WO2022170751A1 - Magnetic field enhancement apparatus - Google Patents

Magnetic field enhancement apparatus Download PDF

Info

Publication number
WO2022170751A1
WO2022170751A1 PCT/CN2021/113664 CN2021113664W WO2022170751A1 WO 2022170751 A1 WO2022170751 A1 WO 2022170751A1 CN 2021113664 W CN2021113664 W CN 2021113664W WO 2022170751 A1 WO2022170751 A1 WO 2022170751A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
electrode layer
field enhancement
electrically connected
capacitor
Prior art date
Application number
PCT/CN2021/113664
Other languages
French (fr)
Chinese (zh)
Inventor
赵乾
池中海
郑卓肇
孟永钢
周济
Original Assignee
清华大学
北京清华长庚医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 北京清华长庚医院 filed Critical 清华大学
Publication of WO2022170751A1 publication Critical patent/WO2022170751A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field

Abstract

A magnetic field enhancement apparatus (20): a first electrode layer (110) is arranged on a first surface (101), and a second electrode layer (120) is arranged on the first surface (101) and positioned in a first capacitor area (11), the second electrode layer (120) being spaced apart from part of the first electrode layer (110) positioned in the first capacitor area (11), a third electrode layer (130) being arranged on the first surface (101) and being positioned in a second capacitor area (12), the third electrode layer (130) being spaced apart from part of the first electrode layer (110) positioned in the second capacitor area (12), one end of a first resonant capacitor (911) being electrically connected to the second electrode layer (120), and the other end of the first resonant capacitor (911) being electrically connected to the part of the first electrode layer (110) positioned in the first capacitor area (11), the second electrode layer (120) and the part of the first electrode layer (110) positioned in the first capacitor area (11) of two adjacent magnetic field enhancement assemblies (10) being connected, one end of a second resonant capacitor (921) being electrically connected to the third electrode layer (130), and the other end of the second resonant capacitor (921) being electrically connected to the part of the first electrode layer (110) positioned in the second capacitor area (12), and the third electrode layer (120) and the part of the first electrode layer (110) positioned in the second capacitor area (12) of two adjacent magnetic field enhancement assemblies (10) being connected.

Description

磁场增强装置Magnetic field enhancement device
相关申请Related applications
本申请要求2021年02月10日申请的,申请号为2021101839235,名称为“一种高频MRI图像增强超构表面器件”的中国专利申请的优先权,在此将其全文引入作为参考。This application claims the priority of the Chinese patent application filed on February 10, 2021, with the application number of 2021101839235 and titled "A High-frequency MRI Image Enhancement Metasurface Device", which is hereby incorporated by reference in its entirety.
技术领域technical field
本申请涉及磁共振成像技术领域,特别是涉及一种应用于MRI系统的磁场增强装置。The present application relates to the technical field of magnetic resonance imaging, and in particular, to a magnetic field enhancement device applied to an MRI system.
背景技术Background technique
MRI(Magnetic Resonance Imaging,核磁共振成像技术)为非介入探测方式,是医药、生物、神经科学领域的一项重要的基础诊断技术。传统MRI系统传输的信号强度主要取决于静磁场B0的强度,采用高磁场甚至超高磁场系统可以提高图像的信噪比、分辨率和缩短扫描时间。但是,静磁场强度的增加会带来如下三个问题:1)射频(RF)场非均匀性增大,调谐难度增加;2)人体组织产热增加,带来安全隐患,患者还容易出现眩晕和呕吐等不良反应:3)购置成本大幅度增加,对大多数小规模医院来说是一种负担。因此,如何采用尽量小的静磁场强度同时能够获得高的成像质量成为MRI技术中一个至关重要的问题。MRI (Magnetic Resonance Imaging, magnetic resonance imaging technology) is a non-invasive detection method, which is an important basic diagnostic technology in the fields of medicine, biology and neuroscience. The signal strength transmitted by the traditional MRI system mainly depends on the strength of the static magnetic field B0. The use of a high magnetic field or even an ultra-high magnetic field system can improve the signal-to-noise ratio, resolution and shorten the scanning time of the image. However, the increase of the static magnetic field strength will bring the following three problems: 1) the non-uniformity of the radio frequency (RF) field will increase, and the tuning difficulty will increase; 2) the heat generation of the human body will increase, which will bring safety hazards and patients are prone to dizziness and vomiting and other adverse reactions: 3) The purchase cost has increased significantly, which is a burden for most small-scale hospitals. Therefore, how to use as small a static magnetic field strength as possible while obtaining high imaging quality has become a crucial issue in MRI technology.
超构材料的出现为MRI成像质量和效率的提高,提供了一种新颖的更有效的方法。超构材料具有许多天然材料所不具备的特殊性质。通过电磁波与超构材料的金属或电介质基元间的相互作用及基元间的耦合效应,可以实现对电磁波传播路径与电磁场场强分布的控制。其中,具体工作原理是利用超构材料形成的结构中的电磁谐振,实现呈各向异性和梯度分布等电磁参数的调节。并且,通过对超构材料的几何尺寸、形状和介电常数等参数的设计,能够实现对不同频点的谐振增强。The emergence of metamaterials provides a novel and more efficient method for improving the quality and efficiency of MRI imaging. Metamaterials have special properties that many natural materials do not possess. Through the interaction between the electromagnetic wave and the metal or dielectric elements of the metamaterial and the coupling effect between the elements, the control of the electromagnetic wave propagation path and the electromagnetic field intensity distribution can be realized. Among them, the specific working principle is to use the electromagnetic resonance in the structure formed by the metamaterial to realize the adjustment of electromagnetic parameters such as anisotropy and gradient distribution. Moreover, through the design of parameters such as geometric size, shape and dielectric constant of metamaterials, resonance enhancement at different frequency points can be achieved.
传统的磁场增强组件包括电介质板和分别位于电介质板正面和背面的第一电极和第二电极。第二电极在电介质板上的正投影位于第一电极在电介质板上正投影的两端,以构成平行板电容器。A conventional magnetic field enhancement assembly includes a dielectric plate and first and second electrodes on the front and back of the dielectric plate, respectively. The orthographic projection of the second electrode on the dielectric plate is located at both ends of the orthographic projection of the first electrode on the dielectric plate, so as to form a parallel plate capacitor.
传统的磁场增强组件的结构中形成的平行板电容器均位于条形电极形成的传输线上。多个传统磁场增强组件依次连接后,形成增强装置。增强装置的等效电路为多个平行板电容器并联连接关系。多个传统磁场增强组件连接形成的增强装置的等效电容,为多个平行板电容器的电容相加。由于电容与频率成反比,在高场或者超高场MRI系统(3T及其以上)时,频率增大,多个传统磁场增强组件连接形成的增强装置的等效电容变小。等效电容变小,需要多个平行板电容器的电容也相应地变小。由于多个传统磁场增强组件连接形成的增强装置的等效电容,为多个平行板电容器的电容相加,导致多个平行板电容器的电容需要很小的电容值。因此,多个平行板电容器的电容值过小,会使得多个传统磁场增强组件连接形成的增强装置的谐振频率波动较大,导致谐振频率的稳定性变差。The parallel plate capacitors formed in the structure of the conventional magnetic field enhancement components are all located on the transmission line formed by the strip electrodes. After a plurality of conventional magnetic field enhancement components are connected in sequence, an enhancement device is formed. The equivalent circuit of the booster is a parallel connection of a plurality of parallel plate capacitors. The equivalent capacitance of the enhancement device formed by connecting a plurality of conventional magnetic field enhancement components is the sum of the capacitances of the plurality of parallel plate capacitors. Since the capacitance is inversely proportional to the frequency, in a high-field or ultra-high-field MRI system (3T and above), the frequency increases, and the equivalent capacitance of the enhancement device formed by connecting multiple traditional magnetic field enhancement components becomes smaller. The equivalent capacitance becomes smaller, and the capacitance that requires multiple parallel plate capacitors also becomes smaller accordingly. Since the equivalent capacitance of the enhancement device formed by connecting a plurality of conventional magnetic field enhancement components is added to the capacitances of the plurality of parallel plate capacitors, the capacitances of the plurality of parallel plate capacitors require a small capacitance value. Therefore, if the capacitance values of the plurality of parallel plate capacitors are too small, the resonance frequency of the enhancement device formed by connecting a plurality of conventional magnetic field enhancement components will fluctuate greatly, resulting in poor stability of the resonance frequency.
申请内容Application content
有鉴于此,本申请提供一种磁场增强装置。In view of this, the present application provides a magnetic field enhancement device.
本申请提供一种磁场增强装置。所述磁场增强装置包括多个磁场增强组件。每个所述磁场增强组件包括第一电介质层、第一电极层、第二电极层以及第三电极层。所述第一电介质层具有相对设置的第一端与第二端。所述第一电介质层还具有一个第一表面,由所述第一端到所述第二端延伸。The present application provides a magnetic field enhancement device. The magnetic field enhancement device includes a plurality of magnetic field enhancement components. Each of the magnetic field enhancement components includes a first dielectric layer, a first electrode layer, a second electrode layer, and a third electrode layer. The first dielectric layer has a first end and a second end opposite to each other. The first dielectric layer also has a first surface extending from the first end to the second end.
由所述第一端到所述第二端方向上,所述第一表面包括第一电容区、传导区和第二电容区。所述传导区位于所述第一电容区和所述第二电容区之间。所述第一电容区靠近所述第一端。所述第二电容区靠近所述第二端。From the first end to the second end, the first surface includes a first capacitance region, a conduction region and a second capacitance region. The conductive region is located between the first capacitive region and the second capacitive region. The first capacitance region is close to the first end. The second capacitance region is close to the second end.
所述第一电极层设置于所述第一表面。所述第一电极层由所述第一端延伸至所述第二端。所述第一电极层的两端分别向所述第一电容区和所述第二电容区延伸。所述第二电极层设置于所述第一表面。所述第二电极层位于所述第一电容区。所述第二电极层与所述第一电极层位于所述第一电容区的部分间隔设置。The first electrode layer is disposed on the first surface. The first electrode layer extends from the first end to the second end. Two ends of the first electrode layer extend toward the first capacitance region and the second capacitance region, respectively. The second electrode layer is disposed on the first surface. The second electrode layer is located in the first capacitance region. The second electrode layer is spaced from a portion of the first electrode layer located in the first capacitance region.
所述第三电极层设置于所述第一表面。所述第三电极层位于所述第二电容区。所述第三电极层与所述第一电极层位于所述第二电容区的部分间隔设置。The third electrode layer is disposed on the first surface. The third electrode layer is located in the second capacitance region. The third electrode layer is spaced from a portion of the first electrode layer located in the second capacitance region.
每个所述磁场增强组件由所述第一端至所述第二端延伸。所述多个磁场增强组件间隔设置,并包围形成一个磁场增强空间。所述磁场增强空间用于放置被测部位,进而对所述被测部位的磁场增强。Each of the magnetic field enhancement assemblies extends from the first end to the second end. The plurality of magnetic field enhancement components are arranged at intervals and surround to form a magnetic field enhancement space. The magnetic field enhancement space is used to place the part to be measured, so as to enhance the magnetic field of the part to be measured.
所述磁场增强装置还包括多个第一谐振电容。所述多个第一谐振电容靠近所述第一端设置。一个所述第一谐振电容与一个所述磁场增强组件对应设置。每个所述第一谐振电容的一端与所述第二电极层电连接。每个所述第一谐振电容的另一端与所述第一电极层位于所述第一电容区的部分电连接。相邻两个所述磁场增强组件的所述第二电极层与所述第一电极层位于所述第一电容区的部分连接。可以理解为,相邻两个所述磁场增强组件中,一个所述磁场增强组件的所述第二电极层与另一个所述磁场增强组件的所述第一电极层位于所述第一电容区的部分连接。在所述第一端一侧,所述多个磁场增强组件通过每个所述磁场增强组件中的所述第二电极层和所述第一电极层位于所述第一电容区的部分连接。The magnetic field enhancement device further includes a plurality of first resonance capacitors. The plurality of first resonance capacitors are disposed close to the first end. One of the first resonance capacitors is arranged corresponding to one of the magnetic field enhancement components. One end of each of the first resonance capacitors is electrically connected to the second electrode layer. The other end of each of the first resonant capacitors is electrically connected to a portion of the first electrode layer located in the first capacitor region. The second electrode layers of two adjacent magnetic field enhancement components are connected to the part of the first electrode layer located in the first capacitance region. It can be understood that, in two adjacent magnetic field enhancement components, the second electrode layer of one magnetic field enhancement component and the first electrode layer of the other magnetic field enhancement component are located in the first capacitance region part of the connection. On the side of the first end, the plurality of magnetic field enhancement components are connected through the second electrode layer in each of the magnetic field enhancement components and a portion of the first electrode layer located in the first capacitance region.
当所述磁场增强装置设置于磁场环境时,会产生感应电流。在所述第一端一侧,感应电流会依次经过所述第二电极层、所述第一谐振电容的两端、所述第一电极层位于所述第一电容区的部分、相邻所述磁场增强组件的所述第二电极层、所述第一谐振电容的两端、所述第一电极层位于所述第一电容区的部分。以此类推,当等效成电路图时,所述多个第一谐振电容逐个依次串联连接。When the magnetic field enhancement device is installed in a magnetic field environment, an induced current will be generated. On the side of the first end, the induced current will sequentially pass through the second electrode layer, the two ends of the first resonant capacitor, the part of the first electrode layer located in the first capacitor region, and the adjacent The second electrode layer of the magnetic field enhancement component, both ends of the first resonant capacitor, and the first electrode layer are located in the part of the first capacitor region. By analogy, when equivalent to a circuit diagram, the plurality of first resonance capacitors are sequentially connected in series one by one.
所述磁场增强装置还包括多个第二谐振电容。所述多个第二谐振电容靠近所述第二端设置。一个所述第二谐振电容与一个所述磁场增强组件对应设置。每个所述第二谐振电容的一 端与所述第三电极层电连接,每个所述第二谐振电容的另一端与所述第一电极层位于所述第二电容区的部分电连接。相邻两个所述磁场增强组件的所述第三电极层与所述第一电极层位于所述第二电容区的部分连接。可以理解为,相邻两个所述磁场增强组件中,一个所述磁场增强组件的所述第三电极层与另一个所述磁场增强组件的所述第一电极层位于所述第二电容区的部分连接。在所述第二端一侧,所述多个磁场增强组件通过每个所述磁场增强组件中的所述第三电极层和所述第一电极层位于所述第二电容区的部分连接。The magnetic field enhancement device further includes a plurality of second resonance capacitors. The plurality of second resonance capacitors are disposed close to the second end. One of the second resonance capacitors is arranged corresponding to one of the magnetic field enhancement components. One end of each of the second resonant capacitors is electrically connected to the third electrode layer, and the other end of each of the second resonant capacitors is electrically connected to a portion of the first electrode layer located in the second capacitor region. The third electrode layers of two adjacent magnetic field enhancement components are connected to the part of the first electrode layer located in the second capacitance region. It can be understood that, in two adjacent magnetic field enhancement components, the third electrode layer of one magnetic field enhancement component and the first electrode layer of the other magnetic field enhancement component are located in the second capacitance region part of the connection. On the side of the second end, the plurality of magnetic field enhancement components are connected through the third electrode layer in each of the magnetic field enhancement components and the portion of the first electrode layer located in the second capacitance region.
当所述磁场增强装置设置于磁场环境时,会产生感应电流。在所述第二端一侧,感应电流会依次经过所述第三电极层、所述第二谐振电容的两端、所述第一电极层位于所述第二电容区的部分、相邻所述磁场增强组件的所述第三电极层、所述第二谐振电容的两端、所述第一电极层位于所述第二电容区的部分。以此类推,当等效成电路图时,所述多个第二谐振电容逐个依次串联连接。When the magnetic field enhancement device is installed in a magnetic field environment, an induced current will be generated. On the side of the second end, the induced current will sequentially pass through the third electrode layer, the two ends of the second resonant capacitor, the part of the first electrode layer located in the second capacitor region, and the adjacent The third electrode layer of the magnetic field enhancement component, both ends of the second resonant capacitor, and the first electrode layer are located in the part of the second capacitor region. By analogy, when equivalent to a circuit diagram, the plurality of second resonance capacitors are sequentially connected in series one by one.
所述第一电极层、所述第二电极层以及所述第三电极层都设置于所述第一表面。所述第一电极层、所述第二电极层以及所述第三电极层设置在了同一表面,彼此之间没有形成平行板电容器。所述第一电极层、所述第二电极层以及所述第三电极层都间隔设置,彼此之间没有连接。在所述第一电容区中,所述第二电极层与所述第一电极层间隔设置于同一表面。所述第一谐振电容的两端分别与所述第二电极层和所述第一电极层电连接。在所述第二电容区中,所述第二谐振电容的两端分别与所述第三电极层和所述第一电极层电连接。The first electrode layer, the second electrode layer and the third electrode layer are all disposed on the first surface. The first electrode layer, the second electrode layer and the third electrode layer are arranged on the same surface, and no parallel plate capacitors are formed therebetween. The first electrode layer, the second electrode layer and the third electrode layer are arranged at intervals and are not connected to each other. In the first capacitance region, the second electrode layer and the first electrode layer are disposed on the same surface with intervals. Both ends of the first resonant capacitor are electrically connected to the second electrode layer and the first electrode layer, respectively. In the second capacitor region, two ends of the second resonant capacitor are electrically connected to the third electrode layer and the first electrode layer, respectively.
当所述多个磁场增强组件连接,并位于磁场环境中时,所述多个第一谐振电容逐个依次串联连接。所述多个第二谐振电容逐个依次串联连接。当高场或者超高场MRI系统(3T及其以上)的工作频率和所述磁场增强装置的谐振频率相同时,所述磁场增强装置可以对磁场增强。When the plurality of magnetic field enhancement components are connected and located in a magnetic field environment, the plurality of first resonance capacitors are sequentially connected in series one by one. The plurality of second resonance capacitors are sequentially connected in series one by one. When the operating frequency of the high-field or ultra-high-field MRI system (3T and above) is the same as the resonance frequency of the magnetic field enhancement device, the magnetic field enhancement device can enhance the magnetic field.
由于电容与频率成反比,在高场或者超高场MRI系统(3T及其以上)时,频率较大,多个传统磁场增强组件连接形成的结构的等效电容需要偏小。然而,所述多个第一谐振电容串联连接会使得所述多个第一谐振电容形成的等效电容变小。所述多个第二谐振电容串联连接会使得所述多个第二谐振电容形成的等效电容变小。串联连接等效之后的电容变小,可以使得串联连接等效之前的所述第一谐振电容911与所述第二谐振电容921采用大电容值。当将所述磁场增强装置的谐振频率中的电容值分配给所述多个第一谐振电容和所述多个第二谐振电容时,所述多个第一谐振电容和所述多个第二谐振电容的电容值可以采用大电容值,避免了采用过小电容值的电容器。采用大电容值的电容器使得所述磁场增强装置形成的结构的谐振频率波动较小,提高了谐振频率的稳定性,更加适合用于高场MRI。Since capacitance is inversely proportional to frequency, in high-field or ultra-high-field MRI systems (3T and above), the frequency is relatively large, and the equivalent capacitance of the structure formed by connecting multiple traditional magnetic field enhancement components needs to be small. However, connecting the plurality of first resonant capacitors in series reduces the equivalent capacitance formed by the plurality of first resonant capacitors. Connecting the plurality of second resonant capacitors in series reduces the equivalent capacitance formed by the plurality of second resonant capacitors. The capacitance after the series connection is equivalent becomes smaller, so that the first resonant capacitor 911 and the second resonant capacitor 921 before the series connection can have a large capacitance value. When the capacitance values in the resonance frequency of the magnetic field enhancement device are allocated to the plurality of first resonance capacitances and the plurality of second resonance capacitances, the plurality of first resonance capacitances and the plurality of second resonance capacitances The capacitance value of the resonant capacitor can adopt a large capacitance value, which avoids using a capacitor with an excessively small capacitance value. Using a capacitor with a large capacitance value makes the resonance frequency of the structure formed by the magnetic field enhancement device less fluctuating, improves the stability of the resonance frequency, and is more suitable for high-field MRI.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实 施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only It is an embodiment of the present application. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without any creative effort.
图1为本申请提供的图一个实施例中磁场增强组件的爆炸结构示意图;图2为本申请提供的一个实施例中磁场增强装置的结构示意图;图3为本申请提供的一个实施例中第一磁场增强组件的俯视图;图4为本申请提供的一个实施例中磁场增强装置的等效电路图;图5为本申请提供的一个实施例中第一磁场增强组件的俯视图;图6为本申请提供的一个实施例中磁场增强装置的结构示意图;图7为本申请提供的一个实施例中第一磁场增强组件的俯视图;图8为本申请提供的一个实施例中第一磁场增强组件的俯视图;图9为本申请提供的一个实施例中第二磁场增强组件的俯视图;图10为本申请提供的一个实施例中磁场增强装置的结构示意图;图11为本申请提供的一个实施例中磁场增强装置的结构示意图;图12为本申请提供的图11中第二磁场增强组件、第三导电结构、第四导电结构、第一谐振电容以及第二谐振电容的连接结构示意图;图13为本申请提供的一个实施例中第二磁场增强组件的俯视图;图14为本申请提供的一个实施例中第三磁场增强组件的侧视图;图15为本申请提供的一个实施例中第三磁场增强组件的第一端的侧视图;图16为本申请提供的一个实施例中第三磁场增强组件的第二端的侧视图;图17为本申请提供的一个实施例中第三磁场增强组件的侧视图;图18为本申请提供的一个实施例中磁场增强装置的结构示意图;图19为本申请提供的一个实施例中磁场增强装置的结构示意图;图20为本申请提供的一个实施例中磁场增强装置与传统结构的谐振频率的对比图;图21为本申请提供的一个实施例中磁场增强装置的磁场分布。1 is a schematic diagram of an explosion structure of a magnetic field enhancement device in an embodiment provided by the application; FIG. 2 is a schematic structural diagram of a magnetic field enhancement device in an embodiment provided by the application; A plan view of a magnetic field enhancement assembly; FIG. 4 is an equivalent circuit diagram of a magnetic field enhancement device in an embodiment provided by the application; FIG. 5 is a top view of the first magnetic field enhancement assembly in an embodiment provided by the application; FIG. 6 is the application A schematic structural diagram of a magnetic field enhancement device in an embodiment provided by the application; FIG. 7 is a top view of the first magnetic field enhancement assembly in an embodiment provided by the application; FIG. 8 is a top view of the first magnetic field enhancement assembly in an embodiment provided by the application. 9 is a top view of the second magnetic field enhancement assembly in an embodiment provided by the application; Figure 10 is a schematic structural diagram of the magnetic field enhancement device in an embodiment provided by the application; Figure 11 is a magnetic field in an embodiment provided by the application. Schematic diagram of the structure of the enhancement device; FIG. 12 is a schematic diagram of the connection structure of the second magnetic field enhancement component, the third conductive structure, the fourth conductive structure, the first resonant capacitor and the second resonant capacitor in FIG. 11 provided by the application; A top view of the second magnetic field enhancement component in an embodiment provided by the application; FIG. 14 is a side view of the third magnetic field enhancement component in an embodiment provided by the application; FIG. 15 is a third magnetic field enhancement component in an embodiment provided by the application. A side view of the first end of the assembly; FIG. 16 is a side view of the second end of the third magnetic field enhancement assembly in an embodiment provided by the application; FIG. 17 is a side view of the third magnetic field enhancement assembly in an embodiment provided by the application Figure 18 is a schematic structural diagram of a magnetic field enhancement device in an embodiment provided by the application; Figure 19 is a schematic structural diagram of a magnetic field enhancement device in an embodiment provided by the application; Figure 20 is a magnetic field in an embodiment provided by the application. A comparison diagram of the resonance frequency of the enhancement device and the traditional structure; FIG. 21 is the magnetic field distribution of the magnetic field enhancement device in an embodiment provided by the application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。In order to make the objectives, technical solutions and advantages of the present application more clearly understood, the present application will be further described in detail below through embodiments and in conjunction with the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
请参见图1,本申请提供一种磁场增强装置20。所述磁场增强装置20包括多个第一磁场增强组件10。每个所述第一磁场增强组件10包括第一电介质层100、第一电极层110、第二电极层120以及第三电极层130。所述第一电介质层100具有相对设置的第一端103与第二端104。所述第一电介质层100还具有一个第一表面101,由所述第一端103到所述第二端104延伸。Referring to FIG. 1 , the present application provides a magnetic field enhancement device 20 . The magnetic field enhancement device 20 includes a plurality of first magnetic field enhancement components 10 . Each of the first magnetic field enhancement components 10 includes a first dielectric layer 100 , a first electrode layer 110 , a second electrode layer 120 and a third electrode layer 130 . The first dielectric layer 100 has a first end 103 and a second end 104 disposed opposite to each other. The first dielectric layer 100 also has a first surface 101 extending from the first end 103 to the second end 104 .
由所述第一端103到所述第二端104方向上,所述第一表面101包括第一电容区11、传导区13和第二电容区12。所述传导区13位于所述第一电容区11和所述第二电容区12之间。 所述第一电容区11靠近所述第一端103。所述第二电容区12靠近所述第二端104。From the first end 103 to the second end 104 , the first surface 101 includes a first capacitance region 11 , a conduction region 13 and a second capacitance region 12 . The conductive region 13 is located between the first capacitance region 11 and the second capacitance region 12 . The first capacitor region 11 is close to the first end 103 . The second capacitor region 12 is close to the second end 104 .
所述第一电极层110设置于所述第一表面101。所述第一电极层110由所述第一端103延伸至所述第二端104。所述第一电极层110的两端分别向所述第一电容区11和所述第二电容区12延伸。所述第二电极层120设置于所述第一表面101。所述第二电极层120位于所述第一电容区11。所述第二电极层120与所述第一电极层110位于所述第一电容区11的部分间隔设置。可以理解为,在所述第一电容区11,所述第二电极层120与所述第一电极层110间隔设置。The first electrode layer 110 is disposed on the first surface 101 . The first electrode layer 110 extends from the first end 103 to the second end 104 . Two ends of the first electrode layer 110 extend toward the first capacitor region 11 and the second capacitor region 12 respectively. The second electrode layer 120 is disposed on the first surface 101 . The second electrode layer 120 is located in the first capacitor region 11 . The second electrode layer 120 and the portion of the first electrode layer 110 located in the first capacitor region 11 are spaced apart from each other. It can be understood that, in the first capacitor region 11 , the second electrode layer 120 and the first electrode layer 110 are spaced apart from each other.
所述第三电极层130设置于所述第一表面101。所述第三电极层130位于所述第二电容区12。所述第三电极层130与所述第一电极层110位于所述第二电容区12的部分间隔设置。可以理解为,在所述第二电容区12,所述第三电极层130与所述第一电极层110间隔设置。The third electrode layer 130 is disposed on the first surface 101 . The third electrode layer 130 is located in the second capacitor region 12 . The third electrode layer 130 is spaced apart from the portion of the first electrode layer 110 located in the second capacitor region 12 . It can be understood that, in the second capacitor region 12 , the third electrode layer 130 and the first electrode layer 110 are spaced apart from each other.
请参见图2,每个所述第一磁场增强组件10由所述第一端103至所述第二端104延伸。所述多个第一磁场增强组件10间隔设置,并包围形成一个磁场增强空间105。所述磁场增强空间105用于放置被测部位,进而对所述被测部位的磁场进行增强。Referring to FIG. 2 , each of the first magnetic field enhancement components 10 extends from the first end 103 to the second end 104 . The plurality of first magnetic field enhancement components 10 are arranged at intervals and surround to form a magnetic field enhancement space 105 . The magnetic field enhancement space 105 is used to place the part to be measured, so as to enhance the magnetic field of the part to be measured.
请参见图3,所述磁场增强装置20还包括多个第一谐振电容911。所述多个第一谐振电容911靠近所述第一端103设置。一个所述第一谐振电容911与一个所述第一磁场增强组件10对应设置。每个所述第一谐振电容911的一端与所述第二电极层120电连接。每个所述第一谐振电容911的另一端与所述第一电极层110位于所述第一电容区11的部分电连接。相邻两个所述第一磁场增强组件10的所述第二电极层120与所述第一电极层110位于所述第一电容区11的部分连接。可以理解为,相邻两个所述第一磁场增强组件10中,一个所述第一磁场增强组件10的所述第二电极层120与另一个所述第一磁场增强组件10的所述第一电极层110位于所述第一电容区11的部分连接。在所述第一端103一侧,所述多个第一磁场增强组件10通过每个所述第一磁场增强组件10中的所述第二电极层120和所述第一电极层110位于所述第一电容区11的部分连接。Referring to FIG. 3 , the magnetic field enhancement device 20 further includes a plurality of first resonance capacitors 911 . The plurality of first resonant capacitors 911 are disposed close to the first end 103 . One of the first resonant capacitors 911 is provided corresponding to one of the first magnetic field enhancement components 10 . One end of each of the first resonance capacitors 911 is electrically connected to the second electrode layer 120 . The other end of each of the first resonant capacitors 911 is electrically connected to the portion of the first electrode layer 110 located in the first capacitor region 11 . The second electrode layers 120 of the two adjacent first magnetic field enhancement components 10 are connected to the portion of the first electrode layer 110 located in the first capacitance region 11 . It can be understood that, in two adjacent first magnetic field enhancement assemblies 10 , the second electrode layer 120 of one of the first magnetic field enhancement assemblies 10 and the second electrode layer 120 of the other first magnetic field enhancement assembly 10 An electrode layer 110 is connected to a portion of the first capacitor region 11 . On the side of the first end 103 , the plurality of first magnetic field enhancement components 10 are located at the location through the second electrode layer 120 and the first electrode layer 110 in each of the first magnetic field enhancement components 10 . Part of the first capacitor region 11 is connected.
当所述磁场增强装置20设置于磁场环境时,会产生感应电流。在所述第一端103一侧,感应电流会依次经过所述第二电极层120、所述第一谐振电容911的两端、所述第一电极层110位于所述第一电容区11的部分、相邻所述第一磁场增强组件10的所述第二电极层120、所述第一谐振电容911的两端、所述第一电极层110位于所述第一电容区11的部分等。请参见图4,当等效成电路图时,所述多个第一谐振电容911逐个依次串联连接。When the magnetic field enhancement device 20 is installed in a magnetic field environment, an induced current will be generated. On the side of the first end 103 , the induced current will sequentially pass through the second electrode layer 120 , both ends of the first resonant capacitor 911 , and the first electrode layer 110 is located in the first capacitor region 11 . part, the second electrode layer 120 adjacent to the first magnetic field enhancement component 10 , both ends of the first resonant capacitor 911 , the part of the first electrode layer 110 located in the first capacitor region 11 , etc. . Referring to FIG. 4 , when equivalent to a circuit diagram, the plurality of first resonant capacitors 911 are sequentially connected in series one by one.
所述磁场增强装置20还包括多个第二谐振电容921。所述多个第二谐振电容921靠近所述第二端104设置。一个所述第二谐振电容921与一个所述第一磁场增强组件10对应设置。每个所述第二谐振电容921的一端与所述第三电极层130电连接,每个所述第二谐振电容921的另一端与所述第一电极层110位于所述第二电容区12的部分电连接。相邻两个所述第一磁场增强组件10的所述第三电极层130与所述第一电极层110位于所述第二电容区12的部分 连接。可以理解为,相邻两个所述第一磁场增强组件10中,一个所述第一磁场增强组件10的所述第三电极层130与另一个所述第一磁场增强组件10的所述第一电极层110位于所述第二电容区12的部分连接。在所述第二端104一侧,所述多个第一磁场增强组件10通过每个所述第一磁场增强组件10中的所述第三电极层130和所述第一电极层110位于所述第二电容区12的部分连接。The magnetic field enhancement device 20 further includes a plurality of second resonance capacitors 921 . The plurality of second resonance capacitors 921 are disposed close to the second end 104 . One of the second resonant capacitors 921 is disposed corresponding to one of the first magnetic field enhancement components 10 . One end of each of the second resonant capacitors 921 is electrically connected to the third electrode layer 130 , and the other end of each of the second resonant capacitors 921 is located in the second capacitor region 12 with the first electrode layer 110 . part of the electrical connection. The third electrode layers 130 of two adjacent first magnetic field enhancement components 10 are connected to the portion of the first electrode layer 110 located in the second capacitance region 12 . It can be understood that, in two adjacent first magnetic field enhancement assemblies 10 , the third electrode layer 130 of one of the first magnetic field enhancement assemblies 10 and the first magnetic field enhancement assembly 10 of the other first magnetic field enhancement assembly 10 An electrode layer 110 is connected to a portion of the second capacitor region 12 . On the side of the second end 104 , the plurality of first magnetic field enhancement components 10 are located at the location through the third electrode layer 130 and the first electrode layer 110 in each of the first magnetic field enhancement components 10 . Part of the second capacitor region 12 is connected.
当所述磁场增强装置20设置于磁场环境时,会产生感应电流。在所述第二端104一侧,感应电流会依次经过所述第三电极层130、所述第二谐振电容921的两端、所述第一电极层110位于所述第二电容区12的部分、相邻所述第一磁场增强组件10的所述第三电极层130、所述第二谐振电容921的两端、所述第一电极层110位于所述第二电容区12的部分等。请参见图4,当等效成电路图时,所述多个第二谐振电容921逐个依次串联连接。When the magnetic field enhancement device 20 is installed in a magnetic field environment, an induced current will be generated. On the side of the second end 104 , the induced current will sequentially pass through the third electrode layer 130 , both ends of the second resonant capacitor 921 , and the first electrode layer 110 is located in the second capacitor region 12 . part, the third electrode layer 130 adjacent to the first magnetic field enhancement component 10 , both ends of the second resonant capacitor 921 , the part of the first electrode layer 110 located in the second capacitor region 12 , etc. . Referring to FIG. 4 , when equivalent to a circuit diagram, the plurality of second resonance capacitors 921 are sequentially connected in series one by one.
所述第一电极层110、所述第二电极层120以及所述第三电极层130都设置于所述第一表面101。所述第一电极层110、所述第二电极层120以及所述第三电极层130设置在了同一表面,彼此之间没有形成平行板电容器。所述第一电极层110、所述第二电极层120以及所述第三电极层130都间隔设置,彼此之间没有连接。在所述第一电容区11中,所述第二电极层120与所述第一电极层110间隔设置于同一表面。所述第一谐振电容911的两端分别与所述第二电极层120和所述第一电极层110电连接。在所述第二电容区12中,所述第二谐振电容921的两端分别与所述第三电极层130和所述第一电极层110电连接。The first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130 are all disposed on the first surface 101 . The first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130 are disposed on the same surface, and no parallel plate capacitors are formed therebetween. The first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130 are spaced apart and not connected to each other. In the first capacitor region 11 , the second electrode layer 120 and the first electrode layer 110 are disposed on the same surface at intervals. Two ends of the first resonant capacitor 911 are respectively electrically connected to the second electrode layer 120 and the first electrode layer 110 . In the second capacitor region 12 , both ends of the second resonant capacitor 921 are electrically connected to the third electrode layer 130 and the first electrode layer 110 , respectively.
当所述多个第一磁场增强组件10连接,并位于磁场环境中时,所述多个第一谐振电容911逐个依次串联连接。所述多个第二谐振电容921逐个依次串联连接。当高场或者超高场MRI系统(3T及其以上)的工作频率和所述磁场增强装置20的谐振频率相同时,所述磁场增强装置20可以对磁场进行增强。When the plurality of first magnetic field enhancement components 10 are connected and located in a magnetic field environment, the plurality of first resonance capacitors 911 are connected in series one by one. The plurality of second resonance capacitors 921 are sequentially connected in series one by one. When the operating frequency of the high-field or ultra-high-field MRI system (3T and above) is the same as the resonance frequency of the magnetic field enhancement device 20, the magnetic field enhancement device 20 can enhance the magnetic field.
由于电容与频率成反比,在高场或者超高场MRI系统(3T及其以上)时,频率较大,会使得多个传统磁场增强组件连接形成的增强装置的等效电容需要偏小。然而,所述多个第一谐振电容911串联连接会使得所述多个第一谐振电容911形成的等效电容变小。所述多个第二谐振电容921串联连接会使得所述多个第二谐振电容921形成的等效电容变小。串联连接等效之后的电容变小,可以使得串联连接等效之前的所述第一谐振电容911与所述第二谐振电容921采用大电容值。当将所述磁场增强装置20的谐振频率中的电容值分配给所述多个第一谐振电容911和所述多个第二谐振电容921时,所述多个第一谐振电容911和所述多个第二谐振电容921的电容值可以采用大电容值,避免了采用过小电容值的电容器。采用大电容值的电容器使得所述磁场增强装置20的谐振频率波动较小,提高了谐振频率的稳定性,更加适合用于高场MRI系统。Since the capacitance is inversely proportional to the frequency, in a high-field or ultra-high-field MRI system (3T and above), the frequency is relatively large, so that the equivalent capacitance of the enhancement device formed by connecting multiple traditional magnetic field enhancement components needs to be small. However, the series connection of the plurality of first resonant capacitors 911 reduces the equivalent capacitance formed by the plurality of first resonant capacitors 911 . The series connection of the plurality of second resonant capacitors 921 reduces the equivalent capacitance formed by the plurality of second resonant capacitors 921 . The capacitance after the series connection is equivalent becomes smaller, so that the first resonant capacitor 911 and the second resonant capacitor 921 before the series connection can have a large capacitance value. When the capacitance values in the resonance frequency of the magnetic field enhancement device 20 are allocated to the plurality of first resonance capacitances 911 and the plurality of second resonance capacitances 921, the plurality of first resonance capacitances 911 and the plurality of second resonance capacitances 921 The capacitance values of the plurality of second resonant capacitors 921 may adopt large capacitance values, so as to avoid using capacitors with too small capacitance values. Using a capacitor with a large capacitance value makes the resonance frequency of the magnetic field enhancement device 20 less fluctuating, improves the stability of the resonance frequency, and is more suitable for use in a high-field MRI system.
所述磁场增强装置20为高频MRI图像增强超构表面器件。所述高频MRI图像增强超构表面器件使得高频工作下的超构表面具有较大的电容值,避免了采用过小电容值的电容。所 述高频MRI图像增强超构表面器件,避免了采用过小电容值的电容,增加了所述高频MRI图像增强超构表面器件在高频工作条件下的可调性和谐振频率稳定性。The magnetic field enhancement device 20 is a high-frequency MRI image enhancement metasurface device. The high-frequency MRI image-enhancing metasurface device enables the metasurface under high-frequency operation to have a larger capacitance value, and avoids using a capacitor with an excessively small capacitance value. The high-frequency MRI image-enhancing metasurface device avoids using a capacitor with an excessively small capacitance value, thereby increasing the tunability and resonant frequency stability of the high-frequency MRI image-enhancing metasurface device under high-frequency working conditions .
所述高频MRI图像增强超构表面器件,采用大电容值的电容使得所述高频MRI图像增强超构表面器件的谐振频率波动较小。所述高频MRI图像增强超构表面器件,采用大电容值的电容,提高了所述高频MRI图像增强超构表面器件的谐振频率的稳定性,更加适合用于高场MRI系统。The high-frequency MRI image-enhancing metasurface device adopts a capacitor with a large capacitance value so that the resonance frequency of the high-frequency MRI image-enhancing metasurface device has less fluctuation. The high-frequency MRI image enhancement metasurface device adopts a capacitor with a large capacitance value, which improves the stability of the resonance frequency of the high-frequency MRI image enhancement metasurface device, and is more suitable for high-field MRI systems.
在一个实施例中,所述第一电极层110、所述第二电极层120以及所述第三电极层130的材料可以为铜、银、金等无磁性金属。所述第一电介质层100的材料可以为耐燃材料等级为FR4的材料、聚亚苯基氧化物(PPE)等耐高温的热塑性树脂或者Rogers 4003C材料等。In one embodiment, the materials of the first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130 may be non-magnetic metals such as copper, silver, and gold. The material of the first dielectric layer 100 may be a material with a flame-retardant material grade of FR4, a high-temperature-resistant thermoplastic resin such as polyphenylene oxide (PPE), or a Rogers 4003C material.
在一个实施例中,所述第一电极层110、所述第二电极层120以及所述第三电极层130的材料相同,均为铜箔。In one embodiment, the materials of the first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130 are the same, which are copper foils.
请参见图5,在一个实施例中,在所述第一电容区11中,所述第一谐振电容911设置于所述第一表面101。在所述第二电容区12中,所述第二谐振电容921设置于所述第一表面101。Referring to FIG. 5 , in one embodiment, in the first capacitor region 11 , the first resonance capacitor 911 is disposed on the first surface 101 . In the second capacitor region 12 , the second resonance capacitor 921 is disposed on the first surface 101 .
在所述第一电容区11中,所述第二电极层120与所述第一电极层110间隔设置。所述第二电极层120与所述第一电极层110的相对端口会形成一个第一空隙,并露出所述第一表面101。所述第一谐振电容911设置于第一空隙中的所述第一表面101。在所述第二电容区12中,所述第三电极130与所述第一电极层110间隔设置。所述第三电极130与所述第一电极层110的相对端口会形成一个第二空隙,并露出所述第一表面101。所述第二谐振电容921设置于第二空隙中的所述第一表面101。In the first capacitor region 11 , the second electrode layer 120 and the first electrode layer 110 are spaced apart from each other. A first gap is formed between the opposite ports of the second electrode layer 120 and the first electrode layer 110 , and the first surface 101 is exposed. The first resonant capacitor 911 is disposed on the first surface 101 in the first space. In the second capacitance region 12 , the third electrode 130 is spaced apart from the first electrode layer 110 . A second gap is formed between the opposite ports of the third electrode 130 and the first electrode layer 110 , and the first surface 101 is exposed. The second resonance capacitor 921 is disposed on the first surface 101 in the second space.
所述第一谐振电容911设置于第一空隙中的所述第一表面101,所述第一谐振电容911的两端可以采用较少的引线与所述第二电极层120和所述第一电极层110电连接。所述第二谐振电容921设置于第二空隙中的所述第一表面101,所述第二谐振电容921的两端可以采用较少的引线与所述第三电极130和所述第一电极层110电连接。由于连接电容的引线较少,可以避免引线引入过多的电感。所述磁场增强装置20的谐振频率不会受到过多电感的影响。从而,所述磁场增强装置20的谐振频率波动较小,提高了谐振频率的稳定性,更加适合用于高场MRI系统。The first resonant capacitor 911 is disposed on the first surface 101 in the first space, and two ends of the first resonant capacitor 911 can be connected with the second electrode layer 120 and the first The electrode layer 110 is electrically connected. The second resonant capacitor 921 is disposed on the first surface 101 in the second space, and two ends of the second resonant capacitor 921 can be connected with the third electrode 130 and the first electrode using fewer leads. Layer 110 is electrically connected. Since there are fewer leads connecting the capacitors, it is possible to avoid excessive inductance introduced by the leads. The resonant frequency of the magnetic field enhancement device 20 is not affected by excessive inductance. Therefore, the resonance frequency of the magnetic field enhancement device 20 has less fluctuation, which improves the stability of the resonance frequency, and is more suitable for use in a high-field MRI system.
在一个实施例中,位于所述传导区13中的所述第一电极层110形成的磁场为所述磁场增强装置20的主要磁场。位于所述传导区13中的所述第一电极层110包围形成的空间为主要的磁场增强空间。所述第一谐振电容911与所述第二谐振电容921关于所述传导区13中的所述第一电极层110对称。所述第一谐振电容911与所述第二谐振电容921分别对称设置于所述第一端103和所述第二端104。所述第一谐振电容911与所述第二谐振电容921对称设置,使得所述磁场增强装置20形成的磁场更加均匀对称,更有利于对所述检测部位检测,提高MRI系统的图像质量。所述第一谐振电容911与所述第二谐振电容921分别对称设置于所述 第一端103和所述第二端104,使得所述第一谐振电容911与所述第二谐振电容921远离所述磁场增强空间105。所述第一谐振电容911与所述第二谐振电容921远离所述磁场增强空间105,可以避免电容产生的电场对检测部位造成伤害。In one embodiment, the magnetic field formed by the first electrode layer 110 in the conduction region 13 is the main magnetic field of the magnetic field enhancement device 20 . The space surrounded by the first electrode layer 110 in the conduction region 13 is the main magnetic field enhancement space. The first resonant capacitor 911 and the second resonant capacitor 921 are symmetrical with respect to the first electrode layer 110 in the conduction region 13 . The first resonant capacitor 911 and the second resonant capacitor 921 are symmetrically disposed at the first end 103 and the second end 104, respectively. The first resonant capacitor 911 and the second resonant capacitor 921 are symmetrically arranged, so that the magnetic field formed by the magnetic field enhancement device 20 is more uniform and symmetrical, which is more conducive to the detection of the detection part and improves the image quality of the MRI system. The first resonant capacitor 911 and the second resonant capacitor 921 are symmetrically arranged at the first end 103 and the second end 104 respectively, so that the first resonant capacitor 911 and the second resonant capacitor 921 are far away The magnetic field enhances the space 105 . The first resonant capacitor 911 and the second resonant capacitor 921 are far away from the magnetic field enhancement space 105, which can prevent the electric field generated by the capacitor from causing damage to the detection part.
请参见图6,在一个实施例中,所述磁场增强装置20还包括多个第一导电结构519和多个第二导电结构529。所述多个第一导电结构519靠近所述第一端103设置。每个所述第一导电结构519设置于相邻两个所述第一磁场增强组件10之间。每个所述第一导电结构519的两端分别与相邻两个所述第一磁场增强组件10的所述第二电极层120和所述第一电极层110位于所述第一电容区11的部分连接。可以理解为,一个所述第一导电结构519的一端与一个所述第一磁场增强组件10的所述第二电极层120连接。一个所述第一导电结构519的另一端与相邻所述第一磁场增强组件10的所述第一电极层110位于所述第一电容区11的部分连接。Referring to FIG. 6 , in one embodiment, the magnetic field enhancement device 20 further includes a plurality of first conductive structures 519 and a plurality of second conductive structures 529 . The plurality of first conductive structures 519 are disposed close to the first end 103 . Each of the first conductive structures 519 is disposed between two adjacent first magnetic field enhancement components 10 . Two ends of each of the first conductive structures 519 are located in the first capacitance region 11 with the second electrode layer 120 and the first electrode layer 110 of the two adjacent first magnetic field enhancement components 10 , respectively. part of the connection. It can be understood that one end of the first conductive structure 519 is connected to the second electrode layer 120 of the first magnetic field enhancement component 10 . The other end of one of the first conductive structures 519 is connected to a portion of the first electrode layer 110 adjacent to the first magnetic field enhancement component 10 located in the first capacitance region 11 .
在所述第一端103一侧,通过所述多个第一导电结构519将所述多个第一磁场增强组件10依次连接。感应电流会依次经过所述第二电极层120、所述第一谐振电容911的两端、所述第一电极层110位于所述第一电容区11的部分、所述第一导电结构519、相邻的所述第一磁场增强组件10的所述第二电极层120、所述第一谐振电容911的两端、所述第一电极层110位于所述第一电容区11的部分、所述第一导电结构519。依次类推,当等效成电路图时,通过所述多个第一导电结构519将所述多个第一谐振电容911逐个依次串联连接。On the side of the first end 103 , the plurality of first magnetic field enhancement components 10 are sequentially connected through the plurality of first conductive structures 519 . The induced current will sequentially pass through the second electrode layer 120 , both ends of the first resonant capacitor 911 , the portion of the first electrode layer 110 located in the first capacitor region 11 , the first conductive structure 519 , The second electrode layer 120 of the adjacent first magnetic field enhancement component 10, both ends of the first resonant capacitor 911, the part of the first electrode layer 110 located in the first capacitor region 11, The first conductive structure 519 is described. By analogy, when equivalent to a circuit diagram, the plurality of first resonant capacitors 911 are connected in series one by one through the plurality of first conductive structures 519 .
所述多个第二导电结构529靠近所述第二端104设置。每个所述第二导电结构529设置于相邻两个所述第一磁场增强组件10之间。每个所述第二导电结构529的两端分别与相邻两个所述第一磁场增强组件10的所述第三电极层130和所述第一电极层110位于所述第二电容区12的部分连接。可以理解为,一个所述第二导电结构529的一端与一个所述第一磁场增强组件10的所述第三电极层130连接。一个所述第一导电结构519的另一端与相邻所述第一磁场增强组件10的所述第一电极层110位于所述第二电容区12的部分连接。The plurality of second conductive structures 529 are disposed close to the second end 104 . Each of the second conductive structures 529 is disposed between two adjacent first magnetic field enhancement components 10 . Two ends of each of the second conductive structures 529 are located in the second capacitance region 12 respectively with the third electrode layer 130 and the first electrode layer 110 of the two adjacent first magnetic field enhancement components 10 . part of the connection. It can be understood that one end of the second conductive structure 529 is connected to the third electrode layer 130 of the first magnetic field enhancement component 10 . The other end of one of the first conductive structures 519 is connected to a portion of the first electrode layer 110 of the adjacent first magnetic field enhancement component 10 located in the second capacitance region 12 .
在所述第二端104一侧,通过所述多个第二导电结构529将所述多个第一磁场增强组件10依次连接。感应电流会依次经过所述第三电极层130、所述第二谐振电容921的两端、所述第一电极层110位于所述第二电容区12的部分、所述第二导电结构529、相邻的所述第一磁场增强组件10的所述第三电极层130、所述第二谐振电容921的两端、所述第一电极层110位于所述第二电容区12的部分、所述第二导电结构529。依次类推,当等效成电路图时,通过多个第二导电结构529将所述多个第二谐振电容921逐个依次串联连接。On the side of the second end 104 , the plurality of first magnetic field enhancement components 10 are sequentially connected through the plurality of second conductive structures 529 . The induced current will sequentially pass through the third electrode layer 130 , both ends of the second resonant capacitor 921 , the portion of the first electrode layer 110 located in the second capacitor region 12 , the second conductive structure 529 , The third electrode layer 130 of the adjacent first magnetic field enhancement component 10, both ends of the second resonant capacitor 921, the part of the first electrode layer 110 located in the second capacitor region 12, The second conductive structure 529 is described. By analogy, when equivalent to a circuit diagram, the plurality of second resonant capacitors 921 are connected in series one by one through the plurality of second conductive structures 529 .
在一个实施例中,所述第一导电结构519和所述第二导电结构529具有导电功能。所述第一导电结构519和所述第二导电结构529的材料可以为金、银、铜等金属材料制成。In one embodiment, the first conductive structure 519 and the second conductive structure 529 have a conductive function. The materials of the first conductive structure 519 and the second conductive structure 529 may be made of metal materials such as gold, silver, and copper.
请参见图7,在一个实施例中,所述磁场增强装置20还包括第五二极管461、第六二极管462以及第五外接电容445。所述第五二极管461的阳极与所述第二电极层120电连接。所述第六二极管462的阴极与所述第二电极层120电连接。所述第五外接电容445的一端与 位于所述第一电容区11的所述第一电极层110电连接,所述第五外接电容445的另一端分别与所述第五二极管461的阴极和所述第六二极管462的阳极电连接。Referring to FIG. 7 , in one embodiment, the magnetic field enhancement device 20 further includes a fifth diode 461 , a sixth diode 462 and a fifth external capacitor 445 . The anode of the fifth diode 461 is electrically connected to the second electrode layer 120 . The cathode of the sixth diode 462 is electrically connected to the second electrode layer 120 . One end of the fifth external capacitor 445 is electrically connected to the first electrode layer 110 located in the first capacitor region 11 , and the other end of the fifth external capacitor 445 is respectively connected to the fifth diode 461 . The cathode is electrically connected to the anode of the sixth diode 462 .
在MRI系统中,需要在射频接收阶段增强人体反馈信号的磁场强度。在MRI系统的射频发射阶段,发射阶段的磁场能量是接收阶段的磁场能量的1000倍以上。MRI系统的射频发射阶段感应电压在几十伏到几百伏之间。MRI系统的射频接收阶段感应电压小于1V。In an MRI system, it is necessary to enhance the magnetic field strength of the feedback signal from the human body during the RF receiving stage. In the radio frequency transmitting stage of the MRI system, the magnetic field energy in the transmitting stage is more than 1000 times the magnetic field energy in the receiving stage. The induced voltage in the radio frequency transmission stage of the MRI system is between tens of volts and hundreds of volts. The induced voltage in the RF receiving stage of the MRI system is less than 1V.
所述第五二极管461和所述第六二极管462反向并联连接。在MRI系统的射频发射阶段,射频线圈发射射频发射信号,磁场的场强较大。所述第一磁场增强组件10产生的感应电压较大。加载在所述第五二极管461和所述第六二极管462两端的电压正反交替。加载的电压超过所述第五二极管461和所述第六二极管462的开启电压,所述第五二极管461和所述第六二极管462导通。所述第五外接电容445与所述第一谐振电容911并联,发生并联谐振,使得所在电路处于高阻状态。MRI系统的射频发射阶段,相邻两个所述第一磁场增强组件10之间几乎没有电流流通。所述第一谐振电容911分别与相邻两个所述第一磁场增强组件10断开连接,没有电流通过,处于失谐状态。所述磁场增强装置20产生的磁场减弱,进而减小所述磁场增强装置20对MRI系统的射频发射阶段磁场的影响,从而减小检测图像的伪影,提高检测图像的清晰度。The fifth diode 461 and the sixth diode 462 are connected in antiparallel. In the radio frequency transmission stage of the MRI system, the radio frequency coil transmits the radio frequency transmission signal, and the field strength of the magnetic field is relatively large. The induced voltage generated by the first magnetic field enhancement component 10 is relatively large. The positive and negative voltages applied across the fifth diode 461 and the sixth diode 462 alternate. When the loaded voltage exceeds the turn-on voltage of the fifth diode 461 and the sixth diode 462, the fifth diode 461 and the sixth diode 462 are turned on. The fifth external capacitor 445 is connected in parallel with the first resonant capacitor 911 to generate parallel resonance, so that the circuit is in a high resistance state. During the radio frequency transmission stage of the MRI system, there is almost no current flow between the two adjacent first magnetic field enhancement components 10 . The first resonant capacitors 911 are respectively disconnected from the two adjacent first magnetic field enhancement components 10, no current flows, and are in a detuned state. The magnetic field generated by the magnetic field enhancement device 20 is weakened, thereby reducing the influence of the magnetic field enhancement device 20 on the magnetic field in the radio frequency transmission stage of the MRI system, thereby reducing the artifacts of the detected image and improving the clarity of the detected image.
在MRI系统的射频接收阶段,检测部位发射反馈信号,磁场的场强较小。所述第一磁场增强组件10产生的感应电压较小。加载的电压不能达到所述第五二极管461和所述第六二极管462的开启电压,所述第五二极管461和所述第六二极管462不导通。所述第一谐振电容911分别与相邻两个所述第一磁场增强组件10电连接,有电流通过。所述磁场增强装置20处于谐振状态,起到增强磁场的作用。In the radio frequency receiving stage of the MRI system, the detection part transmits a feedback signal, and the field strength of the magnetic field is small. The induced voltage generated by the first magnetic field enhancement component 10 is relatively small. The loaded voltage cannot reach the turn-on voltages of the fifth diode 461 and the sixth diode 462, and the fifth diode 461 and the sixth diode 462 are not conducting. The first resonant capacitors 911 are electrically connected to two adjacent first magnetic field enhancement components 10 respectively, and currents pass therethrough. The magnetic field enhancement device 20 is in a resonant state and plays the role of enhancing the magnetic field.
在一个实施例中,所述磁场增强装置20还包括第六外接电容4451、第一外接二极管4611以及第二外接二极管4622。所述第六外接电容4451、所述第一外接二极管4611以及所述第二外接二极管4622分别和所述第二谐振电容921的连接关系,与所述第五二极管461、所述第六二极管462以及所述第五外接电容445分别和所述第一谐振电容911的连接关系相同,工作原理也相同,可参见上述实施例中的描述。In one embodiment, the magnetic field enhancement device 20 further includes a sixth external capacitor 4451 , a first external diode 4611 and a second external diode 4622 . The connection relationship between the sixth external capacitor 4451, the first external diode 4611 and the second external diode 4622 and the second resonance capacitor 921 is the same as that of the fifth diode 461, the sixth The diode 462 and the fifth external capacitor 445 have the same connection relationship with the first resonant capacitor 911 respectively, and the working principle is also the same, for reference to the descriptions in the above embodiments.
MRI系统的射频发射阶段,所述第二谐振电容921分别与相邻两个所述第一磁场增强组件10断开连接,没有电流通过,处于失谐状态。所述磁场增强装置20产生的磁场减弱,进而减小所述磁场增强装置20对射频发射阶段磁场的影响,从而减小检测图像的伪影,提高检测图像的清晰度。在MRI系统的射频接收阶段,所述第二谐振电容921分别与相邻两个所述第一磁场增强组件10电连接,有电流通过。所述磁场增强装置20处于谐振状态,起到增强磁场的作用。In the radio frequency transmission stage of the MRI system, the second resonant capacitor 921 is disconnected from the two adjacent first magnetic field enhancement components 10 respectively, no current flows, and the second resonance capacitor 921 is in a detuned state. The magnetic field generated by the magnetic field enhancement device 20 is weakened, thereby reducing the influence of the magnetic field enhancement device 20 on the magnetic field in the radio frequency emission stage, thereby reducing the artifacts of the detected image and improving the clarity of the detected image. In the radio frequency receiving stage of the MRI system, the second resonant capacitors 921 are electrically connected to two adjacent first magnetic field enhancement components 10 respectively, and current flows therethrough. The magnetic field enhancement device 20 is in a resonant state and plays the role of enhancing the magnetic field.
请参见图8,在一个实施例中,所述磁场增强装置20还包括第一耗尽型MOS管231与第二耗尽型MOS管232。所述第一耗尽型MOS管231的源极与位于所述第一电容区11的所 述第一电极层110电连接,所述第一耗尽型MOS管231的栅极和漏极电连接。所述第二耗尽型MOS管232的栅极和漏极电连接。所述第二耗尽型MOS管232的栅极和漏极与所述第一耗尽型MOS管231的栅极和漏极电连接。所述第一谐振电容911的一端与所述第二耗尽型MOS管232的源极电连接。所述第一谐振电容911的另一端与所述第二电极层120电连接。Referring to FIG. 8 , in one embodiment, the magnetic field enhancement device 20 further includes a first depletion MOS transistor 231 and a second depletion MOS transistor 232 . The source of the first depletion MOS transistor 231 is electrically connected to the first electrode layer 110 located in the first capacitor region 11 , and the gate and drain of the first depletion MOS transistor 231 are electrically connected. connect. The gate and drain of the second depletion MOS transistor 232 are electrically connected. The gate and drain of the second depletion MOS transistor 232 are electrically connected to the gate and drain of the first depletion MOS transistor 231 . One end of the first resonant capacitor 911 is electrically connected to the source of the second depletion MOS transistor 232 . The other end of the first resonance capacitor 911 is electrically connected to the second electrode layer 120 .
所述第一耗尽型MOS管231与所述第二耗尽型MOS管232反向串联连接,能够控制所述第一电极层110与所述第二电极层120在MRI系统的射频发射阶段断开,且在射频接收阶段连接。通过所述第一耗尽型MOS管231与所述第二耗尽型MOS管232反向串联连接,可以适应于MRI系统中的交流环境。所述第一耗尽型MOS管231与所述第二耗尽型MOS管232反向串联连接,能够确保在射频发射阶段的所述第一耗尽型MOS管231和所述第二耗尽型MOS管232中有一个发生截止,使得所述第一谐振电容911所在电路处于断路,并没有与所述第二电极层120和所述第一电极层110电连接。The first depletion-mode MOS transistor 231 and the second depletion-mode MOS transistor 232 are connected in series in reverse, which can control the first electrode layer 110 and the second electrode layer 120 in the radio frequency emission stage of the MRI system Disconnected and connected during the RF receive phase. By connecting the first depletion MOS transistor 231 and the second depletion MOS transistor 232 in reverse series, it can be adapted to the AC environment in the MRI system. The first depletion MOS transistor 231 and the second depletion MOS transistor 232 are connected in reverse series to ensure that the first depletion MOS transistor 231 and the second depletion MOS transistor 231 and the second depletion are in the radio frequency emission stage. One of the MOS transistors 232 is turned off, so that the circuit where the first resonant capacitor 911 is located is disconnected, and is not electrically connected to the second electrode layer 120 and the first electrode layer 110 .
所述第一耗尽型MOS管231与所述第二耗尽型MOS管232具有低压导通,高压截止的特性。并且,所述第一耗尽型MOS管231与所述第二耗尽型MOS管232,在室温下的夹断电压在1V左右,断开时间和恢复时间都在纳秒量级。MRI系统中射频发射阶段和射频接收阶段在时间顺序上有几十毫秒到几千毫秒的差别,可以快速实现所述第一耗尽型MOS管231与所述第二耗尽型MOS管232的导通和断开。射频发射阶段和射频接收阶段的射频功率相差3个数量级。射频发射阶段线圈中的感应电压在几V到几百V之间,具体数值与所选的序列和翻转角有关。The first depletion-mode MOS transistor 231 and the second depletion-mode MOS transistor 232 have the characteristics of low-voltage on and high-voltage off. In addition, the pinch-off voltage of the first depletion-mode MOS transistor 231 and the second depletion-mode MOS transistor 232 at room temperature is about 1V, and the turn-off time and the recovery time are both on the order of nanoseconds. In the MRI system, there is a difference in time sequence between the radio frequency transmitting phase and the radio frequency receiving phase of several tens of milliseconds to several thousand milliseconds, which can quickly realize the connection between the first depletion-mode MOS transistor 231 and the second depletion-mode MOS transistor 232 . on and off. The RF power in the RF transmitting stage and the RF receiving stage differs by 3 orders of magnitude. The induced voltage in the coil of the RF transmission stage is between several V and several hundreds of V, and the specific value is related to the selected sequence and flip angle.
在MRI系统的射频发射阶段,感应电压较大,所述第一耗尽型MOS管231与所述第二耗尽型MOS管232处于断开状态。所述第一谐振电容911所在电路处于断路,并没有与所述第二电极层120和所述第一电极层110电连接。所述磁场增强装置20处于失谐状态。所述磁场增强装置20中不存在电流,不产生会干扰射频的感应磁场。在MRI系统的射频接收阶段,所述第一耗尽型MOS管231与所述第二耗尽型MOS管232导通。所述第一谐振电容911所在电路处于导通状态,两端分别与所述第二电极层120和所述第一电极层110电连接。所述磁场增强装置20能够呈现谐振状态,大幅度增强信号场,增强图像信噪比。In the radio frequency transmission stage of the MRI system, the induced voltage is relatively large, and the first depletion MOS transistor 231 and the second depletion MOS transistor 232 are in a disconnected state. The circuit where the first resonant capacitor 911 is located is in an open circuit, and is not electrically connected to the second electrode layer 120 and the first electrode layer 110 . The magnetic field enhancement device 20 is in a detuned state. There is no current in the magnetic field enhancement device 20, and no induced magnetic field that would interfere with radio frequency is generated. In the radio frequency receiving stage of the MRI system, the first depletion MOS transistor 231 and the second depletion MOS transistor 232 are turned on. The circuit where the first resonant capacitor 911 is located is in a conducting state, and the two ends thereof are respectively electrically connected to the second electrode layer 120 and the first electrode layer 110 . The magnetic field enhancement device 20 can present a resonance state, greatly enhance the signal field, and enhance the image signal-to-noise ratio.
在一个实施例中,所述磁场增强装置20还包括第三耗尽型MOS管2311与第四耗尽型MOS管2321。所述第三耗尽型MOS管2311的源极与位于所述第二电容区12的所述第一电极层110电连接。所述第三耗尽型MOS管2311的栅极和漏极电连接。所述第四耗尽型MOS管2321的栅极和漏极电连接。所述第四耗尽型MOS管2321的栅极和漏极与所述第三耗尽型MOS管2311的栅极和漏极电连接。所述第二谐振电容921的一端与所述第四耗尽型MOS管2321的源极电连接。所述第二谐振电容921的另一端与所述第三电极层130电连接。In one embodiment, the magnetic field enhancement device 20 further includes a third depletion MOS transistor 2311 and a fourth depletion MOS transistor 2321 . The source of the third depletion MOS transistor 2311 is electrically connected to the first electrode layer 110 located in the second capacitor region 12 . The gate and drain of the third depletion MOS transistor 2311 are electrically connected. The gate and drain of the fourth depletion MOS transistor 2321 are electrically connected. The gate and drain of the fourth depletion MOS transistor 2321 are electrically connected to the gate and drain of the third depletion MOS transistor 2311 . One end of the second resonant capacitor 921 is electrically connected to the source of the fourth depletion MOS transistor 2321 . The other end of the second resonance capacitor 921 is electrically connected to the third electrode layer 130 .
所述第三耗尽型MOS管2311、所述第四耗尽型MOS管2321以及所述第二谐振电容921的连接关系,和所述第一耗尽型MOS管231与所述第二耗尽型MOS管232以及第一谐振电 容911的连接关系相同,其工作原理也相同,具体可参见上述实施例。The connection relationship between the third depletion MOS transistor 2311, the fourth depletion MOS transistor 2321 and the second resonant capacitor 921, and the connection between the first depletion MOS transistor 231 and the second depletion MOS transistor 231 The connection relationship between the MOSFET 232 and the first resonant capacitor 911 is the same, and the working principle thereof is also the same. For details, refer to the above embodiments.
通过所述第三耗尽型MOS管2311、所述第四耗尽型MOS管2321、所述第二谐振电容921的连接关系、所述第一耗尽型MOS管231、所述第二耗尽型MOS管232以及第一谐振电容911形成了对称结构,可以进一步使得磁场更加均匀对称,有利于MRI系统成像。Through the connection relationship between the third depletion MOS transistor 2311, the fourth depletion MOS transistor 2321, the second resonant capacitor 921, the first depletion MOS transistor 231, the second depletion MOS transistor 231 The MOSFET 232 and the first resonant capacitor 911 form a symmetrical structure, which can further make the magnetic field more uniform and symmetrical, which is beneficial to the imaging of the MRI system.
在一个实施例中,所述第三电极层130与所述第二电极层120不共线。所述第三电极层130与所述第二电极层120分别设置于所述第一表面101的几何对角线上。In one embodiment, the third electrode layer 130 and the second electrode layer 120 are not collinear. The third electrode layer 130 and the second electrode layer 120 are respectively disposed on the geometric diagonal lines of the first surface 101 .
请参见图9,在一个实施例中,本申请提供一种磁场增强装置20。所述磁场增强装置20包括多个第二磁场增强组件30。每个所述第二磁场增强组件30包括第一电介质层100、第一电极层110。Referring to FIG. 9 , in one embodiment, the present application provides a magnetic field enhancement device 20 . The magnetic field enhancement device 20 includes a plurality of second magnetic field enhancement components 30 . Each of the second magnetic field enhancement components 30 includes a first dielectric layer 100 and a first electrode layer 110 .
图9的实施例中,所述第一电极层110设置于所述第一表面101。第一电极层110由所述第一端103延伸至所述第二端104。第一电极层110覆盖所述第一表面101。每个所述第二磁场增强组件30由所述第一端103至所述第二端104延伸。与图1实施例相比,图9的实施例中的所述第二磁场增强组件30中,所述第一电极层110覆盖所述第一表面101,不包括所述第二电极层120与所述第三电极层130。In the embodiment of FIG. 9 , the first electrode layer 110 is disposed on the first surface 101 . The first electrode layer 110 extends from the first end 103 to the second end 104 . The first electrode layer 110 covers the first surface 101 . Each of the second magnetic field enhancement components 30 extends from the first end 103 to the second end 104 . Compared with the embodiment of FIG. 1 , in the second magnetic field enhancement component 30 in the embodiment of FIG. 9 , the first electrode layer 110 covers the first surface 101 , excluding the second electrode layer 120 and the the third electrode layer 130 .
请参见图10,所述多个第二磁场增强组件30间隔设置。所述多个第二磁场增强组件30包围形成一个磁场增强空间105。Referring to FIG. 10 , the plurality of second magnetic field enhancement components 30 are arranged at intervals. The plurality of second magnetic field enhancement components 30 are surrounded to form a magnetic field enhancement space 105 .
所述磁场增强装置20还包括多个第一谐振电容911和多个第二谐振电容921。所述多个第一谐振电容911靠近所述第一端103设置。每个所述第一谐振电容911设置于相邻两个所述第二磁场增强组件30之间。所述第一谐振电容911的两端分别与相邻两个所述第二磁场增强组件30的位于所述第一电容区11的所述第一电极层110电连接。可以理解为,所述第一谐振电容911的一端与一个所述第二磁场增强组件30的位于所述第一电容区11的所述第一电极层110电连接。所述第一谐振电容911的另一端与相邻的一个所述第二磁场增强组件30的位于所述第二电容区12的所述第一电极层110电连接。The magnetic field enhancement device 20 further includes a plurality of first resonant capacitors 911 and a plurality of second resonant capacitors 921 . The plurality of first resonant capacitors 911 are disposed close to the first end 103 . Each of the first resonance capacitors 911 is disposed between two adjacent second magnetic field enhancement components 30 . Two ends of the first resonant capacitor 911 are respectively electrically connected to the first electrode layers 110 located in the first capacitor region 11 of two adjacent second magnetic field enhancement components 30 . It can be understood that one end of the first resonant capacitor 911 is electrically connected to the first electrode layer 110 of the second magnetic field enhancement component 30 located in the first capacitor region 11 . The other end of the first resonant capacitor 911 is electrically connected to the first electrode layer 110 located in the second capacitance region 12 of the adjacent one of the second magnetic field enhancement components 30 .
在所述第一端103一侧,所述多个第二磁场增强组件30通过所述多个第一谐振电容911连接。当所述磁场增强装置20设置于磁场环境时,会产生感应电流。在所述第一端103一侧,感应电流会依次经过所述第一电极层110位于所述第一电容区11的部分、所述第一谐振电容911的两端、相邻的所述第二磁场增强组件30的所述第一电极层110位于所述第一电容区11的部分、所述第一谐振电容911的两端。以此类推,请参见图4,当等效成电路图时,所述多个第一谐振电容911逐个依次串联连接。On the side of the first end 103 , the plurality of second magnetic field enhancement components 30 are connected through the plurality of first resonance capacitors 911 . When the magnetic field enhancement device 20 is installed in a magnetic field environment, an induced current will be generated. On the side of the first end 103 , the induced current will sequentially pass through the portion of the first electrode layer 110 located in the first capacitor region 11 , the two ends of the first resonant capacitor 911 , and the adjacent first capacitor 911 . The first electrode layers 110 of the two magnetic field enhancement components 30 are located in the part of the first capacitor region 11 and at both ends of the first resonance capacitor 911 . By analogy, referring to FIG. 4 , when equivalent to a circuit diagram, the plurality of first resonant capacitors 911 are sequentially connected in series one by one.
所述多个第二谐振电容921靠近所述第二端104设置。每个所述第二谐振电容921设置于相邻两个所述第二磁场增强组件30之间。所述第二谐振电容921的两端分别与相邻两个所述第二磁场增强组件30的位于所述第二电容区12的所述第一电极层110电连接。可以理解为,所述第二谐振电容921的一端与一个所述第二磁场增强组件30的位于所述第二电容区 12的所述第一电极层110电连接。所述第二谐振电容921的另一端与相邻的一个所述第二磁场增强组件30的位于所述第二电容区12的所述第一电极层110电连接。The plurality of second resonance capacitors 921 are disposed close to the second end 104 . Each of the second resonance capacitors 921 is disposed between two adjacent second magnetic field enhancement components 30 . Two ends of the second resonant capacitor 921 are respectively electrically connected to the first electrode layers 110 located in the second capacitance region 12 of two adjacent second magnetic field enhancement components 30 . It can be understood that one end of the second resonant capacitor 921 is electrically connected to the first electrode layer 110 of the second magnetic field enhancement component 30 located in the second capacitor region 12. The other end of the second resonant capacitor 921 is electrically connected to the first electrode layer 110 located in the second capacitance region 12 of the adjacent one of the second magnetic field enhancement components 30 .
在所述第二端104一侧,所述多个第二磁场增强组件30通过所述多个第二谐振电容921连接。当所述磁场增强装置20设置于磁场环境时,会产生感应电流。在所述第二端104一侧,感应电流会依次经过所述第一电极层110位于所述第二电容区12的部分、所述第二谐振电容921的两端、相邻所述第二磁场增强组件30的所述第一电极层110位于所述第二电容区12的部分、所述第二谐振电容921的两端。以此类推,请参见图4,当等效成电路图时,所述多个第二谐振电容921逐个依次串联连接。On the side of the second end 104 , the plurality of second magnetic field enhancement components 30 are connected through the plurality of second resonance capacitors 921 . When the magnetic field enhancement device 20 is installed in a magnetic field environment, an induced current will be generated. On the side of the second end 104 , the induced current will sequentially pass through the portion of the first electrode layer 110 located in the second capacitance region 12 , the two ends of the second resonant capacitor 921 , and the adjacent second The first electrode layer 110 of the magnetic field enhancement component 30 is located at the part of the second capacitance region 12 and both ends of the second resonance capacitance 921 . By analogy, referring to FIG. 4 , when equivalent to a circuit diagram, the plurality of second resonance capacitors 921 are sequentially connected in series one by one.
第一电极层110覆盖所述第一表面101,没有形成平行板电容器。当所述多个第二磁场增强组件30连接,并位于磁场环境中时,所述多个第一谐振电容911逐个依次串联连接。所述多个第二谐振电容921逐个依次串联连接。The first electrode layer 110 covers the first surface 101 without forming a parallel plate capacitor. When the plurality of second magnetic field enhancement components 30 are connected and located in a magnetic field environment, the plurality of first resonance capacitors 911 are connected in series one by one. The plurality of second resonance capacitors 921 are sequentially connected in series one by one.
由于电容与频率成反比,在高场或者超高场MRI系统(3T及其以上)时,频率较大,会使得多个传统磁场增强组件连接形成的增强装置的等效电容需要偏小。然而,所述多个第一谐振电容911串联连接会使得所述多个第一谐振电容911形成的等效电容变小。所述多个第二谐振电容921串联连接会使得所述多个第二谐振电容921形成的等效电容变小。串联连接等效之后的电容变小,可以使得串联连接等效之前的所述第一谐振电容911与所述第二谐振电容921采用大电容值。当将所述磁场增强装置20的谐振频率中的电容值分配给所述多个第一谐振电容911和所述多个第二谐振电容921时,所述多个第一谐振电容911和所述多个第二谐振电容921的电容值可以采用大电容值,避免了采用过小电容值的电容器。采用大电容值的电容器使得所述磁场增强装置20的谐振频率波动较小,提高了谐振频率的稳定性,更加适合用于高场MRI系统。Since the capacitance is inversely proportional to the frequency, in a high-field or ultra-high-field MRI system (3T and above), the frequency is relatively large, so that the equivalent capacitance of the enhancement device formed by connecting multiple traditional magnetic field enhancement components needs to be small. However, the series connection of the plurality of first resonant capacitors 911 reduces the equivalent capacitance formed by the plurality of first resonant capacitors 911 . The series connection of the plurality of second resonant capacitors 921 reduces the equivalent capacitance formed by the plurality of second resonant capacitors 921 . The capacitance after the series connection is equivalent becomes smaller, so that the first resonant capacitor 911 and the second resonant capacitor 921 before the series connection can have a large capacitance value. When the capacitance values in the resonance frequency of the magnetic field enhancement device 20 are allocated to the plurality of first resonance capacitances 911 and the plurality of second resonance capacitances 921, the plurality of first resonance capacitances 911 and the plurality of second resonance capacitances 921 The capacitance values of the plurality of second resonant capacitors 921 may adopt large capacitance values, so as to avoid using capacitors with too small capacitance values. Using a capacitor with a large capacitance value makes the resonance frequency of the magnetic field enhancement device 20 less fluctuating, improves the stability of the resonance frequency, and is more suitable for use in a high-field MRI system.
请参见图11,在一个实施例中,所述磁场增强装置20还包括多个第三导电结构539与多个第四导电结构549。所述多个第三导电结构539靠近所述第一端103设置。所述多个第四导电结构549靠近所述第二端104设置。Referring to FIG. 11 , in one embodiment, the magnetic field enhancement device 20 further includes a plurality of third conductive structures 539 and a plurality of fourth conductive structures 549 . The plurality of third conductive structures 539 are disposed close to the first end 103 . The plurality of fourth conductive structures 549 are disposed close to the second end 104 .
在一个实施例中,所述第三导电结构539和所述第四导电结构549具有导电功能。所述第三导电结构539和所述第四导电结构549的材料可以为金、银、铜等金属材料制成。In one embodiment, the third conductive structure 539 and the fourth conductive structure 549 have a conductive function. The materials of the third conductive structure 539 and the fourth conductive structure 549 may be made of metal materials such as gold, silver, and copper.
请参见图12,每个所述第三导电结构539设置于每个所述第一电极层110远离所述第一电介质层100的表面。一个所述第三导电结构539与一个所述第二磁场增强组件30对应设置。每个所述第一谐振电容911的两端分别与相邻两个所述第三导电结构539电连接。可以理解为,一个所述第一谐振电容911的一端与一个所述第三导电结构539电连接。一个所述第一谐振电容911的另一端与相邻的一个所述第三导电结构539电连接。当等效成电路图时,通过所述多个第三导电结构539将所述多个第一谐振电容911依次串联连接。Referring to FIG. 12 , each of the third conductive structures 539 is disposed on a surface of each of the first electrode layers 110 away from the first dielectric layer 100 . One of the third conductive structures 539 is disposed corresponding to one of the second magnetic field enhancement components 30 . Two ends of each of the first resonance capacitors 911 are electrically connected to two adjacent third conductive structures 539 respectively. It can be understood that one end of one of the first resonance capacitors 911 is electrically connected to one of the third conductive structures 539 . The other end of one of the first resonance capacitors 911 is electrically connected to the adjacent one of the third conductive structures 539 . When equivalent to a circuit diagram, the plurality of first resonance capacitors 911 are sequentially connected in series through the plurality of third conductive structures 539 .
每个所述第四导电结构549设置于每个所述第一电极层110远离所述第一电介质层100 的表面。一个所述第四导电结构549与一个所述第二磁场增强组件30对应设置。每个所述第二谐振电容921的两端分别与相邻两个所述第四导电结构549电连接。可以理解为,一个所述第二谐振电容921的一端与一个所述第四导电结构549电连接。一个所述第二谐振电容921的另一端与相邻的一个所述第四导电结构549电连接。当等效成电路图时,通过所述多个第四导电结构549将所述多个第二谐振电容921依次串联连接。Each of the fourth conductive structures 549 is disposed on a surface of each of the first electrode layers 110 away from the first dielectric layer 100 . One of the fourth conductive structures 549 is disposed corresponding to one of the second magnetic field enhancement components 30 . Two ends of each of the second resonance capacitors 921 are electrically connected to two adjacent fourth conductive structures 549 respectively. It can be understood that one end of one of the second resonant capacitors 921 is electrically connected to one of the fourth conductive structures 549 . The other end of one of the second resonance capacitors 921 is electrically connected to the adjacent one of the fourth conductive structures 549 . When equivalent to a circuit diagram, the plurality of second resonant capacitors 921 are sequentially connected in series through the plurality of fourth conductive structures 549 .
请参见图13,在一个实施例中,所述磁场增强装置20还包括第一电感241、第三二极管213以及第四二极管214。所述第一电感241的一端与所述第一谐振电容911的一端电连接。所述第三二极管213的阳极与所述第一谐振电容911的另一端电连接。所述第三二极管213的阴极与所述第一电感241的另一端电连接。所述第四二极管214的阴极与所述第一谐振电容911的另一端电连接。所述第四二极管214的阳极与所述第一电感241的另一端电连接。Referring to FIG. 13 , in one embodiment, the magnetic field enhancement device 20 further includes a first inductor 241 , a third diode 213 and a fourth diode 214 . One end of the first inductor 241 is electrically connected to one end of the first resonance capacitor 911 . The anode of the third diode 213 is electrically connected to the other end of the first resonance capacitor 911 . The cathode of the third diode 213 is electrically connected to the other end of the first inductor 241 . The cathode of the fourth diode 214 is electrically connected to the other end of the first resonance capacitor 911 . The anode of the fourth diode 214 is electrically connected to the other end of the first inductor 241 .
在MRI系统中,需要在射频接收阶段增强人体反馈信号的磁场强度。在MRI系统的射频发射阶段,发射阶段的磁场能量是接收阶段的磁场能量的1000倍以上。MRI系统的射频发射阶段感应电压在几十伏到几百伏之间。MRI系统的射频接收阶段感应电压小于1V。In an MRI system, it is necessary to enhance the magnetic field strength of the feedback signal from the human body during the RF receiving stage. In the radio frequency transmitting stage of the MRI system, the magnetic field energy in the transmitting stage is more than 1000 times the magnetic field energy in the receiving stage. The induced voltage in the radio frequency transmission stage of the MRI system is between tens of volts and hundreds of volts. The induced voltage in the RF receiving stage of the MRI system is less than 1V.
所述第三二极管213和所述第四二极管214反向并联连接。在射频发射阶段,射频线圈发射射频发射信号,磁场的场强较大。所述第二磁场增强组件30产生的感应电压较大。加载在所述第三二极管213和所述第四二极管214两端的电压正反交替。加载的电压超过所述第三二极管213和所述第四二极管214的开启电压,所述第三二极管213和所述第四二极管214导通。所述第三电容223与所述第一电感241并联,使得所述第一谐振电容911、所述第三二极管213、所述第四二极管214以及所述第一电感241形成的电路处于高阻状态。MRI系统的射频发射阶段,相邻两个所述第二磁场增强组件30之间几乎没有电流流通。所述第一谐振电容911分别与相邻两个所述第二磁场增强组件30的所述第一电极层110断开连接,几乎没有电流通过。所述磁场增强装置20产生的磁场减弱,进而减小所述磁场增强装置20对射频发射阶段磁场的影响,从而减小检测图像的伪影,提高检测图像的清晰度。The third diode 213 and the fourth diode 214 are connected in antiparallel. In the radio frequency transmission stage, the radio frequency coil transmits the radio frequency transmission signal, and the field strength of the magnetic field is relatively large. The induced voltage generated by the second magnetic field enhancement component 30 is relatively large. The positive and negative voltages applied across the third diode 213 and the fourth diode 214 alternate. When the loaded voltage exceeds the turn-on voltages of the third diode 213 and the fourth diode 214, the third diode 213 and the fourth diode 214 are turned on. The third capacitor 223 is connected in parallel with the first inductor 241 , so that the first resonant capacitor 911 , the third diode 213 , the fourth diode 214 and the first inductor 241 form a The circuit is in a high impedance state. During the radio frequency transmission stage of the MRI system, there is almost no current flow between the two adjacent second magnetic field enhancement components 30 . The first resonant capacitors 911 are respectively disconnected from the first electrode layers 110 of the two adjacent second magnetic field enhancement components 30, and almost no current flows therethrough. The magnetic field generated by the magnetic field enhancement device 20 is weakened, thereby reducing the influence of the magnetic field enhancement device 20 on the magnetic field in the radio frequency emission stage, thereby reducing the artifacts of the detected image and improving the clarity of the detected image.
在MRI系统的射频接收阶段,检测部位发射反馈信号,磁场的场强较小。所述第二磁场增强组件30产生的感应电压较小。加载的电压不能达到所述第三二极管213和所述第四二极管214的开启电压,所述第三二极管213和所述第四二极管214不导通。所述第一谐振电容911分别与相邻两个所述第二磁场增强组件30的所述第一电极层110电连接,有电流通过。所述磁场增强装置20处于谐振状态,起到增强磁场的作用。In the radio frequency receiving stage of the MRI system, the detection part transmits a feedback signal, and the field strength of the magnetic field is small. The induced voltage generated by the second magnetic field enhancement component 30 is relatively small. The loaded voltage cannot reach the turn-on voltages of the third diode 213 and the fourth diode 214, and the third diode 213 and the fourth diode 214 are not conducting. The first resonant capacitors 911 are respectively electrically connected to the first electrode layers 110 of two adjacent second magnetic field enhancement components 30, and currents pass therethrough. The magnetic field enhancement device 20 is in a resonant state and plays the role of enhancing the magnetic field.
在一个实施例中,所述磁场增强装置20还包括第七二极管2131、第八二极管2141以及第二电感2411。所述第七二极管2131、所述第八二极管2141以及所述第二电感2411分别和所述第二谐振电容921的连接关系,与所述第一电感241、所述第三二极管213以及所述第四二极管214分别和所述第一谐振电容911的连接关系相同,工作原理也相同,可参考上述实施例的描述。在MRI系统的射频发生阶段,所述第二谐振电容921分别与相邻两个所述第 二磁场增强组件30的所述第一电极层110断开连接,没有电流通过,处于失谐状态。在MRI系统的射频接收阶段,所述第二谐振电容921分别与相邻两个所述第二磁场增强组件30的所述第一电极层110电连接,有电流通过。所述磁场增强装置20处于谐振状态,起到增强磁场的作用。In one embodiment, the magnetic field enhancement device 20 further includes a seventh diode 2131 , an eighth diode 2141 and a second inductor 2411 . The connection relationship between the seventh diode 2131 , the eighth diode 2141 and the second inductor 2411 and the second resonant capacitor 921 is the same as that of the first inductor 241 , the third second The connection relationship between the pole tube 213 and the fourth diode 214 and the first resonant capacitor 911 is the same, and the working principle is also the same. Reference may be made to the description of the above embodiments. In the radio frequency generation stage of the MRI system, the second resonant capacitors 921 are respectively disconnected from the first electrode layers 110 of the two adjacent second magnetic field enhancement assemblies 30, no current flows, and are in a detuned state. In the radio frequency receiving stage of the MRI system, the second resonant capacitors 921 are respectively electrically connected to the first electrode layers 110 of the two adjacent second magnetic field enhancement components 30, and current flows therethrough. The magnetic field enhancement device 20 is in a resonant state and plays the role of enhancing the magnetic field.
请参见图14,在一个实施例中,本申请提供一种磁场增强装置20。所述磁场增强装置20包括多个第三磁场增强组件40。每个所述第三磁场增强组件40包括第一电介质层100、第一电极层110、第二电极层120以及第四电极层140。所述第一电介质层100具有相对设置的第一表面101和第二表面102。Referring to FIG. 14 , in one embodiment, the present application provides a magnetic field enhancement device 20 . The magnetic field enhancement device 20 includes a plurality of third magnetic field enhancement components 40 . Each of the third magnetic field enhancement components 40 includes a first dielectric layer 100 , a first electrode layer 110 , a second electrode layer 120 and a fourth electrode layer 140 . The first dielectric layer 100 has a first surface 101 and a second surface 102 disposed opposite to each other.
所述第一电极层110设置于所述第一表面101,由所述第一端103延伸至所述第二端104,并覆盖所述第一表面101。The first electrode layer 110 is disposed on the first surface 101 , extends from the first end 103 to the second end 104 , and covers the first surface 101 .
所述第二电极层120设置于所述第二表面102。所述第二电极层120位于所述第二电容区12。所述第二电极层120在所述第一电介质层100的正投影位于所述第一电极层110在所述第一电介质层100的正投影中,形成第二结构电容152。The second electrode layer 120 is disposed on the second surface 102 . The second electrode layer 120 is located in the second capacitor region 12 . The orthographic projection of the second electrode layer 120 on the first dielectric layer 100 is located in the orthographic projection of the first electrode layer 110 on the first dielectric layer 100 to form a second structural capacitor 152 .
所述第四电极层140设置于所述第二表面102。所述第四电极层140与所述第二电极层120间隔设置。所述第四电极层140位于所述第一电容区11。所述第四电极层140在所述第一电介质层100的正投影位于所述第一电极层110在所述第一电介质层100的正投影中,形成第一结构电容151。与图1实施例相比,图14的实施例中,所述第一电极层110覆盖所述第一表面101。所述第二电极层120与所述第四电极层140间隔设置于所述第二表面102。The fourth electrode layer 140 is disposed on the second surface 102 . The fourth electrode layer 140 is spaced apart from the second electrode layer 120 . The fourth electrode layer 140 is located in the first capacitor region 11 . The orthographic projection of the fourth electrode layer 140 on the first dielectric layer 100 is located in the orthographic projection of the first electrode layer 110 on the first dielectric layer 100 to form a first structural capacitor 151 . Compared with the embodiment of FIG. 1 , in the embodiment of FIG. 14 , the first electrode layer 110 covers the first surface 101 . The second electrode layer 120 and the fourth electrode layer 140 are disposed on the second surface 102 at intervals.
每个所述第三磁场增强组件40由所述第一端103至所述第二端104延伸。所述多个第三磁场增强组件40间隔设置,并包围形成一个磁场增强空间105。Each of the third magnetic field enhancement components 40 extends from the first end 103 to the second end 104 . The plurality of third magnetic field enhancement components 40 are arranged at intervals and surround to form a magnetic field enhancement space 105 .
请参见图15,在所述第一电容区11中,相邻两个所述第三磁场增强组件40的所述第一电极层110与所述第四电极层140连接。Referring to FIG. 15 , in the first capacitance region 11 , the first electrode layers 110 of two adjacent third magnetic field enhancement components 40 are connected to the fourth electrode layer 140 .
当所述磁场增强装置20设置于磁场环境时,会产生感应电流。在所述第一端103一侧,通过所述第一电极层110与所述第四电极层140连接,将相邻两个所述第一结构电容151连接。感应电流会依次逐个经过所述第一结构电容151。当等效成电路图时,所述多个第一结构电容151逐个依次串联连接。When the magnetic field enhancement device 20 is installed in a magnetic field environment, an induced current will be generated. On the side of the first end 103 , the first electrode layer 110 is connected to the fourth electrode layer 140 to connect two adjacent first structure capacitors 151 . The induced current will pass through the first structure capacitors 151 one by one. When equivalent to a circuit diagram, the plurality of first structure capacitors 151 are sequentially connected in series one by one.
请参见图16,在所述第二电容区12中,相邻两个所述第三磁场增强组件40的所述第一电极层110与所述第二电极层120连接。Referring to FIG. 16 , in the second capacitance region 12 , the first electrode layers 110 of two adjacent third magnetic field enhancement components 40 are connected to the second electrode layers 120 .
当所述磁场增强装置20设置于磁场环境时,会产生感应电流。在所述第二端104一侧,通过所述第一电极层110与所述第二电极层120连接,将相邻两个所述第二结构电容152连接。感应电流会依次逐个经过所述第二结构电容152。当等效成电路图时,所述多个第二结构电容152逐个依次串联连接。When the magnetic field enhancement device 20 is installed in a magnetic field environment, an induced current will be generated. On the side of the second end 104 , the first electrode layer 110 is connected to the second electrode layer 120 to connect two adjacent second structure capacitors 152 . The induced current will pass through the second structure capacitors 152 one by one. When equivalent to a circuit diagram, the plurality of second structural capacitors 152 are sequentially connected in series one by one.
当所述多个第三磁场增强组件40连接,并位于磁场环境中时,所述多个第一结构电容 151逐个依次串联连接。所述多个第二结构电容152逐个依次串联连接。当高场或者超高场MRI系统(3T及其以上)的工作频率和所述磁场增强装置20的谐振频率相同时,所述磁场增强装置20可以对磁场进行增强。When the plurality of third magnetic field enhancement components 40 are connected and located in a magnetic field environment, the plurality of first structural capacitors 151 are connected in series one by one. The plurality of second structure capacitors 152 are sequentially connected in series one by one. When the operating frequency of the high-field or ultra-high-field MRI system (3T and above) is the same as the resonance frequency of the magnetic field enhancement device 20, the magnetic field enhancement device 20 can enhance the magnetic field.
由于电容与频率成反比,在高场或者超高场MRI系统(3T及其以上)时,频率较大,会使得多个传统磁场增强组件连接形成的增强装置的等效电容需要偏小。然而,所述多个第一结构电容151逐个依次串联连接,会使得所述多个第一结构电容151形成的等效电容变小。所述多个第二结构电容152逐个依次串联连接,会使得所述多个第二结构电容152形成的等效电容变小。串联连接等效之后的电容变小,可以使得串联连接等效之前的所述多个第二结构电容152和所述多个第一结构电容151形成较大电容值的结构。采用大电容值的所述第二结构电容152和所述第一结构电容151,使得所述磁场增强装置20的谐振频率波动较小,提高了谐振频率的稳定性,更加适合用于高场MRI系统。Since the capacitance is inversely proportional to the frequency, in a high-field or ultra-high-field MRI system (3T and above), the frequency is relatively large, so that the equivalent capacitance of the enhancement device formed by connecting multiple traditional magnetic field enhancement components needs to be small. However, the plurality of first structure capacitors 151 are connected in series one by one, so that the equivalent capacitance formed by the plurality of first structure capacitors 151 becomes smaller. The plurality of second structure capacitors 152 are sequentially connected in series one by one, so that the equivalent capacitance formed by the plurality of second structure capacitors 152 becomes smaller. The capacitance after being equivalently connected in series becomes smaller, so that the plurality of second structure capacitors 152 and the plurality of first structure capacitors 151 before being equivalently connected in series can form a structure with a larger capacitance value. Using the second structure capacitor 152 and the first structure capacitor 151 with large capacitance values makes the resonance frequency of the magnetic field enhancement device 20 less fluctuating, improves the stability of the resonance frequency, and is more suitable for high-field MRI system.
在一个实施例中,所述磁场增强装置20还包括多个第五导电结构559和多个第六导电结构569。通过所述多个第五导电结构559将所述多个第一结构电容151依次串联连接。通过所述多个第六导电结构569将所述多个第二结构电容152依次串联连接。所述多个第五导电结构559和所述多个第六导电结构569具有导电功能。所述多个第五导电结构559和所述多个第六导电结构569的材料可以为金、银、铜等金属材料制成。In one embodiment, the magnetic field enhancement device 20 further includes a plurality of fifth conductive structures 559 and a plurality of sixth conductive structures 569 . The plurality of first structure capacitors 151 are sequentially connected in series through the plurality of fifth conductive structures 559 . The plurality of second structure capacitors 152 are sequentially connected in series through the plurality of sixth conductive structures 569 . The plurality of fifth conductive structures 559 and the plurality of sixth conductive structures 569 have conductive functions. The materials of the plurality of fifth conductive structures 559 and the plurality of sixth conductive structures 569 may be made of metal materials such as gold, silver, and copper.
请参见图17,在一个实施例中,所述磁场增强装置20还包括第一外接电容440、第一二极管431以及第二二极管432。所述第一外接电容440的两端分别与所述第二电极层120和所述第一电极层110位于所述第二电容区12的部分电连接。所述第一二极管431的阳极与所述第一电极层110位于所述第二电容区12的部分电连接。所述第一二极管431的阴极与所述第二电极层120电连接。所述第二二极管432的阴极与所述第一电极层110位于所述第二电容区12的部分电连接。所述第二二极管432的阳极与所述第二电极层120电连接。Referring to FIG. 17 , in one embodiment, the magnetic field enhancement device 20 further includes a first external capacitor 440 , a first diode 431 and a second diode 432 . Two ends of the first external capacitor 440 are respectively electrically connected to the second electrode layer 120 and the part of the first electrode layer 110 located in the second capacitor region 12 . The anode of the first diode 431 is electrically connected to the portion of the first electrode layer 110 located in the second capacitor region 12 . The cathode of the first diode 431 is electrically connected to the second electrode layer 120 . The cathode of the second diode 432 is electrically connected to the portion of the first electrode layer 110 located in the second capacitor region 12 . The anode of the second diode 432 is electrically connected to the second electrode layer 120 .
可以理解,所述第一二极管431和所述第二二极管432的导通电压可以在0伏到1伏。在一个实施例中,所述第一二极管431和所述第二二极管432的导通电压可以为0.8V。在所述第二电容区12中,所述第一二极管431和所述第二二极管432分别串联在所述第一电极层110和所述第二电极层120之间。所述第一二极管431和所述第二二极管432反接。It can be understood that the turn-on voltages of the first diode 431 and the second diode 432 may be 0 volts to 1 volts. In one embodiment, the turn-on voltage of the first diode 431 and the second diode 432 may be 0.8V. In the second capacitor region 12, the first diode 431 and the second diode 432 are connected in series between the first electrode layer 110 and the second electrode layer 120, respectively. The first diode 431 and the second diode 432 are connected in reverse.
由于MRI系统的射频交流特性。所述第一电极层110和所述第二电极层120产生的感应电压也是交流电压。在MRI系统的射频发射阶段,由于所述第一电极层110和所述第二电极层120之间的电压差已经超过所述第一二极管431和所述第二二极管432的导通电压。因此,无论所述第一电极层110和所述第二电极层120哪个的电压高,所述第一二极管431和所述第二二极管432总有一个处于导通状态。因此,将所述第一电极层110和所述第二电极层120电连接。所述第二结构电容302被短路。所述磁场增强装置20处于失谐状态。due to the RF AC characteristics of the MRI system. The induced voltages generated by the first electrode layer 110 and the second electrode layer 120 are also AC voltages. In the radio frequency transmission stage of the MRI system, since the voltage difference between the first electrode layer 110 and the second electrode layer 120 has exceeded the conductance of the first diode 431 and the second diode 432 Turn on the voltage. Therefore, no matter which of the first electrode layer 110 and the second electrode layer 120 has a higher voltage, one of the first diode 431 and the second diode 432 is always turned on. Therefore, the first electrode layer 110 and the second electrode layer 120 are electrically connected. The second structural capacitor 302 is short-circuited. The magnetic field enhancement device 20 is in a detuned state.
而在MRI系统的射频接收阶段,由于所述第一电极层110和所述第二电极层120之间的 电压差小于所述第一二极管431和所述第二二极管432的导通电压。因此,无论所述第一电极层110和所述第二电极层120哪个的电压高,所述第一二极管431和所述第二二极管432均处于不导通的状态。所述磁场增强装置20处于谐振状态。In the radio frequency receiving stage of the MRI system, since the voltage difference between the first electrode layer 110 and the second electrode layer 120 is smaller than the conductance of the first diode 431 and the second diode 432 Turn on the voltage. Therefore, no matter which of the first electrode layer 110 and the second electrode layer 120 has a higher voltage, the first diode 431 and the second diode 432 are in a non-conductive state. The magnetic field enhancement device 20 is in a resonance state.
在一个实施例中,在所述第一电容区11中,所述第一电极层110和所述第四电极层140也可以分别电连接所述第一外接电容440、所述第一二极管431以及所述第二二极管432,且连接关系相同。所述磁场增强装置20在所述第一端103和所述第二端104,形成对称结构,更有利于磁场均匀分布,提高了MRI系统的成像质量。In one embodiment, in the first capacitor region 11 , the first electrode layer 110 and the fourth electrode layer 140 may also be electrically connected to the first external capacitor 440 and the first diode, respectively. The tube 431 and the second diode 432 have the same connection relationship. The magnetic field enhancement device 20 forms a symmetrical structure at the first end 103 and the second end 104 , which is more conducive to the uniform distribution of the magnetic field and improves the imaging quality of the MRI system.
在一个实施例中,上述实施例中的元件电容可以为固定电容,也可以为调节电容。当射频线圈的频率确定后,元件电容可以选择固定电容,使得所述固定电容与其他结构电容和元件电容配合,使所述磁场增强装置20的谐振频率与所述射频线圈的频率相等,进而起到增强磁场的作用。当射频线圈的频率不确定时,元件电容可以采用可调电容。通过调节可调电容,调节谐振频率,以使得所述磁场增强装置20适用不同的工作环境。In one embodiment, the element capacitance in the foregoing embodiment may be a fixed capacitance or an adjustable capacitance. After the frequency of the radio frequency coil is determined, the element capacitance can be selected as a fixed capacitance, so that the fixed capacitance cooperates with other structural capacitances and element capacitances, so that the resonant frequency of the magnetic field enhancement device 20 is equal to the frequency of the radio frequency coil, so that the to enhance the effect of the magnetic field. When the frequency of the RF coil is uncertain, the component capacitance can be adjusted. By adjusting the adjustable capacitance, the resonant frequency is adjusted, so that the magnetic field enhancement device 20 is suitable for different working environments.
请参见图18与图19,在一个实施例中,所述磁场增强装置20还包括筒形支撑结构50。所述筒形支撑结构50具有两个间隔相对的第三端51和第四端53。所述筒形支撑结构50具有间隔相对设置的内表面521和外表面522。所述内表面521包围形成一个检测空间509。Referring to FIGS. 18 and 19 , in one embodiment, the magnetic field enhancement device 20 further includes a cylindrical support structure 50 . The cylindrical support structure 50 has two spaced opposite third ends 51 and fourth ends 53 . The cylindrical support structure 50 has an inner surface 521 and an outer surface 522 disposed opposite to each other with an interval. The inner surface 521 surrounds a detection space 509 .
在一个实施例中,所述多个第一磁场增强组件10间隔设置于所述外表面522。所述磁场增强组件10沿着所述第三端51向所述第四端53延伸。在一个实施例中,所述多个第二磁场增强组件30间隔设置于所述外表面522。在一个实施例中,所述多个第三磁场增强组件40间隔设置于所述外表面522。In one embodiment, the plurality of first magnetic field enhancement components 10 are disposed on the outer surface 522 at intervals. The magnetic field enhancement assembly 10 extends along the third end 51 to the fourth end 53 . In one embodiment, the plurality of second magnetic field enhancement components 30 are disposed on the outer surface 522 at intervals. In one embodiment, the plurality of third magnetic field enhancement components 40 are disposed on the outer surface 522 at intervals.
所述检测空间509可以用于容纳检测部位。所述检测部位可以为手臂、腿、腹部等。所述多个第一磁场增强组件10间隔的距离相等可以提高局部磁场的均匀性。多个所述第一磁场增强组件10可以等间隔设置于所述筒形支撑结构50的外表面522。The detection space 509 can be used to accommodate the detection site. The detection site may be an arm, a leg, an abdomen, or the like. The distances between the plurality of first magnetic field enhancement components 10 are equal to improve the uniformity of the local magnetic field. A plurality of the first magnetic field enhancement components 10 may be disposed on the outer surface 522 of the cylindrical support structure 50 at equal intervals.
在一个实施例中,围绕所述筒形支撑结构50的外表面522间隔设置有多个限位结构550。在沿着所述第三端51到所述第四端53的方向,每一个所述第一磁场增强组件10分别对应所述第三端51的所述限位结构550和所述第四端53的所述限位结构550。通过所述第三端51和所述第四端53两端的所述限位结构550固定一个所述第一磁场增强组件10,进而将所述第一磁场增强组件10固定于所述筒形支撑结构50的。In one embodiment, a plurality of limiting structures 550 are spaced around the outer surface 522 of the cylindrical support structure 50 . In the direction from the third end 51 to the fourth end 53 , each of the first magnetic field enhancement components 10 corresponds to the limiting structure 550 and the fourth end of the third end 51 respectively The limiting structure 550 of 53. One of the first magnetic field enhancement components 10 is fixed by the limiting structures 550 at both ends of the third end 51 and the fourth end 53 , and then the first magnetic field enhancement component 10 is fixed to the cylindrical support structure 50.
在一个实施例中,所述限位结构550可以为通槽。所述通槽可以用于插入所述第一磁场增强组件10。所述两个通槽分别限制所述第一磁场增强组件10的两端。通过所述限位结构550可以将所述第一磁场增强组件10固定于所述筒形支撑结构50的外表面522。In one embodiment, the limiting structure 550 may be a through groove. The through slot can be used to insert the first magnetic field enhancement assembly 10 . The two through grooves respectively confine two ends of the first magnetic field enhancement component 10 . The first magnetic field enhancement assembly 10 can be fixed on the outer surface 522 of the cylindrical support structure 50 through the limiting structure 550 .
在一个实施例中,所述磁场增强装置20可以包括12块所述第一磁场增强组件10,围绕所述轴线504等间隔排列于所述筒形支撑结构50的外表面522。In one embodiment, the magnetic field enhancement device 20 may include 12 pieces of the first magnetic field enhancement components 10 , which are arranged on the outer surface 522 of the cylindrical support structure 50 at equal intervals around the axis 504 .
在一个实施例中,沿所述第一端103至所述第二端104的方向上,所述第一电极层110 的长度为100mm,所述第一电极层110的宽度为15mm。沿所述第一端103至所述第二端104的方向上,所述第一导电结构519、所述第二导电结构529、所述第三导电结构539、所述第四导电结构549的宽度为10mm。所述磁场增强装置20的直径为100mm。In one embodiment, along the direction from the first end 103 to the second end 104 , the length of the first electrode layer 110 is 100 mm, and the width of the first electrode layer 110 is 15 mm. In the direction from the first end 103 to the second end 104, the first conductive structure 519, the second conductive structure 529, the third conductive structure 539, and the fourth conductive structure 549 The width is 10mm. The diameter of the magnetic field enhancement device 20 is 100 mm.
请参见图20,在一个实施例中,将传统结构和本申请的磁场增强装置,应用于7T MRI系统中可以看出:对于相同长度的磁场增强装置,为了满足7T MRI系统的需求,传统结构需要的电容值为0.6pF,远小于目前常用电容的电容值。然而,本申请中磁场增强装置20需要的电容值为6pF,为市场常用电容值。相对于传统结构需要的电容值为0.6pF,当电容值增加1pF时,传统结构的谐振频率降低了75.5MHz。然而,本申请磁场增强装置20的谐振频率只降低了22.8MHz。因此,在高频段下,本申请磁场增强装置20的结构更稳定。磁场增强装置20具有谐振频率随电容相对缓慢的变化速率,使得结构的调谐更容易操作,更加适合用于高场MRI。请参见图21,可以看出本申请磁场增强装置20在高频段下,仍然具有高度均匀的磁场分布。Referring to FIG. 20 , in one embodiment, the traditional structure and the magnetic field enhancement device of the present application are applied to a 7T MRI system. It can be seen that: for a magnetic field enhancement device of the same length, in order to meet the requirements of the 7T MRI system, the traditional structure The required capacitance value is 0.6pF, which is much smaller than the capacitance value of the current commonly used capacitors. However, the capacitance value required by the magnetic field enhancement device 20 in the present application is 6 pF, which is a commonly used capacitance value in the market. Compared with the capacitance value required by the traditional structure of 0.6pF, when the capacitance value is increased by 1pF, the resonant frequency of the traditional structure is reduced by 75.5MHz. However, the resonance frequency of the magnetic field enhancement device 20 of the present application is only reduced by 22.8 MHz. Therefore, in the high frequency band, the structure of the magnetic field enhancement device 20 of the present application is more stable. The magnetic field enhancement device 20 has a relatively slow rate of change of the resonant frequency with the capacitance, which makes the tuning of the structure easier to operate and is more suitable for high-field MRI. Referring to FIG. 21 , it can be seen that the magnetic field enhancement device 20 of the present application still has a highly uniform magnetic field distribution at high frequency.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are relatively specific and detailed, but should not be construed as a limitation on the scope of the patent of the present application. It should be noted that, for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所提供的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所提供的原理和新颖特点相一致的最宽的范围。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element. The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. The above description of the embodiments is provided to enable those skilled in the art to make or use the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present application. Therefore, this application is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features provided herein.

Claims (20)

  1. 一种磁场增强装置,其特征在于,包括:A magnetic field enhancement device, comprising:
    多个磁场增强组件(10),每个所述磁场增强组件(10)包括:A plurality of magnetic field enhancement assemblies (10), each of the magnetic field enhancement assemblies (10) comprising:
    第一电介质层(100),具有相对设置的第一端(103)与第二端(104),所述第一电介质层(100)还具有一个第一表面(101),由所述第一端(103)到所述第二端(104)延伸,所述第一表面(101)包括第一电容区(11)、传导区(13)和第二电容区(12),所述传导区(13)位于所述第一电容区(11)和所述第二电容区(12)之间,所述第一电容区(11)靠近所述第一端(103),所述第二电容区(12)靠近所述第二端(104);The first dielectric layer (100) has a first end (103) and a second end (104) arranged oppositely, the first dielectric layer (100) also has a first surface (101), formed by the first end (103) The end (103) extends to the second end (104), the first surface (101) comprises a first capacitive region (11), a conductive region (13) and a second capacitive region (12), the conductive region (13) is located between the first capacitance region (11) and the second capacitance region (12), the first capacitance region (11) is close to the first end (103), and the second capacitance region (103) zone (12) proximate said second end (104);
    第一电极层(110),设置于所述第一表面(101),由所述第一端(103)延伸至所述第二端(104);a first electrode layer (110), disposed on the first surface (101), extending from the first end (103) to the second end (104);
    第二电极层(120),设置于所述第一表面(101),并位于所述第一电容区(11),所述第二电极层(120)与所述第一电极层(110)位于所述第一电容区(11)的部分间隔设置;The second electrode layer (120) is disposed on the first surface (101) and located in the first capacitance region (11), the second electrode layer (120) and the first electrode layer (110) Parts located in the first capacitance region (11) are arranged at intervals;
    第三电极层(130),设置于所述第一表面(101),并位于所述第二电容区(12),所述第三电极层(130)与所述第一电极层(110)位于所述第二电容区(12)的部分间隔设置;A third electrode layer (130), disposed on the first surface (101) and located in the second capacitance region (12), the third electrode layer (130) and the first electrode layer (110) Parts located in the second capacitance region (12) are arranged at intervals;
    每个所述磁场增强组件(10)由所述第一端(103)至所述第二端(104)延伸,所述多个磁场增强组件(10)间隔设置,并包围形成一个磁场增强空间(105);Each of the magnetic field enhancement components (10) extends from the first end (103) to the second end (104), the plurality of magnetic field enhancement components (10) are spaced apart and surround to form a magnetic field enhancement space (105);
    多个第一谐振电容(911),靠近所述第一端(103)设置,一个所述第一谐振电容(911)与一个所述磁场增强组件(10)对应设置,每个所述第一谐振电容(911)的一端与所述第二电极层(120)电连接,每个所述第一谐振电容(911)的另一端与所述第一电极层(110)位于所述第一电容区(11)的部分电连接,相邻两个所述磁场增强组件(10)的所述第二电极层(120)与所述第一电极层(110)位于所述第一电容区(11)的部分连接;a plurality of first resonant capacitors (911), arranged close to the first end (103), one of the first resonant capacitors (911) is arranged corresponding to one of the magnetic field enhancement components (10), each of the first resonant capacitors (911) One end of the resonant capacitor (911) is electrically connected to the second electrode layer (120), and the other end of each of the first resonant capacitors (911) and the first electrode layer (110) are located in the first capacitor Parts of the region (11) are electrically connected, and the second electrode layer (120) and the first electrode layer (110) of two adjacent magnetic field enhancement components (10) are located in the first capacitance region (11). ) part of the connection;
    多个第二谐振电容(921),靠近所述第二端(104)设置,一个所述第二谐振电容(921)与一个所述磁场增强组件(10)对应设置,每个所述第二谐振电容(921)的一端与所述第三电极层(130)电连接,每个所述第二谐振电容(921)的另一端与所述第一电极层(110)位于所述第二电容区(12)的部分电连接,相邻两个所述磁场增强组件(10)的所述第三电极层(130)与所述第一电极层(110)位于所述第二电容区(12)的部分连接。a plurality of second resonant capacitors (921), arranged close to the second end (104), one of the second resonant capacitors (921) is arranged corresponding to one of the magnetic field enhancement components (10), each of the second resonant capacitors (921) One end of the resonant capacitor (921) is electrically connected to the third electrode layer (130), and the other end of each of the second resonant capacitors (921) and the first electrode layer (110) are located in the second capacitor Parts of the region (12) are electrically connected, and the third electrode layer (130) and the first electrode layer (110) of two adjacent magnetic field enhancement components (10) are located in the second capacitance region (12). ) part of the connection.
  2. 如权利要求1所述的磁场增强装置,其特征在于,在所述第一电容区(11)中,所述第一谐振电容(911)设置于所述第一表面(101);The magnetic field enhancement device according to claim 1, characterized in that, in the first capacitor region (11), the first resonance capacitor (911) is arranged on the first surface (101);
    在所述第二电容区(12)中,所述第二谐振电容(921)设置于所述第一表面(101)。In the second capacitance region (12), the second resonance capacitance (921) is arranged on the first surface (101).
  3. 如权利要求1所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 1, further comprising:
    多个第一导电结构(519),靠近所述第一端(103)设置,且每个所述第一导电结构(519)设置于相邻两个所述磁场增强组件(10)之间;a plurality of first conductive structures (519), disposed close to the first end (103), and each of the first conductive structures (519) is disposed between two adjacent magnetic field enhancement components (10);
    每个所述第一导电结构(519)的两端分别与相邻两个所述磁场增强组件(10)的所述第二电极层(120)和所述第一电极层(110)位于所述第一电容区(11)的部分连接;Two ends of each of the first conductive structures (519) are respectively located at the second electrode layer (120) and the first electrode layer (110) of the two adjacent magnetic field enhancement components (10). Part of the first capacitive region (11) is connected;
    多个第二导电结构(529),靠近所述第二端(104)设置,且每个所述第二导电结构(529)设置于相邻两个所述磁场增强组件(10)之间;a plurality of second conductive structures (529), disposed close to the second end (104), and each of the second conductive structures (529) is disposed between two adjacent magnetic field enhancement components (10);
    每个所述第二导电结构(529)的两端分别与相邻两个所述磁场增强组件(10)的所述第三电极层(130)和所述第一电极层(110)位于所述第二电容区(12)的部分连接。Two ends of each of the second conductive structures (529) are respectively located at the third electrode layer (130) and the first electrode layer (110) of the two adjacent magnetic field enhancement components (10). Part of the second capacitive region (12) is connected.
  4. 如权利要求1所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 1, further comprising:
    第五二极管(461),所述第五二极管(461)的阳极与所述第二电极层(120)电连接;a fifth diode (461), the anode of the fifth diode (461) is electrically connected to the second electrode layer (120);
    第六二极管(462),所述第六二极管(462)的阴极与所述第二电极层(120)电连接;以及a sixth diode (462), the cathode of which is electrically connected to the second electrode layer (120); and
    第五外接电容(445),所述第五外接电容(445)的一端与位于所述第一电容区(11)的所述第一电极层(110)电连接,所述第五外接电容(445)的另一端分别与所述第五二极管(461)的阴极和所述第六二极管(462)的阳极电连接。a fifth external capacitor (445), one end of the fifth external capacitor (445) is electrically connected to the first electrode layer (110) located in the first capacitor region (11), and the fifth external capacitor ( 445) is electrically connected to the cathode of the fifth diode (461) and the anode of the sixth diode (462), respectively.
  5. 如权利要求4所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 4, further comprising:
    第一外接二极管(4611),所述第一外接二极管(4611)的阳极与位于所述第二电容区(12)的所述第一电极层(110)电连接;a first external diode (4611), the anode of the first external diode (4611) is electrically connected to the first electrode layer (110) located in the second capacitance region (12);
    第二外接二极管(4622),所述第二外接二极管(4622)的阴极与位于所述第二电容区(12)的所述第一电极层(110)电连接;a second external diode (4622), the cathode of the second external diode (4622) is electrically connected to the first electrode layer (110) located in the second capacitor region (12);
    第六外接电容(4451),所述第六外接电容(4451)的一端与所述第三电极层(130)电连接,所述第六外接电容(4451)的另一端与所述第一外接二极管(4611)的阴极和所述第二外接二极管(4622)的阳极电连接。A sixth external capacitor (4451), one end of the sixth external capacitor (4451) is electrically connected to the third electrode layer (130), and the other end of the sixth external capacitor (4451) is connected to the first external capacitor The cathode of the diode (4611) is electrically connected to the anode of the second external diode (4622).
  6. 如权利要求1所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 1, further comprising:
    第一耗尽型MOS管(231),所述第一耗尽型MOS管(231)的源极与位于所述第一电容区(11)的所述第一电极层(110)电连接,所述第一耗尽型MOS管(231)的栅极和漏极电连接;a first depletion MOS transistor (231), the source of the first depletion MOS transistor (231) is electrically connected to the first electrode layer (110) located in the first capacitor region (11), The gate and drain of the first depletion-mode MOS transistor (231) are electrically connected;
    第二耗尽型MOS管(232),所述第二耗尽型MOS管(232)的栅极和漏极电连接,并与所述第一耗尽型MOS管(231)的栅极和漏极电连接;A second depletion MOS transistor (232), the gate and drain of the second depletion MOS transistor (232) are electrically connected to the gate and the drain of the first depletion MOS transistor (231). Drain electrical connection;
    所述第一谐振电容(911)的一端与所述第二耗尽型MOS管(232)的源极电连接,所述第一谐振电容(911)的另一端与所述第二电极层(120)电连接。One end of the first resonant capacitor (911) is electrically connected to the source of the second depletion-mode MOS transistor (232), and the other end of the first resonant capacitor (911) is electrically connected to the second electrode layer ( 120) Electrical connection.
  7. 如权利要求6所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 6, further comprising:
    第三耗尽型MOS管(2311),所述第三耗尽型MOS管(2311)的源极与位于所述第二电容区(12)的所述第一电极层(110)电连接,所述第三耗尽型MOS管(2311)的栅极和漏极电连接;A third depletion MOS transistor (2311), the source of the third depletion MOS transistor (2311) is electrically connected to the first electrode layer (110) located in the second capacitor region (12), The gate and drain of the third depletion MOS transistor (2311) are electrically connected;
    第四耗尽型MOS管(2321),所述第四耗尽型MOS管(2321)的栅极和漏极电连接,并与所述第三耗尽型MOS管(2311)的栅极和漏极电连接;a fourth depletion MOS transistor (2321), the gate and drain of the fourth depletion MOS transistor (2321) are electrically connected to the gate and the drain of the third depletion MOS transistor (2311). Drain electrical connection;
    所述第二谐振电容(921)的一端与所述第四耗尽型MOS管(2321)的的源极电连接,所述 第二谐振电容(921)的另一端与所述第三电极层(130)电连接。One end of the second resonant capacitor (921) is electrically connected to the source of the fourth depletion MOS transistor (2321), and the other end of the second resonant capacitor (921) is connected to the third electrode layer (130) Electrical connection.
  8. 如权利要求1所述的磁场增强装置,其特征在于,所述第三电极层(130)与所述第二电极层(120)分别设置于所述第一表面(101)的几何对角线上。The magnetic field enhancement device according to claim 1, characterized in that, the third electrode layer (130) and the second electrode layer (120) are respectively disposed on geometric diagonals of the first surface (101) superior.
  9. 如权利要求1所述的磁场增强装置,其特征在于,所述第一谐振电容(911)与所述第二谐振电容(921)关于所述传导区(13)中的所述第一电极层(110)对称。The magnetic field enhancement device according to claim 1, wherein the first resonant capacitor (911) and the second resonant capacitor (921) are related to the first electrode layer in the conduction region (13) (110) Symmetrical.
  10. 一种磁场增强装置,其特征在于,包括:A magnetic field enhancement device, comprising:
    多个磁场增强组件(10),每个所述磁场增强组件(10)包括:A plurality of magnetic field enhancement assemblies (10), each of the magnetic field enhancement assemblies (10) comprising:
    第一电介质层(100),具有相对设置的第一端(103)与第二端(104),所述第一电介质层(100)还具有一个第一表面(101),由所述第一端(103)到所述第二端(104)延伸,所述第一表面(101)包括第一电容区(11)、传导区(13)和第二电容区(12),所述传导区(13)位于所述第一电容区(11)和所述第二电容区(12)之间,所述第一电容区(11)靠近所述第一端(103),所述第二电容区(12)靠近所述第二端(104);The first dielectric layer (100) has a first end (103) and a second end (104) arranged oppositely, the first dielectric layer (100) also has a first surface (101), formed by the first end (103) The end (103) extends to the second end (104), the first surface (101) comprises a first capacitive region (11), a conductive region (13) and a second capacitive region (12), the conductive region (13) is located between the first capacitance region (11) and the second capacitance region (12), the first capacitance region (11) is close to the first end (103), and the second capacitance region (103) zone (12) proximate said second end (104);
    第一电极层(110),设置于所述第一表面(101),由所述第一端(103)延伸至所述第二端(104),并覆盖所述第一表面(101);a first electrode layer (110), disposed on the first surface (101), extending from the first end (103) to the second end (104), and covering the first surface (101);
    每个所述磁场增强组件(10)由所述第一端(103)至所述第二端(104)延伸,所述多个磁场增强组件(10)间隔设置,并包围形成一个磁场增强空间(105);Each of the magnetic field enhancement components (10) extends from the first end (103) to the second end (104), the plurality of magnetic field enhancement components (10) are spaced apart and surround to form a magnetic field enhancement space (105);
    多个第一谐振电容(911),靠近所述第一端(103)设置,每个所述第一谐振电容(911)设置于相邻两个所述磁场增强组件(10)之间,所述第一谐振电容(911)的两端分别与相邻两个所述磁场增强组件(10)的位于所述第一电容区(11)的所述第一电极层(110)电连接;A plurality of first resonant capacitors (911) are arranged close to the first end (103), and each of the first resonant capacitors (911) is arranged between two adjacent magnetic field enhancement components (10), so Both ends of the first resonant capacitor (911) are respectively electrically connected to the first electrode layers (110) located in the first capacitance region (11) of two adjacent magnetic field enhancement components (10);
    多个第二谐振电容(921),靠近所述第二端(104)设置,每个所述第二谐振电容(921)设置于相邻两个所述磁场增强组件(10)之间,所述第二谐振电容(921)的两端分别与相邻两个所述磁场增强组件(10)的位于所述第二电容区(12)的所述第一电极层(110)电连接。A plurality of second resonant capacitors (921) are arranged close to the second end (104), each of the second resonant capacitors (921) is arranged between two adjacent magnetic field enhancement components (10), so Two ends of the second resonant capacitor (921) are respectively electrically connected to the first electrode layers (110) located in the second capacitance region (12) of two adjacent magnetic field enhancement components (10).
  11. 如权利要求10所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 10, further comprising:
    多个第三导电结构(539),靠近所述第一端(103)设置,且每个所述第三导电结构(539)设置于每个所述第一电极层(110)远离所述第一电介质层(100)的表面;A plurality of third conductive structures (539) are disposed close to the first end (103), and each of the third conductive structures (539) is disposed on each of the first electrode layers (110) away from the first end (103). a surface of a dielectric layer (100);
    每个所述第一谐振电容(911)的两端分别与相邻两个所述第三导电结构(539)电连接;Two ends of each of the first resonant capacitors (911) are respectively electrically connected to two adjacent third conductive structures (539);
    多个第四导电结构(549),靠近所述第二端(104)设置,且每个所述第四导电结构(549)设置于每个所述第一电极层(110)远离所述第一电介质层(100)的表面;A plurality of fourth conductive structures (549) are disposed close to the second end (104), and each of the fourth conductive structures (549) is disposed on each of the first electrode layers (110) away from the first electrode layer (110). a surface of a dielectric layer (100);
    每个所述第二谐振电容(921)的两端分别与相邻两个所述第四导电结构(549)电连接。Two ends of each of the second resonance capacitors (921) are respectively electrically connected to two adjacent fourth conductive structures (549).
  12. 如权利要求10所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 10, further comprising:
    第一电感(241),所述第一电感(241)的一端与所述第一谐振电容(911)的一端电连接;a first inductor (241), one end of the first inductor (241) is electrically connected to one end of the first resonant capacitor (911);
    第三二极管(213),所述第三二极管(213)的阳极与所述第一谐振电容(911)的另一端电连接,所述第三二极管(213)的阴极与所述第一电感(241)的另一端电连接;A third diode (213), the anode of the third diode (213) is electrically connected to the other end of the first resonant capacitor (911), and the cathode of the third diode (213) is electrically connected to The other end of the first inductor (241) is electrically connected;
    第四二极管(214),所述第四二极管(214)的阴极与所述第一谐振电容(911)的另一端电连接,所述第四二极管(214)的阳极与所述第一电感(241)的另一端电连接。a fourth diode (214), the cathode of the fourth diode (214) is electrically connected to the other end of the first resonant capacitor (911), and the anode of the fourth diode (214) is electrically connected to The other end of the first inductor (241) is electrically connected.
  13. 如权利要求12所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 12, further comprising:
    第二电感(2411),所述第二电感(2411)的一端与所述第二谐振电容(921)的一端电连接;a second inductor (2411), one end of the second inductor (2411) is electrically connected to one end of the second resonance capacitor (921);
    第七二极管(2131),所述第七二极管(2131)的阳极与所述第二谐振电容(921)的另一端电连接,所述第七二极管(2131)的阴极与所述第二电感(2411)的另一端电连接;A seventh diode (2131), the anode of the seventh diode (2131) is electrically connected to the other end of the second resonant capacitor (921), and the cathode of the seventh diode (2131) is electrically connected to The other end of the second inductor (2411) is electrically connected;
    第八二极管(2141),所述第八二极管(2141)的阴极与所述第二谐振电容(921)的一端电连接,所述第八二极管(2141)的阳极与所述第二电感(2411)的另一端电连接。The eighth diode (2141), the cathode of the eighth diode (2141) is electrically connected to one end of the second resonant capacitor (921), and the anode of the eighth diode (2141) is electrically connected to the The other end of the second inductor (2411) is electrically connected.
  14. 一种磁场增强装置,其特征在于,包括:A magnetic field enhancement device, comprising:
    多个磁场增强组件(10),每个所述磁场增强组件(10)包括:A plurality of magnetic field enhancement assemblies (10), each of the magnetic field enhancement assemblies (10) comprising:
    第一电介质层(100),具有相对设置的第一端(103)与第二端(104),所述第一电介质层(100)具有相对设置的第一表面(101)和第二表面(102),由所述第一端(103)到所述第二端(104)延伸,所述第一表面(101)包括第一电容区(11)、传导区(13)和第二电容区(12),所述传导区(13)位于所述第一电容区(11)和所述第二电容区(12)之间,所述第一电容区(11)靠近所述第一端(103),所述第二电容区(12)靠近所述第二端(104);A first dielectric layer (100) having a first end (103) and a second end (104) arranged oppositely, the first dielectric layer (100) having a first surface (101) and a second surface (101) oppositely arranged 102), extending from the first end (103) to the second end (104), and the first surface (101) includes a first capacitive region (11), a conductive region (13) and a second capacitive region (12), the conduction region (13) is located between the first capacitance region (11) and the second capacitance region (12), and the first capacitance region (11) is close to the first end ( 103), the second capacitance region (12) is close to the second end (104);
    第一电极层(110),设置于所述第一表面(101),由所述第一端(103)延伸至所述第二端(104),并覆盖所述第一表面(101);a first electrode layer (110), disposed on the first surface (101), extending from the first end (103) to the second end (104), and covering the first surface (101);
    第二电极层(120),设置于所述第二表面(102),并位于所述第二电容区(12),所述第二电极层(120)在所述第一电介质层(100)的正投影位于所述第一电极层(110)在所述第一电介质层(100)的正投影中,形成第二结构电容(152);A second electrode layer (120), disposed on the second surface (102) and located in the second capacitance region (12), the second electrode layer (120) on the first dielectric layer (100) The orthographic projection of is located in the orthographic projection of the first electrode layer (110) on the first dielectric layer (100), forming a second structural capacitor (152);
    第四电极层(140),设置于所述第二表面(102),并与所述第二电极层(120)间隔设置,且位于所述第一电容区(11),所述第四电极层(140)在所述第一电介质层(100)的正投影位于所述第一电极层(110)在所述第一电介质层(100)的正投影中,形成第一结构电容(151);A fourth electrode layer (140) is arranged on the second surface (102), is arranged spaced apart from the second electrode layer (120), and is located in the first capacitance region (11), the fourth electrode The orthographic projection of the layer (140) on the first dielectric layer (100) is located in the orthographic projection of the first electrode layer (110) on the first dielectric layer (100), forming a first structural capacitor (151) ;
    每个所述磁场增强组件(10)由所述第一端(103)至所述第二端(104)延伸,所述多个磁场增强组件(10)间隔设置,并包围形成一个磁场增强空间(105);Each of the magnetic field enhancement components (10) extends from the first end (103) to the second end (104), the plurality of magnetic field enhancement components (10) are spaced apart and surround to form a magnetic field enhancement space (105);
    在所述第一电容区(11)中,相邻两个所述磁场增强组件(10)的所述第一电极层(110)与所述第四电极层(140)连接;In the first capacitance region (11), the first electrode layers (110) of two adjacent magnetic field enhancement components (10) are connected to the fourth electrode layer (140);
    在所述第二电容区(12)中,相邻两个所述磁场增强组件(10)的所述第一电极层(110)与所述第二电极层(120)连接。In the second capacitance region (12), the first electrode layers (110) of two adjacent magnetic field enhancement components (10) are connected to the second electrode layer (120).
  15. 如权利要求14所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 14, further comprising:
    第一外接电容(440),所述第一外接电容(440)的两端分别与所述第二电极层(120)和所述第一电极层(110)位于所述第二电容区(12)的部分电连接;a first external capacitor (440), two ends of the first external capacitor (440) are respectively located in the second capacitor region (12) with the second electrode layer (120) and the first electrode layer (110) ) part of the electrical connection;
    第一二极管(431),所述第一二极管(431)的阳极与所述第一电极层(110)位于所述第二电 容区(12)的部分电连接,所述第一二极管(431)的阴极与所述第二电极层(120)电连接;a first diode (431), the anode of the first diode (431) is electrically connected to the part of the first electrode layer (110) located in the second capacitance region (12), the first The cathode of the diode (431) is electrically connected to the second electrode layer (120);
    第二二极管(432),所述第二二极管(432)的阴极与所述第一电极层(110)位于所述第二电容区(12)的部分电连接,所述第二二极管(432)的阳极与所述第二电极层(120)电连接。A second diode (432), the cathode of the second diode (432) is electrically connected to the part of the first electrode layer (110) located in the second capacitance region (12), the second The anode of the diode (432) is electrically connected to the second electrode layer (120).
  16. 如权利要求14所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 14, further comprising:
    多个第五导电结构(559),所述多个第五导电结构(559)将所述多个第一结构电容(151)依次串联连接;a plurality of fifth conductive structures (559), the plurality of fifth conductive structures (559) sequentially connecting the plurality of first structure capacitors (151) in series;
    多个第六导电结构(569),所述多个第六导电结构(569)将所述多个第二结构电容(152)依次串联连接。A plurality of sixth conductive structures (569), wherein the plurality of sixth conductive structures (569) sequentially connect the plurality of second structure capacitors (152) in series.
  17. 如权利要求14所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 14, further comprising:
    筒形支撑结构(50),具有两个间隔相对的第三端(51)与第四端(53);a cylindrical support structure (50) having two spaced opposite third ends (51) and fourth ends (53);
    所述磁场增强组件(10)沿着所述第三端(51)向所述第四端(53)延伸。The magnetic field enhancement assembly (10) extends along the third end (51) to the fourth end (53).
  18. 如权利要求17所述的磁场增强装置,其特征在于,所述筒形支撑结构(50)具有间隔相对设置的内表面(521)与外表面(522);The magnetic field enhancement device according to claim 17, characterized in that, the cylindrical support structure (50) has an inner surface (521) and an outer surface (522) arranged opposite to each other at a distance;
    所述多个磁场增强组件(10)间隔设置于所述外表面(522)。The plurality of magnetic field enhancement components (10) are arranged on the outer surface (522) at intervals.
  19. 如权利要求18所述的磁场增强装置,其特征在于,还包括:The magnetic field enhancement device of claim 18, further comprising:
    多个限位结构(550),设置于所述外表面(522),且分别设置于所述第三端(51)与所述第四端(53);a plurality of limiting structures (550), disposed on the outer surface (522), and respectively disposed on the third end (51) and the fourth end (53);
    沿着所述第三端(51)到所述第四端(53)的方向,每一个所述磁场增强组件(10)分别对应所述第三端(51)的所述限位结构(550)和所述第四端(53)的所述限位结构(550)。Along the direction from the third end (51) to the fourth end (53), each of the magnetic field enhancement components (10) corresponds to the limiting structure (550) of the third end (51) respectively ) and the limiting structure (550) of the fourth end (53).
  20. 如权利要求19所述的磁场增强装置,其特征在于,所述限位结构(550)为通槽。The magnetic field enhancement device according to claim 19, wherein the limiting structure (550) is a through groove.
PCT/CN2021/113664 2021-02-10 2021-08-20 Magnetic field enhancement apparatus WO2022170751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110183923.5 2021-02-10
CN202110183923.5A CN114910843A (en) 2021-02-10 2021-02-10 Magnetic field enhancement device

Publications (1)

Publication Number Publication Date
WO2022170751A1 true WO2022170751A1 (en) 2022-08-18

Family

ID=82761571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113664 WO2022170751A1 (en) 2021-02-10 2021-08-20 Magnetic field enhancement apparatus

Country Status (2)

Country Link
CN (1) CN114910843A (en)
WO (1) WO2022170751A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127601A (en) * 1996-11-01 1998-05-19 Ge Yokogawa Medical Syst Ltd Bird cage coil for mri
CN103809138A (en) * 2012-11-08 2014-05-21 三星电子株式会社 Phased array RF coil for magnetic resonance imaging
CN106291545A (en) * 2016-08-03 2017-01-04 北京大学 A kind of imaging system based on artificial electromagnetic surface able to programme and formation method thereof
CN106980097A (en) * 2017-05-19 2017-07-25 深圳市特深电气有限公司 Birdcage coil and its tuning methods for magnetic resonance imaging system
CN206675527U (en) * 2016-10-28 2017-11-28 通用电气公司 RF body coil and magnetic resonance imaging system
CN109490803A (en) * 2018-10-16 2019-03-19 清华大学 Super structure surface device and preparation method, MRI system
CN110638453A (en) * 2019-09-19 2020-01-03 清华大学 Tunable cylindrical super-structure surface device for nuclear magnetic resonance imaging and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127601A (en) * 1996-11-01 1998-05-19 Ge Yokogawa Medical Syst Ltd Bird cage coil for mri
CN103809138A (en) * 2012-11-08 2014-05-21 三星电子株式会社 Phased array RF coil for magnetic resonance imaging
CN106291545A (en) * 2016-08-03 2017-01-04 北京大学 A kind of imaging system based on artificial electromagnetic surface able to programme and formation method thereof
CN206675527U (en) * 2016-10-28 2017-11-28 通用电气公司 RF body coil and magnetic resonance imaging system
CN106980097A (en) * 2017-05-19 2017-07-25 深圳市特深电气有限公司 Birdcage coil and its tuning methods for magnetic resonance imaging system
CN109490803A (en) * 2018-10-16 2019-03-19 清华大学 Super structure surface device and preparation method, MRI system
CN110638453A (en) * 2019-09-19 2020-01-03 清华大学 Tunable cylindrical super-structure surface device for nuclear magnetic resonance imaging and preparation method thereof

Also Published As

Publication number Publication date
CN114910843A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US9288849B2 (en) Systems that include microwave adaptors and methods of their operation
KR20150013730A (en) Compact high voltage rf generator using a self-resonant inductor
US2578429A (en) Ultrahigh-frequency tuning apparatus
WO2022170751A1 (en) Magnetic field enhancement apparatus
JP3184849B2 (en) Nuclear magnetic resonance detector
WO2022170753A1 (en) Image-enhanced metasurface device for dual-nuclear mri
CN114910853B (en) MRI image enhancement super-structure surface array unit assembly
WO2022170752A1 (en) Mos transistor based metasurface device for nonlinear response mri image enhancement
CN114910847B (en) Magnetic field enhancement assembly and magnetic field enhancement device
US2622238A (en) Resonant tank circuit for diathermy apparatus or the like
WO2022170746A1 (en) Magnetic field enhancement device and curved magnetic field enhancement device
US8125226B2 (en) Millipede surface coils
CN114910850B (en) Image enhancement super-structure surface device of dual-core MRI
WO2022170745A1 (en) Magnetic field enhancement assembly and magnetic field enhancement device
CN114910839B (en) Image enhancement super-structured surface device based on phase regulation super-structured surface binuclear MRI
CN114910838B (en) Magnetic field enhancement assembly and magnetic field enhancement device
EP2654066B1 (en) Microwave adaptors and related oscillator systems
CN114910846B (en) Phase-controllable MRI image enhanced super-structure surface device
CN114910842B (en) MRI image enhancement super-structure surface array unit assembly
WO2022170741A1 (en) Magnetic field enhancement component and magnetic field enhancement device
CN114910844B (en) Magnetic field enhancement assembly and magnetic field enhancement device
CN114910841B (en) Magnetic field enhancement assembly and magnetic field enhancement device
US2755344A (en) Coaxial line circuit
CN114910849B (en) Special-shaped curved surface MRI image enhanced super-structured surface device
CN114910851B (en) Diode-based nonlinear response MRI image enhanced super-structured surface device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925404

Country of ref document: EP

Kind code of ref document: A1