WO2022168968A1 - 末梢神経障害の予防又は改善剤 - Google Patents

末梢神経障害の予防又は改善剤 Download PDF

Info

Publication number
WO2022168968A1
WO2022168968A1 PCT/JP2022/004603 JP2022004603W WO2022168968A1 WO 2022168968 A1 WO2022168968 A1 WO 2022168968A1 JP 2022004603 W JP2022004603 W JP 2022004603W WO 2022168968 A1 WO2022168968 A1 WO 2022168968A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
administered
administration
xylitol
mice
Prior art date
Application number
PCT/JP2022/004603
Other languages
English (en)
French (fr)
Inventor
升三 西田
正寛 椿
朋也 武田
敏生 森川
祥太 梶山
悟 石川
Original Assignee
学校法人近畿大学
小林製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学, 小林製薬株式会社 filed Critical 学校法人近畿大学
Priority to US18/275,521 priority Critical patent/US20240099989A1/en
Priority to JP2022579637A priority patent/JPWO2022168968A1/ja
Publication of WO2022168968A1 publication Critical patent/WO2022168968A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a preventive or ameliorating agent for peripheral neuropathy, and more particularly to a preventive or ameliorating agent for peripheral neuropathy that can be suitably used for the prevention or amelioration of peripheral neuropathy caused by anticancer agents or diabetes. be.
  • peripheral neuropathy has a sensory hypersensitivity response (allodynia) that causes pain to stimuli that healthy people do not feel. Since the numbness and pain associated with this hyperesthesia response continues continuously for a long period of time, chemotherapy may be forced to be discontinued, which is regarded as a serious problem for chemotherapy.
  • analgesics such as gabapentin and ketamine, antiepileptic drugs such as lamotrigine and clonazepam, antidepressants such as clomipramine and duloxetine, and herbal medicines such as goshajinkigan and shakuyakukanzoto have been given vitamin B preparations.
  • analgesics such as gabapentin and ketamine
  • antiepileptic drugs such as lamotrigine and clonazepam
  • antidepressants such as clomipramine and duloxetine
  • herbal medicines such as goshajinkigan and shakuyakukanzoto have been given vitamin B preparations.
  • goshajinkigan and shakuyakukanzoto have been given vitamin B preparations.
  • Patent Document 1 proposes a composition containing an amino acid containing serine and a lipid containing an n-3 fatty acid.
  • Patent Document 2 discloses that a specific cyclic amine compound can be a therapeutic or preventive agent for peripheral neuropathy.
  • peripheral neuropathy with similar symptoms develops as one of the symptoms of diabetes.
  • This peripheral neuropathy reduces the patient's quality of life. Therefore, there is a strong demand for an improvement in the symptoms of diabetic peripheral neuropathy.
  • Patent Document 3 discloses that a lactam compound is effective as a sugar transport enhancing agent, and prevents diabetes, diabetic peripheral neuropathy, diabetic nephropathy, diabetic macroangiopathy, impaired glucose tolerance, or obesity and / Or it is described that it can be used as a therapeutic agent.
  • Patent Document 1 is composed of amino acids and fatty acids, it can be said that it has a relatively proven track record of safety for the human body. However, since it is a peptide, it is thought that further investigation is required regarding favorable pharmacokinetic properties. Although Patent Document 2 is a non-peptide, it is therefore necessary to verify the side effects of the drug itself.
  • Patent document 3 discloses that the lactam compound has the ability to transport sugar, including examples. Stay. The cause of diabetic peripheral neuropathy is still unclear. Diabetic peripheral neuropathy is a complication of diabetes, and it is important to stop the progression of diabetes first.
  • the present invention has been conceived in view of the above problems, and provides a preventive or ameliorating agent for peripheral neuropathy using ingredients other than peptides that have few side effects.
  • the preventive or ameliorating agent for peripheral neuropathy according to the present invention is effective both for chemotherapy-induced peripheral neuropathy and for diabetic peripheral neuropathy.
  • the agent for preventing or improving peripheral neuropathy according to the present invention is characterized by containing at least one selected from xylitol, L-talitol, and D-threitol.
  • Section 1 A preventive or ameliorating agent for peripheral neuropathy, comprising at least one selected from xylitol, L-talitol and D-threitol.
  • Section 2. Item 2. The agent for preventing or improving peripheral neuropathy according to Item 1, wherein the peripheral neuropathy is induced by administration of an anticancer agent.
  • Item 3. Item 3. The agent for preventing or improving peripheral neuropathy according to Item 2, wherein the anticancer agent is a platinum-based anticancer agent, a microtubule polymerization stabilizer, a microtubule polymerization inhibitor, a proteasome inhibitor, or the like.
  • Section 4. Item 2.
  • Item 5. The agent for preventing or improving peripheral neuropathy according to any one of Items 1 to 4, which is a pharmaceutical.
  • Item 5. The agent for preventing or improving peripheral neuropathy according to any one of Items 1 to 4, which is a food.
  • Item 7. A method for preventing or improving peripheral neuropathy, comprising administering at least one selected from xylitol, L-talitol and D-threitol.
  • Item 9. Xylitol, L-talitol or D-threitol, which is used for prevention or improvement of peripheral neuropathy.
  • Item 10. A peripheral nerve outgrowth inhibition inhibitor characterized by containing at least one selected from xylitol, L-talitol and D-threitol.
  • Item 11. A method for inhibiting peripheral nerve outgrowth, comprising administering at least one selected from xylitol, L-talitol, and D-threitol.
  • Item 12. Use of xylitol, L-talitol or D-threitol in the production of peripheral nerve outgrowth inhibition, which is used for peripheral nerve outgrowth inhibition.
  • Item 13. Xylitol, L-talitol or D-threitol used for inhibiting peripheral nerve outgrowth.
  • the present invention can provide a preventive or ameliorating agent for peripheral neuropathy. That is, by administering or ingesting at least one selected from xylitol, L-talitol, and D-threitol, numbness in the extremities, pain in the extremities, and reduction in deep tendon reflexes induced by cancer chemotherapy or diabetes. , muscle weakness, allodynia, hyperalgesia, finger dexterity dysfunction, gait disorder, stumbling, falling, flexion disorder (difficulty or inability to sit upright, cross-legged, sideways or chair sitting), or paralysis of the limbs, etc. .
  • the preventive or ameliorating agent according to the present invention can also be used to prevent the above peripheral neuropathy by taking it at the same time as the start of chemotherapy or after being conscious of taking too much sugar.
  • providing a preventive or ameliorating agent for peripheral neuropathy that can be easily taken or taken at home is very useful for patients undergoing cancer treatment at home.
  • the patient's quality of life (QOL) is improved by preventing or improving peripheral neuropathy caused by cancer chemotherapy or diabetes.
  • sugar alcohols such as xylitol, L-talitol, and D-threitol are known to be safe for the human body, and side effects other than diarrhea due to overdose have not been observed. has been demonstrated.
  • Peripheral neuropathy is caused not only by cancer chemotherapy and diabetes, but also by administration of other drugs, trauma, infectious diseases, etc., but if the preventive or improving agent according to the present invention is used, these peripheral neuropathies can be prevented. It can also prevent or ameliorate symptoms.
  • FIG. 2 shows the results of a cold plate test when xylitol was administered to mice together with oxaliplatin.
  • FIG. 4 shows the results of the von Frey test when xylitol was administered with oxaliplatin to mice.
  • FIG. 4 shows the results of a cold plate test when xylitol was administered with paclitaxel to mice.
  • FIG. 4 shows the results of the von Frey test when xylitol was administered with paclitaxel to mice.
  • FIG. 2 shows the results of the cold plate test when xylitol was administered to mice together with vincristine.
  • FIG. 4 shows the results of the von Frey test when xylitol was administered with vincristine to mice.
  • FIG. 4 shows the results of the von Frey test when xylitol was administered with vincristine to mice.
  • FIG. 2 shows the results of the cold plate test when xylitol was administered with bortezomib to mice.
  • FIG. 4 shows the results of the von Frey test when xylitol was administered with bortezomib to mice.
  • FIG. 2 shows the results of a cold plate test when xylitol was administered to mice that developed peripheral neuropathy due to oxaliplatin.
  • FIG. 2 shows the results of the von Frey test when xylitol was administered to mice that developed peripheral neuropathy due to oxaliplatin.
  • FIG. 3 shows the results of a cold plate test when xylitol was administered to mice that developed peripheral neuropathy due to paclitaxel.
  • FIG. 2 shows the results of the von Frey test when xylitol was administered to mice that developed peripheral neuropathy due to paclitaxel.
  • FIG. 2 shows the results of a cold plate test when xylitol was administered to mice that developed peripheral neuropathy due to vincristine.
  • Fig. 10 shows the results of the von Frey test when xylitol was administered to mice that developed peripheral neuropathy due to vincristine.
  • FIG. 3 shows the results of a cold plate test when xylitol was administered to mice that developed peripheral neuropathy due to bortezomib.
  • FIG. 3 shows the results of the von Frey test when xylitol was administered to mice that developed peripheral neuropathy due to bortezomib.
  • FIG. 2 shows the results of the cold plate test when D-threitol was administered with oxaliplatin to mice.
  • FIG. 4 shows the results of the von Frey test when D-threitol was administered with oxaliplatin to mice.
  • FIG. 2 shows the results of the cold plate test when D-threitol was administered with paclitaxel to mice.
  • FIG. 4 shows the results of the von Frey test when D-threitol was administered with paclitaxel to mice.
  • FIG. 2 shows the results of the cold plate test when D-threitol was administered with vincristine to mice.
  • FIG. 4 shows the results of the von Frey test when D-threitol was administered with vincristine to mice.
  • FIG. 4 shows the results of the von Frey test when D-threitol was administered with vincristine to mice.
  • FIG. 2 shows the results of the cold plate test when D-threitol was administered with bortezomib to mice.
  • FIG. 4 shows the results of the von Frey test when D-threitol was administered with bortezomib to mice.
  • FIG. 2 shows the results of a cold plate test when D-threitol was administered to mice that developed peripheral neuropathy due to oxaliplatin.
  • Fig. 2 shows the results of von Frey test when D-threitol was administered to mice that developed peripheral neuropathy due to oxaliplatin.
  • FIG. 2 shows the results of a cold plate test when D-threitol was administered to mice that developed peripheral neuropathy due to paclitaxel.
  • FIG. 2 shows the results of the von Frey test when D-threitol was administered to mice that developed peripheral neuropathy due to paclitaxel.
  • FIG. 2 shows the results of a cold plate test when D-threitol was administered to mice that developed peripheral neuropathy due to vincristine.
  • Fig. 10 shows the results of the von Frey test when D-threitol was administered to mice that developed peripheral neuropathy due to vincristine.
  • FIG. 3 shows the results of a cold plate test when D-threitol was administered to mice that developed peripheral neuropathy due to bortezomib.
  • FIG. 10 shows the results of the von Frey test when D-threitol was administered to mice that developed peripheral neuropathy due to bortezomib.
  • FIG. 2 shows the results of a cold plate test when L-talitol was administered to mice together with oxaliplatin.
  • FIG. 4 shows the results of the von Frey test when L-talitol was administered with oxaliplatin to mice.
  • FIG. 3 shows the results of a cold plate test when L-talitol was administered to mice together with paclitaxel.
  • FIG. 4 shows the results of the von Frey test when L-talitol was administered with paclitaxel to mice.
  • FIG. 3 shows the results of a cold plate test when L-talitol was administered to mice together with vincristine.
  • FIG. 4 shows the results of the von Frey test when L-talitol was administered with vincristine to mice.
  • FIG. 3 shows the results of a cold plate test when L-talitol was administered to mice together with vincristine.
  • FIG. 4 shows the results of the von Frey test when L-talitol was administered with vincristine to
  • FIG. 2 shows the results of the cold plate test when L-talitol was administered with bortezomib to mice.
  • FIG. 2 shows the results of the von Frey test when L-talitol was administered with bortezomib to mice.
  • FIG. 2 shows the results of a cold plate test when L-talitol was administered to mice that developed peripheral neuropathy due to oxaliplatin.
  • Fig. 2 shows the results of the von Frey test when L-talitol was administered to mice that developed peripheral neuropathy due to oxaliplatin.
  • FIG. 2 shows the results of a cold plate test when L-talitol was administered to mice that developed peripheral neuropathy due to paclitaxel.
  • FIG. 2 shows the results of the von Frey test when L-talitol was administered to mice that developed peripheral neuropathy due to paclitaxel.
  • Fig. 2 shows the results of a cold plate test when L-talitol was administered to mice that developed peripheral neuropathy due to vincristine.
  • Fig. 10 shows the results of the von Frey test when L-talitol was administered to mice that developed peripheral neuropathy due to vincristine.
  • FIG. 2 shows the results of a cold plate test when L-talitol was administered to mice that developed peripheral neuropathy due to bortezomib.
  • FIG. 10 shows the results of the von Frey test when L-talitol was administered to mice that developed peripheral neuropathy due to bortezomib.
  • FIG. 10 shows the results of a cold plate test when xylitol was administered from the day streptozotocin was administered to mice.
  • FIG. 10 shows the results of the von Frey test when xylitol was administered from the day streptozotocin was administered to mice.
  • Fig. 2 shows the results of a cold plate test in which xylitol was administered to mice that developed diabetes and peripheral neuropathy due to administration of streptozotocin.
  • FIG. 2 shows the results of the von Frey test when xylitol was administered to mice that developed diabetes and developed peripheral neuropathy by administration of streptozotocin.
  • FIG. 3 shows the results of a cold plate test when D-threitol was administered from the day streptozotocin was administered to mice.
  • FIG. 10 shows the results of the von Frey test when D-threitol was administered from the day streptozotocin was administered to mice.
  • Fig. 2 shows the results of a cold plate test in which D-threitol was administered to mice that developed diabetes and peripheral neuropathy due to administration of streptozotocin.
  • Fig. 2 shows the results of the von Frey test when D-threitol was administered to mice that developed diabetes and developed peripheral neuropathy by administration of streptozotocin.
  • FIG. 3 shows the results of a cold plate test when L-talitol was administered from the day streptozotocin was administered to mice.
  • FIG. 10 shows the results of the von Frey test when L-talitol was administered from the day of administration of streptozotocin to mice.
  • FIG. 2 shows the results of a cold plate test when L-talitol was administered to mice that developed diabetes and peripheral neuropathy due to administration of streptozotocin.
  • Fig. 2 shows the results of the von Frey test when L-talitol was administered to mice that developed diabetes and developed peripheral neuropathy by administration of streptozotocin.
  • FIG. 2 shows the results of the inhibitory effect of xylitol on nerve elongation of peripheral nerves using PC12 cells, a cell line derived from rat pheochromocytoma.
  • FIG. 2 shows the results of a peripheral nerve cytotoxicity test by xylitol using PC12 cells, a cell line derived from rat pheochromocytoma.
  • FIG. 2 shows the results of the inhibitory effect of xylitol on nerve growth inhibition of peripheral nerves using SH-SY5Y, a human neuroblastoma cell line.
  • FIG. 2 shows the results of a peripheral nerve cytotoxicity test by xylitol using SH-SY5Y, a human neuroblastoma cell line.
  • prevention means not only preventing the onset of peripheral neuropathy, but also includes the action of reducing the degree of symptoms at the time of onset, and “improving” means peripheral nerve It does not mean only radical treatment of disorders, but also includes the action of reducing or mitigating the degree of symptoms of peripheral neuropathy.
  • - indicates a range of "above, below”.
  • the preventive or ameliorating agent according to the present invention includes xylitol (CAS number 87-99-0), L-talitol (CAS number 60660-58-4) and D-threitol (CAS number 2418-52-2) as active ingredients. At least one selected is included.
  • xylitol, L-talitol, and D-threitol (hereinafter collectively referred to as “xylitol, etc.”) used in the preventive or ameliorating agent according to the present invention can be prepared by methods known in the art. can.
  • xylitol is mass-produced by extracting xylan from corn stalks and birch, hydrolyzing it to produce xylose, and hydrogenating it using nickel as a catalyst.
  • L-talitol can be produced by reducing monosaccharides such as L-talose and L-altrose with hydrogen at high temperature and high pressure in the presence of a metal catalyst by an organic chemical method. Also disclosed is a method of obtaining by an enzymatic reaction. D-threitol is also said to be produced via modification of the equivalent isomer of tartaric acid.
  • the preventive or ameliorating agent according to the present invention can be provided in the form of pharmaceuticals, foods, and the like. Further, the improving agent according to the present invention can be provided with a label indicating that it is for improving peripheral neuropathy or preventing peripheral neuropathy.
  • the preventive or ameliorating agent according to the present invention when used as a pharmaceutical, it can be provided as a therapeutic agent for peripheral neuropathy (pharmaceutical composition) or a prophylactic agent for peripheral neuropathy (pharmaceutical composition).
  • the preventive or ameliorating agent according to the present invention when used as a pharmaceutical, it may be administered orally, transdermally, enterally, intravenously, transpulmonary, subcutaneously, transmucosally, intramuscularly, or the like. It may be appropriately set according to the degree of target peripheral neuropathy.
  • xylitol or the like may be prepared into a desired dosage form as it is or in combination with other additives.
  • pharmaceuticals include internal preparations such as capsules, granules, powders, pills, tablets, jellies, and syrups; liquids, ointments, creams, lotions, gelling agents, patches , external preparations such as aerosols; injections and the like.
  • the preventive or ameliorating agent according to the present invention is to be made into a pharmaceutical
  • binders, lubricants, disintegrants, coloring agents, corrigents, preservatives, antioxidants, stabilizers Additives such as water, lower alcohols, solubilizers, surfactants, emulsion stabilizers, gelling agents, adhesives, fragrances, and pigments may be appropriately selected and formulated.
  • pharmacological ingredients such as vasodilating agents, adrenal corticosteroids, keratolytic agents, moisturizing agents, bactericidal agents, antioxidants, and cooling agents may also be contained, if necessary.
  • the content of xylitol or the like in the drug may be appropriately set according to the dosage form of the drug so that the daily dosage described later can be satisfied.
  • the total amount of xylitol and the like is (0.1 to 100)% by mass, preferably (15 to 80)% by mass, more preferably (30 to 70)% by mass.
  • the total amount of xylitol and the like is (0.01 to 50)% by mass, preferably (0.1 to 40)% by mass, more preferably (0.5 to 30)% by mass. mentioned.
  • the preventive or ameliorating agent according to the present invention is made into a food
  • the food is provided as a food for preventing or improving peripheral neuropathy.
  • xylitol or the like may be prepared into a desired form as it is or in combination with other food materials or additives.
  • Foods include general processed foods such as luxury foods and health foods, foods with health claims such as foods with specified health uses, foods with nutrient function claims, and functional foods, etc. specified in the food with health claims system of the Ministry of Health, Labor and Welfare.
  • Specific foods include candy, gum, jelly, biscuits, cookies, rice crackers, bread, yogurt, ice cream, pudding, and other favorite foods; noodles; fish and livestock meat products; tea, soft drinks, coffee drinks, milk Beverages such as beverages, whey beverages and lactic acid beverages; general processed foods such as; capsules (soft capsules, hard capsules), tablets, granules, powders, and supplements such as jelly. Among these foods and drinks, supplements are preferred.
  • the content of xylitol or the like in the food may be appropriately set according to the type of food, etc. so as to satisfy the daily intake as described later.
  • the total amount of xylitol and the like is (0.05 to 100)% by mass, preferably (10 to 80)% by mass, more preferably (20 to 60)% by mass.
  • the preventive or ameliorating agent according to the present invention is used for preventing or ameliorating peripheral neuropathy.
  • Symptoms of peripheral neuropathy to be applied include, for example, sensory neuropathy, autonomic neuropathy, and motor neuropathy.
  • the symptom of peripheral neuropathy to which the preventive or ameliorating agent according to the present invention is applied is more preferably sensory neuropathy.
  • Sensory neuropathy includes, but is not limited to, numbness in extremities, pain in extremities, decreased deep tendon reflexes, decreased muscle strength, allodynia, hyperalgesia, dysalgesia, finger dexterity dysfunction, gait disturbance, stumbling, and falling. , flexion disorders (difficulty or inability to sit upright, cross-legged, sitting sideways or sitting on a chair, etc.), paralysis of the limbs, and the like.
  • peripheral neuropathy but not limited to, peripheral nerve transmission of extremities (including limbs, etc.), assisting hand movements in daily life such as writing letters or pressing buttons, grip strength and hand It can assist the feeling of putting effort into the hand, and can improve temporary discomfort and discomfort in the hand.
  • the preventive or ameliorating agent according to the present invention can be said to reduce discomfort in the hands or feet, or to help nerve transmission in the hands or feet.
  • the prophylactic or ameliorating agent according to the present invention is not particularly limited in terms of the inducer of peripheral neuropathy to which it is applied. Although it can be applied to any peripheral neuropathy caused by cancer chemotherapy, it is particularly preferably applied to peripheral neuropathy induced by cancer chemotherapy or diabetic peripheral neuropathy.
  • the type of anticancer agent is not particularly limited.
  • platinum agents include oxaliplatin, cisplatin, carboplatin, and nedaplatin.
  • alkylating agents include cyclophosphamide, ifosfamide, melphalan, thiotepa, carbocone, nimustine hydrochloride, ranimustine, carmustine, busulfan and the like.
  • antimetabolites include 5-fluorouracil, methotrexate, doxifluridine, tegafur, cytarabine, cytarabine oxphosphate, enocitabine, gemcitabine, mercaptopurine, fludarabine, capecitabine, and azacitidine.
  • microtubule active agents include docetaxel, paclitaxel, vincristine, vinblastine, vindesine, vinorelbine, cabazitaxel, embulin and the like.
  • anticancer antibiotics include doxorubicin hydrochloride, mitomycin, amrubicin hydrochloride, pirarubicin hydrochloride, epirubicin hydrochloride, aclarubicin hydrochloride, mitoxantrone hydrochloride, bleomycin hydrochloride, pepromycin sulfate, daunorubicin, idarubicin, actinomycin D, and the like. is mentioned.
  • topoisomerase inhibitors include irinotecan, nogitecan hydrochloride, etoposide and the like.
  • proteasome inhibitors include bortezomib, carfilzomib, and ixazomib.
  • histone deacetylase inhibitors include vorinostat, panobinostat, romidepsin, tucidinostat and the like.
  • FLT3 tyrosine kinase inhibitors include gilteritinib and the like. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , trastuzumab, trastuzumab deruxtecan, cetuximab, panitumumab, necitumumab, cetuximab sarotarocan sodium, ramucirumab, dinutuximab, aflibercept beta, denosumab and the like.
  • ALK inhibitors include alectinib, brigtinib, and ceritinib.
  • HER2/EGFR tyrosine kinase inhibitors include lapatinib and the like.
  • ALK/ROS1 tyrosine kinase inhibitors include crizotinib and lorlatinib.
  • TRK/ROS1 tyrosine kinase inhibitors include larotrectinib and entrectinib.
  • Specific examples of multikinase inhibitors include sorafenib, sunitinib, pazopanib, vandetanib, axitinib, regorafenib, nintedanib, lenvatinib, cabozantinib and the like.
  • JAK inhibitors include ruxolitinib and the like.
  • BCR-ABL inhibitors specifically include imatinib, nilotinib, dasatinib, bosutinib, ponatinib and the like.
  • Specific examples of FGFR inhibitors include pemigatinib and the like.
  • Specific examples of MET inhibitors include tepotinib and capmatinib.
  • BRAF inhibitors include vemurafenib, dabrafenib, and encorafenib.
  • MEK inhibitors include binimetinib and trametinib.
  • immunomodulators include thalidomide, lenalidomide, ponalidomide, and the like.
  • immune checkpoint inhibitors include nivolumab, ipilimumab, pembrolizumab, atezolizumab, avelumab, and durvalumab.
  • the type of anticancer agent that induces peripheral neuropathy is not particularly limited, but preferably examples include DNA replication inhibitors (platinum agents and alkylating agents), microtubule polymerization stabilizers, microtubule polymerization inhibitors, proteasome inhibitors, and the like.
  • administering When applying the preventive or improving agent according to the present invention to peripheral neuropathy induced by cancer chemotherapy, administration or intake of the preventive or improving agent according to the present invention is performed before or at the same time as the start of administration of cancer chemotherapy. It may be started, but administration or intake of the preventive or improving agent according to the present invention may be started during the period of cancer chemotherapy or after completion of cancer chemotherapy.
  • the preventive or ameliorating agent according to the present invention When the preventive or ameliorating agent according to the present invention is applied to diabetic peripheral neuropathy, it can be ingested as an ameliorating agent after the onset of peripheral neuropathy. In addition, even before the onset of peripheral neuropathy, if the onset of diabetes can be confirmed, it can be used as a preventive agent by ingesting it.
  • the administration or intake amount of the preventive or improving agent according to the present invention can be appropriately selected according to symptoms, age, body weight, elapsed time after onset, combined therapeutic measures, and the like.
  • the amount of anticancer drug that causes peripheral neuropathy e.g., 6 mg/mouse kg body weight for oxaliplatin
  • the total intake of xylitol and the like may be 5 mg/mouse kg body weight or more for prevention, and preferably 100 mg/mouse kg body weight or more for treatment.
  • the total daily intake of xylitol and the like in mice effective for improving peripheral neuropathy when diabetes was caused by administration of 200 mg/mouse kg body weight of streptozotocin was 1 mg/mouse kg body weight or more is sufficient, and 5 mg/mouse kg body weight or more is more preferable.
  • HED Human Equivalent Dose
  • the total daily intake of xylitol, etc. for the improvement of peripheral neuropathy caused by anticancer drugs should be 0.41 mg/human kg body weight or more for prevention, and 8.13 mg/kg human body weight or more is preferable. Therefore, the total daily intake of xylitol, etc., taken by an adult human male per day may be 24.6 mg/day/adult or more for prevention, and 487.8 mg/day/adult for treatment. It is preferable if it is above.
  • the total daily intake of xylitol, etc. for improving peripheral neuropathy due to diabetes may be 0.08 mg/person kg body weight or more for prevention, and 0.41 mg/person for treatment. It is preferable if it is more than kg body weight. Therefore, the total daily intake of xylitol, etc., taken by an adult human male should be 4.8 mg/day/adult or more for prevention, and 24.6 mg/day/adult for treatment. It is preferable if it is above.
  • the preventive or ameliorating agent according to the present invention when the preventive or ameliorating agent according to the present invention is orally administered or taken, the total administration or intake of xylitol or the like may be 0.25 g/day to 30 g/day/adult. .48 g/day/adult to 20 g/day/adult or less is preferred.
  • a lower dose (4.8 mg/day/adult to 30 g/day/adult, preferably 24.6 mg/day/adult to 20 g/day/adult) can also be used in the case of diabetes.
  • the preventive or ameliorating agent according to the present invention may be administered or taken in 1 or 2 to 3 divided doses per day so as to satisfy the daily dosage or intake.
  • Xylitol-derived anticancer drug-derived peripheral neuropathy preventive agent ⁇ Preventive effect of xylitol on mouse peripheral neuropathy caused by oxaliplatin>
  • hyperesthesia such as allodynia (severe pain induced by tactile stimulation that does not normally cause pain) due to hyperesthesia caused by cold stimulation and mechanical stimulation caused by administration of the anticancer drug oxaliplatin.
  • Xylitol was orally administered to mice while administering oxaliplatin, and the following tests (Cold plate test and von Frey test) were performed.
  • oxaliplatin is an anticancer drug that corresponds to a platinum drug.
  • the dosage mg/kg indicates the weight of the substance to be administered per 1 kg body weight of the mouse.
  • mice Balb/c female mice aged 6 to 7 weeks were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, an oxaliplatin-administered group, and two levels of oxaliplatin and xylitol-administered group (oxaliplatin+xylitol-administered group). Each group consisted of 9 animals.
  • mice in the oxaliplatin-administered group and the oxaliplatin + xylitol-administered group 6 mg/kg of oxaliplatin was intraperitoneally administered on day 8 of acclimatization. This day was designated as day 0 of administration, and 6 mg/kg of oxaliplatin was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • xylitol 1 mg/kg of xylitol was orally administered daily from day 0.
  • the second oxaliplatin+xylitol administration group was orally administered 5 mg/kg xylitol daily from day 0.
  • control group 6 mg/kg oxaliplatin administration group, 6 mg/kg oxaliplatin + 1 mg/kg xylitol administration group, and 6 mg/kg oxaliplatin + 5 mg/kg xylitol administration group, respectively.
  • the horizontal axis is the time elapsed after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the white circle solid line is the control group
  • the white diamond solid line is the 6 mg/kg oxaliplatin administration group
  • the black triangle dotted line is the 6 mg/kg oxaliplatin + 1 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg oxaliplatin administration group.
  • This is the group receiving platinum + 5 mg/kg xylitol.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the oxaliplatin-administered group (white diamond solid line) showed a shortened withdrawal reaction time (latency) against the cold stimulation on the cold plate, and then showed a constant withdrawal reaction time.
  • the control group ( White circle solid line) showed almost the same escape reaction time (latency).
  • the two groups to which xylitol was administered did not show any shortening of the withdrawal reaction time thereafter. Compared to the 6 mg/kg oxaliplatin-administered group (white diamond solid line), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the white circle solid line is the control group
  • the white diamond solid line is the 6 mg/kg oxaliplatin administration group
  • the black triangle dotted line is the 6 mg/kg oxaliplatin + 1 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg oxaliplatin administration group. This is the group receiving platinum + 5 mg/kg xylitol.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the avoidance response score increased significantly compared to the control group (white circle solid line).
  • the avoidance response score was similar to that of the control group. Compared to the oxaliplatin-administered group (white diamond solid line), the increase in the avoidance response score was suppressed.
  • xylitol-administered 6 mg/kg oxaliplatin + 1 mg/kg xylitol administration group (black triangle dotted line) and the 6 mg/kg oxaliplatin + 5 mg/kg xylitol administration group (black square dashed line) showed similar results to the control group. rice field. Therefore, it can be concluded that xylitol suppresses oxaliplatin-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, xylitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by oxaliplatin (anticancer agent).
  • hyperesthesia such as hyperesthesia caused by cold stimuli and allodynia caused by mechanical stimuli (severe pain induced by tactile stimuli that normally does not cause pain) caused by administration of the anticancer drug paclitaxel.
  • Xylitol was orally administered to mice while paclitaxel was administered, and the following tests (Cold plate test and von Frey test) were performed.
  • Paclitaxel is an anticancer agent that corresponds to a microtubule polymerization stabilizer (microtubule active agent).
  • mice Balb/c female mice aged 6 to 7 weeks were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a paclitaxel-administered group, a xylitol-administered group, and a paclitaxel and xylitol-administered group (paclitaxel+xylitol-administered group). Each group consisted of 5 animals.
  • Paclitaxel-administered group and paclitaxel + xylitol-administered group were intraperitoneally administered 6 mg/kg of paclitaxel on day 8 of acclimatization. This day was designated as day 0 of administration, and thereafter, on days 7 and 14, 6 mg/kg of paclitaxel was intraperitoneally administered to these mice.
  • xylitol-administered group 5 mg/kg of xylitol was orally administered daily from day 0.
  • control group 6 mg/kg paclitaxel administration group, 5 mg/kg xylitol administration group, and 6 mg/kg paclitaxel + 5 mg/kg xylitol administration group, respectively.
  • Cold plate test A cold plate test was performed to test the effect of xylitol on paresthesia in cold stimulation. The four groups of mice shown in (4) of this example (Example 1) were placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 5 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 5 mg/kg xylitol administration group.
  • the two groups to which xylitol was administered did not show any shortening of the withdrawal reaction time thereafter. Compared to the 6 mg/kg paclitaxel-administered group (black circle dashed line), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis represents the elapsed time (days) after administration and the average value of the avoidance responses (scores) of the mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the white circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 5 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 5 mg/kg xylitol administration group.
  • xylitol suppresses paclitaxel-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, xylitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by paclitaxel (anticancer drug).
  • mice Balb/c female mice aged 6 to 7 weeks were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a vincristine-administered group, a xylitol-administered group, and a vincristine and xylitol-administered group (vincristine + xylitol-administered group). Each group consisted of 5 animals.
  • 0.2 mg/kg of vincristine was intraperitoneally administered to mice in the vincristine-administered group and the vincristine + xylitol-administered group on day 8 of acclimatization. This day was designated as day 0 of administration, and 0.2 mg/kg of vincristine was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • xylitol-administered group 5 mg/kg of xylitol was orally administered daily from day 0.
  • control group 0.2 mg/kg vincristine administration group, 5 mg/kg xylitol administration group, and 0.2 mg/kg vincristine + 5 mg/kg xylitol administration group, respectively.
  • Cold plate test A cold plate test was performed to test the effect of xylitol on paresthesia in cold stimulation. The four groups of mice shown in (7) of this example (Example 1) were placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 5 mg/kg xylitol administration group
  • the black square dashed line is 0.2 mg/kg vincristine + 5 mg/kg.
  • This is the xylitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the 0.2 mg/kg vincristine administration group (broken black circle) showed a shortened withdrawal reaction time (latency) against the cold stimulus on the cold plate, and then a constant withdrawal reaction time. showed that.
  • the control group ( White circle solid line) showed almost the same escape reaction time (latency).
  • the two groups to which xylitol was administered did not show any shortening of the withdrawal reaction time thereafter. Compared to the 0.2 mg/kg vincristine-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis represents the elapsed time (days) after administration and the average value of avoidance responses (scores) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 5 mg/kg xylitol administration group
  • the black square dashed line is 0.2 mg/kg vincristine + 5 mg/kg. This is the xylitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the avoidance response score increased significantly compared to the control group (white circle solid line).
  • control was performed throughout the experimental period.
  • the avoidance reaction score was similar to that of the group (white circle solid line).
  • the increase in the avoidance reaction score was suppressed compared to the 0.2 mg/kg vincristine administration group (broken black circle).
  • xylitol suppresses vincristine-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, xylitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by vincristine (anticancer drug).
  • hyperesthesia such as hyperesthesia caused by cold stimuli and allodynia caused by mechanical stimuli (severe pain induced by tactile stimuli that normally does not cause pain) caused by administration of the anticancer drug bortezomib.
  • Xylitol was orally administered to mice while administering bortezomib, and the following tests (Cold plate test and von Frey test) were performed.
  • Bortezomib is an anticancer agent that corresponds to a proteasome agent.
  • mice Balb/c female mice aged 6 to 7 weeks were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a bortezomib-administered group, a xylitol-administered group, and a bortezomib and xylitol-administered group (bortezomib+xylitol-administered group). Each group consisted of 5 animals.
  • Bortezomib-administered group and bortezomib-xylitol-administered group were intraperitoneally administered with 1 mg/kg of bortezomib on day 8 of acclimatization. This day was designated as day 0 of administration, and 1 mg/kg of bortezomib was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • xylitol-administered group 5 mg/kg of xylitol was orally administered daily from day 0.
  • control group 1 mg/kg bortezomib administration group, 5 mg/kg xylitol administration group, and 1 mg/kg bortezomib + 5 mg/kg xylitol administration group, respectively.
  • the horizontal axis is the time elapsed after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 5 mg / kg xylitol administration group
  • the black square dashed line is the 1 mg / kg bortezomib + 5 mg / kg xylitol administration group.
  • the two groups to which xylitol was administered did not show any shortening of the withdrawal reaction time thereafter. Compared to the 1 mg/kg bortezomib-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was suppressed.
  • the horizontal axis represents the elapsed time (days) after administration, which is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 5 mg / kg xylitol administration group
  • the black square dashed line is the 1 mg / kg bortezomib + 5 mg / kg xylitol administration group.
  • xylitol suppresses bortezomib-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, xylitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by bortezomib (anticancer drug).
  • Anticancer drug-derived peripheral neuropathy therapeutic agent containing xylitol ⁇ Therapeutic effect of xylitol on mouse peripheral neuropathy induced by oxaliplatin> Xylitol was found to prevent peripheral neuropathy caused by oxaliplatin. Next, we examined whether xylitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of peripheral neuropathy due to administration of anticancer drugs.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into five groups: a control group, a group administered only oxaliplatin, and a group administered three levels of oxaliplatin and xylitol. Each group consisted of 7 animals.
  • oxaliplatin On day 8 of acclimation, 6 mg/kg of oxaliplatin was intraperitoneally administered to mice other than the control group. This day was defined as the first day of administration (day 0), and the same dose of oxaliplatin was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • the first oxaliplatin + xylitol administration group 5 mg/kg of xylitol was orally administered daily from the 6th day of administration.
  • the second oxaliplatin+xylitol administration group 25 mg/kg of xylitol was orally administered daily from day 6 of administration.
  • 100 mg/kg of xylitol was orally administered daily from day 6 of administration.
  • the 6th day of administration means that the number of days elapsed after administration is 6 days. The same shall apply hereinafter.
  • the above five groups are a control group, a 6 mg/kg oxaliplatin administration group, a 6 mg/kg oxaliplatin + 5 mg/kg xylitol administration group, a 6 mg/kg oxaliplatin + 25 mg/kg xylitol administration group, and a 6 mg/kg oxaliplatin + 100 mg/kg xylitol administration group.
  • a treatment group a 6 mg/kg oxaliplatin administration group, a 6 mg/kg oxaliplatin + 5 mg/kg xylitol administration group, a 6 mg/kg oxaliplatin + 25 mg/kg xylitol administration group, and a 6 mg/kg oxaliplatin + 100 mg/kg xylitol administration group.
  • the horizontal axis is the time elapsed after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle solid line is the 6 mg/kg oxaliplatin administration group
  • the black square dashed line is the 6 mg/kg oxaliplatin + 5 mg/kg xylitol administration group
  • the open square dashed line is 6 mg/kg oxaliplatin. +25 mg/kg xylitol administration group
  • the dashed black triangle is the 6 mg/kg oxaliplatin + 100 mg/kg xylitol administration group.
  • the withdrawal reaction time (latency) decreased uniformly by the 6th day after administration in the 4 groups administered with oxaliplatin other than the control group.
  • the three groups of 6 mg / kg oxaliplatin + 5 mg / kg xylitol administration group, 6 mg / kg oxaliplatin + 25 mg / kg xylitol administration group, and 6 mg / kg oxaliplatin + 100 mg / kg xylitol administration group on day 6 After that, the latency tended to become longer, and on the 10th day, the escape reaction time (latency) of these three groups and the control group was significantly longer than that of the 6 mg/kg oxaliplatin-administered group.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, an oxaliplatin administration group, a xylitol administration group, and an oxaliplatin and xylitol administration group (oxaliplatin+xylitol administration group). Each group consisted of 5 animals.
  • mice in the oxaliplatin-administered group and the oxaliplatin+xylitol-administered group 6 mg/kg of oxaliplatin was intraperitoneally administered on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same dose of oxaliplatin was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg xylitol administration group were orally administered 100 mg/kg xylitol every day from day zero.
  • Mice in the oxaliplatin+100 mg/kg xylitol administration group were orally administered with 100 mg/kg xylitol every day from day 6 of administration.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 100 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg oxaliplatin + 100 mg/kg xylitol administration group. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • Xylitol was found to prevent peripheral neuropathy caused by paclitaxel.
  • xylitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of peripheral neuropathy due to administration of anticancer drugs.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a paclitaxel-administered group, a xylitol-administered group, and a paclitaxel and xylitol-administered group (paclitaxel+xylitol-administered group). Each group consisted of 5 animals.
  • Paclitaxel-administered group and paclitaxel + xylitol-administered group were intraperitoneally administered 6 mg/kg of paclitaxel on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same amount of paclitaxel was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg xylitol administration group were orally administered 100 mg/kg xylitol every day from day zero.
  • Mice in the paclitaxel+100 mg/kg xylitol administration group were orally administered 100 mg/kg xylitol every day from day 6 of administration.
  • Example 2 Cold plate test The four groups of mice shown in (6) of this example (Example 2) were tested for the effect of xylitol on hypoesthesia due to cold stimulation. Each group of mice was placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 100 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 100 mg/kg xylitol administration group.
  • the withdrawal reaction times (latencies) of the two paclitaxel-administered groups other than the control group and the xylitol-administered group uniformly decreased by 6 days after administration.
  • the latency tended to become longer after the 6th day, and on the 12th day, the withdrawal reaction time (latency) was significantly higher than that in the 6 mg/kg paclitaxel administration group. time) became longer.
  • xylitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy (peripheral nerve hypersensitivity symptoms).
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 100 mg/kg xylitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 100 mg/kg xylitol administration group.
  • xylitol ⁇ Therapeutic effect of xylitol on vincristine peripheral neuropathy in mice> Xylitol was found to prevent peripheral neuropathy caused by vincristine. Next, we examined whether xylitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of peripheral neuropathy due to administration of anticancer drugs.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a vincristine-administered group, a xylitol-administered group, and a vincristine and xylitol-administered group (vincristine + xylitol-administered group). Each group consisted of 5 animals.
  • 0.2 mg/kg of vincristine was intraperitoneally administered to mice in the vincristine-administered group and the vincristine + xylitol-administered group on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same amount of vincristine was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg xylitol administration group were orally administered 100 mg/kg xylitol every day from day zero.
  • Mice in the vincristine + 100 mg/kg xylitol administration group were orally administered with 100 mg/kg xylitol every day from day 6 of administration.
  • mice shown in (9) of this example were tested for the effect of xylitol on hypoesthesia due to cold stimulation.
  • Each group of mice was placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the elapsed time after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 100 mg/kg xylitol administration group
  • the black square dashed line is 0.2 mg/kg vincristine + 100 mg/kg. This is the xylitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction times (latencies) of the two vincristine-administered groups other than the control group and the xylitol-administered group uniformly decreased by 6 days after administration.
  • the latency tended to become longer after the 6th day, and on the 12th day, significant withdrawal compared to the 0.2 mg/kg vincristine administration group. Reaction time (latency) is longer.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 100 mg/kg xylitol administration group
  • the black square dashed line is 0.2 mg/kg vincristine + 100 mg/kg.
  • This is the xylitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • xylitol ⁇ Therapeutic effect of xylitol on bortezomib-induced peripheral neuropathy in mice> Xylitol was found to prevent peripheral neuropathy caused by bortezomib. Next, we examined whether xylitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of peripheral neuropathy due to administration of anticancer drugs.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a bortezomib-administered group, a xylitol-administered group, and a bortezomib and xylitol-administered group (bortezomib+xylitol-administered group). Each group consisted of 5 animals.
  • Bortezomib-administered group and bortezomib-xylitol-administered group were intraperitoneally administered with 1 mg/kg of bortezomib on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same dose of bortezomib was intraperitoneally administered to these mice three times on days 7 and 14.
  • mice in the 100 mg/kg xylitol administration group were orally administered 100 mg/kg xylitol every day from day zero.
  • Mice in the bortezomib+100 mg/kg xylitol administration group were orally administered with 100 mg/kg xylitol every day from day 6 of administration.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 100 mg / kg xylitol administration group
  • the black square dashed line is the 1 mg / kg bortezomib + 100 mg / kg xylitol administration group.
  • the withdrawal reaction time decreased uniformly by 6 days after administration.
  • the latency tended to increase from day 6 onwards, and on day 12, the withdrawal reaction time (latency) was significantly higher than that in the 1 mg/kg bortezomib administration group. time) became longer.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 100 mg / kg xylitol administration group
  • the black square dashed line is the 1 mg / kg bortezomib + 100 mg / kg xylitol administration group.
  • Preventive agent for peripheral neuropathy derived from anticancer drug administration containing D-threitol ⁇ Preventive effect of D-threitol on mouse peripheral neuropathy caused by oxaliplatin>
  • Preventive effect of D-threitol on hyperesthesia such as allodynia (severe pain induced by tactile stimulation that does not normally cause pain) due to hyperesthesia due to cold stimulation and mechanical stimulation caused by administration of anticancer drug oxaliplatin examined.
  • D-threitol was orally administered to mice while administering oxaliplatin, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, an oxaliplatin-administered group, a D-threitol-administered group, and an oxaliplatin and D-threitol-administered group (oxaliplatin+D-threitol-administered group). Each group consisted of 5 animals.
  • mice in the oxaliplatin-administered group and the oxaliplatin + D-threitol-administered group 6 mg/kg of oxaliplatin was intraperitoneally administered on day 8 of acclimatization. This day was designated as day 0 of administration, and 6 mg/kg of oxaliplatin was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • D-threitol administration group and the oxaliplatin + D-threitol administration group, 5 mg/kg of D-threitol was orally administered daily from day 0.
  • control group 6 mg/kg oxaliplatin administration group, 5 mg/kg D-threitol administration group, and 6 mg/kg oxaliplatin + 5 mg/kg D-threitol administration group, respectively.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 5 mg/kg D-threitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 5 mg/kg D.
  • the threitol-treated group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the two groups administered with D-threitol did not show any shortening of the withdrawal response time thereafter. Compared to the 6 mg/kg oxaliplatin-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 5 mg/kg D-threitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 5 mg/kg D.
  • the threitol-treated group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • D-threitol suppresses oxaliplatin-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, D-threitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by oxaliplatin (anticancer drug).
  • D-threitol ⁇ Preventive effect of D-threitol on mouse peripheral neuropathy caused by paclitaxel>
  • hyperesthesia such as allodynia due to mechanical stimuli (severe pain induced by tactile stimuli that does not normally cause pain) due to hypoesthesia due to cold stimulation that occurs when paclitaxel, an anticancer drug, is administered.
  • D-threitol was orally administered to mice while paclitaxel was administered, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a paclitaxel-administered group, a D-threitol-administered group, and a paclitaxel and D-threitol-administered group (paclitaxel+D-threitol-administered group). Each group consisted of 5 animals.
  • paclitaxel 6 mg/kg was intraperitoneally administered to the paclitaxel-administered group and the paclitaxel + D-threitol-administered group on day 8 of acclimatization. This day was designated as day 0 of administration, and thereafter, on days 7 and 14, 6 mg/kg of paclitaxel was intraperitoneally administered to these mice.
  • D-threitol-administered group and the paclitaxel + D-threitol-administered group 5 mg/kg of D-threitol was orally administered daily from day 0.
  • control group 6 mg/kg paclitaxel administration group, 5 mg/kg D-threitol administration group, and 6 mg/kg paclitaxel + 5 mg/kg D-threitol administration group, respectively.
  • Cold plate test A cold plate test was performed to test the effect of D-threitol on paresthesia in cold stimulation. The four groups of mice shown in (4) of this example (Example 3) were placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis represents the elapsed time (days) after administration
  • the vertical axis represents the average escape reaction time (seconds) of mice in each group.
  • the solid line with open circles is the control group
  • the dashed line with black circles is the group administered with 6 mg/kg paclitaxel
  • the dotted line with open squares is the group with administration of 5 mg/kg D-threitol
  • the broken line with black squares is 6 mg/kg paclitaxel + 5 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the withdrawal reaction time (latency) was shortened in the 6 mg/kg paclitaxel-administered group (black circle dashed line) against the cold stimulus on the cold plate, and thereafter the withdrawal reaction time was constant. rice field.
  • the 5 mg/kg D-threitol administration group (open square dotted line) in which only D-threitol was administered and the 6 mg/kg paclitaxel + 5 mg/kg D-threitol administration group (black line) in which paclitaxel and D-threitol were administered in combination Square dashed line) showed almost the same withdrawal reaction time (latency) as the control group (white circle solid line).
  • the two groups administered with D-threitol did not show any shortening of the withdrawal response time thereafter. Compared to the 6 mg/kg paclitaxel-administered group (black circle dashed line), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the solid line with open circles is the control group
  • the dashed line with black circles is the group administered with 6 mg/kg paclitaxel
  • the dotted line with open squares is the group with administration of 5 mg/kg D-threitol
  • the broken line with black squares is 6 mg/kg paclitaxel + 5 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the avoidance reaction score increased significantly compared to the control group (white circle solid line).
  • a 5 mg/kg D-threitol administration group in which only D-threitol was administered (white dotted line) and a 6 mg/kg paclitaxel + 5 mg/kg D-threitol administration group in which D-threitol was administered in combination (black squares) Dashed line) showed similar avoidance response scores to the control group (solid line with open circles) throughout the experimental period.
  • the increase in avoidance reaction score was suppressed compared to the 6 mg/kg paclitaxel administration group (broken black circle).
  • D-threitol suppresses paclitaxel-induced peripheral neuropathy (peripheral hypersensitivity symptoms). That is, D-threitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by paclitaxel (anticancer drug).
  • D-threitol against vincristine peripheral neuropathy in mice>
  • hyperesthesia such as allodynia due to mechanical stimulation (severe pain induced by tactile stimulation that does not normally cause pain) due to hypoesthesia due to cold stimulation that occurs when the anticancer drug vincristine is administered.
  • D-threitol was orally administered to mice while vincristine was administered, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a vincristine-administered group, a D-threitol-administered group, and a vincristine and D-threitol-administered group (vincristine + D-threitol-administered group). Each group consisted of 5 animals.
  • 0.2 mg/kg of vincristine was intraperitoneally administered to mice in the vincristine-administered group and the vincristine + D-threitol-administered group on day 8 of acclimatization. This day was designated as day 0 of administration, and 0.2 mg/kg of vincristine was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • D-threitol-administered group and the vincristine + D-threitol-administered group 5 mg/kg of D-threitol was orally administered daily from day 0.
  • control group 0.2 mg/kg vincristine administration group, 5 mg/kg D-threitol administration group, and 0.2 mg/kg vincristine + 5 mg/kg D-threitol administration group, respectively.
  • Cold plate test A cold plate test was performed to test the effect of D-threitol on paresthesia in cold stimulation. The four groups of mice shown in (7) of this example (Example 3) were placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the post-administration time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the solid line with open circles is the control group
  • the dashed line with black circles is the group administered with 0.2 mg/kg vincristine
  • the dotted line with open squares is the group with administration of 5 mg/kg D-threitol
  • the dashed line with black squares is with 0.2 mg/kg vincristine + 5 mg. /kg D-threitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the 0.2 mg/kg vincristine administration group (broken black circle) showed a shortened withdrawal reaction time (latency) against the cold stimulus on the cold plate, and then a constant withdrawal reaction time. showed that.
  • a 5 mg/kg D-threitol administration group in which only D-threitol was administered (white dotted dotted line)
  • a 0.2 mg/kg vincristine + 5 mg/kg D-threitol administration group in which vincristine and D-threitol were administered in combination. (Dash line with black squares) showed almost the same escape reaction time (latency) as the control group (solid line with white circles).
  • the two groups administered with D-threitol did not show any shortening of the withdrawal response time thereafter. Compared to the 0.2 mg/kg vincristine-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the solid line with open circles is the control group
  • the dashed line with black circles is the group administered with 0.2 mg/kg vincristine
  • the dotted line with open squares is the group with administration of 5 mg/kg D-threitol
  • the dashed line with black squares is with 0.2 mg/kg vincristine + 5 mg. /kg D-threitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the avoidance response score increased significantly compared to the control group (white circle solid line).
  • a 5 mg/kg D-threitol administration group in which only D-threitol was administered (open square dotted line) and a 0.2 mg/kg vincristine + 5 mg/kg D-threitol administration group in which D-threitol was administered in combination showed similar avoidance reaction scores as the control group (white circle solid line) throughout the experimental period.
  • the increase in the avoidance reaction score was suppressed compared to the 0.2 mg/kg vincristine administration group (broken black circle).
  • D-threitol suppresses vincristine-induced peripheral neuropathy (peripheral nerve hypersensitivity symptom). That is, D-threitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by vincristine (anticancer drug).
  • D-threitol ⁇ Preventive effect of D-threitol on mouse peripheral neuropathy caused by bortezomib>
  • hyperesthesia such as allodynia due to mechanical stimulation (severe pain induced by tactile stimulation that does not normally cause pain) due to hypoesthesia due to cold stimulation that occurs when the anticancer drug bortezomib is administered.
  • D-threitol was orally administered to mice while administering bortezomib, and the following tests (Cold plate test and von Frey test) were performed.
  • mice (10) Administration of test substance As in Example 1, 6- to 7-week-old female Balb/c mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a bortezomib-administered group, a D-threitol-administered group, and a bortezomib and D-threitol-administered group (bortezomib + D-threitol-administered group). Each group consisted of 5 animals.
  • mice Bortezomib-administered group and bortezomib + D-threitol-administered group of mice were intraperitoneally administered with 1 mg/kg of bortezomib on day 8 of acclimatization. This day was designated as day 0 of administration, and 1 mg/kg of bortezomib was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • control group 1 mg/kg bortezomib administration group, 5 mg/kg D-threitol administration group, and 1 mg/kg bortezomib + 5 mg/kg D-threitol administration group, respectively.
  • the horizontal axis is the elapsed time after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg/kg bortezomib administration group
  • the open square dotted line is the 5 mg/kg D-threitol administration group
  • the black square dashed line is 1 mg/kg bortezomib + 5 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the two groups administered with D-threitol did not show any shortening of the withdrawal response time thereafter. Compared to the 1 mg/kg bortezomib-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was suppressed.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg/kg bortezomib administration group
  • the open square dotted line is the 5 mg/kg D-threitol administration group
  • the black square dashed line is 1 mg/kg bortezomib + 5 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • D-threitol suppresses bortezomib-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, D-threitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by bortezomib (anticancer drug).
  • Example 4 Anticancer drug-derived peripheral neuropathy therapeutic agent containing D-threitol ⁇ Therapeutic effect of D-threitol on mouse peripheral neuropathy induced by oxaliplatin> It was found that D-threitol can prevent peripheral neuropathy caused by oxaliplatin. Therefore, next, it was investigated whether D-threitol has a therapeutic effect for alleviating peripheral neuropathy after developing peripheral neuropathy by taking an anticancer drug.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, an oxaliplatin-administered group, a D-threitol-administered group, and an oxaliplatin and D-threitol-administered group (oxaliplatin+D-threitol-administered group). Each group consisted of 5 animals.
  • mice in the oxaliplatin-administered group and the oxaliplatin + D-threitol-administered group 6 mg/kg of oxaliplatin was intraperitoneally administered on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same dose of oxaliplatin was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol daily from day zero.
  • Mice in the oxaliplatin+100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol every day from day 6 of administration.
  • Example 4 The four groups of mice shown in (1) of this example (Example 4) were tested for the effect of D-threitol on paresthesia due to cold stimulation. Each group of mice was placed on a cold plate set at 10° C., and reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 100 mg/kg D-threitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 100 mg/kg D.
  • the threitol-treated group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction time uniformly decreased by 6 days after administration in the oxaliplatin-administered groups other than the control group and the D-threitol-administered group.
  • the latency tended to become longer after the 6th day, and on the 15th day, the withdrawal response time was similar to that of the control group (white circle solid line). became.
  • D-threitol had a significantly longer withdrawal reaction time (latency) than the group administered 6 mg/kg oxaliplatin without D-threitol administration.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 100 mg/kg D-threitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 100 mg/kg D.
  • the threitol-treated group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • D-threitol ⁇ Therapeutic effect of D-threitol on mouse peripheral neuropathy caused by paclitaxel> D-threitol was found to prevent peripheral neuropathy caused by paclitaxel. Therefore, next, it was investigated whether D-threitol has a therapeutic effect for alleviating peripheral neuropathy after developing peripheral neuropathy by taking an anticancer drug.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a paclitaxel-administered group, a D-threitol-administered group, and a paclitaxel and D-threitol-administered group (paclitaxel+D-threitol-administered group). Each group consisted of 5 animals.
  • paclitaxel 6 mg/kg was intraperitoneally administered to the paclitaxel-administered group and the paclitaxel + D-threitol-administered group on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same amount of paclitaxel was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol daily from day zero.
  • Mice in the paclitaxel+100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol every day from day 6 of administration.
  • Example 4 Cold plate test The four groups of mice shown in (4) of this example (Example 4) were tested for the effect of D-threitol on hypoesthesia due to cold stimulation. Each group of mice was placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 100 mg/kg D-threitol administration group
  • the black square dashed line is 6 mg/kg paclitaxel + 100 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction time (latency) uniformly decreased by 6 days after administration.
  • the latency tended to become longer after the 6th day, and on the 12th day, the withdrawal reaction time was significantly higher than that in the 6 mg/kg paclitaxel administration group. (latency) increased.
  • D-threitol had significantly longer withdrawal response time (latency) than the group administered 6 mg/kg paclitaxel, which was not administered D-threitol.
  • peripheral neuropathy symptom of peripheral nerve hypersensitivity
  • D-threitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy (peripheral nerve hypersensitivity symptom).
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average value of the avoidance reaction (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 100 mg/kg D-threitol administration group
  • the black square dashed line is 6 mg/kg paclitaxel + 100 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • D-threitol ⁇ Therapeutic effect of D-threitol on vincristine peripheral neuropathy in mice> D-threitol was found to prevent peripheral neuropathy caused by vincristine. Therefore, next, it was investigated whether D-threitol has a therapeutic effect for alleviating peripheral neuropathy after developing peripheral neuropathy by taking an anticancer drug.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a vincristine-administered group, a D-threitol-administered group, and a vincristine and D-threitol-administered group (vincristine + D-threitol-administered group). Each group consisted of 5 animals.
  • 0.2 mg/kg of vincristine was intraperitoneally administered to mice in the vincristine-administered group and the vincristine + D-threitol-administered group on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same amount of vincristine was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol daily from day zero.
  • Mice in the vincristine + 100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol every day from day 6 of administration.
  • Example 4 The four groups of mice shown in (7) of this example (Example 4) were tested for the effect of D-threitol on hypoesthesia due to cold stimulation. Each group of mice was placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the time elapsed after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the solid line with open circles is the control group
  • the dashed line with black circles is the group administered with 0.2 mg/kg vincristine
  • the dotted line with open squares is the group with administration of 100 mg/kg D-threitol
  • the dashed line with black squares is with 0.2 mg/kg vincristine + 100 mg. /kg D-threitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction times (latencies) of the two vincristine-administered groups other than the control group and the D-threitol-administered group uniformly decreased by 6 days after administration.
  • the withdrawal response time (latency) was significantly longer on the 12th day than in the 0.2 mg/kg vincristine administration group.
  • peripheral neuropathy peripheral nerve hypersensitivity symptom
  • D-threitol had a significantly longer withdrawal response time (latency) than the group administered 0.2 mg/kg vincristine without D-threitol administration.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the solid line with open circles is the control group
  • the dashed line with black circles is the group administered with 0.2 mg/kg vincristine
  • the dotted line with open squares is the group with administration of 100 mg/kg D-threitol
  • the dashed line with black squares is with 0.2 mg/kg vincristine + 100 mg. /kg D-threitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • D-threitol ⁇ Therapeutic effect of D-threitol on mouse peripheral neuropathy caused by bortezomib> D-threitol was found to prevent peripheral neuropathy caused by bortezomib. Therefore, next, it was investigated whether D-threitol has a therapeutic effect for alleviating peripheral neuropathy after developing peripheral neuropathy by taking an anticancer drug.
  • mice 6- to 7-week-old female Balb/c mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a bortezomib-administered group, a D-threitol-administered group, and a bortezomib and D-threitol-administered group (bortezomib+D-threitol-administered group). Each group consisted of 5 animals.
  • mice in the 100 mg/kg D-threitol administration group were orally administered 100 mg/kg D-threitol daily from day zero.
  • Mice in the bortezomib+100 mg/kg D-threitol administration group were orally administered with 100 mg/kg D-threitol every day from day 6 of administration.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg/kg bortezomib administration group
  • the open square dotted line is the 100 mg/kg D-threitol administration group
  • the black square dashed line is 1 mg/kg bortezomib + 100 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the two groups administered bortezomib other than the control group and the D-threitol-administered group uniformly decreased the withdrawal reaction time (latency) by 6 days after administration.
  • the latency tended to become longer after the 6th day, and on the 12th day, the withdrawal reaction time was significantly higher than that in the 1 mg/kg bortezomib administration group. (latency) increased.
  • D-threitol had a significantly longer withdrawal response time (latency) than the group administered 1 mg/kg bortezomib without administration of D-threitol.
  • peripheral neuropathy symptom of peripheral nerve hypersensitivity
  • D-threitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy (peripheral nerve hypersensitivity symptom).
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg/kg bortezomib administration group
  • the open square dotted line is the 100 mg/kg D-threitol administration group
  • the black square dashed line is 1 mg/kg bortezomib + 100 mg/kg D-tray.
  • Tall administration group Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • Anti-cancer drug-derived peripheral neuropathy preventive agent containing L-talitol ⁇ Preventive effect of L-talitol on mouse peripheral neuropathy induced by oxaliplatin>
  • the preventive effect of L-talitol on hyperesthesia such as allodynia due to mechanical stimulation (severe pain induced by tactile stimulation that does not normally cause pain) due to hypoesthesia due to cold stimulation that occurs when the anticancer drug oxaliplatin is administered.
  • L-talitol was orally administered to mice while administering oxaliplatin, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, an oxaliplatin-administered group, an L-talitol-administered group, and an oxaliplatin and L-talitol-administered group (oxaliplatin+L-talitol-administered group). Each group consisted of 5 animals.
  • oxaliplatin 6 mg/kg was administered intraperitoneally to the mice in the oxaliplatin administration group and the oxaliplatin + L-talitol administration group on day 8 of acclimatization. This day was designated as day 0 of administration, and 6 mg/kg of oxaliplatin was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • L-talitol administration group For the L-talitol administration group and the oxaliplatin + L-talitol administration group, 5 mg/kg of L-talitol was orally administered daily from day 0.
  • control group 6 mg/kg oxaliplatin administration group, 5 mg/kg L-talitol administration group, and 6 mg/kg oxaliplatin + 5 mg/kg L-talitol administration group, respectively.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 5 mg/kg L-. This is the talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • control group the 5 mg/kg L-talitol administration group, and the 6 mg/kg oxaliplatin + 5 mg/kg L-talitol administration group had almost the same data. It became difficult to see the administration group.
  • the two groups to which L-talitol was administered did not show any shortening of the withdrawal response time thereafter. Compared to the 6 mg/kg oxaliplatin-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis represents the elapsed time (days) after administration
  • the vertical axis represents the average value of avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 5 mg/kg L-. This is the talitol administration group.
  • Those that can be judged to have significant differences from the control group by a test with a significance level of 1% are marked with "*" (shown as " * P ⁇ 0.01 vs control group" in the figure).
  • L-talitol suppresses oxaliplatin-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, L-talitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by oxaliplatin (anticancer drug).
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a paclitaxel-administered group, an L-talitol-administered group, and a paclitaxel and L-talitol-administered group (paclitaxel+L-talitol-administered group). Each group consisted of 5 animals.
  • L-talitol administration group and the paclitaxel + L-talitol administration group 5 mg/kg of L-talitol was orally administered daily from day 0.
  • control group 6 mg/kg paclitaxel administration group, 5 mg/kg L-talitol administration group, and 6 mg/kg paclitaxel + 5 mg/kg L-talitol administration group, respectively.
  • Cold plate test A cold plate test was performed to test the effect of L-talitol on paresthesia in cold stimulation. The four groups of mice shown in (4) of this example (Example 5) were placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 5 mg/kg L-talitol administration group. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the two groups to which L-talitol was administered did not show any shortening of the withdrawal response time thereafter. Compared to the 6 mg/kg paclitaxel-administered group (black circle dashed line), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 5 mg/kg L-talitol administration group. group.
  • Those that can be judged to have significant differences from the control group by a test with a significance level of 1% are marked with "*" (shown as " * P ⁇ 0.01 vs control group" in the figure).
  • the avoidance reaction score increased significantly compared to the control group (white circle solid line).
  • the avoidance reaction score was similar to that of the control group (white circle solid line) throughout the experimental period. The increase in avoidance reaction score was suppressed compared to the 6 mg/kg paclitaxel administration group (broken black circle).
  • L-talitol suppresses paclitaxel-induced peripheral neuropathy (peripheral hypersensitivity symptom). That is, L-talitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by paclitaxel (anticancer drug).
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a vincristine-administered group, an L-talitol-administered group, and a vincristine and L-talitol-administered group (vincristine + L-talitol-administered group). Each group consisted of 5 animals.
  • 0.2 mg/kg of vincristine was intraperitoneally administered to mice in the vincristine-administered group and the vincristine + L-talitol-administered group on day 8 of acclimatization. This day was designated as day 0 of administration, and 0.2 mg/kg of vincristine was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • L-talitol-administered group and the vincristine + L-talitol-administered group 5 mg/kg of L-talitol was orally administered daily from day 0.
  • control group 0.2 mg/kg vincristine administration group, 5 mg/kg L-talitol administration group, and 0.2 mg/kg vincristine + 5 mg/kg L-talitol administration group, respectively.
  • Cold plate test A cold plate test was performed to test the effect of L-talitol on paresthesia in cold stimulation. The four groups of mice shown in (7) of this example (Example 5) were placed on a cold plate set at 10° C., and the reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the 0.2 mg/kg vincristine + 5 mg/ This is the kgL-talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the 0.2 mg/kg vincristine administration group (broken black circle) showed a shortened withdrawal reaction time (latency) against the cold stimulus on the cold plate, and then a constant withdrawal reaction time. showed that.
  • a 5 mg/kg L-talitol administration group in which only L-talitol was administered (white square dotted line)
  • a 0.2 mg/kg vincristine + 5 mg/kg L-talitol administration group in which vincristine and L-talitol were administered in combination black square dashed line ) showed almost the same escape reaction time (latency) as the control group (white circle solid line).
  • the two groups to which L-talitol was administered did not show any shortening of the withdrawal response time thereafter. Compared to the 0.2 mg/kg vincristine-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was inhibited.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the 0.2 mg/kg vincristine + 5 mg/ This is the kgL-talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the avoidance response score increased significantly compared to the control group (white circle solid line).
  • a 5 mg/kg L-talitol administration group in which only L-talitol was administered (white square dotted line)
  • a 0.2 mg/kg vincristine + 5 mg/kg L-talitol administration group in which L-talitol was administered in combination showed similar avoidance score as the control group (white circle solid line) throughout the experimental period.
  • the increase in the avoidance reaction score was suppressed compared to the 0.2 mg/kg vincristine administration group (broken black circle).
  • L-talitol suppresses vincristine-induced peripheral neuropathy (peripheral nerve hypersensitivity symptom). That is, L-talitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by vincristine (anticancer drug).
  • mice (10) Administration of test substance As in Example 1, 6- to 7-week-old female Balb/c mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a bortezomib-administered group, an L-talitol-administered group, and a bortezomib and L-talitol-administered group (bortezomib+L-talitol-administered group). Each group consisted of 5 animals.
  • mice Bortezomib-administered group and bortezomib + L-talitol-administered group of mice were intraperitoneally administered with 1 mg/kg of bortezomib on day 8 of acclimatization. This day was designated as day 0 of administration, and 1 mg/kg of bortezomib was intraperitoneally administered to these mice on days 7 and 14 thereafter.
  • control group 1 mg/kg bortezomib administration group, 5 mg/kg L-talitol administration group, and 1 mg/kg bortezomib + 5 mg/kg L-talitol administration group, respectively.
  • the horizontal axis is the time elapsed after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 5 mg / kg L-talitol administration group
  • the black square dashed line is 1 mg / kg bortezomib + 5 mg / kg L-talitol administration. group.
  • Those that can be judged to have significant differences from the control group by a test with a significance level of 1% are marked with "*" (shown as " * P ⁇ 0.01 vs control group" in the figure).
  • the two groups to which L-talitol was administered did not show any shortening of the withdrawal response time thereafter. Compared to the 1 mg/kg bortezomib-administered group (broken black circle), the shortening of the withdrawal reaction time (latency) was suppressed.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 5 mg / kg L-talitol administration group
  • the black square dashed line is 1 mg / kg bortezomib + 5 mg / kg L-talitol administration. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the avoidance response score increased significantly compared to the control group (white circle solid line).
  • the avoidance reaction score was similar to that of the control group (white circle solid line) throughout the experimental period. The increase in avoidance reaction score was suppressed compared to the 1 mg/kg bortezomib administration group (broken black circle).
  • L-talitol suppresses bortezomib-induced peripheral neuropathy (peripheral nerve hypersensitivity symptoms). That is, L-talitol functions as a preventive composition (preventive agent) against peripheral neuropathy caused by bortezomib (anticancer drug).
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, an oxaliplatin-administered group, an L-talitol-administered group, and an oxaliplatin and L-talitol-administered group (oxaliplatin+L-talitol-administered group). Each group consisted of 5 animals.
  • oxaliplatin 6 mg/kg was administered intraperitoneally to the mice in the oxaliplatin administration group and the oxaliplatin + L-talitol administration group on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same dose of oxaliplatin was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg L-talitol administration group were orally administered 100 mg/kg L-talitol daily from day zero.
  • Mice in the oxaliplatin+100 mg/kg L-talitol administration group were orally administered with 100 mg/kg L-talitol every day from day 6 of administration.
  • the horizontal axis is the elapsed time after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 100 mg/kg L-talitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 100 mg/kg L-. This is the talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction time uniformly decreased by 6 days after administration in the control group and the oxaliplatin-administered group other than the L-talitol-administered group.
  • the latency tended to increase from day 9 onwards, and on day 15, the withdrawal reaction time was similar to that of the control group (white circle solid line). became.
  • L-talitol had a significantly longer withdrawal response time (latency) than the group that received 6 mg/kg oxaliplatin and did not receive L-talitol.
  • peripheral neuropathy symptom of peripheral nerve hypersensitivity
  • L-talitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy (peripheral nerve hypersensitivity symptom).
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average value of avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg oxaliplatin administration group
  • the open square dotted line is the 100 mg/kg L-talitol administration group
  • the black square dashed line is 6 mg/kg oxaliplatin + 100 mg/kg L-. This is the talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • L-talitol ⁇ Therapeutic effect of L-talitol on mouse peripheral neuropathy caused by paclitaxel> It was found that L-talitol can prevent peripheral neuropathy caused by paclitaxel. Therefore, next, it was investigated whether L-talitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of peripheral neuropathy due to administration of anticancer drugs.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a paclitaxel-administered group, an L-talitol-administered group, and a paclitaxel and L-talitol-administered group (paclitaxel+L-talitol-administered group). Each group consisted of 5 animals.
  • paclitaxel-administered group 6 mg/kg was intraperitoneally administered on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same amount of paclitaxel was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg L-talitol administration group were orally administered 100 mg/kg L-talitol daily from day zero.
  • Mice in the paclitaxel+100 mg/kg L-talitol administration group were orally administered with 100 mg/kg L-talitol every day from day 6 of administration.
  • Example 6 Cold plate test The four groups of mice shown in (4) of this example (Example 6) were tested for the effect of L-talitol on paresthesia due to cold stimulation. Each group of mice was placed on a cold plate set at 10° C., and reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 100 mg/kg L-talitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 100 mg/kg L-talitol administration group. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction time (latency) of the two paclitaxel-administered groups other than the control group and the L-talitol-administered group uniformly decreased by 6 days after administration.
  • the latency tended to become longer after the 9th day, and on the 12th day, the withdrawal reaction time ( latency) increased.
  • the group administered L-talitol had a significantly longer withdrawal response time (latency) than the group administered 6 mg/kg paclitaxel, which was not administered L-talitol.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average value of avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 6 mg/kg paclitaxel administration group
  • the open square dotted line is the 100 mg/kg L-talitol administration group
  • the black square dashed line is the 6 mg/kg paclitaxel + 100 mg/kg L-talitol administration group. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a vincristine-administered group, an L-talitol-administered group, and a vincristine and L-talitol-administered group (vincristine + L-talitol-administered group). Each group consisted of 5 animals.
  • 0.2 mg/kg of vincristine was intraperitoneally administered to mice in the vincristine-administered group and the vincristine + L-talitol-administered group on day 8 of acclimatization. This day was defined as the first day of administration (day 0), and the same amount of vincristine was intraperitoneally administered to these mice three times on the 7th and 14th days.
  • mice in the 100 mg/kg L-talitol administration group were orally administered 100 mg/kg L-talitol daily from day zero.
  • Mice in the vincristine+100 mg/kg L-talitol administration group were orally administered with 100 mg/kg L-talitol every day from day 6 of administration.
  • Example 6 Cold plate test The four groups of mice shown in (7) of this example (Example 6) were tested for the effect of L-talitol on hypoesthesia due to cold stimulation. Each group of mice was placed on a cold plate set at 10° C., and reaction time (latency) until escape was measured. It is considered that the shorter the latency, the more avoidance of cold stimulation by the cold plate. The results are shown in FIG.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 100 mg/kg L-talitol administration group
  • the black square dashed line is the 0.2 mg/kg vincristine + 100 mg/ This is the kgL-talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the withdrawal reaction time (latency) of the two vincristine-administered groups other than the control group and the L-talitol-administered group uniformly decreased by 6 days after administration.
  • the latency tended to increase from day 9 onwards, and on day 12, it was significantly higher than the 0.2 mg/kg vincristine administration group. Escape reaction time (latency) increased.
  • L-talitol had a significantly longer withdrawal reaction time (latency) than the group that received 0.2 mg/kg vincristine and did not receive L-talitol.
  • peripheral neuropathy symptom of peripheral nerve hypersensitivity
  • L-talitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy (peripheral nerve hypersensitivity symptoms).
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 0.2 mg/kg vincristine administration group
  • the open square dotted line is the 100 mg/kg L-talitol administration group
  • the black square dashed line is the 0.2 mg/kg vincristine + 100 mg/ This is the kgL-talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • L-talitol ⁇ Therapeutic effect of L-talitol on mouse peripheral neuropathy caused by bortezomib> It was found that L-talitol can prevent peripheral neuropathy caused by bortezomib. Therefore, next, it was investigated whether L-talitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of peripheral neuropathy due to administration of anticancer drugs.
  • mice 6- to 7-week-old female Balb/c mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a bortezomib-administered group, an L-talitol-administered group, and a bortezomib and L-talitol-administered group (bortezomib+L-talitol-administered group). Each group consisted of 5 animals.
  • mice in the 100 mg/kg L-talitol administration group were orally administered 100 mg/kg L-talitol daily from day zero.
  • Mice in the bortezomib+100 mg/kg L-talitol administration group were orally administered with 100 mg/kg L-talitol every day from day 6 of administration.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 100 mg / kg L-talitol administration group
  • the black square dashed line is 1 mg / kg bortezomib + 100 mg / kg L-talitol administration. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the control group and the two groups administered with bortezomib other than the L-talitol administration group showed a uniform decrease in withdrawal reaction time (latency) by day 6 after administration.
  • the latency tended to become longer after the 9th day, and on the 12th day, the withdrawal reaction time ( latency) increased.
  • the group administered L-talitol had a significantly longer withdrawal response time (latency) than the group administered 1 mg/kg bortezomib without administration of L-talitol.
  • peripheral neuropathy symptom of peripheral nerve hypersensitivity
  • L-talitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy (peripheral nerve hypersensitivity symptom).
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group.
  • the open circle solid line is the control group
  • the black circle dashed line is the 1 mg / kg bortezomib administration group
  • the open square dotted line is the 100 mg / kg L-talitol administration group
  • the black square dashed line is 1 mg / kg bortezomib + 100 mg / kg L-talitol administration. group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • Preventive agent for diabetic peripheral neuropathy containing xylitol ⁇ Preventive effect of xylitol on streptozotocin-induced diabetic mouse peripheral neuropathy>
  • the preventive effect of xylitol on hyperesthesia such as hyperesthesia caused by cold stimuli and allodynia caused by mechanical stimuli (severe pain induced by sensory stimuli that normally does not cause pain) was investigated in diabetic peripheral neuropathy.
  • xylitol was orally administered to mice as a test drug, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a streptozotocin-administered group, a 1 mg/kg xylitol-administered group, and a streptozotocin+1 mg/kg xylitol-administered group. Each group consisted of 9 animals.
  • streptozotocin On day 8 of acclimation, 200 mg/kg of streptozotocin was administered to the mice in the streptozotocin-administered group and the streptozotocin+1 mg/kg xylitol-administered group.
  • a high dose of streptozotocin destroys pancreatic cells in mice. As a result, insulin secretion is lost, and mice can develop diabetes.
  • This day was defined as the first day of administration (day 0). The streptozotocin was administered only on the first day of administration.
  • mice in the 1 mg/kg xylitol-administered group and the streptozotocin + 1 mg/kg xylitol-administered group were orally administered 1 mg/kg xylitol daily from day zero.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square dashed line is the 1 mg/kg xylitol administration group
  • the black square dotted line is the streptozotocin + 1 mg/kg xylitol administration group.
  • the 1 mg/kg xylitol administration group (open square dashed line) in which only xylitol was administered and the streptozotocin + 1 mg/kg xylitol administration group (black square dotted line) in which xylitol was administered in combination with streptozotocin were administered to the control group (white circle solid line). ), and did not shorten the escape reaction time. Shortening of the latency was suppressed compared to the streptozotocin-administered group (broken black circle).
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square dashed line is the 1 mg/kg xylitol administration group
  • the black square dotted line is the streptozotocin + 1 mg/kg xylitol administration group.
  • the control group (solid line with white circles) stably had a score of 1 or less throughout the experiment period.
  • the avoidance response score increased from day 7 onwards.
  • the xylitol-administered 1 mg/kg xylitol group (open square dashed line) and the streptozotocin + 1 mg/kg xylitol administration group showed similar avoidance reaction scores to the control group (solid open circle) throughout the experimental period. rice field. Compared to the streptozotocin-administered group (black circle dashed line), the increase in the avoidance response score was suppressed.
  • xylitol suppresses streptozotocin-induced peripheral neuropathy (peripheral hypersensitivity symptoms) in diabetes. That is, xylitol functions as a preventive composition (prophylactic agent) against peripheral neuropathy caused by diabetes.
  • Xylitol-containing therapeutic agent for diabetic peripheral neuropathy ⁇ Therapeutic effect of xylitol on streptozotocin-induced diabetic mouse peripheral neuropathy> Xylitol was found to prevent streptozotocin-induced diabetic peripheral neuropathy. Therefore, we investigated whether xylitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of diabetic peripheral neuropathy.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a streptozotocin-administered group, a 1 mg/kg xylitol-administered group, and a streptozotocin+1 mg/kg xylitol-administered group. Each group consisted of 9 animals.
  • streptozotocin On day 8 of acclimation, 200 mg/kg of streptozotocin was administered to the mice in the streptozotocin-administered group and the streptozotocin+1 mg/kg xylitol-administered group.
  • a high dose of streptozotocin destroys pancreatic cells in mice. As a result, insulin secretion is lost, and mice can develop diabetes.
  • This day was defined as the first day of administration (day 0). The streptozotocin was administered only on the first day of administration.
  • mice in the 1 mg/kg xylitol administration group were orally administered 1 mg/kg xylitol every day from day zero.
  • Mice in the streptozotocin+1 mg/kg xylitol administration group were orally administered with 1 mg/kg xylitol every day from the 21st day of administration.
  • the horizontal axis is the elapsed time after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group. It can be judged that the shorter the escape reaction time is, the more the animal avoids the cold stimulus.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square dashed line is the 1 mg/kg xylitol administration group
  • the black square dotted line is the streptozotocin + 1 mg/kg xylitol administration group.
  • xylitol was administered from the 21st day after the start of administration.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the 1 mg/kg xylitol-administered group (open square dashed line), in which only xylitol was administered, had the same reaction time as the control group (open circle solid line) throughout the experimental period, and did not cause a shortening of the withdrawal reaction time.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average value of the avoidance reaction (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square dashed line is the 1 mg/kg xylitol administration group
  • the black square dotted line is the streptozotocin + 1 mg/kg xylitol administration group.
  • xylitol was administered from the 21st day after the start of administration.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the control group (solid line with white circles) stably had a score of 1 or less throughout the experiment period.
  • the avoidance reaction score increased from day 7 onwards.
  • the avoidance response decreased after the 21st day of administration of xylitol, and on the 27th day, the avoidance response was similar to that of the control group (solid line with open circles). Became. Xylitol was able to reduce avoidance responses even when given after the avoidance score was high.
  • the 1 mg/kg xylitol-administered group (open square dashed line), which received xylitol, had the same degree of avoidance response as the control group (open circle solid line) throughout the experimental period.
  • Preventive agent for diabetic peripheral neuropathy containing D-threitol ⁇ Preventive effect of D-threitol on streptozotocin-induced diabetic mouse peripheral neuropathy>
  • hyperesthesia such as hyperesthesia due to cold stimulation and allodynia due to mechanical stimulation (severe pain induced by sensory stimulation that does not normally cause pain) that occurs in diabetic peripheral neuropathy was investigated.
  • D-threitol was orally administered to mice as a test drug, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a streptozotocin-administered group, a 5 mg/kg D-threitol-administered group, and a streptozotocin+5 mg/kg D-threitol-administered group. Each group consisted of 5 animals.
  • streptozotocin On day 8 of acclimation, 200 mg/kg of streptozotocin was administered to mice in the streptozotocin-administered group and the streptozotocin+5 mg/kg D-threitol-administered group. A high dose of streptozotocin destroys pancreatic cells in mice. As a result, insulin secretion is lost, and mice can develop diabetes. This day was defined as the first day of administration (day 0). The streptozotocin was administered only on the first day of administration.
  • mice in the 5 mg/kg D-threitol administration group and the streptozotocin + 5 mg/kg D-threitol administration group were orally administered 5 mg/kg D-threitol every day from day zero.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the solid line with white circles is the control group
  • the broken line with black circles is the group administered with streptozotocin
  • the solid line with open squares is the group with administration of 5 mg/kg D-threitol
  • the broken line with black squares is the group with administration of streptozotocin + 5 mg/kg D-threitol.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the solid line with white circles is the control group
  • the broken line with black circles is the group administered with streptozotocin
  • the solid line with open squares is the group with administration of 5 mg/kg D-threitol
  • the broken line with black squares is the group with administration of streptozotocin + 5 mg/kg D-threitol.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the control group (solid line with white circles) stably had a score of 1 or less throughout the experiment period.
  • the avoidance response score increased from day 7 onwards.
  • the 5 mg/kg D-threitol administration group (white square solid line) and the streptozotocin + 5 mg/kg D-threitol administration group (black square dashed line) administered with D-threitol were the same as the control group (white circle solid line) throughout the experimental period. degree of avoidance response score.
  • the increase in the avoidance response score was suppressed.
  • D-threitol suppresses streptozotocin-induced peripheral neuropathy (peripheral hypersensitivity symptoms) in diabetes. That is, D-threitol functions as a preventive composition (prophylactic agent) against peripheral neuropathy caused by diabetes.
  • Diabetic peripheral neuropathy therapeutic agent containing D-threitol ⁇ Therapeutic effect of D-threitol on streptozotocin-induced diabetic mouse peripheral neuropathy> It has been found that D-threitol can prevent streptozotocin-induced diabetic peripheral neuropathy. Therefore, it was investigated whether D-threitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of diabetic peripheral neuropathy.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a streptozotocin-administered group, a 5 mg/kg D-threitol-administered group, and a streptozotocin+5 mg/kg D-threitol-administered group. Each group consisted of 5 animals.
  • streptozotocin On day 8 of acclimation, 200 mg/kg of streptozotocin was administered to mice in the streptozotocin-administered group and the streptozotocin+5 mg/kg D-threitol-administered group. A high dose of streptozotocin destroys pancreatic cells in mice. As a result, insulin secretion is lost, and mice can develop diabetes. This day was defined as the first day of administration (day 0). The streptozotocin was administered only on the first day of administration.
  • mice in the 5 mg/kg D-threitol administration group were orally administered 5 mg/kg D-threitol every day from day zero.
  • Mice in the streptozotocin+5 mg/kg D-threitol administration group were orally administered with 5 mg/kg D-threitol daily from day 21 of administration.
  • the horizontal axis is the post-administration elapsed time (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group. It can be judged that the shorter the escape reaction time is, the more the animal avoids the cold stimulus.
  • the solid line with white circles is the control group
  • the broken line with black circles is the group administered with streptozotocin
  • the solid line with open squares is the group with administration of 5 mg/kg D-threitol
  • the broken line with black squares is the group with administration of streptozotocin + 5 mg/kg D-threitol.
  • the control group (white circle solid line) remained stable between 18 and 20 seconds throughout the experimental period.
  • the withdrawal response time became shorter from day 7, and on day 14, the streptozotocin-administered group (black circle dashed line) and streptozotocin
  • the withdrawal reaction time was remarkably shortened in both +5 mg/kg D-threitol administration groups (black square dashed line).
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the solid line with white circles is the control group
  • the broken line with black circles is the group administered with streptozotocin
  • the solid line with open squares is the group with administration of 5 mg/kg D-threitol
  • the broken line with black squares is the group with administration of streptozotocin + 5 mg/kg D-threitol.
  • the control group (solid line with white circles) stably had a score of 1 or less throughout the experiment period.
  • the avoidance response score increased from day 7 onwards.
  • the avoidance reaction decreased after the 24th day of administration of D-threitol, and on the 33rd day, the control group (white circle solid line) and the It became a similar avoidance reaction.
  • D-threitol was able to reduce avoidance responses even after administration after avoidance response scores were high.
  • the D-threitol-administered group (solid white square line), which received D-threitol, had the same degree of avoidance response as the control group throughout the experimental period.
  • D-threitol treats streptozotocin-induced diabetic peripheral neuropathy (peripheral nerve hypersensitivity). That is, D-threitol also functions as a therapeutic composition (therapeutic agent) for peripheral neuropathy caused by diabetes.
  • Diabetic peripheral neuropathy preventive agent containing L-talitol ⁇ Preventive effect of L-talitol on streptozotocin-induced diabetic mouse peripheral neuropathy>
  • the preventive effect of L-talitol on hyperesthesia such as hyperesthesia caused by cold stimuli and allodynia caused by mechanical stimuli (severe pain induced by sensory stimuli that normally does not cause pain) was investigated in diabetic peripheral neuropathy.
  • L-talitol was orally administered to mice as a test drug, and the following tests (Cold plate test and von Frey test) were performed.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a streptozotocin-administered group, a 5 mg/kg L-talitol-administered group, and a streptozotocin+5 mg/kg L-talitol-administered group. Each group consisted of 5 animals.
  • streptozotocin On day 8 of acclimation, 200 mg/kg of streptozotocin was administered to mice in the streptozotocin-administered group and the streptozotocin+5 mg/kg L-talitol-administered group. A high dose of streptozotocin destroys pancreatic cells in mice. As a result, insulin secretion is lost, and mice can develop diabetes. This day was defined as the first day of administration (day 0). The streptozotocin was administered only on the first day of administration.
  • mice in the 5 mg/kg L-talitol administration group and the streptozotocin + 5 mg/kg L-talitol administration group were orally administered with 5 mg/kg L-talitol daily from day zero.
  • the horizontal axis is the elapsed time after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square solid line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the streptozotocin + 5 mg/kg L-talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the 5 mg/kg L-talitol administration group (white solid square line) in which only L-talitol was administered and the streptozotocin + 5 mg/kg L-talitol administration group (black square dashed line) in which L-talitol was administered in combination with streptozotocin were administered during the experimental period.
  • the reaction time was about the same as that of the control group (solid line with open circles), and the withdrawal reaction time was not shortened.
  • the streptozotocin-administered group black circle dashed line
  • the shortening of the withdrawal reaction time (latency) was suppressed.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square solid line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the streptozotocin + 5 mg/kg L-talitol administration group.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the control group (solid line with white circles) stably had a score of 1 or less throughout the experiment period.
  • the avoidance response score increased from day 7 onwards.
  • the streptozotocin-administered group dashed line
  • the streptozotocin + 5 mg/kg L-talitol-administered group black square dashed line
  • the same level of avoidance as the control group open circle solid line
  • Reaction scores were shown.
  • the increase in the avoidance response score was suppressed.
  • L-talitol suppresses streptozotocin-induced peripheral neuropathy (peripheral hypersensitivity symptoms) in diabetes. That is, L-talitol functions as a preventive composition (prophylactic agent) against peripheral neuropathy caused by diabetes.
  • Example 12 Therapeutic agent for diabetic peripheral neuropathy containing L-talitol ⁇ Therapeutic effect of L-talitol on streptozotocin-induced diabetic mouse peripheral neuropathy> It has been found that L-talitol can prevent streptozotocin-induced diabetic peripheral neuropathy. Therefore, it was investigated whether L-talitol has a therapeutic effect to alleviate peripheral neuropathy after the onset of diabetic peripheral neuropathy.
  • mice were used. All mice were acclimatized for 7 days after delivery. After that, they were divided into four groups: a control group, a streptozotocin-administered group, a 5 mg/kg L-talitol-administered group, and a streptozotocin+5 mg/kg L-talitol-administered group. Each group consisted of 5 animals.
  • streptozotocin On day 8 of acclimation, 200 mg/kg of streptozotocin was administered to mice in the streptozotocin-administered group and the streptozotocin+5 mg/kg L-talitol-administered group. A high dose of streptozotocin destroys pancreatic cells in mice. As a result, insulin secretion is lost, and mice can develop diabetes. This day was defined as the first day of administration (day 0). The streptozotocin was administered only on the first day of administration.
  • mice in the 5 mg/kg L-talitol administration group were orally administered 5 mg/kg L-talitol every day from day zero.
  • Mice in the streptozotocin+5 mg/kg L-talitol administration group were orally administered with 5 mg/kg L-talitol every day from the 21st day of administration.
  • the horizontal axis is the time elapsed after administration (days), and the vertical axis is the average escape reaction time (seconds) of mice in each group. It can be judged that the shorter the escape reaction time is, the more the animal avoids the cold stimulus.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square solid line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the streptozotocin + 5 mg/kg L-talitol administration group.
  • administration of L-talitol was started 21 days after the start of administration.
  • Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group” in the figure).
  • the 5 mg/kg L-talitol-administered group (open square solid line), in which only L-talitol was administered, showed the same level of reaction time as the control group (open circle solid line) throughout the experimental period, and the withdrawal reaction time was not shortened. I didn't.
  • the horizontal axis is the elapsed time (days) after administration
  • the vertical axis is the average avoidance response (score) of mice in each group. If the avoidance frequency is large, it is considered that the stimulation by the filament is avoided more.
  • the white circle solid line is the control group
  • the black circle dashed line is the streptozotocin administration group
  • the white square solid line is the 5 mg/kg L-talitol administration group
  • the black square dashed line is the streptozotocin + 5 mg/kg L-talitol administration group.
  • administration of L-talitol was started 21 days after the start of administration. Those that can be determined to be significantly different from the control group by a test with a significance level of 1% are marked with "*" (indicated as " * P ⁇ 0.01 vs control group" in the figure).
  • the control group (solid line with white circles) stably had a score of 1 or less throughout the experiment period.
  • the avoidance score increased from day 7 onwards.
  • the avoidance reaction decreased after the 21st day of administration of L-talitol, and on the 33rd day, it was almost the same as the control group (white circle solid line). became an avoidance reaction.
  • L-Talitol was able to reduce avoidance responses even after administration after avoidance response scores were high.
  • Example 13 Xylitol-containing peripheral nerve outgrowth inhibitory agent It is known that neurite outgrowth is inhibited in peripheral neuropathy usually caused by anticancer drugs. Therefore, in this study, PC-12 cells, a cell line derived from rat pheochromocytoma (National Research and Development Nerve outgrowth inhibitory action of peripheral nerves was investigated using JCRB Cell Bank, National Institute of Biomedical Innovation, Health and Nutrition.
  • PC-12 cells were placed in RPMI1640 medium (manufactured by Sigma-Aldrich) containing 50 ng/mL NGF and 2% fetal bovine serum (FBS), suspended at 3 ⁇ 10 5 cells/mL, and seeded in 24-well plates by 1 mL each. , cultured for 4 days.
  • RPMI1640 medium manufactured by Sigma-Aldrich
  • FBS fetal bovine serum
  • the horizontal axis is the prescription number and the vertical axis is the nerve length ( ⁇ m). If the length of the nerve increases, neurite outgrowth can be confirmed. It can be seen that neurite outgrowth was observed in Formula 2 to which nerve growth factor- ⁇ was administered, compared to Formula 1 containing nothing.
  • formulations 6, 10, 14, or 18, which contain the anticancer agents oxaliplatin, paclitaxel, vinscrine, or bortezomib in formulation 2 compared to formulation 2.
  • the horizontal axis is the prescription number and the vertical axis is the cell viability (%).
  • a low cell viability indicates that the cells are damaged.
  • the cell viability of formulation 2 was taken as 100%, and the cell viability of other formulations was calculated.
  • Formulations 7, 8, 9, 12, 13, 15, 16, 17, 19, 20 or 21, in which xylitol is further added to formulations 6, 10, 14 or 18, have cell viability as high as formulations 6, 10 and 14, respectively. or 18, indicating that the cytotoxicity caused by the anticancer drug is suppressed.
  • Example 14 Xylitol-containing peripheral nerve outgrowth inhibitory agent
  • a human neuroblastoma cell line SH-SY5Y (manufactured by KAC Co., Ltd.) was used to examine the inhibitory effect on nerve elongation of peripheral nerves.
  • the horizontal axis is the prescription number and the vertical axis is the nerve length ( ⁇ m). If the length of the nerve is long, neurite outgrowth can be confirmed. Nerve growth factor- ⁇ administration formulation 23 has elongated neurites.
  • formulations 27, 31, 35, or 39 containing the anticancer agents oxaliplatin, paclitaxel, vinscrine, or bortezomib in formulation 23 inhibited neurite outgrowth compared to formulation 23.
  • formulations 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41 or 42 which are formulations 27, 31, 35 or 39 further containing xylitol, neurite outgrowth by anticancer agents It can be seen that inhibition is suppressed.
  • the horizontal axis is the prescription number and the vertical axis is the cell viability (%).
  • a low cell viability indicates that the cells are damaged.
  • the cell viability of formulation 23 was taken as 100% to calculate the cell viability of other formulations.
  • formulas 27, 31, 35, or 39 which contain the anticancer agents oxaliplatin, paclitaxel, vinscrine, or bortezomib in formula 23, have lower cell viability values than formula 23.
  • formulations 28, 29, 30, 32, 33, 34, 37, 38, 40, 41 or 42 which are formulations 27, 31, 35 or 39 further containing xylitol
  • the cell viability is lower than that in formulations 27, 31, 35 or 39. It is better than 39, and it can be seen that the cytotoxicity caused by the anticancer drug is suppressed.
  • the preventive or ameliorating agent according to the present invention was able to effectively suppress anticancer agents with different mechanisms of action and diabetes-induced peripheral neuropathy.
  • peripheral neuropathy can be prevented or ameliorated regardless of its origin means that the preventive or ameliorating agent according to the present invention is effective against axonal degeneration of nerve cells and neuronal degeneration, which are considered to be the ultimate causes of peripheral neuropathy. It is reasonable to interpret that this is because the direct damage to the cells is improved. In other words, it is considered that the preventive or ameliorating agent according to the present invention can be effective even for peripheral neuropathies caused by sources other than those shown in the above examples.
  • the preventive or ameliorating agent according to the present invention can be used to ameliorate or prevent peripheral neuropathy. It can also be used to treat peripheral neuropathy.
  • peripheral neuropathy caused by administration of DNA replication inhibitors platinum agents (oxaliplatin, etc.) and alkylating agents), microtubule polymerization stabilizers, microtubule polymerization inhibitors, proteasome inhibitors, etc., and diabetes It can be suitably used not only for mitigation, alleviation or prevention of peripheral neuropathy that occurs concurrently with cancer, but also for peripheral neuropathy due to other causes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

薬剤による副作用のうち、特にオキサリプラチンなどの抗がん剤による末梢神経障害を予防又は改善できる医薬や食品薬剤はなかった。 キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を有効成分とする末梢神経障害の予防又は改善剤は、抗がん剤などの薬剤により誘発される若しくは糖尿病によって誘発される四肢のしびれ、四肢の痛み、深部腱反射の低下、筋力の低下、アロディニア、痛覚過敏、手指の巧緻機能障害、歩行障害、躓き、転倒、屈曲障害(正座、あぐら、横座りまたは椅子座り等の困難または不能)、または四肢の麻痺等が改善される。

Description

末梢神経障害の予防又は改善剤
 本発明は末梢神経障害の予防又は改善剤に係るものであり、特に抗がん剤若しくは糖尿病によって引き起こされる末梢神経障害の予防又は改善に好適に使用できる末梢神経障害の予防又は改善剤に関するものである。
 悪性腫瘍に対する化学療法に使用される薬剤には、様々な作用機序のものが開発されている。これらの薬剤は、所定の作用機序に基づき、腫瘍細胞の生存若しくは増殖を抑制する。しかし、これらは一般に、腫瘍細胞だけに作用するのではなく、通常細胞にも同様の効果を与える。したがって、化学療法に使用される薬剤を服用すると、腫瘍を抑制する効果と共に、末梢神経障害、脱毛、嘔吐、消化管障害、肝毒性、腎毒性、神経毒性といった副作用が生じる。
 このなかでも末梢神経障害は、健常な人では、感じない刺激で痛みを感じる、感覚過敏応答(アロディニア)がある。この感覚過敏応答を伴う痺れ感、疼き感が連続的に長期間に継続するため、化学療法の中止を余儀なくされる場合もあり、化学療法にとっては大きな問題とされている。
 従来、化学療法の副作用として発症する末梢神経障害に対しては、ガバペンチンやケタミンといった鎮痛剤、ラモトリギンやクロナゼパムといった抗てんかん薬、クロミプラミンやデュロキセチンといった抗うつ薬、牛車腎気丸や芍薬甘草湯といった漢方薬、ビタミンB製剤が投与されてきた。しかし、大きな効果を上げているとはいえない。
 そこでこの末梢神経障害を改善するための薬剤が提案されている。特許文献1では、セリンを含むアミノ酸及びn-3系脂肪酸を含む脂質を含有する組成物が提案されている。
 また、特許文献2には、特定の環状アミンの化合物が末梢神経障害の治療剤又は予防剤となりうることが開示されている。
 また、症状の類似した末梢神経障害が糖尿病の症状の1つとして発症することが知られている。この末梢神経障害により、患者の日常生活の質は低下する。したがって、糖尿病性末梢神経障害に対しても症状の改善が強く要望されている。
 なお、特許文献3には、ラクタム化合物が糖輸送増強作用剤として効果があり、糖尿病、糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性大血管症、耐糖能異常、または肥満症の予防及び/または治療薬として利用できることが記載されている。
特開2019-182881号公報 国際公開第2018/181860号 特開2006-213732号公報
 特許文献1はアミノ酸と脂肪酸で構成されるため人体に対しての安全性は比較的実績があるといえる。しかし、ペプチド類であるため良好な薬物動態学的性質に関しては更に検討が必要とも考えられる。特許文献2は非ペプチド類であるが、それゆえ、薬剤自体の副作用の検証が必要となってくる。
 特許文献3には、ラクタム化合物が糖輸送能力を有する点については、実施例を含め開示されているが、末梢神経障害についての具体的な記載はなく、血糖値を下げる効果があるという開示にとどまる。糖尿病性末梢神経障害の原因はまだ明らかではない。そして、糖尿病性末梢神経障害は、糖尿病の合併症であり、まずは糖尿病の進行を止めることが重要とされている。
 本発明は上記の課題に鑑みて想到されたものであり、ペプチド類以外の副作用が少ない成分を使用した末梢神経障害の予防又は改善剤を提供するものである。そして、本発明に係る末梢神経障害の予防又は改善剤は、化学療法による末梢神経障害にも、糖尿病性末梢神経障害にも効果を有する。
 より具体的に本発明に係る末梢神経障害の予防又は改善剤は、キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を含有することを特徴とする。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を含有することを特徴とする末梢神経障害の予防又は改善剤。
項2. 末梢神経障害が、抗がん剤の投与によって誘発されるものである項1に記載の末梢神経障害の予防又は改善剤。
項3. 前記抗がん剤が、白金系抗がん剤、微小管重合安定化剤、微小管重合阻害剤、プロテアソーム阻害剤等である項2に記載の末梢神経障害の予防又は改善剤。
項4. 末梢神経障害が、糖尿病性末梢神経障害である、項1に記載の末梢神経障害の予防又は改善剤。
項5. 医薬品である、項1~4のいずれかに記載の末梢神経障害の予防又は改善剤。
項6. 食品である、項1~4のいずれかに記載の末梢神経障害の予防又は改善剤。
項7. キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を投与する工程を含む、末梢神経障害の予防又は改善方法。
項8. 末梢神経障害の予防又は改善に用いられる、末梢神経障害の予防又は改善剤の製造におけるキシリトール、L-タリトール又はD-トレイトールの使用。
項9. 末梢神経障害の予防又は改善に用いられる、キシリトール、L-タリトール又はD-トレイトール。
項10. キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を含有することを特徴とする末梢神経伸長阻害抑制剤。
項11. キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を投与する工程を含む、末梢神経伸長阻害抑制方法。
項12. 末梢神経伸長阻害抑制に用いられる、末梢神経伸長阻害抑制の製造におけるキシリトール、L-タリトール又はD-トレイトールの使用。
項13. 末梢神経伸長阻害抑制に用いられる、キシリトール、L-タリトール又はD-トレイトール。
 本発明は、末梢神経障害の予防又は改善剤を提供することができる。すなわち、キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を投与又は摂取することで、がん化学療法若しくは糖尿病によって誘発された四肢のしびれ、四肢の痛み、深部腱反射の低下、筋力の低下、アロディニア、痛覚過敏、手指の巧緻機能障害、歩行障害、躓き、転倒、屈曲障害(正座、あぐら、横座りまたは椅子座り等の困難または不能)、または四肢の麻痺等が改善される。また、本発明に係る予防又は改善剤は、化学療法の開始と同時に、若しくは糖質の取りすぎを意識した後に服用することで、上記の末梢神経障害の予防にも用いることができる。
 これまで末梢神経障害に対処するため、抗がん剤の減量やがん化学療法の中断を余儀なくされていたが、本発明の剤を用いれば適切ながん治療を継続することが可能となり、がんからの早期回復に繋がる。
 また、本発明により自宅で簡便に服用又は摂取できる末梢神経障害の予防又は改善剤を提供することは、在宅でがん治療を受ける患者にとって大変有用である。更に、がん化学療法や糖尿病による末梢神経障害が予防又は改善されることによって患者の生活の質(QOL)も向上する。
 更に、よく知られているようにキシリトール、L-タリトール、D-トレイトールといった糖アルコールは人体に対して安全であることが知られており、過剰摂取による下痢以外の副作用は認められていないことが実証されている。
 なお、末梢神経障害は、がん化学療法や糖尿病のみならず、他の薬剤投与、外傷、感染症などによっても引き起こされるが、本発明に係る予防又は改善剤を用いれば、これら末梢神経障害の症状を予防又は改善することもできる。
マウスにキシリトールをオキサリプラチンと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにキシリトールをオキサリプラチンと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにキシリトールをパクリタキセルと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにキシリトールをパクリタキセルと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにキシリトールをビンクリスチンと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにキシリトールをビンクリスチンと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにキシリトールをボルテゾミブと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにキシリトールをボルテゾミブと共に投与した場合のフォン・フライ試験の結果を示す図である。 オキサリプラチンによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のコールドプレート試験の結果を示す図である。 オキサリプラチンによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のフォン・フライ試験の結果を示す図である。 パクリタキセルによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のコールドプレート試験の結果を示す図である。 パクリタキセルによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ビンクリスチンによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のコールドプレート試験の結果を示す図である。 ビンクリスチンによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ボルテゾミブによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のコールドプレート試験の結果を示す図である。 ボルテゾミブによって末梢神経障害を発症したマウスに、キシリトールを投与した場合のフォン・フライ試験の結果を示す図である。 マウスにD-トレイトールをオキサリプラチンと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにD-トレイトールをオキサリプラチンと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにD-トレイトールをパクリタキセルと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにD-トレイトールをパクリタキセルと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにD-トレイトールをビンクリスチンと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにD-トレイトールをビンクリスチンと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにD-トレイトールをボルテゾミブと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにD-トレイトールをボルテゾミブと共に投与した場合のフォン・フライ試験の結果を示す図である。 オキサリプラチンによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のコールドプレート試験の結果を示す図である。 オキサリプラチンによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のフォン・フライ試験の結果を示す図である。 パクリタキセルによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のコールドプレート試験の結果を示す図である。 パクリタキセルによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のフォン・フライ試験の結果を示す図である。 ビンクリスチンによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のコールドプレート試験の結果を示す図である。 ビンクリスチンによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のフォン・フライ試験の結果を示す図である。 ボルテゾミブによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のコールドプレート試験の結果を示す図である。 ボルテゾミブによって末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のフォン・フライ試験の結果を示す図である。 マウスにL-タリトールをオキサリプラチンと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにL-タリトールをオキサリプラチンと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにL-タリトールをパクリタキセルと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにL-タリトールをパクリタキセルと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにL-タリトールをビンクリスチンと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにL-タリトールをビンクリスチンと共に投与した場合のフォン・フライ試験の結果を示す図である。 マウスにL-タリトールをボルテゾミブと共に投与した場合のコールドプレート試験の結果を示す図である。 マウスにL-タリトールをボルテゾミブと共に投与した場合のフォン・フライ試験の結果を示す図である。 オキサリプラチンによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のコールドプレート試験の結果を示す図である。 オキサリプラチンによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のフォン・フライ試験の結果を示す図である。 パクリタキセルによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のコールドプレート試験の結果を示す図である。 パクリタキセルによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ビンクリスチンによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のコールドプレート試験の結果を示す図である。 ビンクリスチンによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ボルテゾミブによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のコールドプレート試験の結果を示す図である。 ボルテゾミブによって末梢神経障害を発症したマウスに、L-タリトールを投与した場合のフォン・フライ試験の結果を示す図である。 マウスにストレプトゾトシンを投与した日からキシリトールを投与した場合のコールドプレート試験の結果を示す図である。 マウスにストレプトゾトシンを投与した日からキシリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ストレプトゾトシン投与によって糖尿病を発病させ、末梢神経障害を発症したマウスに、キシリトールを投与した場合のコールドプレート試験の結果を示す図である。 ストレプトゾトシン投与によって糖尿病を発病させ、末梢神経障害を発症したマウスに、キシリトールを投与した場合のフォン・フライ試験の結果を示す図である。 マウスにストレプトゾトシンを投与した日からD-トレイトールを投与した場合のコールドプレート試験の結果を示す図である。 マウスにストレプトゾトシンを投与した日からD-トレイトールを投与した場合のフォン・フライ試験の結果を示す図である。 ストレプトゾトシン投与によって糖尿病を発病させ、末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のコールドプレート試験の結果を示す図である。 ストレプトゾトシン投与によって糖尿病を発病させ、末梢神経障害を発症したマウスに、D-トレイトールを投与した場合のフォン・フライ試験の結果を示す図である。 マウスにストレプトゾトシンを投与した日からL-タリトールを投与した場合のコールドプレート試験の結果を示す図である。 マウスにストレプトゾトシンを投与した日からL-タリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ストレプトゾトシン投与によって糖尿病を発病させ、末梢神経障害を発症したマウスに、L-タリトールを投与した場合のコールドプレート試験の結果を示す図である。 ストレプトゾトシン投与によって糖尿病を発病させ、末梢神経障害を発症したマウスに、L-タリトールを投与した場合のフォン・フライ試験の結果を示す図である。 ラット褐色細胞腫由来の細胞株であるPC12細胞を用いたキシリトールによる末梢神経の神経伸長阻害抑制作用の結果を示す図である。 ラット褐色細胞腫由来の細胞株であるPC12細胞を用いたキシリトールによる末梢神経の細胞傷害試験の結果を示す図である。 ヒト神経芽細胞腫の細胞株であるSH-SY5Yを用いたキシリトールによる末梢神経の神経伸長阻害抑制作用の結果を示す図である。 ヒト神経芽細胞腫の細胞株であるSH-SY5Yを用いたキシリトールによる末梢神経の細胞傷害試験の結果を示す図である。
 以下に本発明に係る予防又は改善剤について図面及び実施例を示し説明を行う。なお、以下の説明は、本発明の一実施形態及び一実施例を例示するものであり、本発明が以下の説明に限定されるものではない。以下の説明は本発明の趣旨を逸脱しない範囲で改変することができる。
 本発明に係る予防又は改善剤において、「予防」とは末梢神経障害の発症を防ぐだけを意味するのではなく、発症時の症状の程度を軽減する作用も含み、「改善」とは末梢神経障害の根治治療だけを意味するのではなく、末梢神経障害の症状の程度を軽減若しくは緩和する作用も含む。なお、本明細書中では、「~」は「以上、以下」の範囲を示す。
 本発明に係る予防又は改善剤は有効成分としてキシリトール(CAS番号87-99-0)、L-タリトール(CAS番号60660-58-4)、D-トレイトール(CAS番号2418-52-2)より選ばれる少なくとも1種以上を含む。本発明に係る予防又は改善剤において使用されるキシリトール、L-タリトール、D-トレイトール(以下総じて述べる場合は「キシリトール等」と呼ぶ。)は、当該技術分野において公知の方法により調製することができる。
 例えば、キシリトールは、トウモロコシの茎やシラカバからキシランを抽出し、加水分解してキシロースを精製し、ニッケルを触媒として水素化する方法で量産されている。また、L-タリトールは、有機化学的手法によりL-タロース、L-アルトロース等の単糖類を金属触媒の下、高温高圧化で水素を用いて還元することで製造することができる。また、酵素反応によっても得られる方法が開示されている。また、D-トレイトールは、酒石酸の相当異性体の変性を経由して製造されるとされる。
 本発明に係る予防又は改善剤は、医薬品、食品等の形態で提供することができる。また、本発明に係る改善剤は、末梢神経障害改善用、末梢神経障害予防用である旨の表示を行って、提供することもできる。
 本発明に係る予防又は改善剤を医薬品とする場合、末梢神経障害用治療薬(医薬組成物)若しくは末梢神経障害用予防薬(医薬組成物)として提供することが可能である。
 本発明に係る予防又は改善剤を医薬品とする場合、経口、経皮、経腸、経静脈、経肺、皮下、経粘膜、筋肉内等のいずれの方法で投与してもよく、予防又は改善対象となる末梢神経障害の程度等に応じて適宜設定すればよい。
 本発明に係る予防又は改善剤を医薬品にする場合、キシリトール等を、そのまま又は他の添加剤等と組み合わせて所望の剤型に調製すればよい。医薬品としては、具体的には、カプセル剤、顆粒剤、散剤、丸剤、錠剤、ゼリー剤、シロップ剤などの内服用製剤;液剤、軟膏剤、クリーム剤、ローション剤、ゲル化剤、貼付剤、エアゾール剤などの外用製剤;注射剤などが挙げられる。
 本発明に係る予防又は改善剤を医薬品にする場合、所望の剤型になるように、結合剤、滑沢剤、崩壊剤、着色剤、矯味剤、防腐剤、抗酸化剤、安定化剤、水、低級アルコール、溶解補助剤、界面活性剤、乳化安定剤、ゲル化剤、粘着剤、香料、色素などの添加剤を適宜選択して製剤化すればよい。また、必要に応じて、また、血管膨張剤、副腎皮質ホルモン、角質溶解剤、保湿剤、殺菌剤、抗酸化剤、清涼化剤等の薬理成分が含まれていてもよい。
 本発明に係る予防又は改善剤を医薬品にする場合、医薬品におけるキシリトール等の含有量については、後述する1日当たりの投与量を充足できるように、医薬品の剤型などに応じて適宜設定すればよいが、例えば、内服用製剤の場合であれば、キシリトール等の総計が(0.1~100)質量%、好ましくは(15~80)質量%、より好ましくは(30~70)質量%が挙げられ、外用製剤の場合であれば、キシリトール等の総計が(0.01~50)質量%、好ましくは(0.1~40)質量%、より好ましくは(0.5~30)質量%が挙げられる。
 また、本発明に係る予防又は改善剤を食品にする場合、当該食品は、末梢神経障害の予防又は改善用の食品として提供される。
 本発明に係る予防又は改善剤を食品にする場合、キシリトール等を、そのまま又は他の食品素材や添加成分と組み合わせて所望の形態に調製すればよい。食品としては、嗜好食品、健康食品などの一般加工食品、厚生労働省の保健機能食品制度に規定された特定保健用食品、栄養機能食品、機能性食品などの保健機能食品などが挙げられる。食品として、具体的には、飴、ガム、ゼリー、ビスケット、クッキー、煎餅、パン、ヨーグルト、アイスクリーム、プリンなどの嗜好食品;麺類;魚肉・畜肉練製品;茶、清涼飲料、コーヒー飲料、乳飲料、乳清飲料、乳酸菌飲料などの飲料;等の一般加工食品;カプセル剤(ソフトカプセル剤、ハードカプセル剤)、錠剤、顆粒剤、粉剤、ゼリー剤等のサプリメントなどが挙げられる。これらの飲食品の中でも、サプリメントが好ましい。
 本発明に係る予防又は改善剤を食品にする場合、食品中のキシリトール等の含有量については、後述する1日当たりの摂取量を充足できるように、食品の種類などに応じて適宜設定すればよいが、例えば、キシリトール等の総計が(0.05~100)質量%、好ましくは(10~80)質量%、より好ましくは(20~60)質量%が挙げられる。
 本発明に係る予防又は改善剤は、末梢神経障害の予防又は改善のために使用される。適用対象となる末梢神経障害の症状としては、例えば、感覚神経障害、自律神経障害又は運動神経障害等が挙げられる。本発明に係る予防又は改善剤で適用対象となる末梢神経障害の症状としては、より好ましくは感覚神経障害である。感覚神経障害は、特に限定されないが、例えば、四肢のしびれ、四肢の痛み、深部腱反射の低下、筋力の低下、アロディニア、痛覚過敏、痛覚異常、手指の巧緻機能障害、歩行障害、躓き、転倒、屈曲障害(正座、あぐら、横座りまたは椅子座り等の困難または不能)、四肢の麻痺等が挙げられる。
 また、末梢神経障害の予防又は改善により、特に限定されないが、四肢(手足等を含む)の抹消神経伝達、文字を書く又はボタンをかける時などの日常生活の手の動きの補助、握力や手に力を入れる感覚の補助、一時的な手の不快感や違和感を改善することができる。簡単にいうと、本発明に係る予防又は改善剤は手や足の不快感を軽減する、若しくは手や足の神経伝達を助けるといってもよい。
 また、本発明に係る予防又は改善剤は、適用対象となる末梢神経障害の誘発要因については、特に限定されず、例えば、がん化学療法、他の薬剤投与、糖尿病の進行、外傷、感染症などによって引き起こされる末梢神経障害のいずれに対しても適用することができるが、特に、がん化学療法によって誘発される末梢神経障害あるいは糖尿病性末梢神経障害に対して好適に適用される。
 本発明に係る予防又は改善剤を各種抗がん剤によって誘発される末梢神経障害に対して適用する場合、抗がん剤の種類については、特に限定されない。例えば、白金製剤、アルキル化剤、代謝拮抗剤、微小管作用薬、抗癌性抗生物質、トポイソメラーゼ阻害剤、プロテアソーム阻害剤、ヒストン脱アセチル化酵素阻害剤、FLT3チロシンキナーゼ阻害薬、抗体医薬品、ALK阻害剤、HER2/EGFRチロシンキナーゼ阻害剤、ALK/ROS1チロシンキナーゼ阻害剤、TRK/ROS1チロシンキナーゼ阻害剤、マルチキナーゼ阻害剤、JAK阻害剤、BCR-ABL阻害剤、FGFR阻害剤、MET阻害剤、BRAF阻害剤、MEK阻害剤、免疫調節薬、免疫チェックポイント阻害薬等が挙げられる。
 白金製剤としては、具体的には、オキサリプラチン、シスプラチン、カルボプラチン、ネダプラチン等が挙げられる。アルキル化剤としては、具体的には、シクロホスファミド、イホスファミド、メルファラン、チオテパ、カルボコン、塩酸ニムスチン、ラニムスチン、カルムスチン、ブスルファン等が挙げられる。
 代謝拮抗剤としては、具体的には、5-フルオロウラシル、メソトレキセート、ドキシフルリジン、テガフール、シタラビン、シタラビン オクホスファート、エノシタビン、ゲムシタビン、メルカプトプリン、フルダラビン、カペシタビン、アザシチジン等が挙げられる。微小管作用薬としては、具体的には、ドセタキセル、パクリタキセル、ビンクリスチン、ビンブラスチン、ビンデシン、ビノレルビン、カバジタキセル、エンブリン等が挙げられる。
 抗癌性抗生物質としては、具体的には、塩酸ドキソルビシン、マイトマイシン、塩酸アムルビシン、塩酸ピラルビシン、塩酸エピルビシン、塩酸アクラルビシン、塩酸ミトキサントロン、塩酸ブレオマイシン、硫酸ペプロマイシン、ダウノルビシン、イダルビシン、アクチノマイチンD等が挙げられる。トポイソメラーゼ阻害剤としては、具体的には、イリノテカン、塩酸ノギテカン、エトポシド等が挙げられる。
 プロテアソーム阻害剤としては、具体的には、ボルテゾミブ、カルフィルゾミブ、イキサゾミブ等が挙げられる。ヒストン脱アセチル化酵素阻害剤としては、具体的には、ボリノスタット、パノビノスタット、ロミデプシン、ツシジノスタット等が挙げられる。
 FLT3チロシンキナーゼ阻害薬としては、具体的には、ギルテリチニブ等が挙げられる。抗体医薬品としては、具体的にペルツズマブ、トラスツズマブ エムタンシン、ブレンツキシマブ べドチン、ポラツズマブ ベドチン、リツキシマブ、オビヌツズマブ、ブリナツモマブ、ベバシズマブ、モガムリズマブ、オファツムマブ、イブリツモマブ チウキセタン、ゲムツズマブ オゾガマイシン、イノツズマブ オゾガマイシン、アレムツズマブ、ダラツムマブ、イサツキシマブ、エロツズマブ、トラスツズマブ、トラスツズマブ デルクステカン、セツキシマブ、パニツムマブ、ネシツムマブ、セツキシマブ サロタロカンナトリウム、ラムシルマブ、ジヌツキシマブ、アフリベルセプト ベータ、デノスマブ等が挙げられる。
 ALK阻害剤としては、具体的にアレクチニブ、ブリグチニブ、セリチニブ等が挙げられる。HER2/EGFRチロシンキナーゼ阻害剤としては、具体的にはラパチニブ等が挙げられる。ALK/ROS1チロシンキナーゼ阻害薬としては、具体的には、クリゾチニブ、ロルラチニブ等が挙げられる。
 TRK/ROS1チロシンキナーゼ阻害剤としては、具体的には、ラロトレクチニブ、エヌトレクチニブ等が挙げられる。マルチキナーゼ阻害剤としては、具体的にはソラフェニブ、スニチニブ、パゾパニブ、バンデタニブ、アキシチニブ、レゴラフェニブ、ニンテダニブ、レンバチニブ、カボザンチニブ等が挙げられる。
 JAK阻害剤としては、具体的には、ルキソリチニブ等が挙げられる。BCR-ABL阻害剤としては、具体的にはイマチニブ、ニロチニブ、ダサチニブ、ボスチニブ、ポナチニブ等が挙げられる。FGFR阻害剤としては、具体的には、ペミガチニブ等が挙げられる。MET阻害剤としては、具体的にはテポチニブ、カプマチニブ等が挙げられる。
 BRAF阻害剤としては、具体的には、ベムラフェニブ、ダブラフェニブ、エンコラフェニブ等が挙げられる。MEK阻害剤としては、具体的にはビニメチニブ、トラメチニブ等が挙げられる。免疫調節薬としては具体的には、サリドマイド、レナリドミド、ポナリドミド等が挙げられる。免疫チェックポイント阻害薬としては、具体的には、ニボルマブ、イピリムマブ、ペムブロリズマブ、アテゾリズマブ、アベルマブ、デュルバルマブ等が挙げられる。
 本発明に係る予防又は改善剤をがん化学療法によって誘発される末梢神経障害に適用する場合、当該末梢神経障害の誘発要因となる抗がん剤の種類については、特に限定されないが、好ましくはDNA複製阻害剤(白金製剤及びアルキル化剤)、微小管重合安定化剤、微小管重合阻害剤、プロテアソーム阻害剤等が挙げられる。
 本発明に係る予防又は改善剤をがん化学療法によって誘発される末梢神経障害に適用する場合、がん化学療法の開始前又は投与開始と同時に本発明に係る予防又は改善剤の投与又は摂取を開始すればよいが、がん化学療法の期間中又はがん化学療法の終了後に本発明に係る予防又は改善剤の投与又は摂取を開始してもよい。
 本発明に係る予防又は改善剤を糖尿病性末梢神経障害に適用する場合、末梢神経障害が発症した後にその改善剤として摂取することができる。また、末梢神経障害が発症する前であっても、糖尿病の発病が確認できれば、摂取することで予防剤として利用することができる。
 本発明に係る予防又は改善剤の投与又は摂取量は、症状、年齢、体重、発症後の経過時間、併用される治療的措置などにより、適宜選択することができる。本発明の実施例において、末梢神経障害を発生させる抗がん剤量(例えば、オキサリプラチンなら6mg/マウスkg体重)を投与した際の末梢神経障害を改善するために有効なマウスの1日あたりのキシリトール等の総摂取量は、予防の場合は5mg/マウスkg体重以上であればよく、治療であれば100mg/マウスkg体重以上であれば好ましい。また、本発明の実施例において、ストレプトゾトシン200mg/マウスkg体重を投与し、糖尿病を発症させた際の末梢神経障害を改善するために有効なマウスの1日あたりのキシリトール等の総摂取量は、1mg/マウスkg体重以上であればよく、5mg/マウスkg体重以上であればより好ましい。
 当該技術分野においては、ある成分がマウスにおいて有効とされる場合、ヒトで同等の作用が発現する用量はヒト等価用量(Human Equivalent Dose:HED)で算出される。マウスの体重を30gとし、ヒトの体重を60kgとしたときには、マウスでの用量を12.3で割った値がヒト等価用量と考えられている。
 それによれば、抗がん剤による末梢神経障害の改善のためのキシリトール等の1日の総摂取量としては、予防の場合は0.41mg/ヒトkg体重以上であればよく、治療であれば8.13mg/ヒトkg体重以上であれば好ましい。したがって、ヒト成人男性の1日に摂取するキシリトール等の1日の総摂取量は、予防の場合は24.6mg/日/成人以上であればよく、治療であれば487.8mg/日/成人以上であれば好ましい。また、糖尿病による末梢神経障害の改善のためのキシリトール等の1日の総摂取量としては、予防の場合は0.08mg/ヒトkg体重以上であればよく、治療であれば0.41mg/ヒトkg体重以上であれば好ましい。したがって、ヒト成人男性の1日に摂取するキシリトール等の1日の総摂取量は、予防の場合は4.8mg/日/成人以上であればよく、治療であれば24.6mg/日/成人以上であれば好ましい。
 また、キシリトール等の過剰摂取は、お腹を下すとされており、その限界量は、個人差はあるもの、20~30g/日とされている。したがって、末梢神経障害の改善のために必要な量では、ほとんど副作用らしい副作用も生じない場合が多いと考えられる。したがって、本発明に係る予防又は改善剤は、経口投与又は摂取される場合は、キシリトール等の投与又は摂取量の合計が0.25g/日/成人~30g/日/成人であればよく、0.48g/日/成人~20g/日/成人以下であれば好ましい。また、糖尿病の場合はより少ない量(4.8mg/日/成人~30g/日/成人、好ましくは24.6mg/日/成人~20g/日/成人)とすることができる。
 本発明に係る予防又は改善剤は、1日当たりの投与量又は摂取量を満たすように、1日当たり1回又は2~3回に分けて投与又は摂取すればよい。
(実施例1)キシリトールを含む抗がん剤投与由来の末梢神経障害予防剤
<オキサリプラチンによるマウス末梢神経障害に対するキシリトールの予防作用>
 抗がん剤のオキサリプラチンを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するキシリトールの予防効果を調べた。オキサリプラチンを投与しながらキシリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。なお、オキサリプラチンは白金製剤に該当する抗がん剤である。なお、以下全ての実施例において投与量(mg/kg)はマウスの体重1kg当たりの投与物質の重量を示す。
(1)被験物の投与
 6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチン投与群、2水準のオキサリプラチン及びキシリトール投与群(オキサリプラチン+キシリトール投与群)の4群に群構成した。それぞれの群は9匹で構成した。
 オキサリプラチン投与群と、オキサリプラチン+キシリトール投与群のマウスには、馴化8日目にオキサリプラチン6mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日6mg/kgのオキサリプラチンを腹腔内投与した。
 第1のオキサリプラチン+キシリトール投与群は、0日目から毎日1mg/kgのキシリトールを経口投与した。第2のオキサリプラチン+キシリトール投与群は、0日目から毎日5mg/kgのキシリトールを経口投与した。
 これらの群をそれぞれコントロール群、6mg/kgオキサリプラチン投与群、6mg/kgオキサリプラチン+1mg/kgキシリトール投与群、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群と呼ぶ。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するキシリトールの効果を試験した。本実施例(実施例1)の(1)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図1に示す。
 図1を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、白菱形実線は6mg/kgオキサリプラチン投与群であり、黒三角点線は、6mg/kgオキサリプラチン+1mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、オキサリプラチン投与群(白菱形実線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、キシリトールを併用して投与した群である6mg/kgオキサリプラチン+1mg/kgキシリトール投与群(黒三角点線)、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。キシリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。6mg/kgオキサリプラチン投与群(白菱形実線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例1)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図2に示す。
 図2を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、白菱形実線は6mg/kgオキサリプラチン投与群であり、黒三角点線は、6mg/kgオキサリプラチン+1mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 オキサリプラチン投与群(白菱形実線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、キシリトールを併用して投与した群である6mg/kgオキサリプラチン+1mg/kgキシリトール投与群(黒三角点線)、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群(黒四角破線)では、実験期間を通じてコントロール群と同程度の回避反応スコアを示した。オキサリプラチン投与群(白菱形実線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図1)及びフォン・フライ試験(図2)ともに、オキサリプラチン投与群(白菱形実線)は、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはオキサリプラチンの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、キシリトールを投与した6mg/kgオキサリプラチン+1mg/kgキシリトール投与群(黒三角点線)と、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、キシリトールは、オキサリプラチンで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、キシリトールは、オキサリプラチン(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<パクリタキセルによるマウス末梢神経障害に対するキシリトールの予防作用>
 抗がん剤のパクリタキセルを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するキシリトールの予防効果を調べた。パクリタキセルを投与しながらキシリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。なお、パクリタキセルは微小管重合安定化剤(微小管作用薬)に該当する抗がん剤である。
(4)被験物の投与
 6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、パクリタキセル投与群、キシリトール投与群、パクリタキセル及びキシリトール投与群(パクリタキセル+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 パクリタキセル投与群と、パクリタキセル+キシリトール投与群のマウスには、馴化8日目にパクリタキセル6mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日6mg/kgのパクリタキセルを腹腔内投与した。
 キシリトール投与群とパクリタキセル+キシリトール投与群は、0日目から毎日5mg/kgのキシリトールを経口投与した。
 これらの群をそれぞれコントロール群、6mg/kgパクリタキセル投与群、5mg/kgキシリトール投与群、6mg/kgパクリタキセル+5mg/kgキシリトール投与群と呼ぶ。
(5)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するキシリトールの効果を試験した。本実施例(実施例1)の(4)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図3に示す。
 図3を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、5mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、6mg/kgパクリタキセル投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、キシリトールだけを投与した5mg/kgキシリトール投与群(白四角点線)とパクリタキセルとキシリトールを併用して投与した6mg/kgパクリタキセル+5mg/kgキシリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。キシリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。6mg/kgパクリタキセル投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(6)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例1)の(4)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図4に示す。
 図4を参照して、横軸は投与後経過期間(日)であり、各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、5mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 6mg/kgパクリタキセル投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、キシリトールだけを投与した5mg/kgキシリトール投与群(白四角点線)と、キシリトールを併用して投与した6mg/kgパクリタキセル+5mg/kgキシリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。6mg/kgパクリタキセル投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図3)及びフォン・フライ試験(図4)ともに、6mg/kgパクリタキセル投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはパクリタキセルの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、キシリトールを投与した5mg/kgキシリトール投与群(白四角点線)と、6mg/kgパクリタキセル+5mg/kgキシリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、キシリトールは、パクリタキセルで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、キシリトールは、パクリタキセル(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<ビンクリスチンによるマウス末梢神経障害に対するキシリトールの予防作用>
 抗がん剤のビンクリスチンを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するキシリトールの予防効果を調べた。ビンクリスチンを投与しながらキシリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。なお、ビンクリスチンは微小管重合阻害剤(微小管作用薬)に該当する抗がん剤である。
(7)被験物の投与
 6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ビンクリスチン投与群、キシリトール投与群、ビンクリスチン及びキシリトール投与群(ビンクリスチン+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ビンクリスチン投与群と、ビンクリスチン+キシリトール投与群のマウスには、馴化8日目にビンクリスチン0.2mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日0.2mg/kgのビンクリスチンを腹腔内投与した。
 キシリトール投与群とビンクリスチン+キシリトール投与群は、0日目から毎日5mg/kgのキシリトールを経口投与した。
 これらの群をそれぞれコントロール群、0.2mg/kgビンクリスチン投与群、5mg/kgキシリトール投与群、0.2mg/kgビンクリスチン+5mg/kgキシリトール投与群と呼ぶ。
(8)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するキシリトールの効果を試験した。本実施例(実施例1)の(7)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図5に示す。
 図5を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、5mg/kgキシリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、0.2mg/kgビンクリスチン投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、キシリトールだけを投与した5mg/kgキシリトール投与群(白四角点線)とビンクリスチンとキシリトールを併用して投与した0.2mg/kgビンクリスチン+5mg/kgキシリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。キシリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。0.2mg/kgビンクリスチン投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(9)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例1)の(7)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図6に示す。
 図6を参照して、横軸は投与後経過期間(日)であり、各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、5mg/kgキシリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 0.2mg/kgビンクリスチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、キシリトールだけを投与した5mg/kgキシリトール投与群(白四角点線)と、キシリトールを併用して投与した0.2mg/kgビンクリスチン+5mg/kgキシリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。0.2mg/kgビンクリスチン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図5)及びフォン・フライ試験(図6)ともに、0.2mg/kgビンクリスチン投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはビンクリスチンの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、キシリトールを投与した5mg/kgキシリトール投与群(白四角点線)と、0.2mg/kgビンクリスチン+5mg/kgキシリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、キシリトールは、ビンクリスチンで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、キシリトールは、ビンクリスチン(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<ボルテゾミブによるマウス末梢神経障害に対するキシリトールの予防作用>
 抗がん剤のボルテゾミブを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するキシリトールの予防効果を調べた。ボルテゾミブを投与しながらキシリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。なお、ボルテゾミブはプロテアソーム剤に該当する抗がん剤である。
(10)被験物の投与
 6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ボルテゾミブ投与群、キシリトール投与群、ボルテゾミブ及びキシリトール投与群(ボルテゾミブ+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ボルテゾミブ投与群と、ボルテゾミブ+キシリトール投与群のマウスには、馴化8日目にボルテゾミブ1mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日1mg/kgのボルテゾミブを腹腔内投与した。
 キシリトール投与群とボルテゾミブ+キシリトール投与群は、0日目から毎日5mg/kgのキシリトールを経口投与した。
 これらの群をそれぞれコントロール群、1mg/kgボルテゾミブ投与群、5mg/kgキシリトール投与群、1mg/kgボルテゾミブ+5mg/kgキシリトール投与群と呼ぶ。
(11)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するキシリトールの効果を試験した。本実施例(実施例1)の(10)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図7に示す。
 図7を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、5mg/kgキシリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、1mg/kgボルテゾミブ投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、キシリトールだけを投与した5mg/kgキシリトール投与群(白四角点線)とボルテゾミブとキシリトールを併用して投与した1mg/kgボルテゾミブ+5mg/kgキシリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。キシリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。1mg/kgボルテゾミブ投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(12)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例1)の(10)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図8に示す。
 図8を参照して、横軸は投与後経過期間(日)であり、各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、5mg/kgキシリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+5mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 1mg/kgボルテゾミブ投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、キシリトールだけを投与した5mg/kgキシリトール投与群(白四角点線)と、キシリトールを併用して投与した1mg/kgボルテゾミブ+5mg/kgキシリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。1mg/kgボルテゾミブ投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図7)及びフォン・フライ試験(図8)ともに、1mg/kgボルテゾミブ投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはボルテゾミブの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、キシリトールを投与した5mg/kgキシリトール投与群(白四角点線)と、1mg/kgボルテゾミブ+5mg/kgキシリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、キシリトールは、ボルテゾミブで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、キシリトールは、ボルテゾミブ(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
(実施例2)キシリトールを含む抗がん剤投与由来の末梢神経障害治療剤
<オキサリプラチンによるマウス末梢神経障害に対するキシリトールの治療作用>
 キシリトールはオキサリプラチンによって発症される末梢神経障害を予防できることがわかった。そこで次に、キシリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(1)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチンを投与しただけの群及び3水準のオキサリプラチンとキシリトールを投与した群の5群に群構成した。それぞれの群は7匹で構成した。
 馴化8日目にコントロール群以外のマウスには、オキサリプラチン6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のオキサリプラチンを腹腔内に投与した。
 第1のオキサリプラチン+キシリトール投与群には、投与6日目から5mg/kgのキシリトールを毎日経口投与した。第2のオキサリプラチン+キシリトール投与群には、投与6日目から25mg/kgのキシリトールを毎日経口投与した。第3のオキサリプラチン+キシリトール投与群には、投与6日目から100mg/kgのキシリトールを毎日経口投与した。なお、投与6日目とは、投与後経過日数が6日目ということを意味する。以下同じである。
 上記の5群はそれぞれコントロール群、6mg/kgオキサリプラチン投与群、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群、6mg/kgオキサリプラチン+25mg/kgキシリトール投与群、6mg/kgオキサリプラチン+100mg/kgキシリトール投与群とする。
(2)コールドプレート試験(Cold plate test)
 本実施例(実施例2)の(1)で示した5群のマウスに、低温刺激による知覚異常に対するキシリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図9に示す。
 図9を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸実線は6mg/kgオキサリプラチン投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群であり、白四角破線は、6mg/kgオキサリプラチン+25mg/kgキシリトール投与群であり、黒三角破線は、6mg/kgオキサリプラチン+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図9を参照して、コントロール群以外のオキサリプラチンを投与した4つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、キシリトールを投与した6mg/kgオキサリプラチン+5mg/kgキシリトール投与群、6mg/kgオキサリプラチン+25mg/kgキシリトール投与群及び6mg/kgオキサリプラチン+100mg/kgキシリトール投与群の3群については、6日目以降潜時が長くなる傾向を示し、10日目には、これら3群とコントロール群は、6mg/kgオキサリプラチン投与群に対して有意に逃避反応時間(潜時)が長くなった。
 また、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群は、14日目、17日目では6mg/kgオキサリプラチン投与群に対して有意な差は観察されなかったが、投与21日目では有意に逃避反応時間(潜時)が長くなった。
 6mg/kgオキサリプラチン+25mg/kgキシリトール投与群では、キシリトールを投与した6日目から逃避反応時間(潜時)の長時間化が見られ、6mg/kgオキサリプラチン+100mg/kgキシリトール投与群では、10日目以降コントロール群と同程度に逃避反応時間(潜時)が推移した。
 オキサリプラチンが投与された4群(6mg/kgオキサリプラチン投与群、6mg/kgオキサリプラチン+5mg/kgキシリトール投与群、6mg/kgオキサリプラチン+25mg/kgキシリトール投与群及び6mg/kgオキサリプラチン+100mg/kgキシリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後キシリトールを投与した3つの群は、キシリトールを投与しなかった6mg/kgオキサリプラチン投与群と比較して、いずれも有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がキシリトールの服用によって改善されたことを意味する。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(4)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチン投与群、キシリトール投与群、オキサリプラチン及びキシリトール投与群(オキサリプラチン+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
オキサリプラチン投与群と、オキサリプラチン+キシリトール投与群のマウスには、馴化8日目にオキサリプラチン6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のオキサリプラチンを腹腔内に投与した。
 100mg/kgキシリトール投与群のマウスには、ゼロ日目から100mg/kgのキシリトールを毎日経口投与した。オキサリプラチン+100mg/kgキシリトール投与群のマウスには、投与6日目から100mg/kgのキシリトールを毎日経口投与した。
(5)フォン・フライ試験(von Frey test)
 本実施例(実施例2)の(4)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図10に示す。
 図10を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 オキサリプラチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、キシリトールを併用して投与した群である6mg/kgオキサリプラチン+100mg/kgキシリトール投与群(黒四角破線)では、12日目以降は明らかにオキサリプラチン投与群(黒丸破線)より低いスコアを維持した。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<パクリタキセルによるマウス末梢神経障害に対するキシリトールの治療作用>
 キシリトールはパクリタキセルによって発症される末梢神経障害を予防できることがわかった。そこで次に、キシリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(6)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、パクリタキセル投与群、キシリトール投与群、パクリタキセル及びキシリトール投与群(パクリタキセル+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 パクリタキセル投与群と、パクリタキセル+キシリトール投与群のマウスには、馴化8日目にパクリタキセル6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のパクリタキセルを腹腔内に投与した。
 100mg/kgキシリトール投与群のマウスには、ゼロ日目から100mg/kgのキシリトールを毎日経口投与した。パクリタキセル+100mg/kgキシリトール投与群のマウスには、投与6日目から100mg/kgのキシリトールを毎日経口投与した。
(7)コールドプレート試験(Cold plate test)
 本実施例(実施例2)の(6)で示した4群のマウスに、低温刺激による知覚異常に対するキシリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図11に示す。
 図11を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図11を参照して、コントロール群及びキシリトール投与群以外のパクリタキセルを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、6mg/kgパクリタキセル+100mg/kgキシリトール投与群については、6日目以降潜時が長くなる傾向を示し、12日目には、6mg/kgパクリタキセル投与群に対して有意に逃避反応時間(潜時)が長くなった。
 パクリタキセルが投与された2群(6mg/kgパクリタキセル投与群及び6mg/kgパクリタキセル+100mg/kgキシリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後キシリトールを投与した群は、キシリトールを投与しなかった6mg/kgパクリタキセル投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がキシリトールの服用によって改善されたことを意味する。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(8)フォン・フライ試験(von Frey test)
 本実施例(実施例2)の(6)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図12に示す。
 図12を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 パクリタキセル投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、キシリトールを併用して投与した群である6mg/kgパクリタキセル+100mg/kgキシリトール投与群(黒四角破線)では、12日目以降は明らかにパクリタキセル投与群(黒丸破線)より低いスコアを維持した。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<ビンクリスチンによるマウス末梢神経障害に対するキシリトールの治療作用>
 キシリトールはビンクリスチンによって発症される末梢神経障害を予防できることがわかった。そこで次に、キシリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(9)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ビンクリスチン投与群、キシリトール投与群、ビンクリスチン及びキシリトール投与群(ビンクリスチン+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ビンクリスチン投与群と、ビンクリスチン+キシリトール投与群のマウスには、馴化8日目にビンクリスチン0.2mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のビンクリスチンを腹腔内に投与した。
 100mg/kgキシリトール投与群のマウスには、ゼロ日目から100mg/kgのキシリトールを毎日経口投与した。ビンクリスチン+100mg/kgキシリトール投与群のマウスには、投与6日目から100mg/kgのキシリトールを毎日経口投与した。
(10)コールドプレート試験(Cold plate test)
 本実施例(実施例2)の(9)で示した4群のマウスに、低温刺激による知覚異常に対するキシリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図13に示す。
 図13を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図13を参照して、コントロール群及びキシリトール投与群以外のビンクリスチンを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、0.2mg/kgビンクリスチン+100mg/kgキシリトール投与群については、6日目以降潜時が長くなる傾向を示し、12日目には、0.2mg/kgビンクリスチン投与群に対して有意に逃避反応時間(潜時)が長くなった。
 ビンクリスチンが投与された2群(0.2mg/kgビンクリスチン投与群及び0.2mg/kgビンクリスチン+100mg/kgキシリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後キシリトールを投与した群は、キシリトールを投与しなかった0.2mg/kgビンクリスチン投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がキシリトールの服用によって改善されたことを意味する。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(11)フォン・フライ試験(von Frey test)
 本実施例(実施例2)の(9)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図14に示す。
 図14を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 ビンクリスチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、キシリトールを併用して投与した群である0.2mg/kgビンクリスチン+100mg/kgキシリトール投与群(黒四角破線)では、12日目以降は明らかにビンクリスチン投与群(黒丸破線)より低いスコアを維持した。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<ボルテゾミブによるマウス末梢神経障害に対するキシリトールの治療作用>
 キシリトールはボルテゾミブによって発症される末梢神経障害を予防できることがわかった。そこで次に、キシリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(12)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ボルテゾミブ投与群、キシリトール投与群、ボルテゾミブ及びキシリトール投与群(ボルテゾミブ+キシリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ボルテゾミブ投与群と、ボルテゾミブ+キシリトール投与群のマウスには、馴化8日目にボルテゾミブ1mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のボルテゾミブを腹腔内に投与した。
 100mg/kgキシリトール投与群のマウスには、ゼロ日目から100mg/kgのキシリトールを毎日経口投与した。ボルテゾミブ+100mg/kgキシリトール投与群のマウスには、投与6日目から100mg/kgのキシリトールを毎日経口投与した。
(13)コールドプレート試験(Cold plate test)
 本実施例(実施例2)の(12)で示した4群のマウスに、低温刺激による知覚異常に対するキシリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図15に示す。
 図15を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図15を参照して、コントロール群及びキシリトール投与群以外のボルテゾミブを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、1mg/kgボルテゾミブ+100mg/kgキシリトール投与群については、6日目以降潜時が長くなる傾向を示し、12日目には、1mg/kgボルテゾミブ投与群に対して有意に逃避反応時間(潜時)が長くなった。
 ボルテゾミブが投与された2群(1mg/kgボルテゾミブ投与群及び1mg/kgボルテゾミブ+100mg/kgキシリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後キシリトールを投与した群は、キシリトールを投与しなかった1mg/kgボルテゾミブ投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がキシリトールの服用によって改善されたことを意味する。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(14)フォン・フライ試験(von Frey test)
 本実施例(実施例2)の(12)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図16に示す。
 図16を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、100mg/kgキシリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+100mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 ボルテゾミブ投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、キシリトールを併用して投与した群である1mg/kgボルテゾミブ+100mg/kgキシリトール投与群(黒四角破線)では、12日目以降は明らかにボルテゾミブ投与群(黒丸破線)より低いスコアを維持した。したがって、キシリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(実施例3)D-トレイトールを含む抗がん剤投与由来の末梢神経障害予防剤
<オキサリプラチンによるマウス末梢神経障害に対するD-トレイトールの予防作用>
 抗がん剤のオキサリプラチンを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するD-トレイトールの予防効果を調べた。オキサリプラチンを投与しながらD-トレイトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(1)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチン投与群、D-トレイトール投与群、オキサリプラチン及びD-トレイトール投与群(オキサリプラチン+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 オキサリプラチン投与群と、オキサリプラチン+D-トレイトール投与群のマウスには、馴化8日目にオキサリプラチン6mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日6mg/kgのオキサリプラチンを腹腔内投与した。
 D-トレイトール投与群とオキサリプラチン+D-トレイトール投与群は、0日目から毎日5mg/kgのD-トレイトールを経口投与した。
 これらの群をそれぞれコントロール群、6mg/kgオキサリプラチン投与群、5mg/kgD-トレイトール投与群、6mg/kgオキサリプラチン+5mg/kgD-トレイトール投与群と呼ぶ。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するD-トレイトールの効果を試験した。本実施例(実施例3)の(1)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図17に示す。
 図17を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、6mg/kgオキサリプラチン投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)とオキサリプラチンとD-トレイトールを併用して投与した6mg/kgオキサリプラチン+5mg/kgD-トレイトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。D-トレイトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。6mg/kgオキサリプラチン投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例3)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図18に示す。
 図18を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 6mg/kgオキサリプラチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)と、D-トレイトールを併用して投与した6mg/kgオキサリプラチン+5mg/kgD-トレイトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。6mg/kgオキサリプラチン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図17)及びフォン・フライ試験(図18)ともに、6mg/kgオキサリプラチン投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはオキサリプラチンの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角点線)と、6mg/kgオキサリプラチン+5mg/kgD-トレイトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、D-トレイトールは、オキサリプラチンで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、D-トレイトールは、オキサリプラチン(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<パクリタキセルによるマウス末梢神経障害に対するD-トレイトールの予防作用>
 抗がん剤のパクリタキセルを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するD-トレイトールの予防効果を調べた。パクリタキセルを投与しながらD-トレイトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(4)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、パクリタキセル投与群、D-トレイトール投与群、パクリタキセル及びD-トレイトール投与群(パクリタキセル+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 パクリタキセル投与群と、パクリタキセル+D-トレイトール投与群のマウスには、馴化8日目にパクリタキセル6mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日6mg/kgのパクリタキセルを腹腔内投与した。
 D-トレイトール投与群とパクリタキセル+D-トレイトール投与群は、0日目から毎日5mg/kgのD-トレイトールを経口投与した。
 これらの群をそれぞれコントロール群、6mg/kgパクリタキセル投与群、5mg/kgD-トレイトール投与群、6mg/kgパクリタキセル+5mg/kgD-トレイトール投与群と呼ぶ。
(5)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するD-トレイトールの効果を試験した。本実施例(実施例3)の(4)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図19に示す。
 図19を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、6mg/kgパクリタキセル投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)とパクリタキセルとD-トレイトールを併用して投与した6mg/kgパクリタキセル+5mg/kgD-トレイトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。D-トレイトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。6mg/kgパクリタキセル投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(6)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例3)の(4)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図20に示す。
 図20を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 6mg/kgパクリタキセル投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)と、D-トレイトールを併用して投与した6mg/kgパクリタキセル+5mg/kgD-トレイトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。6mg/kgパクリタキセル投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図19)及びフォン・フライ試験(図20)ともに、6mg/kgパクリタキセル投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはパクリタキセルの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角点線)と、6mg/kgパクリタキセル+5mg/kgD-トレイトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、D-トレイトールは、パクリタキセルで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、D-トレイトールは、パクリタキセル(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<ビンクリスチンによるマウス末梢神経障害に対するD-トレイトールの予防作用>
 抗がん剤のビンクリスチンを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するD-トレイトールの予防効果を調べた。ビンクリスチンを投与しながらD-トレイトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(7)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ビンクリスチン投与群、D-トレイトール投与群、ビンクリスチン及びD-トレイトール投与群(ビンクリスチン+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ビンクリスチン投与群と、ビンクリスチン+D-トレイトール投与群のマウスには、馴化8日目にビンクリスチン0.2mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日0.2mg/kgのビンクリスチンを腹腔内投与した。
 D-トレイトール投与群とビンクリスチン+D-トレイトール投与群は、0日目から毎日5mg/kgのD-トレイトールを経口投与した。
 これらの群をそれぞれコントロール群、0.2mg/kgビンクリスチン投与群、5mg/kgD-トレイトール投与群、0.2mg/kgビンクリスチン+5mg/kgD-トレイトール投与群と呼ぶ。
(8)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するD-トレイトールの効果を試験した。本実施例(実施例3)の(7)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図21に示す。
 図21を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、0.2mg/kgビンクリスチン投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)とビンクリスチンとD-トレイトールを併用して投与した0.2mg/kgビンクリスチン+5mg/kgD-トレイトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。D-トレイトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。0.2mg/kgビンクリスチン投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(9)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例3)の(7)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図22に示す。
 図22を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 0.2mg/kgビンクリスチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)と、D-トレイトールを併用して投与した0.2mg/kgビンクリスチン+5mg/kgD-トレイトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。0.2mg/kgビンクリスチン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図21)及びフォン・フライ試験(図22)ともに、0.2mg/kgビンクリスチン投与群(黒丸破線)は、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはビンクリスチンの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角点線)と、0.2mg/kgビンクリスチン+5mg/kgD-トレイトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、D-トレイトールは、ビンクリスチンで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、D-トレイトールは、ビンクリスチン(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<ボルテゾミブによるマウス末梢神経障害に対するD-トレイトールの予防作用>
 抗がん剤のボルテゾミブを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するD-トレイトールの予防効果を調べた。ボルテゾミブを投与しながらD-トレイトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(10)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ボルテゾミブ投与群、D-トレイトール投与群、ボルテゾミブ及びD-トレイトール投与群(ボルテゾミブ+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ボルテゾミブ投与群と、ボルテゾミブ+D-トレイトール投与群のマウスには、馴化8日目にボルテゾミブ1mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日1mg/kgのボルテゾミブを腹腔内投与した。
 D-トレイトール投与群とボルテゾミブ+D-トレイトール投与群は、0日目から毎日5mg/kgのD-トレイトールを経口投与した。
 これらの群をそれぞれコントロール群、1mg/kgボルテゾミブ投与群、5mg/kgD-トレイトール投与群、1mg/kgボルテゾミブ+5mg/kgD-トレイトール投与群と呼ぶ。
(11)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するD-トレイトールの効果を試験した。本実施例(実施例3)の(10)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図23に示す。
 図23を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、1mg/kgボルテゾミブ投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)とボルテゾミブとD-トレイトールを併用して投与した1mg/kgボルテゾミブ+5mg/kgD-トレイトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。D-トレイトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。1mg/kgボルテゾミブ投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(12)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例3)の(10)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図24に示す。
 図24を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、5mg/kgD-トレイトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 1mg/kgボルテゾミブ投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角点線)と、D-トレイトールを併用して投与した1mg/kgボルテゾミブ+5mg/kgD-トレイトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。1mg/kgボルテゾミブ投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図23)及びフォン・フライ試験(図24)ともに、1mg/kgボルテゾミブ投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはボルテゾミブの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角点線)と、1mg/kgボルテゾミブ+5mg/kgD-トレイトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、D-トレイトールは、ボルテゾミブで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、D-トレイトールは、ボルテゾミブ(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
(実施例4)D-トレイトールを含む抗がん剤投与由来の末梢神経障害治療剤
<オキサリプラチンによるマウス末梢神経障害に対するD-トレイトールの治療作用>
 D-トレイトールはオキサリプラチンによって発症される末梢神経障害を予防できることがわかった。そこで次に、D-トレイトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(1)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチン投与群、D-トレイトール投与群、オキサリプラチン及びD-トレイトール投与群(オキサリプラチン+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 オキサリプラチン投与群と、オキサリプラチン+D-トレイトール投与群のマウスには、馴化8日目にオキサリプラチン6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のオキサリプラチンを腹腔内に投与した。
 100mg/kgD-トレイトール投与群のマウスには、ゼロ日目から100mg/kgのD-トレイトールを毎日経口投与した。オキサリプラチン+100mg/kgD-トレイトール投与群のマウスには、投与6日目から100mg/kgのD-トレイトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 本実施例(実施例4)の(1)で示した4群のマウスに、低温刺激による知覚異常に対するD-トレイトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図25に示す。
 図25を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図25を参照して、コントロール群及びD-トレイトール投与群以外のオキサリプラチンを投与した群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、6mg/kgオキサリプラチン+100mg/kgD-トレイトール投与群については、6日目以降潜時が長くなる傾向を示し、15日目には、コントロール群(白丸実線)と同程度の逃避反応時間となった。
 オキサリプラチンが投与された2群(6mg/kgオキサリプラチン投与群及び6mg/kgオキサリプラチン+100mg/kgD-トレイトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後D-トレイトールを投与した群は、D-トレイトールを投与しなかった6mg/kgオキサリプラチン投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がD-トレイトールの服用によって改善されたことを意味する。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(3)フォン・フライ試験(von Frey test)
 本実施例(実施例4)の(1)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図26に示す。
 図26を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 オキサリプラチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、D-トレイトールを併用して投与した群である6mg/kgオキサリプラチン+100mg/kgD-トレイトール投与群(黒四角破線)では、15日目以降は明らかにオキサリプラチン投与群(黒丸破線)より低いスコアを維持した。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<パクリタキセルによるマウス末梢神経障害に対するD-トレイトールの治療作用>
 D-トレイトールはパクリタキセルによって発症される末梢神経障害を予防できることがわかった。そこで次に、D-トレイトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(4)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、パクリタキセル投与群、D-トレイトール投与群、パクリタキセル及びD-トレイトール投与群(パクリタキセル+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 パクリタキセル投与群と、パクリタキセル+D-トレイトール投与群のマウスには、馴化8日目にパクリタキセル6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のパクリタキセルを腹腔内に投与した。
 100mg/kgD-トレイトール投与群のマウスには、ゼロ日目から100mg/kgのD-トレイトールを毎日経口投与した。パクリタキセル+100mg/kgD-トレイトール投与群のマウスには、投与6日目から100mg/kgのD-トレイトールを毎日経口投与した。
(5)コールドプレート試験(Cold plate test)
 本実施例(実施例4)の(4)で示した4群のマウスに、低温刺激による知覚異常に対するD-トレイトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図27に示す。
 図27を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図27を参照して、コントロール群及びD-トレイトール投与群以外のパクリタキセルを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、6mg/kgパクリタキセル+100mg/kgD-トレイトール投与群については、6日目以降潜時が長くなる傾向を示し、12日目には、6mg/kgパクリタキセル投与群に対して有意に逃避反応時間(潜時)が長くなった。
 パクリタキセルが投与された2群(6mg/kgパクリタキセル投与群及び6mg/kgパクリタキセル+100mg/kgD-トレイトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後D-トレイトールを投与した群は、D-トレイトールを投与しなかった6mg/kgパクリタキセル投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がD-トレイトールの服用によって改善されたことを意味する。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(6)フォン・フライ試験(von Frey test)
 本実施例(実施例4)の(4)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図28に示す。
 図28を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 パクリタキセル投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、D-トレイトールを併用して投与した群である6mg/kgパクリタキセル+100mg/kgD-トレイトール投与群(黒四角破線)では、12日目以降は明らかにパクリタキセル投与群(黒丸破線)より低いスコアを維持した。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<ビンクリスチンによるマウス末梢神経障害に対するD-トレイトールの治療作用>
 D-トレイトールはビンクリスチンによって発症される末梢神経障害を予防できることがわかった。そこで次に、D-トレイトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(7)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ビンクリスチン投与群、D-トレイトール投与群、ビンクリスチン及びD-トレイトール投与群(ビンクリスチン+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ビンクリスチン投与群と、ビンクリスチン+D-トレイトール投与群のマウスには、馴化8日目にビンクリスチン0.2mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のビンクリスチンを腹腔内に投与した。
 100mg/kgD-トレイトール投与群のマウスには、ゼロ日目から100mg/kgのD-トレイトールを毎日経口投与した。ビンクリスチン+100mg/kgD-トレイトール投与群のマウスには、投与6日目から100mg/kgのD-トレイトールを毎日経口投与した。
(8)コールドプレート試験(Cold plate test)
 本実施例(実施例4)の(7)で示した4群のマウスに、低温刺激による知覚異常に対するD-トレイトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図29に示す。
 図29を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図29を参照して、コントロール群及びD-トレイトール投与群以外のビンクリスチンを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、0.2mg/kgビンクリスチン+100mg/kgD-トレイトール投与群については、12日目には、0.2mg/kgビンクリスチン投与群に対して有意に逃避反応時間(潜時)が長くなった。
 ビンクリスチンが投与された2群(0.2mg/kgビンクリスチン投与群及び0.2mg/kgビンクリスチン+100mg/kgD-トレイトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後D-トレイトールを投与した群は、D-トレイトールを投与しなかった0.2mg/kgビンクリスチン投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がD-トレイトールの服用によって改善されたことを意味する。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(9)フォン・フライ試験(von Frey test)
 本実施例(実施例4)の(7)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図30に示す。
 図30を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 ビンクリスチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、D-トレイトールを併用して投与した群である0.2mg/kgビンクリスチン+100mg/kgD-トレイトール投与群(黒四角破線)では、12日目以降は明らかにビンクリスチン投与群(黒丸破線)より低いスコアを維持した。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<ボルテゾミブによるマウス末梢神経障害に対するD-トレイトールの治療作用>
 D-トレイトールはボルテゾミブによって発症される末梢神経障害を予防できることがわかった。そこで次に、D-トレイトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(10)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ボルテゾミブ投与群、D-トレイトール投与群、ボルテゾミブ及びD-トレイトール投与群(ボルテゾミブ+D-トレイトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ボルテゾミブ投与群と、ボルテゾミブ+D-トレイトール投与群のマウスには、馴化8日目にボルテゾミブ1mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のボルテゾミブを腹腔内に投与した。
 100mg/kgD-トレイトール投与群のマウスには、ゼロ日目から100mg/kgのD-トレイトールを毎日経口投与した。ボルテゾミブ+100mg/kgD-トレイトール投与群のマウスには、投与6日目から100mg/kgのD-トレイトールを毎日経口投与した。
(11)コールドプレート試験(Cold plate test)
 本実施例(実施例4)の(10)で示した4群のマウスに、低温刺激による知覚異常に対するD-トレイトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図31に示す。
 図31を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図31を参照して、コントロール群及びD-トレイトール投与群以外のボルテゾミブを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、1mg/kgボルテゾミブ+100mg/kgD-トレイトール投与群については、6日目以降潜時が長くなる傾向を示し、12日目には、1mg/kgボルテゾミブ投与群に対して有意に逃避反応時間(潜時)が長くなった。
 ボルテゾミブが投与された2群(1mg/kgボルテゾミブ投与群及び1mg/kgボルテゾミブ+100mg/kgD-トレイトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後D-トレイトールを投与した群は、D-トレイトールを投与しなかった1mg/kgボルテゾミブ投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がD-トレイトールの服用によって改善されたことを意味する。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(12)フォン・フライ試験(von Frey test)
 本実施例(実施例4)の(10)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図32に示す。
 図32を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、100mg/kgD-トレイトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+100mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 ボルテゾミブ投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、D-トレイトールを併用して投与した群である1mg/kgボルテゾミブ+100mg/kgD-トレイトール投与群(黒四角破線)では、12日目以降は明らかにボルテゾミブ投与群(黒丸破線)より低いスコアを維持した。したがって、D-トレイトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(実施例5)L-タリトールを含む抗がん剤投与由来の末梢神経障害予防剤
<オキサリプラチンによるマウス末梢神経障害に対するL-タリトールの予防作用>
 抗がん剤のオキサリプラチンを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するL-タリトールの予防効果を調べた。オキサリプラチンを投与しながらL-タリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(1)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチン投与群、L-タリトール投与群、オキサリプラチン及びL-タリトール投与群(オキサリプラチン+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 オキサリプラチン投与群と、オキサリプラチン+L-タリトール投与群のマウスには、馴化8日目にオキサリプラチン6mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日6mg/kgのオキサリプラチンを腹腔内投与した。
 L-タリトール投与群とオキサリプラチン+L-タリトール投与群は、0日目から毎日5mg/kgのL-タリトールを経口投与した。
 これらの群をそれぞれコントロール群、6mg/kgオキサリプラチン投与群、5mg/kgL-タリトール投与群、6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群と呼ぶ。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するL-タリトールの効果を試験した。本実施例(実施例5)の(1)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。逃避反応時間(潜時)が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図33に示す。
 図33を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 なお、コントロール群、5mg/kgL-タリトール投与群、6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群は、ほぼ同一データとなり、図33では、3つの線が重なり、コントロール群及び5mg/kgL-タリトール投与群が見えにくくなった。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、6mg/kgオキサリプラチン投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)とオキサリプラチンとL-タリトールを併用して投与した6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の潜時を示した。L-タリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。6mg/kgオキサリプラチン投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例5)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図34に示す。
 図34を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 6mg/kgオキサリプラチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)と、L-タリトールを併用して投与した6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。6mg/kgオキサリプラチン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図33)及びフォン・フライ試験(図34)ともに、6mg/kgオキサリプラチン投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはオキサリプラチンの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角点線)と、6mg/kgオキサリプラチン+5mg/kgL-タリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、L-タリトールは、オキサリプラチンで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、L-タリトールは、オキサリプラチン(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<パクリタキセルによるマウス末梢神経障害に対するL-タリトールの予防作用>
 抗がん剤のパクリタキセルを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するL-タリトールの予防効果を調べた。パクリタキセルを投与しながらL-タリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(4)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、パクリタキセル投与群、L-タリトール投与群、パクリタキセル及びL-タリトール投与群(パクリタキセル+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 パクリタキセル投与群と、パクリタキセル+L-タリトール投与群のマウスには、馴化8日目にパクリタキセル6mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日6mg/kgのパクリタキセルを腹腔内投与した。
 L-タリトール投与群とパクリタキセル+L-タリトール投与群は、0日目から毎日5mg/kgのL-タリトールを経口投与した。
 これらの群をそれぞれコントロール群、6mg/kgパクリタキセル投与群、5mg/kgL-タリトール投与群、6mg/kgパクリタキセル+5mg/kgL-タリトール投与群と呼ぶ。
(5)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するL-タリトールの効果を試験した。本実施例(実施例5)の(4)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図35に示す。
 図35を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、6mg/kgパクリタキセル投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)とパクリタキセルとL-タリトールを併用して投与した6mg/kgパクリタキセル+5mg/kgL-タリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。L-タリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。6mg/kgパクリタキセル投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(6)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例5)の(4)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図36に示す。
 図36を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 6mg/kgパクリタキセル投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)と、L-タリトールを併用して投与した6mg/kgパクリタキセル+5mg/kgL-タリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。6mg/kgパクリタキセル投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図35)及びフォン・フライ試験(図36)ともに、6mg/kgパクリタキセル投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはパクリタキセルの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角点線)と、6mg/kgパクリタキセル+5mg/kgL-タリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、L-タリトールは、パクリタキセルで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、L-タリトールは、パクリタキセル(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<ビンクリスチンによるマウス末梢神経障害に対するL-タリトールの予防作用>
 抗がん剤のビンクリスチンを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するL-タリトールの予防効果を調べた。ビンクリスチンを投与しながらL-タリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(7)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ビンクリスチン投与群、L-タリトール投与群、ビンクリスチン及びL-タリトール投与群(ビンクリスチン+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ビンクリスチン投与群と、ビンクリスチン+L-タリトール投与群のマウスには、馴化8日目にビンクリスチン0.2mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日0.2mg/kgのビンクリスチンを腹腔内投与した。
 L-タリトール投与群とビンクリスチン+L-タリトール投与群は、0日目から毎日5mg/kgのL-タリトールを経口投与した。
 これらの群をそれぞれコントロール群、0.2mg/kgビンクリスチン投与群、5mg/kgL-タリトール投与群、0.2mg/kgビンクリスチン+5mg/kgL-タリトール投与群と呼ぶ。
(8)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するL-タリトールの効果を試験した。本実施例(実施例5)の(7)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図37に示す。
 図37を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、0.2mg/kgビンクリスチン投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)とビンクリスチンとL-タリトールを併用して投与した0.2mg/kgビンクリスチン+5mg/kgL-タリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。L-タリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。0.2mg/kgビンクリスチン投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(9)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例5)の(7)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図38に示す。
 図38を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 0.2mg/kgビンクリスチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)と、L-タリトールを併用して投与した0.2mg/kgビンクリスチン+5mg/kgL-タリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。0.2mg/kgビンクリスチン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図37)及びフォン・フライ試験(図38)ともに、0.2mg/kgビンクリスチン投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはビンクリスチンの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角点線)と、0.2mg/kgビンクリスチン+5mg/kgL-タリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、L-タリトールは、ビンクリスチンで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、L-タリトールは、ビンクリスチン(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
<ボルテゾミブによるマウス末梢神経障害に対するL-タリトールの予防作用>
 抗がん剤のボルテゾミブを投与した場合に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない触覚刺激で惹起される激痛)等の知覚過敏に対するL-タリトールの予防効果を調べた。ボルテゾミブを投与しながらL-タリトールをマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(10)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ボルテゾミブ投与群、L-タリトール投与群、ボルテゾミブ及びL-タリトール投与群(ボルテゾミブ+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ボルテゾミブ投与群と、ボルテゾミブ+L-タリトール投与群のマウスには、馴化8日目にボルテゾミブ1mg/kgを腹腔内に投与した。この日を投与0日目とし、以後これらのマウスには、7日目と14日目に1日1mg/kgのボルテゾミブを腹腔内投与した。
 L-タリトール投与群とボルテゾミブ+L-タリトール投与群は、0日目から毎日5mg/kgのL-タリトールを経口投与した。
 これらの群をそれぞれコントロール群、1mg/kgボルテゾミブ投与群、5mg/kgL-タリトール投与群、1mg/kgボルテゾミブ+5mg/kgL-タリトール投与群と呼ぶ。
(11)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するL-タリトールの効果を試験した。本実施例(実施例5)の(10)で示した4群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図39に示す。
 図39を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 試験の3日目から6日目にかけて、コールドプレートにおける冷刺激に対して、1mg/kgボルテゾミブ投与群(黒丸破線)では逃避反応時間(潜時)が短縮され、その後一定の逃避反応時間を示した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)とボルテゾミブとL-タリトールを併用して投与した1mg/kgボルテゾミブ+5mg/kgL-タリトール投与群(黒四角破線)では、コントロール群(白丸実線)とほぼ同程度の逃避反応時間(潜時)を示した。L-タリトールを投与した2群は、その後も逃避反応時間の短縮を起こすことはなかった。1mg/kgボルテゾミブ投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(12)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例5)の(10)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図40に示す。
 図40を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、5mg/kgL-タリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 1mg/kgボルテゾミブ投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇した。一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角点線)と、L-タリトールを併用して投与した1mg/kgボルテゾミブ+5mg/kgL-タリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。1mg/kgボルテゾミブ投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図39)及びフォン・フライ試験(図40)ともに、1mg/kgボルテゾミブ投与群(黒丸破線)は、コントロール群(白丸実線)に対して逃避反応時間及び回避反応スコアともに刺激を忌避する方向に有意に変化があった。これはボルテゾミブの投与によって、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角点線)と、1mg/kgボルテゾミブ+5mg/kgキシリトール投与群(黒四角破線)は、コントロール群と同様の結果を示した。したがって、L-タリトールは、ボルテゾミブで誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、L-タリトールは、ボルテゾミブ(抗がん剤)によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
(実施例6)L-タリトールを含む抗がん剤投与由来の末梢神経障害治療剤
<オキサリプラチンによるマウス末梢神経障害に対するL-タリトールの治療作用>
 L-タリトールはオキサリプラチンによって発症される末梢神経障害を予防できることがわかった。そこで次に、L-タリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(1)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、オキサリプラチン投与群、L-タリトール投与群、オキサリプラチン及びL-タリトール投与群(オキサリプラチン+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 オキサリプラチン投与群と、オキサリプラチン+L-タリトール投与群のマウスには、馴化8日目にオキサリプラチン6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のオキサリプラチンを腹腔内に投与した。
 100mg/kgL-タリトール投与群のマウスには、ゼロ日目から100mg/kgのL-タリトールを毎日経口投与した。オキサリプラチン+100mg/kgL-タリトール投与群のマウスには、投与6日目から100mg/kgのL-タリトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 本実施例(実施例6)の(1)で示した4群のマウスに、低温刺激による知覚異常に対するL-タリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図41に示す。
 図41を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図41を参照して、コントロール群及びL-タリトール投与群以外のオキサリプラチンを投与した群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、6mg/kgオキサリプラチン+100mg/kgL-タリトール投与群については、9日目以降潜時が長くなる傾向を示し、15日目には、コントロール群(白丸実線)と同程度の逃避反応時間となった。
 オキサリプラチンが投与された2群(6mg/kgオキサリプラチン投与群及び6mg/kgオキサリプラチン+100mg/kgL-タリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後L-タリトールを投与した群は、L-タリトールを投与しなかった6mg/kgオキサリプラチン投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がL-タリトールの服用によって改善されたことを意味する。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(3)フォン・フライ試験(von Frey test)
 本実施例(実施例6)の(1)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図42に示す。
 図42を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgオキサリプラチン投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgオキサリプラチン+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 オキサリプラチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、L-タリトールを併用して投与した群である6mg/kgオキサリプラチン+100mg/kgL-タリトール投与群(黒四角破線)では、12日目以降は明らかにオキサリプラチン投与群(黒丸破線)より低いスコアを維持した。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<パクリタキセルによるマウス末梢神経障害に対するL-タリトールの治療作用>
 L-タリトールはパクリタキセルによって発症される末梢神経障害を予防できることがわかった。そこで次に、L-タリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(4)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、パクリタキセル投与群、L-タリトール投与群、パクリタキセル及びL-タリトール投与群(パクリタキセル+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 パクリタキセル投与群と、パクリタキセル+L-タリトール投与群のマウスには、馴化8日目にパクリタキセル6mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のパクリタキセルを腹腔内に投与した。
 100mg/kgL-タリトール投与群のマウスには、ゼロ日目から100mg/kgのL-タリトールを毎日経口投与した。パクリタキセル+100mg/kgL-タリトール投与群のマウスには、投与6日目から100mg/kgのL-タリトールを毎日経口投与した。
(5)コールドプレート試験(Cold plate test)
 本実施例(実施例6)の(4)で示した4群のマウスに、低温刺激による知覚異常に対するL-タリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図43に示す。
 図43を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図43を参照して、コントロール群及びL-タリトール投与群以外のパクリタキセルを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、6mg/kgパクリタキセル+100mg/kgL-タリトール投与群については、9日目以降潜時が長くなる傾向を示し、12日目には、6mg/kgパクリタキセル投与群に対して有意に逃避反応時間(潜時)が長くなった。
 パクリタキセルが投与された2群(6mg/kgパクリタキセル投与群及び6mg/kgパクリタキセル+100mg/kgL-タリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後L-タリトールを投与した群は、L-タリトールを投与しなかった6mg/kgパクリタキセル投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がL-タリトールの服用によって改善されたことを意味する。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(6)フォン・フライ試験(von Frey test)
 本実施例(実施例6)の(4)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図44に示す。
 図44を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は6mg/kgパクリタキセル投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、6mg/kgパクリタキセル+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 パクリタキセル投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、L-タリトールを併用して投与した群である6mg/kgパクリタキセル+100mg/kgL-タリトール投与群(黒四角破線)では、12日目以降は明らかにパクリタキセル投与群(黒丸破線)より低いスコアを維持した。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<ビンクリスチンによるマウス末梢神経障害に対するL-タリトールの治療作用>
 L-タリトールはビンクリスチンによって発症される末梢神経障害を予防できることがわかった。そこで次に、L-タリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(7)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ビンクリスチン投与群、L-タリトール投与群、ビンクリスチン及びL-タリトール投与群(ビンクリスチン+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ビンクリスチン投与群と、ビンクリスチン+L-タリトール投与群のマウスには、馴化8日目にビンクリスチン0.2mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のビンクリスチンを腹腔内に投与した。
 100mg/kgL-タリトール投与群のマウスには、ゼロ日目から100mg/kgのL-タリトールを毎日経口投与した。ビンクリスチン+100mg/kgL-タリトール投与群のマウスには、投与6日目から100mg/kgのL-タリトールを毎日経口投与した。
(8)コールドプレート試験(Cold plate test)
 本実施例(実施例6)の(7)で示した4群のマウスに、低温刺激による知覚異常に対するL-タリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図45に示す。
 図45を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図45を参照して、コントロール群及びL-タリトール投与群以外のビンクリスチンを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、0.2mg/kgビンクリスチン+100mg/kgL-タリトール投与群については、9日目以降潜時が長くなる傾向を示し、12日目には、0.2mg/kgビンクリスチン投与群に対して有意に逃避反応時間(潜時)が長くなった。
 ビンクリスチンが投与された2群(0.2mg/kgビンクリスチン投与群及び0.2mg/kgビンクリスチン+100mg/kgL-タリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後L-タリトールを投与した群は、L-タリトールを投与しなかった0.2mg/kgビンクリスチン投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がL-タリトールの服用によって改善されたことを意味する。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(9)フォン・フライ試験(von Frey test)
 本実施例(実施例6)の(7)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図46に示す。
 図46を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は0.2mg/kgビンクリスチン投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、0.2mg/kgビンクリスチン+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 ビンクリスチン投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、L-タリトールを併用して投与した群である0.2mg/kgビンクリスチン+100mg/kgL-タリトール投与群(黒四角破線)では、12日目以降は明らかにビンクリスチン投与群(黒丸破線)より低いスコアを維持した。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
<ボルテゾミブによるマウス末梢神経障害に対するL-タリトールの治療作用>
 L-タリトールはボルテゾミブによって発症される末梢神経障害を予防できることがわかった。そこで次に、L-タリトールが抗がん剤を服用して末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(10)被験物の投与
 実施例1と同様に6~7週齢のBalb/c雌性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ボルテゾミブ投与群、L-タリトール投与群、ボルテゾミブ及びL-タリトール投与群(ボルテゾミブ+L-タリトール投与群)の4群に群構成した。それぞれの群は5匹で構成した。
 ボルテゾミブ投与群と、ボルテゾミブ+L-タリトール投与群のマウスには、馴化8日目にボルテゾミブ1mg/kgを腹腔内に投与した。この日を投与初日(0日目)とし、これらのマウスには、7日目及び14日目の3回にわたり、同量のボルテゾミブを腹腔内に投与した。
 100mg/kgL-タリトール投与群のマウスには、ゼロ日目から100mg/kgのL-タリトールを毎日経口投与した。ボルテゾミブ+100mg/kgL-タリトール投与群のマウスには、投与6日目から100mg/kgのL-タリトールを毎日経口投与した。
(11)コールドプレート試験(Cold plate test)
 本実施例(実施例6)の(10)で示した4群のマウスに、低温刺激による知覚異常に対するL-タリトールの効果を試験した。各群のマウスを10℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図47に示す。
 図47を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 図47を参照して、コントロール群及びL-タリトール投与群以外のボルテゾミブを投与した2つの群は、投与後6日目までに逃避反応時間(潜時)が一様に減少した。しかし、1mg/kgボルテゾミブ+100mg/kgL-タリトール投与群については、9日目以降潜時が長くなる傾向を示し、12日目には、1mg/kgボルテゾミブ投与群に対して有意に逃避反応時間(潜時)が長くなった。
 ボルテゾミブが投与された2群(1mg/kgボルテゾミブ投与群及び1mg/kgボルテゾミブ+100mg/kgL-タリトール投与群)は、投与6日目に逃避反応時間(潜時)が著しく短くなったので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。
 その後L-タリトールを投与した群は、L-タリトールを投与しなかった1mg/kgボルテゾミブ投与群と比較して、有意に逃避反応時間(潜時)が長くなった。この事は、一度発症した末梢神経障害(末梢神経過敏症状)がL-タリトールの服用によって改善されたことを意味する。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(12)フォン・フライ試験(von Frey test)
 本実施例(実施例6)の(10)で示した4群のマウスに、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図48に示す。
 図48を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。白丸実線はコントロール群であり、黒丸破線は1mg/kgボルテゾミブ投与群であり、白四角点線は、100mg/kgL-タリトール投与群であり、黒四角破線は、1mg/kgボルテゾミブ+100mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 ボルテゾミブ投与群(黒丸破線)ではコントロール群(白丸実線)に比べて著しく回避反応スコアが上昇したので、末梢神経障害(末梢神経過敏症状)を発症したと考えられる。一方、L-タリトールを併用して投与した群である1mg/kgボルテゾミブ+100mg/kgL-タリトール投与群(黒四角破線)では、12日目以降は明らかにボルテゾミブ投与群(黒丸破線)より低いスコアを維持した。したがって、L-タリトールは末梢神経障害(末梢神経過敏症状)の治療用組成物(治療剤)としても機能することがわかった。
(実施例7)キシリトールを含む糖尿病性末梢神経障害予防剤
<ストレプトゾトシン誘発糖尿病マウス末梢神経障害に対するキシリトールの予防作用>
 糖尿病性末梢神経障害の際に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない感覚刺激で惹起される激痛)等の知覚過敏に対するキシリトールの予防効果を調べた。ストレプトゾトシン投与と同時にキシリトールを被験薬としてマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(1)被験薬の投与
 6~7週齢のC57BL/6J雄性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ストレプトゾトシン投与群、1mg/kgキシリトール投与群、ストレプトゾトシン+1mg/kgキシリトール投与群の4群に群構成した。それぞれの群は9匹で構成した。
 馴化8日目にストレプトゾトシン投与群及びストレプトゾトシン+1mg/kgキシリトール投与群のマウスには、ストレプトゾトシン200mg/kgを投与した。ストレプトゾトシンの大量投与が、マウスの膵細胞を破壊する。その結果、インスリンの分泌がなくなり、マウスに糖尿病を発病させることができる。この日を投与初日(0日目)とした。なお、ストレプトゾトシンの投与は投与初日だけである。
 1mg/kgキシリトール投与群及びストレプトゾトシン+1mg/kgキシリトール投与群のマウスには、ゼロ日目から1mg/kgのキシリトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するキシリトールの効果を試験した。本実施例(実施例7)の(1)で示した4群のマウスを4℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図49に示す。
 図49を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角破線は1mg/kgキシリトール投与群であり、黒四角点線はストレプトゾトシン+1mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて逃避反応時間が18秒から20秒の間で安定していた。ストレプトゾトシン投与群(黒丸破線)は、7日目から逃避反応時間が短くなり、14日目には、コントロール群(白丸実線)に対して著しく逃避反応時間(潜時)が短縮された。
 一方、キシリトールだけを投与した1mg/kgキシリトール投与群(白四角破線)とストレプトゾトシンにキシリトールを併用して投与したストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)は、実験期間を通じてコントロール群(白丸実線)と同じ程度の反応時間であり、逃避反応時間の短縮を起こすことはなかった。ストレプトゾトシン投与群(黒丸破線)と比較して潜時の短縮が抑制された。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例7)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図50に示す。
 図50を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角破線は1mg/kgキシリトール投与群であり、黒四角点線はストレプトゾトシン+1mg/kgキシリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて安定にスコア1以下であった。ストレプトゾトシン投与群(黒丸破線)は、7日目から回避反応スコアが高くなった。一方、キシリトールを投与した1mg/kgキシリトール投与群(白四角破線)とストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。ストレプトゾトシン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図49)及びフォン・フライ試験(図50)ともに、ストレプトゾトシン投与群(黒丸破線)は、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはストレプトゾトシンの投与によって、マウスが糖尿病を発病し、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、キシリトールを投与した1mg/kgキシリトール投与群(白四角破線)と、ストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)は、コントロール群(白丸実線)と同様の結果を示した。したがって、キシリトールは、ストレプトゾトシンによる糖尿病で誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、キシリトールは、糖尿病によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
(実施例8)キシリトールを含む糖尿病性末梢神経障害治療剤
<ストレプトゾトシン誘発糖尿病マウス末梢神経障害に対するキシリトールの治療作用>
 キシリトールはストレプトゾトシンによって発病する糖尿病がもたらす末梢神経障害を予防できることがわかった。そこで、キシリトールは、糖尿病性末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(1)被験薬の投与
 実施例7と同様に6~7週齢のC57BL/6J雄性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ストレプトゾトシン投与群、1mg/kgキシリトール投与群、ストレプトゾトシン+1mg/kgキシリトール投与群の4群に群構成した。それぞれの群は9匹で構成した。
 馴化8日目にストレプトゾトシン投与群及びストレプトゾトシン+1mg/kgキシリトール投与群のマウスには、ストレプトゾトシン200mg/kgを投与した。ストレプトゾトシンの大量投与が、マウスの膵細胞を破壊する。その結果、インスリンの分泌がなくなり、マウスに糖尿病を発病させることができる。この日を投与初日(0日目)とした。なお、ストレプトゾトシンの投与は投与初日だけである。
 1mg/kgキシリトール投与群のマウスには、ゼロ日目から1mg/kgのキシリトールを毎日経口投与した。ストレプトゾトシン+1mg/kgキシリトール投与群のマウスには、投与21日目から1mg/kgのキシリトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するキシリトールの効果を試験した。本実施例(実施例8)の(1)で示した4群のマウスを4℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。逃避反応時間(潜時)が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図51に示す。
 図51を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。逃避反応時間が短いほど低温刺激を忌避していると判断できる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角破線は1mg/kgキシリトール投与群であり、黒四角点線はストレプトゾトシン+1mg/kgキシリトール投与群である。ストレプトゾトシン+1mg/kgキシリトール投与群でのキシリトールの投与は投与開始から21日目からである。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて逃避反応時間が18秒から20秒の間で安定していた。ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)は、7日目から逃避反応時間が短くなり、14日目には、ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)ともに著しく逃避反応時間(潜時)が短縮された。
 しかし、ストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)は、キシリトールが投与され始めた21日目以降逃避反応時間が長くなり、30日目には、コントロール群(白丸実線)と同程度の逃避反応時間となった。
 一方、キシリトールだけを投与した1mg/kgキシリトール投与群(白四角破線)は、実験期間を通じてコントロール群(白丸実線)と同じ程度の反応時間であり、逃避反応時間の短縮を起こすことはなかった。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例8)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図52に示す。
 図52を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角破線は1mg/kgキシリトール投与群であり、黒四角点線はストレプトゾトシン+1mg/kgキシリトール投与群である。ストレプトゾトシン+1mg/kgキシリトール投与群でのキシリトールの投与は投与開始から21日目からである。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて安定にスコア1以下であった。ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)は、7日目から回避反応スコアが高くなった。しかし、ストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)では、キシリトールを投与し始めた21日目以降回避反応は減少し、27日目には、コントロール群(白丸実線)と同程度の回避反応になった。回避反応スコアが高くなった後からの投与であっても、キシリトールは回避反応を減少させることができた。
 キシリトールを投与した1mg/kgキシリトール投与群(白四角破線)は、実験期間を通して、コントロール群(白丸実線)と同程度の回避反応であった。
 コールドプレート試験(図51)及びフォン・フライ試験(図52)ともに、ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)の21日目までは、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはストレプトゾトシンの投与によって、マウスが糖尿病を発病し、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 しかし、ストレプトゾトシン+1mg/kgキシリトール投与群(黒四角点線)は、キシリトールを投与し始めた21日目以降で、フォン・フライ試験及びコールドプレート試験のいずれも、コントロール群(白丸実線)と同程度の反応に戻った。なお、キシリトールを投与した1mg/kgキシリトール投与群(白四角破線)は、実験期間を通じて出コントロール群(白丸実線)と同程度であった。したがって、キシリトールは、ストレプトゾトシンによる糖尿病で誘発された末梢神経障害(末梢神経過敏症状)を治療するものと結論できる。すなわち、キシリトールは、糖尿病によって発症する末梢神経障害に対する治療組成物(治療剤)としても機能する。
(実施例9)D-トレイトールを含む糖尿病性末梢神経障害予防剤
<ストレプトゾトシン誘発糖尿病マウス末梢神経障害に対するD-トレイトールの予防作用>
 糖尿病性末梢神経障害の際に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない感覚刺激で惹起される激痛)等の知覚過敏に対するD-トレイトールの予防効果を調べた。ストレプトゾトシン投与と同時にD-トレイトールを被験薬としてマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(1)被験薬の投与
 実施例7と同様に6~7週齢のC57BL/6J雄性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ストレプトゾトシン投与群、5mg/kgD-トレイトール投与群、ストレプトゾトシン+5mg/kgD-トレイトール投与群の4群に群構成した。それぞれの群は5匹で構成した。
 馴化8日目にストレプトゾトシン投与群及びストレプトゾトシン+5mg/kgD-トレイトール投与群のマウスには、ストレプトゾトシン200mg/kgを投与した。ストレプトゾトシンの大量投与が、マウスの膵細胞を破壊する。その結果、インスリンの分泌がなくなり、マウスに糖尿病を発病させることができる。この日を投与初日(0日目)とした。なお、ストレプトゾトシンの投与は投与初日だけである。
 5mg/kgD-トレイトール投与群及びストレプトゾトシン+5mg/kgD-トレイトール投与群のマウスには、ゼロ日目から5mg/kgのD-トレイトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するD-トレイトールの効果を試験した。本実施例(実施例9)の(1)で示した4群のマウスを4℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図53に示す。
 図53を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgD-トレイトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて逃避反応時間が18秒から20秒の間で安定していた。ストレプトゾトシン投与群(黒丸破線)は、7日目から逃避反応時間が短くなり、14日目には、コントロール群(白丸実線)に対して著しく逃避反応時間(潜時)が短縮された。
 一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角実線)とストレプトゾトシンにD-トレイトールを併用して投与したストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)は、実験期間を通じてコントロール群(白丸実線)と同じ程度の反応時間であり、逃避反応時間の短縮を起こすことはなかった。ストレプトゾトシン投与群(黒丸破線)と比較して潜時の短縮が抑制された。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例9)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図54に示す。
 図54を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgD-トレイトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgD-トレイトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて安定にスコア1以下であった。ストレプトゾトシン投与群(黒丸破線)は、7日目から回避反応スコアが高くなった。一方、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角実線)とストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。ストレプトゾトシン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図53)及びフォン・フライ試験(図54)ともに、ストレプトゾトシン投与群(黒丸破線)は、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはストレプトゾトシンの投与によって、マウスが糖尿病を発病し、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角実線)と、ストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)は、コントロール群(白丸実線)と同様の結果を示した。したがって、D-トレイトールは、ストレプトゾトシンによる糖尿病で誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、D-トレイトールは、糖尿病によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
(実施例10)D-トレイトールを含む糖尿病性末梢神経障害治療剤
<ストレプトゾトシン誘発糖尿病マウス末梢神経障害に対するD-トレイトールの治療作用>
 D-トレイトールはストレプトゾトシンによって発病する糖尿病がもたらす末梢神経障害を予防できることがわかった。そこで、D-トレイトールは、糖尿病性末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(1)被験薬の投与
 実施例7と同様に6~7週齢のC57BL/6J雄性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ストレプトゾトシン投与群、5mg/kgD-トレイトール投与群、ストレプトゾトシン+5mg/kgD-トレイトール投与群の4群に群構成した。それぞれの群は5匹で構成した。
 馴化8日目にストレプトゾトシン投与群及びストレプトゾトシン+5mg/kgD-トレイトール投与群のマウスには、ストレプトゾトシン200mg/kgを投与した。ストレプトゾトシンの大量投与が、マウスの膵細胞を破壊する。その結果、インスリンの分泌がなくなり、マウスに糖尿病を発病させることができる。この日を投与初日(0日目)とした。なお、ストレプトゾトシンの投与は投与初日だけである。
 5mg/kgD-トレイトール投与群のマウスには、ゼロ日目から5mg/kgのD-トレイトールを毎日経口投与した。ストレプトゾトシン+5mg/kgD-トレイトール投与群のマウスには、投与21日目から5mg/kgのD-トレイトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するD-トレイトールの効果を試験した。本実施例(実施例10)の(1)で示した4群のマウスを4℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図55に示す。
 図55を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。逃避反応時間が短いほど低温刺激を忌避していると判断できる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgD-トレイトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgD-トレイトール投与群である。ストレプトゾトシン+5mg/kgD-トレイトール投与群でのD-トレイトールの投与は投与開始から21日目からである。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて18秒から20秒の間で安定していた。ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)は、7日目から逃避反応時間が短くなり、14日目には、ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)ともに著しく逃避反応時間(潜時)が短縮された。
 しかし、ストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)は、D-トレイトールが投与された21日目以降逃避反応時間が長くなり、30日目には、コントロール群と同程度の逃避反応時間となった。
 一方、D-トレイトールだけを投与した5mg/kgD-トレイトール投与群(白四角実線)は、実験期間を通じてコントロール群(白丸実線)と同じ程度の反応時間であり、逃避反応時間の短縮を起こすことはなかった。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例10)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図56に示す。
 図56を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgD-トレイトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgD-トレイトール投与群である。ストレプトゾトシン+5mg/kgD-トレイトール投与群でのD-トレイトールの投与は投与開始から21日目からである。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて安定にスコア1以下であった。ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)は、7日目から回避反応スコアが高くなった。しかし、ストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)では、D-トレイトールを投与し始めた24日目以降回避反応は減少し、33日目には、コントロール群(白丸実線)と同程度の回避反応になった。回避反応スコアが高くなった後からの投与であっても、D-トレイトールは回避反応を減少させることができた。
 D-トレイトールを投与したD-トレイトール投与群(白四角実線)は、実験期間を通して、コントロール群と同程度の回避反応であった。
 コールドプレート試験(図55)及びフォン・フライ試験(図56)ともに、ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)の21日目までは、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはストレプトゾトシンの投与によって、マウスが糖尿病を発病し、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 しかし、ストレプトゾトシン+5mg/kgD-トレイトール投与群(黒四角破線)は、D-トレイトールを投与し始めた21日目以降で、フォン・フライ試験及びコールドプレート試験のいずれも、コントロール群(白丸実線)と同程度の反応に戻った。なお、D-トレイトールを投与した5mg/kgD-トレイトール投与群(白四角実線)は、実験期間を通じてコントロール群(白丸実線)と同程度であった。したがって、D-トレイトールは、ストレプトゾトシンによる糖尿病で誘発された末梢神経障害(末梢神経過敏症状)を治療するものと結論できる。すなわち、D-トレイトールは、糖尿病によって発症する末梢神経障害に対する治療組成物(治療剤)としても機能する。
(実施例11)L-タリトールを含む糖尿病性末梢神経障害予防剤
<ストレプトゾトシン誘発糖尿病マウス末梢神経障害に対するL-タリトールの予防作用>
 糖尿病性末梢神経障害の際に生じる低温刺激における知覚異常及び機械的刺激によるアロディニア(通常痛みを引き起こさない感覚刺激で惹起される激痛)等の知覚過敏に対するL-タリトールの予防効果を調べた。ストレプトゾトシン投与と同時L-タリトールを被験薬としてマウスに経口投与し、以下の試験(Cold plate test及びvon Frey test)を行った。
(1)被験薬の投与
 実施例7と同様に6~7週齢のC57BL/6J雄性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ストレプトゾトシン投与群、5mg/kgL-タリトール投与群、ストレプトゾトシン+5mg/kgL-タリトール投与群の4群に群構成した。それぞれの群は5匹で構成した。
 馴化8日目にストレプトゾトシン投与群及びストレプトゾトシン+5mg/kgL-タリトール投与群のマウスには、ストレプトゾトシン200mg/kgを投与した。ストレプトゾトシンの大量投与が、マウスの膵細胞を破壊する。その結果、インスリンの分泌がなくなり、マウスに糖尿病を発病させることができる。この日を投与初日(0日目)とした。なお、ストレプトゾトシンの投与は投与初日だけである。
 5mg/kgL-タリトール投与群及びストレプトゾトシン+5mg/kgL-タリトール投与群のマウスには、ゼロ日目から5mg/kgのL-タリトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するL-タリトールの効果を試験した。本実施例(実施例11)の(1)で示した4群のマウスを4℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図57に示す。
 図57を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgL-タリトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて逃避反応時間が18秒から20秒の間で安定していた。ストレプトゾトシン投与群(黒丸破線)は、7日目から逃避反応時間が短くなり、14日目には、コントロール群(白丸実線)に対して著しく逃避反応時間(潜時)が短縮された。
 一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角実線)とストレプトゾトシンにL-タリトールを併用して投与したストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)は、実験期間を通じてコントロール群(白丸実線)と同じ程度の反応時間であり、逃避反応時間の短縮を起こすことはなかった。ストレプトゾトシン投与群(黒丸破線)と比較して逃避反応時間(潜時)の短縮が抑制された。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例11)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図58に示す。
 図58を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgL-タリトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgL-タリトール投与群である。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて安定にスコア1以下であった。ストレプトゾトシン投与群(黒丸破線)は、7日目から回避反応スコアが高くなった。一方、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角実線)とストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)では、実験期間を通じてコントロール群(白丸実線)と同程度の回避反応スコアを示した。ストレプトゾトシン投与群(黒丸破線)と比較して回避反応スコアの上昇が抑制された。
 コールドプレート試験(図57)及びフォン・フライ試験(図58)ともに、ストレプトゾトシン投与群(黒丸破線)は、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはストレプトゾトシンの投与によって、マウスが糖尿病を発病し、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 一方、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角実線)と、ストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)は、コントロール群(白丸実線)と同様の結果を示した。したがって、L-タリトールは、ストレプトゾトシンによる糖尿病で誘発される末梢神経障害(末梢神経過敏症状)を抑制するものと結論できる。すなわち、L-タリトールは、糖尿病によって発症する末梢神経障害に対する予防組成物(予防剤)として機能する。
(実施例12)L-タリトールを含む糖尿病性末梢神経障害治療剤
<ストレプトゾトシン誘発糖尿病マウス末梢神経障害に対するL-タリトールの治療作用>
 L-タリトールはストレプトゾトシンによって発病する糖尿病がもたらす末梢神経障害を予防できることがわかった。そこで、L-タリトールは、糖尿病性末梢神経障害を発症した後に、末梢神経障害を緩和する治療作用を有するかについて調べた。
(1)被験薬の投与
 実施例7と同様に6~7週齢のC57BL/6J雄性マウスを用いた。全てのマウスは、搬入後7日間の馴化を行った。その後、コントロール群、ストレプトゾトシン投与群、5mg/kgL-タリトール投与群、ストレプトゾトシン+5mg/kgL-タリトール投与群の4群に群構成した。それぞれの群は5匹で構成した。
 馴化8日目にストレプトゾトシン投与群及びストレプトゾトシン+5mg/kgL-タリトール投与群のマウスには、ストレプトゾトシン200mg/kgを投与した。ストレプトゾトシンの大量投与が、マウスの膵細胞を破壊する。その結果、インスリンの分泌がなくなり、マウスに糖尿病を発病させることができる。この日を投与初日(0日目)とした。なお、ストレプトゾトシンの投与は投与初日だけである。
 5mg/kgL-タリトール投与群のマウスには、ゼロ日目から5mg/kgのL-タリトールを毎日経口投与した。ストレプトゾトシン+5mg/kgL-タリトール投与群のマウスには、投与21日目から5mg/kgのL-タリトールを毎日経口投与した。
(2)コールドプレート試験(Cold plate test)
 コールドプレート試験を行い、低温刺激における知覚異常に対するL-タリトールの効果を試験した。本実施例(実施例12)の(1)で示した4群のマウスを4℃に設定したコールドプレート上にのせ、逃避までの反応時間(潜時)を測定した。潜時が短いほどコールドプレートによる低温刺激を、より忌避していると考えられる。結果を図59に示す。
 図59を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの逃避反応時間(秒)の平均値である。逃避反応時間が短いほど低温刺激を忌避していると判断できる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgL-タリトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgL-タリトール投与群である。ストレプトゾトシン+5mg/kgL-タリトール投与群でのL-タリトールの投与は投与開始から21日目からである。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて逃避反応時間が18秒から20秒の間で安定していた。ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)は、7日目から逃避反応時間が短くなり、14日目には、ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)ともに著しく潜時が短縮された。
 しかし、ストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)は、L-タリトールが投与された21日目以降逃避反応時間が長くなり、27日目には、コントロール群(白丸実線)と同程度の逃避反応時間となった。
 一方、L-タリトールだけを投与した5mg/kgL-タリトール投与群(白四角実線)は、実験期間を通じてコントロール群(白丸実線)と同じ程度の反応時間であり、逃避反応時間の短縮を起こすことはなかった。
(3)フォン・フライ試験(von Frey test)
 ケージに、本実施例(実施例12)の(1)で示した4群のマウスを入れ、強度0.16gのフィラメントを後肢裏に押し付けて回避反応の回数(スコア)を測定した。結果を図60に示す。
 図60を参照して、横軸は投与後経過期間(日)であり、縦軸は各群のマウスの回避反応(スコア)の平均値である。回避回数が多ければ、フィラメントによる刺激をより忌避していると考えられる。白丸実線はコントロール群であり、黒丸破線がストレプトゾトシン投与群であり、白四角実線は5mg/kgL-タリトール投与群であり、黒四角破線はストレプトゾトシン+5mg/kgL-タリトール投与群である。ストレプトゾトシン+5mg/kgL-タリトール投与群でのL-タリトールの投与は投与開始から21日目からである。有意水準1%の検定でコントロール群との差が有意であると判断できるものには「*」を付した(図中「P<0.01 vs コントロール群」と示した。)。
 コントロール群(白丸実線)は実験期間を通じて安定にスコア1以下であった。ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)は、7日目から回避反応スコアが高くなった。しかし、ストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)では、L-タリトールを投与し始めた21日目以降回避反応は減少し、33日目には、コントロール群(白丸実線)と同程度の回避反応になった。回避反応スコアが高くなった後からの投与であっても、L-タリトールは回避反応を減少させることができた。
 L-タリトールを投与した5mg/kgL-タリトール投与群(白四角実線)は、実験期間を通して、コントロール群(白丸実線)と同程度の回避反応であった。
 コールドプレート試験(図59)及びフォン・フライ試験(図60)ともに、ストレプトゾトシン投与群(黒丸破線)及びストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)の21日目までは、コントロール群(白丸実線)に対して回避反応スコア及び逃避反応時間ともに刺激を忌避する方向に有意に変化があった。これはストレプトゾトシンの投与によって、マウスが糖尿病を発病し、末梢神経障害(末梢神経過敏症状)を発症していると判断される。
 しかし、ストレプトゾトシン+5mg/kgL-タリトール投与群(黒四角破線)は、L-タリトールを投与し始めた21日目以降で、フォン・フライ試験及びコールドプレート試験のいずれも、コントロール群(白丸実線)と同程度の反応に戻った。なお、L-タリトールを投与した5mg/kgL-タリトール投与群(白四角実線)は、実験期間を通じてコントロール群(白丸実線)と同程度であった。したがって、L-タリトールは、ストレプトゾトシンによる糖尿病で誘発された末梢神経障害(末梢神経過敏症状)を治療するものと結論できる。すなわち、L-タリトールは、糖尿病によって発症する末梢神経障害に対する治療組成物(治療剤)としても機能する。
(実施例13)キシリトールを含む末梢神経伸長阻害抑制剤
<キシリトールによる抗がん剤による末梢神経の神経伸長阻害の抑制作用>
 通常、抗がん剤によって生じる末梢神経障害では、神経突起伸長が阻害されることが知られている。そこで、本試験では、キシリトールに抗がん剤による末梢神経の神経伸長阻害を抑制する作用があるかを検討するために、ラット褐色細胞腫由来の細胞株であるPC-12細胞(国立研究開発法人 医薬基盤・健康・栄養研究所 JCRB細胞バンク製)を用いて末梢神経の神経伸長阻害抑制作用を調べた。
(1)細胞培養(前培養)
 PC-12細胞を、NGF 50ng/mLとウシ胎児血清(FBS)を2%含むRPMI1640培地(Sigma-Aldrich製)に入れ、3×10cells/mLに懸濁し、24wellプレートに1mLずつ播種し、4日間培養した。
(2)細胞培養(本培養)
 培養後に培地を除去し、新たに表1に記載された処方1~21を追加したウシ胎児血清(FBS)を2%含むRPMI1640培地を2mL添加し、24時間培養を行った。
Figure JPOXMLDOC01-appb-T000001
(3)神経突起評価及び細胞評価(生存率)
 6時間培養後に光学顕微鏡にて細胞の状態を写真に撮り、画像処理ソフトウェア「Imagej 1.50i」にて神経突起の長さを測定し、比較を行った。また、24時間の培養物をcell counting kit-8(同仁化学)を用いて細胞の細胞生存率の算定をキットのプロトコルに従い行った。
 図61を参照して、横軸は処方番号であり、縦軸は神経の長さ(μm)である。神経の長さが長くなれば、神経突起の伸長が確認できる。何も入れていない処方1に比べ、神経成長因子-βを投与した処方2では、神経突起伸長していることが分かる。
 処方2に抗がん剤であるオキサリプラチン、パクリタキセル、ビンスクリン又はボルテゾミブを含んだ処方6、10、14又は18では、処方2に比べて神経突起伸長が阻害されていることが分かる。
 処方6、10、14又は18に更にキシリトールを含有させた処方7、8、9、11、12、13、15、16、17、19、20又は21では、抗がん剤による神経突起伸長の阻害が抑制されていることが分かる。
 図62を参照して、横軸は処方番号であり、縦軸は細胞生存率(%)である。細胞生存率は値が低ければ細胞が障害していることが示される。処方2の細胞生存率を100%として他の処方の細胞生存率を算出した。
 処方2に抗がん剤であるオキサリプラチン、パクリタキセル、ビンスクリン又はボルテゾミブを含んだ処方6、10、14又は18では、処方2に比べて細胞生存率の値が下がっていることが分かる。
 処方6、10、14又は18に更にキシリトールを含有させた処方7、8、9、12、13、15、16、17、19、20又は21では、それぞれ細胞生存率が処方6、10、14又は18よりも向上しており、抗がん剤による細胞傷害が抑制されていることが分かる。
(実施例14)キシリトールを含む末梢神経伸長阻害抑制剤
<キシリトールによる抗がん剤による末梢神経の神経伸長阻害の抑制作用>
 実施例13と同様に本試験では、キシリトールに抗がん剤による末梢神経の神経伸長阻害を抑制する作用があるかを検討するために、ヒト神経芽細胞腫の細胞株であるSH-SY5Y(株式会社ケーエーシー製)を用いて末梢神経の神経伸長阻害抑制作用を調べた。
(1)細胞培養(前培養)
 0.5 mg/mLのiMatrix-511 silk(株式会社ニッピ製)10 uLを2mLのPBSに希釈後、500uLずつ24wellプレートに添加し、4℃の条件で終日固相化を実施した。その後、24wellプレートのiMatrix-511 silk溶液を除去しPBSで洗浄したのちに、SH-SY5Y細胞をFBS2%含有したHam‘s F-12K培地(富士フイルム和光純薬製)で3×10cells/mLに懸濁し、24wellプレートに1mLずつ播種し、4日間前培養した。
(2)細胞培養(本培養)
 培養後に培地を除去し、新たに表2に記載された処方23~42を追加したFBS2%含有したHam‘s F-12K培地を2mL添加して24時間培養を行った。
Figure JPOXMLDOC01-appb-T000002
(3)神経突起評価及び細胞評価(生存率)
 6時間培養物について光学顕微鏡にて細胞の状態を写真に撮り、画像処理ソフトウェア「Imagej 1.50i」にて神経突起の長さを測定し、比較を行った。また、24時間の培養物をcell counting kit-8(同仁化学)を用いて細胞の細胞生存率の算定をcell counting kit-8のプロトコル(https://www.dojindo.co.jp/technical/protocol/p01.pdf)に従い行った。
 図63を参照して、横軸は処方番号であり、縦軸は神経の長さ(μm)である。神経の長さが長ければ、神経突起の伸長が確認できる。神経成長因子-βを投与した処方23では、神経突起が伸長している。
 処方23に抗がん剤であるオキサリプラチン、パクリタキセル、ビンスクリン又はボルテゾミブを含んだ処方27、31、35又は39では、処方23に比べて神経突起伸長が阻害されていることが分かる。
 処方27、31、35又は39に更にキシリトールを含有させた処方28、29、30、32、33、34、36、37、38、40、41又は42では、抗がん剤による神経突起伸長の阻害が抑制されていることが分かる。
 図64を参照して、横軸は処方番号であり、縦軸は細胞生存率(%)である。細胞生存率は値が低ければ細胞が障害していることが示される。処方23の細胞生存率を100%として他の処方の細胞生存率を算出した。
 処方23に抗がん剤であるオキサリプラチン、パクリタキセル、ビンスクリン又はボルテゾミブを含んだ処方27、31、35又は39では、処方23に比べて細胞生存率の値が下がっていることが分かる。
 処方27、31、35又は39に更にキシリトールを含有させた処方28、29、30、32、33、34、37、38、40、41又は42では、細胞生存率が処方27、31、35又は39よりも向上しており、抗がん剤による細胞傷害が抑制されていることが分かる。
 以上のように本発明に係る予防または改善剤は、作用機序の異なる抗がん剤や、糖尿病由来の末梢神経障害を効果的に抑制することができた。由来の違いにも関わらず、末梢神経障害を予防または改善することができるということは、本発明に係る予防または改善剤は、末梢神経障害の最終原因と考えられる神経細胞の軸索変性や神経細胞への直接障害を改善しているからであると、解釈するのが妥当である。つまり、上記の実施例に示した以外の由来によって生じる末梢神経障害であっても本発明に係る予防または改善剤は効果を奏することができると考えられる。
 本発明に係る予防又は改善剤は、末梢神経障害の改善若しくは予防に利用することができる。また、末梢神経障害の治療に利用することもできる。特に、DNA複製阻害剤(白金製剤(オキサリプラチンなど)やアルキル化剤)、微小管重合安定化剤、微小管重合阻害剤、プロテアソーム阻害剤等の投与に起因して生じる末梢神経障害、また糖尿病で併発する末梢神経障害の軽減、緩和若しくは予防はもちろんのこと、これ以外の原因による末梢神経障害にも好適に利用することができる。

Claims (6)

  1.  キシリトール、L-タリトール、D-トレイトールより選ばれる少なくとも1種以上を含有することを特徴とする末梢神経障害の予防又は改善剤。
  2.  末梢神経障害が、抗がん剤の投与によって誘発されるものである請求項1に記載の末梢神経障害の予防又は改善剤。
  3.  前記抗がん剤が、白金系抗がん剤、微小管重合安定化剤、微小管重合阻害剤、プロテアソーム阻害剤等である請求項2に記載の末梢神経障害の予防又は改善剤。
  4.  末梢神経障害が、糖尿病性末梢神経障害である、請求項1に記載の末梢神経障害の予防又は改善剤。
  5.  医薬品である、請求項1~4のいずれか一の請求項に記載の末梢神経障害の予防又は改善剤。
  6.  食品である、請求項1~4のいずれか一の請求項に記載の末梢神経障害の予防又は改善剤。
PCT/JP2022/004603 2021-02-05 2022-02-07 末梢神経障害の予防又は改善剤 WO2022168968A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/275,521 US20240099989A1 (en) 2021-02-05 2022-02-07 Agent for preventing or improving peripheral neuropathy
JP2022579637A JPWO2022168968A1 (ja) 2021-02-05 2022-02-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017510 2021-02-05
JP2021-017510 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168968A1 true WO2022168968A1 (ja) 2022-08-11

Family

ID=82741199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004603 WO2022168968A1 (ja) 2021-02-05 2022-02-07 末梢神経障害の予防又は改善剤

Country Status (3)

Country Link
US (1) US20240099989A1 (ja)
JP (1) JPWO2022168968A1 (ja)
WO (1) WO2022168968A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534764A (ja) * 2001-05-25 2004-11-18 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー 液状医薬組成物
JP2015083586A (ja) * 2008-07-28 2015-04-30 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト 知覚過敏歯の処置方法
CN105287618A (zh) * 2015-09-28 2016-02-03 天津市聚星康华医药科技有限公司 一种治疗神经性疼痛的口服药物组合物及其应用
JP2016153416A (ja) * 2010-06-30 2016-08-25 シーガル ダビデSEGAL, David 関節の処置のための注射用医薬組成物
WO2017111005A1 (ja) * 2015-12-25 2017-06-29 富山化学工業株式会社 1-(3-(2-(1-ベンゾチオフェン-5-イル)エトキシ)プロピル)アゼチジン-3-オールまたはその塩を含む錠剤
JP2018118966A (ja) * 2017-01-23 2018-08-02 日新製薬株式会社 3位が置換されたγ−アミノ酪酸誘導体を含有する圧縮固形医薬組成物。

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534764A (ja) * 2001-05-25 2004-11-18 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー 液状医薬組成物
JP2015083586A (ja) * 2008-07-28 2015-04-30 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト 知覚過敏歯の処置方法
JP2016153416A (ja) * 2010-06-30 2016-08-25 シーガル ダビデSEGAL, David 関節の処置のための注射用医薬組成物
CN105287618A (zh) * 2015-09-28 2016-02-03 天津市聚星康华医药科技有限公司 一种治疗神经性疼痛的口服药物组合物及其应用
WO2017111005A1 (ja) * 2015-12-25 2017-06-29 富山化学工業株式会社 1-(3-(2-(1-ベンゾチオフェン-5-イル)エトキシ)プロピル)アゼチジン-3-オールまたはその塩を含む錠剤
JP2018118966A (ja) * 2017-01-23 2018-08-02 日新製薬株式会社 3位が置換されたγ−アミノ酪酸誘導体を含有する圧縮固形医薬組成物。

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OISHI, RYOZO; EGASHIRA, NOBUAKI: "Peripheral neuropathy caused by anticancer drugs", FUKUOKA ACTA MEDICA., FUKUOKA., JP, vol. 104, no. 5, 25 May 2013 (2013-05-25), JP , pages 171 - 180, XP009538926, ISSN: 0016-254X, DOI: 10.15017/27200 *
YASUDA S: "Pathophysiology and treatment of diabetic neuropathy", CLINICAL NEUROLOGY, 1 January 2009 (2009-01-01), pages 149 - 157, XP055957290, Retrieved from the Internet <URL:https://www.neurology-jp.org/Journal/public_pdf/049040149.pdf> [retrieved on 20220902] *

Also Published As

Publication number Publication date
US20240099989A1 (en) 2024-03-28
JPWO2022168968A1 (ja) 2022-08-11

Similar Documents

Publication Publication Date Title
US12121537B2 (en) Dietary supplements
US11033543B2 (en) Methods of providing weight loss therapy in patients with major depression
US11738037B2 (en) Agent for preventing or improving decline in brain function
WO2018024245A1 (en) Compositions containing benzoate compound and tannic acid for treating central nervous system disorders
KR20100094485A (ko) 아미노산 조성물을 함유하는 피로 방지제
US20040171624A1 (en) Pharmaceutical composition for treating mood disorders
JP2019182881A (ja) 末梢神経障害の予防又は改善用組成物
CN108785298A (zh) 一种用于治疗癫痫的药物组合物、其制备方法及用途
US11793845B2 (en) Composition for ameliorating peripheral sensory neuropathy
EP3738590A1 (en) Dietary supplement comprising amino acids for the treatment of sarcopenia
WO2022168968A1 (ja) 末梢神経障害の予防又は改善剤
WO2016167855A1 (en) Combination of albuterol and caffeine as synergistic treatment for obesity or sarcopenia
CA2459240C (en) Pharmaceutical composition for treating mood disorders
Botter A clinical double-blind comparison of maprotiline and amitriptvline in depression
IL230174A (en) Pharmaceutical composition for the treatment of premature ejaculation
US9532960B2 (en) Pharmaceutical composition and kit for applying metformin and sodium butyrate in Kras mutation cancer treatment
JP2024017059A (ja) 感冒症状抑制剤
Giruzzi Medications for the Management of Obesity
TW202428284A (zh) 向患者提供依考匹泮(ecopipam)療法之方法
US20100151066A1 (en) Composition for suppressing appetite, improving tone and mood, with a natural antidepressant activity and with an antiasthenic effect
AU2013339057B2 (en) Agent for preventing or improving decline in brain function
Settle Nutritional supplements
Challem Context and Applications
TW201733572A (zh) 用於預防及治療第2型糖尿病之營養品組合
TW201306831A (zh) 用於治療骨髓發育不良症候群的組成物及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18275521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749839

Country of ref document: EP

Kind code of ref document: A1