WO2022169072A1 - Element comprising diffusion prevention structure and junction layer formed via electroplating, and method for manufacturing same - Google Patents

Element comprising diffusion prevention structure and junction layer formed via electroplating, and method for manufacturing same Download PDF

Info

Publication number
WO2022169072A1
WO2022169072A1 PCT/KR2021/016054 KR2021016054W WO2022169072A1 WO 2022169072 A1 WO2022169072 A1 WO 2022169072A1 KR 2021016054 W KR2021016054 W KR 2021016054W WO 2022169072 A1 WO2022169072 A1 WO 2022169072A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermoelectric
medium temperature
pbte
diffusion barrier
Prior art date
Application number
PCT/KR2021/016054
Other languages
French (fr)
Korean (ko)
Inventor
김세일
나종주
이주열
이주영
좌용호
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2022169072A1 publication Critical patent/WO2022169072A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a device including a bonding layer formed by an electroplating method and a diffusion preventing structure, and a method for manufacturing the same. More specifically, the present invention relates to a device including a bonding layer and a diffusion prevention structure formed by an electroplating method having excellent bonding performance, preventing peeling and cracking, and capable of mass-producing large-area at low cost, and a method for manufacturing the same.
  • Ceramics have greater strength at high temperatures and lower thermal conductivity and thermal expansion coefficient than metals. application is limited.
  • thermoelectric power generation it is a field that has been actively developed until recently in response to the rapid development of thermoelectric materials and the demand for recovery of a vast amount of waste heat resources wasted.
  • the transportation field about 40% of energy is wasted as waste heat, and in order to recover it, increase fuel efficiency and reduce carbon dioxide generation, the development of a medium temperature thermoelectric power module is inevitable.
  • thermoelectric module At the junction interface between the heterogeneous junction thermoelectric material and the metal layer, various diffusion phenomena occur near the operating temperature of the thermoelectric module for medium temperature of 400 to 600°C. Such diffusion causes a secondary growth in the thickness of the diffusion layer, resulting in a serious long-term reliability problem in that the power generation output is reduced due to a decrease in the proportion of thermoelectric materials in the thermoelectric module. In addition to the module output decrease, when the thermal expansion coefficient of the generated diffusion layer has a large gap with the thermoelectric material and electrode forming the original interface, cracks occur on the bonding surface, which causes serious problems.
  • the currently mainly used method for manufacturing a diffusion barrier layer (metallization layer) for a medium temperature thermoelectric element is to raise a powder, foil, or plate of a material to be used as a diffusion barrier layer on top of the medium temperature thermoelectric material powder, and discharge plasma sintering ( Intermetallic compound (IMC) is formed by sintering by Spark Plasma Sintering (SPS) method.
  • IMC Intermetallic compound
  • SPS Spark Plasma Sintering
  • Another object of the present invention is to provide a medium temperature thermoelectric device that prevents peeling and cracks and can be mass-produced over a large area at low cost.
  • Another object of the present invention is to provide a method for manufacturing a medium-temperature thermoelectric element capable of mass-producing a large-area medium-temperature thermoelectric element at low cost through a simple process.
  • a difference between the coefficient of thermal expansion of the material constituting the thermoelectric material part and the coefficient of thermal expansion of the first material may be 5 x 10 -6 K -1 or less.
  • the material constituting the thermoelectric material part may be PbTe, the first material may be Te, and the second material may be Ni.
  • the material constituting the thermoelectric material part may be PbTe
  • the first material may be Sn
  • the second material may be Cu
  • the material constituting the thermoelectric material part may be PbTe, the first material may be Co, and the second material may be Fe.
  • the diffusion barrier layer may have a thickness of 0.5 to 10 ⁇ m.
  • the intermetallic compound of the first layer may be formed by heat treatment after plating a second material on the plating layer of the first material formed on the substrate part.
  • the material constituting the thermoelectric material part is prevented from being diffused into the diffusion barrier layer by the first material plating layer, so that the thermoelectric material part is more uniform than when the diffusion barrier layer formed by the SPS (Spark Plasma Sintering) process is formed. It can have one composition.
  • the second layer may be formed on an upper surface and both sides of the first layer.
  • thermoelectric material part of a medium temperature thermoelectric element preparing a thermoelectric material part of a medium temperature thermoelectric element; and ii) forming a diffusion barrier layer formed of a first layer and a second layer on the thermoelectric material part, wherein step ii) includes ii-1) electroplating a first material on the thermoelectric material part forming a first material plating layer; ii-2) forming a second material plating layer by electroplating a second material forming an intermetallic compound with the first material on the first material plating layer; and ii-3) a first layer comprising an intermetallic compound of a first material and a second material by heat treatment and in contact with the thermoelectric material part; and forming a second layer made of only a second material and formed on the first layer.
  • a difference between a coefficient of thermal expansion of a material constituting the thermoelectric material part and a coefficient of thermal expansion of the first material may be 5 x 10 -6 K -1 or less.
  • the material constituting the thermoelectric material part may be PbTe, the first material may be Te, and the second material may be Ni.
  • the material constituting the thermoelectric material part may be PbTe, the first material may be Sn, and the second material may be Cu.
  • the material constituting the thermoelectric material part may be PbTe, the first material may be Co, and the second material may be Fe.
  • thermoelectric material part in the medium temperature thermoelectric device manufacturing method, is prevented from being diffused into the diffusion barrier layer by the first material plating layer in step ii), formed by a spark plasma sintering (SPS) process
  • SPS spark plasma sintering
  • the thermoelectric material part may have a more uniform composition than in the case where the diffusion barrier layer is formed.
  • thermoelectric device a method for manufacturing a medium temperature thermoelectric device, the method comprising: electroplating a second material on an upper surface of the first material plating layer; and electroplating the second material so that the second layer is formed on the upper surface and both sides of the first layer.
  • the present application may provide a device having an excellent bonding performance and a diffusion preventing structure.
  • the present application includes a diffusion prevention layer composed of an electroplating layer having a similar thermal expansion coefficient to that of the thermoelectric material portion, thereby preventing peeling and cracking and providing a medium temperature thermoelectric device having a uniform and thin diffusion prevention layer.
  • the present application may provide a medium temperature thermoelectric device manufacturing method capable of mass-producing a large area medium temperature thermoelectric device at low cost through a simple process.
  • thermoelectric element 1A and 1B are schematic views showing the structure of a thermoelectric element.
  • FIG. 2 is a schematic diagram schematically showing a method of forming a diffusion barrier layer for a medium temperature thermoelectric element by an electroplating method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram schematically showing a method of forming a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device by an electroplating method according to an embodiment of the present invention.
  • 4A is a graph showing the coefficient of thermal expansion (CTE) of PbTe.
  • 4B is a graph showing the coefficient of thermal expansion (CTE) of nickel.
  • FIG. 5 is a photograph showing a phenomenon in which a nickel layer is peeled off when a nickel layer is formed as a diffusion barrier layer by an electroplating process and then heat treated.
  • FIG. 6 is a graph showing X-ray diffraction patterns of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric element formed by an electroplating method according to an embodiment of the present invention.
  • FIG. 7 is a photograph showing the results of an adhesion test of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device formed by an electroplating method according to an embodiment of the present invention.
  • the first material and the second material may be all materials and metals except for metals and plastics, but are not limited thereto, but the first material may be a ceramic, and the second material may be a metal.
  • the bonding layer and the diffusion preventing structure are composed of an intermetallic compound of the first material material and the second material material, and a first layer in contact with the second material and a material forming an intermetallic compound with the first material, Including the second layer formed on the first layer, the first material and the second material composed of two materials having different physical and chemical properties have a structure in which a transition region, that is, an interface product, is formed that can provide compatibility between the first material and the second material.
  • the device may be a thermoelectric device in which a diffusion barrier layer serving as a bonding material is formed while preventing material movement between the thermoelectric material and the electrode.
  • the device structure may be applied to a power semiconductor device. That is, it can be applied to the manufacture of a solder material (eg Cu-Sn) bonding to DBC (direct bond copper, Cu/Al 2 O 3 /Cu) of a power semiconductor device.
  • the device structure can be applied to sensors, microelectronic component circuits, MEMS, high-efficiency heat exchangers, and electronic product packaging fields.
  • thermoelectric element 1A and 1B are schematic views showing the structure of a thermoelectric element.
  • the medium temperature thermoelectric element largely includes a substrate part 100 , a thermoelectric material part 200 , and a diffusion barrier layer 300 .
  • the thermoelectric material part 200 is a part that generates electricity by receiving heat, and may include two or more thermoelectric materials.
  • the type of the thermoelectric material part 200 is not particularly limited as long as it can generate electricity by receiving heat.
  • it may be composed of PbTe.
  • the substrate part 100 is a part for arranging and fixing the thermoelectric material part 200 . As shown in FIG. 1A , it may include a ceramic substrate 110 , a Cu electrode 120 , and a blazing filter 130 .
  • the blazing filter 130 is a layer for bonding the Cu electrode 120 and the diffusion barrier layer 300 .
  • the diffusion barrier layer 300 is a metallization layer for bonding both between the thermoelectric material part 200 and the substrate part 100, and the material of the thermoelectric material 200 and the material of the substrate part 100 is They diffuse to each other and serve to prevent degradation.
  • FIG. 2 is a schematic diagram schematically showing a method of forming a diffusion barrier layer for a medium temperature thermoelectric element by an electroplating method according to an embodiment of the present invention.
  • 3 is a schematic diagram schematically showing a method of forming a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device by an electroplating method according to an embodiment of the present invention.
  • the diffusion barrier layer 300 includes a first layer 330 made of an intermetallic compound of a first material and a second material and in contact with the thermoelectric material unit 200 ; and a second layer (322) made of a second material forming an intermetallic compound with the first material and formed on the first layer.
  • the first layer 330 and the second layer 322 in contact with the thermoelectric material part 200 are made of different materials to suppress cracks and peeling compared to the diffusion prevention layer 300 formed as a single layer. can do.
  • the intermetallic compound of the first layer 330 may be formed by heat treatment after forming the second material plating layer 320 on the first material plating layer 310 formed on the thermoelectric material part 200 .
  • thermoelectric material unit 200 may have a uniform composition.
  • the difference between the coefficient of thermal expansion (CTE) of the material constituting the thermoelectric material part 200 and the coefficient of thermal expansion of the first material is 5 x 10 -6 K -1 or less crack Or it may be suitable for suppressing the occurrence of peeling. If the coefficient of thermal expansion of the diffusion barrier layer 300 deposited on the thermoelectric material part 200 for medium temperature differs greatly from the coefficient of thermal expansion of the thermoelectric material part 200, peeling or cracking may occur at the device driving temperature (500 to 600 °C). high portential. Therefore, in the present invention, the thermoelectric material unit ( By forming the first layer 330 in contact with the 200), it is possible to suppress the occurrence of cracks or peeling.
  • CTE coefficient of thermal expansion
  • the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Te, and the second material may be Ni.
  • the thermal expansion coefficient of the PbTe is constant from 300K (26.85° C.) to about 20 ⁇ 10 ⁇ 6 K ⁇ 1 (see FIG. 4a ).
  • the thermal expansion coefficient of nickel is about 13 x 10 -6 K -1 at room temperature, and about 16-17 x 10 -6 K -1 at 400 to 600 °C, so the difference in thermal expansion coefficient with PbTe is 4 x 10 -6 more than K -1 .
  • There may be a problem of peeling during heat treatment at a driving temperature (600° C.) see FIG. 5 ). Accordingly, in the present application, the peeling or cracking problem can be solved by forming the plating layer 310 of the first material with Te having a thermal expansion coefficient of about 19 x 10 -6 K -1 similar to PbTe.
  • the material constituting the thermoelectric material part 200 may be PbTe
  • the first material may be Sn
  • the second material may be Cu.
  • Sn-Cu must maintain a solid phase above the PbTe driving temperature of 600 °C (medium temperature region). In order to maintain the solid phase at 600°C or higher through the phase diagram, it may be suitable for Cu to have a range of about 75 ⁇ 90% in the Sn-Cu alloy.
  • the Sn-Cu alloy is electroplated at once and deposited on PbTe, the electrode is highly likely to fall off due to the difference in the coefficient of thermal expansion between the two.
  • the material constituting the thermoelectric material part 200 may be PbTe
  • the first material may be Co
  • the second material may be Fe.
  • Co (cobalt; 13 x 10 -6 /°C) and Fe (iron; 11.7 x 10 -6 /°C) are sequentially formed by electroplating as a first material plating layer 310 and a second material plating layer 320, followed by heat treatment
  • the diffusion barrier layer may have a thickness of 0.5 to 30 ⁇ m. Even though the diffusion barrier layer of the present application is thin, the material constituting the thermoelectric material part 200 is prevented from being diffused into the diffusion barrier layer 300 by the first material plating layer 310 of the first material as described above. Material properties can be improved.
  • Ni powder is coated on the PbTe powder, which is a thermoelectric material, to form an electrode layer, and Ni x Te y is formed as Te and Ni powder of the thermoelectric material are diffused through the heat treatment process.
  • thermoelectric material since Te can escape from PbTe, PbTe rich in Pb is formed, rather than having a PbTe composition, on the upper side, which may adversely affect the properties of the thermoelectric material.
  • PbTe rich in Pb is formed, rather than having a PbTe composition, on the upper side, which may adversely affect the properties of the thermoelectric material.
  • the present invention by depositing a Te plating layer on the bulk PbTe first, it is possible to prevent Te from escaping from the PbTe, thereby improving the properties of the thermoelectric material.
  • the second layer 322 may be formed on the upper surface and both sides of the first layer 330 . According to the above configuration, the bonding strength between the diffusion barrier layer 300 and the thermoelectric material unit 200 can be further improved.
  • a method for manufacturing a medium temperature thermoelectric element includes the steps of: i) preparing a thermoelectric material unit 200 of the medium temperature thermoelectric element; and ii) forming a diffusion barrier layer 300 formed of a first layer 330 and a second layer 322 on the thermoelectric material unit 200, wherein step ii) is ii-1) forming a first material plating layer 310 by electroplating a first material on the thermoelectric material unit 200; ii-2) forming a second material plating layer 320 by electroplating a second material forming an intermetallic compound with the first material on the first material plating layer 310; and ii-3) a first layer 330 made of an intermetallic compound of a first material and a second material by heat treatment and in contact with the thermoelectric material part 200 ; and forming a second layer 322 made of only a second material and formed on the first layer.
  • the present invention is a second method capable of forming an intermetallic compound by first plating a material used as a thermoelectric material (eg, PbTe) and a material having a small difference in thermal expansion coefficient and reacting with the first plating material during heat treatment It is characterized in that the process of manufacturing the diffusion barrier layer by plating the material.
  • a material used as a thermoelectric material eg, PbTe
  • Step i) is a step of preparing the thermoelectric material part 200 of the medium temperature thermoelectric element.
  • the type of the constituent material of the thermoelectric material unit 200 is not particularly limited as long as it receives heat to generate electricity.
  • the thermoelectric material part 200 may be made of PbTe.
  • the difference between the thermal expansion coefficient of the material constituting the thermoelectric material part 200 and the thermal expansion coefficient of the first material may be 5 x 10 -6 K -1 or less, but is not limited thereto. According to the above configuration, it may be suitable for suppressing the occurrence of cracks or peeling of the diffusion barrier layer 300 .
  • the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Te, and the second material may be Ni.
  • the thermal expansion coefficient of the PbTe is constant from 300K (26.85° C.) to about 20 ⁇ 10 ⁇ 6 K ⁇ 1 (see FIG. 4a ).
  • the thermal expansion coefficient of nickel is about 13 x 10 -6 K -1 at room temperature, and about 16-17 x 10 -6 K -1 at 400 to 600 °C, so the difference in thermal expansion coefficient with PbTe is 4 x 10 -6 K -1 or more.
  • There may be a problem of peeling during heat treatment at a driving temperature (600° C.) see FIG. 5 ). Accordingly, in the present application, the peeling or cracking problem can be solved by forming the plating layer 310 of the first material with Te having a thermal expansion coefficient of about 19 x 10 -6 K -1 similar to PbTe.
  • the material constituting the thermoelectric material part 200 may be PbTe
  • the first material may be Sn
  • the second material may be Cu.
  • Sn-Cu must maintain a solid phase above the PbTe driving temperature of 600 °C (medium temperature region). In order to maintain the solid phase at 600°C or higher through the phase diagram, it may be suitable for Cu to have a range of about 75 ⁇ 90% in the Sn-Cu alloy.
  • the Sn-Cu alloy is electroplated at once and deposited on PbTe, the electrode is highly likely to fall off due to the difference in the coefficient of thermal expansion between the two.
  • the material constituting the thermoelectric material part 200 may be PbTe
  • the first material may be Co
  • the second material may be Fe.
  • Co (cobalt; 13 x 10 -6 /°C) and Fe (iron; 11.7 x 10 -6 /°C) are sequentially formed as a first material plating layer 310 and a second material plating layer 320 by electroplating, followed by heat treatment
  • thermoelectric material part 200 is prevented from being diffused into the diffusion barrier layer 300 by the first material plating layer 310, so that SPS (Spark Plasma Sintering) ), since the thermoelectric material part 200 may have a more uniform composition than in the case of forming the diffusion barrier layer formed by the above process, the characteristics of the thermoelectric material may be improved. More specifically, in the case of the conventional SPS process, Ni powder is applied on the PbTe powder to form an electrode layer, and Ni x Te y is formed while Te and Ni powder of the thermoelectric material material diffuse through the heat treatment process.
  • SPS Spark Plasma Sintering
  • the method includes: electroplating to form a second material plating layer 320 with a second material on the upper surface of the first material plating layer 310 ; and electroplating the second material thin film 320 ′ such that the second layer 322 is formed on the upper surface and both sides of the first layer 330 .
  • it may be suitable for suppressing the occurrence of cracks or peeling of the diffusion barrier layer 300 .
  • the thickness may be about 0.5 to 10 ⁇ m.
  • the SPS process since the size of the powder used is large, it is difficult to form a thin diffusion barrier layer as in the electroplating method.
  • the heat treatment temperature must be controlled along with the pressure control. If more pressure is applied to reduce the thickness, cracks or fractures may occur in the specimen, and if more temperature is applied, the desired phase may not come out. There are disadvantages. Conversely, if less pressure is applied, a void may be formed between the electrode and the substrate, and if the temperature is reduced, a desired phase may not be obtained or sintering may not be performed properly.
  • thermoelectric device of the present invention a small amount of material can be used because the diffusion barrier layer is formed using electroplating, and since a precursor of the first material and the second material is used, even if a material with low purity is used There is no influence on the characteristics of the thermoelectric element.
  • a precursor used in electroplating even if the purity of the metal salt or metal oxide is low, in reality, only the desired metallic material is deposited on the substrate at the optimized potential during the plating process. Even after that, it does not affect the electrode characteristics.
  • the amount of electrode material used for synthesizing the electrode is considerably smaller than that of the SPS process when electroplating is used, there is a significant advantage in terms of cost.
  • thermoelectric material part of PbTe was formed on the thermoelectric material part of PbTe by electroplating under the following conditions.
  • Ni thin film was formed on the Ni plating layer by electroplating on the exposed upper surface of the thermoelectric material part and on both sides of the Te layer.
  • the temperature was raised to 350°C at 10°C/min temperature rising condition, and then a heat treatment process was performed in which the temperature was maintained at 350°C for 1 hour.
  • the heat treatment process was performed in an N 2 atmosphere.
  • the diffusion barrier layer including the first layer Ni 3 Te 2 and the second layer Ni layer is formed on the thermoelectric material part of the thermoelectric element by the heat treatment.
  • FIG. 4A is a graph showing the coefficient of thermal expansion (CTE) of PbTe
  • FIG. 4B is a graph showing the coefficient of thermal expansion (CTE) of nickel.
  • the graph in Fig. 4a shows the CTE of bulk materials of PbTe and ZnSe.
  • the dotted line represents the developed value in the simulation.
  • the graph of FIG. 4b shows the CTE of Ni-YSZ in the range of 0 to 1000° C., and in the case of the nickel CTE, about 16 to 17 x 10 -6 K -1 in the range of 400 to 600° C.
  • 5 is a photograph showing a phenomenon in which a nickel layer is peeled off when a nickel layer is formed as a diffusion barrier layer by an electroplating process and then heat treated.
  • the thermal expansion coefficient of the PbTe is constant from 300K to about 20 x 10 -6 K -1 .
  • the thermal expansion coefficient of nickel is about 13 x 10 -6 K -1 at room temperature and about 16-17 x 10 -6 K -1 at 400 to 600 °C, so the difference in thermal expansion coefficient with PbTe It can be seen that is about 4 x 10 -6 K -1 .
  • FIG. 5 when a Ni layer was formed on a PbTe thermoelectric material using an electroplating process due to the difference in the coefficient of thermal expansion as described above, peeling occurred during heat treatment at a driving temperature (600° C.).
  • FIG. 6 is a graph showing X-ray diffraction patterns of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric element formed by an electroplating method according to an embodiment of the present invention. As shown in the graph, it can be confirmed that the diffusion barrier layer including the first layer Ni 3 Te 2 and the second layer Ni layer is formed on the thermoelectric material part of the thermoelectric element according to the present invention.
  • thermoelectric material part and the diffusion prevention layer of the thermoelectric element according to the present invention have excellent bonding strength.
  • the diffusion barrier layer described in the present invention is to produce an interfacial diffusion prevention IMC for a medium temperature thermoelectric material. More specifically, tellurium and nickel layers are sequentially deposited at room temperature by an electrodeposition method, and a low temperature heat treatment process ( 350°C) to form an IMC (Ni x Te y ) phase between Ni and Te.
  • the diffusion barrier layer can be manufactured at low cost and mass-produced in a large area. There is a big advantage that In the case of the diffusion barrier layer synthesized in this way, it was confirmed that peel-off from the thermoelectric material did not occur when heat treatment was performed at 600° C., which is the driving temperature of the thermoelectric element for medium temperature.
  • thermoelectric material If the coefficient of thermal expansion (CTE) of the diffusion barrier layer deposited on the medium temperature thermoelectric material is different from that of the thermoelectric material, there is a high possibility of peeling or cracking at the device operating temperature (500 ⁇ 600°C).
  • a stable metallization layer Ni/Ni 3 Te 2 ) was formed in a simple way by depositing Te with a thermal expansion coefficient almost similar to that of PbTe using electroplating first, then plating a Ni layer thereon and heat-treating it at low temperature. , the formed metallization layer did not peel or crack even at the thermoelectric element driving temperature.
  • the diffusion barrier layer and its manufacturing method described in the present invention is a technology for synthesizing a diffusion barrier layer for a medium temperature thermoelectric material based on plating for the first time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to an element comprising a diffusion prevention structure and a junction layer formed via electroplating, and a method for manufacturing same. More specifically, the present invention relates to an element comprising a diffusion prevention structure and a junction layer formed via electroplating, and a method for manufacturing same, which have an excellent junction performance, prevent peeling and cracking, and enable large-scale mass production at a low cost.

Description

전기도금법으로 형성된 접합층 및 확산방지 구조를 포함하는 소자 및 이의 제조방법Device comprising a bonding layer formed by an electroplating method and a diffusion preventing structure and method for manufacturing the same
본 발명은 전기도금법으로 형성된 접합층 및 확산방지 구조를 포함하는 소자 및 이의 제조방법에 관한 것이다. 더욱 상세하게, 본 발명은 접합성능이 우수하며 박리 및 크랙이 방지되며 대면적으로 대량생산이 저비용으로 가능한 전기도금법으로 형성된 접합층 및 확산방지 구조를 포함하는 소자 및 이의 제조방법에 관한 것이다.The present invention relates to a device including a bonding layer formed by an electroplating method and a diffusion preventing structure, and a method for manufacturing the same. More specifically, the present invention relates to a device including a bonding layer and a diffusion prevention structure formed by an electroplating method having excellent bonding performance, preventing peeling and cracking, and capable of mass-producing large-area at low cost, and a method for manufacturing the same.
세라믹은 금속에 비해 고온에서 더 큰 강도를 갖고 더 낮은 열전도도 및 열팽창 계수를 가지지만, 세라믹이 가진 낮은 전기전도도와 취성 파괴특성에 따른 낮은 신뢰성 및 높은 제조단가로 전기전자 산업과 고온에서의 구조적 적용에 제한을 받고 있다. Ceramics have greater strength at high temperatures and lower thermal conductivity and thermal expansion coefficient than metals. application is limited.
따라서 가공성과 신뢰성이 낮은 세라믹의 성능 개선과 응용범위의 확대를 위해서는 금속과 함께 조합하여 사용해야 한다. 그러나 금속과 세라믹 사이의 접합문제와 고온에서의 성분물질들의 확산으로 인한 성능저하는 이를 활용하는데 큰 문제점으로 작용하고 있다. 이를 위해 접합만 우수하거나, 접합은 고려하지 않은 확산방지만 가능한 층을 제작하는 것이 아닌 접합성능이 우수하면서도 확산방지 구조를 가지는 소자를 제작하는 것이 중요하다.Therefore, in order to improve the performance of ceramics with low machinability and reliability and to expand the range of applications, they should be used in combination with metals. However, the bonding problem between the metal and the ceramic and the performance degradation due to the diffusion of the component materials at a high temperature act as a major problem in using the same. For this purpose, it is important to fabricate a device having a diffusion prevention structure while having excellent bonding performance, rather than fabricating a layer capable of only good bonding or only diffusion prevention that does not consider bonding.
한편, 중온 열전발전의 경우 열전소재의 급격한 발전과 더불어 버려지는 방대한 폐열자원의 회수 요구에 맞추어 최근까지 활발히 개발되고 있는 분야이다. 특히 수송분야에서는 에너지의 40% 가량이 폐열(waste heat)로 버려지고 있는데, 이를 회수하여 연료의 효율을 높이고, 이산화탄소 발생을 줄이기 위해, 중온 열전발전 모듈의 개발은 필연적이다.Meanwhile, in the case of medium-temperature thermoelectric power generation, it is a field that has been actively developed until recently in response to the rapid development of thermoelectric materials and the demand for recovery of a vast amount of waste heat resources wasted. In particular, in the transportation field, about 40% of energy is wasted as waste heat, and in order to recover it, increase fuel efficiency and reduce carbon dioxide generation, the development of a medium temperature thermoelectric power module is inevitable.
이종 접합인 열전소재와 금속층 간의 접합계면에서는 중온용 열전모듈 동작온도인 400 ~ 600℃ 부근에서 다양한 확산(diffusion) 현상이 발생하게 된다. 이와 같은 확산은 2차적으로 확산층 두께의 성장을 나타내게 되고 결과적으로 열전모듈에서 열전소재가 차지하는 비율의 감소로 발전출력이 감소하게 되는 심각한 장기 신뢰성 문제를 야기한다. 이와 같은 모듈 출력저하 이외에도 생성되는 확산층의 열팽창 계수가 원래 계면을 형성하는 열전소재 및 전극과 격차가 크게 나는 경우 접합면에 크랙(crack)이 발생하게 되고 이는 심각한 문제를 발생시킨다.At the junction interface between the heterogeneous junction thermoelectric material and the metal layer, various diffusion phenomena occur near the operating temperature of the thermoelectric module for medium temperature of 400 to 600°C. Such diffusion causes a secondary growth in the thickness of the diffusion layer, resulting in a serious long-term reliability problem in that the power generation output is reduced due to a decrease in the proportion of thermoelectric materials in the thermoelectric module. In addition to the module output decrease, when the thermal expansion coefficient of the generated diffusion layer has a large gap with the thermoelectric material and electrode forming the original interface, cracks occur on the bonding surface, which causes serious problems.
현재 주로 사용되고 있는 중온 열전소자용 확산방지층(금속화층) 제조방법은 중온용 열전소재 분말 상부에 확산방지층으로 사용될 소재의 분말(powder), 포일(foil) 또는 플레이트(plate)를 올리고 방전 플라즈마 소결(Spark Plasma Sintering, SPS) 방식으로 소결하여 금속간화합물(Intermetallic compound, IMC)을 형성시키는 것이다.The currently mainly used method for manufacturing a diffusion barrier layer (metallization layer) for a medium temperature thermoelectric element is to raise a powder, foil, or plate of a material to be used as a diffusion barrier layer on top of the medium temperature thermoelectric material powder, and discharge plasma sintering ( Intermetallic compound (IMC) is formed by sintering by Spark Plasma Sintering (SPS) method.
상기 방법을 사용하게 되면 고온, 고압을 사용하는 SPS 공정 특성상 1) 공정 비용이 많이 들게 되고, 2) 대량 및 연속 공정이 어렵다는 큰 단점이 있다. 또한, 공정 시 많은 양의 확산방지층 재료가 들어가기 때문에 단가가 올라가 가격경쟁력이 떨어질 수 있다.When the above method is used, there are major disadvantages in that 1) the process cost is high, and 2) the mass and continuous process are difficult due to the characteristics of the SPS process using high temperature and high pressure. In addition, since a large amount of diffusion barrier layer material is used in the process, the unit price may increase and price competitiveness may decrease.
본 발명의 배경기술로는 대한민국 등록특허공보 제10-1983627호가 있다.As a background art of the present invention, there is Republic of Korea Patent Publication No. 10-1983627.
본 발명의 목적은 접합성능이 우수하면서도 확산방지 구조를 가지는 소자를 제공하는 것이다.It is an object of the present invention to provide a device having an excellent bonding performance and a diffusion preventing structure.
본 발명의 다른 목적은 박리 및 크랙이 방지되며 대면적으로 대량생산이 저비용으로 가능한 중온 열전소자를 제공하는 것이다.Another object of the present invention is to provide a medium temperature thermoelectric device that prevents peeling and cracks and can be mass-produced over a large area at low cost.
본 발명의 또 다른 목적은 단순한 공정으로 대면적의 중온 열전소자를 저비용으로 대량생산할 수 있는 중온 열전소자의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a medium-temperature thermoelectric element capable of mass-producing a large-area medium-temperature thermoelectric element at low cost through a simple process.
본 발명의 목적은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 상세한 설명의 기재로부터 명확하게 이해될 수 있을 것이다. The object of the present invention is not limited to the objects mentioned above, and other objects not mentioned will be clearly understood from the description of the detailed description.
일 측면에 따르면, 제1소재; 제2소재; 및 제1소재 및 제2소재 사이에 접합층 및 확산방지 구조;를 포함하고, 상기 접합층 및 확산방지 구조는, 상기 제1소재 물질과 제2소재 물질의 금속간화합물로 구성되고 상기 제2소재와 접하는 제1층; 및 상기 제1소재와 금속간화합물을 형성하는 물질로 구성되고 상기 제1층 상에 형성된 제2층;을 포함하는, 소자가 제공된다.According to one aspect, the first material; second material; and a bonding layer and a diffusion prevention structure between the first material and the second material, wherein the bonding layer and the diffusion prevention structure are composed of an intermetallic compound of the first material material and the second material material, and the second material a first layer in contact with the material; and a second layer made of a material forming an intermetallic compound with the first material and formed on the first layer.
다른 측면에 따르면, 기판부; 열전소재부; 및 상기 기판부와 열전소재부 사이에 형성된 확산방지층;을 포함하고, 상기 확산방지층은, 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부와 접하는 제1층; 및 상기 제1물질과 금속간화합물을 형성하는 제2물질로 구성되고 상기 제1층 상에 형성된 제2층;을 포함하는, 중온 열전소자가 제공된다.According to another aspect, the substrate unit; thermoelectric material unit; and a diffusion barrier layer formed between the substrate unit and the thermoelectric material unit, wherein the diffusion barrier layer includes: a first layer made of an intermetallic compound of a first material and a second material and in contact with the thermoelectric material unit; and a second layer formed of the first material and a second material forming an intermetallic compound and formed on the first layer;
일 실시예에 따르면, 상기 열전소재부를 구성하는 물질의 열팽창계수와 상기 제1물질의 열팽창계수의 차이가 5 x 10-6K-1 이하일 수 있다.According to an embodiment, a difference between the coefficient of thermal expansion of the material constituting the thermoelectric material part and the coefficient of thermal expansion of the first material may be 5 x 10 -6 K -1 or less.
일 실시예에 따르면, 상기 열전소재부를 구성하는 물질은 PbTe이고, 상기 제1물질은 Te이고, 상기 제2물질은 Ni일 수 있다.According to an embodiment, the material constituting the thermoelectric material part may be PbTe, the first material may be Te, and the second material may be Ni.
일 실시예에 따르면, 상기 열전소재부를 구성하는 물질은 PbTe이고, 상기 제1물질은 Sn이고, 상기 제2물질은 Cu일 수 있다.According to an embodiment, the material constituting the thermoelectric material part may be PbTe, the first material may be Sn, and the second material may be Cu.
일 실시예에 따르면, 상기 열전소재부를 구성하는 물질은 PbTe이고, 상기 제1물질은 Co이고, 상기 제2물질은 Fe일 수 있다.According to an embodiment, the material constituting the thermoelectric material part may be PbTe, the first material may be Co, and the second material may be Fe.
일 실시예에 따르면, 상기 확산방지층은 두께가 0.5 내지 10 ㎛일 수 있다.According to an embodiment, the diffusion barrier layer may have a thickness of 0.5 to 10 μm.
일 실시예에 따르면, 상기 제1층의 금속간화합물은 상기 기판부 상에 형성된 제1물질 도금층 상에 제2물질을 도금한 후 열처리에 의해 형성된 것일 수 있다.According to an embodiment, the intermetallic compound of the first layer may be formed by heat treatment after plating a second material on the plating layer of the first material formed on the substrate part.
일 실시예에 따르면, 상기 제1물질 도금층에 의해 상기 열전소재부를 구성하는 물질이 확산방지층으로 확산되는 것이 방지되어, SPS(Spark Plasma Sintering) 공정으로 형성된 확산방지층을 형성한 경우보다 열전소재부가 균일한 조성을 가질 수 있다.According to an embodiment, the material constituting the thermoelectric material part is prevented from being diffused into the diffusion barrier layer by the first material plating layer, so that the thermoelectric material part is more uniform than when the diffusion barrier layer formed by the SPS (Spark Plasma Sintering) process is formed. It can have one composition.
일 실시예에 따르면, 상기 제2층은 제1층의 상면 및 양측면 상에 형성될 수 있다.According to an embodiment, the second layer may be formed on an upper surface and both sides of the first layer.
또 다른 측면에 따르면, i) 중온 열전소자의 열전소재부를 준비하는 단계; 및 ii) 상기 열전소재부 상에 제1층 및 제2층으로 형성된 확산방지층을 형성하는 단계;를 포함하고 상기 ii) 단계는 ii-1) 상기 열전소재부 상에 제1물질을 전기도금하여 제1물질 도금층을 형성하는 단계; ii-2) 상기 제1물질 도금층 상에 상기 제1물질과 금속간화합물을 형성하는 제2물질을 전기도금하여 제2물질 도금층을 형성하는 단계; 및 ii-3) 열처리하여 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부와 접하는 제1층; 및 제2물질로만 구성되고 상기 제1층 상에 형성된 제2층;을 형성하는 단계;를 포함하는, 중온 열전소자 제조방법이 제공된다.According to another aspect, i) preparing a thermoelectric material part of a medium temperature thermoelectric element; and ii) forming a diffusion barrier layer formed of a first layer and a second layer on the thermoelectric material part, wherein step ii) includes ii-1) electroplating a first material on the thermoelectric material part forming a first material plating layer; ii-2) forming a second material plating layer by electroplating a second material forming an intermetallic compound with the first material on the first material plating layer; and ii-3) a first layer comprising an intermetallic compound of a first material and a second material by heat treatment and in contact with the thermoelectric material part; and forming a second layer made of only a second material and formed on the first layer.
일 실시예에 따르면, 중온 열전소자 제조방법에 있어서, 상기 열전소재부를 구성하는 물질의 열팽창계수와 상기 제1물질의 열팽창계수의 차이가 5 x 10-6K-1 이하일 수 있다.According to an embodiment, in the method of manufacturing a medium temperature thermoelectric element, a difference between a coefficient of thermal expansion of a material constituting the thermoelectric material part and a coefficient of thermal expansion of the first material may be 5 x 10 -6 K -1 or less.
일 실시예에 따르면, 중온 열전소자 제조방법에 있어서, 상기 열전소재부를 구성하는 물질은 PbTe이고, 상기 제1물질은 Te이고, 상기 제2물질은 Ni일 수 있다.According to an embodiment, in the method for manufacturing a medium temperature thermoelectric element, the material constituting the thermoelectric material part may be PbTe, the first material may be Te, and the second material may be Ni.
일 실시예에 따르면, 중온 열전소자 제조방법에 있어서, 상기 열전소재부를 구성하는 물질은 PbTe이고, 상기 제1물질은 Sn이고, 상기 제2물질은 Cu일 수 있다.According to an embodiment, in the method of manufacturing a medium temperature thermoelectric element, the material constituting the thermoelectric material part may be PbTe, the first material may be Sn, and the second material may be Cu.
일 실시예에 따르면, 중온 열전소자 제조방법에 있어서, 상기 열전소재부를 구성하는 물질은 PbTe이고, 상기 제1물질은 Co이고, 상기 제2물질은 Fe일 수 있다.According to an embodiment, in the method of manufacturing a medium temperature thermoelectric element, the material constituting the thermoelectric material part may be PbTe, the first material may be Co, and the second material may be Fe.
일 실시예에 따르면, 중온 열전소자 제조방법에 있어서, 단계 ii)에서 제1물질 도금층에 의해 상기 열전소재부를 구성하는 물질이 확산방지층으로 확산되는 것이 방지되어, SPS(Spark Plasma Sintering) 공정으로 형성된 확산방지층을 형성한 경우보다 열전소재부가 균일한 조성을 가질 수 있다.According to one embodiment, in the medium temperature thermoelectric device manufacturing method, the material constituting the thermoelectric material part is prevented from being diffused into the diffusion barrier layer by the first material plating layer in step ii), formed by a spark plasma sintering (SPS) process The thermoelectric material part may have a more uniform composition than in the case where the diffusion barrier layer is formed.
일 실시예에 따르면, 중온 열전소자 제조방법에 있어서, 상기 제1물질 도금층 상면에 제2물질을 전기도금하는 단계; 및 제2층이 제1층의 상면 및 양측면 상에 형성되는 되도록, 제2물질을 전기도금하는 단계를 포함할 수 있다.According to one embodiment, there is provided a method for manufacturing a medium temperature thermoelectric device, the method comprising: electroplating a second material on an upper surface of the first material plating layer; and electroplating the second material so that the second layer is formed on the upper surface and both sides of the first layer.
일 실시예에 따르면, 본원은 접합성능이 우수하면서도 확산방지 구조를 가지는 소자를 제공할 수 있다.According to one embodiment, the present application may provide a device having an excellent bonding performance and a diffusion preventing structure.
일 실시예에 따르면, 본원은 열전소재부와 열팽창계수가 유사한 전기도금층으로 구성되는 확산방지층을 포함하여 박리 및 크랙이 방지되며 균일하고 얇은 두께의 확산방지층을 갖는 중온 열전소자를 제공할 수 있다.According to one embodiment, the present application includes a diffusion prevention layer composed of an electroplating layer having a similar thermal expansion coefficient to that of the thermoelectric material portion, thereby preventing peeling and cracking and providing a medium temperature thermoelectric device having a uniform and thin diffusion prevention layer.
일 실시예에 따르면, 본원은 단순한 공정으로 대면적의 중온 열전소자를 저비용으로 대량생산할 수 있는 중온 열전소자 제조방법을 제공할 수 있다.According to one embodiment, the present application may provide a medium temperature thermoelectric device manufacturing method capable of mass-producing a large area medium temperature thermoelectric device at low cost through a simple process.
도 1a 및 도 1b는 열전소자의 구조를 나타낸 모식도이다.1A and 1B are schematic views showing the structure of a thermoelectric element.
도 2는 본 발명의 일 실시예에 의해 중온 열전소자용 확산방지층을 전기도금법으로 형성하는 방법을 개략적으로 나타낸 모식도이다.2 is a schematic diagram schematically showing a method of forming a diffusion barrier layer for a medium temperature thermoelectric element by an electroplating method according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 의해 중온 열전소자용 NixTey 확산방지층을 전기도금법으로 형성하는 방법을 개략적으로 나타낸 모식도이다.3 is a schematic diagram schematically showing a method of forming a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device by an electroplating method according to an embodiment of the present invention.
도 4a는 PbTe의 열팽창계수(coefficient of thermal expansion, CTE)를 나타낸 그래프이다.4A is a graph showing the coefficient of thermal expansion (CTE) of PbTe.
도 4b는 니켈의 열팽창계수(coefficient of thermal expansion, CTE)를 나타낸 그래프이다.4B is a graph showing the coefficient of thermal expansion (CTE) of nickel.
도 5는 전기도금 공정으로 확산방지층으로서 니켈층을 형성한 후 열처리하면 니켈층이 박리되는 현상을 보여주는 사진이다.5 is a photograph showing a phenomenon in which a nickel layer is peeled off when a nickel layer is formed as a diffusion barrier layer by an electroplating process and then heat treated.
도 6은 본 발명의 일 실시예에 의해 전기도금법으로 형성된 중온 열전소자용 NixTey 확산방지층의 X-ray 회절 패턴(X-ray diffraction patterns)을 나타낸 그래프이다.6 is a graph showing X-ray diffraction patterns of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric element formed by an electroplating method according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 의해 전기도금법으로 형성된 중온 열전소자용 NixTey 확산방지층의 부착력 실험 결과를 나타낸 사진이다.7 is a photograph showing the results of an adhesion test of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device formed by an electroplating method according to an embodiment of the present invention.
본 개시의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 실시예들로부터 더욱 명백해질 것이다. Objects, specific advantages and novel features of the present disclosure will become more apparent from the following detailed description and embodiments taken in conjunction with the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 개시의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in the present specification and claims should not be construed in a conventional and dictionary meaning, and the inventor may properly define the concept of the term to describe his invention in the best way. Based on the principle that there is, it should be interpreted as meaning and concept consistent with the technical idea of the present disclosure.
본 명세서에서, 층, 부분, 또는 기판과 같은 구성요소가 다른 구성요소 "위에", "연결되어", 또는 "결합되어" 있는 것으로 기재되어 있는 경우, 이는 직접적으로 다른 구성요소 "위에", "연결되어", 또는 "결합되어" 있는 것일 수 있고, 또한 양 구성요소 사이에 하나 이상의 다른 구성요소를 개재하여 있을 수 있다. 대조적으로, 구성요소가 다른 구성요소 "직접적으로 위에", "직접적으로 연결되어", 또는 "직접적으로 결합되어" 있는 것으로 기재되어 있는 경우, 양 구성요소 사이에는 다른 구성요소가 개재되어 있을 수 없다.In this specification, when a component, such as a layer, portion, or substrate, is described as being “on,” “connected with,” or “coupled to” another component, it is directly “on”, “coupled to” the other component. It may be "connected" or "coupled", and one or more other elements may be interposed between both elements. In contrast, when an element is described as being “directly on,” “directly connected to,” or “directly coupled to,” another element, no other element may be interposed between the two elements. .
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 개시를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present disclosure. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present specification, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that this does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "상에"라 함은 대상 부분의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력 방향을 기준으로 상 측에 위치하는 것을 의미하는 것이 아니다.In the present specification, when a part "includes" a certain component, this means that other components may be further included rather than excluding other components unless otherwise stated. In addition, throughout the specification, "on" means to be located above or below the target part, and does not necessarily mean to be located above the direction of gravity.
본 개시는 다양한 변환을 가할 수 있고 여러 가지 실시예들을 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 개시를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 개시의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 개시를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Since the present disclosure can apply various transformations and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present disclosure to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present disclosure. In describing the present disclosure, if it is determined that a detailed description of a related known technology may obscure the gist of the present disclosure, the detailed description thereof will be omitted.
이하, 본 개시의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and in the description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals, and the overlapping description thereof will be omitted. do.
일 측면에 따르면, 제1소재; 제2소재; 및 제1소재 및 제2소재 사이에 접합층 및 확산방지 구조;를 포함하고, 상기 접합층 및 확산방지 구조는, 상기 제1소재 물질과 제2소재 물질의 금속간화합물로 구성되고 상기 제2소재와 접하는 제1층; 및 상기 제1소재와 금속간화합물을 형성하는 물질로 구성되고 상기 제1층 상에 형성된 제2층;을 포함하는, 소자가 제공된다.According to one aspect, the first material; second material; and a bonding layer and a diffusion prevention structure between the first material and the second material, wherein the bonding layer and the diffusion prevention structure are composed of an intermetallic compound of the first material material and the second material material, and the second material a first layer in contact with the material; and a second layer made of a material forming an intermetallic compound with the first material and formed on the first layer.
제1소재 및 제2소재는 금속, 플라스틱을 제외한 모든 재료 및 금속일 수 있고, 이에 한정되는 것은 아니나 상기 제1소재는 세라믹일 수 있고, 상기 제2소재는 금속일 수 있다. The first material and the second material may be all materials and metals except for metals and plastics, but are not limited thereto, but the first material may be a ceramic, and the second material may be a metal.
상기 접합층 및 확산방지 구조는 상기 제1소재 물질과 제2소재 물질의 금속간화합물로 구성되고 상기 제2소재와 접하는 제1층 및 상기 제1소재와 금속간화합물을 형성하는 물질로 구성되고 상기 제1층 상에 형성된 제2층을 포함하여, 물리적 및 화학적 성질이 다른 두 재료로 구성된 제1소재 및 제2소재 간에 양립성을 부여해 줄 수 있는 천이지역, 즉 계면 생성물이 형성된 구조를 가진다. The bonding layer and the diffusion preventing structure are composed of an intermetallic compound of the first material material and the second material material, and a first layer in contact with the second material and a material forming an intermetallic compound with the first material, Including the second layer formed on the first layer, the first material and the second material composed of two materials having different physical and chemical properties have a structure in which a transition region, that is, an interface product, is formed that can provide compatibility between the first material and the second material.
따라서 접합만 우수하거나, 접합은 고려하지 않고 확산방지만 가능한 층 구조가 아니나 접합성능이 우수하면서 확산방지가 가능한 소자를 제공할 수 있다.Therefore, it is possible to provide a device capable of preventing diffusion while having excellent bonding performance, although it is not a layer structure in which only bonding is excellent or only diffusion prevention is possible without considering bonding.
상기 소자는 열전소재와 전극간의 물질이동을 방지하는 동시에 접합소재 역할을 하는 확산방지층이 형성되는 열전소자일 수 있다. 또한, 상기 소자 구조는 전력반도체 소자에 적용될 수 있다. 즉, 전력반도체 소자의 DBC(direct bond copper, Cu/Al2O3/Cu)와 접합하는 Solder 물질(e.g. Cu-Sn)의 제작에 응용할 수 있다.The device may be a thermoelectric device in which a diffusion barrier layer serving as a bonding material is formed while preventing material movement between the thermoelectric material and the electrode. In addition, the device structure may be applied to a power semiconductor device. That is, it can be applied to the manufacture of a solder material (eg Cu-Sn) bonding to DBC (direct bond copper, Cu/Al 2 O 3 /Cu) of a power semiconductor device.
나아가, 세라믹과 금속이 접합하게 되면 부품의 소형화 및 표면 실장화가 가능하여 다양한 기능을 가진 복합 형상의 부품 제조가 가능하다. 따라서, 상기 소자 구조는 센서, 초소형 전자부품회로, MEMS, 고효율 열교환기, 전자제품 패키징 분야에 응용이 가능하다.Furthermore, when the ceramic and the metal are joined, the miniaturization and surface mounting of the parts are possible, so that it is possible to manufacture components having a complex shape having various functions. Accordingly, the device structure can be applied to sensors, microelectronic component circuits, MEMS, high-efficiency heat exchangers, and electronic product packaging fields.
다른 측면에 따르면, 기판부; 열전소재부; 및 상기 기판부와 열전소재부 사이에 형성된 확산방지층;을 포함하고, 상기 확산방지층은, 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부와 접하는 제1층; 및 상기 제1물질과 금속간화합물을 형성하는 제2물질로 구성되고 상기 제1층 상에 형성된 제2층;을 포함하는, 중온 열전소자가 제공된다.According to another aspect, the substrate portion; thermoelectric material unit; and a diffusion barrier layer formed between the substrate unit and the thermoelectric material unit, wherein the diffusion barrier layer includes: a first layer made of an intermetallic compound of a first material and a second material and in contact with the thermoelectric material unit; and a second layer formed of the first material and a second material forming an intermetallic compound and formed on the first layer;
도 1a 및 도 1b는 열전소자의 구조를 나타낸 모식도이다. 1A and 1B are schematic views showing the structure of a thermoelectric element.
도 1a 및 도 1b를 참조하면, 중온 열전소자는 크게 기판부(100), 열전소재부(200), 및 확산방지층(300)을 포함한다.Referring to FIGS. 1A and 1B , the medium temperature thermoelectric element largely includes a substrate part 100 , a thermoelectric material part 200 , and a diffusion barrier layer 300 .
상기 열전소재부(200)는 열을 받아 전기를 생산하는 부분으로 2이상의 열전소재를 포함할 수 있다. 상기 열전소재부(200)의 종류는 열을 받아 전기를 생성할 수 있다면 특별한 제한은 없다. 예를 들어 PbTe로 구성될 수 있다. The thermoelectric material part 200 is a part that generates electricity by receiving heat, and may include two or more thermoelectric materials. The type of the thermoelectric material part 200 is not particularly limited as long as it can generate electricity by receiving heat. For example, it may be composed of PbTe.
상기 기판부(100)는 상기 열전소재부(200)를 배열하고 고정하는 부분이다. 도 1a에 도시된 바와 같이, 세라믹 기판(110), Cu 전극(120), 및 블레이징 필터(blazing filter, 130)로 구성될 수 있다. 상기 블레이징 필터(130)는 Cu 전극(120) 및 확산방지층(300)을 접합하기 위한 층이다.The substrate part 100 is a part for arranging and fixing the thermoelectric material part 200 . As shown in FIG. 1A , it may include a ceramic substrate 110 , a Cu electrode 120 , and a blazing filter 130 . The blazing filter 130 is a layer for bonding the Cu electrode 120 and the diffusion barrier layer 300 .
상기 확산방지층(300)은 열전소재부(200)와 기판부(100) 사이에서 양자를 접합하기 위한 금속화층(metallization layer)으로, 열전소재(200)의 물질과 기판부(100)의 물질이 서로 확산되어 열화(degradation)되는 것을 막아주는 역할을 한다.The diffusion barrier layer 300 is a metallization layer for bonding both between the thermoelectric material part 200 and the substrate part 100, and the material of the thermoelectric material 200 and the material of the substrate part 100 is They diffuse to each other and serve to prevent degradation.
도 2는 본 발명의 일 실시예에 의해 중온 열전소자용 확산방지층을 전기도금법으로 형성하는 방법을 개략적으로 나타낸 모식도이다. 도 3은 본 발명의 일 실시예에 의해 중온 열전소자용 NixTey 확산방지층을 전기도금법으로 형성하는 방법을 개략적으로 나타낸 모식도이다. 2 is a schematic diagram schematically showing a method of forming a diffusion barrier layer for a medium temperature thermoelectric element by an electroplating method according to an embodiment of the present invention. 3 is a schematic diagram schematically showing a method of forming a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device by an electroplating method according to an embodiment of the present invention.
도 2 및 도 3을 참조하면, 상기 확산방지층(300)은, 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부(200)와 접하는 제1층(330); 및 상기 제1물질과 금속간화합물을 형성하는 제2물질로 구성되고 상기 제1층 상에 형성되는 제2층(322)을 포함하는 것을 특징으로 한다.Referring to FIGS. 2 and 3 , the diffusion barrier layer 300 includes a first layer 330 made of an intermetallic compound of a first material and a second material and in contact with the thermoelectric material unit 200 ; and a second layer (322) made of a second material forming an intermetallic compound with the first material and formed on the first layer.
상기와 같이 열전소재부(200)와 접하는 제1층(330)과 제2층(322)을 서로 상이한 물질로 구성하여, 확산방지층(300)이 단일층으로 형성되는 것에 비해 크랙 및 박리를 억제할 수 있다.As described above, the first layer 330 and the second layer 322 in contact with the thermoelectric material part 200 are made of different materials to suppress cracks and peeling compared to the diffusion prevention layer 300 formed as a single layer. can do.
상기 제1층(330)의 금속간화합물은 상기 열전소재부(200) 상에 형성된 제1물질 도금층(310) 상에 제2물질 도금층(320)을 형성한 후 열처리에 의해 형성된 것일 수 있다. The intermetallic compound of the first layer 330 may be formed by heat treatment after forming the second material plating layer 320 on the first material plating layer 310 formed on the thermoelectric material part 200 .
상기 제1물질 도금층(310)에 의해 상기 열전소재부(200)를 구성하는 물질이 확산방지층(300)으로 확산되는 것이 방지되어, SPS(Spark Plasma Sintering) 공정으로 형성된 확산방지층을 형성한 경우보다 열전소재부(200)가 균일한 조성을 가질 수 있다.Diffusion of the material constituting the thermoelectric material part 200 into the diffusion barrier layer 300 is prevented by the first material plating layer 310, and a diffusion barrier layer formed by a spark plasma sintering (SPS) process is formed. The thermoelectric material unit 200 may have a uniform composition.
이에 한정되는 것은 아니나, 상기 열전소재부(200)를 구성하는 물질의 열팽창계수(coefficient of thermal expansion, CTE)와 상기 제1물질의 열팽창계수의 차이가 5 x 10-6K-1 이하인 것이 크랙 또는 박리의 발생 억제에 적합할 수 있다. 중온용 열전소재부(200) 위에 증착된 확산방지층(300)의 열팽창계수가 열전소재부(200)의 열팽창계수와 차이가 많이 날 경우 소자구동 온도(500~600℃)에서 박리되거나 크랙이 발생할 가능성이 크다. 따라서, 본 발명에서는 상기 열전소재부(200)를 구성하는 물질의 열팽창계수(coefficient of thermal expansion, CTE)와 열팽창계수의 차이가 5 x 10-6K-1 이하인 제1물질로 열전소재부(200)와 접하는 제1층(330)을 형성하여 크랙 또는 박리의 발생을 억제할 수 있다.Although not limited thereto, the difference between the coefficient of thermal expansion (CTE) of the material constituting the thermoelectric material part 200 and the coefficient of thermal expansion of the first material is 5 x 10 -6 K -1 or less crack Or it may be suitable for suppressing the occurrence of peeling. If the coefficient of thermal expansion of the diffusion barrier layer 300 deposited on the thermoelectric material part 200 for medium temperature differs greatly from the coefficient of thermal expansion of the thermoelectric material part 200, peeling or cracking may occur at the device driving temperature (500 to 600 ℃). high portential. Therefore, in the present invention, the thermoelectric material unit ( By forming the first layer 330 in contact with the 200), it is possible to suppress the occurrence of cracks or peeling.
상기 열전소재부(200)를 구성하는 물질은 PbTe이고, 상기 제1물질은 Te이고, 상기 제2물질은 Ni일 수 있다. 상기 PbTe의 열팽창계수는 300K(26.85℃)부터 약 20 x 10-6K-1 로 일정하다(도 4a 참조). 이에 비해 상기 니켈의 열팽창계수는 상온에서 약 13 x 10-6K-1이고, 400 내지 600℃에서 약 16 ~ 17 x 10-6K-1이므로 PbTe와의 열팽창계수의 차이가 4 x 10-6K-1 이상이다. 구동온도(600℃)에서 열처리 시 박리되는 문제점이 있을 수 있다(도 5 참조). 따라서, 본원에서는 열팽창계수가 PbTe와 유사한 약 19 x 10-6K-1인 Te로 제1물질 도금층(310)을 형성하여 상기 박리 또는 크랙 문제점을 해결할 수 있다.The material constituting the thermoelectric material part 200 may be PbTe, the first material may be Te, and the second material may be Ni. The thermal expansion coefficient of the PbTe is constant from 300K (26.85° C.) to about 20×10 −6 K −1 (see FIG. 4a ). On the other hand, the thermal expansion coefficient of nickel is about 13 x 10 -6 K -1 at room temperature, and about 16-17 x 10 -6 K -1 at 400 to 600 °C, so the difference in thermal expansion coefficient with PbTe is 4 x 10 -6 more than K -1 . There may be a problem of peeling during heat treatment at a driving temperature (600° C.) (see FIG. 5 ). Accordingly, in the present application, the peeling or cracking problem can be solved by forming the plating layer 310 of the first material with Te having a thermal expansion coefficient of about 19 x 10 -6 K -1 similar to PbTe.
또한, 상기 열전소재부(200)를 구성하는 물질은 PbTe이고, 상기 제1물질은 Sn이고, 상기 제2물질은 Cu일 수 있다. 열팽창계수가 PbTe와 유사한 약 20 x 10-6K-1인 Sn를 제1물질 도금층(310)을 형성하여 상기 열전소재부(200)와 확산방지층(300)의 박리 또는 크랙 문제점을 해결할 수 있다. 이 경우 Sn-Cu가 PbTe 구동 온도인 600℃(중온영역) 이상에서 고상을 유지해야 한다. Phase diagram을 통해 600℃ 이상에서 고상을 유지하기 위해서는 Sn-Cu 합금에서 Cu가 약 75~90%의 범위를 가지고 있는 것이 적합할 수 있다. 한편, Sn-Cu 합금을 한번에 전기도금하여 PbTe 상에 증착시킬 경우 이 둘 사이의 열팽창계수 차이에 의해 전극이 떨어질 가능성이 높다. In addition, the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Sn, and the second material may be Cu. By forming the first material plating layer 310 of Sn having a thermal expansion coefficient of about 20 x 10 -6 K -1 similar to that of PbTe, the problem of peeling or cracking of the thermoelectric material part 200 and the diffusion barrier layer 300 can be solved. . In this case, Sn-Cu must maintain a solid phase above the PbTe driving temperature of 600 °C (medium temperature region). In order to maintain the solid phase at 600℃ or higher through the phase diagram, it may be suitable for Cu to have a range of about 75~90% in the Sn-Cu alloy. On the other hand, when the Sn-Cu alloy is electroplated at once and deposited on PbTe, the electrode is highly likely to fall off due to the difference in the coefficient of thermal expansion between the two.
또한, 상기 열전소재부(200)를 구성하는 물질은 PbTe이고, 상기 제1물질은 Co이고, 상기 제2물질은 Fe일 수 있다. Co(cobalt; 13 x 10-6/℃)와 Fe(iron; 11.7 x 10-6/℃)를 제1물질 도금층(310) 및 제2물질 도금층(320)으로 차례로 전기도금으로 형성한 후 열처리하여 Co-Fe 확산방지층을 형성시킬 수 있다.In addition, the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Co, and the second material may be Fe. Co (cobalt; 13 x 10 -6 /℃) and Fe (iron; 11.7 x 10 -6 /℃) are sequentially formed by electroplating as a first material plating layer 310 and a second material plating layer 320, followed by heat treatment Thus, it is possible to form a Co-Fe diffusion barrier layer.
이에 한정되는 것은 아니나, 상기 확산방지층은 두께가 0.5 내지 30 ㎛일 수 있다. 본원의 확산방지층은 두께가 얇아도 상술한 바와 같이 제1물질의 제1물질 도금층(310)에 의해 상기 열전소재부(200)를 구성하는 물질이 확산방지층(300)으로 확산되는 것이 방지되어 열전소재 특성이 개선될 수 있다. 종래의 SPS 공정의 경우 전극층을 형성하기 위해서 열전소재인 PbTe 분말 상부에 Ni 분말을 도포하게 되고 열처리 공정을 통해 열전소재 물질의 Te과 Ni 분말이 서로 확산하면서 NixTey이 형성되게 된다. 이렇게 되면 PbTe로부터 Te이 빠져나갈 수 있기 때문에 실질적으로 위쪽은 PbTe 조성이 아닌 Pb가 리치(rich)한 PbTe가 형성되게 되고 이는 열전소재 특성에 나쁜 영향을 미칠 수 있다. 하지만, 본 발명의 경우, Te 도금층을 벌크형태의 PbTe 상에 먼저 증착함으로써 PbTe에서 Te이 빠져나가는 것을 막을 수 있어 열전소재 특성을 개선할 수 있다. Although not limited thereto, the diffusion barrier layer may have a thickness of 0.5 to 30 μm. Even though the diffusion barrier layer of the present application is thin, the material constituting the thermoelectric material part 200 is prevented from being diffused into the diffusion barrier layer 300 by the first material plating layer 310 of the first material as described above. Material properties can be improved. In the case of the conventional SPS process, Ni powder is coated on the PbTe powder, which is a thermoelectric material, to form an electrode layer, and Ni x Te y is formed as Te and Ni powder of the thermoelectric material are diffused through the heat treatment process. In this case, since Te can escape from PbTe, PbTe rich in Pb is formed, rather than having a PbTe composition, on the upper side, which may adversely affect the properties of the thermoelectric material. However, in the present invention, by depositing a Te plating layer on the bulk PbTe first, it is possible to prevent Te from escaping from the PbTe, thereby improving the properties of the thermoelectric material.
이에 한정되는 것은 아니나, 상기 제2층(322)은 제1층(330)의 상면 및 양측면 상에 형성될 수 있다. 상기한 구성에 의하면, 확산방지층(300)과 열전소재부(200)의 접합력을 보다 향상할 수 있다. Although not limited thereto, the second layer 322 may be formed on the upper surface and both sides of the first layer 330 . According to the above configuration, the bonding strength between the diffusion barrier layer 300 and the thermoelectric material unit 200 can be further improved.
도 2 내지 도 3을 참조하면, 다른 측면에 따른 중온 열전소자 제조방법은, i) 중온 열전소자의 열전소재부(200)를 준비하는 단계; 및 ii) 상기 열전소재부(200) 상에 제1층(330) 및 제2층(322)으로 형성된 확산방지층(300)을 형성하는 단계;를 포함하고, 상기 ii) 단계는 ii-1) 상기 열전소재부(200) 상에 제1물질을 전기도금하여 제1물질 도금층(310)을 형성하는 단계; ii-2) 상기 제1물질 도금층 (310) 상에 상기 제1물질과 금속간화합물을 형성하는 제2물질을 전기도금하여 제2물질 도금층(320)을 형성하는 단계; 및 ii-3) 열처리하여 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부(200)와 접하는 제1층(330); 및 제2물질로만 구성되고 상기 제1층 상에 형성된 제2층(322);을 형성하는 단계;를 포함할 수 있다.2 to 3 , a method for manufacturing a medium temperature thermoelectric element according to another aspect includes the steps of: i) preparing a thermoelectric material unit 200 of the medium temperature thermoelectric element; and ii) forming a diffusion barrier layer 300 formed of a first layer 330 and a second layer 322 on the thermoelectric material unit 200, wherein step ii) is ii-1) forming a first material plating layer 310 by electroplating a first material on the thermoelectric material unit 200; ii-2) forming a second material plating layer 320 by electroplating a second material forming an intermetallic compound with the first material on the first material plating layer 310; and ii-3) a first layer 330 made of an intermetallic compound of a first material and a second material by heat treatment and in contact with the thermoelectric material part 200 ; and forming a second layer 322 made of only a second material and formed on the first layer.
본 발명은 열전소재로 사용되는 물질(예를 들어, PbTe)과 열팽창계수 차이가 적은 물질을 먼저 도금하고 열처리 시 첫 번째 도금물질과 반응하여 금속간화합물(intermetallic compound)을 형성할 수 있는 두 번째 물질을 도금하여 확산방지층을 제작하는 공정을 특징으로 한다.The present invention is a second method capable of forming an intermetallic compound by first plating a material used as a thermoelectric material (eg, PbTe) and a material having a small difference in thermal expansion coefficient and reacting with the first plating material during heat treatment It is characterized in that the process of manufacturing the diffusion barrier layer by plating the material.
단계 i)에서는 중온 열전소자의 열전소재부(200)를 준비하는 단계이다. 상기 열전소재부(200)의 구성물질의 종류는 열을 받아 전기를 생성한다면 특별한 제한은 없다. 예를 들어 상기 열전소재부(200)는 PbTe로 구성될 수 있다. Step i) is a step of preparing the thermoelectric material part 200 of the medium temperature thermoelectric element. The type of the constituent material of the thermoelectric material unit 200 is not particularly limited as long as it receives heat to generate electricity. For example, the thermoelectric material part 200 may be made of PbTe.
중온 열전소자 제조방법에 있어서, 이에 한정되는 것은 아니나 상기 열전소재부(200)를 구성하는 물질의 열팽창계수와 상기 제1물질의 열팽창계수의 차이가 5 x 10-6K-1 이하일 수 있다. 상기 구성에 의하면, 확산방지층(300)의 크랙 또는 박리의 발생 억제에 적합할 수 있다.In the medium temperature thermoelectric device manufacturing method, the difference between the thermal expansion coefficient of the material constituting the thermoelectric material part 200 and the thermal expansion coefficient of the first material may be 5 x 10 -6 K -1 or less, but is not limited thereto. According to the above configuration, it may be suitable for suppressing the occurrence of cracks or peeling of the diffusion barrier layer 300 .
중온 열전소자 제조방법에 있어서, 상기 열전소재부(200)를 구성하는 물질은 PbTe이고, 상기 제1물질은 Te이고, 상기 제2물질은 Ni일 수 있다. 상기 PbTe의 열팽창계수는 300K(26.85℃)부터 약 20 x 10-6K-1로 일정하다(도 4a 참조). 이에 비해 상기 니켈의 열팽창계수는 상온에서 약 13 x 10-6K-1이고, 400 내지 600 ℃에서 약 16 ~ 17 x 10-6K-1이므로 PbTe와의 열팽창계수 차이가 4 x 10-6K-1 이상이다. 구동온도(600℃)에서 열처리 시 박리되는 문제점이 있을 수 있다(도 5 참조). 따라서, 본원에서는 열팽창계수가 PbTe와 유사한 약 19 x 10-6K-1인 Te으로 제1물질 도금층(310)을 형성하여 상기 박리 또는 크랙 문제점을 해결할 수 있다.In the medium temperature thermoelectric device manufacturing method, the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Te, and the second material may be Ni. The thermal expansion coefficient of the PbTe is constant from 300K (26.85° C.) to about 20×10 −6 K −1 (see FIG. 4a ). In contrast, the thermal expansion coefficient of nickel is about 13 x 10 -6 K -1 at room temperature, and about 16-17 x 10 -6 K -1 at 400 to 600 °C, so the difference in thermal expansion coefficient with PbTe is 4 x 10 -6 K -1 or more. There may be a problem of peeling during heat treatment at a driving temperature (600° C.) (see FIG. 5 ). Accordingly, in the present application, the peeling or cracking problem can be solved by forming the plating layer 310 of the first material with Te having a thermal expansion coefficient of about 19 x 10 -6 K -1 similar to PbTe.
또한, 중온 열전소자 제조방법에 있어서, 상기 열전소재부(200)를 구성하는 물질은 PbTe이고, 상기 제1물질은 Sn이고, 상기 제2물질은 Cu일 수 있다. 열팽창계수가 PbTe와 유사한 약 20 x 10-6K-1인 Sn를 제1물질 도금층(310)을 형성하여 상기 열전소재부(200)와 확산방지층(300)의 박리 또는 크랙 문제점을 해결할 수 있다. 이 경우 Sn-Cu가 PbTe 구동 온도인 600℃(중온영역) 이상에서 고상을 유지해야 한다. Phase diagram을 통해 600℃ 이상에서 고상을 유지하기 위해서는 Sn-Cu 합금에서 Cu가 약 75~90%의 범위를 가지고 있는 것이 적합할 수 있다. 한편, Sn-Cu 합금을 한번에 전기도금하여 PbTe 상에 증착시킬 경우 이 둘 사이의 열팽창계수 차이에 의해 전극이 떨어질 가능성이 높다. In addition, in the medium temperature thermoelectric device manufacturing method, the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Sn, and the second material may be Cu. By forming the first material plating layer 310 of Sn having a thermal expansion coefficient of about 20 x 10 -6 K -1 similar to that of PbTe, the problem of peeling or cracking of the thermoelectric material part 200 and the diffusion barrier layer 300 can be solved. . In this case, Sn-Cu must maintain a solid phase above the PbTe driving temperature of 600 °C (medium temperature region). In order to maintain the solid phase at 600℃ or higher through the phase diagram, it may be suitable for Cu to have a range of about 75~90% in the Sn-Cu alloy. On the other hand, when the Sn-Cu alloy is electroplated at once and deposited on PbTe, the electrode is highly likely to fall off due to the difference in the coefficient of thermal expansion between the two.
또한, 중온 열전소자 제조방법에 있어서, 상기 열전소재부(200)를 구성하는 물질은 PbTe이고, 상기 제1물질은 Co이고, 상기 제2물질은 Fe일 수 있다. Co(cobalt; 13 x 10-6/℃)와 Fe(iron;11.7 x 10-6/℃)를 제1물질 도금층(310) 및 제2물질 도금층(320)으로 차례로 전기도금으로 형성한 후 열처리하여 Co-Fe 확산방지층을 형성시킬 수 있다.In addition, in the medium temperature thermoelectric device manufacturing method, the material constituting the thermoelectric material part 200 may be PbTe, the first material may be Co, and the second material may be Fe. Co (cobalt; 13 x 10 -6 /℃) and Fe (iron; 11.7 x 10 -6 /℃) are sequentially formed as a first material plating layer 310 and a second material plating layer 320 by electroplating, followed by heat treatment Thus, it is possible to form a Co-Fe diffusion barrier layer.
중온 열전소자 제조방법에 있어서, 단계 ii)에서 제1물질 도금층(310)에 의해 상기 열전소재부(200)를 구성하는 물질이 확산방지층(300)으로 확산되는 것이 방지되어, SPS(Spark Plasma Sintering) 공정으로 형성된 확산방지층을 형성한 경우보다 열전소재부(200)가 균일한 조성을 가질 수 있어 열전소재 특성이 개선될 수 있다. 보다 구체적으로 살펴보면, 종래의 SPS 공정의 경우 전극층을 형성하기 위해서 PbTe 분말상에 Ni 분말을 도포하게 되고 열처리 공정을 통해 열전소재 물질의 Te과 Ni 분말이 서로 확산하면서 NixTey이 형성되게 된다. 이렇게 되면 열전소재 물질인 PbTe로부터 Te이 빠져나가기 때문에 실질적으로 위쪽은 PbTe 조성이 아닌 Pb가 리치(rich)한 PbTe가 형성되게 되고 이는 열전소재 특성에 나쁜 영향을 미칠 수 있다. 하지만 Te 도금층을 PbTe 상부에 먼저 증착함으로써 PbTe에서 Te이 빠져나가는 것을 막을 수 있어 열전소재 특성을 개선할 수 있다.In the medium temperature thermoelectric device manufacturing method, in step ii), the material constituting the thermoelectric material part 200 is prevented from being diffused into the diffusion barrier layer 300 by the first material plating layer 310, so that SPS (Spark Plasma Sintering) ), since the thermoelectric material part 200 may have a more uniform composition than in the case of forming the diffusion barrier layer formed by the above process, the characteristics of the thermoelectric material may be improved. More specifically, in the case of the conventional SPS process, Ni powder is applied on the PbTe powder to form an electrode layer, and Ni x Te y is formed while Te and Ni powder of the thermoelectric material material diffuse through the heat treatment process. In this case, since Te escapes from PbTe, which is a thermoelectric material, PbTe rich in Pb is formed, rather than having a PbTe composition, on the upper side, which may adversely affect the properties of the thermoelectric material. However, by depositing a Te plating layer on PbTe first, it is possible to prevent Te from escaping from PbTe, thereby improving the properties of the thermoelectric material.
도 3을 참조하면, 중온 열전소자 제조방법에 있어서, 상기 제1물질 도금층(310) 상면에 제2물질로 제2물질 도금층(320)을 형성하기 위해 전기도금하는 단계; 및 제2층(322)이 제1층(330)의 상면 및 양측면 상에 형성되도록, 제2물질 박막(320')을 전기도금하는 단계를 포함할 수 있다. 상기 구성에 의하면, 확산방지층(300)의 크랙 또는 박리의 발생 억제에 적합할 수 있다.Referring to FIG. 3 , in the method of manufacturing a medium temperature thermoelectric device, the method includes: electroplating to form a second material plating layer 320 with a second material on the upper surface of the first material plating layer 310 ; and electroplating the second material thin film 320 ′ such that the second layer 322 is formed on the upper surface and both sides of the first layer 330 . According to the above configuration, it may be suitable for suppressing the occurrence of cracks or peeling of the diffusion barrier layer 300 .
본 발명에 의한 열전소자의 제조방법과 같이, 전기도금과 열처리를 통해 제작된 확산방지층의 경우 약 0.5 내지 10 μm일 수 있다. SPS 공정에 의하는 경우 사용하는 분말의 크기가 크기 때문에 전기도금법과 같이 얇은 두께의 확산방지층을 형성하기 어렵다. 또한, SPS 공정의 경우 두께 조절이 쉽지 않은 단점이 있다. 즉 두께를 조절하기 위해서는 압력조절과 더불어 열처리 온도를 컨트롤해야 하는데 두께를 줄이기 위해서 압력을 더 가하게 되면 시편에 크랙이 가거나 파단될 수 있고, 온도를 더 가하게 되면 원하는 상(phase)이 나오지 않을 수 있는 단점이 있다. 이와 반대로 압력을 덜 주게 되면 전극과 기판 사이에 공극(void)이 생길 수 있고, 온도를 덜 가하게 되면 역시 원하는 상이 나오지 않거나 소결이 제대로 되지 않을 수 있다. As in the method of manufacturing a thermoelectric element according to the present invention, in the case of a diffusion barrier layer manufactured through electroplating and heat treatment, the thickness may be about 0.5 to 10 μm. In the case of the SPS process, since the size of the powder used is large, it is difficult to form a thin diffusion barrier layer as in the electroplating method. In addition, in the case of the SPS process, there is a disadvantage in that it is not easy to control the thickness. That is, to control the thickness, the heat treatment temperature must be controlled along with the pressure control. If more pressure is applied to reduce the thickness, cracks or fractures may occur in the specimen, and if more temperature is applied, the desired phase may not come out. There are disadvantages. Conversely, if less pressure is applied, a void may be formed between the electrode and the substrate, and if the temperature is reduced, a desired phase may not be obtained or sintering may not be performed properly.
또한, 본 발명의 열전소자 제조방법은 전기도금을 사용하여 확산방지층을 형성하기 때문에 적은 양의 재료가 사용될 수 있고, 제1물질 및 제2물질의 전구체를 사용하기 때문에 순도가 낮은 재료가 사용되어도 열전소자의 특성에 미치는 영향이 없다. 전기도금에 사용되는 전구체(precursor)의 경우 금속염(metal salt) 또는 금속산화물(metal oxide)의 순도가 낮아도 실질적으로 도금공정 시 최적화된 포텐셜(potential)에서 원하는 금속성 물질만이 기판에 증착되기 때문에 열처리 후에도 전극특성에 영향을 미치지 않는다. 더 나아가 실질적으로 전극을 합성하기 위해서 사용되는 전극물질의 양이 전기도금을 이용할 경우 SPS 공정과 비교하였을 때 상당히 적은 양이 들어가기 때문에 비용적인 면에서도 상당히 유리한 장점이 있다.In addition, in the method of manufacturing a thermoelectric device of the present invention, a small amount of material can be used because the diffusion barrier layer is formed using electroplating, and since a precursor of the first material and the second material is used, even if a material with low purity is used There is no influence on the characteristics of the thermoelectric element. In the case of a precursor used in electroplating, even if the purity of the metal salt or metal oxide is low, in reality, only the desired metallic material is deposited on the substrate at the optimized potential during the plating process. Even after that, it does not affect the electrode characteristics. Furthermore, since the amount of electrode material used for synthesizing the electrode is considerably smaller than that of the SPS process when electroplating is used, there is a significant advantage in terms of cost.
본 발명에 기재된 확산방지층 제조방법에 대해 본 발명의 실시예를 통해 보다 상세하게 설명한다.The method for manufacturing the diffusion barrier layer described in the present invention will be described in more detail through examples of the present invention.
[실시예][Example]
PbTe의 열전소재부 상에 Te 도금층 10 ㎛을 하기 조건으로 전기도금으로 형성하였다.A 10 μm Te plating layer was formed on the thermoelectric material part of PbTe by electroplating under the following conditions.
- TeO2: 10 mM (1.596 g/L)- TeO 2 : 10 mM (1.596 g/L)
- HNO3: 100 ml/L (70%)- HNO 3 : 100 ml/L (70%)
- Applied potential : - 0.1 V- Applied potential : - 0.1 V
- Agitation : 200 rpm- Agitation : 200 rpm
그 다음 상기 Te 층 상면에 Ni 도금층 10 ㎛을 하기 조건으로 전기도금으로 형성하였다.Then, a 10 μm Ni plating layer was formed on the upper surface of the Te layer by electroplating under the following conditions.
- Ni(SO3NH2)24H2O : 470 g /L- Ni(SO 3 NH 2)2 4H 2 O : 470 g /L
- Boric acid : 30 g/L- Boric acid: 30 g/L
- Applied potential : 5ASD- Applied potential : 5ASD
- Temp. : 50℃- Temp. : 50℃
다음으로 상기 Ni 도금층 상에 Ni 박막을 상기 노출된 열전소재부 상면 및 Te 층 양측면 상에 전기도금으로 형성하였다.Next, a Ni thin film was formed on the Ni plating layer by electroplating on the exposed upper surface of the thermoelectric material part and on both sides of the Te layer.
상기 전기도금층 형성이 완료된 후, 10℃/min 승온조건으로 350℃까지 온도를 올린 후, 350℃에서 1시간 유지하는 열처리 공정을 수행 하였다. 열처리 공정은 N2 분위기에서 진행하였다.After the formation of the electroplating layer was completed, the temperature was raised to 350°C at 10°C/min temperature rising condition, and then a heat treatment process was performed in which the temperature was maintained at 350°C for 1 hour. The heat treatment process was performed in an N 2 atmosphere.
상기 열처리에 의해 열전소자의 열전소재부 상에 제1층인 Ni3Te2 및 제2층인 Ni 층을 포함하는 확산방지층이 형성된 것을 확인할 수 있다.It can be seen that the diffusion barrier layer including the first layer Ni 3 Te 2 and the second layer Ni layer is formed on the thermoelectric material part of the thermoelectric element by the heat treatment.
도 4a는 PbTe의 열팽창계수(coefficient of thermal expansion, CTE)를 나타낸 그래프이고, 도 4b는 니켈의 열팽창계수(coefficient of thermal expansion, CTE)를 나타낸 그래프이다. 도 4a의 그래프는 PbTe 및 ZnSe의 벌크 물질의 CTE를 나타내고. 점선은 시뮬레이션에서 전개된 값을 나타낸다. 도 4b의 그래프는 0 내지 1000℃ 범위에서 Ni-YSZ의 CTE를 나타내고, 니켈 CTE의 경우 400 ~ 600℃ 범위에서 약 16 ~ 17 x 10-6 K-1 정도로 나타난다. 도 5는 전기도금 공정으로 확산방지층으로서 니켈층을 형성한 후 열처리하면 니켈층이 박리되는 현상을 보여주는 사진이다. 4A is a graph showing the coefficient of thermal expansion (CTE) of PbTe, and FIG. 4B is a graph showing the coefficient of thermal expansion (CTE) of nickel. The graph in Fig. 4a shows the CTE of bulk materials of PbTe and ZnSe. The dotted line represents the developed value in the simulation. The graph of FIG. 4b shows the CTE of Ni-YSZ in the range of 0 to 1000° C., and in the case of the nickel CTE, about 16 to 17 x 10 -6 K -1 in the range of 400 to 600° C. 5 is a photograph showing a phenomenon in which a nickel layer is peeled off when a nickel layer is formed as a diffusion barrier layer by an electroplating process and then heat treated.
도 4a에 나타난 바와 같이, 상기 PbTe의 열팽창계수는 300K부터 약 20 x 10-6K-1로 일정하다. 이에 비해 도 4b에 나타난 바와 같이, 상기 니켈의 열팽창계수는 상온에서 약 13 x 10-6K-1이고, 400 내지 600 ℃에서 약 16 ~ 17 x 10-6K-1이므로 PbTe와의 열팽창계수 차이가 4 x 10-6K-1 정도 나는 것을 알 수 있다. 도 5에 나타난 바와 같이, 상기와 같은 열팽창계수의 차이로 인해 전기도금 공정을 이용하여 Ni층을 PbTe 열전소재 상에 형성하면, 구동온도(600℃)에서 열처리 시 박리되는 현상이 나타났다.As shown in Figure 4a, the thermal expansion coefficient of the PbTe is constant from 300K to about 20 x 10 -6 K -1 . On the other hand, as shown in FIG. 4b, the thermal expansion coefficient of nickel is about 13 x 10 -6 K -1 at room temperature and about 16-17 x 10 -6 K -1 at 400 to 600 °C, so the difference in thermal expansion coefficient with PbTe It can be seen that is about 4 x 10 -6 K -1 . As shown in FIG. 5 , when a Ni layer was formed on a PbTe thermoelectric material using an electroplating process due to the difference in the coefficient of thermal expansion as described above, peeling occurred during heat treatment at a driving temperature (600° C.).
도 6은 본 발명의 일 실시예에 의해 전기도금법으로 형성된 중온 열전소자용 NixTey 확산방지층의 X-ray 회절 패턴(X-ray diffraction patterns)을 나타낸 그래프이다. 상기 그래프에 나타난 바와 같이, 본 발명에 의한 열전소자의 열전소재부 상에 제1층인 Ni3Te2 및 제2층인 Ni 층을 포함하는 확산방지층이 형성된 것을 확인할 수 있다.6 is a graph showing X-ray diffraction patterns of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric element formed by an electroplating method according to an embodiment of the present invention. As shown in the graph, it can be confirmed that the diffusion barrier layer including the first layer Ni 3 Te 2 and the second layer Ni layer is formed on the thermoelectric material part of the thermoelectric element according to the present invention.
도 7은 본 발명의 일 실시예에 의해 전기도금법으로 형성된 중온 열전소자용 NixTey 확산방지층의 부착력 실험 결과를 나타낸 사진이다. 상기 사진에 나타난 바와 같이, 본 발명에 의한 열전소자의 열전소재부와 확산방지층은 접합력이 우수한 것을 알 수 있다.7 is a photograph showing the results of an adhesion test of a Ni x Te y diffusion barrier layer for a medium temperature thermoelectric device formed by an electroplating method according to an embodiment of the present invention. As shown in the photo, it can be seen that the thermoelectric material part and the diffusion prevention layer of the thermoelectric element according to the present invention have excellent bonding strength.
본 발명에서 기재된 확산방지층은 중온 열전소재용 계면 확산방지 IMC를 제작하는 것으로 더욱 자세하게는 텔루륨(tellurium)과 니켈(nickel) 층을 전기도금(electrodeposition) 방법으로 상온에서 차례로 증착하고 저온 열처리 공정(약 350℃)을 통해서 Ni과 Te 사이에 IMC(NixTey)상을 형성시키는 것으로, 본 발명에서 제안하는 방법을 사용할 경우 공정 비용이 저렴하고 대면적으로 대량생산이 가능한 확산방지층을 제작할 수 있다는 큰 장점이 있다. 실질적으로 이러한 방식으로 합성한 확산방지층의 경우 중온용 열전소자의 구동 온도인 600℃에서 열처리를 수행 시 열전소재와의 박리(peel off)가 발생하지 않음을 확인할 수 있었다.The diffusion barrier layer described in the present invention is to produce an interfacial diffusion prevention IMC for a medium temperature thermoelectric material. More specifically, tellurium and nickel layers are sequentially deposited at room temperature by an electrodeposition method, and a low temperature heat treatment process ( 350℃) to form an IMC (Ni x Te y ) phase between Ni and Te. When the method proposed in the present invention is used, the diffusion barrier layer can be manufactured at low cost and mass-produced in a large area. There is a big advantage that In the case of the diffusion barrier layer synthesized in this way, it was confirmed that peel-off from the thermoelectric material did not occur when heat treatment was performed at 600° C., which is the driving temperature of the thermoelectric element for medium temperature.
중온용 열전소재 위에 증착된 확산방지층의 열팽창계수(CTE; coefficient of thermal expansion)가 열전소재와 차이가 날 경우 소자구동 온도(500~600℃)에서 박리되거나 크랙이 발생할 가능성이 크다. 그러나 본 발명에서는 PbTe와 열팽창계수가 거의 비슷한 Te을 먼저 전기도금을 이용해서 증착한 후 그 위에 Ni층을 도금하고 저온에서 열처리함으로써 간단한 방법으로 안정된 금속화층(Ni/Ni3Te2)을 형성하였고, 이렇게 형성된 금속화층은 열전소자 구동온도에서도 박리되거나 크랙이 발생하지 않았다.If the coefficient of thermal expansion (CTE) of the diffusion barrier layer deposited on the medium temperature thermoelectric material is different from that of the thermoelectric material, there is a high possibility of peeling or cracking at the device operating temperature (500~600℃). However, in the present invention, a stable metallization layer (Ni/Ni 3 Te 2 ) was formed in a simple way by depositing Te with a thermal expansion coefficient almost similar to that of PbTe using electroplating first, then plating a Ni layer thereon and heat-treating it at low temperature. , the formed metallization layer did not peel or crack even at the thermoelectric element driving temperature.
본 발명에 기재된 확산방지층 및 이의 제조방법의 경우 최초로 도금을 기반으로 중온 열전소재용 확산방지층을 합성한 기술이다. In the case of the diffusion barrier layer and its manufacturing method described in the present invention, it is a technology for synthesizing a diffusion barrier layer for a medium temperature thermoelectric material based on plating for the first time.
이상 본 개시를 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 개시를 구체적으로 설명하기 위한 것으로, 본 개시는 이에 한정되지 않으며, 본 개시의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다. 본 개시의 단순한 변형 내지 변경은 모두 본 개시의 영역에 속하는 것으로 본 개시의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다. Although the present disclosure has been described in detail through specific examples, this is for the purpose of describing the present disclosure in detail, and the present disclosure is not limited thereto, and by those of ordinary skill in the art within the technical spirit of the present disclosure It is clear that the modification or improvement is possible. All simple modifications and variations of the present disclosure fall within the scope of the present disclosure, and the specific protection scope of the present disclosure will be made clear by the appended claims.
[부호의 설명][Explanation of code]
100: 기판부100: substrate part
110: 세라믹기판110: ceramic substrate
120: 전극120: electrode
130: 블레이징 필러130: blazing filler
200: 열전소재부200: thermoelectric material part
300: 확산방지층300: diffusion barrier layer
310: 제1물질 도금층310: first material plating layer
320: 제2물질 도금층320: second material plating layer
320': 제2물질 박막320': second material thin film
322: 제2층322: second floor
330: 제1층 330: first floor

Claims (17)

  1. 제1소재; first material;
    제2소재; 및second material; and
    제1소재 및 제2소재 사이에 접합층 및 확산방지 구조;를 포함하고,A bonding layer and a diffusion prevention structure between the first material and the second material;
    상기 접합층 및 확산방지 구조는, 상기 제1소재 물질과 제2소재 물질의 금속간화합물로 구성되고 상기 제2소재와 접하는 제1층; 및 상기 제1소재와 금속간화합물을 형성하는 물질로 구성되고 상기 제1층 상에 형성된 제2층;을 포함하는, 소자.The bonding layer and the diffusion preventing structure may include: a first layer made of an intermetallic compound of the first material and the second material and in contact with the second material; and a second layer made of a material forming an intermetallic compound with the first material and formed on the first layer.
  2. 기판부; substrate part;
    열전소재부; 및thermoelectric material unit; and
    상기 기판부와 열전소재부 사이에 형성된 확산방지층;을 포함하고,a diffusion barrier layer formed between the substrate unit and the thermoelectric material unit;
    상기 확산방지층은, 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부와 접하는 제1층; 및 상기 제1물질과 금속간화합물을 형성하는 제2물질로 구성되고 상기 제1층 상에 형성된 제2층;을 포함하는, 중온 열전소자.The diffusion barrier layer may include: a first layer made of an intermetallic compound of a first material and a second material and in contact with the thermoelectric material part; and a second layer formed of the first material and a second material forming an intermetallic compound and formed on the first layer.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 열전소재를 구성하는 물질의 열팽창계수와 상기 제1물질의 열팽창계수의 차이가 5 x 10-6K-1 이하인, 중온 열전소자.The difference between the thermal expansion coefficient of the material constituting the thermoelectric material and the thermal expansion coefficient of the first material is 5 x 10 -6 K -1 or less, a medium temperature thermoelectric element.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 열전소재부를 구성하는 물질은 PbTe이고, The material constituting the thermoelectric material part is PbTe,
    상기 제1물질은 Te이고, 상기 제2물질은 Ni인, 중온 열전소자.The first material is Te, and the second material is Ni, a medium temperature thermoelectric device.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 열전소재부를 구성하는 물질은 PbTe이고, The material constituting the thermoelectric material part is PbTe,
    상기 제1물질은 Sn이고, 상기 제2물질은 Cu인, 중온 열전소자.The first material is Sn, and the second material is Cu.
  6. 제2항에 있어서,3. The method of claim 2,
    상기 열전소재부를 구성하는 물질은 PbTe이고, The material constituting the thermoelectric material part is PbTe,
    상기 제1물질은 Co이고, 상기 제2물질은 Fe인, 중온 열전소자.The first material is Co, and the second material is Fe, a medium temperature thermoelectric device.
  7. 제2항에 있어서,3. The method of claim 2,
    상기 확산방지층은 두께가 0.5 내지 10 ㎛인, 중온 열전소자.The diffusion barrier layer has a thickness of 0.5 to 10 μm, a medium temperature thermoelectric device.
  8. 제2항에 있어서,3. The method of claim 2,
    상기 제1층의 금속간화합물은 상기 기판부 상에 형성된 제1물질 도금층 상에 제2물질을 도금한 후 열처리에 의해 형성된 것인, 중온 열전소자.The intermetallic compound of the first layer is formed by heat treatment after plating a second material on the plating layer of the first material formed on the substrate portion, a medium temperature thermoelectric device.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 제1물질 도금층에 의해 상기 상기 열전소재부를 구성하는 물질이 확산방지층으로 확산되는 것이 방지되어, 방전 플라즈마 소결법(Spark Plasma Sintering, SPS) 공정으로 형성된 확산방지층을 형성한 경우보다 열전소재부가 균일한 조성을 가지는, 중온 열전소자.The material constituting the thermoelectric material part is prevented from being diffused into the diffusion prevention layer by the first material plating layer, and the thermoelectric material part is more uniform than when the diffusion prevention layer formed by the spark plasma sintering (SPS) process is formed. A medium temperature thermoelectric element having a composition.
  10. 제2항에 있어서,3. The method of claim 2,
    상기 제2층은 제1층의 상면 및 양측면 상에 형성되는, 중온 열전소자.The second layer is formed on the upper surface and both sides of the first layer, a medium temperature thermoelectric element.
  11. i) 중온 열전소자의 열전소재부를 준비하는 단계; 및i) preparing a thermoelectric material part of a medium temperature thermoelectric element; and
    ii) 상기 열전소재부 상에 제1층 및 제2층으로 형성된 확산방지층을 형성하는 단계;를 포함하고ii) forming a diffusion barrier layer formed of a first layer and a second layer on the thermoelectric material part; and
    상기 ii) 단계는 Step ii) is
    ii-1) 상기 열전소재부 상에 제1물질을 전기도금하여 제1물질 도금층을 형성하는 단계;ii-1) forming a first material plating layer by electroplating a first material on the thermoelectric material part;
    ii-2) 상기 제1물질 도금층 상에 상기 제1물질과 금속간화합물을 형성하는 제2물질을 전기도금하여 제2물질 도금층을 형성하는 단계; 및ii-2) forming a second material plating layer by electroplating a second material forming an intermetallic compound with the first material on the first material plating layer; and
    ii-3) 열처리하여 제1물질과 제2물질의 금속간화합물로 구성되고 상기 열전소재부와 접하는 제1층; 및 제2물질로만 구성되고 상기 제1층 상에 형성된 제2층;을 형성하는 단계;를 포함하는, 중온 열전소자 제조방법.ii-3) a first layer comprising an intermetallic compound of a first material and a second material by heat treatment and in contact with the thermoelectric material part; and forming a second layer made of only a second material and formed on the first layer.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 열전소재부를 구성하는 물질의 열팽창계수와 상기 제1물질의 열팽창계수의 차이가 5 x 10-6K-1 이하인, 중온 열전소자 제조방법.The difference between the thermal expansion coefficient of the material constituting the thermoelectric material part and the thermal expansion coefficient of the first material is 5 x 10 -6 K -1 or less, a method of manufacturing a medium temperature thermoelectric element.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 열전소재부를 구성하는 물질은 PbTe이고, The material constituting the thermoelectric material part is PbTe,
    상기 제1물질은 Te이고, 상기 제2물질은 Ni인, 중온 열전소자의 제조방법.The first material is Te, and the second material is Ni.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 열전소재부를 구성하는 물질은 PbTe이고, The material constituting the thermoelectric material part is PbTe,
    상기 제1물질은 Sn이고, 상기 제2물질은 Cu인, 중온 열전소자의 제조방법.The first material is Sn, and the second material is Cu.
  15. 제11항에 있어서,12. The method of claim 11,
    상기 열전소재부를 구성하는 물질은 PbTe이고, The material constituting the thermoelectric material part is PbTe,
    상기 제1물질은 Co이고, 상기 제2물질은 Fe인, 중온 열전소자의 제조방법.The first material is Co, and the second material is Fe.
  16. 제11항에 있어서,12. The method of claim 11,
    단계 ii)에서 제1물질 도금층에 의해 상기 열전소재부를 구성하는 물질이 확산방지층으로 확산되는 것이 방지되어, 방전 플라즈마 소결법(Spark Plasma Sintering, SPS) 공정으로 형성된 확산방지층을 형성한 경우보다 열전소재부가 균일한 조성을 가지는, 중온 열전소자의 제조방법.In step ii), the material constituting the thermoelectric material part is prevented from being diffused into the diffusion barrier layer by the plating layer of the first material, and the thermoelectric material part is formed by a spark plasma sintering (SPS) process. A method for manufacturing a medium temperature thermoelectric element having a uniform composition.
  17. 제11항에 있어서,12. The method of claim 11,
    상기 ii-2)에서 In ii-2) above
    상기 제1물질 도금층 상면에 제2물질을 전기도금하는 단계; 및 electroplating a second material on an upper surface of the first material plating layer; and
    상기 제2층이 제1층의 상면 및 양측면 상에 형성되도록, 제2물질을 전기도금하는 단계를 포함하는, 중온 열전소자의 제조방법.and electroplating a second material such that the second layer is formed on the upper surface and both sides of the first layer.
PCT/KR2021/016054 2021-02-08 2021-11-05 Element comprising diffusion prevention structure and junction layer formed via electroplating, and method for manufacturing same WO2022169072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210017637A KR20220115664A (en) 2021-02-08 2021-02-08 Devices comprising junction layer and diffusion barrier structure formed by electrochemical deposition and fabrication method thereof
KR10-2021-0017637 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022169072A1 true WO2022169072A1 (en) 2022-08-11

Family

ID=82741266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016054 WO2022169072A1 (en) 2021-02-08 2021-11-05 Element comprising diffusion prevention structure and junction layer formed via electroplating, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20220115664A (en)
WO (1) WO2022169072A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115866A (en) * 2014-12-17 2016-06-23 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module
KR20180022611A (en) * 2016-08-23 2018-03-06 희성금속 주식회사 Thermoelectric element and thermoelectric module including the same
KR20180084711A (en) * 2016-06-01 2018-07-25 엘지이노텍 주식회사 Thermo electric leg and thermo electric element comprising the same
JP2020155556A (en) * 2019-03-19 2020-09-24 株式会社Kelk Thermoelectric module and optical module
KR20200140015A (en) * 2019-06-05 2020-12-15 엘지이노텍 주식회사 Thermo electric element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983627B1 (en) 2017-06-13 2019-05-29 한국과학기술원 Thermoelectric module having 3-dimensional coupling structure with density gradient and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115866A (en) * 2014-12-17 2016-06-23 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module
KR20180084711A (en) * 2016-06-01 2018-07-25 엘지이노텍 주식회사 Thermo electric leg and thermo electric element comprising the same
KR20180022611A (en) * 2016-08-23 2018-03-06 희성금속 주식회사 Thermoelectric element and thermoelectric module including the same
JP2020155556A (en) * 2019-03-19 2020-09-24 株式会社Kelk Thermoelectric module and optical module
KR20200140015A (en) * 2019-06-05 2020-12-15 엘지이노텍 주식회사 Thermo electric element

Also Published As

Publication number Publication date
KR20220115664A (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2017014584A1 (en) Thermoelectric module and manufacturing method thereof
WO2016171530A1 (en) Ceramic substrate manufacturing method and ceramic substrate manufactured thereby
US3766634A (en) Method of direct bonding metals to non-metallic substrates
US6938333B2 (en) Method of manufacturing a metal-ceramic circuit board
WO2017014615A1 (en) Thermoelement using amorphous and exothermic binder, and production method therefor
WO2020085681A1 (en) Thermoelectric element and manufacturing method therefor
WO2014051233A2 (en) Printed circuit board
WO2019093609A1 (en) Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure
WO2018110794A1 (en) Thermoelectric element restrained from oxidation and volatilization and fabrication method therefor
WO2022169072A1 (en) Element comprising diffusion prevention structure and junction layer formed via electroplating, and method for manufacturing same
WO2019054718A2 (en) Method for manufacturing frame-integrated mask
EP2856502A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2023113287A1 (en) Clad heat sink having vertical mesh structure and method for manufacturing same
WO2019156348A1 (en) Frame-integrated mask and method for manufacturing frame-integrated mask
WO2017022991A1 (en) Method for joining superhard materials using metal plating film having amorphous and heating characteristics
WO2017018749A1 (en) Method for manufacturing thin plate having heating and amorphous characteristics through plating
EP0606426A1 (en) Method for making an electrically conductive contact useful for joining high transition temperature superconductors
WO2020032511A1 (en) Mask-transfer system, and method for manufacturing mask having integrated frame
WO2020149465A1 (en) Thermoelectric material manufacturing method
WO2022025325A1 (en) Thermoelectric material comprising multi-layered diffusion barrier layer, and thermoelectric element provided with same
WO2022092377A1 (en) Thermoelectric material comprising multi-layered diffusion barrier layer, and thermoelectric element comprising same
WO2013180443A1 (en) Iron bus bar having copper layer, and method for manufacturing same
WO2021060644A1 (en) High temperature superconductor having multiple superconducting layers, and high temperature superconductor manufacturing method for same
WO2020130282A1 (en) Thermoelectric element and solder paste included therein
WO2020022661A1 (en) Frame-integrated mask manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924968

Country of ref document: EP

Kind code of ref document: A1