WO2022170546A1 - 3d模组及扫地机器人 - Google Patents

3d模组及扫地机器人 Download PDF

Info

Publication number
WO2022170546A1
WO2022170546A1 PCT/CN2021/076451 CN2021076451W WO2022170546A1 WO 2022170546 A1 WO2022170546 A1 WO 2022170546A1 CN 2021076451 W CN2021076451 W CN 2021076451W WO 2022170546 A1 WO2022170546 A1 WO 2022170546A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
light
partition
bracket
receiving
Prior art date
Application number
PCT/CN2021/076451
Other languages
English (en)
French (fr)
Inventor
戴博
陈楠
陈华
Original Assignee
欧菲光集团股份有限公司
江西欧迈斯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西欧迈斯微电子有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/076451 priority Critical patent/WO2022170546A1/zh
Publication of WO2022170546A1 publication Critical patent/WO2022170546A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven

Definitions

  • the utility model relates to the field of optical modules, in particular to a 3D module and a sweeping robot.
  • TOF is the abbreviation of Time of Flight technology, that is, the sensor emits modulated near-infrared light, which reflects after encountering an object.
  • Depth information combined with traditional camera shooting, can present the three-dimensional outline of the object as a topographic map with different colors representing different distances.
  • the TOF module is a 3D module.
  • the sweeping robot When applied to the sweeping robot, the sweeping robot will raise dust and generate dust particles on the surface of the cover plate during the cleaning process.
  • the receiving module receives the When light is used, due to the dust on the surface of the cover plate, the optical path will generate multi-path diffuse reflection due to dust. If there are objects such as high-reflection shields around the TOF module, optical path reflection will also occur on its surface, and finally due to the diffuse reflection of the optical path. Channeling light will cause the inaccuracy of the depth information and software algorithm of the TOF module, resulting in poor product function.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the 3D module includes: a circuit board, a transmitting module, a receiving module, and a light shielding member, the transmitting module is used for emitting infrared light; the receiving module is used for receiving infrared light, and the transmitting module, The receiving modules are all arranged on the circuit board and are electrically connected; the light shielding member is provided with a first installation compartment and a second installation compartment arranged in parallel, and the end of the transmitting module away from the circuit board is located in the first installation compartment and the second installation compartment.
  • the light shielding member has light through holes corresponding to the first installation compartment and the second installation compartment respectively; the partition is arranged toward the side away from the circuit board, and the partition is used to block the first and second installation compartments adjacent to each other. The light path emitted by the installation chamber and received by the second installation chamber.
  • the multi-path diffuse reflection caused by the dust on the light-transmitting surface of the product (such as the cover plate of the sweeping robot) is avoided, and the overall improvement is improved. the optical power signal.
  • the light barrier includes: a cover body and the partition part, the cover body includes: an end plate, a plurality of annular side walls, the partition part is connected to the end plate and protrudes from the end plate One side surface of the end plate is arranged, and the light-passing hole penetrates through the end plate; on the other side of the end plate, each annular side wall and the end plate together define a first an installation compartment or the second installation compartment.
  • the transmitting module and the cover plate and between the receiving module and the cover plate are blocked by the end plate, and the sides of the transmitting module and the receiving module are covered by the annular side wall, so that the transmitting module can be sent to the transmitting module inside the panel. It blocks the light received by the receiving module, and reduces the mutual interference between the light of the transmitting module and the receiving module in the panel.
  • the partition is integrally formed with the cover. Therefore, the use of a flexible material for the light shielding member can more fully fill the space between the cover plate and the module, and the integrated molding method is more convenient for processing and reduces the assembly process.
  • the emitting module includes a first bracket and a emitting part, the emitting part is provided on the first bracket and protrudes from the first bracket, and one of the annular side walls surrounds the emitting part.
  • the outer periphery of the protruding part stops against the first bracket, so that the side of the transmitting part away from the circuit board is arranged in the first installation compartment;
  • the receiving module includes a second bracket and a receiving part, the receiving part is The part is arranged in the second bracket and a part protrudes from the second bracket, and the other annular side wall surrounds the receiving part and stops against the second bracket, so that the receiving part is away from the circuit board One side is set in the second installation compartment.
  • the annular side wall is located between the transmitting module and the receiving module to separate the cover plate, completely blocking the receiving module and the transmitting module, so that the two are not interfered by the external medium light, so that the light path can be stably emitted from the transmitting module, from the transmitting module.
  • the receiving module is not disturbed by diffuse reflection stray light while receiving, and the product performance can be more stable.
  • the light shielding member includes: a flexible cover and a support shell, wherein the transmitting module and the receiving module are installed in the support shell, and the light through holes and the partition are both formed in the support shell.
  • the flexible cover is located in the support shell, the first installation compartment and the second installation compartment are defined by at least one of the flexible cover and the support shell, the flexible cover The cover surrounds at least the side walls of the transmitting module and the receiving module.
  • the support shell and the flexible cover are arranged on the periphery of the module, between the module and the cover, which can reduce light leakage from the side of the module.
  • the two are not interfered by the light of the external medium, so that the light path can be stably emitted from the transmitting module, and not interfered by the diffuse reflection stray light when receiving from the receiving module, and the product performance can be more stable.
  • the support shell is a part with higher structural strength than the flexible cover, so that the cover plate is installed on the upper surface of the support shell, the deformation of the cover plate is reduced, and the fixation of the cover plate is more reliable.
  • the support shell further includes a partition, an annular sleeve connected to one side of the partition, and the flexible cover and the partition together define the first installation compartment, the In the second installation bin, the light-passing hole is located on the partition plate, and the partition part is connected and protrudes from the other side of the partition plate.
  • the support shell in this embodiment can provide the main body for the transmitting module, the receiving module, and the flexible cover, and can form a 3D module together, and the various parts do not need to be assembled together when the cleaning robot is assembled, which is more modular and integrated. higher degree.
  • the emitting module includes a first bracket and a emitting part, the emitting part is provided on the first bracket and protrudes from the first bracket, and one of the annular sleeves surrounds the emitting part.
  • the outer periphery of the protruding part is stopped against the first bracket;
  • the receiving module includes a second bracket and a receiving part, the receiving part is arranged in the second bracket and a part protrudes from the second bracket, and the other is the annular sleeve
  • the body surrounds the receiving part and stops against the second bracket;
  • the support shell further includes a filling part connected at the junction of the adjacent annular sleeve bodies, the filling part extends toward the circuit board and abuts against the circuit board On the circuit board, the first bracket and the second bracket are blocked by the filling portion.
  • the support shell not only covers the sides of the transmitting part and the receiving part, but also the filling part located between the transmitting module and the receiving module can completely separate the transmitting module from the receiving module, reducing the friction between the two modules. Dust floats, which further reduces internal channeling light and diffuse reflection, and the circuit board can support the flexible cover, form a stable positioning for the flexible cover, and form a stable limit for the two modules.
  • the cleaning robot includes: a main body, the 3D module, and a cover plate, the main body has a panel, and the panel has an installation opening; the 3D module is installed on the In the main body, the transmitting end of the transmitting module and the receiving end of the receiving module are arranged toward the installation opening; the cover plate is installed in the installation opening, and the cover plate is divided into a plurality of transparent parts by the partition part.
  • the light-transmitting regions correspond to the transmitting modules and the receiving modules one-to-one respectively.
  • the 3D modules in the sweeping robot are designed into separate warehouses, the light paths of the transmitting module and the receiving module are separated by the light barrier, and the cover plate is separated into a plurality of light-transmitting areas by using the partition of the light barrier. Isolate the transmitting optical path of the transmitting module and the receiving optical path of the receiving module to avoid the multi-path diffuse reflection and channeling light caused by the dust on the light-transmitting surface of the product (such as the cover plate of the sweeping robot) after being applied to the product, and the overall optical power signal is improved.
  • one end of the partition portion facing away from the circuit board is not lower than the outer surface of the cover plate.
  • the outer surface of the cover plate and the top end of the partition together form a flat and seamless appearance surface, and the appearance is more beautiful.
  • the part of the partition part protruding from the cover plate can play a better role in blocking the interference of refraction and the interference of diffuse reflection.
  • the dividing part includes a bottom dividing bar and a top dividing bar, the bottom dividing bar is located between each of the light-transmitting regions, and a top surface of the bottom dividing bar is opposite to the outer surface of the cover plate Flush, the top dividing strip protrudes from the outer surface of the cover plate, and the width of the top dividing strip is smaller than the width of the bottom dividing strip. In this way, the top partition bar can better block the optical paths of adjacent modules.
  • the cover plate includes a plurality of sub-cover plates that are independent of each other, and each sub-cover plate is formed as a light-transmitting area. Therefore, the cover plate is composed of a plurality of sub-cover plates independent of each other, which is more convenient for installation and maintenance and replacement.
  • the cover plate is a plate body with a slot or an insertion hole, and the partition is inserted into the slot or the insertion hole. Therefore, the use of an integral cover plate is more convenient for processing and saves the installation process.
  • the 3D module is the 3D module described in some embodiments, the panel of the main body has a sunken part, the installation opening penetrates the bottom wall of the sunken part, and the cover The plate is fixed with the bottom wall in the sinking portion and covers the installation opening, and the inner surface of the cover plate abuts against the end plate of the cover body.
  • the panel of the cleaning robot can support the cover plate, which reduces the requirement on the precision tolerance of the light shielding member.
  • the 3D module is the 3D module described in other embodiments
  • the cover plate is installed in the installation opening, and the inner surface of the cover plate is fixed to the support shell. Therefore, the support shell can provide rigid support for the cover plate, and the cover plate is fully embedded in the installation opening of the panel, and the appearance of the cleaning robot is more beautiful.
  • FIG. 1 is a three-dimensional disassembled schematic diagram of a 3D module assembled on a cleaning robot according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a 3D module assembled on a cleaning robot according to an embodiment of the present invention.
  • FIG. 3 is a perspective disassembly schematic diagram of a 3D module assembled on a cleaning robot according to another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a 3D module assembled on a cleaning robot according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a cover plate of a cleaning robot according to still another embodiment of the present invention.
  • the launching module 20 the first bracket 21, the launching part 22, the protruding part 221,
  • Panel 200 installation opening 201, sinking portion 202,
  • Cover plate 300 light-transmitting area 301 , sub-cover plate 302 , socket 303 .
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. Further, in the description of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • the cleaning robot 100 according to the embodiment of the present invention will be described below with reference to FIGS. 1-5 .
  • the 3D module 100 includes: a circuit board 10 , at least one transmitting module 20 , at least one receiving module 30 , and a light blocking member 40 .
  • the transmitting module 20 is used for emitting infrared light; the receiving module 30 is used for receiving infrared light.
  • the transmitting module 20 is used for emitting infrared light, the transmitting module 20 has a transmitting chip, the receiving module 30 is used for receiving infrared light, and the receiving module 30 has a receiving chip, which can generate image information from the received light.
  • the light blocking member 40 is made of a material capable of blocking light.
  • the light blocking member 40 is provided with a first installation chamber a1 and a second installation chamber a2 arranged in parallel.
  • One end of the module 30 away from the circuit board 10 is located in the second installation compartment a2, and the light shielding member 40 has light through holes b corresponding to the first installation compartment a1 and the second installation compartment a2 respectively.
  • partition 41 between the first installation compartment a1 and the second installation compartment a2 of the light shielding member 40 , the partition 41 is disposed toward the side away from the circuit board 10 , and the partition 41 is used to block the first installations adjacent to each other.
  • the 3D module may be a TOF module.
  • the optical path is diffused in the glass itself and the glass surface in multiple paths, resulting in light channeling and affecting the 3D module 100. Defects in effect.
  • the 3D module 100 in the sweeping robot is designed to be divided into compartments, and the light paths of the transmitting module and the receiving module are separated by the light barrier 40 .
  • the light shielding member 40 to isolate the transmitting light path of the transmitting module 20 and the receiving light path of the receiving module 30, the multi-path diffuse reflection channel caused by the dust on the light-transmitting surface of the product (such as the cover plate 300 of the sweeping robot) after being applied to the product is avoided. light, the overall optical power signal is improved.
  • the blocking of the optical path transmitted or received through the adjacent light holes b1 and b2 refers to the maximum projection range of the transmitting optical path of the transmitting module 20 , the maximum projection range of the receiving module 30 .
  • the maximum projection range of the receiving optical path is separated by the partition 41 without intersecting.
  • the light shielding member 40 includes a cover body 42 and a partition portion 41 .
  • the cover body 42 includes an end plate 421 and a plurality of annular side walls 422 , the partition 41 is connected to the end plate 421 and protrudes from one side surface of the end plate 421 , and the light-transmitting holes b1 and b2 penetrate the end plate 421 .
  • the annular side walls 422 are located on the other side of the end plate 421, and each annular side wall 422 and the end plate 421 together define a first installation compartment a1 or a second installation compartment a2.
  • the end plate 421 is used to block the space between the transmitting module 20 and the cover plate 300, and between the receiving module 30 and the cover plate 300, and at the same time use the annular side wall 422 to cover the sides of the transmitting module 20 and the receiving module 30,
  • the light emitted by the transmitting module 20 and the light received by the receiving module 30 are blocked inside the panel 200 , thereby reducing the mutual interference of the light from the transmitting module 20 and the receiving module 30 in the panel 200 .
  • the partition portion 41 and the cover body 42 are integrally formed.
  • the light shielding member 40 may be a flexible material
  • the light shielding member 40 may be a flexible material such as plastic or silicone
  • the color may be black with better light reflection effect
  • the partition 41 and the cover body 42 may be integrated Therefore, the use of flexible materials for the light shielding member 40 can more fully fill the space between the cover plate 300 and the module, and the integrated molding method is more convenient for processing and reduces the assembly process.
  • the launching module 20 includes a first bracket 21 and a launching portion 22 .
  • the launching portion 22 is provided on the first bracket 21 and protrudes from the first bracket 21 , and an annular side wall 422 surrounds the protruding portion of the launching portion 22 .
  • the receiving module 30 includes a second bracket 31 and a receiving part 32, and the receiving part 32 is located in Inside the second bracket 31 and a part of it protrudes from the second bracket 31 , the other annular side wall 422 surrounds the receiving portion 32 and abuts against the second bracket 31 , so that the side of the receiving portion 32 away from the circuit board 10 is disposed on the second bracket 31 .
  • the annular side wall 422 is located between the transmitting module 20 and the receiving module 30 to separate the cover plate 300, completely blocking the receiving module 30 and the transmitting module 20, so that the two are not interfered by external medium light, so that the optical path can be stably It is emitted from the transmitting module 20 and received from the receiving module 30 without being disturbed by diffuse reflection stray light, and the product performance can be more stable.
  • the 3D module also has a casing 50 disposed outside the transmitting module 20 and the receiving module 30 , a sealing ring 60 disposed between the casing 50 and the cover plate 200 , and a bottom plate 70 supporting the circuit board.
  • the light shielding member 40 is a part formed by an elastic member.
  • the present invention is not limited to this, and in the second embodiment, the light shielding member 40 may also include a plurality of parts.
  • the light shielding member 40 includes: a flexible cover 43 and a support shell 44.
  • the transmitting module 20 and the receiving module 30 are installed in the support shell 44, and the light-passing holes b1, b2 and the partition 41 are all formed in the support shell. 44 on.
  • the flexible cover 43 is located in the support shell 44 , the first installation compartment a1 and the second installation compartment a2 are defined by at least one of the flexible cover 43 and the support shell 44 , and the flexible cover 43 surrounds at least the sides of the transmitting module 20 and the receiving module 30 outside the wall.
  • the support shell 44 and the flexible cover 43 are arranged at the periphery of the module, between the module and the cover plate 300, which can reduce light leakage from the side of the module. Block, so that the two are not interfered by external medium light, so that the optical path can be stably emitted from the transmitting module 20, and received from the receiving module 30 without being interfered by diffuse reflection stray light, and the product performance can be more stable.
  • the support shell 44 is a part with higher structural strength than the flexible cover 43, so that the cover plate 300 is installed on the upper surface of the support shell 44, the deformation of the cover plate 300 is reduced, and the fixation of the cover plate 300 is more reliable .
  • the support shell 44 further includes a partition plate 441 and an annular sleeve 442 connected to one side of the partition plate 441 .
  • the flexible cover 43 and the partition plate 441 together define a first installation chamber a1 ,
  • the second installation chamber a2, the light-passing holes b1, b2 are located on the partition plate 441, and the partition portion 41 is connected and protrudes from the other side of the partition plate 441. Therefore, the support shell 44 in this embodiment can provide the main body for the transmitting module 20, the receiving module 30, and the flexible cover 43, and can jointly form the 3D module 100, and the various parts do not need to be assembled together when the cleaning robot is assembled. More modular and more integrated.
  • the launching module 20 includes a first bracket 21 and a launching portion 22 .
  • the launching portion 22 is provided on the first bracket 21 and protrudes from the first bracket 21 , and an annular sleeve 442 surrounds the protruding portion of the launching portion 22 .
  • the receiving module 30 includes a second bracket 31 and a receiving portion 32, the receiving portion 32 is provided in the second bracket 31 and a part of it protrudes from the second bracket 31, and the other annular sleeve 442 Surrounding outside the receiving portion 32 and abutting against the second bracket 31 ;
  • the support shell 44 also includes a filling portion 431 connected at the junction of the adjacent annular sleeve bodies 442 , the filling portion 431 extends toward the circuit board 10 and abuts against the circuit board 10 , the first bracket 21 and the second bracket 31 are blocked by the filling part 431 .
  • the support shell 44 not only covers the side surfaces of the transmitting part 22 and the receiving part 32, but also the filling part 431 located between the transmitting module and the receiving module can completely separate the transmitting module from the receiving module, reducing two molds.
  • the dust floating between the groups further reduces the internal light channeling and diffuse reflection, and the circuit board 10 can support the flexible cover 43, form a stable positioning for the flexible cover 43, and can form a stable limit for the two modules.
  • the ends of the light-transmitting holes b1 and b2 facing away from the circuit board 10 are provided with a truncated cone-shaped avoidance surface c.
  • the avoidance surface c may be formed by chamfering the ends of the light-transmitting holes b1 and b2. In this way, the avoidance surface c can reduce the occlusion of the transmitting light path and the receiving light path, so that the normal emission of light is not blocked, and the avoidance surface c can reflect the stray light incident on the avoidance surface c, which further optimizes the light path.
  • the material of the flexible cover 43 may be any one of foam, rubber, and silicone, and the material of the support shell 44 may be any one of metal and plastic.
  • the diffuser is made of the above-mentioned materials, which can more flexibly fill the gap between the sides of the modules, and the support shell 44 is made of a material that is not easily deformed, which can support and position the cover plate 300 more stably.
  • the cleaning robot according to the embodiment of the present invention includes: a main body, the 3D module 100 of the above-mentioned embodiment, and a cover plate 300 .
  • the main body has a panel 200 , the panel 200 has an installation opening 201 , and the installation opening 201 is a through hole passing through the side wall of the panel 200 .
  • the 3D module 100 is installed in the main body, and the transmitting end of the transmitting module 20 and the receiving end of the receiving module 30 are disposed toward the installation opening 201 ; the cover plate 300 is installed in the installation opening 201 , and the cover plate 300 is divided into a plurality of light-transmitting parts by the partition part 41 .
  • the light-transmitting regions 301 are in one-to-one correspondence with the transmitting module 20 and the receiving module 30 respectively.
  • the cover plate 300 is usually a transparent glass plate, the light emitted by the transmitting module 20 is emitted through the cover plate 300 , and the light passes through the cover plate 300 to be received by the receiving module 30 .
  • the number of the receiving module 30 and the transmitting module 20 is one
  • the number of the light-transmitting regions 301 is two
  • the two light-transmitting regions 301 are respectively opposite to the receiving module 30 and the transmitting module 20, separated from each other.
  • the number of the partition parts 41 of the optical element 40 is one
  • one partition part 41 separates the two light-transmitting regions 301 .
  • the number of light-transmitting areas 301 is more than two
  • the number of light-blocking members 40 is the number of light-transmitting areas 301-1.
  • the module is opposite to a light-transmitting area 301 .
  • the 3D module 100 in the sweeping robot is designed to be divided into compartments, the light paths of the transmitting module and the receiving module are separated by the light barrier 40 , and the cover plate 300 is separated into multiple parts by using the partition 41 of the light barrier 40 .
  • a light-transmitting area 301 isolates the transmitting light path of the transmitting module 20 and the receiving light path of the receiving module 30, and avoids multi-path diffuse reflection and channeling light caused by dust on the light-transmitting surface of the product (such as the cover plate 300 of the sweeping robot) after being applied to the product. Improved optical power signal.
  • the panel 200 of the main body has a sinking portion 202
  • the installation opening 201 penetrates through the bottom wall of the sinking portion 202
  • the cover plate 300 is sinking
  • the inner part 202 is fixed with the bottom wall and covers the installation opening 201
  • the inner surface of the cover plate 300 abuts against the end plate 421 of the cover body 42 .
  • the inner surface of the cover plate 300 refers to the surface of the cover plate 300 on the side facing the accommodating chamber, and the outer surface is the surface exposed to the outside.
  • the end plate 421 is bonded.
  • the panel 200 of the cleaning robot can support the cover plate 300 , which reduces the requirement on the precision tolerance of the light shielding member 40 .
  • One end of the partition 41 facing away from the circuit board 10 is not lower than the outer surface of the cover plate 300 .
  • the end connecting the partition 41 and the partition plate 441 is called the bottom end, and the other end is called the top end.
  • the top of the partition 41 may be flush with the outer surface of the cover plate 300 (see the partition 41 in the first embodiment), so that the outer surface of the cover 300 and the partition 41 are flush with each other.
  • the tops of the clasps together form a flat and seamless appearance surface, and the appearance is more beautiful.
  • the top end of the partition portion 41 may also protrude from the outer surface of the cover plate 300 , and be disposed protruding from the outer surface of the cover plate 300 . Therefore, the portion of the partition portion 41 protruding from the cover plate 300 can better block the interference of refraction and the interference of diffuse reflection.
  • the partitions 41 include bottom partitions 411 and top partitions 412.
  • the bottom partitions 411 are located between the light-transmitting regions 301, and the bottom partitions 411
  • the top surface is flush with the outer surface of the cover plate 300
  • the top partition strip 412 protrudes from the outer surface of the cover plate 300
  • the width of the top partition strip 412 is smaller than the width of the bottom partition strip 411 . Therefore, the top partition bar 412 can better block the optical paths of adjacent modules.
  • the cover plate 300 is installed in the installation opening 201 , and the inner surface of the cover plate 300 is fixed to the support shell 44 .
  • the edge of the cover plate 300 is adapted to the inner hole of the installation opening 201 , and the inner surface of the cover plate 300 can be bonded to the support shell 44 by glue (eg, double-sided tape).
  • the support shell 44 can provide rigid support for the cover plate 300, and the cover plate 300 is fully embedded in the installation opening 201 of the panel 200, and the appearance of the cleaning robot is more beautiful.
  • the cover plate 300 includes a plurality of sub-cover plates 302 which are independent of each other, and each sub-cover plate 302 is formed as a light-transmitting area 301 .
  • the installation port 201 is divided into a plurality of areas by the partition 41, each cover 300 is installed in one area, the adjacent sub-covers 302 are separated by the partition 41, and the object ends of the receiving module and the transmitting module are respectively The sub-cover 302 is covered to cover the transmitting module and the receiving module. Therefore, the cover plate 300 is composed of a plurality of sub-cover plates 302 independent of each other, which is more convenient for installation and maintenance and replacement.
  • the cover plate 300 is a plate body with a slot or a socket 303 , and the partition 41 is inserted into the slot or the socket 303 .
  • the cover plate 300 may be a single piece of glass with a socket 303 or a slot. Therefore, the use of the integral cover plate 300 is more convenient for processing and saves the installation process.
  • the light-transmitting areas 301 are distributed along the length direction of the cover plate 300
  • the slots or sockets 303 are elongated, and extend along the width direction of the cover plate 300 and are spaced apart from the two long edges of the cover plate 300.
  • the length of the socket 303 may be greater than half of the width of the cover plate 300 .

Landscapes

  • Manipulator (AREA)

Abstract

3D模组(100)包括:电路板(10)、发射模块(20)、接收模块(30)、隔光件(40),发射模块(20)、接收模块(30)均设置于电路板(10)并且电连接;隔光件(40)开设有并列设置的第一安装仓(a1)和第二安装仓(a2),发射模块(20)、接收模块(30)的远离电路板(10)的一端分别处于第一安装仓(a1)、第二安装仓(a2);隔光件(40)的第一安装仓(a1)和第二安装仓(a2)之间具有分隔部(41),分隔部(41)朝背离电路板(10)的一侧设置,分隔部(41)用于阻隔经彼此相邻的第一安装仓(a1)发射、第二安装仓(a2)接收的光路。

Description

3D模组及扫地机器人 技术领域
本实用新型涉及光学模组领域,尤其是涉及一种3D模组及扫地机器人。
背景技术
TOF是飞行时间(Time of Flight)技术的缩写,即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来。
TOF模组是一种3D模组,在扫地机器人上应用时,由于扫地机器人在清洁的过程时,会将灰尘扬起并会在盖板表面产生灰尘颗粒,当发射光打出去,接收模块接收光线时,由于盖板表面灰尘的原因,光路会因灰尘产生多路径漫反射,如果TOF模组周边有高反射屏蔽罩等物体,也会产生在其表面产生光路反射,最终由于光路的漫反射窜光,造成TOF模组的深度信息和软件算法的不准确性,导致产品功能效果差。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。
根据本实用新型实施例的3D模组包括:电路板、发射模块、接收模块、隔光件,所述发射模块用于发射红外光线;所述接收模块用于接收红外光线,所述发射模块、所述接收模块均设置于所述电路板并且电连接;所述隔光件开设有并列设置的第一安装仓和第二安装仓,所述发射模块的远离电路板的一端处于所述第一安装仓,所述接收模块的远离电路板的一端处于所述第二安装仓,所述隔光件具有与所述第一安装仓和所述第二安装仓分别对应的通光孔;所述隔光件的第一安装仓和第二安装仓之间具有分隔部,所述分隔部朝背离所述电路板的一侧设置,所述分隔部用于阻隔经彼此相邻的所述第一安装仓发射、所述第二安装仓接收的光路。
由此,通过利用隔光件隔绝发射模块发射光路与接收模块接收光路,避免应用到产品上后,产品透光表面(如扫地机器人的盖板)灰尘造成的多路径漫反射窜光,整体提升了光功率信号。
在一些实施例中,所述隔光件包括:罩体和所述分隔部,所述罩体包括:端板、多个环形侧壁,所述分隔部连接在所述端板上且突出于所述端板的一侧表面设置,所述通光孔贯穿所述端板;位于所述端板的另一侧,每个所述环形侧壁与所述端板共同限定出一个所述第一安装仓或所述第二安装仓。
由此,通过端板对发射模块与盖板之间、接收模块与盖板之间进行阻隔,同时采用环形侧壁对发射模块、接收模块的侧面进行包覆,以在面板内部对发射模块发出的光线、对接收模块接收的光线进行阻隔,减少了发射模块与接收模块在面板内的光线的彼此干扰。
在一些实施例中,所述分隔部与所述罩体一体成型。由此,隔光件采用柔性材质能够对盖板与模组之间的空间填充的更充分,一体成型的方式更方便加工、减少了装配工序。
在一些实施例中,所述发射模块包括第一支架以及发射部,所述发射部设于所述第一支架上并且突出于第一支架,一个所述环形侧壁环绕在所述发射部的突出部分的外周并且止抵于所述第一支架,以使所述发射部远离所述电路板的一侧设置在第一安装仓;所述接收模块包括第二支架以及接收部,所述接收部设于第二支架内并且一部分突出于第二支架,另一个所述环形侧壁环绕在所述接收部外并且止抵于所述第二支架,以使所述接收部远离所述电路板的一侧设置在第二安装仓。
这样,环形侧壁位于发射模块和接收模块之间,以分隔盖板,将接收模块和发射模块完全阻隔,使两者互不受外部介质光干扰,使光路可以稳定的从发射模块发出,从接收模块接收的同时不被漫反射杂光干扰,产品性能可以更加地稳定。
在一些实施例中,所述隔光件包括:柔性罩、支撑壳,所述发射模块、所述接收模块均安装在所述支撑壳内,所述通光孔、所述分隔部均形成在所述支撑壳上;所述柔性罩位于所述支撑壳内,所述第一安装仓、所述第二安装仓由所述柔性罩与所述支撑壳中的至少一个限定出,所述柔性罩至少环绕在所述发射模块、所述接收模块的侧壁外。
由此,支撑壳以及柔性罩设置在模组外围、模组与盖板之间,能够起到减少模组侧部漏光的作用,支撑壳的分隔部能够对发射光路、接收光路进行阻隔,使两者互不受外部介质光干扰,使光路可以稳定的从发射模块发出,从接收模块接收的同时不被漫反射杂光干扰,产品性能可以更加地稳定。相比之下,支撑壳为结构强度高于柔性罩的零件,使盖板安装在支撑壳的上表面,减少了盖板的变形,对盖板的固定更牢靠。
在一些实施例中,所述支撑壳还包括隔板、连接在所述隔板的一侧的环形套体,所述柔性罩与所述隔板共同限定出所述第一安装仓、所述第二安装仓,所述通光孔位于所述隔板上,所述分隔部连接并突出于所述隔板的另一侧。
由此,本实施例中的支撑壳能够为发射模块、接收模块、柔性罩提供主机体,并且可以共同形成3D模组,各个零件无需在扫地机器人组装时才装配到一起,更加模块化、集成度更高。
在一些实施例中,所述发射模块包括第一支架以及发射部,所述发射部设于所述第一支架上并且突出于第一支架,一个所述环形套体环绕在所述发射部的突出部分的外周并且止抵于所述第一支架;所述接收模块包括第二支架以及接收部,所述接收部设于第二支架内并且一部分突出于第二支架,另一个所述环形套体环绕在所述接收部外并且止抵于所述第二支架;所述支撑壳还包括连接在相邻环形套体交界处的填充部,所述填充部朝向所述电路板延伸并 贴靠于所述电路板,所述第一支架和所述第二支架被所述填充部阻隔开。
由此,支撑壳不仅对发射部、接收部的侧面进行包覆,而且位于发射模块、接收模块之间的填充部能够彻底将发射模块与接收模块隔开,减少了两个模组之间的灰尘漂浮,进一步减少了内部的窜光、漫反射,而且电路板能够对柔性罩形成支撑,对柔性罩形成稳定定位,能够对两个模组形成稳定限位。
根据本实用新型第二方面实施例的扫地机器人包括:主机体、所述的3D模组、盖板,所述主机体具有面板,所述面板具有安装口;所述3D模组安装于所述主机体内,所述发射模块的发射端、所述接收模块的接收端朝向所述安装口设置;所述盖板安装于所述安装口,所述盖板被所述分隔部分隔成多个透光区,多个透光区分别与发射模块、接收模块一一对应。
由此,将扫地机器人内的3D模组做分仓设计,通过隔光件对发射模块、接收模块的光路隔开,通过利用隔光件的分隔部将盖板分隔成多个透光区,隔绝发射模块发射光路与接收模块接收光路,避免应用到产品上后,产品透光表面(如扫地机器人的盖板)灰尘造成的多路径漫反射窜光,整体提升了光功率信号。
在一些实施例中,所述分隔部的背离所述电路板的一端不低于所述盖板的外表面。这样,盖板的外表面与分隔部的顶端共同形成平整、无缝的外观面,外形更美观。分隔部的突出于盖板的部分能够起到更好的阻隔折射干扰、漫反射干扰的作用。
在一些实施例中,所述分隔部包括底分隔条和顶分隔条,所述底分隔条位于各个所述透光区之间,所述底分隔条的顶面与所述盖板的外表面相齐平,所述顶分隔条突出于所述盖板的外表面,所述顶分隔条的宽度小于所述底分隔条的宽度。由此,顶分隔条能够起到更好地阻隔相邻模组光路的作用。
在一些实施例中,所述盖板包括多个彼此独立的子盖板,每个子盖板形成为一个透光区。由此,盖板由彼此独立的多个子盖板组成,更方便安装以及维修更换。
在一些实施例中,所述盖板为一个具有插槽或插孔的板体,所述分隔部插入所述插槽或所述插孔内。由此,采用整体式的盖板,更方便加工,节省了安装工序。
在一些实施例中,所述3D模组为一些实施例所述的3D模组,所述主机体的面板具有下沉部,所述安装口贯通所述下沉部的底壁,所述盖板在所述下沉部内与所述底壁固定,并且覆盖所述安装口,所述盖板的内表面与所述罩体的端板相抵靠。由此,扫地机器人的面板能够对盖板进行支撑,降低了对隔光件的精度公差的要求。
在一些实施例中,所述3D模组为另一些实施例所述的3D模组,所述盖板安装在所述安装口内,所述盖板的内表面与所述支撑壳固定。由此,支撑壳能够为盖板提供刚性支撑,盖板全部嵌入面板的安装口内,扫地机器人的外形更美观。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本实用新型一个实施例的3D模组在扫地机器人上组装的立体拆分示意图。
图2是根据本实用新型一个实施例的3D模组在扫地机器人上组装的剖视示意图。
图3是根据本实用新型另一个实施例的3D模组在扫地机器人上组装的立体拆分示意图。
图4是根据本实用新型另一个实施例的3D模组在扫地机器人上组装的剖视示意图。
图5是根据本实用新型再一个实施例的扫地机器人的盖板的示意图。
附图标记:
3D模组100,
电路板10,
发射模块20,第一支架21,发射部22,突出部分221,
接收模块30,第二支架31,接收部32,
隔光件40,第一安装仓a1、第二安装仓a2,通光孔b1、b2,避让面c,分隔部41,底分隔条411,顶分隔条412,罩体42,端板421,环形侧壁422,
柔性罩43,填充部431,
支撑壳44,隔板441,环形套体442,
外壳50,密封圈60,底板70,
面板200,安装口201,下沉部202,
盖板300,透光区301,子盖板302,插孔303。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面参考图1-图5描述根据本实用新型实施例的扫地机器人100。
根据本实用新型实施例的3D模组100包括:电路板10、至少一个发射模块20、至少一个接收模块30、隔光件40。
发射模块20用于发射红外光线;接收模块30用于接收红外光线,发射模块20、接收模块30均设置于电路板10并且都与电路板10电连接。发射模块20用于发射红外光线,发射模块20具有发射芯片,接收模块30用于接收红外光线,接收模块30具有接收芯片,可以将接收的光线生成图像信息。
隔光件40为能够阻隔光线的材质,隔光件40开设有并列设置的第一安装仓a1和第二安装仓a2,发射模块20的远离电路板10的一端处于第一安装仓a1,接收模块30的远离电路板10的一端处于第二安装仓a2,隔光件40具有与第一安装仓a1、第二安装仓a2分别对应的通光孔b。
隔光件40的第一安装仓a1和第二安装仓a2之间具有分隔部41,分隔部41朝背离电路板10的一侧设置,分隔部41用于阻隔经彼此相邻的第一安装仓a1发射、第二安装仓a2接收的光路。
其中,3D模组可以是TOF模组。
举例而言,当应用在扫地机器人时,在清洁时,由于盖板300表面产生的灰尘,导致光路在玻璃本身介质中和玻璃表面产生多路径漫射,造成窜光,产生影响3D模组100效果的缺陷。
为解决这一缺陷,将扫地机器人内的3D模组100做分仓设计,通过隔光件40对发射模块、接收模块的光路隔开。
由此,通过利用隔光件40隔绝发射模块20发射光路与接收模块30接收光路,避免应用到产品上后,产品透光表面(如扫地机器人的盖板300)灰尘造成的多路径漫反射窜光,整体提升了光功率信号。
以发射模块20、接收模块30的个数为一个为例,阻隔经相邻通光孔b1、b2发射或接受的光路指的是,发射模块20的发射光路的最大投射范围、接收模块30的接收光路的最大投射范围被分隔部41隔开,而不会出现相交。
第一实施例
如图1和图2所示,隔光件40包括:罩体42和分隔部41。罩体42包括:端板421、多个环形侧壁422,分隔部41连接在端板421上且突出于端板421的一侧表面设置,通光孔b1、b2贯穿端板421。环形侧壁422位于在端板421的另一侧,每个环形侧壁422与端板421共同限定出一个第一安装仓a1或第二安装仓a2。
由此,通过端板421对发射模块20与盖板300之间、接收模块30与盖板300之间进行阻隔,同时采用环形侧壁422对发射模块20、接收模块30的侧面进行包覆,以在面板200 内部对发射模块20发出的光线、对接收模块30接收的光线进行阻隔,减少了发射模块20与接收模块30在面板200内的光线的彼此干扰。
可选地,分隔部41与罩体42一体成型。具体而言,隔光件40可以是柔性材质,隔光件40可以是塑胶、硅胶等具有弹性的材质,颜色可以是对光线反射效果更好的黑色,分隔部41、罩体42可以是一体成型,由此,隔光件40采用柔性材质能够对盖板300与模块之间的空间填充的更充分,一体成型的方式更方便加工、减少了装配工序。
如图2所示,发射模块20包括第一支架21以及发射部22,发射部22设于第一支架21上并且突出于第一支架21,一个环形侧壁422环绕在发射部22的突出部分221的外周并且止抵于第一支架21,以使发射部22远离电路板10的一侧设置在第一安装仓a1;接收模块30包括第二支架31以及接收部32,接收部32设于第二支架31内并且一部分突出于第二支架31,另一个环形侧壁422环绕在接收部32外并且止抵于第二支架31,以使接收部32远离电路板10的一侧设置在第二安装仓a2。
这样,环形侧壁422位于发射模块20和接收模块30之间,以分隔盖板300,将接收模块30和发射模块20完全阻隔,使两者互不受外部介质光干扰,使光路可以稳定的从发射模块20发出,从接收模块30接收的同时不被漫反射杂光干扰,产品性能可以更加地稳定。
此外,3D模组还具有设置在发射模块20、接收模块30外的外壳50,设置在外壳50与盖板200之间的密封圈60,以及支撑电路板的底板70。
第二实施例
在第一实施例中,隔光件40为一个零件,由一个弹性件所形成。当然,本实用新型并不限于此,在第二实施例中,隔光件40还可以包括多个零件。
如图3所示,隔光件40包括:柔性罩43、支撑壳44,发射模块20、接收模块30均安装在支撑壳44内,通光孔b1、b2和分隔部41都形成在支撑壳44上。柔性罩43位于支撑壳44内,第一安装仓a1、第二安装仓a2由柔性罩43与支撑壳44中的至少一个限定出,柔性罩43至少环绕在发射模块20、接收模块30的侧壁外。
由此,支撑壳44以及柔性罩43设置在模块外围、模组与盖板300之间,能够起到减少模块侧部漏光的作用,支撑壳44的分隔部41能够对发射光路、接收光路进行阻隔,使两者互不受外部介质光干扰,使光路可以稳定的从发射模块20发出,从接收模块30接收的同时不被漫反射杂光干扰,产品性能可以更加地稳定。相比第一实施例,支撑壳44为结构强度高于柔性罩43的零件,使盖板300安装在支撑壳44的上表面,减少了盖板300的变形,对盖板300的固定更牢靠。
在一些实施例中,如图4所示,支撑壳44还包括隔板441、连接在隔板441的一侧的环形套体442,柔性罩43与隔板441共同限定出第一安装仓a1、第二安装仓a2,通光孔b1、 b2位于隔板441上,分隔部41连接并突出于隔板441的另一侧。由此,本实施例中的支撑壳44能够为发射模块20、接收模块30、柔性罩43提供主机体,并且可以共同形成3D模组100,各个零件无需在扫地机器人组装时才装配到一起,更加模块化、集成度更高。
如图4所示,发射模块20包括第一支架21以及发射部22,发射部22设于第一支架21上并且突出于第一支架21,一个环形套体442环绕在发射部22的突出部分221的外周并且止抵于第一支架21;接收模块30包括第二支架31以及接收部32,接收部32设于第二支架31内并且一部分突出于第二支架31,另一个环形套体442环绕在接收部32外并且止抵于第二支架31;支撑壳44还包括连接在相邻环形套体442交界处的填充部431,填充部431朝向电路板10延伸并贴靠于电路板10,第一支架21和第二支架31被填充部431阻隔开。
由此,支撑壳44不仅对发射部22、接收部32的侧面进行包覆,而且位于发射模块、接收模块之间的填充部431能够彻底将发射模块与接收模块隔开,减少了两个模组之间的灰尘漂浮,进一步减少了内部的窜光、漫反射,而且电路板10能够对柔性罩43形成支撑,对柔性罩43形成稳定定位,能够对两个模组形成稳定限位。
如图4所示,通光孔b1、b2的背离电路板10的一端设有截锥形的避让面c。具体地,避让面c可以是对通光孔b1、b2的端部做倒角处理形成。这样,避让面c能够减少对发射光路、接收光路的遮挡,使光线的正常发射不受阻挡,而且避让面c能够对射入到避让面c的杂光进行反射,进一步优化了光路。
可选地,柔性罩43的材质可以是泡棉、橡胶、硅胶中的任一种,支撑壳44的材质为金属、塑胶中的任一种。这样,柔光罩采用上述材质,能够更柔性地填充模组侧面之间的空隙,支撑壳44采用不容易发生变形的材质,能够对盖板300的支撑、定位更稳定。
第三实施例
根据本实用新型实施例的扫地机器人包括:主机体、上述实施例的3D模组100、盖板300。
主机体具有面板200,面板200具有安装口201,安装口201为贯穿面板200的侧壁的通孔。
3D模组100安装于主机体内,发射模块20的发射端、接收模块30的接收端朝向安装口201设置;盖板300安装于安装口201,盖板300被分隔部41分隔成多个透光区301,多个透光区301分别与发射模块20、接收模块30一一对应。盖板300通常为透光的玻璃板,发射模块20发射的光线经盖板300射出,光线穿过盖板300以被接收模块30接收。
具体而言,当接收模块30、发射模块20的个数均为一个时,透光区301的个数为两个,且两个透光区301分别与接收模块30、发射模块20相对,隔光件40的分隔部41的个数为一个,一个分隔部41将两个透光区301分隔开。当接收模块30、发射模块20的个数不止一个时,相应的,透光区301的个数为两个以上,隔光件40的个数为透光区301的个数-1,每个模块与一个透光区301相对。
由此,将扫地机器人内的3D模组100做分仓设计,通过隔光件40对发射模块、接收模块的光路隔开,通过利用隔光件40的分隔部41将盖板300分隔成多个透光区301,隔绝发射模块20发射光路与接收模块30接收光路,避免应用到产品上后,产品透光表面(如扫地机器人的盖板300)灰尘造成的多路径漫反射窜光,整体提升了光功率信号。
如图2所示,3D模组100为第二实施例的3D模组100时,主机体的面板200具有下沉部202,安装口201贯通下沉部202的底壁,盖板300在下沉部202内与底壁固定,并且覆盖安装口201,盖板300的内表面与罩体42的端板421相抵靠。具体地,盖板300的内表面指的盖板300朝向容纳腔室一侧的表面,外表面为暴露在外的表面,盖板300的内表面可以通过胶(如双面胶)与罩体42的端板421粘接。
由此,扫地机器人的面板200能够对盖板300进行支撑,降低了对隔光件40的精度公差的要求。
分隔部41的背离电路板10的一端不低于盖板300的外表面。换言之,将分隔部41与隔板441连接的一端称之为底端,则另一端称之为顶端。
在图2所示的实施例中,分隔部41的顶端可以与盖板300的外表面相齐平(可参见第一实施例的分隔部41),这样,盖板300的外表面与分隔部41的顶端共同形成平整、无缝的外观面,外形更美观。
在图4所示的实施例中,分隔部41的顶端也可以伸出盖板300的外表面外、突出于盖板300的外表面设置。由此,分隔部41的突出于盖板300的部分能够起到更好的阻隔折射干扰、漫反射干扰的作用。
突出的分隔部41的设置,可参见第一实施例的分隔部41,分隔部41包括底分隔条411和顶分隔条412,底分隔条411位于各个透光区301之间,底分隔条411的顶面与盖板300的外表面相齐平,顶分隔条412突出于盖板300的外表面,顶分隔条412的宽度小于底分隔条411的宽度。由此,顶分隔条412能够起到更好地阻隔相邻模组光路的作用。
如图4所示,3D模组100为第三实施例的3D模组100时,盖板300安装在安装口201内,盖板300的内表面与支撑壳44固定。具体地,盖板300的边沿与安装口201的内孔相适配,盖板300的内表面可以通过胶(如双面胶)与支撑壳44粘接。
由此,支撑壳44能够为盖板300提供刚性支撑,盖板300全部嵌入面板200的安装口201内,扫地机器人的外形更美观。
第四实施例
在第四实施例中,盖板300包括多个彼此独立的子盖板302,每个子盖板302形成为一个透光区301。
换言之,安装口201被分隔部41隔成多个区域,每个盖板300安装在一个区域内,相邻的子盖板302被分隔部41所隔开,接收模块和发射模块的物端分别盖上子盖板302,以将发 射模块、接收模块全部罩住。由此,盖板300由彼此独立的多个子盖板302组成,更方便安装以及维修更换。
第五实施例
在第五实施例中,如图5所示,盖板300为一个具有插槽或插孔303的板体,分隔部41插入插槽或插孔303内。具体而言,盖板300可以是在一整块玻璃上加工出插孔303或插槽。由此,采用整体式的盖板300,更方便加工,节省了安装工序。
此外,透光区301沿盖板300的长度方向分布,插槽或插孔303为长条形,且沿盖板300的宽度方向延伸并且与盖板300的两个长边沿间隔开,插槽或插孔303的长度可以大于盖板300的宽度的一半。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种3D模组,其特征在于,包括:
    电路板;
    发射模块,所述发射模块用于发射红外光线;
    接收模块,所述接收模块用于接收红外光线,所述发射模块、所述接收模块均设置于所述电路板并且电连接;
    隔光件,所述隔光件开设有并列设置的第一安装仓和第二安装仓,所述发射模块的远离电路板的一端处于所述第一安装仓,所述接收模块的远离电路板的一端处于所述第二安装仓,所述隔光件具有与所述第一安装仓、所述第二安装仓分别对应的通光孔;
    所述隔光件的第一安装仓和第二安装仓之间具有分隔部,所述分隔部朝背离所述电路板的一侧设置,所述分隔部用于阻隔经彼此相邻的所述第一安装仓发射、所述第二安装仓接收的光路。
  2. 根据权利要求1所述的3D模组,其特征在于,所述隔光件包括:罩体和所述分隔部,所述罩体包括:
    端板,所述分隔部连接在所述端板上且突出于所述端板的一侧表面设置,所述通光孔贯穿所述端板;以及
    多个环形侧壁,位于所述端板的另一侧,每个所述环形侧壁与所述端板共同限定出一个所述第一安装仓或所述第二安装仓。
  3. 根据权利要求2所述的3D模组,其特征在于,所述分隔部与所述罩体一体成型。
  4. 根据权利要求2所述的3D模组,其特征在于,所述发射模块包括第一支架以及发射部,所述发射部设于所述第一支架上并且突出于第一支架,一个所述环形侧壁环绕在所述发射部的突出部分的外周并且止抵于所述第一支架,以使所述发射部远离所述电路板的一侧设置在第一安装仓;
    所述接收模块包括第二支架以及接收部,所述接收部设于第二支架内并且一部分突出于第二支架,另一个所述环形侧壁环绕在所述接收部外并且止抵于所述第二支架,以使所述接收部远离所述电路板的一侧设置在第二安装仓。
  5. 根据权利要求1所述的3D模组,其特征在于,所述隔光件包括:
    支撑壳,所述发射模块、所述接收模块均安装在所述支撑壳内,所述通光孔、所述分隔部均形成在所述支撑壳上;
    柔性罩,所述柔性罩位于所述支撑壳内,所述第一安装仓、所述第二安装仓由所述柔性罩与所述支撑壳中的至少一个限定出,所述柔性罩至少环绕在所述发射模块、所述接收模块的侧壁外。
  6. 根据权利要求5所述的3D模组,其特征在于,
    所述支撑壳还包括隔板、连接在所述隔板的一侧的环形套体,所述柔性罩与所述隔板共同限定出所述第一安装仓、所述第二安装仓,所述通光孔位于所述隔板上,所述分隔部连接并突出于所述隔板的另一侧。
  7. 根据权利要求6所述的3D模组,其特征在于,所述发射模块包括第一支架以及发射部,所述发射部设于所述第一支架上并且突出于第一支架,一个所述环形套体环绕在所述发射部的突出部分的外周并且止抵于所述第一支架;
    所述接收模块包括第二支架以及接收部,所述接收部设于第二支架内并且一部分突出于第二支架,另一个所述环形套体环绕在所述接收部外并且止抵于所述第二支架;
    所述柔性罩还包括连接在相邻环形套体交界处的填充部,所述填充部朝向所述电路板延伸并贴靠于所述电路板,所述第一支架和所述第二支架被所述填充部阻隔开。
  8. 一种扫地机器人,其特征在于,包括:
    主机体,所述主机体具有面板,所述面板具有安装口;
    如权利要求1-7中任一项所述的3D模组,所述3D模组安装于所述主机体内,所述发射模块的发射端、所述接收模块的接收端朝向所述安装口设置;
    盖板,所述盖板安装于所述安装口,所述盖板被所述分隔部分隔成多个透光区,多个透光区分别与发射模块、接收模块一一对应。
  9. 根据权利要求8所述的扫地机器人,其特征在于,所述分隔部的背离所述电路板的一端不低于所述盖板的外表面。
  10. 根据权利要求9所述的扫地机器人,其特征在于,所述分隔部包括底分隔条和顶分隔条,所述底分隔条位于各个所述透光区之间,所述底分隔条的顶面与所述盖板的外表面相齐平,所述顶分隔条突出于所述盖板的外表面,所述顶分隔条的宽度小于所述底分隔条的宽度。
  11. 根据权利要求8-10中任一项所述的扫地机器人,其特征在于,所述盖板包括多个彼此独立的子盖板,每个子盖板形成为一个透光区;或
    所述盖板为一个具有插槽或插孔的板体,所述分隔部插入所述插槽或所述插孔内。
  12. 根据权利要求8所述的扫地机器人,其特征在于,所述3D模组为如权利要求2-4中任一项所述的3D模组,所述主机体的面板具有下沉部,所述安装口贯通所述下沉部的底壁,所述盖板在所述下沉部内与所述底壁固定,并且覆盖所述安装口,所述盖板的内表面与所述罩体的端板相抵靠。
  13. 根据权利要求8所述的扫地机器人,其特征在于,所述3D模组为如权利要求5-7中任一项所述的3D模组,所述盖板安装在所述安装口内,所述盖板的内表面与所述支撑壳固定。
PCT/CN2021/076451 2021-02-10 2021-02-10 3d模组及扫地机器人 WO2022170546A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076451 WO2022170546A1 (zh) 2021-02-10 2021-02-10 3d模组及扫地机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076451 WO2022170546A1 (zh) 2021-02-10 2021-02-10 3d模组及扫地机器人

Publications (1)

Publication Number Publication Date
WO2022170546A1 true WO2022170546A1 (zh) 2022-08-18

Family

ID=82837416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076451 WO2022170546A1 (zh) 2021-02-10 2021-02-10 3d模组及扫地机器人

Country Status (1)

Country Link
WO (1) WO2022170546A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727965A (zh) * 2012-10-16 2014-04-16 安华高科技通用Ip(新加坡)公司 具有内部通道区段的接近传感器装置
CN104009030A (zh) * 2013-02-20 2014-08-27 马克西姆综合产品公司 多芯片型晶圆级封装(wlp)光学器件
CN109188450A (zh) * 2017-09-08 2019-01-11 北醒(北京)光子科技有限公司 一种光学测距装置
CN208569403U (zh) * 2019-01-21 2019-03-01 纳恩博(常州)科技有限公司 红外附件单元和具有其的红外装置、智能设备
CN109938651A (zh) * 2019-01-15 2019-06-28 尚科宁家(中国)科技有限公司 一种扫地机器人传感器模组及基于该传感器模组的扫地机器人
WO2020021225A1 (en) * 2018-07-27 2020-01-30 Dyson Technology Limited A sensor housing on a mobile robot
CN211698242U (zh) * 2019-03-27 2020-10-16 亿光电子工业股份有限公司 检测装置和检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727965A (zh) * 2012-10-16 2014-04-16 安华高科技通用Ip(新加坡)公司 具有内部通道区段的接近传感器装置
CN104009030A (zh) * 2013-02-20 2014-08-27 马克西姆综合产品公司 多芯片型晶圆级封装(wlp)光学器件
CN109188450A (zh) * 2017-09-08 2019-01-11 北醒(北京)光子科技有限公司 一种光学测距装置
WO2020021225A1 (en) * 2018-07-27 2020-01-30 Dyson Technology Limited A sensor housing on a mobile robot
CN109938651A (zh) * 2019-01-15 2019-06-28 尚科宁家(中国)科技有限公司 一种扫地机器人传感器模组及基于该传感器模组的扫地机器人
CN208569403U (zh) * 2019-01-21 2019-03-01 纳恩博(常州)科技有限公司 红外附件单元和具有其的红外装置、智能设备
CN211698242U (zh) * 2019-03-27 2020-10-16 亿光电子工业股份有限公司 检测装置和检测系统

Similar Documents

Publication Publication Date Title
CN112932339B (zh) 3d模组及扫地机器人
WO2020052289A1 (zh) 深度获取模组及电子装置
WO2022170546A1 (zh) 3d模组及扫地机器人
WO2022111279A1 (zh) Tof模组、摄像头组件及扫地机器人
CN215272526U (zh) 3d模组及扫地机器人
WO2020038055A1 (zh) 飞行时间组件及移动终端
WO2020038057A1 (zh) 深度采集模组及电子设备
US20230011196A1 (en) Electrical connector
CN209928194U (zh) 发光模组的基座、发光模组以及电子设备
CN213210658U (zh) 显示装置
CN211292605U (zh) 投射装置及成像设备
WO2021013171A1 (zh) 车灯组件、车灯以及相应的机动车辆
EP3236138A1 (en) Led module and sign box
CN208107833U (zh) 一种指示灯背光源结构
CN217338923U (zh) 口腔清洁设备
CN102184052B (zh) 光学导航装置的改进或者与其相关的改进
CN213365998U (zh) 显示屏及其透光罩
KR20170087886A (ko) 발광 구조체 및 발광 구조체를 갖는 디바이스
CN218676383U (zh) 一种led面罩组件及led显示屏结构
CN217085498U (zh) 镜头圈和投影仪
CN218939174U (zh) 光学面罩、led显示屏及led显示设备
CN215318800U (zh) 一种机器人的触摸装置
CN220983699U (zh) 一种用于立体相机的壳体及立体相机
CN220543287U (zh) 边框组件及交互平板
CN216724432U (zh) 一种模块化地面检测装置及其扫地机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925211

Country of ref document: EP

Kind code of ref document: A1