装置的稳定性。
上述第二记忆合金弹簧44和第二复位弹簧54的总数至少为三个,例如包括两个第二 记忆合金弹簧44和一个第二复位弹簧54,包括一个第二记忆合金弹簧44和两个第二复位弹簧54,包括两个第二记忆合金弹簧44和两个第二复位弹簧54,包括两个第二记忆合金弹簧44和三个第二复位弹簧54等,本申请不做一一列举。多个第二记忆合金弹簧44和第二复位弹簧54的配合,有利于提高距离调节装置的可靠性,第二部件2不易出现偏斜。
上述第二记忆合金弹簧44可以共用一组电极,也就是说,可以利用一个供电装置给多个第二记忆合金弹簧44供电,几个第二记忆合金弹簧44同时变形。该方案可以简化距离调整装置的控制过程。同样,当第二复位弹簧54为记忆合金材质的第二复位弹簧54时,也共用一组电极。上述电极的具体设置位置不做限制,根据实际结构设置即可,例如可以设置于距离调整装置的一端,以便于接入电源。
当距离调节装置包括至少三个第二记忆合金弹簧44和第二复位弹簧54时,上述第二记忆合金弹簧44与第二复位弹簧54的排布方式不做限制。一种实施例中,上述第二记忆合金弹簧44与第二复位弹簧54一一间隔设置,则第二部件2相对于第一部件1沿第一方向的驱动力较为均匀,第二部件2相对于第一部件1沿第二方向的驱动力也较为均匀。另一种实施例中,上述第二记忆合金弹簧44关于第二部件2的对称轴对称排布,第二复位弹簧54关于第二部件2的对称轴对称排布,对称轴沿第一方向延伸。该方案中,第二部件2相对于第一部件1沿第一方向的驱动力较为平衡,第二部件2相对于第一部件1沿第二方向的驱动力也较为平衡。
请结合图16和图17,在具体设置上述止位结构8时,可以在止位结构8中也利用记忆合金结构85,来实现电驱动止位结构8的动作,以便于利用控制器控制止位结构8能够在位置调节装置调节完成之后实现止位的作用。如图16所示,上述止位结构8包括齿轮81、齿条82、卡件83、弹性件84和记忆合金结构85,其中,齿轮81和齿条82适配,齿轮81能够在齿条82上啮合滚动。上述齿条82固定于第一部件1,齿轮81的转轴811固定设置于第二部件2,具体的,上述齿轮81与转轴811转动连接,也就是说,齿轮81转动时,转轴811不发生转动,但是齿轮81转动过程中,会同时相对于齿条82移动,此时转轴811可以随齿轮81移动,从而可以带动第二部件2与第一部件1相对移动,而若齿轮81无法转动,则转轴811无法随齿轮81移动,第一部件1与第二部件2之间也就相对固定,实现了止位。
上述止位结构8的卡件83能够与齿轮81卡合,记忆合金结构85连接于卡件83与第二部件2之间,且弹性件84也设置于卡件83与第二部件2之间。当上述记忆合金结构85未通入电流或者通入的电流较小时,可以使记忆合金结构85的温度低于设定阈值,记忆合金结构85处于第一形态,卡件83与齿轮81卡合,此时弹性件84驱动卡件83与齿轮81卡合,从而第一驱动部4的驱动力或者第二驱动部5的驱动力无法克服卡件83的卡合作用,可以使第一部件1与第二部件2较为可靠的处于止位状态;当上述记忆合金结构85通入一定的电流时,可以使记忆合金结构85的温度高于上述设定阈值时,记忆合金结构85处于第二形态,能够驱动卡件83远离齿轮81运动,此时卡件83与齿轮81脱离,齿轮81能够相对齿条82啮合运动,距离调节装置可以驱动第二部件2相对于第一部件1移动,弹性件84处于蓄能状态;当记忆合金结构85内的电流减小或者断掉之后,记忆合金结构85的温度降低,当记忆合金结构85的温度低于上述设定阈值时,在处于蓄能状态下的弹性件84的作用下,卡件83向齿轮81运动并与齿轮81卡合,从而实现止位结构8的止位作用。
在另一种实施例中,可以使齿条82固定设置于第二部件2,齿轮81的转轴811固定设置于第一部件1;弹性件84设置于卡件83与第一部件1之间,记忆合金结构85连接于卡件83与第一部件1之间。总之,弹性件84、记忆合金结构85和齿轮81设置于同一部件,均设置于第一部件1或者均设置于第二部件2。启动过程类似,此处不进行赘述。
请参考图18,一种具体的实施例中,可以在第二部件2或者第一部件1的表面制备与齿轮81适配的齿条82表面,从而有利于简化距离调节装置的结构。
上述实施例仅为具体实施例,在其他实施例中,止位结构8还可以为其它具体的结构,例如卡口卡扣组件或者气缸组件等任意形式均可,只要能够实现止位作用即可。
基于相同的技术构思,本申请还提供了一种上述具体调节装置的控制方法,图20为本申请实施例中距离调节装置控制方法的流程图,请参考图20,上述控制方法包括以下步骤:
步骤S101、获取连接部件与用户之间的位置关系信号;
具体的,上述可穿戴设备可以包括第一传感器,第一传感器能够监测可穿戴设备与用户之间的位置关系,并生成位置关系信号。控制器获取上述位置关系信号,从而根据上述位置关系信号判断用户是否佩戴舒适,或者,满足可穿戴设备工作的需求。
上述第一传感器的类型不做限制,可以为力传感器、电容近距离传感、超声波距离传感、激光测距传感、红外线测距传感和光线感应传感器中的至少一种类型。具体可以根据实际情况,选择合适类型的第一传感器的类型。此外,可穿戴设备设置的第一传感器的数量不做限制,可以设置较多的第一传感器,以获取较多的位置关系信号,提升用户佩戴可穿戴设备的舒适性。
步骤S102、判断位置关系信号是否位于设定范围,若是,执行步骤S103,若否,执行步骤S104;
步骤S103、控制记忆合金部件停止工作;
步骤S104、控制记忆合金部件驱动第一部件与第二部件相对移动或者相向移动。
当位置关系信号位于设定范围内时,认为当前连接部件的状态较为合适,用户佩戴可穿戴设备的舒适性较高,此时可以控制记忆合金部件停止工作,可穿戴设备的连接部件固定于此时的长度。当位置关系信号位于设定范围之外时,认为当前连接部件的状态不合适,用户佩戴可穿戴设备的舒适性较差,则控制记忆合金部件驱动第一部件与第二部件相对移动或者相向移动,直至第一传感器检测的位置关系信号位于设定范围内,使用户较为舒适的佩戴可穿戴设备。
一种实施例中,可以认为,距离调节装置仅仅用于调节连接部件缩短,例如距离调节装置为手表,表带在自然状态下,具有伸长的趋势,因此,距离调节装置仅仅用于调节连接部件缩短即可。
另一种实施例中,距离调节装置可以调节连接部件缩短,也可以调节连接部件伸长。具体的,上述步骤S102中控制距离调节装置驱动第一部件与第二部件相对移动或者相向移动,具体包括:当第一传感器检测的位置关系信号小于设定范围时,连接部件过长,控制记忆合金部件驱动第一部件与第二部件相对移动,使得连接部件缩短;当第一传感器检测的位置关系信号大于设定范围时,连接部件过短,控制记忆合金部件驱动第一部件与第二部件相向移动,使得连接部件延长。当第一传感器检测的位置关系信号位于设定范围内时,连接部件长度合适,控制记忆合金部件停止工作,使得连接部件保持当前的长度。
具体的实施例中,上述第一传感器的类型不做限制,则位置关系信号的类型也不做限制。例如,位置关系信号可以为压力值或距离值,或者,既包括压力值,又包括距离值。
也就是说,以第一传感器为力传感器为例,位置关系信号为压力值。当第一传感器检测的压力值小于设定范围时,认为当前连接部件过长,需要缩短连接部件的长度。此时,控制记忆合金部件驱动第一连接部件与第二连接部件相对移动,以使连接部件的长度减小。当第一传感器检测的压力值大于设定范围时,认为当前连接部件过短,需要延长连接部件的长度。此时,控制距离调节装置驱动第一连接部件与第二连接部件相向移动,以使连接部件的长度增长。当第一传感器检测的压力值位于设定范围内时,认为当前连接部件的长度合适。此时,控制记忆合金部件停止工作,使得连接部件保持当前的长度。
上述控制方法在步骤S101之前还获取可穿戴设备的使用状态信号。具体的,上述可穿戴设备还包括第二传感器,第二传感器与控制器连接,第二传感器用于在可穿戴设备处于使用状态时,向控制器发送使用状态信号,控制器在获取到上述使用状态信号之后,控制供电模块输入至记忆合金部件的电流功率。该方案中,可以先利用第二传感器判断当前可穿戴设备是否处于使用状态,只有当可穿戴设备处于使用状态时,控制器才会控制可穿戴设备的记忆合金部件调节连接部件的长度,以提高可穿戴设备调节连接部件长度的可靠性。
此外,上述控制方法还可以包括自学习形成用户信息,并根据用户信息控制记忆合金部件驱动第一部件与第二部件至设定位置。以可穿戴设备为耳机为例,可以自学习形成用户头型特征数据,并根据该用户头型特征数据快速调节连接部件的长度,以提升用户调节可穿戴设备的连接部件长度的速度。
下面列举具体实施例来说明上述控制方法。该实施例中,可穿戴设备为头戴式耳机,连接部件为头戴式耳机的头梁,记忆合金部件包括第二复位弹簧和止位结构,记忆合金部件为第二记忆合金弹簧,第二复位弹簧为记忆合金材质的第二复位弹簧。上述记忆合金部件设置于头梁的两侧,接近耳罩的位置。此外,该头戴式耳机的头梁装有力传感器,用于感知用户佩戴耳机的位置的压力,进而控制记忆合金部件自动调节连接部件的长短。上述力传感器即为第一传感器,此外,上述头戴式耳机还包括第二传感器,用于检测头戴式耳机是否处于佩戴状态,该第二传感器可以为电容式传感器。可以通过耳机戴上和摘下过程中电容式传感器的电容值的变化来判定耳机是否被佩戴的状态。可选的,还可以使用其他传感器进行耳机佩戴检测,如光学传感器等。
耳机处于初始状态时,两侧的记忆合金部件不通电,止位结构固定第二记忆合金弹簧位于最顶端,也就是使得头梁位于最高处。第二传感器检测到用户佩戴耳机时,力传感器感知用户头部与头梁之间的压力值。
如果压力值不位于设定范围内时,启动第二记忆合金弹簧工作。具体的,初始佩戴时,由于头梁处于最顶端,压力传感器检测压力值较小,第二记忆合金弹簧需要拉动头梁往下移动,也就是缩短头梁的长度。此时,控制止位结构弹出,并为第二记忆合金弹簧通电加热,以拉动头梁往下移动。启动为第二记忆合金弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等。此外,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的压力传感器持续感知用户头部与头梁之间的压力值,检测到压力值变大,并位于设定范围内时。控制第二记忆合金弹簧停止工作,为第二记忆合金弹簧断电或 者降低电流功率;并控制止位结构落下,卡住当前的头梁位置。
若力传感器检测到用户头部与头梁的压力值较大,并且超过设定范围时,控制第二复位弹簧推动头梁往上移动。具体的,控制止位结构弹出,为第二复位弹簧通电加热,以推动头梁往上移动。启动为第二复位弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等;可选的,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的力传感器持续感知用户头部与头梁之间的压力值,检测到压力值变小,并位于设定范围内时,控制第二复位弹簧停止工作,即给第二复位弹簧断电或者降低电流功率;并控制止位结构落下,卡住当前的头梁位置。
此外,当检测到用户摘下耳机时,还可以控制止位结构取消固定,控制第二复位弹簧推动头梁往上移动。当第二复位弹簧伸展完毕后,止位结构固定头梁位于最高处。
其它实施例中,控制过程与上述过程类似,例如,第一传感器为距离传感器时,上述压力值则替换成距离值。
具体的,当第一传感器为距离传感器时,仍然以可穿戴设备为头戴式耳机为例。该实施例中,连接部件为头戴式耳机的头梁,记忆合金部件包括第二复位弹簧和止位结构,记忆合金部件为第二记忆合金弹簧,第二复位弹簧为记忆合金材质的第二复位弹簧。上述记忆合金部件设置于头梁的两侧,接近耳罩的位置。此外,该头戴式耳机的头梁装有距离传感器,用于感知用户佩戴耳机的位置与耳机的头梁之间的距离,进而控制记忆合金部件自动调节连接部件的长短。上述距离传感器即为第一传感器,此外述头戴式耳机还包括第二传感器,用于检测头戴式耳机是否处于佩戴状态,该第二传感器可以为电容式传感器。可以通过耳机戴上和摘下过程中电容式传感器的电容值的变化来判定耳机是否被佩戴的状态。可选的,还可以使用其他传感器进行耳机佩戴检测,如光学传感器等。
耳机处于初始状态时,两侧的记忆合金部件不通电,止位结构固定第二记忆合金弹簧位于最顶端,也就是使得头梁位于最高处。第二传感器检测到用户佩戴耳机时,距离传感器感知用户头部与头梁之间的距离值。
如果距离值不位于设定范围内时,启动第二记忆合金弹簧工作。具体的,初始佩戴时,由于头梁处于最顶端,距离传感器检测距离值较大,第二记忆合金弹簧需要拉动头梁往下移动,也就是缩短头梁的长度。此时,控制止位结构弹出,并为第二记忆合金弹簧通电加热,以拉动头梁往下移动。启动为第二记忆合金弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等。此外,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的距离传感器持续感知用户头部与头梁之间的距离值,检测到距离值变小,并位于设定范围内时。控制第二记忆合金弹簧停止工作,为第二记忆合金弹簧断电或者降低电流功率;并控制止位结构落下,卡住当前的头梁位置。
若距离传感器检测到用户头部与头梁的距离值较小,并且超过设定范围时,控制第二复位弹簧推动头梁往上移动。具体的,控制止位结构弹出,为第二复位弹簧通电加热,以推动头梁往上移动。启动为第二复位弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等;可选的,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的距离传感器持续感知用户头部与头梁之间的距离值,检测到距离值变 小,并位于设定范围内时,控制第二复位弹簧停止工作,即给第二复位弹簧断电或者降低电流功率;并控制止位结构落下,卡住当前的头梁位置。
此外,当检测到用户摘下耳机时,还可以控制止位结构取消固定,控制第二复位弹簧推动头梁往上移动。当第二复位弹簧伸展完毕后,止位结构固定头梁位于最高处。
此外,可穿戴还可以包括多个第一传感器,且第一传感器的类型可以不同。例如,可以使得上述头梁设置有力传感器和距离传感器,且力传感器和距离传感器依次间隔设置。则可以先根据距离传感器来调节头梁的长度,然后再根据力传感器调节头梁的长度。有利于提升用户佩戴可穿戴设备的舒适性。
图21为本申请实施例中距离调节装置的控制方法的流程图,参考图21,上述方法包括以下步骤:
步骤S201、获取可穿戴设备与用户之间的距离值;
步骤S202、判断距离值是否位于第一设定范围,若是,执行步骤S203,若否,执行步骤S204;
步骤S203、控制记忆合金部件停止工作;
步骤S204、控制记忆合金部件驱动第一部件与第二部件相对移动或者相向移动;
步骤S205、获取可穿戴设备与用户之间的压力值;
步骤S206、判断压力值是否位于第二设定范围,若是,执行步骤S203,若否,执行步骤S204。
具体的实施例中,可穿戴设备为头戴式耳机,连接部件为头戴式耳机的头梁,记忆合金部件包括第二复位弹簧和止位结构,记忆合金部件为第二记忆合金弹簧,第二复位弹簧为记忆合金材质的第二复位弹簧。上述记忆合金部件设置于头梁的两侧,接近耳罩的位置。此外,该头戴式耳机的头梁装有距离传感器,用于感知用户佩戴耳机的位置与耳机的头梁之间的距离,进而控制记忆合金部件自动调节连接部件的长短;头戴式耳机的头梁还装有力传感器,用于感知用户佩戴耳机的位置与耳机的头梁之间的压力。具体的,上述压力传感器和距离传感器可以交错排布。此外述头戴式耳机还包括第二传感器,用于检测头戴式耳机是否处于佩戴状态,该第二传感器可以为电容式传感器。可以通过耳机戴上和摘下过程中电容式传感器的电容值的变化来判定耳机是否被佩戴的状态。可选的,还可以使用其他传感器进行耳机佩戴检测,如光学传感器等。
耳机处于初始状态时,两侧的记忆合金部件不通电,止位结构固定第二记忆合金弹簧位于最顶端,也就是使得头梁位于最高处。第二传感器检测到用户佩戴耳机时,距离传感器感知用户头部与头梁之间的距离值,压力传感器感知用户头部与头梁之间的压力值。
如果距离值不位于第一设定范围内时,启动第二记忆合金弹簧工作。具体的,初始佩戴时,由于头梁处于最顶端,距离传感器检测距离值较大,第二记忆合金弹簧需要拉动头梁往下移动,也就是缩短头梁的长度。此时,控制止位结构弹出,并为第二记忆合金弹簧通电加热,以拉动头梁往下移动。启动为第二记忆合金弹簧通电加热的方法为:使用电源管理实现对电路的控制,包括打开电源和关闭电源等。此外,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的距离传感器持续感知用户头部与头梁之间的距离值,检测到距离值变小,直至位于第一设定范围内。
若距离传感器检测到用户头部与头梁的距离值较小,并且超过第一设定范围时,控制 第二复位弹簧推动头梁往上移动。具体的,控制止位结构弹出,为第二复位弹簧通电加热,以推动头梁往上移动。启动为第二复位弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等;可选的,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的距离传感器持续感知用户头部与头梁之间的距离值,检测到距离值变小,直至位于第一设定范围内。
距离值位于上述第一范围内时,头梁上的压力传感器持续感知用户头部与头梁之间的压力值。如果压力值不位于第二设定范围内,启动第二记忆合金弹簧工作。压力传感器检测压力值较小,第二记忆合金弹簧需要拉动头梁往下移动,也就是缩短头梁的长度。此时,控制止位结构弹出,并为第二记忆合金弹簧通电加热,以拉动头梁往下移动。启动为第二记忆合金弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等。此外,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的压力传感器持续感知用户头部与头梁之间的压力值,检测到压力值变大,并位于第二设定范围内时。控制第二记忆合金弹簧停止工作,为第二记忆合金弹簧断电或者降低电流功率;并控制止位结构落下,卡住当前的头梁位置。
若力传感器检测到用户头部与头梁的压力值较大,并且超过第二设定范围时,控制第二复位弹簧推动头梁往上移动。具体的,控制止位结构弹出,为第二复位弹簧通电加热,以推动头梁往上移动。启动为第二复位弹簧通电加热的方法为,使用电源管理实现对电路的控制,包括打开电源和关闭电源等;可选的,控制电路可以通过功率放大电路,提升电路瞬时输出功率,提高加热速度。
同时,头梁上的力传感器持续感知用户头部与头梁之间的压力值,检测到压力值变小,并位于第二设定范围内时,控制第二复位弹簧停止工作,即给第二复位弹簧断电或者降低电流功率;并控制止位结构落下,卡住当前的头梁位置。
此外,当检测到用户摘下耳机时,还可以控制止位结构取消固定,控制第二复位弹簧推动头梁往上移动。当第二复位弹簧伸展完毕后,止位结构固定头梁位于最高处。
再一种实施例中,上述控制方法还可以进行自学习,用户佩戴可穿戴设备过程中,可以通过自学习的方式获取用户信息。从而自学习形成用户信息,以了解用户的佩戴习惯。再根据上述用户信息控制记忆合金部件驱动第一部件与第二部件至设定位置。该方案可以快速且精准的调整可穿戴设备的调节连接部件长度。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种距离调节装置,其特征在于,包括第一部件、第二部件,所述第一部件与所述第二部件连接,所述第一部件与第二部件的连接区域设置有记忆合金部件,所述记忆合金部件受电流控制驱动所述第一部件与所述第二部件相对移动和/或相向移动。
  2. 如权利要求1所述的距离调节装置,其特征在于,所述记忆合金部件包括第一记忆合金部件和第二记忆合金部件,其中:
    所述第一记忆合金部件的一端固定于所述第一部件,另一端驱动所述第二部件相对于所述第一部件向第一方向移动;当所述第一记忆合金部件的温度低于设定阈值时,所述第一记忆合金部件处于第一形态;当所述第一记忆合金部件的温度高于所述设定阈值时,所述第一记忆合金部件处于第二形态;所述第一记忆合金部件连接有两个电极,所述第一记忆合金部件能够受电流控制在所述第一形态与所述第二形态之间变化,驱动所述第二部件相对于所述第一部件向第一方向移动;
    所述第二记忆合金部件的一端固定于所述第一部件,另一端驱动所述第二部件相对于所述第一部件向第二方向移动,所述第一方向与所述第二方向相反;当所述第二记忆合金部件的温度低于设定阈值时,所述第二记忆合金部件处于所述第二形态;当所述第二记忆合金部件的温度高于所述设定阈值时,所述第二记忆合金部件处于所述第一形态;所述第二记忆合金部件连接有两个电极,所述第二驱动部的第二记忆合金部件能够受电流控制在第一形态与第二形态之间变化,驱动所述第二部件相对于所述第一部件向第二方向移动。
  3. 如权利要求2所述的距离调节装置,其特征在于,还包括与所述第一记忆合金部件一一对应叠置固定的弹性材料层;以及与所述第二记忆合金部件一一对应叠置固定的弹性材料层。
  4. 如权利要求2或3所述的距离调节装置,其特征在于,包括多个所述第一记忆合金部件和多个所述第二记忆合金部件。
  5. 如权利要求2~4任一项所述的距离调节装置,其特征在于,所述第二部件位于所述第一记忆合金部件与所述第二记忆合金部件之间。
  6. 如权利要求2~5任一项所述的距离调节装置,其特征在于,还包括辅助部,所述辅助部设置于所述第二部件与所述第一部件之间,所述辅助部处于第一状态时,所述第一记忆合金部件或者所述第二记忆合金部件能够与所述第二部件接触;所述辅助部处于第二状态时,所述第一记忆合金部件或者所述第二记忆合金部件与所述第二部件之间具有缝隙;
    所述第一记忆合金部件和所述第二记忆合金部件在所述第一形态向所述第二方向弯折,在所述第二形态向所述第一方向弯折;
    所述辅助部处于第一状态时,所述第一记忆合金部件从所述第一形态变化至所述第二形态,驱动所述第二部件向第一方向移动;所述辅助部处于第二状态时,所述第一记忆合金部件从所述第二形态变化至所述第一形态;
    所述辅助部处于第一状态时,所述第二记忆合金部件从所述第二形态变化至所述第一形态,驱动所述第二部件向第二方向移动;所述辅助部处于第二状态时,所述第二记忆合金部件从所述第一形态变化至所述第二形态。
  7. 如权利要求6所述的距离调节装置,其特征在于,所述辅助部的一端固定于所述第一部件,另一端朝向所述第二部件,所述第一记忆合金部件与第二记忆合金部件设置于所 述第一部件与所述第二部件之间;所述辅助部处于第二状态时,驱动所述第二部件向远离所述第一部件表面的方向移动,所述第一记忆合金部件和所述第二记忆合金部件与所述第二部件之间具有缝隙。
  8. 如权利要求6所述的距离调节装置,其特征在于,所述第二部件位于所述第一记忆合金部件与所述第二记忆合金部件之间;
    所述辅助部的一端固定于所述第一部件,另一端朝向所述第二部件;所述辅助部包括第一辅助部和第二辅助部,所述第一辅助部与所述第一驱动部位于同一侧,所述第二辅助部与所述第二驱动部位于同一侧;
    所述第一辅助部处于第二状态时,驱动所述第二部件向远离所述第一驱动部的方向移动,所述第一驱动部与所述第二部件之间具有缝隙;
    所述第二辅助部处于第二状态时,驱动所述第二部件向远离所述第二驱动部的方向移动,所述第一驱动部与所述第二部件之间具有缝隙。
  9. 如权利要求6~8任一项所述的距离调节装置,其特征在于,所述辅助部包括第一记忆合金弹簧,所述第一记忆合金弹簧连接有两个电极;当所述第一记忆合金弹簧的温度低于设定阈值时,所述第一记忆合金弹簧为第一长度;当所述第一记忆合金弹簧的温度高于所述设定阈值时,所述第一记忆合金弹簧朝向所述第二部件伸长至第二长度,所述第二长度大于所述第一长度,驱动所述第二部件向远离所述第一部件表面的方向移动。
  10. 如权利要求9所述的距离调节装置,其特征在于,所述辅助部还包括第一复位弹簧,所述第一复位弹簧与所述第一记忆合金弹簧平行设置,所述第一记忆合金弹簧为第一长度时,所述第一复位弹簧处于释能状态,所述第一记忆合金弹簧为第二长度时,所述第一复位弹簧处于蓄能状态。
  11. 如权利要求6~10任一项所述的距离调节装置,其特征在于,所述第一记忆合金部件朝向所述第二部件的一端具有弹性层,所述第二记忆合金部件朝向所述第二部件的一端具有弹性层。
  12. 如权利要求2~5任一项所述的距离调节装置,其特征在于,所述第一记忆合金部件和所述第二记忆合金部件在所述第一形态平行于所述第一方向,在所述第二形态向背离所述第二部件的方向弯折;
    所述第一记忆合金部件包括沿所述第二方向分布的第一端和第二端,所述第一端固定于所述第一部件,所述第二端连接有第一联动杆;所述第一联动杆包括沿所述第二方向分布的第三端和第四端,所述第二端与所述第四端转动连接;所述第二端固定有第一挡板,所述第一记忆合金部件从所述第二形态变化至所述第一形态,所述第四端与所述第一挡板相抵,所述第三端驱动所述第二部件向第一方向移动;
    所述第二记忆合金部件包括沿所述第二方向分布的第五端和第六端,所述第六端固定于所述第一部件,所述第五端连接有第二联动杆;所述第二联动杆包括沿所述第二方向分布的第七端和第八端,所述第五端与所述第七端转动连接;所述第五端固定有第二挡板,所述第二记忆合金部件从所述第二形态变化至所述第一形态,所述第七端与所述第二挡板相抵,所述第八端驱动所述第二部件向所述第二方向移动。
  13. 如权利要求12所述的距离调节装置,其特征在于,所述第一联动杆的所述第三端具有弹性层,所述第二联动杆的第八端具有弹性层。
  14. 如权利要求2~13任一项所述的距离调节装置,其特征在于,还包括止位结构,所 述止位结构设置于所述第二部件与所述第一部件之间,所述止位结构处于第一状态时,所述第二部件能够相对于所述第一部件移动;所述止位结构处于第二状态时,所述止位结构固定连接所述第二部件与所述第一部件。
  15. 如权利要求14所述的距离调节装置,其特征在于,所述止位结构包括齿条、齿轮、卡件、弹性件和记忆合金结构,其中,所述齿轮与所述齿条适配;所述卡件能够与所述齿轮卡合;
    所述齿条固定设置于所述第一部件,所述齿轮的转轴固定设置于所述第二部件;所述弹性件设置于所述卡件与所述第二部件之间,所述记忆合金结构连接于所述卡件与所述第二部件之间;或者,所述齿条固定设置于所述第二部件,所述齿轮的转轴固定设置于所述第一部件;所述弹性件设置于所述卡件与所述第一部件之间,所述记忆合金结构连接于所述卡件与所述第一部件之间;
    当所述记忆合金结构的温度低于设定阈值时,所述记忆合金结构处于第一形态,所述弹性件驱动所述卡件与所述齿轮卡合;当所述记忆合金结构的温度高于所述设定阈值时,所述记忆合金结构处于第二形态,驱动所述卡件远离所述齿轮运动,所述齿轮能够相对所述齿条啮合运动,所述弹性件处于蓄能状态。
  16. 如权利要求1所述的距离调节装置,其特征在于,还包括第二复位弹簧和止位结构,所述记忆合金部件为第二记忆合金弹簧,其中:
    所述第二记忆合金弹簧的一端与所述第一部件连接,另一端与所述第二部件连接,所述第二记忆合金弹簧连接有两个电极;当所述第二记忆合金弹簧的温度低于设定阈值时,所述第二记忆合金弹簧为第一长度;当所述第二记忆合金弹簧的温度高于所述设定阈值时,所述第二记忆合金弹簧沿第一方向伸缩变形至第二长度,所述第二长度与所述第一长度不同,驱动所述第二部件相对于所述第一部件向所述第一方向移动;
    所述第二复位弹簧的一端与所述第一部件连接,另一端与所述第二部件连接;当所述第二记忆合金弹簧为第二长度时,所述第二复位弹簧能够驱动所述第二部件沿第二方向相对于所述第一部件移动,所述第一方向与所述第二方向相反;
    所述止位结构设置于所述第二部件与所述第一部件之间,所述止位结构处于第一状态时,所述第二部件能够相对于所述第一部件移动;所述止位结构处于第二状态时,所述止位结构固定连接所述第二部件与所述第一部件。
  17. 如权利要求16所述的距离调节装置,其特征在于,所述第二复位弹簧为记忆合金材质的第二复位弹簧。
  18. 如权利要求16或17所述的距离调节装置,其特征在于,还包括第一导向件,所述第一导向件沿所述第一方向延伸,所述第二复位弹簧和所述第二记忆合金弹簧安装于所述第一导向件。
  19. 如权利要求16~18任一项所述的距离调节装置,其特征在于,包括所述第二记忆合金弹簧和所述第二复位弹簧的总数至少为3个。
  20. 如权利要求19所述的距离调节装置,其特征在于,所述第二记忆合金弹簧与所述第二复位弹簧一一间隔设置;或者,所述第二记忆合金弹簧关于所述第二部件的对称轴对称排布,所述第二复位弹簧关于所述第二部件的对称轴对称排布,所述对称轴沿所述第一方向延伸。
  21. 如权利要求16~20任一项所述的距离调节装置,其特征在于,所述止位结构包括齿 条、齿轮、卡件、弹性件和记忆合金结构,其中,所述齿轮与所述齿条适配;所述卡件能够与所述齿轮卡合;
    所述齿条固定设置于所述第一部件,所述齿轮的转轴固定设置于所述第二部件;所述弹性件设置于所述卡件与所述第二部件之间,所述记忆合金结构连接于所述卡件与所述第二部件之间;或者,所述齿条固定设置于所述第二部件,所述齿轮的转轴固定设置于所述第一部件;所述弹性件设置于所述卡件与所述第一部件之间,所述记忆合金结构连接于所述卡件与所述第一部件之间;
    当所述记忆合金结构的温度低于设定阈值时,所述记忆合金结构处于第一形态,所述弹性件驱动所述卡件与所述齿轮卡合;当所述记忆合金结构的温度高于所述设定阈值时,所述记忆合金结构处于第二形态,驱动所述卡件远离所述齿轮运动,所述齿轮能够相对所述齿条啮合运动,所述弹性件处于蓄能状态。
  22. 如权利要求1~21任一项所述的距离调节装置,其特征在于,所述距离调节装置包括可穿戴设备,所述可穿戴设备设置有第一传感器、供电模块和控制器,其中,所述第一传感器设置于所述可穿戴设备,用于检测所述可穿戴设备与用户之间的位置关系,生成位置关系信号;所述供电模块与所述记忆合金部件连接,用于驱动所述记忆合金部件变形;所述控制器与所述供电模块和第一传感器信号连接,用于根据所述第一传感器的位置关系信号,控制所述供电模块输入至所述记忆合金部件的电流,驱动所述第一部件与所述第二部件相对移动或者相向移动。
  23. 如权利要求22所述的距离调节装置,其特征在于,所述第一传感器包括力传感器、电容近距离传感、超声波距离传感、激光测距传感、红外线测距传感和光线感应传感器中的至少一种类型。
  24. 如权利要求22或23所述的距离调节装置,其特征在于,包括至少两个所述第一传感器。
  25. 如权利要求24所述的距离调节装置,其特征在于,包括至少两个类型的所述第一传感器。
  26. 如权利要求22~25任一项所述的距离调节装置,其特征在于,所述可穿戴设备还设置有第二传感器,所述第二传感器与所述控制器连接,所述第二传感器用于在所述可穿戴设备处于使用状态时,向所述控制器发送使用状态信号,所述控制器用于在接收到所述使用状态信号之后,控制所述供电模块输入至所述记忆合金部件的电流。
  27. 如权利要求1~21任一项所述的距离调节装置,其特征在于,所述距离调节装置包括可穿戴设备,所述可穿戴设备设置有供电模块和语音控制器,其中,所述供电模块与所述记忆合金部件连接,用于驱动所述记忆合金部件变形;语音控制器与所述供电模块,用于接收用户的语音指令,根据所述语音指令控制所述供电模块输入至所述记忆合金部件的电流,驱动所述第一部件与所述第二部件相对移动或者相向移动。
  28. 一种如权利要求1~27任一项所述的距离调节装置的控制方法,其特征在于,包括:
    获取所述可穿戴设备与用户之间的位置关系信号;
    判断所述位置关系信号是否位于设定范围,若是,控制所述记忆合金部件停止工作;若否,控制所述记忆合金部件驱动所述第一部件与所述第二部件相对移动或者相向移动。
  29. 如权利要求28所述的控制方法,其特征在于,所述位置关系信号包括压力值和/或距离值。
  30. 如权利要求28或29所述的控制方法,其特征在于,包括:
    获取所述可穿戴设备与用户之间的距离值;
    判断所述距离值是否位于第一设定范围,若否,控制所述记忆合金部件驱动所述第一部件与所述第二部件相对移动或者相向移动;若是,控制所述记忆合金部件停止工作;
    所述控制所述记忆合金部件停止工作,之后包括:
    获取所述可穿戴设备与用户之间的压力值;
    判断所述压力值是否位于第二设定范围,若是,控制所述记忆合金部件停止工作;若否,控制所述记忆合金部件驱动所述第一部件与所述第二部件相对移动或者相向移动。
  31. 如权利要求28~30任一项所述的控制方法,其特征在于,获取所述可穿戴设备与用户之间的位置关系信号,之前包括:
    获取所述可穿戴设备的使用状态信号。
  32. 如权利要求28~31任一项所述的控制方法,其特征在于,包括自学习形成用户信息,根据所述用户信息控制所述记忆合金部件驱动所述第一部件与所述第二部件至设定位置。
PCT/CN2022/073247 2021-02-10 2022-01-21 距离调节装置和距离调节装置的控制方法 WO2022170942A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22752104.4A EP4279983A4 (en) 2021-02-10 2022-01-21 DISTANCE ADJUSTMENT DEVICE AND CONTROL METHOD THEREFOR
US18/264,825 US20240117796A1 (en) 2021-02-10 2022-01-21 Distance adjustment apparatus and control method of distance adjustment apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110185526.1 2021-02-10
CN202110185526 2021-02-10
CN202110900779.2 2021-08-06
CN202110900779.2A CN114903258A (zh) 2021-02-10 2021-08-06 距离调节装置和距离调节装置的控制方法

Publications (1)

Publication Number Publication Date
WO2022170942A1 true WO2022170942A1 (zh) 2022-08-18

Family

ID=82760731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073247 WO2022170942A1 (zh) 2021-02-10 2022-01-21 距离调节装置和距离调节装置的控制方法

Country Status (4)

Country Link
US (1) US20240117796A1 (zh)
EP (1) EP4279983A4 (zh)
CN (1) CN114903258A (zh)
WO (1) WO2022170942A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058947A2 (ko) * 2008-11-18 2010-05-27 (주)하이소닉 카메라 도어 개폐장치
CN103852904A (zh) * 2014-04-01 2014-06-11 万新光学集团有限公司 一种智能调节镜腿松紧度的眼镜架
WO2016149868A1 (zh) * 2015-03-20 2016-09-29 厦门华虹光学科技有限公司 眼镜镜脚的弹性调节机构
US9609921B1 (en) * 2016-03-04 2017-04-04 Feinstein Patents, Llc Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting magnetic clasp
CN107191831A (zh) * 2017-05-27 2017-09-22 东莞市闻誉实业有限公司 环绕式照明装置
CN108508566A (zh) * 2018-03-27 2018-09-07 瑞声科技(新加坡)有限公司 镜头驱动装置
CN110133818A (zh) * 2019-06-01 2019-08-16 瑞声科技(新加坡)有限公司 镜头组件
CN111602938A (zh) * 2020-05-29 2020-09-01 维沃移动通信有限公司 穿戴式电子设备
CN111756888A (zh) * 2019-03-28 2020-10-09 群光电子股份有限公司 电子装置及其致动机制

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9727062B2 (en) * 2011-07-14 2017-08-08 Onesubsea Ip Uk Limited Shape memory alloy thermostat for subsea equipment
JP2016038815A (ja) * 2014-08-08 2016-03-22 ソニー株式会社 情報提示装置
US9427941B2 (en) * 2015-02-02 2016-08-30 Feinstein Patents, Llc Hybrid smart assembling 4D material
US10386131B2 (en) * 2015-11-13 2019-08-20 The Boeing Company Self-regulating thermal insulation and related methods
US10805718B1 (en) * 2019-06-27 2020-10-13 Facebook Technologies, Llc Multi-degree of freedom transducer vibration isolation system
EP4187918A1 (en) * 2020-07-29 2023-05-31 Shenzhen Shokz Co., Ltd. Earphone
KR20220109098A (ko) * 2021-01-28 2022-08-04 삼성전기주식회사 웨어러블 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058947A2 (ko) * 2008-11-18 2010-05-27 (주)하이소닉 카메라 도어 개폐장치
CN103852904A (zh) * 2014-04-01 2014-06-11 万新光学集团有限公司 一种智能调节镜腿松紧度的眼镜架
WO2016149868A1 (zh) * 2015-03-20 2016-09-29 厦门华虹光学科技有限公司 眼镜镜脚的弹性调节机构
US9609921B1 (en) * 2016-03-04 2017-04-04 Feinstein Patents, Llc Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting magnetic clasp
CN107191831A (zh) * 2017-05-27 2017-09-22 东莞市闻誉实业有限公司 环绕式照明装置
CN108508566A (zh) * 2018-03-27 2018-09-07 瑞声科技(新加坡)有限公司 镜头驱动装置
CN111756888A (zh) * 2019-03-28 2020-10-09 群光电子股份有限公司 电子装置及其致动机制
CN110133818A (zh) * 2019-06-01 2019-08-16 瑞声科技(新加坡)有限公司 镜头组件
CN111602938A (zh) * 2020-05-29 2020-09-01 维沃移动通信有限公司 穿戴式电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4279983A4 *

Also Published As

Publication number Publication date
CN114903258A (zh) 2022-08-16
US20240117796A1 (en) 2024-04-11
EP4279983A1 (en) 2023-11-22
EP4279983A4 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
US20220015707A1 (en) Physiological monitoring devices with adjustable stability
US10398200B2 (en) Dynamic fit adjustment for wearable electronic devices
US9609921B1 (en) Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting magnetic clasp
TWI510203B (zh) 帶體結構
EP2372428B1 (en) Camera lens actuation apparatus
CN103698904B (zh) 智能眼镜及控制方法
TW201138669A (en) System for adjusting the length of a bracelet or strap
WO2021115271A1 (zh) 头戴式设备支架及头戴式设备
WO2022170942A1 (zh) 距离调节装置和距离调节装置的控制方法
WO2006059766A1 (ja) 多段階停止機能付きサングラス及びその取付金具、並びにサングラス取付クリップ
JP2018180532A (ja) 装用緩衝保護装置を備えた眼鏡
AU2023210653B2 (en) Head-Mounted Fixing Device
US10827246B1 (en) Audio device
US11385481B1 (en) Advanced dynamic focus eyewear
US10456241B2 (en) Switchable lens devices, systems, and related methods
JP2009244603A (ja) 電子眼鏡
JP2004522995A (ja) 調節可能な眼鏡のための変形可能なレンズ
CN110200790B (zh) 近视预防装置
TWI836719B (zh) 穿戴裝置
US3285688A (en) Eyeglass frame with bimetallic strip means to automatically adjust fit on wearer
CN221765859U (zh) 智能眼镜的镜腿及智能眼镜
CN210749687U (zh) 近视预防装置
CN217506281U (zh) 头戴设备
WO2023070880A1 (zh) 一种可穿戴设备
CN214670096U (zh) 一种镜框跟踪型几何全息显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18264825

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022752104

Country of ref document: EP

Effective date: 20230816

NENP Non-entry into the national phase

Ref country code: DE