WO2022169243A1 - 바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이의 용도 - Google Patents

바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이의 용도 Download PDF

Info

Publication number
WO2022169243A1
WO2022169243A1 PCT/KR2022/001632 KR2022001632W WO2022169243A1 WO 2022169243 A1 WO2022169243 A1 WO 2022169243A1 KR 2022001632 W KR2022001632 W KR 2022001632W WO 2022169243 A1 WO2022169243 A1 WO 2022169243A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
polymyxin
acinetobacter
escherichia
pseudomonas
Prior art date
Application number
PCT/KR2022/001632
Other languages
English (en)
French (fr)
Inventor
김준섭
류충민
김선영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to EP22749992.8A priority Critical patent/EP4289272A4/en
Priority to CN202280012998.XA priority patent/CN116847735A/zh
Priority to JP2023546500A priority patent/JP2024505573A/ja
Priority to US18/275,475 priority patent/US20240148670A1/en
Publication of WO2022169243A1 publication Critical patent/WO2022169243A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • A61K31/06Phenols the aromatic ring being substituted by nitro groups
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/713Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with four or more nitrogen atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/25Paenibacillus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/4035Isoindoles, e.g. phthalimide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an antibacterial adjuvant containing a biphenyl derivative compound as an active ingredient and a technique for using the same in various ways.
  • Antibiotic-resistant bacteria 1 secrete antibiotic degrading enzymes to eliminate the activity of antibiotics, change the structure of antibiotics by antibiotic converting enzymes, or 2 inhibit the inflow of antibiotics / activate the outflow of antibiotics through the discharge pump to reduce the concentration of antibiotics in cells. It is known to acquire resistance to antibiotics by lowering or 3 changing the target protein to which the antibiotic binds through mutation. Antibiotic-resistant bacteria effectively fight antibiotics by mobilizing two or more of the resistance mechanisms, and it is also known that the degree of resistance increases as several mechanisms are mobilized. Therefore, antibiotics to fight resistant strains must be able to either 1 inhibit a hitherto unknown new bacterial target, or 2 avoid the development of resistance through inhibition of various target groups.
  • One object of the present invention is to provide an antibacterial adjuvant that improves the sensitivity of bacteria to antibiotics.
  • Another object of the present invention is to provide an antibacterial composition comprising the above-described antimicrobial adjuvant and polymyxin-based antibiotic as active ingredients.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating organ damage caused by sepsis or septic shock, comprising the above-described antimicrobial adjuvant and polymyxin-based antibiotic as active ingredients.
  • one aspect of the present invention provides an antimicrobial adjuvant comprising a compound represented by the following Chemical Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X is a halogen atom
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl having 1 to 6 carbon atoms.
  • an antibacterial composition comprising the above-described antimicrobial adjuvant and polymyxin-based antibiotic as active ingredients.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating organ damage caused by sepsis or septic shock, comprising the above-described antimicrobial adjuvant and polymyxin-based antibiotic as active ingredients.
  • the antimicrobial adjuvant of the present invention improves the sensitivity of the gram-negative bacteria to the polymyxin-based antibiotic, thereby lowering the dose of the polymyxin-based antibiotic treated to inhibit the proliferation of the gram-negative bacteria by up to 128 times.
  • the antimicrobial adjuvant of the present invention is administered in combination with a polymyxin-based antibiotic to cause a synergistic effect, thereby inhibiting the growth and killing of Gram-negative bacteria.
  • 1 is a graph showing the bacterial growth inhibitory effect of PA108 and its derivatives (PA108-1 to 14) and polymyxin B (PMB) with respect to the Acinetobacter baumani strain through the relative respiratory rate of bacteria.
  • Figure 2 is a graph showing the bacterial growth inhibitory effect of polymyxin B (PMB) alone, PA108 alone, or a combination treatment of polymyxin B (PMB) and PA108 with respect to Acinetobacter baumani strain through the relative respiratory rate of bacteria. .
  • Figure 3 is a graph showing the apoptosis effect of polymyxin B (PMB) alone, PA108 alone, or a combination treatment of polymyxin B (PMB) and PA108 against Acinetobacter baumani strain.
  • Figure 4 shows the result of confirming through checkerboard analysis whether it exhibits a synergistic effect by the combination treatment of polymyxin B (PMB) and PA108 for Acinetobacter baumani strain.
  • PMB polymyxin B
  • FIG. 5 is a fluorescence microscope (top) and a scanning electron microscope (bottom) when polymyxin B (PMB) alone, PA108 alone, or polymyxin B (PMB) and PA108 with respect to the Acinetobacter baumani strain were treated together. Morphological changes were observed.
  • Figure 6 shows the renal toxicity of polymyxin B (left) and PA108 (right) in human-derived kidney cells through the viability of kidney cells.
  • Figure 7 shows the survival rate of mice by administration of polymyxin B (PMB) alone, PA108 alone, or polymyxin B (PMB) and PA108 in a mouse sepsis model caused by Acinetobacter baumani strain infection.
  • PMB polymyxin B
  • PA108 PA108 against three strains of Klebsiella pneumoniae and three strains of Pseudomonas aeruginosa showing resistance to polymyxin-based antibiotics. (synergistic effect) is shown through checkerboard analysis.
  • FIG. 10 shows functional information of genes with high statistical significance among genes whose expression increased or decreased compared to the control group when polymyxin B (PMB) and PA108 were treated in combination (purple: PMB and PA108 combination treatment group, yellow: PMB Treatment group, blue: PA108 treatment group).
  • PMB polymyxin B
  • Figure 11 shows bacterial cell membrane permeability changes (left) and cytoplasmic membrane potential changes (right) when polymyxin B (PMB) alone, PA108 alone, or polymyxin B (PMB) and PA108 for Acinetobacter baumani strains are combined is shown.
  • One aspect of the present invention provides an antimicrobial adjuvant that improves the sensitivity of bacteria to antibiotics.
  • the antimicrobial adjuvant of the present invention includes a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
  • X may be any one halogen atom selected from the group consisting of F, Cl, Br and I, wherein X may be any one selected from the group consisting of F, Cl and Br, X may be Cl.
  • R 1 and R 2 may each independently be a hydrogen atom or an alkyl.
  • the alkyl refers to a straight-chain or branched saturated aliphatic hydrocarbon group, and may be an alkyl having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 6 carbon atoms, for example, methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1- Ethylpropyl, 2-methylbutyl, 3-methylbutyl, n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-trimethylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl , 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2-ethylbutyl, 2-methyl
  • alkyl may be substituted or unsubstituted.
  • the substituent(s) may be substituted at any possible point of connection.
  • the substituent(s) are preferably alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, thiol, hydroxy, nitro, cyano, cycloalkyl, heterocyclyl, aryl. , heteroaryl, cycloalkoxy, heterocyclic alkoxy, cycloalkylthio, heterocyclic alkylthio, oxo, carboxy, and may be any one or more independently selected from the group consisting of alkoxycarbonyl, but is not limited thereto.
  • “Pharmaceutically acceptable salt” refers to a salt prepared by a conventional method, the salt includes an inorganic acid and an organic acid, hydrochloric acid, hydrobromic acid (hydrobromic acid), sulfuric acid, phosphoric acid, methanesulforic acid, ethanesulforic acid, malic acid, acetic acid, oxalic acid, tartaric acid (tartaric acid), citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid (phenylacetic acid) and mandelic acid (mandelic acid) may be any one selected from the group consisting of, but is not limited thereto.
  • “Pharmaceutically acceptable salts” also include cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc, and ammonia, ethylenediamine, N-methyl-glutamine, Lysine, arginine, ornithine, choline, N,N'-dibenzylethylenediamine, chloroprocaine, diethanolamine ( diethanolamine), procaine, N-benzylphenethylamine, diethylamine, piperazien, tri (hydroxymethyl) aminomethane [tri (hydroxymethyl) aminomethane] and Included are those formed from a base such as tetramethylammoniumhydroxide. These salts can be prepared by standard procedures, for example by reaction of a free acid with an appropriate organic or inorganic base. "Pharmaceutically acceptable salts” also include free acids, free bases and zwitterionic forms.
  • the compound represented by Formula 1 may have an effect of improving the sensitivity to the antibiotic against the antibiotic-resistant bacteria. Therefore, the compound represented by Formula 1 can be used as an active ingredient of an antimicrobial adjuvant that can be treated in combination with antibiotics against bacteria that are resistant to antibiotics.
  • antibacterial adjuvant is also called an “antibiotic adjuvant,” and even if it does not directly kill the bacteria, it suppresses the resistance of the bacteria to the antibiotic or increases the sensitivity of the bacteria to the antibiotic by inducing the accumulation of the antibiotic in the cell. means material.
  • the “antibiotic” generally refers to a substance having antibacterial activity, for example, penicillins, cephalosporins, and monobactams, which are beta-lactam antibiotics having a beta-lactam ring as a basic structure. And carbapenems, polymyxins, which show an antibacterial effect by changing the cell membrane permeability of bacteria, and porins in the outer membrane of Gram-negative bacteria.
  • Aminoglycosides which show antibacterial effects by binding to 50S of bacterial ribosome, and macrolides, which exhibit antibacterial effects by inhibiting protein synthesis
  • glycopeptides that show antibacterial effect by inhibiting bacterial cell wall biosynthesis, lincomycins isolated from Streptomyces lincolnensis and have good antibacterial activity against anaerobic bacteria; It may be any one or more selected from the group consisting of quinolones, combinations thereof, and derivatives thereof, and in particular, may be polymyxin-based antibiotics.
  • the polymyxin-based antibiotic is a peptide antibiotic consisting of a large positively charged ring, and is composed of a heptapeptide ring and three amino acid tails linked to fatty acids.
  • the polymyxin-based antibiotic is produced by a non-ribosome peptide synthetase system in Gram-positive bacteria such as Panibacillus polymyxa, and binds to phospholipids present in the outer membrane of many Gram-negative bacteria and activates phospholipase to activate cell membranes.
  • the polymyxin-based antibiotic may be polymyxin A, polymyxin B, polymyxin C, polymyxin D and polymyxin E (colistin), in particular B1 (C 56 H 98 N 16 O 13 , molecular weight 1203.49) and B2 (C 55 H 96 N 16 O 13 , molecular weight 1189.47) may be polymyxin B or polymyxin E as a main component.
  • the polymyxin B and polymyxin E have the same structure, except that the amino acids linked to the 6th position are phenylalanine (Phe) and leucine (Leucine, Leu), respectively.
  • the bacteria may be included without limitation as long as they are gram-negative bacteria having an outer membrane, and specifically may be pathogenic Gram-negative bacteria, for example, Escherichia sp. bacteria, Acinetobacter sp. bacteria, Pseudomonas sp. bacteria, or Klebsiella sp. bacteria, and the like.
  • the Escherichia genus bacteria include Escherichia coli ( Escherichia coli ), Escherichia albertii ), Escherichia blattae ), Escherichia fergusonii ( Escherichia fergusonii ), Escherichia hermannii ( Escherichia hermannii ), Escherichia vulneris ( Escherichia vulneris ), and the like include, but are not limited to, the bacteria of the Acinetobacter genus include Acinetobacter baumannii , Acinetobacter zuni ( Acinetobacter junii ), Acinetobacter boissieri , Acinetobacter calcoaceticus , Acinetobacter haemolyticus , Acinetobacter nosocomialis Acinetobacter nosocomialis Acinetobacter schindleri , Acinetobacter ursingii , and the like, but are not limited there
  • the Pseudomonas genus bacteria include Pseudomonas aeruginosa ( Pseudomonas aeruginosa ); Pseudomonas fluorescens ( Pseudomonas fluorescens ), Pseudomonas putida ( Pseudomonas putida ), Pseudomonas chlororaphis ( Pseudomonas chlororaphis ), Pseudomonas pertucinogena ( Pseudomanas pertucinogena ) ), and the like, but is not limited thereto.
  • the bacteria of the genus Krebsiella include Klebsiella pneumoniae , Klebsiella granulomatis , Klebsiella oxytoca , Klebsiella terrigena , and the like. includes, but is not limited to.
  • the bacteria may be resistant to antibiotics, in particular, at least one of the antibiotics described above.
  • antibiotics in particular, at least one of the antibiotics described above.
  • These "antibiotic-resistant bacteria” mean bacteria that are no longer affected or hardly affected by at least one previously effective antibiotic, and mean that the ability to withstand the antibiotics that have been effectively antibacterial activity has occurred. Antibiotic-resistant bacteria can pass on this resistance to their offspring.
  • the antibiotic resistance mechanisms are diverse. For example, resistance is an impermeable mechanism that physically prevents an antibiotic from reaching the site of action inside or on the bacteria, rapidly removing the antibiotic from the bacteria so that an effective amount of the antibiotic does not reach the site of action inside or on the bacteria.
  • a metabolic mechanism that destroys the antibiotic, converts the antibiotic into a harmless (or less harmful) compound, or makes the compound more readily excreted, a bypass mechanism in which bacteria use a different pathway than that inhibited by the antibiotic; Alternatively, it may occur through bacteria that are less sensitive to antibiotics in the form of antibiotic targets (eg, enzymes) or bacteria that do not have the target.
  • antibiotic targets eg, enzymes
  • the antibiotic-resistant bacteria may have resistance to two or more antibiotics, which is also referred to as "multidrug-resistant microorganisms".
  • the multidrug-resistant bacteria include, for example, Methicillin-susceptible Staphylococcus aureus (MSSA), Methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant Staphylococcus aureus (Vancomycin-Resicillin-Resistant Staphylococcus aureus).
  • VRSA Vancomycin-intermediate Staphylococcus aureus
  • VRE Vancomycin-resistant enterococci
  • VSE Multidrug-resistant Pseudomonas aeruginosa
  • CRPA Carbepenem-resistant Pseudomonas aeruginosa
  • CRE Resistant Enterobacteriaceae
  • the compound represented by Formula 1 when the compound represented by Formula 1 is treated in combination with polymyxin at a concentration that does not have antibacterial activity by itself, to bacteria exhibiting resistance to the conventional polymyxin-based antibiotic, the It was confirmed that the death of bacteria that are resistant to polymyxin-based antibiotics is further promoted. From the above results, it is clear that the compound represented by Formula 1 of the present invention can be used as an active ingredient of an antimicrobial adjuvant to further improve the antibiotic resistance of antibiotic-resistant bacteria to restore the antimicrobial activity of the antibiotic. Able to know.
  • Another aspect of the present invention provides an antibacterial composition
  • an antibacterial adjuvant comprising the compound represented by Formula 1 as an active ingredient and an antibiotic as an active ingredient.
  • the compound represented by Formula 1 of the present invention has an effect of improving the sensitivity of antibiotic-resistant bacteria to antibiotics.
  • the antibacterial composition of the present invention changes the internal and external environment of the bacterial cell membrane, thereby destroying the integrity of the cell membrane lipid bilayer region and inducing high depolarization of the cell membrane, breaking the cytoplasmic homeostasis and eventually reducing cell permeability, resulting in cell death can induce
  • the antibiotic-resistant bacteria are as described above, and in particular, may be Gram-negative bacteria.
  • the antibiotic is also the same as described above, and in particular, it may be a polymyxin-based antibiotic.
  • the antibacterial composition of the present invention can further improve the antibacterial activity of the polymyxin-based antibiotic against bacteria that are resistant to the polymyxin-based antibiotic than when the polymyxin-based antibiotic is administered alone.
  • the antimicrobial composition of the present invention uses the antimicrobial adjuvant in combination, sufficient antibacterial activity can be achieved without excessive administration of the polymyxin-based antibiotic. Therefore, there is an effect of remarkably lowering side effects such as renal toxicity caused by an overdose of the polymyxin-based antibiotic.
  • Another aspect of the present invention is to prevent organ damage due to sepsis or septic shock comprising an antibacterial adjuvant comprising the compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient, and an antibiotic as an active ingredient Or it provides a pharmaceutical composition for treatment.
  • the antibiotic is also the same as described above, and in particular, it may be a polymyxin-based antibiotic.
  • the sepsis or septic shock may be caused by Gram-negative bacteria, and the Gram-negative bacteria are not limited as long as the bacteria are resistant to antibiotics, for example, Escherichia sp . bacteria and/or Acinetobacter sp. may be a bacterium.
  • the “septicemia” refers to a condition in which a serious inflammatory reaction appears throughout the body due to infection with microorganisms.
  • systemic inflammatory response syndrome When two or more of fever or hypothermia, an increase in respiratory rate (tachypnea), an increase in heart rate (tachycardia), or an increase or a significant decrease in the white blood cell count on blood tests are present, it is referred to as systemic inflammatory response syndrome. ; SIRS).
  • SIRS systemic inflammatory response syndrome
  • Pathogens continuously or intermittently enter the bloodstream from an infectious lesion in the body, settle in various organ tissues, create lesions, and show severe systemic symptoms. Sepsis can potentially cause septic shock. When sepsis worsens, the functions of various organs (heart, kidney, liver, brain, lung, etc.)
  • the survival rate of the sepsis animal model was improved, and the number of infected bacteria (CFU) in organs including the liver, lung, kidney, and spleen was significantly reduced, so that the antimicrobial adjuvant of the present invention
  • a composition comprising a polymyxin-based antibiotic is useful for the prevention or treatment of sepsis.
  • prevention means any action that suppresses or delays the onset of sepsis or septic shock by administration of the composition according to the present invention.
  • the “treatment” refers to clinical symptoms associated with sepsis and conditions associated with multi-organ dysfunction syndrome (eg, varying degrees of fever, hypotoxemia, death, tachycardia, endothelitis, myocardial infarction) by administration of the composition according to the present invention.
  • high delirium, metamorphic mental state, vascular collapse and organ damage, acute respiratory distress syndrome, coagulopathy, heart failure, renal failure, shock and/or coma means any behavior that is improved or beneficially altered.
  • the present invention can suppress organ damage caused by sepsis.
  • the pharmaceutical composition of the present invention can prevent or treat sepsis by inhibiting organ damage caused by sepsis.
  • the organ is an organ damaged due to sepsis, and there is no limitation on the organ in which organ damage can be suppressed by the composition of the present invention. For example, it may be at least one selected from the group consisting of liver, kidney and lung.
  • the pharmaceutical composition according to the present invention may be formulated by adding a non-toxic and pharmaceutically acceptable carrier, adjuvant and excipient according to a conventional method, for example, tablets, capsules, troches, solutions, suspensions, etc. orally It may be prepared as a formulation for administration or a formulation for parenteral administration.
  • excipients that can be used in the pharmaceutical composition according to the present invention include sweeteners, binders, solubilizers, solubilizers, wetting agents, emulsifiers, isotonic agents, adsorbents, disintegrants, antioxidants, preservatives, lubricants, fillers, fragrances, etc.
  • lactose for example, lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, silica, talc, stearic acid, sterine, magnesium stearate, magnesium aluminum silicate, starch, gelatin, gum tragacanth, egg ginsinic acid, sodium alginate, methylcellulose, sodium carboxymethylcellulose, agar, water, ethanol, polyethylene glycol, polyvinylpyrrolidone, sodium chloride, calcium chloride, orange essence, strawberry essence, vanilla flavor, and the like.
  • the compound of the present invention may be included at a concentration level ranging from 0.1% to 95% by weight relative to the total weight of the pharmaceutical composition, that is, in an amount sufficient to obtain the desired effect.
  • the pharmaceutical composition of the present invention may be administered to mammals such as rats, mice, livestock, and humans by various routes. All modes of administration may be administered by, for example, skin, oral, rectal, intravenous, abdominal, intramuscular, subcutaneous, intrauterine or intracerebroventricular injection, preferably either oral or intravenous. It may be administered by the route of, but is not limited thereto.
  • the administration may contain one or more active ingredients exhibiting the same or similar function.
  • one or more pharmaceutically acceptable carriers may be additionally included.
  • the pharmaceutically acceptable carrier may be used in a mixture of saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components, and if necessary, antioxidants, buffers, Other common additives such as bacteriostatic agents may be added.
  • the compound according to the present invention is easy to formulate in various ways, for example, by adding diluents, dispersing agents, surfactants, binders and lubricants additionally, formulations for injection such as aqueous solutions, suspensions, emulsions, powders, tablets, capsules, etc. It can be formulated as tablets, pills, granules or injection solutions.
  • the amount of the compound at the time of administration varies depending on the patient's weight, age, sex, health status, diet, administration time, administration method, excretion rate, severity of disease, and the like.
  • the daily dose of the compound of the present invention is 0.0001 to 100 mg/kg, and preferably, an amount of 0.001 to 30 mg/kg may be divided and administered once or several times a day.
  • the administration period may be 1 day to 2 months, but may be administered without limitation until the prevention or treatment effect of the disease appears.
  • the antibacterial adjuvant of the present invention improves the sensitivity of gram-negative bacteria to polymyxin-based antibiotics, thereby lowering the dose of polymyxin-based antibiotics treated to inhibit the proliferation of gram-negative bacteria by up to 128 times. Not only can side effects such as renal toxicity caused by excessive administration of polymyxin be significantly reduced, but also when administered in combination with polymyxin-based antibiotics, it exhibits excellent growth inhibition and killing effects of gram-negative bacteria. Polymyxin-based antibiotics can again restore antibacterial activity against Gram-negative bacteria that have been resistant to antibiotics, so that existing antibiotics can be used as they are without the need to develop new antibiotics.
  • Another aspect of the present invention is an antibacterial adjuvant comprising a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient; And it provides a method for preventing, improving or treating organ damage caused by sepsis or septic shock, comprising administering a polymyxin-based antibiotic to a subject.
  • Another aspect of the present invention is a compound represented by Formula 1 or a pharmaceutically acceptable salt thereof for use in the preparation of a medicament for the prevention, improvement or treatment of organ damage caused by sepsis or septic shock as an active ingredient.
  • substances capable of killing polymyxin-resistant bacteria by acting with polymyxin among various compounds possessed by the Korea Research Institute of Chemical Technology compound bank were screened using the cellular respiration rate measurement method.
  • Bacteria were isolated from a sepsis-infected patient at Yonsei University Hospital, and the bacteria identified as a polymyxin-resistant strain and a multidrug-resistant strain Acinetobacter baumannii colistin resistance 357 (hereinafter, R357 strain) were provided and used in the experiment.
  • a single colony was inoculated into 3 ml of LB broth on an LB agar plate in which bacteria were grown, and cultured overnight at 37° C. at 220 rpm for 16 hours. Then, in a 250ml flask, make 50ml of a 1/1000 dilution of the culture solution, put 0.5% triphenyl tetrazolium chloride (TTC), and 16 ⁇ g/mL of polymyxin B (polymyxin B, hereinafter, PMB) was added and mixed.
  • TTC triphenyl tetrazolium chloride
  • each of the different candidate compounds was finally dispensed to a 96-well plate by 198 ul at a concentration of 5 ⁇ M, and 2 ul of each was dispensed into each well and mixed, followed by observation at 37° C. for 24 hours using a phenotype microarray. And the OD value was measured once more using a multifunctional microplate reader, and the results were compared.
  • PA108 derivatives were either provided by the Korea Research Institute of Chemical Technology Compound Bank or directly synthesized and used.
  • a single colony was inoculated into 3 ml of LB broth on an LB agar plate in which bacteria were grown, and cultured overnight at 37° C. at 220 rpm for 16 hours. Then, in a 250ml flask, 50ml of a 1/1000 dilution of the culture solution was made, 0.5% triphenyl tetrazolium chloride (TTC) was added, and 16 ⁇ g/mL of polymyxin B (polymyxin B, PMB) was added and mixed.
  • TTC triphenyl tetrazolium chloride
  • each of the different candidate compounds was finally dispensed to a 96-well plate by 198 ul at a concentration of 5 ⁇ M, and 2 ul of each was dispensed into each well and mixed, followed by observation at 37° C. for 24 hours using a phenotype microarray. And the OD value was measured once more using a multifunctional microplate reader, and the results were compared.
  • a single colony was inoculated into 3 ml of LB broth on an LB agar plate in which bacteria were grown, and cultured overnight at 37° C. at 220 rpm for 16 hours. Then, in a 250ml flask, 50ml of the culture solution was diluted 1/1000, and 0.5% triphenyl tetrazolium chloride (TTC) was added and mixed. Then, 198ul was dispensed in a 96-well plate.
  • TTC triphenyl tetrazolium chloride
  • CFU colony forming unit
  • the PMB or PA108 alone treatment group did not show the killing effect of the R357 strain (Fig. 3, black, blue).
  • apoptosis was induced in the co-treatment group of PMB and PA108 ( FIG. 3 , red).
  • the simultaneous treatment group showed 10 7 times the killing effect compared to the control group and the single treatment group based on 14 hours, and finally, 99.99999% of the bacteria killing effect was exhibited.
  • a checkerboard assay was performed to confirm that a synergy effect appeared when PA108 was co-treated with a polymyxin-based antibiotic, and the fractional inhibitory concentration index (FICI) was obtained from this result.
  • FICI fractional inhibitory concentration index
  • the MIC and FICI values are shown in Table 2.
  • the FICI value is 0.5 or less, it is synergy, if 0.5 to 4.0, it is an additive effect (indifference), and if it is 4 or more, it is judged as antagonistic.
  • a single colony was inoculated into 3 ml of LB broth on an LB agar plate and cultured overnight at 37° C. at 220 rpm for 16 hours.
  • PMB was treated at a concentration of 16 ⁇ g/ml and PA108 at a concentration of 5 ⁇ M, and cultured for 9 hours.
  • the cells were centrifuged at 8,000 ⁇ g for 10 minutes at 4°C, washed 3 times, and resuspended in PBS. After fixing 3 ml of the cell suspension, it was observed with a scanning electron microscope.
  • SYTO9 (67 mM, 3 ⁇ L), which binds to DNA and RNA in living cells and emits green fluorescence, and DNA in dead cells, using the LIVE/DEAD BacLight Bacterial Viability Kit (Cat #. L7007, Invitrogen, Waltham, Massachusetts, USA) And PI (Propidium iodide) (1.67 mM, 3 ⁇ L) that binds to RNA and emits red fluorescence was added to each sample in a final volume of 3 ml, and incubated at room temperature for 15 minutes in the dark, and observed with a fluorescence microscope.
  • LIVE/DEAD BacLight Bacterial Viability Kit Cat #. L7007, Invitrogen, Waltham, Massachusetts, USA
  • PI Propidium iodide
  • ACHN kidney cells were cultured for 24 hours at 2 ⁇ 10 4 cells/well, and then all wells were replaced with a medium mixed with PMB or PA108. After 0, 24, 48, 72, and 96 hours of PMB or PA108 treatment, cell viability was evaluated by measuring the cell viability in the ratio of the amount of ATP at each hour to 0 hour through cell titer glo.
  • mice 5 ⁇ 10 7 in 6-week-old C57BL/6 mice
  • a mouse model of sepsis induced by R357 infection was prepared by intraperitoneal injection of the R357 strain, and the survival rate of mice was measured by intraperitoneal injection of 100 ⁇ g/kg dose of PMB and 60 ⁇ g/kg dose of PA108 alone or in combination.
  • mice died within 42 hours in the control group, PMB alone, and PA108 alone treatment group.
  • mice were alive without showing any pathological phenomenon until 168 hours (FIG. 7).
  • the R357 strain was not detected in the organs of the mouse, and it was confirmed that the R357 strain was completely removed by the simultaneous treatment of PMB and PA108.
  • PA108 at a concentration of 0 to 80 ⁇ M and PMB at a concentration of 0 to 128 ⁇ g/Ml was aliquoted by 2ul and mixed, and then incubated at 37° C. for 18 hours using a multifunctional microplate reader to OD The values were measured.
  • the culture solution was dispensed by 5 ml into three 15 ml round culture tubes, each treated with PMB at a concentration of 16 ⁇ g/ml, PA108 at a concentration of 5 ⁇ M, PMB at a concentration of 16 ⁇ g/ml, and PA108 at a concentration of 5 ⁇ M at 37° C., 220 rpm. incubated for hours. Thereafter, the bacteria were washed 3 times with PBS, centrifuged at 4°C, 8,000 ⁇ g for 10 minutes, and stored at -80°C.
  • a library for RNA sequencing was prepared by extracting total RNA with a TruSeq Stranded Total RNA sample preparation kit containing Ribo-Zero H/M/R and synthesizing cDNA with a size of 150 bp.
  • the synthesized cDNA library was evaluated for quality with an Agilent 2100 BioAnalyzer (Agilent, CA, USA), and after cluster amplification of the denatured template, both ends of the DNA fragment were sequenced using Illumina Novaseq 6000 (Illumina, CA, USA). Paired-end sequencing was performed. Reads were filtered for transcript data analysis, and the filtered reads were mapped to the reference genome using the aligner STAR v.2.4.0b. Thereafter, gene expression was quantified using a KAPA library quantification kit (Kapa Biosystems, MA, USA) according to the manufacturer's library quantification protocol to measure gene expression level.
  • DEGs differential expression genes
  • DEGs differentially expressed genes
  • the fluidity of the cell membrane is made smoothly by treatment with a low-concentration antibiotic (PMB) that does not directly affect the bacteria, and through this, the active oxygen of the bacteria is excessively caused by the substance (PA108) that enters the cytoplasm. cytoplasmic homeostasis is disrupted and eventually cell permeability is reduced, leading to apoptosis.
  • PMB low-concentration antibiotic
  • Polymyxin E (colistin) exhibits bactericidal activity by specifically binding to LPS (Lipopolysaccharide) and phospholipids in the outer cell membrane of Gram-negative bacteria. Affinity is reduced, indicating resistance to colistin. Therefore, it was confirmed whether the addition of PA108 caused changes in the bacterial membrane potential and permeability.
  • LPS Lipopolysaccharide
  • colony cultures grown for 16 hours were washed and resuspended in 0.01M PBS at pH 7.4.
  • the absorbance at 600 nm of the bacterial suspension was normalized to 0.5 in the same buffer and the dye PI (cat. P1304MP, Thermo Fisher Scientific, Waltham, Massachusetts, USA) was added to a final concentration of 1.67 ⁇ M.
  • PI catalog. P1304MP, Thermo Fisher Scientific, Waltham, Massachusetts, USA
  • 198 ⁇ l of fluorescently labeled bacterial cells were added to a 96-well plate followed by addition of 2 ⁇ l of 16 ⁇ g/ml PMB and 5 ⁇ M PA108.
  • membrane permeability was measured by measuring fluorescence with a multifunctional microplate reader in the wavelength range of excitation 535 nm and emission 615 nm fluorescence measurement.
  • Cell membrane potential was measured by resuspending cells in 5 mM HEPES (pH 7.0, +5 mM glucose), and DiSC3(5)(3,3'-Dipropylthiadicarbocyanine Iodide) (50 ⁇ M, Cat. D306, Invitrogen, Carlsbad), a potential-sensitive dye. , California) was added and incubated for 30 minutes, the membrane potential was measured by measuring fluorescence with a multifunctional microplate reader.
  • PA108 is simultaneously treated as an antimicrobial adjuvant for PMB, causing damage to the lipid bilayer region of the bacterial cell plasma membrane and inducing bacterial death.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이를 다양하게 이용하는 기술에 관한 것이다. 본 발명의 화합물은 그람음성 세균의 폴리믹신계 항생제에 대한 민감성을 향상시킴으로써, 그람음성 세균의 증식을 억제하기 위해 처리되는 폴리믹신계 항생제의 투여량을 낮추고, 폴리믹신계 항생제와 병용 투여되어 그람음성 세균의 생장 저해 및 사멸 효과를 나타내며, 신장 독성 등의 부작용을 현저하게 낮출 수 있고 항생제의 과량 사용에 따른 패혈증 및 패혈증성 쇼크를 예방 또는 치료할 수 있다.

Description

바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이의 용도
본 발명은 바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이를 다양하게 이용하는 기술에 관한 것이다.
항생제에 노출되어도 생존할 수 있는 약물저항성을 획득한 항생제 내성균(antimicrobial resistance bacteria)의 출현 및 증가가 전 세계적으로 큰 문제를 야기하고 있다. 2018년 기준 전세계에서 항생제 내성균의 감염으로 인한 사망자수가 70만 명에 이르고 있으며 국내에서도 대표적인 항생제 내성균 5종(메티실린내성황색포도알균(MRSA), 다제내성 아시네토박터바우마니균(MDRA), 다제내성 녹농균(MRPA), 반코마이신 내성 장내균(VRE), 카르바페넴 내성 장내세균(CRE))의 감염으로 인해 1년간 9000명의 감염자와 3600명에 다다르는 사망자가 발생하여 사망률이 약 40%에 이르는 것으로 나타났다. 또한 항생제 내성균 감염 환자에 대한 의료비, 간병비, 조기사망에 따른 생산성 손실로 인한 우리나라 전체 사회적 비용이 연간 5500억원인 것으로 추산되어 항생제 내성 확산은 인류의 건강은 물론 경제적인 손실까지 야기할 수 있다. 특히 기존의 모든 항생제에 대해 동시에 내성을 보이는 다제내성균(super-bacteria)의 출현으로 인해 항생제 내성균에 대한 피해는 기하급수적으로 커질 것으로 예상된다.
항생제 내성균은 ① 항생제 분해 효소를 분비하여 항생제의 활성을 없애거나, 항생제 변환 효소에 의해 항생제의 구조를 변화시키거나, ② 항생제 유입 억제/배출펌프를 통한 항생제 유출을 활성화함으로써 세포 내 항생제의 농도를 낮추거나, ③ 항생제가 결합하는 표적 단백질을 돌연변이(mutation)를 통해 변화시키는 등의 방법으로 항생제에 대한 내성을 획득하는 것으로 알려져 있다. 항생제 내성균은 내성 기전 중 두 가지 이상을 동원하여 효과적으로 항생제에 대항하게 되며, 여러 기전이 동원될수록 내성의 정도는 증가하는 것으로도 알려져 있다. 따라서 내성 균주에 대항하기 위한 항생제는 ① 지금까지 알려지지 않은 새로운 박테리아 표적을 저해하거나, ② 다양한 표적군 저해를 통해 내성 발생을 회피할 수 있어야 한다.
항생제 내성균 감염 문제를 해결하기 위해서는 신규 항생제의 개발이 필요하지만 신약 개발을 위한 표적 발굴이 어렵고 신약 개발에 평균 8억 달러 정도의 비용과 최소 10년의 기간이 소요되어 많은 어려움을 겪고 있다. 더욱 심각한 문제는 지금까지 알려진 내성 기전을 회피할 수 있는 신규 표적을 발굴하여 새로운 항생제를 개발한다 해도 내성을 가진 세균이 빠르게 나타날 것이라는 점이다. 실제로 2000년대에 기존 항생제와 작용 기전이 다른 리네졸리드(linezolid)가 신규 표적 저해제로 유일하게 승인되었지만, 이에 대해 내성을 가진 세균이 이미 출현한 바 있다. 따라서 비용 및 시간의 측면에서 신규 항생제의 개발보다는 기존 항생제의 효용을 증대시킬 수 있도록 항생제 내성균이 획득한 내성 기전을 저해할 수 있는 물질을 개발하는 것이 항생제 내성균 감염에 대처하기 위한 효과적인 전략이라고 할 수 있다.
이에, 내성에 의해 사용할 수 없게 된 항생제와 동시에 처리하여 항생제에 대한 감수성(susceptibility)을 증가시킴으로써 세균을 사멸할 수 있는 기술 개발이 더욱 필요한 실정이다.
본 발명의 일 목적은 세균의 항생제에 대한 감수성을 향상시키는 항균 보조제를 제공하는 것이다.
본 발명의 다른 일 목적은 상술한 항균 보조제 및 폴리믹신계 항생제를 유효성분으로 포함하는 항균용 조성물을 제공하는 것이다.
본 발명의 또 다른 일 목적은 상술한 항균 보조제 및 폴리믹신계 항생제를 유효성분으로 포함하는 패혈증 또는 패혈증성 쇼크에 의한 장기 손상의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 측면은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항균 보조제를 제공한다.
[화학식 1]
Figure PCTKR2022001632-appb-img-000001
(여기서, X는 할로겐 원자이고 R1 및 R2는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 6의 알킬이다.)
또한, 본 발명의 다른 측면은 상술한 항균 보조제 및 폴리믹신계 항생제를 유효성분으로 포함하는 항균용 조성물을 제공한다.
본 발명의 또 다른 측면은 상술한 항균 보조제 및 폴리믹신계 항생제를 유효성분으로 포함하는 패혈증 또는 패혈증성 쇼크에 의한 장기 손상의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 항균 보조제는 그람음성 세균의 폴리믹신계 항생제에 대한 민감성을 향상시킴으로써, 그람음성 세균의 증식을 억제하기 위해 처리되는 폴리믹신계 항생제의 투여량을 최대 128배까지 낮출 수 있다.
또한, 본 발명의 항균 보조제는 폴리믹신계 항생제와 병용 투여되어 상승작용을 일으켜 그람음성 세균의 생장 저해 및 사멸 효과를 나타낸다.
또한, 본 발명에 의하면 기존에 폴리믹신을 과량 투여함에 따라 발생하는 신장 독성 등의 부작용을 현저하게 낮출 수 있고 항생제의 과량 사용에 따른 패혈증 및 패혈증성 쇼크를 예방 또는 치료할 수 있다.
본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 아시네토박터 바우마니 균주에 대하여 PA108과 이의 유도체들(PA108-1 내지 14) 및 폴리믹신 B(PMB)에 의한 세균의 생장 저해 효과를 세균의 상대적인 호흡량을 통해 나타낸 그래프이다.
도 2는 아시네토박터 바우마니 균주에 대하여 폴리믹신 B(PMB) 단독, PA108 단독 또는 폴리믹신 B(PMB)와 PA108의 병용 처리에 의한 세균의 생장 저해 효과를 세균의 상대적인 호흡량을 통해 나타낸 그래프이다.
도 3은 아시네토박터 바우마니 균주에 대하여 폴리믹신 B(PMB) 단독, PA108 단독 또는 폴리믹신 B(PMB)와 PA108의 병용 처리에 의한 세포 사멸 효과를 나타낸 그래프이다.
도 4는 아시네토박터 바우마니 균주에 대하여 폴리믹신 B(PMB)와 PA108의 병용 처리에 의해 상승 효과(synergistic effect)를 나타내는지 여부를 체커보드 분석을 통해 확인한 결과를 나타낸 것이다.
도 5는 아시네토박터 바우마니 균주에 대하여 폴리믹신 B(PMB) 단독, PA108 단독 또는 폴리믹신 B(PMB)와 PA108을 병용 처리한 경우 형광현미경(상단)과 주사전자현미경(하단)으로 세균의 형태학적 변화를 관찰한 것이다.
도 6은 인간 유래 신장 세포에서 폴리믹신 B(좌측) 및 PA108(우측)의 신장 독성을 신장 세포의 생존율을 통해 나타낸 것이다.
도 7은 아시네토박터 바우마니 균주 감염에 의한 마우스 패혈증 모델에서 폴리믹신 B(PMB) 단독, PA108 단독 또는 폴리믹신 B(PMB)와 PA108의 병용 투여에 의한 마우스 생존율을 나타낸 것이다.
도 8은 폴리믹신계 항생제에 대해 내성을 나타내는 3종의 클레브시엘라 뉴모니에 균주 및 3종의 슈도모나스 아에루지노사 균주에 대하여 폴리믹신 B(PMB)와 PA108의 병용 처리에 의해 상승 효과(synergistic effect)를 나타내는지 여부를 체커보드 분석을 통해 확인한 결과를 나타낸 것이다.
도 9는 아시네토박터 바우마니 균주에 대하여 폴리믹신 B(PMB) 단독, PA108 단독 또는 폴리믹신 B(PMB)와 PA108을 병용 처리한 경우 대조군에 비하여 발현이 증가한 유전자의 개수(좌측) 및 발현이 감소한 유전자의 개수(우측)를 나타낸 것이다.
도 10은 폴리믹신 B(PMB)와 PA108을 병용 처리한 경우 대조군에 비해 발현이 증가 또는 감소한 유전자 중 통계적 유의성이 높은 유전자의 기능 정보를 나타낸 것이다(보라색: PMB 및 PA108 병용처리군, 노란색: PMB 처리군, 파란색: PA108 처리군).
도 11은 아시네토박터 바우마니 균주에 대하여 폴리믹신 B(PMB) 단독, PA108 단독 또는 폴리믹신 B(PMB)와 PA108을 병용 처리한 경우 세균 세포막 투과성 변화(좌측)와 세포질 막 전위 변화(우측)를 나타낸 것이다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 측면은 세균의 항생제에 대한 감수성을 향상시키는 항균 보조제를 제공한다.
본 발명의 상기 항균 보조제는 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함한다.
[화학식 1]
Figure PCTKR2022001632-appb-img-000002
상기 화학식 1에서, X는 F, Cl, Br 및 I로 구성되는 군에서 선택되는 어느 하나의 할로겐 원자일 수 있고, 상기 X는 F, Cl 및 Br로 구성된 군에서 선택되는 어느 하나일 수 있으며, 상기 X는 Cl일 수 있다.
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소 원자 또는 알킬일 수 있다.
상기 알킬은 직쇄 또는 분지의 포화된 지방족 탄화수소기를 의미하고, 탄소수 1 내지 12, 탄소수 1 내지 10, 탄소수 1 내지 8, 또는 탄소수 1 내지 6의 알킬일 수 있으며, 예를 들어 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, tert-부틸, sec-부틸, n-펜틸, 1,1-다이메틸프로필, 1,2-다이메틸프로필, 2,2-다이메틸프로필, 1-에틸프로필, 2-메틸부틸, 3-메틸부틸, n-헥실, 1-에틸-2-메틸프로필, 1,1,2-트리메틸프로필, 1,1-다이메틸부틸, 1,2-다이메틸부틸, 2,2-다이메틸부틸, 1,3-다이메틸부틸, 2-에틸부틸, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2,3-다이메틸부틸 등일 수 있다.
또한, 상기 알킬은 치환되거나 또는 치환되지 않은 것일 수 있다. 치환된 경우, 치환기(들)는 임의의 가능한 연결 점에서 치환될 수 있다. 치환기(들)는 바람직하게는 알킬, 알케닐, 알키닐(alkynyl), 알콕시, 알킬싸이오, 알킬아미노, 할로겐, 싸이올, 하이드록시, 나이트로, 사이아노, 사이클로알킬, 헤테로사이클릴, 아릴, 헤테로아릴, 사이클로알콕시, 헤테로사일릭 알콕시, 사이클로알킬싸이오, 헤테로사이클릭 알킬싸이오, 옥소, 카르복시, 및 알콕시카르보닐로 구성된 군에서 독립적으로 선택되는 어느 하나 이상일 수 있으나 이에 한정되지 아니한다.
"약학적으로 허용가능한 염(pharmaceutically acceptable sal)"은 종래의 방식에 의해 제조되는 염을 나타내고, 염은 무기산(inorganic acid) 및 유기산(organic acid)을 포함하고, 염산(hydrochloric acid), 브롬화수소산(hydrobromic acid), 황산(sulfuric acid), 인산(phosphoric acid), 메탄황산(methanesulforic acid), 에탄황산(ethanesulforic acid), 말산(malic acid), 아세트산(acetic acid), 옥살산(oxalic acid), 주석산(tartaric acid), 구연산(citric acid), 젖산(lactic acid), 푸마르산(furmaric acid), 숙신산(succinic acid), 말레산(maleic acid), 살리실산(salicylic acid), 벤조산(benzoic acid), 페닐아세트산(phenylacetic acid) 및 만델산(mandelic acid) 으로 이루어진 군으로부터 선택되는 어느 하나일 수 있으나, 이에 한정되지 않는다.
"약학적으로 허용가능한 염"은 또한 나트륨, 칼륨, 알루미늄, 칼슘, 리튬, 마그네슘, 아연과 같은 양이온으로부터, 및 암모니아, 에틸렌디아민(ethylenediamine), N-메틸-글루타민(N-methyl-glutamine), 리신(lysine), 아르기닌(arginine), 오르니틴(ornithine), 콜린(choline), N,N'-디벤질에틸렌디아민(N,N'-dibenzylethylenediamine), 클로로프로카인(chloroprocaine), 디에탄올아민(diethanolamine), 프로카인(procaine), N-벤질펜에틸아민(N-benzylphenethylamine), 디에틸아민(diethylamine), 피페라진(piperazien), 트리(하이드록시메틸)아미노메탄[tri(hydroxymethyl)aminomethane] 및 테트라메틸암모니움하이드록사이드(tetramethylammoniumhydroxide)와 같은 염기(base)로부터 형성된 것들을 포함한다. 이들 염은 표준절차, 예를 들어 유리산(free acid)과 적절한 유기염기(organic base) 또는 무기염기(inorganic base)의 반응으로 제조될 수 있다. "약학적으로 허용가능한 염"은 또한 유리산, 유리염기 및 양성이온의 형태(zwitterionic form)를 포함한다.
상기 화학식 1로 표시되는 화합물은 항생제에 내성을 나타내는 세균에 대하여 그 항생제에 대한 감수성을 향상시키는 효과를 가질 수 있다. 따라서 상기 화학식 1로 표시되는 화합물은 항생제에 내성을 나타내는 세균에 대하여 항생제와 함께 병용하여 처리될 수 있는 항균 보조제의 유효성분으로 이용될 수 있다.
상기 “항균 보조제”는 “항생제 보조제”라고도 하며 세균을 직접적으로 사멸시키지 않더라도 그 세균의 항생제에 대한 저항성을 억제하거나 항생제의 세포 내 축적을 유도하는 방법 등으로 세균의 항생제에 대한 감수성을 증가시켜주는 물질을 의미한다.
상기 “항생제”는 일반적으로 항균 활성을 가지는 물질을 의미하며, 예컨대 베타락탐고리를 기본 구조로 하는 베타락탐계 항생제인 페니실린계(penicillins), 세팔로스포린계(cephalosporins), 모노박탐계(monobactams) 및 카바페넴계(carbapenems), 세균의 세포막 투과성을 변화시켜 항균 효과를 나타내는 폴리믹신계(polymyxins), 그람음성 세균의 외막에 있는 포린을 통하여 세포질 주위 공간으로 이동한 후 세포 내로 이동하여 항균 효과를 나타내는 아미노글리코사이드계(Aminoglycosides), 세균 리보솜의 50S와 결합하여 단백 합성을 억제하여 항균 효과를 나타내는 마크로라이드계(macrolides), 여러 종류의 세균에 항균 효과를 나타내 광범위 항생제로 알려진 테트라사이클린계(tetracyclines), 세균의 세포벽 생합성을 억제하여 항균 효과를 나타내는 글리코펩티드계(glycopeptides), Streptomyces lincolnensis에서 분리되고 혐기성 세균에 대해 항균력이 좋은 린코마이신계(lincomycins), 세균 DNA의 복제를 방해하여 항균 효과를 나타내는 퀴놀론계(quinolones), 이의 배합체 및 이들의 유도체로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있고, 특히 폴리믹신계 항생제일 수 있다.
상기 폴리믹신계 항생제는 양전하를 띠는 거대한 고리로 이루어진 펩타이드 항생제로 헵타펩타이드 고리와, 지방산이 연결된 세개의 아미노산 꼬리로 구성되어 있다. 또한, 상기 폴리믹신계 항생제는 패니바실러스 폴리믹사와 같은 그람양성 세균에서 비리보좀 펩타이드 합성 효소 시스템에 의하여 생성되며, 많은 그람음성 세균의 세포 외막에 존재하는 인지질에 결합하여 포스포리파아제를 활성화하여 세포막을 파괴하는 활성을 가진다. 상기 폴리믹신계 항생제는 폴리믹신 A, 폴리믹신 B, 폴리믹신 C, 폴리믹신 D 및 폴리믹신 E(콜리스틴)일 수 있고, 특히 B1(C56H98N16O13, 분자량 1203.49)과 B2(C55H96N16O13, 분자량 1189.47)를 주성분으로 하는 폴리믹신 B나 폴리믹신 E일 수 있다. 상기 폴리믹신 B와 폴리믹신 E는 6번 위치에 연결된 아미노산이 각각 페닐알라닌(phenylalanine, Phe)과 류신(Leucine, Leu)으로 다르다는 것을 제외하고는 구조가 동일하다.
상기 세균은 외막을 가진 그람음성 세균(gram-negative bacteria)이라면 제한 없이 포함될 수 있고, 구체적으로 병원성(pathogenic) 그람음성 세균일 수 있고, 예를 들어, 에스케리키아 속(Escherichia sp.) 세균, 아시네토박터 속(Acinetobacter sp.) 세균, 슈도모나스 속(Pseudomonas sp.) 세균 또는 크렙시엘라 속(Klebsiella sp.) 세균 등일 수 있다. 구체적으로, 상기 에스케리키아 속 세균에는 에스케리키아 콜리(Escherichia coli), 에스케리키아 알버티(Escherichia albertii), 에스케리키아 블라태(Escherichia blattae), 에스케리키아 페르구소니(Escherichia fergusonii), 에스케리키아 헤르마니(Escherichia hermannii), 에스케리키아 불네리스(Escherichia vulneris) 등이 포함되며, 이에 제한되지 않는다 상기 아시네토박터 속 세균에는 아시네토박터 바우마니(Acinetobacter baumannii), 아시네토박터 주니(Acinetobacter junii), 아시네토박터 보이시에리(Acinetobacter boissieri), 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus), 아시네토박터 해모리티쿠스(Acinetobacter haemolyticus), 아시네토박터 노소코미알리스(Acinetobacter nosocomialis), 아시네토박터 쉰들레리(Acinetobacter schindleri), 아시네토박터 유르신기(Acinetobacter ursingii) 등이 포함되며, 이에 제한되지 않는다. 상기 슈도모나스 속 세균에는 슈도모나스 애루지노사(Pseudomonas aeruginosa); 슈도모나스 플루오레슨스(Pseudomonas fluorescens), 슈도모나스 푸티다(Pseudomonas putida), 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 슈도모나스 퍼투시노제나(Pseudomanas pertucinogena), 슈도모나스 스투트제리(Pseudomanas stutzeri), 슈도모나스 시린개(Pseudomanas syringae) 등이 포함되며, 이에 제한되지 않는다. 상기 크렙시엘라 속 세균에는 크렙시엘라 뉴모니아(Klebsiella pneumonia), 크렙시엘라 그라눌로마티스(Klebsiella granulomatis), 크렙시엘라 옥시토카(Klebsiella oxytoca), 크렙시엘라 테리게나(Klebsiella terrigena) 등이 포함되며, 이에 제한되지 않는다.
특히, 상기 세균은 항생제, 특히 상술한 항생제의 적어도 하나에 대하여 내성을 나타내는 것일 수 있다. 이러한 “항생제 내성 세균”은 이전에 유효했던 적어도 하나의 항생제에 더 이상 영향을 받지 않거나 영향을 거의 받지 않는 세균을 의미하며, 종래 유효하게 항균 활성을 나타내던 항생제에 견디는 능력이 발생한 것을 의미한다. 항생제 내성 세균은 그의 후손에게 상기 견디는 능력을 전달할 수 있다. 상기 항생제 내성 기전은 다양하다. 예컨대, 내성은 항생제가 세균의 내부 또는 세균 상의 작용 부위에 도달하지 않게 물리적으로 방지하는 비투과성 기전, 항생제를 세균으로부터 신속하게 제거함으로써 세균의 내부 또는 세균 상의 작용 부위에 유효량의 항생제가 도달하지 못하게 방지하는 유출 기전, 항생제를 파괴하거나, 항생제를 무해한 (또는 덜 유해한) 화합물로 변환시키거나 또는 화합물을 보다 쉽게 배출시키는 대사 기전, 세균이 항생제에 의해 저해되는 경로와 다른 경로를 이용하는 바이패스 기전, 또는 항생제에 덜 민감한 항생제 타겟(예, 효소) 형태의 세균이나 타겟을 가지고 있지 않은 세균를 통해서 나타날 수 있다.
또한, 상기 항생제 내성 세균은 2개 이상의 항생제에 대하여 내성을 가지는 것일 수 있고, 이는 “다제 내성균(multidrug-resistant microorganisims)”이라고도 한다. 상기 다제내성세균으로는 예컨대 메티실린감수성황색포도알균(Methicillin-susceptible Staphylococcus aureus, MSSA), 메티실린내성황색포도알균(Methicillin-resistant Staphylococcus aureus, MRSA), 반코마이신내성황색포도알균(Vancomycin-Resistant Staphylococcus aureus, VRSA), 반코마이신중등도내성황색포도알균(Vancomycin-intermediate Staphylococcus aureus, VISA), 반코마이신내성장알균(Vancomycin-resistant enterococci, VRE), 반코마이신감수성장알균(Vancomycin-susceptible enterococci, VSE), 다제내성녹농균(Multidrug-resistant Pseudomonas aeruginosa, MRPA), 카베페넴내성 녹농균Carbepenem-resistant Pseudomonas aeruginosa, CRPA), 카파페넴내성아시네토박터바우마니균(Carbapenem-Resistant Acinetobacter baumannii, CRAB), 카바페넴내성장내세균속균종(Carbapenem Resistant Enterobacteriaceae, CRE) 등이 있다.
본 발명의 구체적인 실시예에서는 종래에 폴리믹신계 항생제에 대하여 내성을 나타내는 세균에, 화학식 1로 표시되는 화합물을 그 자체로는 항균 활성을 가지지 않는 농도로 폴리믹신과 함께 병용하여 처리하였을 때, 상기 폴리믹신계 항생제에 내성을 나타내는 세균의 사멸이 더욱 촉진됨을 확인하였다. 상기와 같은 결과로부터, 본 발명의 화학식 1로 표시되는 화합물이 항생제 내성 세균의 항생제에 대한 감수성을 더욱 향상시켜 항생제의 항균 활성이 회복될 수 있도록 하는 항균 보조제의 유효성분으로 이용될 수 있음을 분명히 알 수 있다.
본 발명의 다른 측면은 상기 화학식 1로 표시되는 화합물을 유효성분으로 포함하는 항균 보조제 및 항생제를 유효성분으로 포함하는 항균용 조성물을 제공한다.
상술한 바와 같이, 본 발명의 화학식 1로 표시되는 화합물은 항생제 내성 세균의 항생제에 대한 감수성을 향상시키는 효과가 있는바, 상술한 항균 보조제를 항생제와 함께 병용함으로써, 종래 항생제의 항균 활성을 회복시킬 수 있다.
본 발명의 항균용 조성물을 항생제 내성 세균에 투여시 아연 이온 결합(zinc ion binding), 동일한 단백질 결합(identical protein binding), 철 이온 결합(ferric ion binding)에 관여하는 유전자의 발현과 과산화효소 활성(peroxidase activity)에 관여하는 유전자의 발현이 유의적으로 감소하고, 세포막을 통한 물질 수송, 특히 ATPase-연관 황산염 막투과 수송자의 활성(ATPase-coupled sulfate transmembrane transporter activity)에 관여하는 유전자의 발현이 유의적으로 증가할 수 있다.
본 발명의 항균용 조성물은 세균 세포막의 내부와 외부의 환경이 변화하고, 그로 인해 세포막 지질 이중층 영역의 무결성을 파괴하여 세포막의 높은 탈분극을 유도, 세포질의 항상성이 깨지고 결국 세포 투과성이 감소하여 세포 사멸을 유도할 수 있다.
상기 항생제 내성 세균은 상술한 바와 같고, 특히 그람음성 세균일 수 있다.
또한, 상기 항생제 역시 상술한 바와 같고, 특히 폴리믹신계 항생제일 수 있다.
따라서 본 발명의 항균용 조성물은 폴리믹신계 항생제에 내성을 나타내는 세균에 대하여, 폴리믹신계 항생제를 단독으로 투여하는 경우보다 폴리믹신계 항생제의 항균 활성을 더욱 향상시킬 수 있다.
본 발명의 구체적인 실시예에서는, 항균 보조제와 폴리믹신계 항생제를 폴리믹신계 항생제에 내성을 나타내는 세균에 병용 처리하는 경우 상승 효과가 나타나 세균의 생장을 저해하고 세포막을 손상시켜 사멸을 유도하는 효과가 있음을 확인하였다.
또한, 본 발명의 항균용 조성물은 상기 항균 보조제를 병용하기 때문에 폴리믹신계 항생제를 과량으로 투여하지 않더라도 충분한 항균 활성을 달성할 수 있다. 따라서 상기 폴리믹신계 항생제의 과량 투여에 따라 발생하는 신장 독성 등의 부작용을 현저하게 낮출 수 있는 효과가 있다.
본 발명의 구체적인 실시예에서는, 신장 독성을 유발하는 폴리믹신계 항생제와 본 발명의 항균 보조제를 병용하면, 패혈증 동물 모델에서 신장 독성이 유발되지 않을 뿐만 아니라, 생존율도 향상되는 효과가 있음을 확인하였다.
본 발명의 또 다른 측면은 상기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항균 보조제, 및 항생제를 유효성분으로 포함하는 패혈증 또는 패혈증성 쇼크에 의한 장기 손상의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 항생제 역시 상술한 바와 같고, 특히 폴리믹신계 항생제일 수 있다. 상기 패혈증 또는 패혈증성 쇼크는 그람음성 세균에 의해 유발된 것일 수 있고, 상기 그람음성 세균은 항생제에 내성을 가진 세균이라면 제한되지 않으며, 예를 들어 에스케리키아 속(Escherichia sp.) 세균 및/또는 아시네토박터 속(Acinetobacter sp.) 세균일 수 있다.
상기 “패혈증”은 미생물에 감염되어 전신에 심각한 염증 반응이 나타나는 상태를 말한다. 발열 증상, 혹은 저체온증, 호흡수의 증가(빈호흡), 심박수의 증가(빈맥), 혈액 검사상 백혈구 수의 증가 혹은 현저한 감소 중 두 가지 이상의 증상을 보이는 경우, 이를 전신성 염증 반응 증후군(systemic inflammatory response syndrome; SIRS)이라고 부른다. 이러한 전신성 염증 반응 증후군이 미생물의 감염에 의한 것일 때 패혈증이라고 한다. 신체의 감염 병소에서 병원균이 지속적 또는 단속적으로 혈류에 들어와 여러 장기 조직에 정착하여 병소를 만들고 심한 전신 증상을 보이는 것으로, 유약자, 고령자, 쇠약자가 걸리기 쉽다. 패혈증은 잠재적으로 패혈증성 쇼크를 유발할 수 있다. 패혈증이 심해지면 신체의 여러 기관(심장, 신장, 간, 뇌, 폐 등)의 기능이 나빠지고 더욱 심해져서 쇼크 상태가 된다.
본 발명의 구체적인 실시예에서는 패혈증 동물 모델의 생존율이 개선되고, 간, 폐, 신장, 및 비장을 포함하는 장기에서의 감염된 세균의 수(CFU)가 현저하게 감소하는 것을 확인하여 본 발명의 항균 보조제와 폴리믹신계 항생제를 포함하는 조성물이 패혈증의 예방 또는 치료에 유용하다는 것을 확인하였다.
상기 “예방”은 본 발명에 따른 조성물의 투여에 의해 패혈증 또는 패혈증성 쇼크를 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
상기 “치료”는 본 발명에 따른 조성물의 투여에 의해 패혈증에 연관된 임상 증상 및 다기관 기능부전 증후군에 연관된 상태(예를 들어, 다양한 정도의 열, 저독소혈증, 사성, 빈맥, 내피염, 심근경색증, 고도착란, 변화성 정신 상태, 혈관 허탈 및 기관 손상, 급성 호흡 곤란 증후군, 응고장애, 심부전증, 신부전증, 쇼크 및/또는 혼수상태 등)가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
또한, 본 발명은 패혈증에 의한 장기 손상을 억제할 수 있다. 본 발명의 약학적 조성물은 패혈증으로 인한 장기의 손상을 억제하는 것에 의하여 패혈증을 예방 또는 치료할 수 있다. 상기 장기는 패혈증으로 인하여 손상된 장기로, 본 발명의 조성물에 의해 장기 손상이 억제될 수 있는 장기에는 제한이 없으며 예를 들어, 간장, 신장 및 폐로 구성되는 군에서 선택되는 적어도 하나일 수 있다.
본 발명에 따른 약학적 조성물은 통상적인 방법에 따라 무독성이면서 약학적으로 허용 가능한 담체, 보강제 및 부형제 등을 첨가하여 제형화 될 수 있으며, 예컨대 정제, 캅셀제, 트로키제, 액제, 현탁제 등의 경구 투여용 제제 또는 비경구 투여용 제제로 제조될 수 있다.
또한, 본 발명에 따른 약학적 조성물에 사용될 수 있는 부형제로는 감미제, 결합제, 용해제, 용해보조제, 습윤제, 유화제, 등장화제, 흡착제, 붕해제, 산화방지제, 방부제, 활탁제, 충진제, 방향제 등이 있으며, 예를 들면 락토스, 덱스트 로스, 슈크로스, 만니톨, 솔비톨, 셀룰로오스, 글라이신, 실리카, 탈크, 스테아린산, 스테린, 마그네슘 스테아 린산염, 마그네슘 알루미늄 규산염, 녹말, 젤라틴, 트라가칸트 고무, 알지닌산, 소디움 알진산염, 메틸셀룰로오스, 소디움 카르복실메틸셀룰로오스, 아가, 물, 에탄올, 폴리에틸렌글리콜, 폴리비닐피롤리돈, 염화나트륨, 염화칼슘, 오렌지 엣센스, 딸기 엣센스, 바닐라 향 등을 들 수 있다.
본 발명의 화합물은 약학적 조성물 총 중량에 대해서 0.1중량% 내지 95중량% 범위의 농도 수준으로, 즉 목적하는 효과를 얻기에 충분한 양으로 포함될 수 있다.
본 발명의 약학적 조성물은 쥐, 마우스, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은, 예를 들면 피부, 경구, 직장, 정맥, 복강, 근육, 피하, 자궁내 경막 또는 뇌혈관 내(intracerebroventricular) 주사에 의해 투여될 수 있고, 바람직하게는 경구 또는 정맥 중 어느 하나의 경로로 투여될 수 있으나, 이에 한정되지 아니한다.
상기 투여는 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다. 투여를 위해서는 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함할 수 있다. 약제학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 본 발명에 따른 화합물은 다양한 제제화가 용이하며, 예를 들면 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주입용 제형, 산제, 정제, 캡슐제, 환, 과립 또는 주사액제로 제제화할 수 있다.
상기 투여시 화합물의 양은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다. 본 발명의 화합물의 일일 투여량은 0.0001~100 mg/kg으로, 바람직하게는 0.001~30 mg/kg의 양을 1일 1회 내지 수회로 나누어 투여할 수 있다. 아울러, 투여 기간은 1일 내지 2개월일 수 있으나, 질환의 예방 또는 치료 효과가 나타날 때까지 제한 없이 투여될 수 있다.
본 발명의 항균 보조제는 그람음성 세균의 폴리믹신계 항생제에 대한 민감성을 향상시킴으로써, 그람음성 세균의 증식을 억제하기 위해 처리되는 폴리믹신계 항생제의 투여량을 최대 128배까지 낮출 수 있으므로, 기존에 폴리믹신을 과량 투여함에 따라 발생하는 신장 독성 등의 부작용을 현저하게 낮출 수 있을 뿐만 아니라, 폴리믹신계 항생제와 병용 투여되어 그람음성 세균의 우수한 생장 저해 및 사멸 효과를 나타내, 위와 같은 폴리믹신계 항생제에 내성을 나타내던 그람음성 세균에 대해서도 다시금 폴리믹신계 항생제가 항균 활성을 회복할 수 있도록 하여, 별도로 새로운 항생제를 개발할 필요 없이 기존의 항생제를 그대로 활용할 수 있는 효용성이 있다.
본 발명의 또 다른 일 측면은 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항균 보조제; 및 폴리믹신계 항생제를 개체에 투여하는 단계를 포함하는 패혈증 또는 패혈증성 쇼크에 의한 장기 손상의 예방, 개선 또는 치료방법을 제공한다.
본 발명의 또 다른 일 측면은 패혈증 또는 패혈증성 쇼크에 의한 장기 손상의 예방, 개선 또는 치료를 위한 약제의 제조에 사용하기 위한, 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항균 보조제; 및 폴리믹신계 항생제의 용도를 제공한다.
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.
[실시예 1] 세균의 폴리믹신계 항생제에 대한 감수성을 향상시키는 화합물 선별
1-1. PA108 화합물의 선별
본 발명에서는 한국화학연구원 화합물은행에서 보유하고 있는 다양한 화합물들 중에서 폴리믹신과 함께 작용하여 폴리믹신 내성 세균을 사멸시킬 수 있는 물질을 세포 호흡량 측정 방법을 이용하여 스크리닝 하였다. 세균은 연세대학교병원 패혈증 감염환자에서 분리되어 폴리믹신 저항성 균주인 동시에 다제내성균주인 아시네토박터 바우마니 (Acinetobacter baumannii colistin resistance 357, 이하, R357 균주)로 동정된 세균을 제공받아 실험에 사용하였다.
구체적으로, 세균을 키워 놓은 LB 아가 플레이트에서 단일 콜로니를 3ml의 LB 브로스에 접종하여 37℃에서 220rpm으로 16시간 동안 밤새 배양하였다. 이후 250ml 플라스크에 배양액을 1/1000 희석한 50ml을 만들고 0.5% 트리 페닐 테트라 졸륨 클로라이드(TTC)을 넣고 폴리믹신 B(polymyxin B, 이하, PMB) 16μg/mL을 넣고 혼합하였다. 그 다음 96-웰 플레이트에 198ul씩 분주하여 각각의 서로 다른 후보 화합물을 최종적으로 5μM농도로 맞추어 각 웰에 2ul씩 분주하여 혼합한 다음 표현형(Phenotype) 마이크로어레이를 이용하여 37℃에서 24시간 동안 관찰하고 다기능마이크로플레이트리더(Multifunctional Microplate reader)를 이용하여 OD값을 한번 더 측정하여 결과값을 비교하였다.
그 결과, 세균의 폴리믹신계 항생제에 대한 감수성을 향상시키는 활성을 가진 화합물(하기 화학식 2의 화합물)을 선별하였으며, 이 화합물을 PA108로 명명하고 이후 실험에 사용하였다.
[화학식 2]
Figure PCTKR2022001632-appb-img-000003
1-2. PA108 유도체의 항균 보조제로서의 활성 확인
PA108 화합물의 활성의 구조적 연관성을 찾기 위해 [표 1]에 기재된 총 14종의 PA108 유도체(derivatives)를 준비하고, 이들과 PMB의 시너지 효과를 세균 호흡량 측정법을 통해 검증하였다. PA108 유도체들은 한국화학연구원 화합물은행에서 제공받거나 직접 합성하여 사용하였다.
구체적으로, 세균을 키워 놓은 LB 아가 플레이트에서 단일 콜로니를 3ml의 LB 브로스에 접종하여 37℃에서 220rpm으로 16시간 동안 밤새 배양하였다. 이후 250ml 플라스크에 배양액을 1/1000 희석한 50ml을 만들고 0.5% 트리 페닐 테트라 졸륨 클로라이드(TTC)을 넣고 폴리믹신 B(polymyxin B, PMB) 16μg/mL을 넣고 혼합하였다. 그 다음 96-웰 플레이트에 198ul씩 분주하여 각각의 서로 다른 후보 화합물을 최종적으로 5μM농도로 맞추어 각 웰에 2ul씩 분주하여 혼합한 다음 표현형(Phenotype) 마이크로어레이를 이용하여 37℃에서 24시간 동안 관찰하고 다기능마이크로플레이트리더(Multifunctional Microplate reader)를 이용하여 OD값을 한번 더 측정하여 결과값을 비교하였다.
그 결과, PA108 원본 외의 다른 유도체들에서는 유의미한 R357균주의 사멸 효과를 보이지 않았다 (도 1).
[표 1]
Figure PCTKR2022001632-appb-img-000004
Figure PCTKR2022001632-appb-img-000005
[실시예 2] PA108의 세균 생장 저해 효과 확인
PA108의 항균 활성을 확인하기 위하여 실시예 1에서 사용하였던 방법으로 세포 호흡량을 측정함으로써 세균 생장 저해 효과를 확인하였다.
먼저 세균을 키워 놓은 LB 아가 플레이트에서 단일 콜로니를 3ml의 LB 브로스에 접종하여 37℃에서 220rpm으로 16시간 동안 밤새 배양하였다. 이후 250ml 플라스크에 배양액을 1/1000 희석한 50ml을 만들고 0.5% 트리 페닐 테트라 졸륨 클로라이드(TTC)을 넣고 혼합하였다. 그 다음 96-웰 플레이트에 198ul씩 분주하였다. 각 처리구마다 3반복을 위해 3개씩의 well에 PMB 16 μg/mL, PA108 5 μM, PMB(16 μg/mL) 및 PA108(5 μM)의 농도로 맞추어 각 웰에 2ul씩 분주하여 혼합한 다음 표현형(Phenotype) 마이크로어레이를 이용하여 37℃에서 24시간 동안 관찰하고 다기능마이크로플레이트리더(Multifunctional Microplate reader)를 이용하여 OD값을 한번 더 측정하여 결과값을 비교하였다.
그 결과, R357 균주는 PMB에 대한 최소 생장 저해 농도(minimal inhibitory concentration, MIC)가 64 μg/mL이므로 16 μg/mL의 저농도에서는 세포 생장 저해 효과가 없는 것을 확인할 수 있었다(도 2, 검은색). 또한 개발된 폴리믹신계 항균 보조제인 PA108 역시 5 μM의 농도에서 자체 세포 생장 저해 효과가 없는 것을 확인할 수 있었다 (도 2, 파란색). 그러나, PMB와 PA108을 동시에 처리했을 때는 세포 호흡이 효과적으로 저해된다는 것을 확인하였다 (도 2, 빨간색).
[실시예 3] PA108에 의해 상승된 세포 사멸 효과 확인
항생제의 효능에는 크게 두 가지가 있다. 세균의 사멸을 일으키지는 않고 생장을 저해하는 정균제(bacteriostatic)과 세균의 사멸을 일으키는 살균제(bactericidal)가 존재한다. PA108이 폴리믹신과 함께 처리되었을 때 실제로 살균 효과를 증가시키는 지 확인하기 위하여 세균의 생존 실험(viability test)을 수행하였다.
먼저, LB 아가 플레이트에서 단일의 콜로니를 3ml의 LB broth에 접종하여 37℃, 220rpm의 조건으로 16시간 동안 밤새 배양하였다. 이후 배양액의 1%를 250ml 삼각플라스크에 희석한 후 OD=0.5까지 배양하였다. 자란 배양액을 3개의 15ml 둥근 컬쳐 튜브에 3ml씩 분주하고, PMB 16 μg/mL, PA108 5 μM, PMB(16 μg/mL) 및 PA108(5 μM) 을 넣은 처리구, 이렇게 3가지 처리구를 만들어 분주한 후 37℃, 220rpm으로 배양하면서 1, 4, 7, 12시간마다 1처리구당 3개의 LB 아가 플레이트에 100ul씩 각각 도말하여 Colony forming unit (CFU)를 확인하였다.
그 결과, 세포 호흡량의 결과와 마찬가지로 PMB 또는 PA108 단독 처리군은 R357 균주의 사멸 효과를 보이지 않았다 (도 3, 검정색, 파란색). 그러나 PMB와 PA108의 동시처리군에서는 세포 사멸이 유도되는 것을 확인할 수 있었다 (도 3, 빨간색). 나아가, 14시간을 기준으로 대조군과 단독 처리군에 비해 동시 처리군의 경우 107 배의 사멸 효과를 보이는 것을 확인하였으며, 최종적으로 99.99999%의 세균 사멸 효과를 나타내었다.
[실시예 4] 폴리믹신계 항생제와 PA108의 상승적 항균 효과 확인
PA108을 폴리믹신계 항생제와 병용처리 하였을 때 시너지(synergy) 효과가 나타나는 것을 확인하기 위하여 체커보드 분석(checkerboard assay)을 수행하고, 이 결과를 통해 FICI (fractional inhibitory concentration index)를 구하였다.
먼저, LB 아가 플레이트에서 3~4개 콜로니를 4~5ml의 LB broth에 접종하여 37℃에서 220rpm으로 16시간 동안 밤새 배양하였다. 이후 배양액을 1/10000 희석한 5ml 만들어 15ml 둥근 컬쳐 튜브에 OD=0.08~0.1까지 37℃에서 220rpm으로 배양하였다. 그 다음 1/20 희석하여 96-웰 플레이트에 196ul씩 분주하고, 각각의 웰 마다 PA108는 0~160 μM, PMB는 0~64 μg/Ml의 농도로 2ul씩 분주하여 혼합한 다음 37℃에서 18시간 동안 배양한 후 다기능마이크로플레이트리더(Multifunctional Microplate reader)를 이용하여 OD값을 측정하였다.
다음으로, 시너지 효과 확인을 위해 화합물의 단독 처리와 MIC값을 비교하여 화합물과 항생제 조합의 효능에 대한 영향을 평가하는 분획 억제 농도 지수(Fractional Inhibitory Concentration (FIC) index) 는 화합물A 단독 조합/ 화합물 A의 MIC + 화합물B 단독 조합/ 화합물 B의 MIC = FIC A + FIC B = FIC Index의 표준 방정식을 사용하여 계산하였다. MIC 및 FICI 값을 표 2에 나타내었다.
FICI 값은 0.5 이하이면 시너지효과(synergy), 0.5 내지 4.0이면 상가효과(indifference), 4 이상이면 길항작용(antagonism)으로 판단한다.
[표 2]
Figure PCTKR2022001632-appb-img-000006
그 결과, PA108과 PMB의 FICI값은 0.093으로 내성균 사멸 효과가 시너지 효과임을 확인하였다 (도 4).
[실시예 5] 폴리믹신계 항생제와 PA108의 형태학적인 세포 사멸 효과 확인
PA108을 폴리믹신계 항생제와 병용처리 하였을 때 세균의 형태학적 변화를 확인하기 위하여 형광현미경과 주사전자현미경(Scanning Electron Microscope)을 사용하여 세균의 형태학적 변화를 관찰하였다.
먼저, LB 아가 플레이트에서 단일의 콜로니를 3㎖의 LB broth에 접종하여 37℃에서 220rpm으로 16시간 동안 밤새 배양하였다. 이후 배양액의 1%를 250㎖ 삼각플라스크에 희석하여 OD=0.5까지 배양한 후, PMB는 16㎍/㎖, PA108는 5μM의 농도로 처리하고 9시간 동안 배양하였다. 세포를 4℃에서 10분 동안 8,000×g에서 원심분리한 후, 3회 세척하고 PBS에 재현탁 시켰다. 세포 현탁액 3㎖는 고정시킨 후 주사전자현미경으로 관찰하였다. LIVE/DEAD BacLight 박테리아 생존율 키트(Cat #. L7007, Invitrogen, Waltham, Massachusetts, USA)를 사용하여 살아있는 세포의 DNA 및 RNA에 결합하여 녹색 형광을 방출하는 SYTO9(67mM, 3μL) 및 사멸한 세포의 DNA 및 RNA와 결합하여 적색 형광을 방출하는 PI(Propidium iodide)(1.67mM, 3μL)를 최종 부피 3㎖로 각 샘플에 첨가하고 실온에서 15분 동안 암실에서 배양하여 형광 현미경으로 관찰하였다.
그 결과, 형광현미경을 이용한 관찰에서 PMB 또는 PA08의 단독 처리군은 녹색 형광이 관찰되어 대조군과 유사하게 세포가 사멸하지 않은 것을 확인하였다. 반면, PMB와 PA108의 동시처리군에서는 적색 형광이 관찰되어 세포 사멸이 유도되는 것을 확인할 수 있었다(도 5, 상단).
또한, 주사전자현미경을 이용한 관찰에서 PMB 또는 PA08의 단독 처리군은 대조군과 유사하게 세포의 표면이 손상되지 않은 온전한 형태를 나타내는 것을 확인하였다. 반면, PMB와 PA108의 동시처리군에서는 세포가 쪼그라들고 세포내 물질이 누출되어 세포의 형태와 구조가 손상된 것을 확인하였다(도 5, 하단).
[실시예 6] PA108의 신장 독성 확인
폴리믹신계 항생제의 경우 신장 독성이 존재하는 것으로 알려져 있기 때문에 PMB와 PA108에 대한 신장 독성을 인체 유래 신장 세포 ACHN(ATCC® CRL-1611™)을 이용하여 측정하였다.
먼저, ACHN 신장 세포를 2×104 세포/웰로 24시간 동안 배양한 후 모든 웰에 PMB 또는 PA108이 혼합되어 있는 배지로 갈아 주었다. PMB 또는 PA108 처리 0, 24, 48, 72, 96시간 후 cell titer glo를 통해 0시간 대비 각 시간의 ATP의 양의 비율로 세포 생존능을 측정하여 세포 독성을 평가하였다.
그 결과, PMB의 경우 50 μg/mL의 농도부터 신장 세포의 생존능(viability)이 떨어지는 것을 확인하였다(도 6, 좌측). 폴리믹신계 항생제 내성 균주 R357의 경우 폴리믹신에 의한 최소 저해 농도가 64 μg/mL 이므로 R357 감염 시 치료 효과를 보이는 농도인 64 μg/mL에서는 신장 독성이 나타날 것임을 예측할 수 있다. 그러나, PA108의 경우 작용(working) 농도인 5 μM에서는 신장 독성을 전혀 보이지 않았으며 그 이상의 농도에서도 PMB와는 달리 신장 세포가 80% 이상의 생존능을 보이는 것을 확인할 수 있었다(도 6, 우측). 따라서 PMB와 PA108를 동시에 처리할 경우 16 μg/mL PMB를 처리하더라도 폴리믹신계 항생제 내성 균주 R357에 대한 살균 효과가 나타나므로, PMB와 PA108 병용처리시 신장 독성이 나타나지 않을 것임을 예측할 수 있다.
[실시예 7] 마우스 패혈증 모델에서 PA108 처리에 의한 생존율 확인
폴리믹신계 항생제 내성 균주 R357 감염 마우스 모델에서 PA108과 PMB의 동시 처리가 R357 감염에 의해 유발된 패혈증 치료에 효과가를 나타내는지 여부를 확인하였다.
구체적으로, 6주령의 C57BL/6 마우스에 5×107 R357 균주를 복강 주입하여 R357 감염에 의해 유발된 패혈증 마우스 모델을 제작하고, 100μg/kg 용량의 PMB 및 60μg/kg 용량의 PA108를 단독 또는 병용하여 복강 주입하여 마우스의 생존율을 측정하였다.
그 결과, 대조군(control), PMB 단독, PA108 단독 처리군에서는 마우스가 42 시간 안에 모두 죽는 것을 확인하였다. 반면, PMB와 PA108 동시처리군의 경우 168시간까지 어떠한 병리학적 현상을 보이지 않으면서 마우스가 살아있었다(도 7). 또한, PMB와 PA108 동시처리군 마우스를 부검한 결과, 마우스의 장기에서 R357 균주가 검출되지 않아, PMB와 PA108의 동시 처리에 의해 R357 균주가 완전하게 제거되었음을 확인하였다.
[실시예 8] 다른 종의 폴리믹신 내성균에서 항균 보조제로서의 효능 확인
R357 균주 이외에 다른 종(species)의 폴리믹신 내성균에서도 PA108을 폴리믹신계 항생제와 동시처리 하였을 때 시너지(synergy) 효과를 나타내는지 여부를 확인하기 위하여 체커보드 분석(checkerboard assay)을 수행하고, 이 결과를 통해 FICI (fractional inhibitory concentration index)를 구하였다.
먼저, 세균(Klebsiella pneumonia SCH530, SCH740, SCH777, Pseudomonas aeruginosa SMC-U9, SMC-U10, SMC-U11)을 키워놓은 각각의 LB 아가 플레이트에서 3 내지 4개 콜로니를 4 내지 5㎖의 LB broth에 접종하여 37℃에서 220rpm으로 16시간 동안 밤새 배양하였다. 다음날 1/10000 희석한 5㎖의 배양액을 15㎖ 둥근 컬쳐 튜브에 OD=0.08~0.1까지 37℃의 온도에서 220rpm으로 배양하고, 1/20 희석하여 96-웰 플레이트에 196ul씩 분주하였다. 각각의 웰마다 PA108는 0 내지 80 μM, PMB는 0 내지 128μg/Ml의 농도로 2ul씩 분주하여 혼합한 다음, 37℃에서 18시간 동안 배양하여 다기능마이크로플레이트리더(Multifunctional Microplate reader)를 이용하여 OD값을 측정하였다.
다음으로, 상기 실시예 4에 기재된 방법과 동일한 방법으로 FICI를 계산하였고, MIC과 FICI값을 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2022001632-appb-img-000007
그 결과, 모든 균주에서 PA108과 PMB의 FICI값이 시너지 효과를 나타내는 기준값인 0.5 이하로 나타나, 다른 종의 그람음성세균(Klebsiella pneumonia SCH530, SCH740, SCH777, Pseudomonas aeruginosa SMC-U9, SMC-U10, SMC-U11)의 사멸 효과가 PA108과 PMB의 시너지 효과임을 확인하였다(도 8).
[실시예 9] 폴리믹신계 항생제와 PA108 동시처리에 의한 유전자 발현 변화와 작용 기전 확인
PA108을 폴리믹신계 항생제인 PMB와 병용 처리하였을 때 내성균의 사멸에 관여하는 주요 유전자의 발현 변화를 전사체 분석을 통해 확인하였다.
먼저, LB 아가 플레이트에서 단일의 콜로니를 3㎖의 LB broth에 접종하여 37℃, 220rpm의 조건으로 16시간 동안 밤새 배양하였다. 이후 배양액의 1%를 250㎖ 삼각플라스크에 희석한 후 OD=0.5까지 배양하였다. 배양액을 3개의 15㎖ 둥근 컬쳐 튜브에 5㎖씩 분주하고, 16㎍/㎖ 농도의 PMB, 5μM 농도의 PA108, 16㎍/㎖ 농도의 PMB 및 5μM 농도의 PA108 각각 처리하여 37℃, 220rpm으로 1시간 동안 배양하였다. 그 후 박테리아를 PBS로 3회 세척하고 4℃, 8,000×g에서 10분 동안 원심분리하여 -80℃에서 보관하였다.
RNA 시퀀싱을 수행하기 위한 라이브러리는 Ribo-Zero H/M/R이 포함된 TruSeq Stranded Total RNA 샘플 준비 키트로 전체 RNA를 추출하고, 150bp 크기의 cDNA를 합성하여 제작하였다. 합성한 cDNA 라이브러리는 Agilent 2100 BioAnalyzer(Agilent, CA, USA)로 품질을 평가하였으며, 변성된 템플릿의 클러스터 증폭 후 Illumina Novaseq 6000(Illumina, CA, USA)을 사용하여 DNA 단편의 양쪽 끝을 시퀀싱하는 페어드 엔드 시퀀싱(Paired-end sequencing)을 수행하였다. 전사체 데이터 분석을 위해 판독값을 필터링하고, 필터링된 판독값은 정렬기 STAR v.2.4.0b를 사용하여 참조 게놈에 매핑하였다. 그 후 유전자 발현량을 측정하기 위해 제조업체의 라이브러리 정량화 프로토콜에 따라 KAPA 라이브러리 정량화 키트(Kapa Biosystems, MA, USA)를 사용하여 유전자 발현을 정량화하였다.
차등 발현 유전자(Differential expression gene, DEG)를 식별하기 위해 유전자 주석 데이터베이스를 사용하여 Cufflinks v2.1.1로 유전자 발현 수준을 측정하였고, HTSeq-count v0.6.1p1을 사용하여 유전자 발현 수준 카운트 데이터를 생성하였다. 생성된 데이터를 TCC R 패키지를 사용하여 0.05 미만의 q 값을 가지는 유전자를 차등 발현 유전자로 식별하였다.
차등 발현 유전자(DEG)로 식별된 유전자를 대상으로 세포 기작(biological process), 분자 기능(molecular function) 및 세포 내외 위치(cellular component)의 세 가지 범주에 따라 유전자를 분류하고 유전자의 기능에 대한 정보를 제공하는 GO(Gene Ontology) 분석을 수행하였다.
그 결과, 대조군과 비교하여 PMB 단독처리군, PA108 단독처리군, PMB 및 PA108 동시처리군에서 모두 유의한 유전자 변화가 관찰되었다(도 9). 또한, GO(Gene Ontology) 분석을 통해서 PMB 및 PA108 동시처리시 아연 이온 결합(zinc ion binding), 동일한 단백질 결합(identical protein binding), 철 이온 결합(ferric ion binding)에 관여하는 유전자의 발현과 과산화효소 활성(peroxidase activity)에 관여하는 유전자의 발현이 유의적으로 감소하고, 세포막을 통한 물질 수송, 특히 ATPase-연관 황산염 막투과 수송자의 활성(ATPase-coupled sulfate transmembrane transporter activity)에 관여하는 유전자의 발현이 유의적으로 증가한 것을 확인하였다(도 10).
저용량의 항셍제 PMB를 처리하면 외부 물질이 보다 쉽게 투과할 수 있는 물리화학적인 환경이 만들어지게 되며 PA108이 보다 쉽게 주변 세포질 공간으로 침투하게 되면서 단백질의 산화 및 다양한 영양소 수송을 담당하는 세포막의 기능에 관련된 유전자들의 발현이 감소하여 세포 사멸 효과를 나타내는 것으로 추측된다.
또한, 이를 통하여 높은 돌연변이율, 성장 결함을 나타내어 독소로 작용하는 활성산소인 슈퍼옥사이드와 과산화수소로 인해 세포내 산화스트레스 반응이 유발되는데, 이를 조절하는 활성산소 조절효소 활성 관련 유전자들의 발현도 감소하여 세포질의 항상성이 깨지게 되어 세포 사멸 효과를 나타내는 것으로 추측된다.
추가적으로, 철 이온 결합 및 단백질 분해 기능과 관련된 유전자와 페닐아세테이트 이화작용 과정 관련 유전자의 발현이 억제되어 사이드로포어 합성이 억제되고, 세포막을 통과한 PMB 및 PA108이 특정 단백질 및 DNA와 결합, 대사 기능을 저하시켜 세포 사멸 효과를 나타내는 것으로 추측된다.
본 발명의 항균용 조성물은 세균에 직접적인 영향을 주지 않는 저농도의 항생제(PMB) 처리에 의해서 세포막의 유동성이 원활하게 이루어지고 이를 통하여 세포질 속으로 들어간 물질(PA108)에 의해서 세균의 활성산소가 과다하게 생성되어 세포질의 항상성이 깨지고 결국 세포 투과성이 감소하여 세포 사멸을 유도할 수 있다.
[실시예 10] 폴리믹신계 항생제와 PA108 동시처리에 의한 세균막 변화 확인
폴리믹신 E(콜리스틴)는 그람음성균의 세포 외막에 있는 LPS(Lipopolysaccharide)와 인지질에 특이적으로 결합하여 살균 활성을 나타내고, 콜리스틴 내성 세균은 외막의 변형된 LPS로 인해 콜리스틴과 세균 외막의 친화력이 감소되어 콜리스틴에 대해 내성을 나타낸다. 따라서 PA108의 첨가가 세균막 전위 및 투과성에 변화를 일으키는지 여부를 확인하였다.
구체적으로, 샘플 준비를 위해 16시간 동안 생장한 콜로니 배양물을 세척하고 pH 7.4에서 0.01M PBS에 재현탁하였다. 박테리아 현탁액의 600nm에서의 흡광도는 동일한 완충액에서 0.5로 표준화 되었고 염료인 PI(cat. P1304MP, Thermo Fisher Scientific, Waltham, Massachusetts, USA)는 1.67μM의 최종 농도로 첨가되었다. 37℃에서 30분 동안 배양한 후, 198㎕의 형광이 표지된 박테리아 세포를 96-웰 플레이트에 첨가한 다음 16㎍/㎖의 PMB 및 5μM의 PA108 2㎕를 첨가하였다. 다시 30분 동안 배양한 후, excitation 535nm, emission 615nm의 형광측정의 파장 범위에서 다기능마이크로플레이트리더(Multifunctional Microplate reader)로 형광을 측정하여 막 투과성을 측정하였다.
세포막 전위는 세포를 5mM의 HEPES(pH 7.0, +5mM의 포도당)에 재현탁하고, 전위에 민감한 염료인 DiSC3(5)(3,3'-Dipropylthiadicarbocyanine Iodide) (50μM, Cat. D306, Invitrogen, Carlsbad, California)을 첨가하여 30분 동안 배양한 후, 다기능마이크로플레이트리더(Multifunctional Microplate reader)로 형광을 측정하여 막 전위를 측정하였다.
그 결과, PMB 및 PA108의 병용 처리가 세균의 세포질 막 전위를 변화시켰으나(도 11, 우측), 전체적인 막 투과성에는 영향을 미치지 않는 것을 확인하였다(도 11, 좌측).
이러한 결과는 저용량의 PMB 처리에 의해 세균의 사멸까지 이르는 막 투과도의 변화를 일으키지는 않지만, 그람 음성균 외막의 리포폴리사카라이드(LPS)를 불안정하게 만들어 외부물질이 보다 쉽게 들어갈 수 있는 물리화학적인 환경이 형성되고, 동시에 처리한 PA108이 세포막 안으로 유입, 세포막의 이온채널(ion channel) 또는 구멍(pore)을 형성하여 세포막의 높은 막 탈분극을 유도함을 제시한다.
결과적으로 PA108은 PMB에 대한 항균보조제로서 동시에 처리되어 세균 세포 원형질막의 지질 이중층 영역의 손상을 일으켜 세균의 사멸을 유도하는 역할을 하는 것임을 알 수 있다.

Claims (14)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 항균 보조제:
    [화학식 1]
    Figure PCTKR2022001632-appb-img-000008
    여기서,
    X는 할로겐 원자이고,
    R1 및 R2는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 6의 알킬임.
  2. 청구항 1에 있어서,
    X는 염소 원자이고, R1은 수소 원자이고, R2는 메틸인 항균 보조제.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 항균 보조제는 세균의 폴리믹신계 항생제에 대한 감수성을 향상시키는 것인 항균 보조제.
  4. 청구항 3에 있어서,
    상기 폴리믹신계 항생제는 폴리믹신 B 또는 폴리믹신 E인 항균 보조제.
  5. 청구항 3에 있어서,
    상기 세균은 그람음성 세균(gram-negative bacteria)인 항균 보조제.
  6. 청구항 5에 있어서,
    상기 그람음성 세균은 에스케리키아 속(Escherichia sp.) 세균 아시네토박터 속(Acinetobacter sp.) 세균, 슈도모나스 속(Pseudomonas sp.) 세균 또는 크렙시엘라 속(Klebsiella sp.) 세균인 항균 보조제.
  7. 청구항 6에 있어서,
    상기 에스케리키아 속 세균은 에스케리키아 콜리(Escherichia coli), 에스케리키아 알버티(Escherichia albertii), 에스케리키아 블라태(Escherichia blattae), 에스케리키아 페르구소니(Escherichia fergusonii), 에스케리키아 헤르마니(Escherichia hermannii) 및 에스케리키아 불네리스(Escherichia vulneris)로 구성된 군에서 선택되는 적어도 하나이고,
    상기 아시네토박터 속 세균은 아시네토박터 바우마니(Acinetobacter baumannii), 아시네토박터 주니(Acinetobacter junii), 아시네토박터 보이시에리(Acinetobacter boissieri), 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus), 아시네토박터 해모리티쿠스(Acinetobacter haemolyticus), 아시네토박터 노소코미알리스(Acinetobacter nosocomialis), 아시네토박터 쉰들레리(Acinetobacter schindleri) 및 아시네토박터 유르신기(Acinetobacter ursingii)로 구성된 군에서 선택되는 적어도 하나이고,
    상기 슈도모나스 속(Pseudomonas sp.) 세균은 슈도모나스 애루지노사(Pseudomonas aeruginosa); 슈도모나스 플루오레슨스(Pseudomonas fluorescens), 슈도모나스 푸티다(Pseudomonas putida), 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 슈도모나스 퍼투시노제나(Pseudomanas pertucinogena), 슈도모나스 스투트제리(Pseudomanas stutzeri) 및 슈도모나스 시린개(Pseudomanas syringae)로 구성된 군에서 선택되는 적어도 하나이고,
    상기 크렙시엘라 속 세균은 크렙시엘라 뉴모니아(Klebsiella pneumonia), 크렙시엘라 그라눌로마티스(Klebsiella granulomatis), 크렙시엘라 옥시토카(Klebsiella oxytoca) 및 크렙시엘라 테리게나(Klebsiella terrigena)로 구성된 군에서 선택되는 적어도 하나인, 항균 보조제.
  8. 청구항 5에 있어서,
    상기 그람음성 세균은 폴리믹신계 항생제에 내성이 있는 세균이거나, 다제내성(multi-drug resistance) 세균인 항균 보조제.
  9. 청구항 1의 항균 보조제, 및 폴리믹신계 항생제를 유효성분으로 포함하는 항균용 조성물.
  10. 청구항 9에 있어서,
    상기 조성물은 그람 음성 세균의 세포 사멸을 유도하는 것인, 항균용 조성물.
  11. 청구항 9에 있어서,
    상기 조성물은 그람 음성 세균의 세포막 탈분극을 유도하여 세포막을 손상시키는 것인, 항균용 조성물.
  12. 청구항 1의 항균 보조제 및 폴리믹신계 항생제를 유효성분으로 포함하는 패혈증 또는 패혈증성 쇼크에 의한 장기 손상의 예방 또는 치료용 약학적 조성물.
  13. 청구항 12에 있어서,
    상기 패혈증 또는 패혈증성 쇼크는 에스케리키아 속(Escherichia sp.) 세균 또는 아시네토박터 속(Acinetobacter sp.) 세균의 감염에 의해 유발된 것인, 약학적 조성물.
  14. 청구항 12에 있어서,
    상기 장기는 간장, 신장 및 폐로 구성되는 군에서 선택되는 적어도 하나인, 약학적 조성물.
PCT/KR2022/001632 2021-02-02 2022-01-28 바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이의 용도 WO2022169243A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22749992.8A EP4289272A4 (en) 2021-02-02 2022-01-28 ANTIMICROBIAL ADJUVANT CONTAINING A COMPOUND DERIVED FROM BIPHENYL AS ACTIVE INGREDIENT, AND USES THEREOF
CN202280012998.XA CN116847735A (zh) 2021-02-02 2022-01-28 含有联苯基衍生物化合物作为有效成分的抗菌佐剂及其用途
JP2023546500A JP2024505573A (ja) 2021-02-02 2022-01-28 ビフェニル誘導体化合物を有効成分として含有する抗菌補助剤及びこの用途
US18/275,475 US20240148670A1 (en) 2021-02-02 2022-01-28 Antimicrobial adjuvant containing biphenyl derivative compound as active ingredient, and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0014932 2021-02-02
KR20210014932 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022169243A1 true WO2022169243A1 (ko) 2022-08-11

Family

ID=82742361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001632 WO2022169243A1 (ko) 2021-02-02 2022-01-28 바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이의 용도

Country Status (6)

Country Link
US (1) US20240148670A1 (ko)
EP (1) EP4289272A4 (ko)
JP (1) JP2024505573A (ko)
KR (1) KR20220111676A (ko)
CN (1) CN116847735A (ko)
WO (1) WO2022169243A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012085092A1 (de) * 2010-12-21 2012-06-28 Christian-Albrechts-Universität Zu Kiel Antibakteriell und antimykotisch wirkende substanzen biphenylyl -verbindungen
KR20160009041A (ko) * 2013-05-22 2016-01-25 뉴 파마 라이센스 홀딩스 리미티드 폴리믹신 유도체 및 상이한 항생제와의 조합 요법에 있어서의 이들의 용도

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU537068B2 (en) * 1979-10-18 1984-06-07 Warner-Lambert Company Substituted -5-((7-chloro-4-quinolinyl)amino)-3-(amino- methyl)-(1,1:-biphenyl)-2-ol compounds
WO2005022997A1 (en) * 2003-09-04 2005-03-17 Valent Biosciences Corporation Fungicide
KR101913789B1 (ko) * 2017-03-21 2018-10-31 한국화학연구원 코로나 바이러스 감염으로 인한 질환 치료용 화합물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012085092A1 (de) * 2010-12-21 2012-06-28 Christian-Albrechts-Universität Zu Kiel Antibakteriell und antimykotisch wirkende substanzen biphenylyl -verbindungen
KR20160009041A (ko) * 2013-05-22 2016-01-25 뉴 파마 라이센스 홀딩스 리미티드 폴리믹신 유도체 및 상이한 항생제와의 조합 요법에 있어서의 이들의 용도

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAUL M, PARHI A K, ZHANG Y, LAVOIE E J, TUSKE S, ARNOLD E, KERRIGAN J E, PILCH D S: "A bactericidal guanidinomethyl biaryl that alters the dynamics of bacterial FtsZ polymerization.", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 22, 26 November 2012 (2012-11-26), US , pages 10160 - 10176, XP002695345, ISSN: 0022-2623, DOI: 10.1021/jm3012728 *
MUDDUKRISHNAIAH K, VIJAYAKUMAR V, THAVAMANI BSAMUEL, SHILPA VP, RADHAKRISHNAN N, ABBAS HEBAS: "Synthesis, characterization, and In vitro antibacterial activity and molecular docking studies of N4, N4'-dibutyl-3,3'-dinitro-[1,1'-Biphenyl]-4,4'-diamine", BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL, vol. 4, no. 4, 1 January 2020 (2020-01-01), pages 318 - 322, XP055957778, ISSN: 2588-9834, DOI: 10.4103/bbrj.bbrj_52_20 *
PAULO R. RIBEIRO; CALINE G. FERRAZ; MARIA L.S. GUEDES; DIRCEU MARTINS; FREDERICO G. CRUZ;: "A new biphenyl and antimicrobial activity of extracts and compounds from", FITOTERAPIA, vol. 82, no. 8, IT , pages 1237 - 1240, XP028322588, ISSN: 0367-326X, DOI: 10.1016/j.fitote.2011.08.012 *
See also references of EP4289272A4 *

Also Published As

Publication number Publication date
EP4289272A4 (en) 2024-07-17
CN116847735A (zh) 2023-10-03
JP2024505573A (ja) 2024-02-06
KR20220111676A (ko) 2022-08-09
US20240148670A1 (en) 2024-05-09
EP4289272A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
AU715654B2 (en) Efflux pump inhibitors
JPH10513361A (ja) 抗菌剤の増強剤
US20210024580A1 (en) Novel Anti-Infective Compound
Patel et al. Synthetic ionophores as non-resistant antibiotic adjuvants
Kesharwani et al. Detection of β-lactamase and antibiotic susceptibility of clinical isolates of Staphylococcus aureus
WO2022169243A1 (ko) 바이페닐 유도체 화합물을 유효성분으로 함유하는 항균 보조제 및 이의 용도
Wang et al. Dimeric γ-AApeptides with potent and selective antibacterial activity
DK2714034T3 (en) COMPOSITIONS INCLUDING CEFEPIM AND TAZOBACTAM
Mitsuhashi Comparative antibacterial activity of new quinolone-carboxylic acid derivatives
Mitsuyama et al. Characteristics of quinolone-induced small colony variants in Staphylococcus aureus.
Maple et al. The in-vitro susceptibilities of toxigenic strains of Corynebacterium diphtheriae isolated in northwestern Russia and surrounding areas to ten antibiotics
Drlica et al. Fluoroquinolone resistance
ITO et al. Inhibitory activity on DNA gyrase and intracellular accumulation of quinolones: structure-activity relationship of Q-35 analogs
Abdelmassih et al. Repurposing fusidic acid as an antimicrobial against enterococci with a low probability of resistance development
Sanderson et al. Anaerobic organisms in postoperative wounds.
Eleftherianos Novel antibiotic compounds produced by the insect pathogenic bacterium Photorhabdus
Iwao et al. In vitro and in vivo anti-Helicobacter pylori activity of Y-904, a new fluoroquinolone
Garcia et al. In vitro activity of WIN 49375 compared with those of other antibiotics in isolates from cancer patients
WO2018167506A1 (en) Antibacterial compounds
Guimaraes et al. The comparative in-vitro activity of norfloxacin, ciprofloxacin, enoxacin and nalidixic acid against 423 strains of Gram-negative rods and staphylococci isolated from infected hospitalised patients
WO2018160104A1 (ru) Композиция антимикробных препаратов для лечения инфекционных заболеваний людей и животных и способ её применения
US11752195B2 (en) Compositions and methods of use of synthetic peptides with Mycobacterium abscessus inhibitory activity
Al-Janabi Comparison of the disc diffusion assay with spectrophotometer technique for antibacterial activity of diclofenac sodium, indomethacin and mefenamic acid
US20240197823A1 (en) Cationic antimicrobial peptides and uses thereof
Christensen et al. Chlamydia trachomatis: in vitro susceptibility to antibiotics singly and in combination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546500

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18275475

Country of ref document: US

Ref document number: 202280012998.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749992

Country of ref document: EP

Effective date: 20230904