WO2022168641A1 - Substrate-processing device, substrate-processing method, and storage medium - Google Patents

Substrate-processing device, substrate-processing method, and storage medium Download PDF

Info

Publication number
WO2022168641A1
WO2022168641A1 PCT/JP2022/002242 JP2022002242W WO2022168641A1 WO 2022168641 A1 WO2022168641 A1 WO 2022168641A1 JP 2022002242 W JP2022002242 W JP 2022002242W WO 2022168641 A1 WO2022168641 A1 WO 2022168641A1
Authority
WO
WIPO (PCT)
Prior art keywords
foreign matter
unit
liquid
supply
section
Prior art date
Application number
PCT/JP2022/002242
Other languages
French (fr)
Japanese (ja)
Inventor
広 西畑
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2022579442A priority Critical patent/JPWO2022168641A1/ja
Priority to KR1020237028824A priority patent/KR20230141805A/en
Publication of WO2022168641A1 publication Critical patent/WO2022168641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present disclosure relates to substrate processing apparatuses, substrate processing methods, and storage media.
  • Patent Document 1 discloses a coating device equipped with a particle measuring device for measuring particles in a resist liquid supplied from a sampling pipe.
  • the present disclosure provides a substrate processing apparatus, a substrate processing method, and a storage medium capable of easily ascertaining the cause of an event that causes foreign matter detection.
  • a substrate processing apparatus includes a nozzle capable of ejecting a processing liquid, a supply source of the processing liquid, and a supply channel connecting between the nozzle and the supply source.
  • a processing liquid supply unit that supplies the processing liquid, and a light receiving signal obtained by receiving emitted light emitted from the supply channel along with light irradiation, which are arranged at a plurality of positions different from each other along the supply channel.
  • a source estimator for estimating the compartment where the event occurred.
  • a substrate processing apparatus a substrate processing method, and a storage medium that can easily ascertain the cause of an event that causes foreign matter detection.
  • FIG. 1 is a schematic perspective view showing an example of a substrate processing system.
  • FIG. 2 is a schematic side view showing an example of the coating and developing apparatus.
  • FIG. 3 is a schematic diagram showing an example of a liquid processing unit.
  • FIG. 4 is a schematic diagram showing an example of a processing liquid supply section.
  • FIG. 5 is a schematic diagram showing an example of a foreign object detection unit.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the control system.
  • FIG. 7 is a graph showing an example of a received light signal used for foreign object detection.
  • FIG. 8 is a graph showing an example of accumulated data in each foreign object detection unit.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the control system.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the control system.
  • FIG. 10 is a flow chart showing an example of a series of processes executed by the control system.
  • FIG. 11 is a graph showing an example of measurement results of the flow velocity of the treatment liquid.
  • FIG. 12 is a graph showing an example of the relationship between the type of chemical solution and the intensity of background light.
  • FIG. 13 is a graph showing an example of accumulated data in each foreign object detection unit.
  • a substrate processing apparatus includes a nozzle capable of ejecting a processing liquid, a supply source of the processing liquid, and a supply channel connecting between the nozzle and the supply source.
  • a processing liquid supply unit that supplies a processing liquid to a processing liquid supply unit, and a light receiving unit that is disposed at a plurality of positions different from each other along the supply flow path and obtains light emitted from the supply flow path along with light irradiation.
  • a plurality of foreign matter detectors for detecting foreign matter contained in the treatment liquid based on the signal, and the cause of detection of the foreign matter in the supply flow path based on the detection results at each of the plurality of locations by the plurality of foreign matter detectors.
  • a source estimating unit for estimating a section where an event has occurred.
  • a conceivable method is to detect foreign matter in the processing liquid by arranging a foreign matter detection unit at one location in the supply channel between the nozzle and the supply source. With this method, it is possible to ascertain the presence of foreign matter in the processing liquid, but it is not possible to ascertain from the detection results the factors causing the occurrence of the foreign matter in the processing liquid.
  • the processing liquid supply section includes a filter for collecting foreign matter contained in the processing liquid in the supply channel, a liquid feeding section including a pump for feeding the processing liquid toward the nozzle, and a liquid feeding section in the supply channel. and a discharge valve that opens and closes the flow path between the nozzle and the supply source, and a replenishment unit that replenishes the processing liquid from the supply source to the liquid delivery unit.
  • the plurality of foreign matter detection units include a first foreign matter detection unit arranged in the flow path between the nozzle and the ejection valve, and a second foreign matter detection unit arranged in the flow path between the ejection valve and the liquid sending unit. , and a third foreign object detection unit arranged in a flow path between the replenishment unit and the liquid supply unit.
  • the section in which the event that causes the detection of the foreign matter is assumed to occur is the section including the ejection valve, It is possible to estimate either the section containing the liquid feeding section or the section containing the replenishment section.
  • the substrate processing apparatus may further include a factor estimating section for estimating the cause of the occurrence of the event according to the section estimated by the source estimating section.
  • a factor estimating section for estimating the cause of the occurrence of the event according to the section estimated by the source estimating section.
  • the substrate processing apparatus may further include a flow rate measuring unit that measures the flow rate of the processing liquid flowing through the channel that guides the processing liquid to the nozzle.
  • the factor estimator may narrow down the factor of occurrence of the event based on the result of measurement by the flow velocity measurement unit. In this case, the cause of the occurrence of the event is narrowed down, so that the cause of the occurrence of the event can be more easily grasped.
  • the factor estimating unit may narrow down the cause of the occurrence of the event based on the frequency of supplying the processing liquid to the substrate when the event occurs. In this case, the cause of the occurrence of the event is narrowed down, so that the cause of the occurrence of the event can be more easily grasped.
  • Each of the plurality of foreign matter detection units may detect another chemical liquid contained in the treatment liquid as a foreign matter based on intensity information indicating the intensity of background light included in the emitted light.
  • the intensity of the background light differs depending on the type of liquid such as the processing liquid. In the above configuration, by using the intensity information, it is possible to easily determine whether or not another chemical liquid is contained as a foreign substance in the treatment liquid.
  • a substrate processing method includes: supplying a processing liquid to a substrate from a nozzle capable of discharging the processing liquid; Detecting foreign matter contained in the treatment liquid based on a light reception signal obtained by receiving light emitted from the supply channel along with light irradiation at a plurality of positions different from each other along the estimating a section of the supply channel where an event leading to the detection of the foreign object occurred based on the detection results of the foreign object at each location.
  • this substrate processing method it is possible to easily grasp the cause of the occurrence of the phenomenon as in the case of the substrate processing apparatus described above.
  • a storage medium is a computer-readable storage medium storing a program for causing an apparatus to execute the substrate processing method.
  • FIG. 1 A substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system for forming a photosensitive film on a work W, exposing the photosensitive film, and developing the photosensitive film.
  • the workpiece W to be processed is, for example, a substrate, or a substrate on which a film, a circuit, or the like is formed by performing a predetermined process.
  • the substrate is, for example, a silicon wafer.
  • the workpiece W (substrate) may be circular.
  • the work W may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like.
  • a photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating and developing device 2, an exposure device 3, and a control device 20.
  • the coating and developing device 2 applies a resist (chemical solution) to the surface of the workpiece W to form a resist film before the exposure processing by the exposure device 3, and develops the resist film after the exposure processing.
  • the exposure device 3 is a device that exposes a resist film (photosensitive film) formed on a work W (substrate). Specifically, the exposure device 3 irradiates an exposure target portion of the resist film with an energy beam by a method such as liquid immersion exposure.
  • the coating and developing apparatus 2 includes a carrier block 4 , a processing block 5 and an interface block 6 .
  • the carrier block 4 introduces the work W into the coating and developing device 2 and takes out the work W from the coating and developing device 2 .
  • the carrier block 4 can support a plurality of carriers C for works W, and incorporates a transfer device A1 including a transfer arm.
  • the carrier C accommodates a plurality of circular works W, for example.
  • the transport device A1 takes out the work W from the carrier C, delivers it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C.
  • the processing block 5 has processing modules 11 , 12 , 13 , 14 .
  • the processing module 11 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units.
  • the processing module 11 forms a lower layer film on the surface of the workpiece W using the liquid processing unit U1 and the heat processing unit U2.
  • the liquid processing unit U1 coats the workpiece W with a processing liquid for forming a lower layer film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the lower layer film.
  • the processing module 12 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units.
  • the processing module 12 forms a resist film on the lower layer film by the liquid processing unit U1 and the thermal processing unit U2.
  • the liquid processing unit U1 applies a processing liquid for forming a resist film onto the lower layer film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the resist film.
  • the processing module 13 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units.
  • the processing module 13 forms an upper layer film on the resist film using the liquid processing unit U1 and the thermal processing unit U2.
  • the liquid processing unit U1 applies a processing liquid for forming an upper layer film onto the resist film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the upper layer film.
  • the processing module 14 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units.
  • the processing module 14 uses the liquid processing unit U1 and the thermal processing unit U2 to develop the resist film subjected to the exposure processing and to perform heat processing associated with the development processing.
  • the liquid processing unit U1 applies a developer to the surface of the workpiece W that has been exposed, and then rinses the developer with a rinsing liquid to develop the resist film.
  • the thermal processing unit U2 performs various types of thermal processing associated with development processing. Specific examples of heat treatment include heat treatment before development (PEB: Post Exposure Bake) and heat treatment after development (PB: Post Bake).
  • a shelf unit U10 is provided on the side of the carrier block 4 in the processing block 5.
  • the shelf unit U10 is partitioned into a plurality of vertically aligned cells.
  • a transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is partitioned into a plurality of vertically aligned cells.
  • the interface block 6 exchanges the workpiece W with the exposure apparatus 3.
  • the interface block 6 incorporates a transfer device A8 including a transfer arm and is connected to the exposure device 3.
  • FIG. The transport device A8 transfers the work W placed on the shelf unit U11 to the exposure device 3.
  • the transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
  • the control device 20 controls the coating and developing device 2 so as to execute the coating and developing process according to the following procedure, for example.
  • the control device 20 controls the transport device A1 to transport the work W in the carrier C to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 11.
  • control device 20 controls the transfer device A3 to transfer the work W on the shelf unit U10 to the liquid processing unit U1 and heat treatment unit U2 in the processing module 11. Further, the control device 20 controls the liquid processing unit U1 and the thermal processing unit U2 so as to form a lower layer film on the surface of the work W. As shown in FIG. After that, the control device 20 controls the transfer device A3 to return the work W on which the lower layer film is formed to the shelf unit U10, and controls the transfer device A7 to arrange this work W in the cell for the processing module 12. .
  • control device 20 controls the transfer device A3 so as to transfer the work W on the shelf unit U10 to the liquid processing unit U1 and heat treatment unit U2 in the processing module 12. Further, the control device 20 controls the liquid processing unit U1 and the thermal processing unit U2 so as to form a resist film on the surface of the work W. FIG. After that, the control device 20 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 13. FIG.
  • control device 20 controls the transport device A3 to transport the work W on the shelf unit U10 to each unit in the processing module 13. Further, the control device 20 controls the liquid processing unit U1 and the thermal processing unit U2 so as to form an upper layer film on the resist film of the work W. FIG. After that, the control device 20 controls the transport device A3 so as to transport the work W to the shelf unit U11.
  • control device 20 controls the transport device A8 so that the workpiece W on the shelf unit U11 is delivered to the exposure device 3. After that, the control device 20 controls the transport device A8 so that the work W subjected to the exposure processing is received from the exposure device 3 and arranged in the cell for the processing module 14 in the shelf unit U11.
  • control device 20 controls the transport device A3 to transport the work W on the shelf unit U11 to each unit in the processing module 14, and controls the liquid processing unit U1 to develop the resist film of the work W. and heat treatment unit U2.
  • the control device 20 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport devices A7 and A1 to return the work W to the carrier C.
  • FIG. thus, the coating and developing process for one work W is completed.
  • the control device 20 causes the coating and developing device 2 to perform the coating and developing process on each of the subsequent works W in the same manner as described above.
  • the specific configuration of the substrate processing apparatus is not limited to the configuration of the substrate processing system 1 illustrated above. Any substrate processing apparatus may be used as long as it includes a liquid processing unit that supplies a processing liquid to a substrate to perform liquid processing, and a control device that can control the same.
  • the liquid processing unit U1 includes a rotation holding section 22 and a processing liquid supply section 28, as shown in FIG.
  • the rotation holding part 22 holds and rotates the work W based on the operation instruction from the control device 20 .
  • the rotation holding portion 22 has a holding portion 24 and a driving portion 26 .
  • the holding portion 24 supports the central portion of the horizontally arranged work W with the surface Wa facing upward, and holds the work W by suction (for example, vacuum suction) or the like.
  • the drive unit 26 is a rotary actuator including a power source such as an electric motor, and rotates the holding unit 24 around a vertical rotation axis. Thereby, the work W rotates around the vertical rotation axis.
  • the treatment liquid supply unit 28 supplies the workpiece W with the treatment liquid.
  • the treatment liquid supply unit 28 has a nozzle 30 capable of ejecting the treatment liquid, and a supply channel 29 for guiding the treatment liquid from a treatment liquid source (supply source 52 described later) to the nozzle 30.
  • a processing liquid is supplied to Wa.
  • the processing liquid supply section 28 has a nozzle 30, a liquid feeding pipe 32, a discharge valve 34, a liquid feeding section 40, a liquid feeding pipe 36, and a replenishing section 50. .
  • upstream and downstream are used with reference to the flow of processing liquid.
  • the nozzle 30 ejects the processing liquid onto the workpiece W.
  • the nozzle 30 is arranged, for example, above the work W, and ejects the processing liquid downward (see also FIG. 3).
  • the processing liquid is applied (supplied) to the surface Wa of the work W by discharging the processing liquid from the nozzle 30 toward the work W.
  • the liquid-sending pipe 32 connects between the nozzle 30 and the liquid-sending section 40 and forms a channel for guiding the processing liquid to the nozzle 30 .
  • the downstream end of the liquid feeding tube 32 is connected to the nozzle 30 , and the upstream end of the liquid feeding tube 32 is connected to the liquid feeding section 40 .
  • the discharge valve 34 is provided in the processing liquid flow path formed by the liquid transfer pipe 32 .
  • the discharge valve 34 opens and closes the flow path in the liquid transfer tube 32 (the flow path between the liquid transfer section 40 and the nozzle 30) based on an operation instruction from the control device 20.
  • FIG. When the ejection valve 34 is open, the treatment liquid is ejected from the nozzle 30 toward the surface Wa of the workpiece W, and when the ejection valve 34 is closed, ejection of the treatment liquid from the nozzle 30 is stopped.
  • the discharge valve 34 is, for example, an air operation valve.
  • the liquid sending unit 40 sends the processing liquid to the nozzle 30 via the liquid sending pipe 32 . Specifically, the liquid sending unit 40 sends the processing liquid toward the nozzle 30 at a predetermined pressure.
  • the liquid sending section 40 has, for example, a pump 42 , a connection pipe 44 and a filter 46 .
  • the pump 42 receives the processing liquid replenished from the replenishment unit 50 , pressurizes the received processing liquid, and sends it out toward the nozzle 30 .
  • the pump 42 has a storage chamber that stores the processing liquid and a contraction section that expands and contracts the storage chamber.
  • the pump 42 expands the containing chamber by the contracting portion to receive the processing liquid, and contracts the containing chamber by the contracting portion to deliver the processing liquid.
  • a tube diaphragm pump, diaphragm pump, or bellows pump may be used as the pump 42 .
  • a connection pipe 44 connects the pump 42 and the filter 46 .
  • the downstream end of the connecting pipe 44 is connected to the pump 42 , and the upstream end of the connecting pipe 44 is connected to the filter 46 .
  • the connection pipe 44 forms part of a flow path that guides the processing liquid replenished from the replenishment unit 50 to the pump 42 .
  • the filter 46 collects foreign matter contained in the processing liquid flowing through the flow path from the replenishment section 50 to the pump 42 .
  • the liquid feed pipe 36 connects between the filter 46 and the replenishment section 50 .
  • the downstream end of the liquid feeding tube 36 is connected to the liquid feeding section 40 (filter 46 ), and the upstream end of the liquid feeding tube 36 is connected to the refilling section 50 .
  • a processing liquid flow path from the replenishment unit 50 to the pump 42 is formed by the liquid feed pipe 36 and the connection pipe 44 .
  • the replenishing unit 50 replenishes the liquid sending unit 40 with the treatment liquid to be sent toward the nozzle 30 .
  • the liquid transfer pipe 36 and the connection pipe 44 form a processing liquid flow path, and the filter 46 is provided in the flow path.
  • the replenishment unit 50 has, for example, a supply source 52 , a liquid feeding pipe 54 , a storage tank 56 and a pump 58 .
  • the supply source 52 is a supply source of the treatment liquid to be replenished to the liquid feeding section 40 .
  • the supply source 52 is, for example, a bottle containing a processing liquid.
  • a supply source 52 supplies processing liquid to a pump 58 via a liquid feed tube 54 .
  • a storage tank 56 is provided in the liquid transfer pipe 54 and temporarily stores the processing liquid to be supplied to the pump 58 .
  • the pump 58 receives the processing liquid from the storage tank 56, pressurizes the received processing liquid, and delivers it to the liquid delivery section 40 through the liquid delivery tube 36 (delivers it to the pump 42 through the liquid delivery tube 36 and the connection tube 44). ).
  • the pump 58 has a storage chamber that stores the processing liquid and a contraction section that expands and contracts the storage chamber.
  • the pump 58 expands the containing chamber by the contracting portion to receive the processing liquid, and contracts the containing chamber by the contracting portion to send out the processing liquid.
  • a tube diaphragm pump, diaphragm pump, or bellows pump may be used as the pump 58 .
  • the liquid supply tube 54 and the liquid supply tube 36 of the replenishment unit 50 , the connection tube 44 of the liquid supply unit 40 , and the liquid supply tube 32 provide a space between the supply source 52 and the nozzle 30 .
  • a supply channel 29 is formed to connect the .
  • various components (parts) that can be sources of foreign matter contained in the processing liquid discharged from the nozzle 30 are provided. These various parts constitute the processing liquid supply unit 28 .
  • the supply source 52, the storage tank 56, the pump 58, the filter 46, the pump 42, and the discharge valve 34 correspond to various parts that can be sources of foreign matter.
  • the coating and developing apparatus 2 includes a plurality of foreign matter detection units 70 (a plurality of foreign matter detection sections). Each foreign matter detection unit 70 is configured to detect foreign matter (particles) contained in the processing liquid flowing through the supply channel 29 .
  • "foreign matter" in the treatment liquid includes gaseous foreign matter such as bubbles in addition to solid foreign matter such as dirt and dust. Detecting a foreign substance means detecting that a foreign substance is contained in the treatment liquid (determining that a foreign substance is contained).
  • the foreign matter detection unit 70 receives light (emitted light) generated when light (irradiation light) from the light source is applied to the treatment liquid flowing in the supply channel 29, and outputs a signal corresponding to the received light. Foreign matter is detected based on
  • a plurality of foreign matter detection units 70 are arranged at a plurality of positions different from each other along the supply channel 29 .
  • the supply channel 29 is divided into a plurality of sections (areas) by a plurality of foreign matter detection units 70 .
  • the foreign matter detection units 70 that are adjacent to each other in the supply channel 29 are arranged so that at least one of the components is included in the section between the units.
  • the most upstream foreign matter detection unit 70 is arranged so that at least one of the components is positioned in the upstream section of that unit.
  • Each foreign matter detection unit 70 detects foreign matter contained in the processing liquid in the supply channel 29 at the location where the foreign matter detection unit 70 is arranged.
  • the coating and developing apparatus 2 includes, for example, a plurality of foreign matter detection units 70, including a foreign matter detection unit 70A, a foreign matter detection unit 70B, and a foreign matter detection unit 70C.
  • a foreign matter detection unit 70A a foreign matter detection unit 70A
  • a foreign matter detection unit 70B a foreign matter detection unit 70C
  • a case will be described below in which the foreign matter detection units 70A to 70C are provided at different positions on the supply channel 29 along the direction in which the processing liquid flows.
  • the foreign matter detection units 70A to 70C are provided along the supply channel 29 from the nozzle 30 in this order.
  • the foreign object detection unit 70A (first foreign object detection section) is arranged in the flow path between the discharge valve 34 and the nozzle 30 in the supply flow path 29 .
  • the foreign matter detection unit 70B (second foreign matter detection section) is arranged in the flow path between the discharge valve 34 and the liquid sending section 40 in the supply flow path 29 .
  • the foreign matter detection unit 70 ⁇ /b>C (third foreign matter detection section) is arranged in the flow path between the liquid feeding section 40 and the replenishment section 50 in the supply flow path 29 .
  • a discharge valve 34 is arranged as a component in the section between the foreign object detection unit 70A and the foreign object detection unit 70B.
  • a pump 42 and a filter 46 are arranged as components in a section between the foreign object detection unit 70B and the foreign object detection unit 70C.
  • a supply source 52 (bottle), a storage tank 56, and a pump 58 are present as components in the upstream section of the foreign object detection unit 70C.
  • the foreign matter detection units 70A to 70C are arranged along the supply flow path 29, if a foreign matter occurs in the processing liquid in the section upstream of the foreign matter detection unit 70C, the foreign matter will be detected. It passes through units 70C, 70B, and 70A in this order.
  • Examples of the case where foreign matter is generated in the processing liquid include the case where foreign matter such as dust existing inside a part is mixed into the processing liquid, and the case where foreign matter such as bubbles are formed in the processing liquid. There are cases.
  • the discharge amount (supply amount) of the processing liquid from the nozzle 30 per time is set to a value smaller than the pipe volume of each section divided by the foreign matter detection units 70A to 70C of the supply channel 29 .
  • the amount by which the foreign matter moves downstream in the supply channel 29 during one supply of the processing liquid is shorter than the length of each section.
  • there is a difference in the number of times that foreign matter generated in the treatment liquid in any one of the sections can be detected by the foreign matter detection units 70A to 70C.
  • Events that cause detection of foreign matter include, for example, the inclusion of foreign matter in the processing liquid and the generation of bubbles in the processing liquid.
  • the foreign object detection unit 70A when a foreign object is detected by the foreign object detection unit 70A, if the foreign object has not been detected in the foreign object detection units 70B and 70C in the past, it is assumed that the above event occurred in the section between the foreign object detection units 70A and 70B. be done. In this case, it can be estimated that the discharge valve 34 is the source of the foreign matter.
  • the space between the foreign object detection units 70B and 70C is determined. It is presumed that the above event occurred in the compartment. In this case, it can be estimated that at least one of the pump 42 and the filter 46 included in the liquid feeding section 40 is the source of the foreign matter.
  • the foreign matter detection units 70A to 70C may be configured similarly to each other.
  • Each of the foreign matter detection units 70A to 70C forms a channel (hereinafter referred to as "detection channel") through which the processing liquid flowing through the supply channel 29 flows.
  • Each of the foreign matter detection units 70A to 70C receives light generated by irradiating the corresponding detection flow path with irradiation light (for example, laser light), and detects foreign matter in the processing liquid flowing through the detection flow path.
  • irradiation light for example, laser light
  • each of the foreign object detection units 70A to 70C has, for example, a housing 71, a flow path forming section 72, an irradiation section 76, a light receiving section 78, and a control section .
  • the housing 71 accommodates the flow path forming section 72, the irradiation section 76, the light receiving section 78, and the control section 80.
  • the housing 71 may be formed in a rectangular parallelepiped shape.
  • the channel forming part 72 is a member that forms the detection channel in the supply channel 29 .
  • the channel forming part 72 includes, for example, a block body in which a detection channel 74 is formed.
  • the block body is formed in a rectangular parallelepiped shape, and is made of a material that can transmit laser light used for foreign object detection.
  • upstream supply flow path 29a the flow path located upstream of the detection flow path 74 formed by the foreign object detection unit among the supply flow paths 29
  • downstream supply flow path 29b the flow path located downstream of the detection flow path 74
  • An inflow port 74a and an outflow port 74b of the detection flow path 74 are formed on a surface of the block body of the flow path forming portion 72 that faces one side surface of the housing 71 .
  • the inlet 74a is connected to the end of the upstream supply channel 29a located upstream of the detection channel 74 in the supply channel 29.
  • the outlet 74b is connected to the end of the downstream supply channel 29b located downstream of the detection channel 74 in the supply channel 29.
  • the pipes forming the ends of the upstream supply channel 29 a and the downstream supply channel 29 b pass through the side wall of the housing 71 located in the vicinity of the channel forming portion 72 .
  • the processing liquid sent from the supply source 52 is divided into the detection flow path 74 formed by the foreign object detection unit 70C, the detection flow path 74 formed by the foreign object detection unit 70B, and the detection flow path formed by the foreign object detection unit 70A. 74 in that order to nozzle 30 .
  • the processing liquid that has passed through the detection channel 74 of the foreign matter detection unit 70C is supplied a plurality of times after that. It reaches the detection channel 74 of the foreign object detection unit 70B.
  • the processing liquid that has passed through the detection channel 74 of the foreign object detection unit 70B reaches the detection channel 74 of the foreign object detection unit 70A after being supplied with the treatment liquid a plurality of times.
  • the irradiation unit 76 is configured to irradiate the detection flow path 74 with irradiation light for detecting foreign matter in the treatment liquid.
  • the irradiation unit 76 includes, for example, a light source that generates laser light as irradiation light.
  • the light source generates laser light with a wavelength of approximately 400 nm to 600 nm and an output of approximately 600 mW to 1000 mW.
  • the irradiation unit 76 may irradiate the detection flow path 74 with irradiation light from below.
  • the light receiving section 78 is configured to receive light (output light) emitted from the detection flow path 74 along with the irradiation light from the irradiation section 76 .
  • the light receiving portion 78 is arranged, for example, on the side of the detection channel 74 (at the same height as the channel forming portion 72).
  • the light receiving section 78 includes an optical component (lens) that collects light emitted from the detection channel 74, and a light receiving element that generates an electrical signal (hereinafter referred to as a "light receiving signal") corresponding to the received light. may contain.
  • the light receiving unit 78 receives part of the light (scattered light) generated by scattering the irradiation light from the irradiation unit 76 in the detection channel 74 .
  • the light receiving section 78 outputs a light reception signal obtained by receiving light emitted from the detection flow path 74 to the control section 80 .
  • the control section 80 controls each element included in each of the foreign matter detection units 70A to 70C, and determines whether or not foreign matter is contained in the treatment liquid based on the received light signal received by the light receiving section 78.
  • the control unit 80 will be described together with the above-described control device 20 that controls the liquid processing unit U1 and the like.
  • Control unit 80 of each of foreign object detection units 70A, 70B, and 70C and control device 20 constitute control system 100 . That is, the substrate processing system 1 includes a control system 100 including the control device 20 and the control section 80 .
  • An output device 19 may be connected to the control device 20 .
  • the output device 19 is a device for outputting information output from the control device 20 to an operator such as a worker.
  • Output device 19 is, for example, a monitor. Any monitor can be used as long as it can display information on the screen, and a specific example thereof is a liquid crystal panel.
  • the control system 100 at least supplies the processing liquid from the nozzle 30 to the workpiece W, and at a plurality of locations at different positions along the supply flow path 29, emits from the detection flow path 74 as the light is irradiated. Foreign matter contained in the treatment liquid is detected based on the received light signal obtained by receiving the light, and foreign matter is detected in the supply channel 29 based on the detection results of the foreign matter at each of the plurality of locations. and estimating the compartment where the event causing the has occurred.
  • the control unit 80 of the control system 100 includes, for example, a light projection control unit 102, a signal acquisition unit 104, and a foreign object determination unit as functional components (hereinafter referred to as "functional modules"). a portion 106; The processes executed by the light projection control unit 102, the signal acquisition unit 104, and the foreign object determination unit 106 correspond to the processes executed by the control unit 80 (control system 100).
  • FIG. 6 shows one controller 80 out of the plurality of controllers 80 of the plurality of foreign object detection units 70 .
  • the light projection control unit 102 controls the irradiation unit 76 so that the detection flow path 74 formed by the flow path forming unit 72 is irradiated with the irradiation light in the corresponding foreign object detection unit among the foreign object detection units 70A to 70C. .
  • the light projection control unit 102 controls the detection channel 74 to be irradiated with irradiation light in accordance with the supply period each time the processing liquid is supplied to the workpiece W to be processed (each time the processing liquid is supplied).
  • the irradiation unit 76 may be controlled.
  • the light projection control unit 102 causes the irradiation unit 76 to start irradiating the irradiation light at the timing when the treatment liquid from the nozzle 30 to the workpiece W starts to be discharged. Then, the light projection control unit 102 causes the irradiation unit 76 to stop the irradiation of the irradiation light at the timing when the discharge of the processing liquid from the nozzle 30 to the work W is stopped.
  • the signal acquisition unit 104 receives the scattered light (emitted light) emitted from the detection channel 74 along with the irradiation of the irradiation light in the corresponding foreign matter detection unit among the foreign matter detection units 70A to 70C. A signal is obtained from the light receiving portion 78 . Each time the processing liquid is supplied to the workpiece W to be processed (each time the processing liquid is supplied), the signal acquisition unit 104 generates a light reception signal corresponding to the light received from the detection flow path 74 in accordance with the supply period. may be obtained from the light receiving unit 78 .
  • the signal acquisition unit 104 acquires a light receiving signal from the light receiving unit 78 each time the treatment liquid is supplied according to the irradiation timing (irradiation period) of the irradiation light by the light projection control unit 102 .
  • the foreign object determination unit 106 determines the presence or absence of a foreign object based on the received light signal acquired by the signal acquisition unit 104 in the corresponding foreign object detection unit among the foreign object detection units 70A to 70C. Specifically, based on the received light signal acquired by the corresponding foreign matter detection unit, the foreign matter determination unit 106 determines whether or not the treatment liquid that has passed through the corresponding location contains a foreign matter. The foreign matter determination unit 106 may determine the presence or absence of foreign matter at the corresponding location each time the treatment liquid is supplied.
  • the foreign matter determination unit 106 may determine the presence or absence of foreign matter according to the evaluation value obtained by analyzing the time change of the signal intensity of the received light signal.
  • FIG. 7 shows an example of temporal changes in the signal intensity of the received light signal acquired by the signal acquisition unit 104 .
  • FIG. 7 shows the received light signal obtained during one supply period Ta of the treatment liquid, and the signal intensity exceeds the predetermined intensity threshold value Th1 at times t1, t2, and t3.
  • the foreign object determination unit 106 calculates a value obtained by counting the number of times the signal intensity exceeds a predetermined threshold value Th1 as an evaluation value, and then determines whether the evaluation value (count value) exceeds a predetermined evaluation threshold value Th2. may be determined. For example, when the number of times the signal intensity exceeds the intensity threshold value Th1 exceeds the evaluation threshold value Th2, the foreign object determination unit 106 determines that the event has occurred at that location (where the foreign object detection unit is arranged). You may It should be noted that the foreign matter determination unit 106 may calculate the evaluation value in any manner as long as it determines the presence or absence of the foreign matter based on the light reception signal (according to the evaluation value obtained from the light reception signal). The presence or absence may be determined.
  • the control device 20 of the control system 100 includes, as functional modules, for example, as shown in FIG. and an output unit 122 .
  • the processes executed by these functional modules correspond to the processes executed by the control device 20 (control system 100).
  • the liquid processing control unit 112 controls the processing liquid supply unit 28 so that the processing liquid is supplied to the workpiece W to be processed. For example, when ejection from the nozzle 30 is started, the liquid processing control unit 112 is opened from a closed state in a state in which the processing liquid is replenished in the pump 42 of the liquid feeding unit 40 and the processing liquid is pressurized.
  • the discharge valve 34 is controlled so as to transition to the state.
  • the liquid processing control unit 112 changes the state from the open state to the closed state in order to stop ejection from the nozzles 30 when the preset supply period Ta has elapsed after the start of supply of the processing liquid. , the discharge valve 34 is controlled.
  • the processing liquid By supplying the processing liquid to the work W during the supply period Ta, one supply of the processing liquid (one supply of the processing liquid to one work W) is performed.
  • the judgment result accumulation unit 114 accumulates the detection results (judgment results) of the foreign matter at each of the plurality of locations by the foreign matter detection units 70A to 70C.
  • the determination result accumulating unit 114 acquires the determination results at each of the plurality of locations by the foreign matter determination units 106 of the plurality of control units 80 each time the treatment liquid is supplied, and then accumulates the determination results.
  • the judgment result accumulation unit 114 may accumulate the judgment result by the foreign matter judgment unit 106 in association with the number of supply times of the processing liquid (the number of workpieces W to be processed). In this case, the judgment result accumulating section 114 associates and accumulates the number of supply times of the treatment liquid and the judgment result by the foreign matter judgment section 106 for each of the foreign matter detection units 70A to 70C.
  • the generation source estimating unit 116 estimates a section in the supply channel 29 where an event causing the detection of foreign matter has occurred, based on the detection results at each of the plurality of locations by the foreign matter detection units 70A to 70C.
  • the generation source estimating unit 116 may identify (estimate) the component that is the source of the foreign matter by estimating the section where the event is assumed to have occurred.
  • the generation source estimating unit 116 determines the section where the above event is assumed to have occurred (when the occurrence of the foreign matter continues). , the section where the above event occurs) may be estimated.
  • An example of a method for estimating a block in which the above event is supposed to have occurred will be described below with reference to FIG. 8 as well.
  • FIG. 8 shows a graph representing the transition of the evaluation value for detecting foreign matter with respect to the number of times of supply for each of the foreign matter detection units 70A to 70C.
  • “70A” indicates the transition of the evaluation value (for example, the number of times the intensity threshold value Th1 is exceeded) acquired by the foreign object detection unit 70A.
  • “70B” indicates the transition of the evaluation value obtained by the foreign object detection unit 70B, and
  • “70C” indicates the transition of the evaluation value obtained by the foreign object detection unit 70C.
  • the evaluation value obtained by the foreign matter detection unit 70A exceeds the evaluation threshold Th2 when the processing liquid is supplied to the workpiece W to be processed "tc" times. In this case, when the treatment liquid is supplied tc times, the controller 80 of the foreign matter detection unit 70A detects foreign matter at the location where the foreign matter detection unit 70A is arranged.
  • the source estimating unit 116 refers to the past judgment results regarding the presence or absence of a foreign object by the foreign object detection units 70B and 70C.
  • the generation source estimating section 116 refers to the judgment results of the other detection units at the point in time a predetermined number of times before, for example, the number of times of supply when the foreign matter is detected by the foreign matter detection unit 70A.
  • the predetermined number of times refer to the determination result at the time when it is assumed that the foreign matter in the processing liquid passed through the detection channel 74 of the foreign matter detection unit 70B in the past when the foreign matter was detected by the foreign matter detection unit 70A. is set to allow
  • the predetermined number of times is determined based on the relationship between the discharge amount in one supply of processing liquid and the volume of piping between the foreign matter detection unit 70A and the foreign matter detection unit 70B.
  • the predetermined number of times is set to "b" times, and the generation source estimating section 116 determines that the foreign matter detection units 70B and 70C perform the supply operation "tc-b" times. Refer to judgment results.
  • the generation source estimation unit 116 determines whether the foreign object detection unit 70A and the foreign object detection unit 70B It is assumed that the above event occurred in the section between. In this case, the generation source estimator 116 estimates that the discharge valve 34 included in the section of the supply channel 29 located between the foreign matter detection unit 70A and the foreign matter detection unit 70B is the source of the foreign matter. good too.
  • the generation source estimating unit 116 performs the foreign object detection unit 70B and the foreign object detection unit 70C. Assume that the above event occurs in the section between unit 70C. In this case, the generation source estimating unit 116 determines that at least one of the pump 42 and the filter 46 included in the section located between the foreign matter detection unit 70B and the foreign matter detection unit 70C in the supply channel 29 is the foreign matter generation source. It can be assumed that there are FIG. 8 exemplifies determination results in the case of such estimation.
  • the generation source estimating unit 116 determines that the event has occurred in a section upstream of the foreign object detection unit 70C.
  • the generation source estimating unit 116 determines that at least one of the supply source 52, the storage tank 56, and the pump 58 included in the section located upstream of the foreign matter detection unit 70C in the supply channel 29 is the generation source of the foreign matter. It may be assumed that
  • the generation source estimating unit 116 determines the ejection amount of the treatment liquid from the (tc-b) times to the foreign matter detection unit 70C, and the difference between the foreign matter detection unit 70B and the foreign matter detection unit 70C. You may refer to the determination result at the time of going back a predetermined number of times, which is determined from the relationship with the pipe volume between the pipes. As exemplified above, the generation source estimating unit 116 estimates which part is the source of the foreign matter by estimating the section where the event is assumed to have occurred (has occurred). may
  • the factor estimating unit 118 estimates the factor of occurrence of the event according to the section estimated by the source estimating unit 116 .
  • the cause of the occurrence of the event is the action or phenomenon that caused the event.
  • the factor estimating unit 118 refers to a table in which a section in which the event is estimated to have occurred (estimated source of the foreign matter) and a factor of the occurrence of the foreign matter are associated in advance, thereby estimating the factor of the occurrence of the event. presume.
  • the factor estimation unit 118 replaces the pump or filter, stagnates the processing liquid, and changes the operating conditions of the pump when it is estimated that the above event has occurred in the section containing the pump 42 and the filter 46. Presumed to be the cause of the above events.
  • estimating the cause of the occurrence of the event does not only mean identifying one factor, but also includes identifying a plurality of factors (candidate factors).
  • the output unit 122 outputs information indicating the section estimated by the generation source estimation unit 116 when a foreign object is detected in the supply channel 29 .
  • the output section 122 may output information indicating the estimated section to the output device 19 when a foreign object is detected by the foreign object detection unit 70A.
  • the output device 19 may display information indicating that a foreign object has been detected and the estimated section.
  • the output unit 122 may also output information indicating factors (candidate factors) for the occurrence of the event estimated by the factor estimation unit 118 .
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the control unit 80 and the control device 20.
  • One control unit 80 is composed of one or more computers.
  • the controller 80 has a circuit 150 .
  • Circuitry 150 includes one or more processors 152 , memory 154 , storage 156 , input/output ports 158 , timers 162 and communication ports 164 .
  • the storage 156 has a computer-readable storage medium such as a hard disk.
  • the storage medium stores a program for causing the controller 80 to execute the foreign matter detection method executed in the foreign matter detection units 70A to 70C.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk and an optical disk.
  • the memory 154 temporarily stores the program loaded from the storage medium of the storage 156 and the calculation result by the processor 152 .
  • Processor 152 configures each functional module of control unit 80 by executing the above program in cooperation with memory 154 .
  • the input/output port 158 inputs and outputs electrical signals to and from the irradiation unit 76 and the light receiving unit 78 according to instructions from the processor 152 .
  • the timer 162 measures the elapsed time by, for example, counting reference pulses of a constant cycle.
  • the communication port 164 communicates with the control device 20 wirelessly, by wire, or via a network line or the like in accordance with instructions from the processor 152 .
  • each functional module may be realized by an individual computer.
  • each of these functional modules may be implemented by a combination of two or more computers.
  • a plurality of computers may be communicably connected to each other and execute the foreign object detection method in cooperation.
  • the control device 20 is composed of one or more computers. Controller 20 has, for example, circuitry 170 . Circuitry 170 includes one or more processors 172 , memory 174 , storage 176 , input/output ports 178 , timers 182 and communication ports 184 .
  • the storage 176 has a computer-readable storage medium such as a hard disk. The storage medium stores a program for causing the coating and developing apparatus 2 to execute a substrate processing method, which will be described later.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk and an optical disk.
  • the memory 174 temporarily stores the program loaded from the storage medium of the storage 176 and the calculation result by the processor 172 .
  • the processor 172 configures each functional module of the control device 20 by executing the program in cooperation with the memory 174 .
  • the input/output port 178 inputs/outputs electric signals to/from the treatment liquid supply unit 28, the output device 19, and the like according to instructions from the processor 172.
  • the timer 182 measures the elapsed time by, for example, counting reference pulses of a constant cycle.
  • the communication port 184 communicates with the control unit 80 (communication port 164 described above) wirelessly, by wire, or via a network line or the like in accordance with a command from the processor 172 .
  • each functional module may be realized by an individual computer.
  • each of these functional modules may be implemented by a combination of two or more computers.
  • the plurality of computers may be connected to each other so as to be able to communicate with each other, and cooperate to execute the substrate processing method described below.
  • each functional module of the control unit 80 and the control device 20 is not necessarily limited to configuring each functional module by a program.
  • each functional module of the control unit 80 and the control device 20 may be composed of a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) integrated with this.
  • FIG. 10 is a flow chart showing a series of processes that are executed in response to the supply of the processing liquid to one work W. As shown in FIG.
  • step S11 the control unit 80 waits until the supply of the processing liquid to the workpiece W to be processed is completed. Until the supply of the treatment liquid is completed, the signal acquisition section 104 of the control section 80 continues acquiring the light reception signal in each foreign substance detection unit.
  • step S12 the foreign matter determination unit 106 of the control unit 80 in each foreign matter detection unit determines whether or not a foreign matter is generated in the treatment liquid.
  • the foreign matter determination unit 106 calculates an evaluation value (for example, the number of times the signal intensity exceeds the intensity threshold Th1) from the received light signal obtained during the period in which the supply of the treatment liquid is continued, and sets the evaluation value to the evaluation threshold. By comparing with Th2, it is determined whether or not foreign matter is generated in the processing liquid.
  • an evaluation value for example, the number of times the signal intensity exceeds the intensity threshold Th1
  • step S13 for example, the determination result accumulation unit 114 of the control device 20 accumulates (stores) the determination result in step S12 for each foreign object detection unit.
  • the judgment result accumulating section 114 may accumulate the number of supply times of the treatment liquid (the number of processed workpieces W) and the judgment result by each foreign matter detection unit in association with each other.
  • step S14 for example, the generation source estimating unit 116 of the control device 20 selects the foreign object detection unit (in the above example, the foreign object detection unit) arranged at the most downstream of the plurality of foreign object detection units provided in the supply channel 29. For the unit 70A), it is determined whether or not a foreign object is detected in step S12.
  • the generation source estimating unit 116 of the control device 20 selects the foreign object detection unit (in the above example, the foreign object detection unit) arranged at the most downstream of the plurality of foreign object detection units provided in the supply channel 29. For the unit 70A), it is determined whether or not a foreign object is detected in step S12.
  • step S14 when it is determined that a foreign object is detected in the most downstream foreign object detection unit (step S14: YES), the control system 100 executes step S15.
  • step S15 for example, the generation source estimating unit 116 refers to the past determination results regarding the presence or absence of foreign matter in foreign matter detection units other than the most downstream foreign matter detection unit. Estimate the compartment where the event that caused the detection of the foreign object occurred.
  • the generation source estimating unit 116 determines that the processing liquid that has passed through the foreign object detection unit positioned most downstream during step S11 may pass through the other foreign object detection units (the foreign object detection units 70B and 70C in the above example). The section is estimated by referring to the determination result based on the number of times of supply passed in the past.
  • step S16 the factor estimator 118 of the control device 20 estimates factors (candidate factors) for the occurrence of the event according to the partitions estimated in step S15.
  • the factor estimating unit 118 estimates the factor of occurrence of the event by referring to a table in which the partition and the factor of occurrence of the event are associated in advance.
  • step S17 the control system 100 executes step S17.
  • step S ⁇ b>17 the output unit 122 of the control device 20 outputs to the output device 19 information indicating that a foreign object has been detected and the section estimated in step S ⁇ b>15 .
  • the output unit 122 may also output information indicating the factors estimated in step S16 to the output device 19 .
  • the processing liquid supply unit 28 may perform a treatment to remove the foreign matter in accordance with an instruction from an operator or the like according to the information output to the output device 19 .
  • step S14 determines whether foreign matter is detected in the most downstream foreign matter detection unit (step S14: NO)
  • the control system 100 does not execute steps S15 to S17.
  • the control system 100 may repeat the series of processes of steps S11 to S17 (S14) each time the processing liquid is supplied to each of a plurality of subsequent works W.
  • control system 100 may execute one step and the next step in parallel, or may execute each step in an order different from the example described above.
  • the control system 100 may omit any step, or perform processing different from the above example in any step.
  • the method of estimating the section where the event that causes foreign object detection is assumed to have occurred is not limited to the above example.
  • the section is estimated when a foreign object is detected by the foreign object detection unit positioned most downstream.
  • the estimation of the compartment may be performed.
  • the generation source estimation unit 116 estimates that the event has occurred in a section adjacent to and upstream of that foreign object detection unit.
  • the generation source estimating section 116 determines that the above event occurred in the section including the supply source 52, the storage tank 56, and the pump 58 included in the replenishment section 50 when foreign matter is detected by the foreign matter detection unit 70C. presume.
  • the generation source estimating section 116 estimates that the above event has occurred in the section including the pump 42 and the filter 46 included in the liquid feeding section 40 when foreign matter is detected by the foreign matter detection unit 70B. Even when the above event occurs in the replenishment unit 50, the foreign object can be detected by the foreign object detection unit 70B as the number of supplies is accumulated. , it is possible to deduce the compartment containing the source of the foreign object.
  • Occurrence source estimating section 116 estimates that the above event has occurred in the section including discharge valve 34 when a foreign object is detected by foreign object detection unit 70A.
  • the factor estimation unit 118 may use other information in addition to the results of detection by each foreign object detection unit to narrow down the factors of the occurrence of the above events.
  • the coating and developing apparatus 2 may further include a flow rate measuring section 60 as shown in FIG.
  • the flow velocity measurement unit 60 measures the flow velocity of the processing liquid flowing through the flow path that guides the processing liquid to the nozzle 30 (for example, the amount of liquid passing through per unit time).
  • the flow velocity measurement unit 60 may measure the flow velocity of the treatment liquid by any method.
  • the flow velocity measuring section 60 is provided in the flow path between the discharge valve 34 and the foreign object detection unit 70B in the supply flow path 29.
  • FIG. 11 shows an example of the change over time of the flow velocity measured by the flow velocity measurement unit 60.
  • FIG. Each pulse in the graph shown in FIG. 11 corresponds to one supply of processing liquid.
  • the change in the flow velocity over time during the period in which the supply of the treatment liquid is continued is substantially constant.
  • bubbles are contained in the treatment liquid passing through the flow velocity measuring unit 60
  • the flow velocity fluctuates during the period in which the supply of the treatment liquid is continued, as shown in the enlarged graph in FIG. . 11 are measured values detected when the treatment liquid that has passed through the foreign matter detection unit 70B in (tc-b) times illustrated in FIG. . From the above, it is possible to estimate whether or not bubbles are contained as foreign matter by detecting fluctuations in the flow velocity of the treatment liquid containing bubbles when it passes through the flow velocity measuring unit 60 .
  • the factor estimating unit 118 may narrow down the factors for the occurrence of the above events based on the measurement result of the flow velocity measuring unit 60. For example, when the factor estimating unit 118 estimates that a component in the liquid feeding unit 40 is the source of foreign matter, the flow velocity of the processing liquid after passing through the foreign matter detection unit 70B when passing through the flow velocity measuring unit 60 is calculated. According to the degree of fluctuation of the flow velocity measured by the measuring unit 60, the factors causing the above phenomena may be narrowed down.
  • the factor estimating unit 118 determines the factors (candidate factors) for the occurrence of the above event when the flow velocity fluctuation is greater than a predetermined level, such as the occurrence of bubbles due to replacement of the pump or filter, It is narrowed down to the generation of foam and the generation of foam accompanying changes in the operating conditions of the pump. In this case, measures such as defoaming around the pump or filter may be taken based on instructions from the operator or the like.
  • the factor estimating unit 118 may estimate that the generation of bubbles is not the factor when the fluctuation of the flow velocity is smaller than a predetermined level.
  • the measurement result obtained by the flow velocity measurement unit 60 may be used to confirm whether or not the flow velocity is stable each time the treatment liquid is supplied.
  • the information used to narrow down the causes of the occurrence of the above events is not limited to the above fluctuations in flow velocity.
  • the factor estimator 118 may narrow down the factor of occurrence of the phenomenon based on the supply frequency (ejection frequency) of the treatment liquid to the workpiece W when the foreign matter is detected. If the supply frequency of the treatment liquid is low during the predetermined period immediately before the detection of the foreign matter, it can be estimated that the treatment liquid is stagnant in the supply channel 29 .
  • the factor estimating unit 118 may narrow down the factor of occurrence of the event according to the supply frequency within a predetermined period immediately before including the point at which the foreign object is detected.
  • the factor estimating unit 118 determines the supply frequency within the predetermined period including the time when the foreign matter is detected by the foreign matter detection unit 70B. Accordingly, the factors for the occurrence of the above events may be narrowed down. In one example, the factor estimating unit 118 may narrow down the cause of the occurrence of the event to be the stagnation of the treatment liquid when the supply frequency within the predetermined period is less than a predetermined threshold. If the supply frequency within the predetermined period is greater than a predetermined threshold, the factor estimator 118 may narrow down the cause of the occurrence of the event to be pump or filter replacement and change in operating conditions of the pump. .
  • the liquid processing unit U1 has one processing liquid supply section 28, but may have a plurality of processing liquid supply sections 28.
  • the liquid processing unit U1 has a plurality of nozzles 30 and a plurality of supply channels 29 for supplying the processing liquid to the plurality of nozzles 30, respectively.
  • the foreign matter detection units 70A to 70C may detect foreign matter at a plurality of locations in each of the plurality of supply channels 29.
  • FIG. The control system 100 may estimate the section where the event is assumed to have occurred (the section assumed to contain the source of foreign matter) in each of the plurality of supply channels 29 .
  • a single foreign matter detection unit may have members for detecting foreign matter at a plurality of different positions along one supply channel 29 .
  • one foreign matter detection unit includes a detection channel 74 located between the nozzle 30 and the ejection valve 34, a detection channel 74 located between the ejection valve 34 and the liquid sending section 40, and the liquid sending section 40. and the replenishment section 50, each of which forms a detection flow path 74.
  • the foreign matter detection unit may have a plurality of irradiation sections 76 and a plurality of light reception sections 78 corresponding to these detection channels 74 .
  • one foreign object detection unit has a plurality of foreign object detection units that detect foreign objects in a plurality of detection channels 74 provided at a plurality of locations on the supply channel 29 .
  • the coating and developing device 2 may have two foreign matter detection units that detect foreign matter at different positions on the supply channel 29, or may have four or more foreign matter detection units.
  • the arrangement of the plurality of foreign matter detection units (foreign matter detection units 70A to 70C) is not limited to the example described above, and may be any different positions on the supply channel 29 .
  • Parts that can be the source of foreign matter are not limited to the above examples, and may include, for example, a valve that opens and closes the flow path at a position different from the ejection valve 34, and a pipe that forms the flow path of the treatment liquid.
  • the liquid sending unit 40 is not limited to the above example, and may be configured in any way as long as it has a filter and a pump.
  • the replenishing unit 50 is not limited to the above example, and may be configured in any way as long as the processing liquid can be replenished to the liquid feeding unit 40 .
  • the control device 20 may have a functional module that determines the presence or absence of foreign matter at each of a plurality of locations on the supply channel 29 .
  • the control unit 80 may not have the foreign object determination unit 106 .
  • a control section 80 of any one of the foreign matter detection units 70A to 70C has a functional module for estimating the section where the event is assumed to have occurred, a functional module for estimating the factor of the occurrence of the foreign matter, and a functional module for outputting the estimation result. may have
  • the controllers 80 of the foreign object detection units 70A to 70C may be communicably connected to each other, and the controller 20 may not have some of the functional modules described above.
  • the substrate processing system 1 includes the nozzle 30 capable of ejecting the processing liquid, the processing liquid supply source 52, and the supply channel 29 connecting between the nozzle 30 and the supply source 52. and a processing liquid supply unit 28 for supplying the processing liquid to the workpiece W, and a plurality of positions different from each other along the supply channel 29.
  • a plurality of foreign matter detection units foreign matter detection units 70A to 70C) that detect foreign matter contained in the treatment liquid based on light reception signals obtained by receiving the emitted light, and a plurality of foreign matter detection units at a plurality of locations.
  • a generation source estimating unit 116 for estimating a section in the supply channel 29 in which an event causing detection of a foreign object has occurred, based on the detection result of .
  • the nozzle and the discharge valve in the supply flow path between the nozzle and the processing liquid supply source are separated from each other.
  • a conceivable method is to arrange a foreign matter detection unit at one location and detect foreign matter in the processing liquid. With this method, it is possible to ascertain that a foreign object has occurred in the processing liquid, but it is not possible to ascertain from the detection result what factors have caused the phenomenon upstream of the foreign object detection unit. .
  • the substrate processing system 1 from the detection results of foreign matter at a plurality of locations on the supply channel 29 , the section where the above event occurred is estimated. Therefore, by using the estimation result, it is possible to easily grasp the cause of the occurrence of the phenomenon in the treatment liquid supply unit 28 .
  • the treatment liquid supply unit 28 includes a filter 46 that collects foreign matter contained in the treatment liquid in the supply channel 29, a liquid sending part 40 that includes a pump 42 that sends the treatment liquid toward the nozzle 30, and a supply channel.
  • a discharge valve 34 that opens and closes the flow path between the liquid sending part 40 and the nozzle 30 of 29 may be provided.
  • the plurality of foreign matter detection units includes a first foreign matter detection unit (foreign matter detection unit 70A) disposed in the flow path between the nozzle 30 and the discharge valve 34, and a flow path between the discharge valve 34 and the liquid sending unit 40. and a second foreign matter detection section (foreign matter detection unit 70B) disposed in the .
  • the section in which the above event is assumed to occur is either the section including the discharge valve 34 or the other section including the pump 42 of the liquid feeding section 40 and the It is possible to extrapolate to any of the compartments containing the filter 46 .
  • the processing liquid supply unit 28 may further include a replenishing unit 50 that replenishes the processing liquid from the supply source 52 to the liquid feeding unit 40 .
  • the plurality of foreign matter detection sections may further include a third foreign matter detection section (foreign matter detection unit 70 ⁇ /b>C) arranged in the channel between the replenishment section 50 and the liquid feeding section 40 .
  • the section where the above event is assumed to occur in the section that does not include the discharge valve 34 (the section upstream of the second foreign matter detection section) It is possible to estimate either the section containing the liquid feeding section 40 or the section containing the replenishment section 50 .
  • the substrate processing system 1 may further include a factor estimator 118 that estimates the factor of the occurrence of the event according to the section estimated by the source estimator 116 .
  • a factor estimator 118 that estimates the factor of the occurrence of the event according to the section estimated by the source estimator 116 .
  • the substrate processing system 1 may further include a flow velocity measurement unit 60 that measures the flow velocity of the processing liquid flowing through the channel that guides the processing liquid to the nozzle 30 .
  • the factor estimator 118 may narrow down the factor of occurrence of the above phenomenon based on the measurement result by the flow velocity measurement unit 60 . In this case, the estimated result of the factor of occurrence of the event is narrowed down, so that the factor of occurrence of the event can be more easily grasped.
  • the factor estimating unit 118 may narrow down the cause of the occurrence of the event based on the frequency of supplying the processing liquid to the workpiece W when the event occurs. In this case, the estimated result of the factor of occurrence of the event is narrowed down, so that the factor of occurrence of the event can be more easily grasped.
  • a substrate processing system 1 according to the second embodiment is configured similarly to the substrate processing system 1 according to the first embodiment.
  • other chemical liquids mixed in the processing liquid are detected as foreign matter instead of particles such as dust, dirt, and bubbles. That is, in the present disclosure, "foreign matter" in the treatment liquid includes not only particles such as dust, dirt, and bubbles, but also chemical liquids having components different from those of the treatment liquid.
  • particles or the like are detected based on the evaluation value. To do this, we use the intensity of the background light.
  • the background light is light emitted (for example, scattered) from the detection channel 74 as the treatment liquid is irradiated with light, regardless of the presence or absence of particles.
  • the degree of scattering of the irradiation light in the detection channel 74 (within the treatment liquid) changes depending on the presence or absence of particles such as dust, so the magnitude of the signal intensity changes depending on the presence or absence of particles.
  • the received signal corresponding to the scattered light includes the signal Ib corresponding to the background light when no particles are included and the signal Is corresponding to the scattered light from the particles when the particles are included. . More specifically, the signal Is is a signal corresponding to background light and scattered light scattered by particles.
  • the signal Ib corresponding to background light may include a component corresponding to scattered light from substances normally contained in the treatment liquid and a component corresponding to disturbance.
  • a base resin base polymer
  • the foreign matter detection unit 70 acquires the intensity of the background light contained in the light emitted from the detection channel 74 from the above-described light reception signal.
  • the foreign matter detection unit 70 detects another chemical mixed in the treatment liquid as a foreign matter by utilizing the fact that the intensity of the background light changes according to the type of the chemical such as the treatment liquid.
  • processing liquid Lr a processing liquid for forming a resist film
  • FIG. 12 shows the measurement results of the intensity of the background light when the treatment liquid Lr and the cleaning liquid Lc are supplied.
  • the vertical axis indicates the background light intensity [mW].
  • the intensity of the background light is obtained by calculating the time average of the intensity in a predetermined period in the received light signal. From the graph shown in FIG. 12, it can be seen that the intensity of background light differs depending on the type of chemical solution. Specifically, it can be seen that the intensity of the background light differs between when the treatment liquid Lr is supplied and when the cleaning liquid Lc is supplied. Also, it can be seen that the intensity of the background light has a substantially constant level if the types of chemical solutions are the same.
  • the liquid processing unit U1 continues to supply the processing liquid Lr to each work W while the processing of the work W in the coating and developing apparatus 2 is continued. While the processing of the workpiece W continues, there is a case where the processing is interrupted and maintenance is performed in the liquid processing unit U1.
  • An example of maintenance includes replacement of parts such as the filter 46 included in the processing liquid supply unit 28 .
  • the inside of the supply channel 29 is replaced with the cleaning liquid Lc from the processing liquid Lr. Then, when the processing is restarted after the maintenance is completed, the inside of the supply channel 29 is again replaced with the processing liquid Lr. For example, if the cleaning liquid Lc is not sufficiently replaced with the processing liquid Lr when the processing is restarted, part of the cleaning liquid Lc may be mixed with the processing liquid Lr during the processing of the workpiece W.
  • the horizontal axis indicates the number of times of supply.
  • the replacement with the cleaning liquid Lc is performed at the number of times of supply of "tc1", and the replacement with the treatment liquid Lr is performed again at the number of times of supply of "tc2".
  • the reason why the intensity of the background light is not stable in the period immediately after tc1 and tc2 is considered to be that the treatment liquid Lr and the cleaning liquid Lc are mixed and the replacement of the chemical solution is not completed.
  • the intensity of the background light is measured after the replacement of the chemical solution is completed (after the supply number of times assumed to have completed replacement), Insufficient replacement of the chemical solution can be detected.
  • each of the plurality of foreign matter detection units 70A to 70C detects foreign matter in the treatment liquid Lr based on the intensity information indicating the intensity of the background light contained in the light (for example, scattered light) emitted from the supply channel 29. is included.
  • the foreign object determination unit 106 of the control unit 80 of each foreign object detection unit acquires intensity information indicating the intensity of the background light contained in the scattered light in the corresponding detection flow path 74 from the received light signal (background light intensity information). strength).
  • the foreign matter determination unit 106 determines whether or not the intensity of the background light indicated by the intensity information is at a level corresponding to the treatment liquid Lr.
  • the foreign matter determination unit 106 determines that the cleaning liquid Lc is mixed as a foreign matter in the corresponding detection flow path 74 when the intensity of the background light is out of a predetermined level (predetermined range) according to the processing liquid Lr.
  • the foreign matter determination unit 106 determines that replacement has been completed in the entire supply channel 29 based on an input from another control device or a user input. You may obtain a signal indicating
  • the foreign matter determination unit 106 may detect the foreign matter based on the background light in the number of supply times after obtaining the signal indicating that the replacement has been completed in the entire supply channel 29 . For example, after replacing the liquid source (bottle) of the liquid medicine, it may be determined that the replacement is completed when the liquid medicine is discharged from the nozzle 30 a predetermined number of times.
  • the generation source estimating unit 116 selects a section in the supply channel 29 where the cleaning liquid Lc is mixed based on the detection result using the background light intensity information at each of a plurality of locations by the foreign matter detection units 70A to 70C. to estimate When the foreign matter detection unit 70A arranged at the position closest to the nozzle 30 detects the presence of the cleaning liquid Lc, the generation source estimating unit 116 determines the section where the cleaning liquid Lc is mixed (the event causing the foreign matter detection). generated partitions) may be estimated.
  • An example of a method for estimating a section where it is assumed that the cleaning liquid Lc is mixed will be described below with reference to FIG. 13 .
  • FIG. 13 shows a graph representing the transition of background light intensity with respect to the number of times of supply for each of the foreign matter detection units 70A to 70C.
  • 70A indicates the transition of the background light intensity acquired by the foreign object detection unit 70A.
  • 70B indicates the transition of the background light intensity obtained by the foreign object detection unit 70B, and
  • 70C indicates the transition of the background light intensity obtained by the foreign object detection unit 70C.
  • TLv is the intensity level (range) of the background light when the detection channel 74 is filled with the cleaning liquid Lc.
  • “RLv” is the intensity level (range) of the background light when the detection channel 74 is filled with the treatment liquid Lr.
  • the background light intensity levels TLv and RLv corresponding to the cleaning liquid Lc or the processing liquid Lr are measured in advance.
  • the replacement of the cleaning liquid Lc with the processing liquid Lr is started when the number of times the cleaning liquid Lc or the processing liquid Lr is supplied is "tc2" times.
  • the measured value of the intensity of the background light gradually changes from the intensity level TLv corresponding to the cleaning liquid Lc to the intensity level RLv corresponding to the treatment liquid Lr.
  • the control section 80 (foreign matter determination section 106) acquires a signal indicating that the replacement has been completed.
  • the intensity of the background light reaches the intensity level RLv corresponding to the treatment liquid Lr at the time ts, as indicated by the dotted line in the graph.
  • the generation source estimating unit 116 It is assumed that the cleaning liquid Lc is (occurred) mixed in the section between the foreign object detection unit 70A and the foreign object detection unit 70B.
  • the generation source estimation unit 116 It is presumed that the cleaning liquid Lc is (occurred) mixed in the section between the foreign object detection unit 70B and the foreign object detection unit 70C.
  • FIG. 13 exemplifies determination results in the case of such estimation.
  • the generation source estimating unit 116 detects the cleaning liquid Lc in the section upstream of the foreign matter detection unit 70C. It is estimated that the mixture of The factor estimator 118 estimates the cause of the event based on the detection result based on the intensity of the background light by the foreign object determiner 106 and the section estimated by the source estimator 116 .
  • the source estimating unit 116 estimates that insufficient replacement of the chemical solution in the filter 46 or the pump 42 is the cause of the event that causes foreign matter detection. may
  • the following events are conceivable as events in which the chemical solution is mixed in the filter 46.
  • the cleaning liquid Lc passed through to clean the inside of the pipe of the supply flow path 29 before the start of the processing using the processing liquid Lr passes through a narrow area inside the filter 46 (not shown but an internal flow of a material that collects foreign matter). There is a possibility that the accumulated cleaning liquid Lc may not be discharged. In this case, the processing liquid Lr is filled in the pipe of the supply flow path 29 while part of the cleaning liquid Lc is not discharged. In the narrow area inside the filter 46, the pressure loss tends to be higher than in the other flow paths in the supply flow path 29. Therefore, when the processing liquid Lr is filled, it is not eluted immediately, and the flow rate of the liquid during actual processing is reduced. The cleaning liquid Lc may be eluted at an unexpected timing in the pressure control for cleaning.
  • the example shown in the first embodiment may be applied to the substrate processing system 1 according to the second embodiment.
  • the foreign matter detection unit 70 may detect particles based on the evaluation value obtained from the received light signal, and detect the presence of other chemicals based on intensity information indicating the intensity of background light. In the detection based on the evaluation value, a foreign object is detected based on fluctuations in the instantaneous value of the received light signal. . If a foreign substance is detected in at least one of the detection based on the evaluation value and the detection based on the intensity information, the foreign substance detection unit 70 determines that the processing liquid in the corresponding detection channel 74 contains the foreign substance. good.
  • the factor estimating unit 118 determines the occurrence of the event based on the measurement result of the flow velocity of the processing liquid flowing through the supply channel 29, as in the above example. You can narrow down the factors.
  • the factor estimating unit 118 determines the occurrence of the event based on the supply frequency of the processing liquid to the workpiece W when the event occurs, as in the above example. You may narrow down the factor of generation
  • treatment may be performed to discharge other chemical liquid (cleaning liquid Lc) based on instructions from the operator or the like.
  • cleaning liquid Lc chemical liquid
  • the feeding state of the treatment liquid Lr is maintained until the intensity of the background light reaches an intensity level corresponding to the treatment liquid (treatment liquid Lr).
  • the dummy discharge on the standby bus capable of discharging the liquid may be repeatedly performed in a state in which the continuous pressurization time is shortened compared to when the processing liquid Lr is actually supplied to the work W.
  • the detection of foreign matter caused by the generation of bubbles and the detection of foreign matter caused by insufficient replacement of the chemical liquid are performed at approximately the same timing. For example, it may be estimated that a foreign substance is generated in the treatment liquid at approximately the same timing by detection based on the evaluation value and detection based on the intensity information between the liquid feeding unit 40 and the ejection valve 34 . In this case, the factor estimator 118 may estimate that there are two factors: the existence of bubbles in the filter 46 or the pump 42 and the retention of other chemical liquid in the filter 46 .
  • the factor estimator 118 determines whether a treatment operation such as dummy ejection or another operation in the substrate processing system 1 after estimation progresses.
  • factor estimating section 118 may sequentially determine which of the plurality of events has stabilized, that is, which event has eliminated its influence, based on the received light signals in foreign object detection units 70A to 70C. good.
  • the factor estimating unit 118 (control device 20) sequentially determines whether the events have stabilized and determines the necessary action to be taken in response to the events that have not yet stabilized at a certain point in time. Efficient stabilization can be achieved.
  • the substrate processing system 1 As in the first embodiment, it is possible to easily grasp the cause of the phenomenon that causes the detection of the foreign matter in the processing liquid supply section 28 . It becomes possible. Also, based on the intensity information indicating the intensity of the background light contained in the emitted light, it is possible to easily detect insufficient replacement of chemicals such as the treatment liquid by detecting other chemicals in the treatment liquid as foreign matter. becomes.

Abstract

A substrate-processing device according to one aspect of the present disclosure comprises: a processing liquid supply unit that has a nozzle capable of discharging a processing liquid, a source for supplying the processing liquid, and a supply flow path connecting the nozzle and the supply source, said processing liquid supply unit supplying the processing liquid to a substrate; a plurality of foreign matter detection units that are arranged at a plurality of different positions along the supply flow path, and that detect foreign matter contained in the processing liquid on the basis of a light reception signal obtained by receiving emitted light emitted from within the supply flow path upon irradiation of light; and an occurrence source estimation unit for estimating, from within the supply flow path, the zone in which an event causing detection of foreign matter has occurred, the estimation being performed on the basis of detection results from the plurality of positions as obtained by the plurality of foreign matter detection units.

Description

基板処理装置、基板処理方法、及び記憶媒体SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM
 本開示は、基板処理装置、基板処理方法、及び記憶媒体に関する。 The present disclosure relates to substrate processing apparatuses, substrate processing methods, and storage media.
 特許文献1には、サンプリング配管から供給されたレジスト液のパーティクルを測定するパーティクル測定装置を具備する塗布装置が開示されている。 Patent Document 1 discloses a coating device equipped with a particle measuring device for measuring particles in a resist liquid supplied from a sampling pipe.
特開平10-209024号公報JP-A-10-209024
 本開示は、異物検出の原因となる事象が発生した要因を容易に把握することが可能な基板処理装置、基板処理方法、及び記憶媒体を提供する。 The present disclosure provides a substrate processing apparatus, a substrate processing method, and a storage medium capable of easily ascertaining the cause of an event that causes foreign matter detection.
 本開示の一側面に係る基板処理装置は、処理液を吐出可能なノズルと、処理液の供給源と、ノズルと供給源との間を接続する供給流路とを有し、基板に対して処理液を供給する処理液供給部と、供給流路に沿って位置が互いに異なる複数箇所に配置され、光の照射に伴い供給流路内から出射された出射光を受光して得られる受光信号に基づいて、処理液に含まれる異物を検出する複数の異物検出部と、複数の異物検出部による複数箇所それぞれでの検出結果に基づいて、供給流路の中から異物の検出の原因となる事象が発生した区画を推定する発生源推定部と、を備える。 A substrate processing apparatus according to one aspect of the present disclosure includes a nozzle capable of ejecting a processing liquid, a supply source of the processing liquid, and a supply channel connecting between the nozzle and the supply source. A processing liquid supply unit that supplies the processing liquid, and a light receiving signal obtained by receiving emitted light emitted from the supply channel along with light irradiation, which are arranged at a plurality of positions different from each other along the supply channel. Based on the plurality of foreign matter detection units for detecting foreign matter contained in the treatment liquid, and based on the detection results at each of the plurality of locations by the plurality of foreign matter detection units, foreign matter is detected in the supply flow path. a source estimator for estimating the compartment where the event occurred.
 本開示によれば、異物検出の原因となる事象が発生した要因を容易に把握することが可能な基板処理装置、基板処理方法、及び記憶媒体が提供される。 According to the present disclosure, there is provided a substrate processing apparatus, a substrate processing method, and a storage medium that can easily ascertain the cause of an event that causes foreign matter detection.
図1は、基板処理システムの一例を示す模式的な斜視図である。FIG. 1 is a schematic perspective view showing an example of a substrate processing system. 図2は、塗布現像装置の一例を示す模式的な側面図である。FIG. 2 is a schematic side view showing an example of the coating and developing apparatus. 図3は、液処理ユニットの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a liquid processing unit. 図4は、処理液供給部の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a processing liquid supply section. 図5は、異物検出ユニットの一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a foreign object detection unit. 図6は、制御システムの機能構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the functional configuration of the control system. 図7は、異物検出に用いられる受光信号の一例を示すグラフである。FIG. 7 is a graph showing an example of a received light signal used for foreign object detection. 図8は、各異物検出部での蓄積データの一例を示すグラフである。FIG. 8 is a graph showing an example of accumulated data in each foreign object detection unit. 図9は、制御システムのハードウェア構成の一例を示すブロック図である。FIG. 9 is a block diagram showing an example of the hardware configuration of the control system. 図10は、制御システムが実行する一連の処理の一例を示すフローチャートである。FIG. 10 is a flow chart showing an example of a series of processes executed by the control system. 図11は、処理液の流速の測定結果の一例を示すグラフである。FIG. 11 is a graph showing an example of measurement results of the flow velocity of the treatment liquid. 図12は、薬液の種類と背景光の強度との関係の一例を示すグラフである。FIG. 12 is a graph showing an example of the relationship between the type of chemical solution and the intensity of background light. 図13は、各異物検出部での蓄積データの一例を示すグラフである。FIG. 13 is a graph showing an example of accumulated data in each foreign object detection unit.
 以下、種々の例示的実施形態について説明する。 Various exemplary embodiments are described below.
 一つの例示的実施形態に係る基板処理装置は、処理液を吐出可能なノズルと、処理液の供給源と、ノズルと供給源との間を接続する供給流路とを有し、基板に対して処理液を供給する処理液供給部と、供給流路に沿って位置が互いに異なる複数箇所に配置され、光の照射に伴い供給流路内から出射された出射光を受光して得られる受光信号に基づいて、処理液に含まれる異物を検出する複数の異物検出部と、複数の異物検出部による複数箇所それぞれでの検出結果に基づいて、供給流路の中から異物の検出の原因となる事象が発生した区画を推定する発生源推定部と、を備える。 A substrate processing apparatus according to one exemplary embodiment includes a nozzle capable of ejecting a processing liquid, a supply source of the processing liquid, and a supply channel connecting between the nozzle and the supply source. a processing liquid supply unit that supplies a processing liquid to a processing liquid supply unit, and a light receiving unit that is disposed at a plurality of positions different from each other along the supply flow path and obtains light emitted from the supply flow path along with light irradiation. A plurality of foreign matter detectors for detecting foreign matter contained in the treatment liquid based on the signal, and the cause of detection of the foreign matter in the supply flow path based on the detection results at each of the plurality of locations by the plurality of foreign matter detectors. and a source estimating unit for estimating a section where an event has occurred.
 ノズルと供給源との間の供給流路において1箇所に異物検出ユニットを配置して、処理液内の異物を検出する方法が考えられる。この方法では、処理液内において異物が発生したことを把握することができるが、異物がどのような要因で処理液内に発生しているかを、検出結果から把握することができない。これに対して、上記基板処理装置では、供給流路上の複数箇所での異物の検出結果から、供給流路の中の異物の検出の原因となる事象が発生した区画が推定される。そのため、その推定結果を利用することで、上記事象の発生の要因を容易に把握することが可能となる。 A conceivable method is to detect foreign matter in the processing liquid by arranging a foreign matter detection unit at one location in the supply channel between the nozzle and the supply source. With this method, it is possible to ascertain the presence of foreign matter in the processing liquid, but it is not possible to ascertain from the detection results the factors causing the occurrence of the foreign matter in the processing liquid. On the other hand, in the above-described substrate processing apparatus, a section in which an event causing the detection of a foreign substance in the supply channel is estimated from the detection results of the foreign substance at a plurality of locations on the supply channel. Therefore, by using the estimation result, it is possible to easily grasp the cause of the occurrence of the phenomenon.
 処理液供給部は、供給流路内の処理液に含まれる異物を捕集するフィルタと、ノズルに向けて処理液を送り出すポンプとを含む送液部と、供給流路のうちの送液部とノズルとの間の流路を開閉する吐出バルブと、供給源から送液部に処理液を補充する補充部と、を有してもよい。複数の異物検出部は、ノズルと吐出バルブとの間の流路に配置された第1異物検出部と、吐出バルブと送液部との間の流路に配置された第2異物検出部と、補充部と送液部との間の流路に配置された第3異物検出部とを有してもよい。この場合、第1異物検出部、第2異物検出部、及び第3異物検出部による検出結果から、異物の検出の原因となる事象が発生したと想定される区画を、吐出バルブを含む区画、送液部を含む区画、又は補充部を含む区画のいずれかに推定することが可能となる。 The processing liquid supply section includes a filter for collecting foreign matter contained in the processing liquid in the supply channel, a liquid feeding section including a pump for feeding the processing liquid toward the nozzle, and a liquid feeding section in the supply channel. and a discharge valve that opens and closes the flow path between the nozzle and the supply source, and a replenishment unit that replenishes the processing liquid from the supply source to the liquid delivery unit. The plurality of foreign matter detection units include a first foreign matter detection unit arranged in the flow path between the nozzle and the ejection valve, and a second foreign matter detection unit arranged in the flow path between the ejection valve and the liquid sending unit. , and a third foreign object detection unit arranged in a flow path between the replenishment unit and the liquid supply unit. In this case, from the detection results of the first foreign matter detection section, the second foreign matter detection section, and the third foreign matter detection section, the section in which the event that causes the detection of the foreign matter is assumed to occur is the section including the ejection valve, It is possible to estimate either the section containing the liquid feeding section or the section containing the replenishment section.
 上記基板処理装置は、発生源推定部が推定した区画に応じて、上記事象の発生の要因を推定する要因推定部を更に備えてもよい。この場合、要因推定部による要因の推定結果を利用することで、上記事象の発生の要因を更に容易に把握することが可能となる。 The substrate processing apparatus may further include a factor estimating section for estimating the cause of the occurrence of the event according to the section estimated by the source estimating section. In this case, by using the result of factor estimation by the factor estimation unit, it is possible to more easily grasp the factor of the occurrence of the event.
 上記基板処理装置は、ノズルまで処理液を導く流路内を流れる処理液の流速を測定する流速測定部を更に備えてもよい。要因推定部は、流速測定部による測定結果に基づいて、上記事象の発生の要因を絞り込んでもよい。この場合、上記事象の発生の要因が絞り込まれるので、上記事象の発生の要因を更に容易に把握することが可能となる。 The substrate processing apparatus may further include a flow rate measuring unit that measures the flow rate of the processing liquid flowing through the channel that guides the processing liquid to the nozzle. The factor estimator may narrow down the factor of occurrence of the event based on the result of measurement by the flow velocity measurement unit. In this case, the cause of the occurrence of the event is narrowed down, so that the cause of the occurrence of the event can be more easily grasped.
 要因推定部は、上記事象が発生した際の基板への処理液の供給頻度に基づいて、上記事象の発生の要因を絞り込んでもよい。この場合、上記事象の発生の要因が絞り込まれるので、上記事象の発生の要因を更に容易に把握することが可能となる。 The factor estimating unit may narrow down the cause of the occurrence of the event based on the frequency of supplying the processing liquid to the substrate when the event occurs. In this case, the cause of the occurrence of the event is narrowed down, so that the cause of the occurrence of the event can be more easily grasped.
 複数の異物検出部それぞれは、出射光に含まれる背景光の強度を示す強度情報に基づいて、処理液に含まれる別の薬液を異物として検出してもよい。処理液等の液の種別に応じて、背景光の強度が異なる。上記構成では、強度情報を利用することで、処理液内に他の薬液が異物として含まれていないかを容易に判定することが可能となる。 Each of the plurality of foreign matter detection units may detect another chemical liquid contained in the treatment liquid as a foreign matter based on intensity information indicating the intensity of background light included in the emitted light. The intensity of the background light differs depending on the type of liquid such as the processing liquid. In the above configuration, by using the intensity information, it is possible to easily determine whether or not another chemical liquid is contained as a foreign substance in the treatment liquid.
 一つの例示的実施形態に係る基板処理方法は、処理液を吐出可能なノズルから、基板に対して処理液を供給することと、処理液の供給源とノズルとの間を接続する供給流路に沿って位置が互いに異なる複数箇所において、光の照射に伴い供給流路内から出射された光を受光して得られる受光信号に基づいて、処理液に含まれる異物を検出することと、複数箇所それぞれでの異物の検出結果に基づいて、供給流路の中から異物の検出の原因となる事象が発生した区画を推定することと、を含む。この基板処理方法では、上述した基板処理装置と同様に、上記事象の発生の要因を容易に把握することが可能となる。 A substrate processing method according to an exemplary embodiment includes: supplying a processing liquid to a substrate from a nozzle capable of discharging the processing liquid; Detecting foreign matter contained in the treatment liquid based on a light reception signal obtained by receiving light emitted from the supply channel along with light irradiation at a plurality of positions different from each other along the estimating a section of the supply channel where an event leading to the detection of the foreign object occurred based on the detection results of the foreign object at each location. In this substrate processing method, it is possible to easily grasp the cause of the occurrence of the phenomenon as in the case of the substrate processing apparatus described above.
 一つの例示的実施形態に係る記憶媒体は、上記基板処理方法を装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体である。 A storage medium according to one exemplary embodiment is a computer-readable storage medium storing a program for causing an apparatus to execute the substrate processing method.
 以下、図面を参照して、いくつかの実施形態について説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 Several embodiments will be described below with reference to the drawings. In the description, the same reference numerals are given to the same elements or elements having the same function, and overlapping descriptions are omitted.
[第1実施形態]
 最初に、図1~図11を参照して、第1実施形態に係る基板処理システム1について説明する。図1に示される基板処理システム1(基板処理装置)は、ワークWに対し、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象のワークWは、例えば基板、あるいは所定の処理が施されることで膜又は回路等が形成された状態の基板である。当該基板は、一例として、シリコンウェハである。ワークW(基板)は、円形であってもよい。ワークWは、ガラス基板、マスク基板、又はFPD(Flat Panel Display)などであってもよい。感光性被膜は、例えばレジスト膜である。
[First Embodiment]
First, a substrate processing system 1 according to the first embodiment will be described with reference to FIGS. 1 to 11. FIG. A substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system for forming a photosensitive film on a work W, exposing the photosensitive film, and developing the photosensitive film. The workpiece W to be processed is, for example, a substrate, or a substrate on which a film, a circuit, or the like is formed by performing a predetermined process. The substrate is, for example, a silicon wafer. The workpiece W (substrate) may be circular. The work W may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like. A photosensitive film is, for example, a resist film.
 図1及び図2に示されるように、基板処理システム1は、塗布現像装置2と、露光装置3と、制御装置20とを備える。塗布現像装置2は、露光装置3による露光処理前に、ワークWの表面にレジスト(薬液)を塗布してレジスト膜を形成する処理を行い、露光処理後にレジスト膜の現像処理を行う。露光装置3は、ワークW(基板)に形成されたレジスト膜(感光性被膜)を露光する装置である。具体的には、露光装置3は、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。塗布現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6と、を備える。 As shown in FIGS. 1 and 2, the substrate processing system 1 includes a coating and developing device 2, an exposure device 3, and a control device 20. The coating and developing device 2 applies a resist (chemical solution) to the surface of the workpiece W to form a resist film before the exposure processing by the exposure device 3, and develops the resist film after the exposure processing. The exposure device 3 is a device that exposes a resist film (photosensitive film) formed on a work W (substrate). Specifically, the exposure device 3 irradiates an exposure target portion of the resist film with an energy beam by a method such as liquid immersion exposure. The coating and developing apparatus 2 includes a carrier block 4 , a processing block 5 and an interface block 6 .
 キャリアブロック4は、塗布現像装置2内へのワークWの導入及び塗布現像装置2内からのワークWの導出を行う。例えばキャリアブロック4は、ワークW用の複数のキャリアCを支持可能であり、受け渡しアームを含む搬送装置A1を内蔵している。キャリアCは、例えば円形の複数枚のワークWを収容する。搬送装置A1は、キャリアCからワークWを取り出して処理ブロック5に渡し、処理ブロック5からワークWを受け取ってキャリアC内に戻す。処理ブロック5は、処理モジュール11,12,13,14を有する。 The carrier block 4 introduces the work W into the coating and developing device 2 and takes out the work W from the coating and developing device 2 . For example, the carrier block 4 can support a plurality of carriers C for works W, and incorporates a transfer device A1 including a transfer arm. The carrier C accommodates a plurality of circular works W, for example. The transport device A1 takes out the work W from the carrier C, delivers it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C. The processing block 5 has processing modules 11 , 12 , 13 , 14 .
 処理モジュール11は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール11は、液処理ユニットU1及び熱処理ユニットU2によりワークWの表面上に下層膜を形成する。液処理ユニットU1は、下層膜形成用の処理液をワークW上に塗布する。熱処理ユニットU2は、下層膜の形成に伴う各種熱処理を行う。 The processing module 11 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units. The processing module 11 forms a lower layer film on the surface of the workpiece W using the liquid processing unit U1 and the heat processing unit U2. The liquid processing unit U1 coats the workpiece W with a processing liquid for forming a lower layer film. The heat treatment unit U2 performs various heat treatments associated with the formation of the lower layer film.
 処理モジュール12は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール12は、液処理ユニットU1及び熱処理ユニットU2により下層膜上にレジスト膜を形成する。液処理ユニットU1は、レジスト膜形成用の処理液を下層膜上に塗布する。熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。 The processing module 12 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units. The processing module 12 forms a resist film on the lower layer film by the liquid processing unit U1 and the thermal processing unit U2. The liquid processing unit U1 applies a processing liquid for forming a resist film onto the lower layer film. The heat treatment unit U2 performs various heat treatments associated with the formation of the resist film.
 処理モジュール13は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール13は、液処理ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。液処理ユニットU1は、上層膜形成用の処理液をレジスト膜上に塗布する。熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 13 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units. The processing module 13 forms an upper layer film on the resist film using the liquid processing unit U1 and the thermal processing unit U2. The liquid processing unit U1 applies a processing liquid for forming an upper layer film onto the resist film. The heat treatment unit U2 performs various heat treatments associated with the formation of the upper layer film.
 処理モジュール14は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール14は、液処理ユニットU1及び熱処理ユニットU2により、露光処理が施されたレジスト膜の現像処理及び現像処理に伴う熱処理を行う。液処理ユニットU1は、露光済みのワークWの表面上に現像液を塗布した後、これをリンス液により洗い流すことで、レジスト膜の現像処理を行う。熱処理ユニットU2は、現像処理に伴う各種熱処理を行う。熱処理の具体例としては、現像前の加熱処理(PEB:Post Exposure Bake)、及び現像後の加熱処理(PB:Post Bake)等が挙げられる。 The processing module 14 incorporates a liquid processing unit U1, a thermal processing unit U2, and a transport device A3 that transports the work W to these units. The processing module 14 uses the liquid processing unit U1 and the thermal processing unit U2 to develop the resist film subjected to the exposure processing and to perform heat processing associated with the development processing. The liquid processing unit U1 applies a developer to the surface of the workpiece W that has been exposed, and then rinses the developer with a rinsing liquid to develop the resist film. The thermal processing unit U2 performs various types of thermal processing associated with development processing. Specific examples of heat treatment include heat treatment before development (PEB: Post Exposure Bake) and heat treatment after development (PB: Post Bake).
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームを含む搬送装置A7が設けられている。搬送装置A7は、棚ユニットU10のセル同士の間でワークWを昇降させる。 A shelf unit U10 is provided on the side of the carrier block 4 in the processing block 5. The shelf unit U10 is partitioned into a plurality of vertically aligned cells. A transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
 処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U11 is provided on the interface block 6 side in the processing block 5. The shelf unit U11 is partitioned into a plurality of vertically aligned cells.
 インタフェースブロック6は、露光装置3との間でワークWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームを含む搬送装置A8を内蔵しており、露光装置3に接続される。搬送装置A8は、棚ユニットU11に配置されたワークWを露光装置3に渡す。搬送装置A8は、露光装置3からワークWを受け取って棚ユニットU11に戻す。 The interface block 6 exchanges the workpiece W with the exposure apparatus 3. For example, the interface block 6 incorporates a transfer device A8 including a transfer arm and is connected to the exposure device 3. FIG. The transport device A8 transfers the work W placed on the shelf unit U11 to the exposure device 3. As shown in FIG. The transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
 制御装置20は、例えば以下の手順で塗布現像処理を実行するように塗布現像装置2を制御する。まず制御装置20は、キャリアC内のワークWを棚ユニットU10に搬送するように搬送装置A1を制御し、このワークWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。 The control device 20 controls the coating and developing device 2 so as to execute the coating and developing process according to the following procedure, for example. First, the control device 20 controls the transport device A1 to transport the work W in the carrier C to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 11. FIG.
 次に制御装置20は、棚ユニットU10のワークWを処理モジュール11内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置20は、このワークWの表面上に下層膜を形成するように、液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置20は、下層膜が形成されたワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール12用のセルに配置するように搬送装置A7を制御する。 Next, the control device 20 controls the transfer device A3 to transfer the work W on the shelf unit U10 to the liquid processing unit U1 and heat treatment unit U2 in the processing module 11. Further, the control device 20 controls the liquid processing unit U1 and the thermal processing unit U2 so as to form a lower layer film on the surface of the work W. As shown in FIG. After that, the control device 20 controls the transfer device A3 to return the work W on which the lower layer film is formed to the shelf unit U10, and controls the transfer device A7 to arrange this work W in the cell for the processing module 12. .
 次に制御装置20は、棚ユニットU10のワークWを処理モジュール12内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置20は、このワークWの表面に対してレジスト膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置20は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール13用のセルに配置するように搬送装置A7を制御する。 Next, the control device 20 controls the transfer device A3 so as to transfer the work W on the shelf unit U10 to the liquid processing unit U1 and heat treatment unit U2 in the processing module 12. Further, the control device 20 controls the liquid processing unit U1 and the thermal processing unit U2 so as to form a resist film on the surface of the work W. FIG. After that, the control device 20 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 13. FIG.
 次に制御装置20は、棚ユニットU10のワークWを処理モジュール13内の各ユニットに搬送するように搬送装置A3を制御する。また、制御装置20は、このワークWのレジスト膜上に上層膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置20は、ワークWを棚ユニットU11に搬送するように搬送装置A3を制御する。 Next, the control device 20 controls the transport device A3 to transport the work W on the shelf unit U10 to each unit in the processing module 13. Further, the control device 20 controls the liquid processing unit U1 and the thermal processing unit U2 so as to form an upper layer film on the resist film of the work W. FIG. After that, the control device 20 controls the transport device A3 so as to transport the work W to the shelf unit U11.
 次に制御装置20は、棚ユニットU11のワークWを露光装置3に送り出すように搬送装置A8を制御する。その後制御装置20は、露光処理が施されたワークWを露光装置3から受け入れて、棚ユニットU11における処理モジュール14用のセルに配置するように搬送装置A8を制御する。 Next, the control device 20 controls the transport device A8 so that the workpiece W on the shelf unit U11 is delivered to the exposure device 3. After that, the control device 20 controls the transport device A8 so that the work W subjected to the exposure processing is received from the exposure device 3 and arranged in the cell for the processing module 14 in the shelf unit U11.
 次に制御装置20は、棚ユニットU11のワークWを処理モジュール14内の各ユニットに搬送するように搬送装置A3を制御し、このワークWのレジスト膜の現像処理を行うように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置20は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWをキャリアC内に戻すように搬送装置A7及び搬送装置A1を制御する。以上で1枚のワークWについての塗布現像処理が完了する。制御装置20は、後続の複数のワークWのそれぞれについても、上述と同様に塗布現像処理を塗布現像装置2に実行させる。 Next, the control device 20 controls the transport device A3 to transport the work W on the shelf unit U11 to each unit in the processing module 14, and controls the liquid processing unit U1 to develop the resist film of the work W. and heat treatment unit U2. After that, the control device 20 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport devices A7 and A1 to return the work W to the carrier C. FIG. Thus, the coating and developing process for one work W is completed. The control device 20 causes the coating and developing device 2 to perform the coating and developing process on each of the subsequent works W in the same manner as described above.
 なお、基板処理装置の具体的な構成は、以上に例示した基板処理システム1の構成に限られない。基板処理装置は、基板に対して処理液を供給して液処理を施す液処理ユニット、及びこれを制御可能な制御装置を備えていればどのようなものであってもよい。 The specific configuration of the substrate processing apparatus is not limited to the configuration of the substrate processing system 1 illustrated above. Any substrate processing apparatus may be used as long as it includes a liquid processing unit that supplies a processing liquid to a substrate to perform liquid processing, and a control device that can control the same.
(液処理ユニット)
 続いて、図3及び図4を参照して、処理モジュール12における液処理ユニットU1の一例について詳細に説明する。液処理ユニットU1は、図3に示されるように、回転保持部22と、処理液供給部28と、を備える。
(liquid processing unit)
Next, an example of the liquid processing unit U1 in the processing module 12 will be described in detail with reference to FIGS. 3 and 4. FIG. The liquid processing unit U1 includes a rotation holding section 22 and a processing liquid supply section 28, as shown in FIG.
 回転保持部22は、制御装置20の動作指示に基づき、ワークWを保持して回転させる。回転保持部22は、保持部24と、駆動部26とを有する。保持部24は、表面Waを上方に向けて水平に配置されたワークWの中心部を支持し、当該ワークWを吸着(例えば真空吸着)等により保持する。駆動部26は、例えば電動モータ等の動力源を含む回転アクチュエータであり、鉛直な回転軸周りに保持部24を回転させる。これにより、鉛直な回転軸周りにワークWが回転する。 The rotation holding part 22 holds and rotates the work W based on the operation instruction from the control device 20 . The rotation holding portion 22 has a holding portion 24 and a driving portion 26 . The holding portion 24 supports the central portion of the horizontally arranged work W with the surface Wa facing upward, and holds the work W by suction (for example, vacuum suction) or the like. The drive unit 26 is a rotary actuator including a power source such as an electric motor, and rotates the holding unit 24 around a vertical rotation axis. Thereby, the work W rotates around the vertical rotation axis.
 処理液供給部28は、ワークWに対して処理液を供給する。処理液供給部28は、処理液を吐出可能なノズル30と、処理液の液源(後述の供給源52)からノズル30まで処理液を導く供給流路29とを有し、ワークWの表面Waに対して処理液を供給する。処理液供給部28は、例えば、図4に示されるように、ノズル30と、送液管32と、吐出バルブ34と、送液部40と、送液管36と、補充部50とを有する。以下の説明では、処理液の流れを基準として、「上流」及び「下流」の用語を使用する。 The treatment liquid supply unit 28 supplies the workpiece W with the treatment liquid. The treatment liquid supply unit 28 has a nozzle 30 capable of ejecting the treatment liquid, and a supply channel 29 for guiding the treatment liquid from a treatment liquid source (supply source 52 described later) to the nozzle 30. A processing liquid is supplied to Wa. For example, as shown in FIG. 4, the processing liquid supply section 28 has a nozzle 30, a liquid feeding pipe 32, a discharge valve 34, a liquid feeding section 40, a liquid feeding pipe 36, and a replenishing section 50. . In the following description, the terms "upstream" and "downstream" are used with reference to the flow of processing liquid.
 ノズル30は、ワークWに処理液を吐出する。ノズル30は、例えば、ワークWの上方に配置され、処理液を下方に吐出する(図3も参照)。ノズル30からワークWに向けて処理液が吐出されることで、ワークWの表面Waに処理液が塗布(供給)される。送液管32は、ノズル30と送液部40との間を接続し、ノズル30まで処理液を導く流路を形成する。送液管32の下流側の端部はノズル30に接続され、送液管32の上流側の端部は送液部40に接続されている。 The nozzle 30 ejects the processing liquid onto the workpiece W. The nozzle 30 is arranged, for example, above the work W, and ejects the processing liquid downward (see also FIG. 3). The processing liquid is applied (supplied) to the surface Wa of the work W by discharging the processing liquid from the nozzle 30 toward the work W. As shown in FIG. The liquid-sending pipe 32 connects between the nozzle 30 and the liquid-sending section 40 and forms a channel for guiding the processing liquid to the nozzle 30 . The downstream end of the liquid feeding tube 32 is connected to the nozzle 30 , and the upstream end of the liquid feeding tube 32 is connected to the liquid feeding section 40 .
 吐出バルブ34は、送液管32によって形成される処理液の流路に設けられる。吐出バルブ34は、制御装置20からの動作指示に基づいて、送液管32内の流路(送液部40とノズル30との間の流路)を開閉する。吐出バルブ34が開状態であるときに、ノズル30から処理液がワークWの表面Waに向けて吐出され、吐出バルブ34が閉状態であるときに、ノズル30からの処理液の吐出が停止される。吐出バルブ34は、例えば、エアオペレーションバルブである。 The discharge valve 34 is provided in the processing liquid flow path formed by the liquid transfer pipe 32 . The discharge valve 34 opens and closes the flow path in the liquid transfer tube 32 (the flow path between the liquid transfer section 40 and the nozzle 30) based on an operation instruction from the control device 20. FIG. When the ejection valve 34 is open, the treatment liquid is ejected from the nozzle 30 toward the surface Wa of the workpiece W, and when the ejection valve 34 is closed, ejection of the treatment liquid from the nozzle 30 is stopped. be. The discharge valve 34 is, for example, an air operation valve.
 送液部40は、送液管32を介してノズル30まで処理液を送る。具体的には、送液部40は、処理液を所定圧力でノズル30に向けて送り出す。送液部40は、例えば、ポンプ42と、接続管44と、フィルタ46とを有する。 The liquid sending unit 40 sends the processing liquid to the nozzle 30 via the liquid sending pipe 32 . Specifically, the liquid sending unit 40 sends the processing liquid toward the nozzle 30 at a predetermined pressure. The liquid sending section 40 has, for example, a pump 42 , a connection pipe 44 and a filter 46 .
 ポンプ42は、補充部50から補充される処理液を受け入れて、受け入れた処理液を加圧してノズル30に向けて送り出す。ポンプ42は、処理液を収容する収容室と、その収容室を拡大及び収縮させる収縮部とを有する。ポンプ42は、収縮部により収容室を拡大して処理液を受け入れて、収縮部により収容室を収縮させて処理液を送り出す。ポンプ42として、チューブフラムポンプ、ダイヤフラムポンプ、又はベローズポンプが用いられてもよい。 The pump 42 receives the processing liquid replenished from the replenishment unit 50 , pressurizes the received processing liquid, and sends it out toward the nozzle 30 . The pump 42 has a storage chamber that stores the processing liquid and a contraction section that expands and contracts the storage chamber. The pump 42 expands the containing chamber by the contracting portion to receive the processing liquid, and contracts the containing chamber by the contracting portion to deliver the processing liquid. A tube diaphragm pump, diaphragm pump, or bellows pump may be used as the pump 42 .
 接続管44は、ポンプ42とフィルタ46とを接続する。接続管44の下流側の端部はポンプ42に接続され、接続管44の上流側の端部はフィルタ46に接続されている。接続管44は、補充部50から補充される処理液をポンプ42まで導く流路の一部を形成する。フィルタ46は、補充部50からポンプ42までの流路を流れる処理液に含まれる異物を捕集する。 A connection pipe 44 connects the pump 42 and the filter 46 . The downstream end of the connecting pipe 44 is connected to the pump 42 , and the upstream end of the connecting pipe 44 is connected to the filter 46 . The connection pipe 44 forms part of a flow path that guides the processing liquid replenished from the replenishment unit 50 to the pump 42 . The filter 46 collects foreign matter contained in the processing liquid flowing through the flow path from the replenishment section 50 to the pump 42 .
 送液管36は、フィルタ46と補充部50との間を接続する。送液管36の下流側の端部は送液部40(フィルタ46)に接続され、送液管36の上流側の端部は補充部50に接続されている。送液管36及び接続管44によって、補充部50からポンプ42までの処理液の流路が形成される。 The liquid feed pipe 36 connects between the filter 46 and the replenishment section 50 . The downstream end of the liquid feeding tube 36 is connected to the liquid feeding section 40 (filter 46 ), and the upstream end of the liquid feeding tube 36 is connected to the refilling section 50 . A processing liquid flow path from the replenishment unit 50 to the pump 42 is formed by the liquid feed pipe 36 and the connection pipe 44 .
 補充部50は、ノズル30に向けて送り出すための処理液を送液部40に補充する。上述のように、補充部50とポンプ42との間では、送液管36及び接続管44によって処理液の流路が形成され、当該流路内にフィルタ46が設けられている。補充部50は、例えば、供給源52と、送液管54と、貯留タンク56と、ポンプ58とを有する。 The replenishing unit 50 replenishes the liquid sending unit 40 with the treatment liquid to be sent toward the nozzle 30 . As described above, between the replenishment unit 50 and the pump 42, the liquid transfer pipe 36 and the connection pipe 44 form a processing liquid flow path, and the filter 46 is provided in the flow path. The replenishment unit 50 has, for example, a supply source 52 , a liquid feeding pipe 54 , a storage tank 56 and a pump 58 .
 供給源52は、送液部40に補充される処理液の供給源である。供給源52は、例えば、処理液が収容されたボトルである。供給源52は、送液管54を介してポンプ58に処理液を供給する。貯留タンク56は、送液管54に設けられており、ポンプ58に供給するための処理液を一時的に貯留する。 The supply source 52 is a supply source of the treatment liquid to be replenished to the liquid feeding section 40 . The supply source 52 is, for example, a bottle containing a processing liquid. A supply source 52 supplies processing liquid to a pump 58 via a liquid feed tube 54 . A storage tank 56 is provided in the liquid transfer pipe 54 and temporarily stores the processing liquid to be supplied to the pump 58 .
 ポンプ58は、貯留タンク56から処理液を受け入れて、受け入れた処理液を加圧した状態で、送液管36を通して送液部40に送り出す(送液管36及び接続管44を通してポンプ42に送り出す)。ポンプ58は、処理液を収容する収容室と、その収容室を拡大及び収縮させる収縮部とを有する。ポンプ58は、収縮部により収容室を拡大して処理液を受け入れて、収縮部により収容室を収縮させて処理液を送り出す。ポンプ58として、チューブフラムポンプ、ダイヤフラムポンプ、又はベローズポンプが用いられてもよい。 The pump 58 receives the processing liquid from the storage tank 56, pressurizes the received processing liquid, and delivers it to the liquid delivery section 40 through the liquid delivery tube 36 (delivers it to the pump 42 through the liquid delivery tube 36 and the connection tube 44). ). The pump 58 has a storage chamber that stores the processing liquid and a contraction section that expands and contracts the storage chamber. The pump 58 expands the containing chamber by the contracting portion to receive the processing liquid, and contracts the containing chamber by the contracting portion to send out the processing liquid. A tube diaphragm pump, diaphragm pump, or bellows pump may be used as the pump 58 .
 以上に説明した処理液供給部28では、補充部50の送液管54、送液管36、送液部40の接続管44、及び送液管32によって、供給源52とノズル30との間を接続する供給流路29が形成される。供給流路29内には、ノズル30から吐出される処理液に含まれる異物の発生源となり得る各種の部品(パーツ)が設けられる。これらの各種部品によって、処理液供給部28が構成される。上述の処理液供給部28では、供給源52、貯留タンク56、ポンプ58、フィルタ46、ポンプ42、及び吐出バルブ34が、異物の発生源となり得る各種の部品に相当する。 In the processing liquid supply unit 28 described above, the liquid supply tube 54 and the liquid supply tube 36 of the replenishment unit 50 , the connection tube 44 of the liquid supply unit 40 , and the liquid supply tube 32 provide a space between the supply source 52 and the nozzle 30 . A supply channel 29 is formed to connect the . In the supply channel 29, various components (parts) that can be sources of foreign matter contained in the processing liquid discharged from the nozzle 30 are provided. These various parts constitute the processing liquid supply unit 28 . In the processing liquid supply unit 28 described above, the supply source 52, the storage tank 56, the pump 58, the filter 46, the pump 42, and the discharge valve 34 correspond to various parts that can be sources of foreign matter.
(異物検出ユニット)
 塗布現像装置2は、複数の異物検出ユニット70(複数の異物検出部)を備える。各異物検出ユニット70は、供給流路29内を流れる処理液に含まれる異物(パーティクル)を検出するように構成されている。本開示において、処理液内の「異物」には、埃及び塵等の固体状の異物に加えて、泡等の気体状の異物も含まれる。異物を検出するとは、処理液内に異物が含まれていることを検出(異物が含まれていると判定)することを意味する。異物検出ユニット70は、供給流路29内を流れる処理液に光源からの光(照射光)を照射した際に発生する光(出射光)を受光して、その受光した光に応じた信号に基づいて異物を検出する。
(Foreign matter detection unit)
The coating and developing apparatus 2 includes a plurality of foreign matter detection units 70 (a plurality of foreign matter detection sections). Each foreign matter detection unit 70 is configured to detect foreign matter (particles) contained in the processing liquid flowing through the supply channel 29 . In the present disclosure, "foreign matter" in the treatment liquid includes gaseous foreign matter such as bubbles in addition to solid foreign matter such as dirt and dust. Detecting a foreign substance means detecting that a foreign substance is contained in the treatment liquid (determining that a foreign substance is contained). The foreign matter detection unit 70 receives light (emitted light) generated when light (irradiation light) from the light source is applied to the treatment liquid flowing in the supply channel 29, and outputs a signal corresponding to the received light. Foreign matter is detected based on
 複数の異物検出ユニット70は、供給流路29に沿って位置が互いに異なる複数箇所に配置されている。この場合、供給流路29は、複数の異物検出ユニット70によって複数の区画(領域)に分割される。複数の異物検出ユニット70のうちの供給流路29において互いに隣り合う異物検出ユニット70は、それらのユニット間の区画に少なくとも1つの上記部品が含まれるように配置されている。複数の異物検出ユニット70のうちの最も上流側に位置する異物検出ユニット70は、そのユニットの上流側の区画に少なくとも1つの上記部品が位置するように配置されている。各異物検出ユニット70は、自身が配置されている箇所において、供給流路29内の処理液に含まれる異物を検出する。 A plurality of foreign matter detection units 70 are arranged at a plurality of positions different from each other along the supply channel 29 . In this case, the supply channel 29 is divided into a plurality of sections (areas) by a plurality of foreign matter detection units 70 . Of the plurality of foreign matter detection units 70, the foreign matter detection units 70 that are adjacent to each other in the supply channel 29 are arranged so that at least one of the components is included in the section between the units. Of the plurality of foreign matter detection units 70, the most upstream foreign matter detection unit 70 is arranged so that at least one of the components is positioned in the upstream section of that unit. Each foreign matter detection unit 70 detects foreign matter contained in the processing liquid in the supply channel 29 at the location where the foreign matter detection unit 70 is arranged.
 塗布現像装置2は、例えば、複数の異物検出ユニット70として、異物検出ユニット70Aと、異物検出ユニット70Bと、異物検出ユニット70Cと、を備える。以下では、供給流路29上の処理液が流れる方向に沿って互いに異なる位置に異物検出ユニット70A~70Cが備えられる場合について説明する。異物検出ユニット70A~70Cは、供給流路29に沿ってノズル30から、この順で設けられている。 The coating and developing apparatus 2 includes, for example, a plurality of foreign matter detection units 70, including a foreign matter detection unit 70A, a foreign matter detection unit 70B, and a foreign matter detection unit 70C. A case will be described below in which the foreign matter detection units 70A to 70C are provided at different positions on the supply channel 29 along the direction in which the processing liquid flows. The foreign matter detection units 70A to 70C are provided along the supply channel 29 from the nozzle 30 in this order.
 異物検出ユニット70A(第1異物検出部)は、供給流路29のうちの吐出バルブ34とノズル30との間の流路に配置されている。異物検出ユニット70B(第2異物検出部)は、供給流路29のうちの吐出バルブ34と送液部40との間の流路に配置されている。異物検出ユニット70C(第3異物検出部)は、供給流路29のうちの送液部40と補充部50との間の流路に配置されている。 The foreign object detection unit 70A (first foreign object detection section) is arranged in the flow path between the discharge valve 34 and the nozzle 30 in the supply flow path 29 . The foreign matter detection unit 70B (second foreign matter detection section) is arranged in the flow path between the discharge valve 34 and the liquid sending section 40 in the supply flow path 29 . The foreign matter detection unit 70</b>C (third foreign matter detection section) is arranged in the flow path between the liquid feeding section 40 and the replenishment section 50 in the supply flow path 29 .
 異物検出ユニット70Aと異物検出ユニット70Bとの間の区画には、部品として吐出バルブ34が配置されている。異物検出ユニット70Bと異物検出ユニット70Cとの間の区画には、部品としてポンプ42及びフィルタ46が配置されている。異物検出ユニット70Cの上流の区画には、部品として供給源52(ボトル)、貯留タンク56、及びポンプ58が存在する。 A discharge valve 34 is arranged as a component in the section between the foreign object detection unit 70A and the foreign object detection unit 70B. A pump 42 and a filter 46 are arranged as components in a section between the foreign object detection unit 70B and the foreign object detection unit 70C. A supply source 52 (bottle), a storage tank 56, and a pump 58 are present as components in the upstream section of the foreign object detection unit 70C.
 以上のように、供給流路29に沿って異物検出ユニット70A~70Cが配置されるので、仮に異物検出ユニット70Cよりも上流の区画で処理液内に異物が発生した場合、その異物は異物検出ユニット70C,70B,70Aをこの順で通過する。処理液内に異物が発生する場合の例としては、部品の内部等に存在していた塵等の異物が処理液内に混入する場合、及び、処理液内において泡等の異物が形成される場合が挙げられる。 As described above, since the foreign matter detection units 70A to 70C are arranged along the supply flow path 29, if a foreign matter occurs in the processing liquid in the section upstream of the foreign matter detection unit 70C, the foreign matter will be detected. It passes through units 70C, 70B, and 70A in this order. Examples of the case where foreign matter is generated in the processing liquid include the case where foreign matter such as dust existing inside a part is mixed into the processing liquid, and the case where foreign matter such as bubbles are formed in the processing liquid. There are cases.
 ノズル30からの処理液の1回あたりの吐出量(供給量)は、供給流路29の異物検出ユニット70A~70Cによって分割される各区画の配管容積よりも小さい値に設定される。この場合、1回の処理液の供給が行われる間に、異物が供給流路29内で下流に向けて移動する量は、各区画の長さよりも短い。そのため、いずれかの区画で処理液内に発生した異物が異物検出ユニット70A~70Cそれぞれで検出され得る供給回数にずれが生じる。これにより、異物検出ユニット70A~70Cによる検出結果から、供給流路29の中から異物の検出の原因となる事象が発生した区画を推定することができる。異物の検出の原因となる事象(以下、単に「事象」という。)としては、例えば、異物が処理液内に混入すること、及び処理液内に泡が発生することが挙げられる。 The discharge amount (supply amount) of the processing liquid from the nozzle 30 per time is set to a value smaller than the pipe volume of each section divided by the foreign matter detection units 70A to 70C of the supply channel 29 . In this case, the amount by which the foreign matter moves downstream in the supply channel 29 during one supply of the processing liquid is shorter than the length of each section. As a result, there is a difference in the number of times that foreign matter generated in the treatment liquid in any one of the sections can be detected by the foreign matter detection units 70A to 70C. As a result, it is possible to estimate, from the results of detection by the foreign matter detection units 70A to 70C, the section in the supply channel 29 in which an event causing the detection of foreign matter has occurred. Events that cause detection of foreign matter (hereinafter simply referred to as "events") include, for example, the inclusion of foreign matter in the processing liquid and the generation of bubbles in the processing liquid.
 例えば、異物検出ユニット70Aによって異物が検出された場合に、異物検出ユニット70B,70Cにおいて異物が過去に検出されていなければ、異物検出ユニット70A,70Bの間の区画で上記事象が発生したと想定される。この場合、吐出バルブ34が異物の発生源であると推定することができる。異物検出ユニット70Aによって異物が検出された場合に、異物検出ユニット70Bにおいて異物が既に検出されており、異物検出ユニット70Cにおいて異物が過去に検出されていなければ、異物検出ユニット70B,70Cの間の区画で上記事象が発生したと推定される。この場合、送液部40に含まれるポンプ42及びフィルタ46の少なくとも一方が異物の発生源であると推定することができる。 For example, when a foreign object is detected by the foreign object detection unit 70A, if the foreign object has not been detected in the foreign object detection units 70B and 70C in the past, it is assumed that the above event occurred in the section between the foreign object detection units 70A and 70B. be done. In this case, it can be estimated that the discharge valve 34 is the source of the foreign matter. When a foreign object is detected by the foreign object detection unit 70A, if the foreign object has already been detected by the foreign object detection unit 70B and has not been detected by the foreign object detection unit 70C in the past, the space between the foreign object detection units 70B and 70C is determined. It is presumed that the above event occurred in the compartment. In this case, it can be estimated that at least one of the pump 42 and the filter 46 included in the liquid feeding section 40 is the source of the foreign matter.
 異物検出ユニット70Aによって異物が検出された場合に、異物検出ユニット70B,70Cにおいて異物が既に検出されているときには、異物検出ユニット70Cよりも上流の区画で上記事象が発生したと推定される。この場合、補充部50に含まれる供給源52、貯留タンク56、及びポンプ58の少なくとも一つが異物の発生源であると推定することができる。異物検出ユニット70A~70Cによる検出結果を用いて、上記事象が発生したと想定される区画(異物の発生源を含むと想定される区画)を推定する方法の具体例については後述する。 When a foreign object is detected by the foreign object detection unit 70A and the foreign object has already been detected by the foreign object detection units 70B and 70C, it is estimated that the above event has occurred in the section upstream of the foreign object detection unit 70C. In this case, it can be assumed that at least one of the supply source 52, the storage tank 56, and the pump 58 included in the replenishment unit 50 is the source of the foreign matter. A specific example of a method of estimating a section where the event is assumed to have occurred (a section assumed to contain the source of the foreign matter) using the detection results of the foreign matter detection units 70A to 70C will be described later.
 異物検出ユニット70A~70Cは、互いに同様に構成されていてもよい。異物検出ユニット70A~70Cそれぞれは、供給流路29を流れる処理液を流通させる流路(以下、「検出流路」という。)を形成する。異物検出ユニット70A~70Cそれぞれは、対応する検出流路に照射光(例えば、レーザ光)を照射することで発生する光を受光したうえで、検出流路を流れる処理液内の異物を検出する。図5に示されるように、異物検出ユニット70A~70Cそれぞれは、例えば、筐体71と、流路形成部72と、照射部76と、受光部78と、制御部80とを有する。 The foreign matter detection units 70A to 70C may be configured similarly to each other. Each of the foreign matter detection units 70A to 70C forms a channel (hereinafter referred to as "detection channel") through which the processing liquid flowing through the supply channel 29 flows. Each of the foreign matter detection units 70A to 70C receives light generated by irradiating the corresponding detection flow path with irradiation light (for example, laser light), and detects foreign matter in the processing liquid flowing through the detection flow path. . As shown in FIG. 5, each of the foreign object detection units 70A to 70C has, for example, a housing 71, a flow path forming section 72, an irradiation section 76, a light receiving section 78, and a control section .
 筐体71は、流路形成部72、照射部76、受光部78、及び制御部80を収容する。筐体71は、直方体状に形成されていてもよい。流路形成部72は、供給流路29において上記検出流路を形成する部材である。流路形成部72は、例えば、内部に検出流路74が形成されているブロック本体を含む。このブロック本体は、直方体状に形成されており、異物検出の際に用いられるレーザ光を透過可能な材料によって構成されている。以下では、説明の便宜上、供給流路29のうちの、その異物検出ユニットが形成する検出流路74の上流に位置する流路を「上流側供給流路29a」と表記し、検出流路74の下流に位置する流路を「下流側供給流路29b」と表記する。 The housing 71 accommodates the flow path forming section 72, the irradiation section 76, the light receiving section 78, and the control section 80. The housing 71 may be formed in a rectangular parallelepiped shape. The channel forming part 72 is a member that forms the detection channel in the supply channel 29 . The channel forming part 72 includes, for example, a block body in which a detection channel 74 is formed. The block body is formed in a rectangular parallelepiped shape, and is made of a material that can transmit laser light used for foreign object detection. Hereinafter, for convenience of explanation, the flow path located upstream of the detection flow path 74 formed by the foreign object detection unit among the supply flow paths 29 is referred to as "upstream supply flow path 29a", and the detection flow path 74 The flow path located downstream of is referred to as "downstream supply flow path 29b".
 流路形成部72のブロック本体のうちの筐体71の一側面と対向する面には、検出流路74の流入口74a及び流出口74bが形成されている。流入口74aには、供給流路29のうちの検出流路74よりも上流に位置する上流側供給流路29aの端部が接続されている。流出口74bには、供給流路29のうちの検出流路74よりも下流に位置する下流側供給流路29bの端部が接続されている。上流側供給流路29a及び下流側供給流路29bの端部を形成する管は、流路形成部72の近傍に位置する筐体71の側壁を貫通している。 An inflow port 74a and an outflow port 74b of the detection flow path 74 are formed on a surface of the block body of the flow path forming portion 72 that faces one side surface of the housing 71 . The inlet 74a is connected to the end of the upstream supply channel 29a located upstream of the detection channel 74 in the supply channel 29. As shown in FIG. The outlet 74b is connected to the end of the downstream supply channel 29b located downstream of the detection channel 74 in the supply channel 29. As shown in FIG. The pipes forming the ends of the upstream supply channel 29 a and the downstream supply channel 29 b pass through the side wall of the housing 71 located in the vicinity of the channel forming portion 72 .
 以上の構成により、供給源52から送り出される処理液は、異物検出ユニット70Cが形成する検出流路74、異物検出ユニット70Bが形成する検出流路74、及び異物検出ユニット70Aが形成する検出流路74をこの順に通って、ノズル30に向かって流れる。1回あたりの処理液の供給量と各区画の配管容積との関係から、異物検出ユニット70Cの検出流路74を通過した処理液は、その後に複数回の処理液の供給が行われると、異物検出ユニット70Bの検出流路74に達する。同様に、異物検出ユニット70Bの検出流路74を通過した処理液は、その後に複数回の処理液の供給が行われると、異物検出ユニット70Aの検出流路74に達する。 With the above configuration, the processing liquid sent from the supply source 52 is divided into the detection flow path 74 formed by the foreign object detection unit 70C, the detection flow path 74 formed by the foreign object detection unit 70B, and the detection flow path formed by the foreign object detection unit 70A. 74 in that order to nozzle 30 . Based on the relationship between the amount of processing liquid supplied per time and the pipe volume of each section, the processing liquid that has passed through the detection channel 74 of the foreign matter detection unit 70C is supplied a plurality of times after that. It reaches the detection channel 74 of the foreign object detection unit 70B. Similarly, the processing liquid that has passed through the detection channel 74 of the foreign object detection unit 70B reaches the detection channel 74 of the foreign object detection unit 70A after being supplied with the treatment liquid a plurality of times.
 照射部76は、処理液の異物を検出するための照射光を検出流路74に向けて照射するように構成されている。照射部76は、例えば、照射光としてレーザ光を生成する光源を含む。その光源は、一例では、波長400nm~600nm程度、出力600mW~1000mW程度のレーザ光を生成する。照射部76は、下方から検出流路74に向けて照射光を照射してもよい。 The irradiation unit 76 is configured to irradiate the detection flow path 74 with irradiation light for detecting foreign matter in the treatment liquid. The irradiation unit 76 includes, for example, a light source that generates laser light as irradiation light. For example, the light source generates laser light with a wavelength of approximately 400 nm to 600 nm and an output of approximately 600 mW to 1000 mW. The irradiation unit 76 may irradiate the detection flow path 74 with irradiation light from below.
 受光部78は、照射部76からの照射光に伴い検出流路74から出射される光(出射光)を受光するように構成されている。受光部78は、例えば、検出流路74の側方(流路形成部72と同じ高さ位置)に配置されている。受光部78は、検出流路74から出射される光を集光する光学部品(レンズ)と、受光した光に応じた電気信号(以下、「受光信号」という。)を生成する受光素子とを含んでもよい。受光部78は、照射部76からの照射光が検出流路74において散乱することで発生する光(散乱光)の一部を受光する。 The light receiving section 78 is configured to receive light (output light) emitted from the detection flow path 74 along with the irradiation light from the irradiation section 76 . The light receiving portion 78 is arranged, for example, on the side of the detection channel 74 (at the same height as the channel forming portion 72). The light receiving section 78 includes an optical component (lens) that collects light emitted from the detection channel 74, and a light receiving element that generates an electrical signal (hereinafter referred to as a "light receiving signal") corresponding to the received light. may contain. The light receiving unit 78 receives part of the light (scattered light) generated by scattering the irradiation light from the irradiation unit 76 in the detection channel 74 .
 処理液が流れている検出流路74内に照射光が照射されると、異物の有無にかかわらず散乱光が発生する。検出流路74内の処理液に異物が含まれていない場合、照射部76からの照射光の大部分は、検出流路74を通過する。一方、検出流路74内の処理液に異物が含まれていると、検出流路74内での照射光の散乱の程度が大きくなり、異物が含まれていない場合に比べて、受光部78が受光する光(受光部78に向かう散乱光の一部)の強度が大きくなる。これに応じて、上記受光信号の強度が大きくなる。 When irradiation light is applied to the detection channel 74 through which the processing liquid is flowing, scattered light is generated regardless of the presence or absence of foreign matter. If the treatment liquid in the detection flow path 74 does not contain foreign matter, most of the irradiation light from the irradiation section 76 passes through the detection flow path 74 . On the other hand, if the treatment liquid in the detection channel 74 contains foreign matter, the degree of scattering of the irradiation light in the detection channel 74 increases, and the The intensity of the light received by (part of the scattered light directed toward the light receiving section 78) increases. Accordingly, the intensity of the received light signal increases.
 受光部78は、検出流路74から出射される光を受光して得られる受光信号を、制御部80に出力する。制御部80は、異物検出ユニット70A~70Cそれぞれに含まれる各要素を制御すると共に、受光部78が受光した受光信号に基づいて、処理液内に異物が含まれているか否かを判定する。以下では、液処理ユニットU1等を制御する上述の制御装置20と共に、制御部80について説明する。 The light receiving section 78 outputs a light reception signal obtained by receiving light emitted from the detection flow path 74 to the control section 80 . The control section 80 controls each element included in each of the foreign matter detection units 70A to 70C, and determines whether or not foreign matter is contained in the treatment liquid based on the received light signal received by the light receiving section 78. Below, the control unit 80 will be described together with the above-described control device 20 that controls the liquid processing unit U1 and the like.
(制御システム)
 異物検出ユニット70A,70B,70Cそれぞれの制御部80と、制御装置20とは、制御システム100を構成する。すなわち、基板処理システム1は、制御装置20及び制御部80を含む制御システム100を備える。制御装置20には、出力デバイス19が接続されていてもよい。出力デバイス19は、制御装置20から出力された情報を作業員等のオペレータに出力するための装置である。出力デバイス19は、例えばモニタである。モニタは、画面上に情報の表示が可能なものであればいかなるものであってもよく、その具体例としては液晶パネル等が挙げられる。
(control system)
Control unit 80 of each of foreign object detection units 70A, 70B, and 70C and control device 20 constitute control system 100 . That is, the substrate processing system 1 includes a control system 100 including the control device 20 and the control section 80 . An output device 19 may be connected to the control device 20 . The output device 19 is a device for outputting information output from the control device 20 to an operator such as a worker. Output device 19 is, for example, a monitor. Any monitor can be used as long as it can display information on the screen, and a specific example thereof is a liquid crystal panel.
 制御システム100は、少なくとも、ノズル30からワークWに対して処理液を供給することと、供給流路29に沿って位置が互いに異なる複数箇所において、光の照射に伴い検出流路74内から出射された光を受光して得られる受光信号に基づいて、処理液に含まれる異物を検出することと、複数箇所それぞれでの異物の検出結果に基づいて、供給流路29の中から異物の検出の原因となる事象が発生した区画を推定することと、を実行するように構成されている。 The control system 100 at least supplies the processing liquid from the nozzle 30 to the workpiece W, and at a plurality of locations at different positions along the supply flow path 29, emits from the detection flow path 74 as the light is irradiated. Foreign matter contained in the treatment liquid is detected based on the received light signal obtained by receiving the light, and foreign matter is detected in the supply channel 29 based on the detection results of the foreign matter at each of the plurality of locations. and estimating the compartment where the event causing the has occurred.
 図6に示されるように、制御システム100の制御部80は、機能上の構成(以下、「機能モジュール」という。)として、例えば、投光制御部102と、信号取得部104と、異物判定部106と、を有する。投光制御部102、信号取得部104、及び異物判定部106がそれぞれ実行する処理は、制御部80(制御システム100)が実行する処理に相当する。図6には、複数の異物検出ユニット70が有する複数の制御部80のうちの一つの制御部80が示されている。 As shown in FIG. 6, the control unit 80 of the control system 100 includes, for example, a light projection control unit 102, a signal acquisition unit 104, and a foreign object determination unit as functional components (hereinafter referred to as "functional modules"). a portion 106; The processes executed by the light projection control unit 102, the signal acquisition unit 104, and the foreign object determination unit 106 correspond to the processes executed by the control unit 80 (control system 100). FIG. 6 shows one controller 80 out of the plurality of controllers 80 of the plurality of foreign object detection units 70 .
 投光制御部102は、異物検出ユニット70A~70Cのうちの対応する異物検出ユニットにおいて、流路形成部72が形成する検出流路74に照射光が照射されるように照射部76を制御する。投光制御部102は、処理対象のワークWに対する処理液の供給ごとに(1回の処理液の供給ごとに)、その供給期間に合わせて、検出流路74に照射光が照射されるように照射部76を制御してもよい。一例では、投光制御部102は、ノズル30からワークWへの処理液の吐出開始のタイミングに合わせて照射部76に照射光の照射を開始させる。そして、投光制御部102は、ノズル30からワークWへの処理液の吐出停止のタイミングに合わせて照射部76に照射光の照射を停止させる。 The light projection control unit 102 controls the irradiation unit 76 so that the detection flow path 74 formed by the flow path forming unit 72 is irradiated with the irradiation light in the corresponding foreign object detection unit among the foreign object detection units 70A to 70C. . The light projection control unit 102 controls the detection channel 74 to be irradiated with irradiation light in accordance with the supply period each time the processing liquid is supplied to the workpiece W to be processed (each time the processing liquid is supplied). Alternatively, the irradiation unit 76 may be controlled. In one example, the light projection control unit 102 causes the irradiation unit 76 to start irradiating the irradiation light at the timing when the treatment liquid from the nozzle 30 to the workpiece W starts to be discharged. Then, the light projection control unit 102 causes the irradiation unit 76 to stop the irradiation of the irradiation light at the timing when the discharge of the processing liquid from the nozzle 30 to the work W is stopped.
 信号取得部104は、異物検出ユニット70A~70Cのうちの対応する異物検出ユニットにおいて、照射光の照射に伴い検出流路74から出射される散乱光(出射光)を受光することで得られる受光信号を、受光部78から取得する。信号取得部104は、処理対象のワークWに対する処理液の供給ごとに(1回の処理液の供給ごとに)、その供給期間に合わせて、検出流路74から受光した光に応じた受光信号を受光部78から取得してもよい。一例では、信号取得部104は、投光制御部102による照射光の照射タイミング(照射期間)に応じて、処理液の供給ごとに受光信号を受光部78から取得する。 The signal acquisition unit 104 receives the scattered light (emitted light) emitted from the detection channel 74 along with the irradiation of the irradiation light in the corresponding foreign matter detection unit among the foreign matter detection units 70A to 70C. A signal is obtained from the light receiving portion 78 . Each time the processing liquid is supplied to the workpiece W to be processed (each time the processing liquid is supplied), the signal acquisition unit 104 generates a light reception signal corresponding to the light received from the detection flow path 74 in accordance with the supply period. may be obtained from the light receiving unit 78 . In one example, the signal acquisition unit 104 acquires a light receiving signal from the light receiving unit 78 each time the treatment liquid is supplied according to the irradiation timing (irradiation period) of the irradiation light by the light projection control unit 102 .
 異物判定部106は、異物検出ユニット70A~70Cのうちの対応する異物検出ユニットにおいて、信号取得部104が取得した受光信号に基づいて、異物の有無を判定する。詳細には、異物判定部106は、対応する異物検出ユニットが取得した受光信号に基づいて、対応する箇所を通過した処理液内に異物が含まれているか否かを判定する。異物判定部106は、1回の処理液の供給ごとに、上記対応する箇所での異物の有無を判定してもよい。 The foreign object determination unit 106 determines the presence or absence of a foreign object based on the received light signal acquired by the signal acquisition unit 104 in the corresponding foreign object detection unit among the foreign object detection units 70A to 70C. Specifically, based on the received light signal acquired by the corresponding foreign matter detection unit, the foreign matter determination unit 106 determines whether or not the treatment liquid that has passed through the corresponding location contains a foreign matter. The foreign matter determination unit 106 may determine the presence or absence of foreign matter at the corresponding location each time the treatment liquid is supplied.
 異物判定部106は、受光信号の信号強度の時間変化を分析して得られる評価値に応じて、異物の有無を判定してもよい。図7には、信号取得部104が取得した受光信号の信号強度の時間変化の一例が示されている。図7では、1回の処理液の供給期間Taで得られた受光信号が示されており、時刻t1,t2,t3において、信号強度が所定の強度閾値Th1を超えている。 The foreign matter determination unit 106 may determine the presence or absence of foreign matter according to the evaluation value obtained by analyzing the time change of the signal intensity of the received light signal. FIG. 7 shows an example of temporal changes in the signal intensity of the received light signal acquired by the signal acquisition unit 104 . FIG. 7 shows the received light signal obtained during one supply period Ta of the treatment liquid, and the signal intensity exceeds the predetermined intensity threshold value Th1 at times t1, t2, and t3.
 異物判定部106は、信号強度が、所定の強度閾値Th1を超えた回数をカウントした値を評価値として算出したうえで、その評価値(カウント値)が所定の評価閾値Th2を超えたか否かを判定してもよい。一例では、異物判定部106は、信号強度が強度閾値Th1を超えた回数が、評価閾値Th2を上回った場合に、その箇所(異物検出ユニットが配置される箇所)において上記事象が発生したと判定してもよい。なお、異物判定部106は、受光信号に基づいて(受光信号から得られる評価値に応じて)異物の有無を判定すれば、どのように評価値を算出してもよく、どのように異物の有無を判定してもよい。 The foreign object determination unit 106 calculates a value obtained by counting the number of times the signal intensity exceeds a predetermined threshold value Th1 as an evaluation value, and then determines whether the evaluation value (count value) exceeds a predetermined evaluation threshold value Th2. may be determined. For example, when the number of times the signal intensity exceeds the intensity threshold value Th1 exceeds the evaluation threshold value Th2, the foreign object determination unit 106 determines that the event has occurred at that location (where the foreign object detection unit is arranged). You may It should be noted that the foreign matter determination unit 106 may calculate the evaluation value in any manner as long as it determines the presence or absence of the foreign matter based on the light reception signal (according to the evaluation value obtained from the light reception signal). The presence or absence may be determined.
 制御システム100の制御装置20は、機能モジュールとして、例えば、図6に示されるように、液処理制御部112と、判定結果蓄積部114と、発生源推定部116と、要因推定部118と、出力部122と、を有する。これらの機能モジュールが実行する処理は、制御装置20(制御システム100)が実行する処理に相当する。 The control device 20 of the control system 100 includes, as functional modules, for example, as shown in FIG. and an output unit 122 . The processes executed by these functional modules correspond to the processes executed by the control device 20 (control system 100).
 液処理制御部112は、処理対象のワークWに対して、処理液が供給されるように処理液供給部28を制御する。液処理制御部112は、例えば、ノズル30からの吐出を開始する際に、送液部40のポンプ42に処理液が補充され、且つその処理液が加圧された状態で、閉状態から開状態に遷移させるように吐出バルブ34を制御する。液処理制御部112は、例えば、処理液の供給開始後、予め設定された上記供給期間Taが経過したときに、ノズル30からの吐出を停止するために、開状態から閉状態に遷移させるように吐出バルブ34を制御する。供給期間Taにおいて処理液がワークWに対して供給されることで、1回の処理液の供給(1枚のワークWに対する1回の処理液の供給)が行われる。 The liquid processing control unit 112 controls the processing liquid supply unit 28 so that the processing liquid is supplied to the workpiece W to be processed. For example, when ejection from the nozzle 30 is started, the liquid processing control unit 112 is opened from a closed state in a state in which the processing liquid is replenished in the pump 42 of the liquid feeding unit 40 and the processing liquid is pressurized. The discharge valve 34 is controlled so as to transition to the state. For example, the liquid processing control unit 112 changes the state from the open state to the closed state in order to stop ejection from the nozzles 30 when the preset supply period Ta has elapsed after the start of supply of the processing liquid. , the discharge valve 34 is controlled. By supplying the processing liquid to the work W during the supply period Ta, one supply of the processing liquid (one supply of the processing liquid to one work W) is performed.
 判定結果蓄積部114は、異物検出ユニット70A~70Cによる複数箇所それぞれの異物の検出結果(判定結果)を蓄積する。判定結果蓄積部114は、例えば、1回の処理液の供給ごとに、複数の制御部80の異物判定部106による複数箇所それぞれでの判定結果を取得したうえで、判定結果を蓄積する。判定結果蓄積部114は、処理液の供給回数(ワークWの処理枚数)に対応付けて、異物判定部106による判定結果を蓄積してもよい。この場合、判定結果蓄積部114は、異物検出ユニット70A~70Cそれぞれについて、処理液の供給回数と異物判定部106による判定結果とを対応付けて蓄積する。 The judgment result accumulation unit 114 accumulates the detection results (judgment results) of the foreign matter at each of the plurality of locations by the foreign matter detection units 70A to 70C. For example, the determination result accumulating unit 114 acquires the determination results at each of the plurality of locations by the foreign matter determination units 106 of the plurality of control units 80 each time the treatment liquid is supplied, and then accumulates the determination results. The judgment result accumulation unit 114 may accumulate the judgment result by the foreign matter judgment unit 106 in association with the number of supply times of the processing liquid (the number of workpieces W to be processed). In this case, the judgment result accumulating section 114 associates and accumulates the number of supply times of the treatment liquid and the judgment result by the foreign matter judgment section 106 for each of the foreign matter detection units 70A to 70C.
 発生源推定部116は、異物検出ユニット70A~70Cによる複数箇所それぞれでの検出結果に基づいて、供給流路29の中から異物の検出の原因となる事象が発生した区画を推定する。発生源推定部116は、上記事象が発生したと想定される区画を推定することによって、異物の発生源である部品を特定(推定)してもよい。発生源推定部116は、最もノズル30に近い位置に配置された異物検出ユニット70Aにおいて異物が検出されたときに、上記事象が発生したと想定される区画(異物の発生が継続している場合には、上記事象が発生している区画)を推定してもよい。以下では、図8も参照しながら、上記事象が発生したと想定される区画の推定方法の一例について説明する。 The generation source estimating unit 116 estimates a section in the supply channel 29 where an event causing the detection of foreign matter has occurred, based on the detection results at each of the plurality of locations by the foreign matter detection units 70A to 70C. The generation source estimating unit 116 may identify (estimate) the component that is the source of the foreign matter by estimating the section where the event is assumed to have occurred. When foreign matter is detected by the foreign matter detection unit 70A located closest to the nozzle 30, the generation source estimating unit 116 determines the section where the above event is assumed to have occurred (when the occurrence of the foreign matter continues). , the section where the above event occurs) may be estimated. An example of a method for estimating a block in which the above event is supposed to have occurred will be described below with reference to FIG. 8 as well.
 図8には、異物検出ユニット70A~70Cそれぞれについて、供給回数に対する異物を検出するための評価値の推移を表すグラフが示されている。図8において、「70A」は、異物検出ユニット70Aにおいて取得された評価値(例えば、上述の強度閾値Th1を超えた回数)の推移を示す。「70B」は、異物検出ユニット70Bにおいて取得された評価値の推移を示しており、「70C」は、異物検出ユニット70Cにおいて取得された評価値の推移を示している。図8に示される例では、処理対象のワークWに対する処理液の供給回数が「tc」回であるときに、異物検出ユニット70Aにおいて取得された評価値が評価閾値Th2を上回っている。この場合、tc回の処理液の供給が実行された際に、異物検出ユニット70Aの制御部80によって、異物検出ユニット70Aが配置された箇所において異物が検出される。 FIG. 8 shows a graph representing the transition of the evaluation value for detecting foreign matter with respect to the number of times of supply for each of the foreign matter detection units 70A to 70C. In FIG. 8, "70A" indicates the transition of the evaluation value (for example, the number of times the intensity threshold value Th1 is exceeded) acquired by the foreign object detection unit 70A. "70B" indicates the transition of the evaluation value obtained by the foreign object detection unit 70B, and "70C" indicates the transition of the evaluation value obtained by the foreign object detection unit 70C. In the example shown in FIG. 8, the evaluation value obtained by the foreign matter detection unit 70A exceeds the evaluation threshold Th2 when the processing liquid is supplied to the workpiece W to be processed "tc" times. In this case, when the treatment liquid is supplied tc times, the controller 80 of the foreign matter detection unit 70A detects foreign matter at the location where the foreign matter detection unit 70A is arranged.
 発生源推定部116は、異物検出ユニット70Aにおいて異物が検出された場合に、異物検出ユニット70B,70Cでの異物の有無についての過去の判定結果を参照する。発生源推定部116は、例えば、異物検出ユニット70Aで異物が検出されたときの供給回数から、所定の回数だけ遡った時点における他の検出ユニットの判定結果を参照する。この所定の回数は、異物検出ユニット70Aで異物が検出された際の処理液内の異物が、異物検出ユニット70Bの検出流路74を過去に通過したと想定される時点での判定結果を参照できるように設定されている。例えば、1回の処理液の供給での吐出量と、異物検出ユニット70Aと異物検出ユニット70Bとの間の配管容積との関係から、上記所定の回数が定められている。 When a foreign object is detected by the foreign object detection unit 70A, the source estimating unit 116 refers to the past judgment results regarding the presence or absence of a foreign object by the foreign object detection units 70B and 70C. The generation source estimating section 116 refers to the judgment results of the other detection units at the point in time a predetermined number of times before, for example, the number of times of supply when the foreign matter is detected by the foreign matter detection unit 70A. For the predetermined number of times, refer to the determination result at the time when it is assumed that the foreign matter in the processing liquid passed through the detection channel 74 of the foreign matter detection unit 70B in the past when the foreign matter was detected by the foreign matter detection unit 70A. is set to allow For example, the predetermined number of times is determined based on the relationship between the discharge amount in one supply of processing liquid and the volume of piping between the foreign matter detection unit 70A and the foreign matter detection unit 70B.
 図8に示される例では、所定の回数が「b」回に設定されており、発生源推定部116は、供給回数が「tc-b」回であるときの異物検出ユニット70B,70Cでの判定結果を参照する。この場合、供給回数が(tc-b)回であるときに異物検出ユニット70Bの検出流路74を通過した処理液が、供給回数がtc回であるときに異物検出ユニット70Aの検出流路74を通過する(に到達する)。 In the example shown in FIG. 8, the predetermined number of times is set to "b" times, and the generation source estimating section 116 determines that the foreign matter detection units 70B and 70C perform the supply operation "tc-b" times. Refer to judgment results. In this case, the processing liquid that has passed through the detection channel 74 of the foreign object detection unit 70B when the number of supplies is (tc-b) is pass through (reach)
 一例では、発生源推定部116は、所定の回数だけ遡った時点において、異物検出ユニット70B,70Cの双方で異物が検出されていなかった場合には、異物検出ユニット70Aと異物検出ユニット70Bとの間の区画で上記事象が発生していると推定する。この場合、発生源推定部116は、供給流路29のうちの、異物検出ユニット70A及び異物検出ユニット70Bの間に位置する区画に含まれる吐出バルブ34が異物の発生源であると推定してもよい。 In one example, when the foreign object is not detected by both the foreign object detection units 70B and 70C at the time when the foreign object detection units 70B and 70C go back a predetermined number of times, the generation source estimation unit 116 determines whether the foreign object detection unit 70A and the foreign object detection unit 70B It is assumed that the above event occurred in the section between. In this case, the generation source estimator 116 estimates that the discharge valve 34 included in the section of the supply channel 29 located between the foreign matter detection unit 70A and the foreign matter detection unit 70B is the source of the foreign matter. good too.
 発生源推定部116は、所定の回数だけ遡った時点において、異物検出ユニット70Bで異物が検出され、且つ異物検出ユニット70Cで異物が検出されていなかった場合には、異物検出ユニット70Bと異物検出ユニット70Cとの間の区画で上記事象が発生していると推定する。この場合、発生源推定部116は、供給流路29のうちの、異物検出ユニット70B及び異物検出ユニット70Cの間に位置する区画に含まれるポンプ42及びフィルタ46の少なくとも一方が異物の発生源であると推定してもよい。図8には、このように推定される場合の判定結果が例示されている。 If a foreign object is detected by the foreign object detection unit 70B and is not detected by the foreign object detection unit 70C at the point in time that the foreign object is detected by the foreign object detection unit 70B at the point in time that the foreign object is detected by the foreign object detection unit 70B, the generation source estimating unit 116 performs the foreign object detection unit 70B and the foreign object detection unit 70C. Assume that the above event occurs in the section between unit 70C. In this case, the generation source estimating unit 116 determines that at least one of the pump 42 and the filter 46 included in the section located between the foreign matter detection unit 70B and the foreign matter detection unit 70C in the supply channel 29 is the foreign matter generation source. It can be assumed that there are FIG. 8 exemplifies determination results in the case of such estimation.
 発生源推定部116は、所定の回数だけ遡った時点において、異物検出ユニット70B,70Cの双方で異物が検出されていた場合には、異物検出ユニット70Cよりも上流の区画で上記事象が発生していると推定する。この場合、発生源推定部116は、供給流路29のうちの異物検出ユニット70Cよりも上流に位置する区画に含まれる供給源52、貯留タンク56、及びポンプ58の少なくとも1つが異物の発生源であると推定してもよい。 When a foreign object is detected by both the foreign object detection units 70B and 70C at the point in time when going back a predetermined number of times, the generation source estimating unit 116 determines that the event has occurred in a section upstream of the foreign object detection unit 70C. We assume that In this case, the generation source estimating unit 116 determines that at least one of the supply source 52, the storage tank 56, and the pump 58 included in the section located upstream of the foreign matter detection unit 70C in the supply channel 29 is the generation source of the foreign matter. It may be assumed that
 上述の例において、発生源推定部116は、異物検出ユニット70Cについて、(tc-b)回から、1回の処理液の供給での吐出量と、異物検出ユニット70Bと異物検出ユニット70Cとの間の配管容積との関係から定まる所定回数だけ遡った時点での判定結果を参照してもよい。以上に例示したように、発生源推定部116は、上記事象が発生した(発生している)と想定される区画を推定することで、いずれの部品が異物の発生源であるかを推定してもよい。 In the above example, the generation source estimating unit 116 determines the ejection amount of the treatment liquid from the (tc-b) times to the foreign matter detection unit 70C, and the difference between the foreign matter detection unit 70B and the foreign matter detection unit 70C. You may refer to the determination result at the time of going back a predetermined number of times, which is determined from the relationship with the pipe volume between the pipes. As exemplified above, the generation source estimating unit 116 estimates which part is the source of the foreign matter by estimating the section where the event is assumed to have occurred (has occurred). may
 要因推定部118は、発生源推定部116が推定した区画に応じて、上記事象の発生の要因を推定する。上記事象の発生の要因とは、上記事象を発生させることとなった動作又は現象である。要因推定部118は、例えば、上記事象が生じたと推定した区画(推定した異物の発生源)と、異物発生の要因とを予め対応付けたテーブルを参照することで、上記事象の発生の要因を推定する。一例では、要因推定部118は、ポンプ42及びフィルタ46を含む区画で上記事象が発生したと推定されたときに、ポンプ又はフィルタの交換、処理液の滞留、及びポンプの動作条件の変更を、上記事象の発生の要因と推定する。本開示において、上記事象の発生の要因を推定することは、1つの要因を特定することだけを意味せず、複数の要因(要因の候補)を特定する場合も含まれる。 The factor estimating unit 118 estimates the factor of occurrence of the event according to the section estimated by the source estimating unit 116 . The cause of the occurrence of the event is the action or phenomenon that caused the event. The factor estimating unit 118, for example, refers to a table in which a section in which the event is estimated to have occurred (estimated source of the foreign matter) and a factor of the occurrence of the foreign matter are associated in advance, thereby estimating the factor of the occurrence of the event. presume. In one example, the factor estimation unit 118 replaces the pump or filter, stagnates the processing liquid, and changes the operating conditions of the pump when it is estimated that the above event has occurred in the section containing the pump 42 and the filter 46. Presumed to be the cause of the above events. In the present disclosure, estimating the cause of the occurrence of the event does not only mean identifying one factor, but also includes identifying a plurality of factors (candidate factors).
 出力部122は、供給流路29において異物が検出されたときに、発生源推定部116が推定した区画を示す情報を出力する。出力部122は、異物検出ユニット70Aにおいて異物が検出された場合に、推定した区画を示す情報を出力デバイス19に出力してもよい。この場合、出力デバイス19は、異物が検出されたこと、及び推定した区画を示す情報を表示してもよい。出力部122は、要因推定部118によって推定された上記事象の発生の要因(要因の候補)を示す情報も出力してもよい。 The output unit 122 outputs information indicating the section estimated by the generation source estimation unit 116 when a foreign object is detected in the supply channel 29 . The output section 122 may output information indicating the estimated section to the output device 19 when a foreign object is detected by the foreign object detection unit 70A. In this case, the output device 19 may display information indicating that a foreign object has been detected and the estimated section. The output unit 122 may also output information indicating factors (candidate factors) for the occurrence of the event estimated by the factor estimation unit 118 .
 図9は、制御部80及び制御装置20のハードウェア構成の一例を示すブロック図である。一つの制御部80は、一つ又は複数のコンピュータにより構成される。例えば制御部80は、回路150を有する。回路150は、一つ又は複数のプロセッサ152と、メモリ154と、ストレージ156と、入出力ポート158と、タイマ162と、通信ポート164とを有する。ストレージ156は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、異物検出ユニット70A~70Cにおいて実行される異物検出方法を制御部80に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。 FIG. 9 is a block diagram showing an example of the hardware configuration of the control unit 80 and the control device 20. As shown in FIG. One control unit 80 is composed of one or more computers. For example, the controller 80 has a circuit 150 . Circuitry 150 includes one or more processors 152 , memory 154 , storage 156 , input/output ports 158 , timers 162 and communication ports 164 . The storage 156 has a computer-readable storage medium such as a hard disk. The storage medium stores a program for causing the controller 80 to execute the foreign matter detection method executed in the foreign matter detection units 70A to 70C. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk and an optical disk.
 メモリ154は、ストレージ156の記憶媒体からロードしたプログラム及びプロセッサ152による演算結果を一時的に記憶する。プロセッサ152は、メモリ154と協働して上記プログラムを実行することで、制御部80が有する各機能モジュールを構成する。入出力ポート158は、プロセッサ152からの指令に従って、照射部76及び受光部78等との間で電気信号の入出力を行う。タイマ162は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。通信ポート164は、プロセッサ152からの指令に応じて、制御装置20との間で無線、有線、又はネットワーク回線等を介して通信を行う。 The memory 154 temporarily stores the program loaded from the storage medium of the storage 156 and the calculation result by the processor 152 . Processor 152 configures each functional module of control unit 80 by executing the above program in cooperation with memory 154 . The input/output port 158 inputs and outputs electrical signals to and from the irradiation unit 76 and the light receiving unit 78 according to instructions from the processor 152 . The timer 162 measures the elapsed time by, for example, counting reference pulses of a constant cycle. The communication port 164 communicates with the control device 20 wirelessly, by wire, or via a network line or the like in accordance with instructions from the processor 152 .
 制御部80が複数のコンピュータで構成される場合、各機能モジュールがそれぞれ、個別のコンピュータによって実現されていてもよい。あるいは、これらの各機能モジュールがそれぞれ、2つ以上のコンピュータの組み合わせによって実現されていてもよい。これらの場合、複数のコンピュータは、互いに通信可能に接続された状態で、上記異物検出方法を連携して実行してもよい。 When the control unit 80 is composed of a plurality of computers, each functional module may be realized by an individual computer. Alternatively, each of these functional modules may be implemented by a combination of two or more computers. In these cases, a plurality of computers may be communicably connected to each other and execute the foreign object detection method in cooperation.
 制御装置20は、一つ又は複数のコンピュータにより構成される。制御装置20は、例えば、回路170を有する。回路170は、一つ又は複数のプロセッサ172と、メモリ174と、ストレージ176と、入出力ポート178と、タイマ182と、通信ポート184とを有する。ストレージ176は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述の基板処理方法を塗布現像装置2に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。 The control device 20 is composed of one or more computers. Controller 20 has, for example, circuitry 170 . Circuitry 170 includes one or more processors 172 , memory 174 , storage 176 , input/output ports 178 , timers 182 and communication ports 184 . The storage 176 has a computer-readable storage medium such as a hard disk. The storage medium stores a program for causing the coating and developing apparatus 2 to execute a substrate processing method, which will be described later. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk and an optical disk.
 メモリ174は、ストレージ176の記憶媒体からロードしたプログラム及びプロセッサ172による演算結果を一時的に記憶する。プロセッサ172は、メモリ174と協働して上記プログラムを実行することで、制御装置20が有する各機能モジュールを構成する。入出力ポート178は、プロセッサ172からの指令に従って、処理液供給部28、及び出力デバイス19等との間で電気信号の入出力を行う。タイマ182は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。通信ポート184は、プロセッサ172からの指令に応じて、制御部80(上記通信ポート164)との間で無線、有線、又はネットワーク回線等を介して通信を行う。 The memory 174 temporarily stores the program loaded from the storage medium of the storage 176 and the calculation result by the processor 172 . The processor 172 configures each functional module of the control device 20 by executing the program in cooperation with the memory 174 . The input/output port 178 inputs/outputs electric signals to/from the treatment liquid supply unit 28, the output device 19, and the like according to instructions from the processor 172. FIG. The timer 182 measures the elapsed time by, for example, counting reference pulses of a constant cycle. The communication port 184 communicates with the control unit 80 (communication port 164 described above) wirelessly, by wire, or via a network line or the like in accordance with a command from the processor 172 .
 制御装置20が、複数のコンピュータで構成される場合、各機能モジュールがそれぞれ、個別のコンピュータによって実現されていてもよい。あるいは、これらの各機能モジュールがそれぞれ、2つ以上のコンピュータの組み合わせによって実現されていてもよい。これらの場合、複数のコンピュータは、互いに通信可能に接続された状態で、後述の基板処理方法を連携して実行してもよい。 When the control device 20 is composed of a plurality of computers, each functional module may be realized by an individual computer. Alternatively, each of these functional modules may be implemented by a combination of two or more computers. In these cases, the plurality of computers may be connected to each other so as to be able to communicate with each other, and cooperate to execute the substrate processing method described below.
 なお、制御部80及び制御装置20のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御部80及び制御装置20の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 Note that the hardware configuration of the control unit 80 and the control device 20 is not necessarily limited to configuring each functional module by a program. For example, each functional module of the control unit 80 and the control device 20 may be composed of a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) integrated with this.
(基板処理方法)
 続いて、図10を参照しながら、異物検出を含む基板処理方法の一例として、制御部80及び制御装置20を含む制御システム100が実行する一連の処理について説明する。図10は、1枚のワークWに対して処理液が供給されるのに応じて実行される一連の処理を示すフローチャートである。
(Substrate processing method)
Next, a series of processes executed by the control system 100 including the control unit 80 and the control device 20 will be described as an example of a substrate processing method including foreign matter detection with reference to FIG. 10 . FIG. 10 is a flow chart showing a series of processes that are executed in response to the supply of the processing liquid to one work W. As shown in FIG.
 この一連の処理では、処理対象のワークWに対して処理液の供給(吐出)が開始され、且つ各異物検出ユニットでの検出流路74への照射光の照射と受光部78による受光信号の生成とが開始された状態で、制御システム100がステップS11を実行する。ステップS11では、例えば、制御部80が、処理対象のワークWに対する処理液の供給が完了するまで待機する。処理液の供給が完了するまでの間、各異物検出ユニットにおいて、制御部80の信号取得部104は、受光信号の取得を継続する。 In this series of processes, the supply (discharge) of the processing liquid to the workpiece W to be processed is started, and the irradiation of irradiation light to the detection flow path 74 in each foreign matter detection unit and the light reception signal by the light receiving section 78 are generated. The control system 100 executes step S11 in a state where the generation is started. In step S11, for example, the control unit 80 waits until the supply of the processing liquid to the workpiece W to be processed is completed. Until the supply of the treatment liquid is completed, the signal acquisition section 104 of the control section 80 continues acquiring the light reception signal in each foreign substance detection unit.
 次に、制御システム100は、ステップS12を実行する。ステップS12では、例えば、各異物検出ユニットにおいて制御部80の異物判定部106が、処理液内における異物の発生の有無を判定する。一例では、異物判定部106は、処理液の供給が継続された期間において得られる受光信号から評価値(例えば、信号強度が強度閾値Th1を超えた回数)を算出し、当該評価値を評価閾値Th2と比較することで、処理液内における異物の発生の有無を判定する。 Next, the control system 100 executes step S12. In step S12, for example, the foreign matter determination unit 106 of the control unit 80 in each foreign matter detection unit determines whether or not a foreign matter is generated in the treatment liquid. In one example, the foreign matter determination unit 106 calculates an evaluation value (for example, the number of times the signal intensity exceeds the intensity threshold Th1) from the received light signal obtained during the period in which the supply of the treatment liquid is continued, and sets the evaluation value to the evaluation threshold. By comparing with Th2, it is determined whether or not foreign matter is generated in the processing liquid.
 次に、制御システム100は、ステップS13を実行する。ステップS13では、例えば、制御装置20の判定結果蓄積部114が、各異物検出ユニットについてのステップS12での判定結果を蓄積(記憶)する。判定結果蓄積部114は、処理液の供給回数(ワークWの処理枚数)と各異物検出ユニットによる判定結果とを対応付けて蓄積してもよい。 Next, the control system 100 executes step S13. In step S13, for example, the determination result accumulation unit 114 of the control device 20 accumulates (stores) the determination result in step S12 for each foreign object detection unit. The judgment result accumulating section 114 may accumulate the number of supply times of the treatment liquid (the number of processed workpieces W) and the judgment result by each foreign matter detection unit in association with each other.
 次に、制御システム100は、ステップS14を実行する。ステップS14では、例えば、制御装置20の発生源推定部116が、供給流路29に設けられた複数の異物検出ユニットのうちの最下流に配置された異物検出ユニット(上述の例では、異物検出ユニット70A)について、ステップS12において異物が検出された否かを判断する。 Next, the control system 100 executes step S14. In step S14, for example, the generation source estimating unit 116 of the control device 20 selects the foreign object detection unit (in the above example, the foreign object detection unit) arranged at the most downstream of the plurality of foreign object detection units provided in the supply channel 29. For the unit 70A), it is determined whether or not a foreign object is detected in step S12.
 ステップS14において、最下流に位置する異物検出ユニットにおいて異物が検出されたと判断された場合(ステップS14:YES)、制御システム100は、ステップS15を実行する。ステップS15では、例えば、発生源推定部116が、最下流に位置する異物検出ユニット以外の異物検出ユニットでの異物の有無についての過去の判定結果を参照したうえで、供給流路29のうちの異物の検出の原因となる事象が発生した区画を推定する。一例では、発生源推定部116は、ステップS11を実行中に最下流に位置する異物検出ユニットを通過した処理液が、他の異物検出ユニット(上述の例では、異物検出ユニット70B,70C)を過去に通過した供給回数での判定結果を参照して、上記区画を推定する。 In step S14, when it is determined that a foreign object is detected in the most downstream foreign object detection unit (step S14: YES), the control system 100 executes step S15. In step S15, for example, the generation source estimating unit 116 refers to the past determination results regarding the presence or absence of foreign matter in foreign matter detection units other than the most downstream foreign matter detection unit. Estimate the compartment where the event that caused the detection of the foreign object occurred. In one example, the generation source estimating unit 116 determines that the processing liquid that has passed through the foreign object detection unit positioned most downstream during step S11 may pass through the other foreign object detection units (the foreign object detection units 70B and 70C in the above example). The section is estimated by referring to the determination result based on the number of times of supply passed in the past.
 次に、制御システム100は、ステップS16を実行する。ステップS16では、例えば、制御装置20の要因推定部118が、ステップS15で推定された区画に応じて、上記事象の発生の要因(要因の候補)を推定する。一例では、要因推定部118は、区画と上記事象の発生の要因とが予め対応付けられたテーブルを参照することで、上記事象の発生の要因を推定する。 Next, the control system 100 executes step S16. In step S16, for example, the factor estimator 118 of the control device 20 estimates factors (candidate factors) for the occurrence of the event according to the partitions estimated in step S15. In one example, the factor estimating unit 118 estimates the factor of occurrence of the event by referring to a table in which the partition and the factor of occurrence of the event are associated in advance.
 次に、制御システム100は、ステップS17を実行する。ステップS17では、例えば、制御装置20の出力部122が、異物が検出されたことと、ステップS15で推定された区画とを示す情報を出力デバイス19に出力する。出力部122は、ステップS16で推定された要因を示す情報も出力デバイス19に出力してもよい。出力部122からの情報の出力後に、出力デバイス19に出力された情報に応じたオペレータ等の指示に応じて、異物を取り除く処置が処理液供給部28において実行されてもよい。 Next, the control system 100 executes step S17. In step S<b>17 , for example, the output unit 122 of the control device 20 outputs to the output device 19 information indicating that a foreign object has been detected and the section estimated in step S<b>15 . The output unit 122 may also output information indicating the factors estimated in step S16 to the output device 19 . After the information is output from the output unit 122 , the processing liquid supply unit 28 may perform a treatment to remove the foreign matter in accordance with an instruction from an operator or the like according to the information output to the output device 19 .
 一方、ステップS14において、最下流に位置する異物検出ユニットにおいて異物が検出されていないと判断された場合(ステップS14:NO)、制御システム100は、ステップS15~S17を実行しない。制御システム100は、後続の複数のワークWそれぞれに対して処理液を供給する度に、ステップS11~S17(S14)の一連の処理を繰り返してもよい。 On the other hand, if it is determined in step S14 that no foreign matter is detected in the most downstream foreign matter detection unit (step S14: NO), the control system 100 does not execute steps S15 to S17. The control system 100 may repeat the series of processes of steps S11 to S17 (S14) each time the processing liquid is supplied to each of a plurality of subsequent works W.
(変形例)
 上述した一連の処理は一例であり、適宜変更可能である。上記一連の処理において、制御システム100は、一のステップと次のステップとを並列に実行してもよく、上述した例とは異なる順序で各ステップを実行してもよい。制御システム100は、いずれかのステップを省略してもよく、いずれかのステップにおいて上述の例とは異なる処理を実行してもよい。
(Modification)
The series of processes described above is an example, and can be changed as appropriate. In the series of processes described above, the control system 100 may execute one step and the next step in parallel, or may execute each step in an order different from the example described above. The control system 100 may omit any step, or perform processing different from the above example in any step.
 異物検出の原因となる事象が発生したと想定される区画の推定方法は、上述の例に限られない。上述の例では、最下流に位置する異物検出ユニットにおいて異物が検出されたときに区画の推定が行われるが、発生源推定部116は、いずれかの異物検出ユニットにおいて異物が検出されたときに、区画(異物の発生源)の推定を行ってもよい。例えば、発生源推定部116は、いずれかの異物検出ユニットにおいて異物が検出されたときに、その異物検出ユニットの上流に隣接して位置する区画において上記事象が発生したと推定する。  The method of estimating the section where the event that causes foreign object detection is assumed to have occurred is not limited to the above example. In the above example, the section is estimated when a foreign object is detected by the foreign object detection unit positioned most downstream. , the estimation of the compartment (the source of the foreign matter) may be performed. For example, when a foreign object is detected by one of the foreign object detection units, the generation source estimation unit 116 estimates that the event has occurred in a section adjacent to and upstream of that foreign object detection unit.
 一例では、発生源推定部116は、異物検出ユニット70Cにおいて異物が検出されたときに、補充部50に含まれる供給源52、貯留タンク56、及びポンプ58を含む区画において上記事象が発生したと推定する。発生源推定部116は、異物検出ユニット70Bにおいて異物が検出されたときに、送液部40に含まれるポンプ42及びフィルタ46を含む区画において上記事象が発生したと推定する。補充部50において上記事象が発生した際にも、供給回数の累積に伴って異物検出ユニット70Bでも異物が検出され得るが、この場合には、既に異物検出ユニット70Cにおいて異物が検出されているので、異物の発生源を含む区画を推定することが可能である。発生源推定部116は、異物検出ユニット70Aにおいて異物が検出されたときに、吐出バルブ34を含む区画において上記事象が発生したと推定する。 In one example, the generation source estimating section 116 determines that the above event occurred in the section including the supply source 52, the storage tank 56, and the pump 58 included in the replenishment section 50 when foreign matter is detected by the foreign matter detection unit 70C. presume. The generation source estimating section 116 estimates that the above event has occurred in the section including the pump 42 and the filter 46 included in the liquid feeding section 40 when foreign matter is detected by the foreign matter detection unit 70B. Even when the above event occurs in the replenishment unit 50, the foreign object can be detected by the foreign object detection unit 70B as the number of supplies is accumulated. , it is possible to deduce the compartment containing the source of the foreign object. Occurrence source estimating section 116 estimates that the above event has occurred in the section including discharge valve 34 when a foreign object is detected by foreign object detection unit 70A.
 要因推定部118は、各異物検出ユニットによる検出結果に加えて、他の情報を用いて、上記事象の発生の要因を絞り込んでもよい。塗布現像装置2は、図4に示されるように、流速測定部60を更に備えてもよい。流速測定部60は、ノズル30まで処理液を導く流路内を流れる処理液の流速(例えば、単位時間あたりの液の通過量)を測定する。流速測定部60は、いかなる方式で処理液の流速を測定してもよい。図4に示される例では、流速測定部60は、供給流路29のうちの吐出バルブ34と異物検出ユニット70Bとの間の流路に設けられている。 The factor estimation unit 118 may use other information in addition to the results of detection by each foreign object detection unit to narrow down the factors of the occurrence of the above events. The coating and developing apparatus 2 may further include a flow rate measuring section 60 as shown in FIG. The flow velocity measurement unit 60 measures the flow velocity of the processing liquid flowing through the flow path that guides the processing liquid to the nozzle 30 (for example, the amount of liquid passing through per unit time). The flow velocity measurement unit 60 may measure the flow velocity of the treatment liquid by any method. In the example shown in FIG. 4, the flow velocity measuring section 60 is provided in the flow path between the discharge valve 34 and the foreign object detection unit 70B in the supply flow path 29. In the example shown in FIG.
 図11には、流速測定部60によって測定される流速の時間変化の一例が示されている。図11に示されるグラフの各パルスが、1回の処理液の供給に対応する。流速測定部60を通過する処理液内に泡が含まれていない場合には、処理液の供給が継続されている期間での流速の時間変化は、略一定となる。一方、流速測定部60を通過する処理液内に泡が含まれている場合には、図11において拡大して示すグラフのように、処理液の供給が継続されている期間において流速が変動する。図11において拡大して示されるパルスは、図8に例示した(tc-b)回で異物検出ユニット70Bを通過した処理液が、流速測定部60を通過する際に検出された測定値である。以上のことから、泡を含む処理液が流速測定部60を通過する際の流速の変動を検出することで、異物として泡が含まれているか否かを推定することができる。 FIG. 11 shows an example of the change over time of the flow velocity measured by the flow velocity measurement unit 60. FIG. Each pulse in the graph shown in FIG. 11 corresponds to one supply of processing liquid. When the treatment liquid passing through the flow velocity measurement unit 60 does not contain bubbles, the change in the flow velocity over time during the period in which the supply of the treatment liquid is continued is substantially constant. On the other hand, when bubbles are contained in the treatment liquid passing through the flow velocity measuring unit 60, the flow velocity fluctuates during the period in which the supply of the treatment liquid is continued, as shown in the enlarged graph in FIG. . 11 are measured values detected when the treatment liquid that has passed through the foreign matter detection unit 70B in (tc-b) times illustrated in FIG. . From the above, it is possible to estimate whether or not bubbles are contained as foreign matter by detecting fluctuations in the flow velocity of the treatment liquid containing bubbles when it passes through the flow velocity measuring unit 60 .
 要因推定部118は、流速測定部60による測定結果に基づいて、上記事象の発生の要因を絞り込んでもよい。要因推定部118は、例えば、送液部40内の部品が異物の発生源であると推定した場合に、異物検出ユニット70Bを通過した後の処理液が流速測定部60を通過する際の流速測定部60による流速の変動の程度に応じて、上記事象の発生の要因を絞り込んでもよい。一例では、要因推定部118は、流速の変動が所定レベルよりも大きい場合に、上記事象の発生の要因(要因の候補)を、ポンプ又はフィルタ交換に伴う泡の発生、処理液の滞留に伴う泡の発生、及びポンプの動作条件の変更に伴う泡の発生であると絞り込む。この場合、オペレータ等の指示に基づき、ポンプ又はフィルタまわりの泡抜き等の処置が施されてもよい。要因推定部118は、流速の変動が所定レベルよりも小さい場合に、泡の発生が要因ではないと推定してもよい。流速測定部60による測定結果は、処理液の供給ごとに、流速が安定しているか否かの確認に用いられてもよい。 The factor estimating unit 118 may narrow down the factors for the occurrence of the above events based on the measurement result of the flow velocity measuring unit 60. For example, when the factor estimating unit 118 estimates that a component in the liquid feeding unit 40 is the source of foreign matter, the flow velocity of the processing liquid after passing through the foreign matter detection unit 70B when passing through the flow velocity measuring unit 60 is calculated. According to the degree of fluctuation of the flow velocity measured by the measuring unit 60, the factors causing the above phenomena may be narrowed down. In one example, the factor estimating unit 118 determines the factors (candidate factors) for the occurrence of the above event when the flow velocity fluctuation is greater than a predetermined level, such as the occurrence of bubbles due to replacement of the pump or filter, It is narrowed down to the generation of foam and the generation of foam accompanying changes in the operating conditions of the pump. In this case, measures such as defoaming around the pump or filter may be taken based on instructions from the operator or the like. The factor estimating unit 118 may estimate that the generation of bubbles is not the factor when the fluctuation of the flow velocity is smaller than a predetermined level. The measurement result obtained by the flow velocity measurement unit 60 may be used to confirm whether or not the flow velocity is stable each time the treatment liquid is supplied.
 上記事象の発生の要因を絞り込む際に使用する情報は、上記の流速の変動に限られない。要因推定部118は、異物が検出された際のワークWへの処理液の供給頻度(吐出頻度)に基づいて、上記事象の発生の要因を絞り込んでもよい。異物が検出された時点を含む直前の所定期間内において、処理液の供給頻度が低い場合には、供給流路29内での処理液の滞留が生じていると推定できる。要因推定部118は、異物が検出された時点を含む直前の所定期間内での供給頻度に応じて、上記事象の発生の要因を絞り込んでもよい。 The information used to narrow down the causes of the occurrence of the above events is not limited to the above fluctuations in flow velocity. The factor estimator 118 may narrow down the factor of occurrence of the phenomenon based on the supply frequency (ejection frequency) of the treatment liquid to the workpiece W when the foreign matter is detected. If the supply frequency of the treatment liquid is low during the predetermined period immediately before the detection of the foreign matter, it can be estimated that the treatment liquid is stagnant in the supply channel 29 . The factor estimating unit 118 may narrow down the factor of occurrence of the event according to the supply frequency within a predetermined period immediately before including the point at which the foreign object is detected.
 要因推定部118は、例えば、送液部40内の部品が異物の発生源であると推定した場合に、異物検出ユニット70Bで異物が検出された時点を含む上記所定期間内での供給頻度に応じて、上記事象の発生の要因を絞り込んでもよい。一例では、要因推定部118は、上記所定期間内での供給頻度が所定の閾値よりも小さい場合に、上記事象の発生の要因が、処理液の滞留であると絞り込んでもよい。要因推定部118は、上記所定期間内での供給頻度が所定の閾値よりも大きい場合に、上記事象の発生の要因が、ポンプ又はフィルタ交換、及びポンプの動作条件の変更であると絞り込んでもよい。 For example, when the factor estimating unit 118 estimates that a component in the liquid feeding unit 40 is the source of foreign matter, the factor estimating unit 118 determines the supply frequency within the predetermined period including the time when the foreign matter is detected by the foreign matter detection unit 70B. Accordingly, the factors for the occurrence of the above events may be narrowed down. In one example, the factor estimating unit 118 may narrow down the cause of the occurrence of the event to be the stagnation of the treatment liquid when the supply frequency within the predetermined period is less than a predetermined threshold. If the supply frequency within the predetermined period is greater than a predetermined threshold, the factor estimator 118 may narrow down the cause of the occurrence of the event to be pump or filter replacement and change in operating conditions of the pump. .
 上述の例では、液処理ユニットU1は、1つの処理液供給部28を有するが、複数の処理液供給部28を有してもよい。この場合、液処理ユニットU1は、複数のノズル30と、複数のノズル30に処理液をそれぞれ供給するための複数の供給流路29とを有する。異物検出ユニット70A~70Cは、複数の供給流路29のそれぞれについて、複数箇所において異物を検出してもよい。制御システム100は、複数の供給流路29のそれぞれにおいて、上記事象が発生したと想定される区画(異物の発生源を含むと想定される区画)を推定してもよい。 In the above example, the liquid processing unit U1 has one processing liquid supply section 28, but may have a plurality of processing liquid supply sections 28. In this case, the liquid processing unit U1 has a plurality of nozzles 30 and a plurality of supply channels 29 for supplying the processing liquid to the plurality of nozzles 30, respectively. The foreign matter detection units 70A to 70C may detect foreign matter at a plurality of locations in each of the plurality of supply channels 29. FIG. The control system 100 may estimate the section where the event is assumed to have occurred (the section assumed to contain the source of foreign matter) in each of the plurality of supply channels 29 .
 1つの異物検出ユニットが、1つの供給流路29に沿って位置が異なる複数箇所それぞれにおいて異物を検出するための部材を有してもよい。例えば、1つの異物検出ユニットは、ノズル30と吐出バルブ34との間に位置する検出流路74、吐出バルブ34と送液部40との間に位置する検出流路74、及び送液部40と補充部50との間に位置する検出流路74をそれぞれ形成する複数の流路形成部72を有してもよい。また、異物検出ユニットは、これらの検出流路74に対応する複数の照射部76と複数の受光部78とを有してもよい。この場合、1つの異物検出ユニットが、供給流路29上で複数箇所に設けられる複数の検出流路74において、異物の検出をそれぞれ行う複数の異物検出部を有する。 A single foreign matter detection unit may have members for detecting foreign matter at a plurality of different positions along one supply channel 29 . For example, one foreign matter detection unit includes a detection channel 74 located between the nozzle 30 and the ejection valve 34, a detection channel 74 located between the ejection valve 34 and the liquid sending section 40, and the liquid sending section 40. and the replenishment section 50, each of which forms a detection flow path 74. Also, the foreign matter detection unit may have a plurality of irradiation sections 76 and a plurality of light reception sections 78 corresponding to these detection channels 74 . In this case, one foreign object detection unit has a plurality of foreign object detection units that detect foreign objects in a plurality of detection channels 74 provided at a plurality of locations on the supply channel 29 .
 塗布現像装置2は、供給流路29上の異なる位置で異物を検出する2個の異物検出ユニットを有してもよく、4個以上の異物検出ユニットを有してもよい。複数の異物検出ユニット(異物検出ユニット70A~70C)の配置は、上述の例に限られず、供給流路29上の異なる位置であればいずれの箇所であってもよい。異物の発生源となり得る部品は、上述の例に限られず、例えば、吐出バルブ34とは異なる位置で流路を開閉するバルブ、及び処理液の流路を形成する管を含んでもよい。送液部40は上述の例に限られず、フィルタとポンプとを有していれば、どのように構成されていてもよい。補充部50は、上述の例に限られず、送液部40に処理液を補充可能であれば、どのように構成されていてもよい。 The coating and developing device 2 may have two foreign matter detection units that detect foreign matter at different positions on the supply channel 29, or may have four or more foreign matter detection units. The arrangement of the plurality of foreign matter detection units (foreign matter detection units 70A to 70C) is not limited to the example described above, and may be any different positions on the supply channel 29 . Parts that can be the source of foreign matter are not limited to the above examples, and may include, for example, a valve that opens and closes the flow path at a position different from the ejection valve 34, and a pipe that forms the flow path of the treatment liquid. The liquid sending unit 40 is not limited to the above example, and may be configured in any way as long as it has a filter and a pump. The replenishing unit 50 is not limited to the above example, and may be configured in any way as long as the processing liquid can be replenished to the liquid feeding unit 40 .
 制御装置20が、供給流路29上の複数箇所それぞれでの異物の有無を判定する機能モジュールを有してもよい。この場合、制御部80は、異物判定部106を有していなくてもよい。異物検出ユニット70A~70Cのいずれか1つの制御部80が、上記事象が発生したと想定される区画を推定する機能モジュール、異物発生の要因を推定する機能モジュール、及び推定結果を出力する機能モジュールを有してもよい。この場合、異物検出ユニット70A~70Cの制御部80が互いに通信可能に接続されていてもよく、制御装置20が、上述した機能モジュールの一部を有していなくてもよい。 The control device 20 may have a functional module that determines the presence or absence of foreign matter at each of a plurality of locations on the supply channel 29 . In this case, the control unit 80 may not have the foreign object determination unit 106 . A control section 80 of any one of the foreign matter detection units 70A to 70C has a functional module for estimating the section where the event is assumed to have occurred, a functional module for estimating the factor of the occurrence of the foreign matter, and a functional module for outputting the estimation result. may have In this case, the controllers 80 of the foreign object detection units 70A to 70C may be communicably connected to each other, and the controller 20 may not have some of the functional modules described above.
(実施形態の効果)
 以上に説明した第1実施形態に係る基板処理システム1は、処理液を吐出可能なノズル30と、処理液の供給源52と、ノズル30と供給源52との間を接続する供給流路29とを有し、ワークWに対して処理液を供給する処理液供給部28と、供給流路29に沿って位置が互いに異なる複数箇所に配置され、光の照射に伴い供給流路29内から出射された光を受光して得られる受光信号に基づいて、処理液に含まれる異物を検出する複数の異物検出部(異物検出ユニット70A~70C)と、複数の異物検出部による複数箇所それぞれでの検出結果に基づいて、供給流路29の中から、異物の検出の原因となる事象が発生した区画を推定する発生源推定部116と、を備える。
(Effect of Embodiment)
The substrate processing system 1 according to the first embodiment described above includes the nozzle 30 capable of ejecting the processing liquid, the processing liquid supply source 52, and the supply channel 29 connecting between the nozzle 30 and the supply source 52. and a processing liquid supply unit 28 for supplying the processing liquid to the workpiece W, and a plurality of positions different from each other along the supply channel 29. A plurality of foreign matter detection units (foreign matter detection units 70A to 70C) that detect foreign matter contained in the treatment liquid based on light reception signals obtained by receiving the emitted light, and a plurality of foreign matter detection units at a plurality of locations. and a generation source estimating unit 116 for estimating a section in the supply channel 29 in which an event causing detection of a foreign object has occurred, based on the detection result of .
 上述の例とは異なり、異物が含まれた処理液のワークWへの供給を防止するために、ノズルと処理液の供給源との間の供給流路うちのノズルと吐出バルブとの間の1箇所に異物検出ユニットを配置して、処理液内の異物を検出する方法が考えられる。この方法では、処理液内に異物が発生したことを把握することができるが、当該異物検出ユニットの上流において上記事象がどのような要因で発生しているかを、検出結果から把握することができない。これに対して、基板処理システム1では、供給流路29上の複数箇所での異物の検出結果から、上記事象が発生した区画が推定される。そのため、その推定結果を利用することで、処理液供給部28において上記事象が発生した要因を容易に把握することが可能となる。 Different from the above example, in order to prevent the supply of the processing liquid containing foreign matter to the work W, the nozzle and the discharge valve in the supply flow path between the nozzle and the processing liquid supply source are separated from each other. A conceivable method is to arrange a foreign matter detection unit at one location and detect foreign matter in the processing liquid. With this method, it is possible to ascertain that a foreign object has occurred in the processing liquid, but it is not possible to ascertain from the detection result what factors have caused the phenomenon upstream of the foreign object detection unit. . On the other hand, in the substrate processing system 1 , from the detection results of foreign matter at a plurality of locations on the supply channel 29 , the section where the above event occurred is estimated. Therefore, by using the estimation result, it is possible to easily grasp the cause of the occurrence of the phenomenon in the treatment liquid supply unit 28 .
 処理液供給部28は、供給流路29内の処理液に含まれる異物を捕集するフィルタ46と、ノズル30に向けて処理液を送り出すポンプ42とを含む送液部40と、供給流路29のうちの送液部40とノズル30との間の流路を開閉する吐出バルブ34と、を有してもよい。複数の異物検出部は、ノズル30と吐出バルブ34との間の流路に配置された第1異物検出部(異物検出ユニット70A)と、吐出バルブ34と送液部40との間の流路に配置された第2異物検出部(異物検出ユニット70B)と、を有してもよい。この場合、第1異物検出部及び第2異物検出部による検出結果から、上記事象が発生したと想定される区画を、吐出バルブ34を含む区画か、それ以外の送液部40のポンプ42及びフィルタ46を含む区画のいずれかに推定することが可能となる。 The treatment liquid supply unit 28 includes a filter 46 that collects foreign matter contained in the treatment liquid in the supply channel 29, a liquid sending part 40 that includes a pump 42 that sends the treatment liquid toward the nozzle 30, and a supply channel. A discharge valve 34 that opens and closes the flow path between the liquid sending part 40 and the nozzle 30 of 29 may be provided. The plurality of foreign matter detection units includes a first foreign matter detection unit (foreign matter detection unit 70A) disposed in the flow path between the nozzle 30 and the discharge valve 34, and a flow path between the discharge valve 34 and the liquid sending unit 40. and a second foreign matter detection section (foreign matter detection unit 70B) disposed in the . In this case, based on the detection results of the first foreign matter detection section and the second foreign matter detection section, the section in which the above event is assumed to occur is either the section including the discharge valve 34 or the other section including the pump 42 of the liquid feeding section 40 and the It is possible to extrapolate to any of the compartments containing the filter 46 .
 処理液供給部28は、供給源52から送液部40に処理液を補充する補充部50を更に有してもよい。複数の異物検出部は、補充部50と送液部40との間の流路に配置された第3異物検出部(異物検出ユニット70C)を更に有してもよい。この場合、第3異物検出部による検出結果も利用することで、吐出バルブ34を含まない区画(第2異物検出部よりも上流の区画)において、上記事象が発生したと想定される区画を、送液部40を含む区画か、補充部50を含む区画のいずれかに推定することが可能となる。 The processing liquid supply unit 28 may further include a replenishing unit 50 that replenishes the processing liquid from the supply source 52 to the liquid feeding unit 40 . The plurality of foreign matter detection sections may further include a third foreign matter detection section (foreign matter detection unit 70</b>C) arranged in the channel between the replenishment section 50 and the liquid feeding section 40 . In this case, by also using the detection result of the third foreign matter detection section, the section where the above event is assumed to occur in the section that does not include the discharge valve 34 (the section upstream of the second foreign matter detection section) It is possible to estimate either the section containing the liquid feeding section 40 or the section containing the replenishment section 50 .
 基板処理システム1は、発生源推定部116が推定した区画に応じて、上記事象の発生の要因を推定する要因推定部118を更に備えてもよい。この場合、要因推定部118による要因の推定結果を利用することで、上記事象の発生の要因を更に容易に把握することが可能となる。 The substrate processing system 1 may further include a factor estimator 118 that estimates the factor of the occurrence of the event according to the section estimated by the source estimator 116 . In this case, by using the estimation result of the factor by the factor estimation unit 118, it is possible to more easily grasp the factor of the occurrence of the above event.
 基板処理システム1は、ノズル30まで処理液を導く流路内を流れる処理液の流速を測定する流速測定部60を更に備えてもよい。要因推定部118は、流速測定部60による測定結果に基づいて、上記事象の発生の要因を絞り込んでもよい。この場合、上記事象の発生の要因の推定結果が絞り込まれるので、上記事象の発生の要因を更に容易に把握することが可能となる。 The substrate processing system 1 may further include a flow velocity measurement unit 60 that measures the flow velocity of the processing liquid flowing through the channel that guides the processing liquid to the nozzle 30 . The factor estimator 118 may narrow down the factor of occurrence of the above phenomenon based on the measurement result by the flow velocity measurement unit 60 . In this case, the estimated result of the factor of occurrence of the event is narrowed down, so that the factor of occurrence of the event can be more easily grasped.
 要因推定部118は、上記事象が発生した際のワークWへの処理液の供給頻度に基づいて、上記事象の発生の要因を絞り込んでもよい。この場合、上記事象の発生の要因の推定結果が絞り込まれるので、上記事象の発生の要因を更に容易に把握することが可能となる。 The factor estimating unit 118 may narrow down the cause of the occurrence of the event based on the frequency of supplying the processing liquid to the workpiece W when the event occurs. In this case, the estimated result of the factor of occurrence of the event is narrowed down, so that the factor of occurrence of the event can be more easily grasped.
[第2実施形態]
 続いて、図12及び図13も参照しながら、第2実施形態に係る基板処理システム1について説明する。第2実施形態に係る基板処理システム1は、第1実施形態に係る基板処理システム1と同様に構成される。第2実施形態に係る基板処理システム1では、上述した埃、塵、及び泡等のパーティクルに代えて、処理液に混在する他の薬液が異物として検出される。すなわち、本開示において、処理液内の「異物」には、上述した埃、塵、及び泡等のパーティクルに加えて、処理液とは異なる成分を有する薬液が含まれる。第1実施形態に係る基板処理システム1では、評価値に基づきパーティクル等が検出されるのに対して、第2実施形態に係る基板処理システム1は、処理液内の他の薬液を検出するために、背景光の強度を利用する。
[Second embodiment]
Next, the substrate processing system 1 according to the second embodiment will be described with reference to FIGS. 12 and 13 as well. A substrate processing system 1 according to the second embodiment is configured similarly to the substrate processing system 1 according to the first embodiment. In the substrate processing system 1 according to the second embodiment, other chemical liquids mixed in the processing liquid are detected as foreign matter instead of particles such as dust, dirt, and bubbles. That is, in the present disclosure, "foreign matter" in the treatment liquid includes not only particles such as dust, dirt, and bubbles, but also chemical liquids having components different from those of the treatment liquid. In the substrate processing system 1 according to the first embodiment, particles or the like are detected based on the evaluation value. To do this, we use the intensity of the background light.
 背景光とは、パーティクルの有無に関係なく、処理液への光の照射に伴い検出流路74から出射(例えば、散乱)される光である。図7に示されるように、埃等のパーティクルの有無によって検出流路74内(処理液内)での照射光の散乱の程度が変化するので、パーティクルの有無によって信号強度の大きさが変化する。散乱光に応じた受信信号には、パーティクルが含まれていない状態での背景光に応じた信号Ibと、パーティクルが含まれる状態での当該パーティクルからの散乱光に応じた信号Isとが含まれる。なお詳細には、信号Isは、背景光とパーティクルによって散乱される散乱光とに応じた信号である。 The background light is light emitted (for example, scattered) from the detection channel 74 as the treatment liquid is irradiated with light, regardless of the presence or absence of particles. As shown in FIG. 7, the degree of scattering of the irradiation light in the detection channel 74 (within the treatment liquid) changes depending on the presence or absence of particles such as dust, so the magnitude of the signal intensity changes depending on the presence or absence of particles. . The received signal corresponding to the scattered light includes the signal Ib corresponding to the background light when no particles are included and the signal Is corresponding to the scattered light from the particles when the particles are included. . More specifically, the signal Is is a signal corresponding to background light and scattered light scattered by particles.
 背景光に応じた信号Ibには、処理液内に通常含まれる物質からの散乱光に応じた成分と外乱に応じた成分とが含まれ得る。処理液内に通常含まれる物質としては、ベース樹脂(ベースポリマー)が挙げられる。異物検出ユニット70は、上述の受光信号から、検出流路74から出射される光に含まれる背景光の強度を取得する。異物検出ユニット70は、処理液等の薬液の種別に応じて、背景光の強度が変化することを利用して、処理液内に混入した他の薬液を異物として検出する。以下では、処理モジュール12の液処理ユニットU1が、レジスト膜を形成するための処理液(以下、「処理液Lr」という。)をワークWに対して供給する場合を例示する。 The signal Ib corresponding to background light may include a component corresponding to scattered light from substances normally contained in the treatment liquid and a component corresponding to disturbance. A base resin (base polymer) is exemplified as a substance normally contained in the treatment liquid. The foreign matter detection unit 70 acquires the intensity of the background light contained in the light emitted from the detection channel 74 from the above-described light reception signal. The foreign matter detection unit 70 detects another chemical mixed in the treatment liquid as a foreign matter by utilizing the fact that the intensity of the background light changes according to the type of the chemical such as the treatment liquid. A case where the liquid processing unit U1 of the processing module 12 supplies the workpiece W with a processing liquid for forming a resist film (hereinafter referred to as “processing liquid Lr”) will be exemplified below.
 供給流路29において、処理液Lrに他の薬液が混入してしまう場合がある。他の薬液は、例えば、洗浄液Lcである。図12には、処理液Lr及び洗浄液Lcそれぞれを供給した場合の背景光の強度についての計測結果が示されている。図12では、縦軸が背景光の強度[mW]を示している。背景光の強度は、受光信号において、所定期間における強度の時間平均を演算することで求められる。図12に示されるグラフから、薬液の種別によって背景光の強度が異なることがわかる。具体的には、処理液Lrを供給する場合と洗浄液Lcを供給する場合とで、背景光の強度が互いに異なることがわかる。また、背景光の強度は、薬液の種別が同じであれば、略一定のレベルを有することがわかる。 In the supply channel 29, other chemical liquids may be mixed with the treatment liquid Lr. Another chemical solution is, for example, the cleaning liquid Lc. FIG. 12 shows the measurement results of the intensity of the background light when the treatment liquid Lr and the cleaning liquid Lc are supplied. In FIG. 12, the vertical axis indicates the background light intensity [mW]. The intensity of the background light is obtained by calculating the time average of the intensity in a predetermined period in the received light signal. From the graph shown in FIG. 12, it can be seen that the intensity of background light differs depending on the type of chemical solution. Specifically, it can be seen that the intensity of the background light differs between when the treatment liquid Lr is supplied and when the cleaning liquid Lc is supplied. Also, it can be seen that the intensity of the background light has a substantially constant level if the types of chemical solutions are the same.
 供給流路29内において薬液の置換が行われたときに、処理液Lrに他の薬液が混在し得る。液処理ユニットU1は、塗布現像装置2におけるワークWに対する処理が継続される間、各ワークWに対する処理液Lrの供給を継続して実行する。ワークWに対する処理が継続される間に、処理を中断して、液処理ユニットU1においてメンテナンスが行われる場合がある。メンテナンスの一例としては、処理液供給部28に含まれるフィルタ46等の部品の交換が挙げられる。 When the chemical liquid is replaced in the supply channel 29, other chemical liquids may be mixed in the treatment liquid Lr. The liquid processing unit U1 continues to supply the processing liquid Lr to each work W while the processing of the work W in the coating and developing apparatus 2 is continued. While the processing of the workpiece W continues, there is a case where the processing is interrupted and maintenance is performed in the liquid processing unit U1. An example of maintenance includes replacement of parts such as the filter 46 included in the processing liquid supply unit 28 .
 メンテナンスが実行される際には、供給流路29内が処理液Lrから洗浄液Lcに置き換えられる。そして、メンテナンス終了後に処理を再開する際には、供給流路29内が処理液Lrに再度置き換えられる。例えば、処理を再開する際に、洗浄液Lcから処理液Lrへの置換が十分に行われていないと、ワークWに対する処理中において、処理液Lrに洗浄液Lcの一部が混在し得る。 When maintenance is performed, the inside of the supply channel 29 is replaced with the cleaning liquid Lc from the processing liquid Lr. Then, when the processing is restarted after the maintenance is completed, the inside of the supply channel 29 is again replaced with the processing liquid Lr. For example, if the cleaning liquid Lc is not sufficiently replaced with the processing liquid Lr when the processing is restarted, part of the cleaning liquid Lc may be mixed with the processing liquid Lr during the processing of the workpiece W.
 図12に示されるグラフでは、横軸が供給回数を示している。処理液Lrの供給が継続された後に、供給回数が「tc1」回において、洗浄液Lcへの置換が行われ、供給回数が「tc2」回において、処理液Lrに再度置換されている。tc1回及びtc2回の直後の期間において背景光の強度が安定していないのは、処理液Lrと洗浄液Lcとが混在しており、薬液の置換が完了していないためと考えられる。背景光の強度が薬液の種別に依存する特性を利用して、薬液の置換を完了させた後に(置換が完了したと想定される供給回数以降において)、背景光の強度を計測することで、薬液の置換不足を検出することができる。 In the graph shown in FIG. 12, the horizontal axis indicates the number of times of supply. After the supply of the treatment liquid Lr is continued, the replacement with the cleaning liquid Lc is performed at the number of times of supply of "tc1", and the replacement with the treatment liquid Lr is performed again at the number of times of supply of "tc2". The reason why the intensity of the background light is not stable in the period immediately after tc1 and tc2 is considered to be that the treatment liquid Lr and the cleaning liquid Lc are mixed and the replacement of the chemical solution is not completed. By using the characteristic that the intensity of background light depends on the type of chemical solution, the intensity of the background light is measured after the replacement of the chemical solution is completed (after the supply number of times assumed to have completed replacement), Insufficient replacement of the chemical solution can be detected.
 制御装置20及び制御部80は、図10に示される一連の処理と同様に処理を実行する。ステップS12において、複数の異物検出ユニット70A~70Cそれぞれは、供給流路29から出射される光(例えば、散乱光)に含まれる背景光の強度を示す強度情報に基づいて、処理液Lrに異物が含まれるか否かを判定する。一例では、各異物検出ユニットが有する制御部80の異物判定部106は、受光信号から、対応する検出流路74における散乱光に含まれる背景光の強度を示す強度情報を取得する(背景光の強度を算出する)。異物判定部106は、強度情報によって示される背景光の強度が、処理液Lrに応じたレベルであるか否かを判定する。 The control device 20 and the control unit 80 execute the same process as the series of processes shown in FIG. In step S12, each of the plurality of foreign matter detection units 70A to 70C detects foreign matter in the treatment liquid Lr based on the intensity information indicating the intensity of the background light contained in the light (for example, scattered light) emitted from the supply channel 29. is included. In one example, the foreign object determination unit 106 of the control unit 80 of each foreign object detection unit acquires intensity information indicating the intensity of the background light contained in the scattered light in the corresponding detection flow path 74 from the received light signal (background light intensity information). strength). The foreign matter determination unit 106 determines whether or not the intensity of the background light indicated by the intensity information is at a level corresponding to the treatment liquid Lr.
 異物判定部106は、背景光の強度が処理液Lrに応じた所定レベル(所定範囲)から外れている場合に、対応する検出流路74において洗浄液Lcが異物として混在していると判定する。異物判定部106は、処理液Lrから洗浄液Lcへの置換が行われた際に、他の制御装置からの入力又はユーザ入力に基づいて、供給流路29内の全体において置換が完了したことを示す信号を取得してもよい。異物判定部106は、供給流路29内の全体において置換が完了したことを示す信号を取得した以降の供給回数において、背景光に基づく異物の検出を実行してもよい。例えば、薬液の液源(ボトル)を交換した後に、所定回数だけ薬液をノズル30から吐出した時点で、置換が完了したと判定されてもよい。 The foreign matter determination unit 106 determines that the cleaning liquid Lc is mixed as a foreign matter in the corresponding detection flow path 74 when the intensity of the background light is out of a predetermined level (predetermined range) according to the processing liquid Lr. When the processing liquid Lr is replaced with the cleaning liquid Lc, the foreign matter determination unit 106 determines that replacement has been completed in the entire supply channel 29 based on an input from another control device or a user input. You may obtain a signal indicating The foreign matter determination unit 106 may detect the foreign matter based on the background light in the number of supply times after obtaining the signal indicating that the replacement has been completed in the entire supply channel 29 . For example, after replacing the liquid source (bottle) of the liquid medicine, it may be determined that the replacement is completed when the liquid medicine is discharged from the nozzle 30 a predetermined number of times.
 発生源推定部116は、異物検出ユニット70A~70Cによる複数箇所それぞれでの背景光の強度情報を利用した検出結果に基づいて、供給流路29の中から洗浄液Lcが混在した事象が発生した区画を推定する。発生源推定部116は、最もノズル30に近い位置に配置された異物検出ユニット70Aにおいて洗浄液Lcの混在が検出されたときに、洗浄液Lcの混在が発生した区画(異物検出の原因となる事象が発生した区画)を推定してもよい。以下では、図13を参照しながら、洗浄液Lcの混在が発生したと想定される区画の推定方法の一例について説明する。 The generation source estimating unit 116 selects a section in the supply channel 29 where the cleaning liquid Lc is mixed based on the detection result using the background light intensity information at each of a plurality of locations by the foreign matter detection units 70A to 70C. to estimate When the foreign matter detection unit 70A arranged at the position closest to the nozzle 30 detects the presence of the cleaning liquid Lc, the generation source estimating unit 116 determines the section where the cleaning liquid Lc is mixed (the event causing the foreign matter detection). generated partitions) may be estimated. An example of a method for estimating a section where it is assumed that the cleaning liquid Lc is mixed will be described below with reference to FIG. 13 .
 図13には、異物検出ユニット70A~70Cそれぞれについて、供給回数に対する背景光の強度の推移を表すグラフが示されている。図13において、「70A」は、異物検出ユニット70Aにおいて取得された背景光の強度の推移を示す。「70B」は、異物検出ユニット70Bにおいて取得された背景光の強度の推移を示しており、「70C」は、異物検出ユニット70Cにおいて取得された背景光の強度の推移を示している。 FIG. 13 shows a graph representing the transition of background light intensity with respect to the number of times of supply for each of the foreign matter detection units 70A to 70C. In FIG. 13, "70A" indicates the transition of the background light intensity acquired by the foreign object detection unit 70A. "70B" indicates the transition of the background light intensity obtained by the foreign object detection unit 70B, and "70C" indicates the transition of the background light intensity obtained by the foreign object detection unit 70C.
 「TLv」は、検出流路74内に洗浄液Lcが満たされているときの背景光の強度のレベル(範囲)である。「RLv」は、検出流路74内に処理液Lrが満たされているときの背景光の強度のレベル(範囲)である。洗浄液Lc又は処理液Lrに応じた背景光の強度レベルTLv,RLvは、予め測定されている。図13に示される例では、洗浄液Lc又は処理液Lrの薬液の供給回数が「tc2」回であるときに、洗浄液Lcから処理液Lrへの置換が開始されている。洗浄液Lcから処理液Lrへの置換開始後、上流から順に、背景光の強度の計測値が、洗浄液Lcに応じた強度レベルTLvから処理液Lrに応じた強度レベルRLvに変化していく。 "TLv" is the intensity level (range) of the background light when the detection channel 74 is filled with the cleaning liquid Lc. “RLv” is the intensity level (range) of the background light when the detection channel 74 is filled with the treatment liquid Lr. The background light intensity levels TLv and RLv corresponding to the cleaning liquid Lc or the processing liquid Lr are measured in advance. In the example shown in FIG. 13, the replacement of the cleaning liquid Lc with the processing liquid Lr is started when the number of times the cleaning liquid Lc or the processing liquid Lr is supplied is "tc2" times. After starting the replacement of the cleaning liquid Lc with the treatment liquid Lr, the measured value of the intensity of the background light gradually changes from the intensity level TLv corresponding to the cleaning liquid Lc to the intensity level RLv corresponding to the treatment liquid Lr.
 薬液の供給回数が「ts」回であるときに、異物検出ユニット70Aにおいて、背景光の強度が、処理液Lrに応じた強度レベルRLvから外れており、処理液Lrに洗浄液Lcが混在していると判定される。供給回数がts回である時点で、制御部80(異物判定部106)は、置換が完了したことを示す信号を取得している。異物検出ユニット70Aにおいて、洗浄液Lcの混在が発生していなければ、点線で示すグラフのように、ts回の時点で背景光の強度は処理液Lrに応じた強度レベルRLvに達している。 When the number of times the chemical liquid is supplied is "ts", the intensity of the background light in the foreign object detection unit 70A is outside the intensity level RLv corresponding to the treatment liquid Lr, and the cleaning liquid Lc is mixed with the treatment liquid Lr. is determined to be When the number of supply times is ts, the control section 80 (foreign matter determination section 106) acquires a signal indicating that the replacement has been completed. In the foreign matter detection unit 70A, if the cleaning liquid Lc is not mixed, the intensity of the background light reaches the intensity level RLv corresponding to the treatment liquid Lr at the time ts, as indicated by the dotted line in the graph.
 発生源推定部116は、異物検出ユニット70Aにおいて洗浄液Lcの混在が検出された場合に、異物検出ユニット70B,70Cでの異物の有無についての過去の判定結果を参照する。発生源推定部116は、例えば、ts回から所定の回数(「b」回)だけ遡った時点における他の検出ユニットの判定結果を参照する。この所定の回数は、図8に示される例と同様に、異物検出ユニット70Aで検出された処理液内の洗浄液Lcが異物検出ユニット70Bの検出流路74を過去に通過したと想定される時点での判定結果を参照できるように設定されている。 When the foreign matter detection unit 70A detects that the cleaning liquid Lc is mixed, the generation source estimating unit 116 refers to the past judgment results regarding the presence or absence of foreign matter in the foreign matter detection units 70B and 70C. The source estimating unit 116 refers to the determination result of another detection unit at the point in time, for example, a predetermined number of times (“b” times) before the ts time. As in the example shown in FIG. 8, the predetermined number of times is the time when it is assumed that the cleaning liquid Lc in the processing liquid detected by the foreign matter detection unit 70A has passed through the detection channel 74 of the foreign matter detection unit 70B in the past. It is set so that you can refer to the judgment results in
 一例では、発生源推定部116は、所定の回数だけ遡った時点(「ts-b」回)において、異物検出ユニット70B,70Cの双方で洗浄液Lcの混在が検出されていなかった場合には、異物検出ユニット70Aと異物検出ユニット70Bとの間の区画で洗浄液Lcの混在が発生している(発生した)と推定する。発生源推定部116は、(ts-b)回の時点において、異物検出ユニット70Bで洗浄液Lcの混在が検出され、且つ異物検出ユニット70Cで洗浄液Lcの混在が検出されていなかった場合には、異物検出ユニット70Bと異物検出ユニット70Cとの間の区画で洗浄液Lcの混在が発生している(発生した)と推定する。図13には、このように推定される場合の判定結果が例示されている。 For example, when the foreign matter detection units 70B and 70C do not detect the presence of the cleaning liquid Lc at a point in time (“ts-b” times) going back a predetermined number of times, the generation source estimating unit 116 It is assumed that the cleaning liquid Lc is (occurred) mixed in the section between the foreign object detection unit 70A and the foreign object detection unit 70B. When the foreign matter detection unit 70B detects the mixture of the cleaning liquid Lc and the foreign matter detection unit 70C does not detect the mixture of the cleaning liquid Lc at the time (ts-b), the generation source estimation unit 116 It is presumed that the cleaning liquid Lc is (occurred) mixed in the section between the foreign object detection unit 70B and the foreign object detection unit 70C. FIG. 13 exemplifies determination results in the case of such estimation.
 発生源推定部116は、所定の回数だけ遡った時点において、異物検出ユニット70B,70Cの双方で洗浄液Lcの混在が検出されていた場合には、異物検出ユニット70Cよりも上流の区画で洗浄液Lcの混在が発生している(発生した)と推定する。要因推定部118は、異物判定部106による背景光の強度に基づく検出結果と、発生源推定部116が推定した区画とに基づいて、上記事象の発生の要因を推定する。発生源推定部116は、図13に示される例の判定結果が得られた際に、フィルタ46又はポンプ42内において薬液の置換不足が、異物検出の原因となる事象の要因であると推定してもよい。 When both the foreign matter detection units 70B and 70C detect the mixture of the cleaning liquid Lc at the point in time going back a predetermined number of times, the generation source estimating unit 116 detects the cleaning liquid Lc in the section upstream of the foreign matter detection unit 70C. It is estimated that the mixture of The factor estimator 118 estimates the cause of the event based on the detection result based on the intensity of the background light by the foreign object determiner 106 and the section estimated by the source estimator 116 . When the determination result of the example shown in FIG. 13 is obtained, the source estimating unit 116 estimates that insufficient replacement of the chemical solution in the filter 46 or the pump 42 is the cause of the event that causes foreign matter detection. may
 フィルタ46内において薬液が混在してしまう事象として、以下のものが考えられる。処理液Lrを用いた処理の開始前に供給流路29の配管内を洗浄するために通液させた洗浄液Lcが、フィルタ46内部の狭小領域(図示しないが異物を捕集する材料の内部流路など)に滞留してしまい、滞留した洗浄液Lcが排出されない可能性がある。この場合、洗浄液Lcの一部が排出されない状態で、処理液Lrが供給流路29の配管内に充填されてしまう。フィルタ46内部の狭小領域では供給流路29内の他の流路に比べて圧力損失が高くなりやすいので、処理液Lrを充填した際にすぐに溶出されずに、実処理時の送液のための圧力制御において不意のタイミングで洗浄液Lcが溶出し得る。 The following events are conceivable as events in which the chemical solution is mixed in the filter 46. The cleaning liquid Lc passed through to clean the inside of the pipe of the supply flow path 29 before the start of the processing using the processing liquid Lr passes through a narrow area inside the filter 46 (not shown but an internal flow of a material that collects foreign matter). There is a possibility that the accumulated cleaning liquid Lc may not be discharged. In this case, the processing liquid Lr is filled in the pipe of the supply flow path 29 while part of the cleaning liquid Lc is not discharged. In the narrow area inside the filter 46, the pressure loss tends to be higher than in the other flow paths in the supply flow path 29. Therefore, when the processing liquid Lr is filled, it is not eluted immediately, and the flow rate of the liquid during actual processing is reduced. The cleaning liquid Lc may be eluted at an unexpected timing in the pressure control for cleaning.
 第2実施形態に係る基板処理システム1に対して、第1実施形態で示される例が適用されてもよい。異物検出ユニット70は、受光信号から得られる評価値に基づくパーティクルの検出と、背景光の強度を示す強度情報に基づく他の薬液の混在の検出とを実行してもよい。評価値に基づく検出では、受光信号の瞬時値の変動に基づき異物が検出されるのに対して、強度情報に基づく検出では、受光信号の全体における時間平均の大きさに基づき異物が検出される。異物検出ユニット70は、評価値に基づく検出及び強度情報に基づく検出の少なくとも一方において異物を検出した場合に、対応する検出流路74内の処理液に異物が含まれていると判定してもよい。 The example shown in the first embodiment may be applied to the substrate processing system 1 according to the second embodiment. The foreign matter detection unit 70 may detect particles based on the evaluation value obtained from the received light signal, and detect the presence of other chemicals based on intensity information indicating the intensity of background light. In the detection based on the evaluation value, a foreign object is detected based on fluctuations in the instantaneous value of the received light signal. . If a foreign substance is detected in at least one of the detection based on the evaluation value and the detection based on the intensity information, the foreign substance detection unit 70 determines that the processing liquid in the corresponding detection channel 74 contains the foreign substance. good.
 要因推定部118は、強度情報に基づく検出において異物が検出された場合に、上述の例と同様に、供給流路29内を流れる処理液の流速の計測結果に基づいて、上記事象の発生の要因を絞り込んでもよい。要因推定部118は、強度情報に基づく検出において異物が検出された場合に、上述の例と同様に、上記事象が発生した際のワークWへの処理液の供給頻度に基づいて、上記事象の発生の要因を絞り込んでもよい。 When a foreign object is detected in the detection based on the intensity information, the factor estimating unit 118 determines the occurrence of the event based on the measurement result of the flow velocity of the processing liquid flowing through the supply channel 29, as in the above example. You can narrow down the factors. When a foreign object is detected in the detection based on the intensity information, the factor estimating unit 118 determines the occurrence of the event based on the supply frequency of the processing liquid to the workpiece W when the event occurs, as in the above example. You may narrow down the factor of generation|occurrence|production.
 強度情報に基づく検出において異物が検出された場合に、オペレータ等の指示に基づき、他の薬液(洗浄液Lc)を排出する処置が施されてもよい。他の薬液を排出する処理の一例では、背景光の強度が処理液(処理液Lr)に応じた強度レベルに達するまで、処理液Lrの送液状態が維持される。この処置において、排液可能な待機バス上でのダミー吐出が、実際に処理液LrをワークWに供給するときよりも連続的に加圧する時間を短くした状態で、繰り返し行われてもよい。このように圧力変動の頻度を増加させることで、滞留した洗浄液Lcが処理液Lrに溶出することを促すことができる。 When a foreign object is detected in detection based on intensity information, treatment may be performed to discharge other chemical liquid (cleaning liquid Lc) based on instructions from the operator or the like. In another example of the process of discharging the chemical liquid, the feeding state of the treatment liquid Lr is maintained until the intensity of the background light reaches an intensity level corresponding to the treatment liquid (treatment liquid Lr). In this procedure, the dummy discharge on the standby bus capable of discharging the liquid may be repeatedly performed in a state in which the continuous pressurization time is shortened compared to when the processing liquid Lr is actually supplied to the work W. By increasing the frequency of pressure fluctuations in this way, it is possible to promote the elution of the retained cleaning liquid Lc into the treatment liquid Lr.
 泡の発生に起因した異物の検出と薬液の置換不足に起因した異物の検出とが、略同一のタイミングで行われる場合もある。例えば、送液部40と吐出バルブ34との間で評価値に基づく検出及び強度情報に基づく検出により、略同一のタイミングで処理液内に異物が発生していると推定される場合がある。この場合、要因推定部118は、フィルタ46又はポンプ42での泡の存在と、フィルタ46での他の薬液の滞留との2つの要因があると推定してもよい。 In some cases, the detection of foreign matter caused by the generation of bubbles and the detection of foreign matter caused by insufficient replacement of the chemical liquid are performed at approximately the same timing. For example, it may be estimated that a foreign substance is generated in the treatment liquid at approximately the same timing by detection based on the evaluation value and detection based on the intensity information between the liquid feeding unit 40 and the ejection valve 34 . In this case, the factor estimator 118 may estimate that there are two factors: the existence of bubbles in the filter 46 or the pump 42 and the retention of other chemical liquid in the filter 46 .
 2つの要因が推定された場合に、背景光の強度が処理液に応じた強度レベルに達するまで、ダミー吐出が継続されてもよい。泡が存在する状態で背景光の強度が先に安定した場合には、断続的にダミー吐出を行っていた状態から、ダミー吐出時の圧力の増減の切替え頻度を少なくして、振動による微小泡の増加リスクを抑え、泡の低減をより促してもよい。このように、要因推定部118(制御装置20)は、異物の検出の原因となる複数の事象を推定した場合に、推定後の基板処理システム1におけるダミー吐出といった処置動作又は他動作の進行に伴い、その後の各事象の推移を監視してもよい。例えば、要因推定部118は、異物検出ユニット70A~70Cにおける受光信号に基づいて、複数の事象のうちのどの事象が安定したか、すなわち、どの事象の影響が解消したかを順次判断してもよい。要因推定部118(制御装置20)によって、事象の安定が順次判断され、ある時点でまだ安定していない事象に応じた必要な処置動作が判断されることで、複数の事象が発生した場合に効率的な安定化を図ることができる。 When two factors are estimated, dummy ejection may be continued until the intensity of the background light reaches an intensity level corresponding to the treatment liquid. When the intensity of the background light stabilizes first in the presence of bubbles, the frequency of switching between increases and decreases in pressure during dummy ejection is reduced from the state in which dummy ejection was performed intermittently, and microbubbles caused by vibration are reduced. It may be possible to suppress the risk of increase in , and promote the reduction of foam. In this way, the factor estimator 118 (control device 20), when estimating a plurality of events that cause the detection of a foreign object, determines whether a treatment operation such as dummy ejection or another operation in the substrate processing system 1 after estimation progresses. Along with this, the transition of each subsequent event may be monitored. For example, factor estimating section 118 may sequentially determine which of the plurality of events has stabilized, that is, which event has eliminated its influence, based on the received light signals in foreign object detection units 70A to 70C. good. The factor estimating unit 118 (control device 20) sequentially determines whether the events have stabilized and determines the necessary action to be taken in response to the events that have not yet stabilized at a certain point in time. Efficient stabilization can be achieved.
 以上に説明した第2実施形態に係る基板処理システム1においても、第1実施形態と同様に、処理液供給部28において異物の検出の原因となる事象が発生した要因を容易に把握することが可能となる。また、出射光に含まれる背景光の強度を示す強度情報に基づいて、処理液内の別の薬液を異物として検出することで、処理液等の薬液の置換不足を容易に検出することが可能となる。 In the substrate processing system 1 according to the second embodiment described above, as in the first embodiment, it is possible to easily grasp the cause of the phenomenon that causes the detection of the foreign matter in the processing liquid supply section 28 . It becomes possible. Also, based on the intensity information indicating the intensity of the background light contained in the emitted light, it is possible to easily detect insufficient replacement of chemicals such as the treatment liquid by detecting other chemicals in the treatment liquid as foreign matter. becomes.
 1…基板処理システム、2…塗布現像装置、20…制御装置、U1…液処理ユニット、28…処理液供給部、29…供給流路、30…ノズル、34…吐出バルブ、40…送液部、42…ポンプ、46…フィルタ、50…補充部、52…供給源、60…流速測定部、70,70A,70B,70C…異物検出ユニット、116…発生源推定部、118…要因推定部、W…ワーク。 DESCRIPTION OF SYMBOLS 1... Substrate processing system 2... Coating and developing apparatus 20... Control apparatus U1... Liquid processing unit 28... Processing liquid supply part 29... Supply flow path 30... Nozzle 34... Discharge valve 40... Liquid sending part , 42... pump, 46... filter, 50... replenishment unit, 52... supply source, 60... flow velocity measurement unit, 70, 70A, 70B, 70C... foreign object detection unit, 116... generation source estimation unit, 118... factor estimation unit, W...Work.

Claims (8)

  1.  処理液を吐出可能なノズルと、前記処理液の供給源と、前記ノズルと前記供給源との間を接続する供給流路とを有し、基板に対して前記処理液を供給する処理液供給部と、
     前記供給流路に沿って位置が互いに異なる複数箇所に配置され、光の照射に伴い前記供給流路内から出射された出射光を受光して得られる受光信号に基づいて、前記処理液に含まれる異物を検出する複数の異物検出部と、
     前記複数の異物検出部による前記複数箇所それぞれでの検出結果に基づいて、前記供給流路の中から前記異物の検出の原因となる事象が発生した区画を推定する発生源推定部と、を備える基板処理装置。
    A processing liquid supply having a nozzle capable of ejecting a processing liquid, a supply source of the processing liquid, and a supply channel connecting between the nozzle and the supply source, and supplying the processing liquid to a substrate. Department and
    are arranged at a plurality of different positions along the supply channel, and are contained in the treatment liquid based on a received light signal obtained by receiving emitted light emitted from the supply channel as a result of irradiation with light; a plurality of foreign matter detection units that detect foreign matter that is
    a generation source estimating unit for estimating a section in the supply channel in which an event causing the detection of the foreign matter has occurred, based on detection results at each of the plurality of locations by the plurality of foreign matter detecting units. Substrate processing equipment.
  2.  前記処理液供給部は、
      前記供給流路内の前記処理液に含まれる異物を捕集するフィルタと、前記ノズルに向けて前記処理液を送り出すポンプとを含む送液部と、
      前記供給流路のうちの前記送液部と前記ノズルとの間の流路を開閉する吐出バルブと、
      前記供給源から前記送液部に前記処理液を補充する補充部と、を有し、
     前記複数の異物検出部は、
      前記ノズルと前記吐出バルブとの間の流路に配置された第1異物検出部と、
      前記吐出バルブと前記送液部との間の流路に配置された第2異物検出部と、
      前記補充部と前記送液部との間の流路に配置された第3異物検出部と、を有する、請求項1に記載の基板処理装置。
    The processing liquid supply unit
    a liquid sending unit including a filter for collecting foreign matter contained in the processing liquid in the supply channel, and a pump for sending the processing liquid toward the nozzle;
    a discharge valve that opens and closes a flow path between the liquid sending portion and the nozzle in the supply flow path;
    a replenishing unit that replenishes the processing liquid from the supply source to the liquid feeding unit;
    The plurality of foreign object detection units are
    a first foreign matter detector disposed in a flow path between the nozzle and the discharge valve;
    a second foreign object detection unit arranged in a flow path between the discharge valve and the liquid sending unit;
    2. The substrate processing apparatus according to claim 1, further comprising a third foreign matter detection section arranged in a flow path between said replenishment section and said liquid sending section.
  3.  前記発生源推定部が推定した前記区画に応じて、前記事象の発生の要因を推定する要因推定部を更に備える、請求項1又は2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, further comprising a factor estimating unit that estimates a factor of occurrence of the event according to the section estimated by the source estimating unit.
  4.  前記ノズルまで前記処理液を導く流路内を流れる前記処理液の流速を測定する流速測定部を更に備え、
     前記要因推定部は、前記流速測定部による測定結果に基づいて、前記事象の発生の要因を絞り込む、請求項3に記載の基板処理装置。
    further comprising a flow velocity measuring unit for measuring a flow velocity of the treatment liquid flowing in a channel leading the treatment liquid to the nozzle;
    4. The substrate processing apparatus according to claim 3, wherein said factor estimating section narrows down factors of occurrence of said event based on a result of measurement by said flow velocity measuring section.
  5.  前記要因推定部は、前記事象が発生した際の前記基板への前記処理液の供給頻度に基づいて、前記事象の発生の要因を絞り込む、請求項3又は4に記載の基板処理装置。 5. The substrate processing apparatus according to claim 3, wherein said factor estimating unit narrows down factors for occurrence of said event based on the frequency of supply of said processing liquid to said substrate when said event occurs.
  6.  前記複数の異物検出部それぞれは、前記出射光に含まれる背景光の強度を示す強度情報に基づいて、前記処理液に含まれる別の薬液を前記異物として検出する、請求項1~5のいずれか一項に記載の基板処理装置。 6. The foreign matter detector according to any one of claims 1 to 5, wherein each of said plurality of foreign matter detection units detects another chemical liquid contained in said treatment liquid as said foreign matter based on intensity information indicating intensity of background light included in said emitted light. 1. The substrate processing apparatus according to claim 1.
  7.  処理液を吐出可能なノズルから、基板に対して前記処理液を供給することと、
     前記処理液の供給源と前記ノズルとの間を接続する供給流路に沿って位置が互いに異なる複数箇所において、光の照射に伴い前記供給流路内から出射された光を受光して得られる受光信号に基づいて、前記処理液に含まれる異物を検出することと、
     前記複数箇所それぞれでの前記異物の検出結果に基づいて、前記供給流路の中から前記異物の検出の原因となる事象が発生した区画を推定することと、を含む基板処理方法。
    supplying the processing liquid to the substrate from a nozzle capable of ejecting the processing liquid;
    Obtained by receiving light emitted from the supply channel accompanying light irradiation at a plurality of positions different from each other along the supply channel connecting between the supply source of the treatment liquid and the nozzle detecting a foreign substance contained in the treatment liquid based on the received light signal;
    and estimating a section in the supply channel in which an event causing detection of the foreign matter has occurred, based on detection results of the foreign matter at each of the plurality of locations.
  8.  請求項7に記載の基板処理方法を装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium storing a program for causing an apparatus to execute the substrate processing method according to claim 7.
PCT/JP2022/002242 2021-02-03 2022-01-21 Substrate-processing device, substrate-processing method, and storage medium WO2022168641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579442A JPWO2022168641A1 (en) 2021-02-03 2022-01-21
KR1020237028824A KR20230141805A (en) 2021-02-03 2022-01-21 Substrate processing apparatus, substrate processing method, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-015733 2021-02-03
JP2021015733 2021-02-03
JP2021128413 2021-08-04
JP2021-128413 2021-08-04

Publications (1)

Publication Number Publication Date
WO2022168641A1 true WO2022168641A1 (en) 2022-08-11

Family

ID=82741730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002242 WO2022168641A1 (en) 2021-02-03 2022-01-21 Substrate-processing device, substrate-processing method, and storage medium

Country Status (4)

Country Link
JP (1) JPWO2022168641A1 (en)
KR (1) KR20230141805A (en)
TW (1) TW202245103A (en)
WO (1) WO2022168641A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084927A1 (en) * 2014-11-28 2016-06-02 東京エレクトロン株式会社 Substrate treatment method and substrate treatment apparatus
WO2019117043A1 (en) * 2017-12-12 2019-06-20 東京エレクトロン株式会社 Liquid supply device and liquid supply method
WO2019202962A1 (en) * 2018-04-18 2019-10-24 東京エレクトロン株式会社 Abnormality detection device for chemicals, liquid processing device, substrate processing device, abnormality detection method for chemicals, liquid processing method, and substrate processing method
JP2020119996A (en) * 2019-01-24 2020-08-06 東京エレクトロン株式会社 Substrate processing device, substrate processing system, and substrate processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100209024B1 (en) 1996-07-10 1999-07-15 정몽규 Heater driving device of starting engine in winter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084927A1 (en) * 2014-11-28 2016-06-02 東京エレクトロン株式会社 Substrate treatment method and substrate treatment apparatus
WO2019117043A1 (en) * 2017-12-12 2019-06-20 東京エレクトロン株式会社 Liquid supply device and liquid supply method
WO2019202962A1 (en) * 2018-04-18 2019-10-24 東京エレクトロン株式会社 Abnormality detection device for chemicals, liquid processing device, substrate processing device, abnormality detection method for chemicals, liquid processing method, and substrate processing method
JP2020119996A (en) * 2019-01-24 2020-08-06 東京エレクトロン株式会社 Substrate processing device, substrate processing system, and substrate processing method

Also Published As

Publication number Publication date
TW202245103A (en) 2022-11-16
JPWO2022168641A1 (en) 2022-08-11
KR20230141805A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
US9631963B2 (en) Solution processing apparatus, solution processing method, and non-transitory computer-readable recording medium
US5938847A (en) Method and apparatus for coating a film on an object being processed
TWI652736B (en) Substrate processing apparatus
US10500617B2 (en) Substrate liquid treatment apparatus, tank cleaning method and non-transitory storage medium
US9649577B2 (en) Bubble removing method, bubble removing apparatus, degassing apparatus, and computer-readable recording medium
US6446644B1 (en) Chemical solutions system for processing semiconductor materials
JP6924846B2 (en) Liquid supply device and liquid supply method
JP2009525603A (en) Pulse chemical distribution system
JP2024040273A (en) Foreign matter detection device, substrate processing device, foreign matter detection method, and storage medium
WO2022168641A1 (en) Substrate-processing device, substrate-processing method, and storage medium
JP2008235812A (en) Method of detecting abnormal supply of substrate processing apparatus, and the substrate processing apparatus using the same
JP7107362B2 (en) Liquid processing apparatus and liquid processing method
JP5095570B2 (en) Fault detection method for concentration control system and substrate processing apparatus using the same
JPH08145300A (en) Substrate processing device
JP5290837B2 (en) Substrate processing apparatus and substrate processing method
JP7126927B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP7267088B2 (en) Tanks, substrate processing equipment, and methods of using tanks
JP7253961B2 (en) SUBSTRATE PROCESSING APPARATUS AND ABNORMALITY DETECTION METHOD
KR102295545B1 (en) Apparatus and method for wafer cleaning
TWI833950B (en) Tank, substrate processing device, and method of using tank
JP2013202605A (en) Cleaning apparatus and method
KR20020010474A (en) Apparatus for controlling chemical fiux in a wafer cleaning system and the method thereof
CN115335686A (en) Foreign matter detection device, substrate processing apparatus, and method for confirming operation of foreign matter detection device
TW202343541A (en) Liquid processing method, liquid processing device, and program
JP2016023958A (en) Concentration measuring device and endoscope washing and disinfecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579442

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237028824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749516

Country of ref document: EP

Kind code of ref document: A1