WO2022168459A1 - Resin composite, method for producing resin composite, and pre-fibrillated cellulose fibers - Google Patents

Resin composite, method for producing resin composite, and pre-fibrillated cellulose fibers Download PDF

Info

Publication number
WO2022168459A1
WO2022168459A1 PCT/JP2021/046164 JP2021046164W WO2022168459A1 WO 2022168459 A1 WO2022168459 A1 WO 2022168459A1 JP 2021046164 W JP2021046164 W JP 2021046164W WO 2022168459 A1 WO2022168459 A1 WO 2022168459A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
cellulose
resin composite
less
fiber
Prior art date
Application number
PCT/JP2021/046164
Other languages
French (fr)
Japanese (ja)
Inventor
雄二郎 福田
惟緒 角田
健一郎 佐々木
伸彦 山本
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Publication of WO2022168459A1 publication Critical patent/WO2022168459A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a resin composite containing finely divided cellulose fibers, a method for producing this resin composite, and a cellulose fiber pre-fibrillated material used for this resin composite.
  • the fine fibrous cellulose obtained by finely disintegrating plant fibers includes microfibril cellulose and cellulose nanofibers, and is fine fibers with a fiber diameter of about 1 nm to several tens of ⁇ m.
  • Fine fibrous cellulose is lightweight, has high strength and high modulus of elasticity, and has a low coefficient of linear thermal expansion, and is therefore suitably used as a reinforcing material for resin compositions.
  • Methods for producing a resin composite containing finely divided cellulose fibers include a method in which cellulose that has been finely refined to a nano-level is combined with a resin, and a method in which light pre-fibrillation is performed by a method such as mechanical fibrillation.
  • a method of fibrillating cellulose together with a resin using a kneader discloses a beating treatment of pulp under low-concentration conditions regarding the latter method.
  • Patent Document 1 describes that a resin composite containing cellulose preliminarily fibrillated by the method is superior in tensile modulus and tensile strength as compared to the resin alone.
  • Patent Document 2 by heat-treating a cellulose raw material and urea, a cellulose raw material in which a part of the hydroxy groups of cellulose is substituted with a carbamate group is obtained, and this is mechanically treated (preliminary fibrillation) to obtain fine particles. to obtain fine fibrous cellulose.
  • the fine fibrous cellulose obtained by this method has a freeness of 100 mL or less, and is more hydrophilic than conventional fine fibrous cellulose. Since it has a high affinity with low-polarity resins and the like, it disperses in resins with high uniformity and provides a composite with high tensile strength.
  • Patent Documents 3 and 4 disclose a technique for increasing the solid content concentration by lowering the pH of fibril cellulose that has been beaten and refined to reduce water retention and increase the concentration. It is
  • the present invention provides the following. (1) A resin composite containing a resin and cellulose fibers, wherein the resin composite is obtained by kneading the resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader, and the cellulose
  • the pre-fibrillated cellulose fiber material is obtained by mechanically treating pulp, and the cellulose fiber pre-fibrillated material has a fiber length of 0.1 mm or more and less than 0.5 mm in 40% or more and less than 58%, and a fiber length of 1.5 mm or more.
  • .0 mm is present at a rate of 5% or more and less than 10%, and the cellulose fibers contained in the resin composite have an average fiber width of 1 ⁇ m or less at a rate of 50% or more by volume.
  • Complex. (2) The resin composite according to (1), wherein the pulp has a solid content concentration of 10% by mass or more during the mechanical treatment. (3) The resin composite according to (1) or (2), wherein the mechanical treatment is performed using at least one of a disc refiner and a conical refiner. (4) A method for producing a resin composite containing a resin and cellulose fibers, comprising a mechanical treatment step of mechanically treating pulp to obtain a cellulose fiber pre-fibrillation product, the resin and the cellulose fiber pre-fibrillation.
  • a kneading step of obtaining a resin composite by kneading the material with a uniaxial or multiaxial kneader and the cellulose fiber pre-disentangled material has a fiber length of 0.1 mm or more and less than 0.5 mm at 40% or more. Less than 58%, a fiber length of 1.5 mm or more and less than 2.0 mm exists at a rate of 5% or more and less than 10%, and the cellulose fibers contained in the resin composite have an average fiber width of 1 ⁇ m or less. % or more, a method for producing a resin composite.
  • a cellulose fiber pre-fibrillated material used for a resin composite in which the fiber length is 0.1 mm or more and less than 0.5 mm is 40% or more and less than 58%, and the fiber length is 1.5 mm or more and less than 2.0 mm is 5%.
  • a cellulose fiber pre-fibrillated material present at a rate of not less than 10%.
  • the present invention it is possible to provide a resin composite that has a high tensile modulus and a high tensile strength, and is excellent in balance with tensile elongation.
  • a method for producing a resin composite by which this resin composite can be obtained it is possible to provide a cellulose fiber pre-fibrillated material used for this resin composite.
  • the resin composite of the present invention contains a resin and cellulose fibers, and the resin composite is obtained by kneading the resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader,
  • the cellulose fiber pre-fibrillated material is obtained by mechanically treating pulp, and the cellulose fiber pre-fibrillated material has a fiber length of 0.1 mm or more and less than 0.5 mm in 40% or more and less than 58%, and a fiber length of 1.5 mm.
  • More than 2.0 mm and less than 2.0 mm are present at a rate of 5% or more and less than 10%, and the rate of the cellulose fibers contained in the resin composite having an average fiber width of 1 ⁇ m or less is 50% or more by volume.
  • the fiber length distribution and fine content measurement of the cellulose fiber pre-fibrillated product indicates the number average fiber length based on ISO16065, and is measured using a fiber tester manufactured by Lorentzen & Wettre, a fiber tester manufactured by ABB, and a flak manufactured by Valmet.
  • the average fiber length can be determined by image analysis such as Sionator.
  • the cellulose fiber is fibrous cellulose, and may further contain a fibrous cellulose derivative.
  • the cellulose fiber contained in the resin composite of the present invention has an average fiber width of 1 ⁇ m or less, and is 50% by volume or more, and 55% by volume or more from the viewpoint of obtaining a sufficient balance between strength improvement effect and elongation. is preferred, 60% by volume or more is more preferred, and 65% by volume or more is even more preferred.
  • the average fiber width of the cellulose fibers contained in the resin composite can be measured by X-ray computed tomography (hereinafter sometimes abbreviated as X-CT).
  • the content of the cellulose fiber contained in the resin composite of the present invention is preferably 0.5 to 30% by mass, preferably 1.0 to 25% by mass, with respect to the entire resin composite from the viewpoint of obtaining a sufficient reinforcing effect. % is more preferred, and 3.0 to 20% by mass is even more preferred.
  • thermoplastic resins As resins used in the present invention, the following general thermoplastic resins having a melting temperature of 250° C. or less can be mentioned.
  • thermoplastic resins include polyolefin resin, polyamide resin, polyvinyl chloride, polystyrene, polyvinylidene chloride, fluororesin, (meth)acrylic resin, polyester, polylactic acid, copolymer resin of lactic acid and ester, poly Glycolic acid, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyphenylene oxide, polyurethane, polyacetal, vinyl ether resin, polysulfone resin, cellulose resin (triacetylated cellulose, diacetylated cellulose, etc.), etc. can be used. can.
  • polystyrene resin As the polyolefin resin, it is possible to use polyethylene, polypropylene (hereinafter also referred to as "PP"), ethylene-propylene copolymer, polyisobutylene, polyisoprene, polybutadiene, and the like.
  • Polyamide resin (PA) is also expected to interact with hydroxyl groups and acetyl groups of cellulose that are not affected by urea, so it can be used favorably.
  • PA includes polyamide 6 (nylon 6, PA6), polyamide 11 (nylon 11, PA11), polyamide 12 (nylon 12, PA12), polyamide 66 (nylon 66, PA66), polyamide 46 (nylon 46, PA46), polyamide 610 (nylon 610, PA610), polyamide 612 (nylon 612, PA612)), etc., aromatic diamines such as phenylenediamine and aromatic dicarboxylic acids such as terephthaloyl chloride and isophthaloyl chloride, or aromatic PAs composed of derivatives thereof etc. can be mentioned.
  • aliphatic PA more preferably PA6, PA11, and PA12, and particularly preferably PA6.
  • a polyamide resin may be used individually by 1 type, and may be used in mixture of 2 or more types of polyamide resins.
  • the resins exemplified above can be used not only as homopolymers, but also as block copolymers containing less than half of resins having various known functions.
  • the compatibilizing resin is used for the purpose of improving uniform mixing and adhesion between the cellulose fibers and the diluent resin.
  • Compatibilizing resins that can be used in the present invention include low-molecular-weight dicarboxylic acids capable of forming acid anhydrides such as maleic acid, succinic acid, and glutaric acid on polyolefin chains such as polypropylene and polyethylene.
  • MAPP maleic anhydride-modified polypropylene
  • MAE maleic anhydride-modified polyethylene
  • the factors that determine the characteristics of a compatibilizing resin include the amount of dicarboxylic acid added and the weight average molecular weight of the base material polyolefin resin.
  • a polyolefin resin having a large amount of dicarboxylic acid added increases compatibility with a hydrophilic polymer such as cellulose, but the molecular weight of the resin decreases during the addition process, resulting in a decrease in the strength of the molded product.
  • the amount of dicarboxylic acid added is 20-100 mgKOH/g, more preferably 45-65 mgKOH/g. When the amount added is small, the number of points that interact with the hydroxyl groups of cellulose and the hydroxyl groups and modified functional groups contained in modified cellulose in the resin decreases.
  • the addition amount when the addition amount is large, self-aggregation due to hydrogen bonding between carboxyl groups in the resin, or reduction in the molecular weight of the base material olefin resin due to excessive addition reaction, the strength as a reinforced resin is not achieved.
  • the molecular weight of the polyolefin resin is preferably 35,000 to 250,000, more preferably 50,000 to 100,000. If the molecular weight is smaller than this range, the strength of the resin is lowered, and if it is larger than this range, the viscosity increases significantly when melted, resulting in poor workability during kneading and molding defects.
  • the amount of the compatibilizing resin having the above characteristics is 10 to 70% by mass with respect to the amount of cellulose fiber (hereinafter sometimes referred to as "cellulose amount"), which is the total amount of cellulose and hemicellulose contained in the cellulose fiber. is preferred, and 20 to 50% by mass is more preferred. If the amount added exceeds 70% by mass, it is thought that the introduction of urea-derived isocyanic acid into cellulose fibers is inhibited and the formation of a complex between the compatibilizer and urea is promoted.
  • the compatibilizing resin may be used singly or as a mixed resin of two or more.
  • the polyolefin resin constituting the graft is not particularly limited. can be used.
  • a low-molecular-weight auxiliary agent that imparts primary amines such as urea may be added from the viewpoint of improving the strength of the resulting resin composite.
  • Urea is decomposed into ammonia and isocyanic acid when the temperature exceeds 135°C. is considered to promote the formation of urethane bonds by reaction, and it is speculated that the hydrophobicity increases compared to cellulose fibers that are not treated with urea.
  • the compatibilizing resin containing an acid anhydride by melt-kneading at the same time as the compatibilizing resin containing an acid anhydride, the ionic bonds between the amino groups newly introduced on the surface of the cellulose fiber by the urea treatment and the carboxylic acid possessed by the compatibilizing resin are promoted, and the cellulose is further strengthened. It is believed that it is possible to form a composite of the fiber and the compatibilizing resin.
  • the blending amount is cellulose, which is a combination of cellulose and hemicellulose contained in cellulose fibers, from the viewpoint of suppressing the decrease in strength due to aggregation of fibers due to too much urea. It is preferably 10 to 100% by mass, more preferably 15 to 80% by mass, and even more preferably 20 to 70% by mass based on 100% by mass of the amount of fiber (hereinafter sometimes referred to as "cellulose amount").
  • the method for producing a resin composite of the present invention includes a mechanical treatment step of mechanically treating pulp to obtain a cellulose fiber pre-fibrillated product, and a uniaxial or multiaxial treatment of the resin and the obtained cellulose fiber pre-fibrillated product. and a kneading step of obtaining a resin composite by kneading using a kneader.
  • the cellulose raw material refers to various forms of materials mainly composed of cellulose, including lignocellulose (NUKP), pulp (bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, Refined linters, jute, Manila hemp, kenaf and other herbaceous pulps), natural cellulose such as cellulose produced by microorganisms such as acetic acid bacteria, reprecipitation after dissolving cellulose in some solvent such as cuprammonium solution, morpholine derivative, etc.
  • NUKP lignocellulose
  • pulp bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, Refined linters, jute, Manila hemp, kenaf and other herbaceous pulps
  • natural cellulose such as cellulose produced by microorganisms such as acetic acid bacteria, reprecipitation after dissolving cellulose in some solvent such as cuprammonium solution, morpholine derivative, etc.
  • Regenerated cellulose, fine cellulose obtained by depolymerizing cellulose by subjecting the above cellulose raw material to hydrolysis, alkaline hydrolysis, enzymatic decomposition, explosion treatment, mechanical treatment such as vibration ball mill, etc., and acetylation denaturation are not affected.
  • Various cellulose derivatives and the like are exemplified.
  • Lignocellulose is a complex carbohydrate polymer that makes up the cell walls of plants, and is mainly composed of polysaccharides cellulose and hemicellulose, and aromatic polymer lignin.
  • the content of lignin can be adjusted by delignifying or bleaching the raw material pulp or the like.
  • pulp is used as a cellulose raw material, and the pulp is subjected to mechanical treatment to obtain a cellulose fiber pre-fibrillated material.
  • the mechanical treatment generally refers to mixing fibers in a dispersion medium represented by water and further pulverizing or fibrillating, and includes beating, fibrillation, dispersion, and the like. Refinement means that the fiber length, fiber diameter, etc. are reduced, and fibrillation means that the fiber becomes more fluffy.
  • Apparatuses used for mechanical treatment are not limited, but examples include apparatus of types such as high-speed rotary, colloid mill, high pressure, roll mill, ultrasonic, high pressure or ultrahigh pressure homogenizers, refiners, single disc refiners and Disc refiners such as double disc refiners, conical refiners, beaters, PFI mills, ball mills, stone mill mills, sand grinder mills, impact mills, dyno mills, ultrasonic mills, canda grinders, attritors, vibration mills, cutter mills, jet mills, home use Juicer Mixer, mortar, kneader, disperser, high-speed disaggregator, top finisher, etc.
  • apparatus of types such as high-speed rotary, colloid mill, high pressure, roll mill, ultrasonic, high pressure or ultrahigh pressure homogenizers, refiners, single disc refiners and Disc refiners such as double disc refiners, conical refiners, beaters, PFI mills, ball
  • the mechanical treatment is preferably beating using a Niagara beater, a refiner, or a kneader, and a disc refiner or conical refiner capable of high-concentration treatment, since the fibrillation of the fibers can be efficiently advanced. It is more preferable to be a beating treatment using.
  • the mechanical treatment is performed using a mixture containing the above pulp and a dispersion medium, and the solid content concentration at that time is 10% by mass or more, preferably 15% by mass or more, more preferably 18% by mass or more.
  • the dispersion medium is not limited, and an organic solvent or water can be used, but water is preferred.
  • Solids concentration is the concentration of solids in the mixture subjected to mechanical treatment.
  • the freeness is preferably about 100 mL to 500 mL, more preferably about 120 mL to 450 mL, still more preferably about 150 mL to 250 mL.
  • the cellulose fiber pre-fibrillated product has a wide fiber length distribution due to high-concentration mechanical treatment, and the final resin composite has long fibers that are advantageous for reinforcing strength properties and a state in which high reinforcing properties are maintained.
  • the fiber length distribution has a fiber length distribution of 40% or more and less than 58% of the fibers with a fiber length of 0.1 mm or more and less than 0.5 mm, and Fibers with a length of 1.5 mm or more and less than 2.0 mm are present in 5% or more and less than 10%, preferably fibers with a fiber length of 0.1 mm or more and less than 0.5 mm are present in 50% or more and less than 55%, and fibers Fibers with a length of 1.5 mm or more and less than 2.0 mm are present at 6% or more and less than 10%.
  • the fiber length in the present invention indicates the number average fiber length based on ISO16065.
  • the cellulose fiber pre-fibrillated material preferably contains 35 to 50% fines, more preferably 37 to 48%.
  • the fine portion refers to fibers having a fiber length of 0.2 mm or less. If the fines content is large, fibrillation proceeds by kneading, which will be described later, but if the condition exceeds 50%, it becomes difficult to leave long fibers in the resin composite, so an appropriate amount is preferable.
  • the cellulose fiber pre-fibrillated material may be used in an undenatured state, but may be chemically denatured by acetylation, oxidation, etherification, esterification, or the like.
  • the hydrogen atoms of the hydroxyl groups present on the cellulose surface of the cellulose raw material are acetyl groups ( CH 3 —CO—). Substitution with an acetyl group increases hydrophobicity and reduces aggregation during drying, thereby improving workability and facilitating dispersion and fibrillation in the resin after kneading. In addition, since highly reactive hydroxyl groups are substituted with acetyl groups, thermal decomposition of cellulose is suppressed and heat resistance during kneading is improved.
  • the degree of acetyl group substitution (DS) of the acetylated pulp is preferably 0.4 to 1.3, more preferably 0.6 to 1.1, from the viewpoint of workability and maintaining the crystallinity of cellulose fibers. adjust.
  • the acetylation reaction is carried out by suspending the raw material in an anhydrous aprotic polar solvent capable of swelling the cellulose raw material, such as N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), adding acetic anhydride, acetyl chloride, It is possible to carry out the reaction in a short time by using an acetyl halide such as, for example, in the presence of a base.
  • a base used in this acetylation reaction pyridine, N,N-dimethylaniline, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, etc. are preferred, and potassium carbonate is more preferred.
  • an acetylation reagent such as acetic anhydride
  • the reaction can be carried out under conditions that do not use an anhydrous aprotic polar solvent or a base.
  • the acetylation reaction is preferably carried out with stirring, for example, at room temperature to 100°C. After the reaction treatment, drying may be performed under reduced pressure to remove the acetylation reagent. If the target degree of acetyl group substitution is not reached, the acetylation reaction and subsequent vacuum drying may be repeated any number of times.
  • the acetylated pulp obtained by the acetylation reaction is preferably subjected to washing treatment such as water replacement after the acetylation treatment.
  • dehydration In the washing treatment, dehydration may be performed as necessary.
  • a pressurized dehydration method using a screw press, a vacuum dehydration method using volatilization or the like can be used, but the centrifugal dehydration method is preferable from the viewpoint of efficiency.
  • Dehydration is preferably carried out until the solid content in the solvent reaches approximately 10 to 60%.
  • the acetylated pulp that can be used in the present invention is subjected to a drying treatment after the dehydration step.
  • the drying treatment can be performed, for example, by using a microwave dryer, a blow dryer or a vacuum dryer, but a drum dryer, a paddle dryer, a Nauta mixer, a batch dryer with stirring blades, etc., can be used.
  • a dryer that can dry while drying is preferred. Drying is preferably carried out until the moisture content of the acetylated pulp reaches about 1 to 40%, more preferably 1 to 10%, even more preferably 1 to 5%.
  • Oxidation can be carried out as known. Oxidation treatment improves the handling when increasing the density of the pulp during preliminary fibrillation.
  • Oxidation treatment improves the handling when increasing the density of the pulp during preliminary fibrillation.
  • the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized to generate a group selected from the group consisting of an aldehyde group, a carboxyl group and a carboxylate group.
  • an ozone oxidation method may be mentioned. According to this oxidation reaction, at least the hydroxyl groups at the 2nd and 6th positions of the glucopyranose rings constituting cellulose are oxidized, and the cellulose chain is decomposed.
  • the amount of carboxyl groups in the oxidized cellulose measured in this way is preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, still more preferably 0.5 mmol/g, relative to the absolute dry mass.
  • the upper limit of the amount is preferably 3.0 mmol/g or less, more preferably 2.5 mmol/g or less, still more preferably 2.0 mmol/g or less. Therefore, the amount is preferably 0.1 to 3.0 mmol/g, more preferably 0.3 to 2.5 mmol/g, still more preferably 0.5 to 2.5 mmol/g, and 0.8 to 2.0 mmol /g is even more preferred.
  • Carboxymethylation modification can be carried out as known.
  • the carboxymethylation treatment improves the handling of the pulp during preliminary fibrillation to increase the density of the pulp.
  • the degree of carboxymethyl substitution per glucose unit of carboxymethylated cellulose is measured, for example, by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose (absolute dry) is precisely weighed and placed in a 300 mL Erlenmeyer flask with a common stopper. 2) Add 100 mL of methanol nitrate (100 mL of special grade concentrated nitric acid added to 1000 mL of methanol) and shake for 3 hours to convert carboxymethyl cellulose salt (carboxymethyl cellulose) into hydrogen carboxymethyl cellulose.
  • the degree of carboxymethyl substitution per anhydroglucose unit in carboxymethylated cellulose is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.10 or more.
  • the upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.40 or less, and even more preferably 0.35 or less. Therefore, the degree of carboxymethyl group substitution is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, even more preferably 0.10 to 0.35.
  • a resin composite is obtained by kneading a resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader.
  • a resin composite may be obtained by a method of collectively kneading a cellulose fiber pre-fibrillated material and a resin, or a cellulose fiber pre-fibrillated material and a resin (hereinafter referred to as "masterbatch resin”) may be obtained.
  • urea or the like may be kneaded together, if necessary.
  • the cellulose fiber pre-fibrillated product, the resin, and the urea can be mixed with a commercially available mixer or the like before being added. Even if the resin or the like is not pulverized, it can be fed by preparing a plurality of feeders, such as a feeder for pellets and a feeder for pre-fibrillated cellulose fibers.
  • the amount of the cellulose fiber content of the cellulose fiber preliminary defibrated material to be fed into the kneader is the sum of the cellulose fiber preliminary defibrated material, resin, and optionally used urea. It is preferably 35 to 85% by mass, more preferably 40 to 65% by mass, based on the amount.
  • a single-screw or multi-screw kneader is used.
  • a multi-axis kneader such as a twin-screw kneader or a four-screw kneader is used. It is desirable that a shaft kneader is used and that the parts constituting the screw include a plurality of kneaders, rotors, and the like.
  • the set temperature for melt-kneading can be adjusted according to the melting temperature of the resin used.
  • the heating setting temperature during melt-kneading is preferably about ⁇ 10° C., the lowest processing temperature recommended by the supplier of the thermoplastic resin.
  • the resin, the cellulose fiber pre-fibrillated material, and optionally used urea or the like that are put into the kneader in the kneading step are melt-kneaded, and at least a portion of the resin is melted and kneaded by the shearing force generated during this melt-kneading. is subjected to main defibration to prepare a resin composite containing cellulose fibers having an average fiber width of 1 ⁇ m or less at a rate of 50% by volume or more.
  • the method for producing a resin composite of the present invention may further include a dilution kneading step of kneading the resin composite obtained in the kneading step and a diluent resin.
  • a dilution kneading step of kneading the resin composite obtained in the kneading step and a diluent resin.
  • the resin composite prepared by the kneading step can be used as a masterbatch.
  • the resin composite obtained after the dilution-kneading step may contain cellulose fibers having an average fiber width of 1 ⁇ m or less at a rate of 50% by volume or more.
  • diluent resin used in the present invention a general thermoplastic resin having a melting temperature of 250° C. or lower can be used.
  • the diluent resin may be used singly or as a mixture of two or more resins.
  • a resin composite further containing the diluent resin can be obtained by adding a diluent resin to the masterbatch and melt-kneading it.
  • the diluent resin is added and melt-kneaded, the two components may be mixed at room temperature without heating and then melt-kneaded, or may be mixed with heating and melt-kneaded.
  • the same kneader as used in the kneading process can be used as the kneader for melting and kneading by adding the resin for dilution.
  • the melt-kneading temperature can be adjusted according to the resin used in the kneading step.
  • the heating setting temperature during melt-kneading is preferably about ⁇ 10° C., the lowest processing temperature recommended by the supplier of the thermoplastic resin. By setting the temperature within this temperature range, the cellulose fiber pre-defibrated material and the resin can be uniformly mixed.
  • the resin composite produced by the production method of the present invention further includes, for example, surfactants; polysaccharides such as starches and alginic acid; natural proteins such as gelatin, glue and casein; tannins, zeolites, ceramics, metal powders, etc. colorants; plasticizers; fragrances; pigments; flow control agents; leveling agents; conductive agents; may
  • surfactants for example, surfactants; polysaccharides such as starches and alginic acid; natural proteins such as gelatin, glue and casein; tannins, zeolites, ceramics, metal powders, etc. colorants; plasticizers; fragrances; pigments; flow control agents; leveling agents; conductive agents; may
  • the content of any additive may be appropriately contained within a range that does not impair the effects of the present invention.
  • the resin composite obtained by the production method of the present invention may be obtained by a method of kneading the resin and the cellulose fiber pre-fibrillated material at once, or may be obtained by kneading the resin and the cellulose fiber pre-fibrillated material together. It may be a resin composite obtained in a dilution kneading step of kneading a masterbatch obtained by kneading and a resin for dilution.
  • the present invention it is possible to provide a resin composite that has a high tensile modulus and a high tensile strength, and is excellent in balance with tensile elongation.
  • a method for producing a resin composite by which this resin composite can be obtained it is possible to provide a cellulose fiber pre-fibrillated material used for this resin composite.
  • a molding material and a molded article can be produced using the resin composite of the present invention.
  • the shape of the molded body include various shaped bodies such as film-like, sheet-like, plate-like, pellet-like, powder-like, and three-dimensional structures.
  • die molding, injection molding, extrusion molding, blow molding, foam molding, etc. can be used as a molding method.
  • the molded product can be used not only in the field of fiber-reinforced plastics, where matrix molded products (molded products) containing cellulose fibers are used, but also in fields where thermoplasticity and mechanical strength (tensile strength, etc.) are required.
  • Interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, and airplanes
  • housings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, and clocks
  • mobile communications such as mobile phones Housings, structural materials, internal parts, etc. of equipment; housings, structural materials, internal parts, etc. of portable music players, video players, printers, copiers, sporting goods; building materials; office equipment such as stationery, etc. It can be effectively used as a vessel, container, or the like.
  • Fiber length distribution of cellulose fiber pre-fibrillated product, measurement of fine content The fiber length distribution and fine content of the cellulose fiber pre-fibrillated product were measured using a fiber tester manufactured by Lorentzen & Wettre.
  • the fiber length indicates the number average fiber length based on ISO16065. Specifically, 0.1 g of pulp dry mass was stirred and disaggregated with 300 mL of water, and measured with a fiber tester.
  • the fine portion refers to fibers having a fiber length of 0.2 mm or less.
  • the higher the value the more the defibration proceeds by kneading, which will be described later. However, if the value exceeds 50%, it is difficult to leave long fibers in the resin composite, which is not preferable.
  • Its content is preferably 35 to 50%, more preferably 37 to 48%, of the total fibers including fines.
  • a plane of 200 ⁇ 200 ⁇ m or more was selected, and after separating the fiber portion and the non-fiber portion from the shape, this image was binarized to remove fibers and noise of 2 voxels or less.
  • the average of the fiber portion (undisentangled fiber amount) was obtained.
  • the fibers displayed in the image by the above operation mean fibers having a fiber width of more than 1 ⁇ m.
  • the ratio of cellulose fibers having an average fiber width of 1 ⁇ m or less was determined by the following formula using this averaged amount of unfibrillated fibers. In the above formula, the cellulose content was 10% and the cellulose density was 1.5 g/cm 3 because the example contained 10% cellulose fiber.
  • Example 1 Beating treatment of pulp
  • Unbleached softwood kraft pulp containing 50% water NUKP: lignin content 8% by mass
  • NUKP lignin content 8% by mass
  • 20 kg of this was treated with a single disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd., plate blade width: 4 mm, Groove width: 5 mm), clearance: 0.25 mm, passing twice, and processing so that the measured value of freeness at 5 points is 350 mL to 450 mL (beating treatment), cellulose fiber pre-fibrillation prepared things.
  • the fiber length distribution of the obtained cellulose fiber pre-fibrillated product was measured using Lorentzen & Wettre. Table 1 shows the results.
  • the pulp was sufficiently washed with water, dehydrated, and dried under reduced pressure to obtain acetylated pulp having a pulp solid content concentration of 98% by mass, that is, an acetylated cellulose fiber pre-fibrillated material.
  • the degree of acetyl group substitution (DS) of the acetylated cellulose fiber pre-fibrillated product was 0.5.
  • Example 2 Cellulose fiber pre-defibrated material in the same manner as in Example 1 except that in the beating treatment of pulp, the number of passes through the single disc refiner was set to 3 times, and the measured value of freeness at 5 points was changed to 150 mL to 250 mL. prepared. Also, an acetylated cellulose fiber pre-fibrillated material was prepared in the same manner as in Example 1 except that this pre-fibrillated cellulose fiber material was used. Masterbatches A and B and resin composites A and B were produced in the same manner as in Example 1 except that the pre-fibrillated material obtained in Example 2 was used. In the acetylated cellulose fibers contained in the resin composites A and B, the proportions having an average fiber width of 1 ⁇ m or less were 71% by volume and 65% by volume, respectively.
  • Example 2 Cellulose fiber pre-defibrated material in the same manner as in Example 1 except that in the beating treatment of pulp, the number of passes through the single disc refiner was set to 1 time, and the measured value of freeness at 5 points was changed to 450 mL to 550 mL. prepared. Also, an acetylated cellulose fiber pre-fibrillated material was prepared in the same manner as in Example 1 except that this pre-fibrillated cellulose fiber material was used. Masterbatches A and B and resin composites A and B were produced in the same manner as in Example 1, except that the pre-fibrillated material obtained in Comparative Example 2 was used. In the acetylated cellulose fibers contained in the resin composites A and B, the proportions having an average fiber width of 1 ⁇ m or less were 61% by volume and 54% by volume, respectively.
  • Masterbatches A and B and resin composites A and B were produced in the same manner as in Example 1, except that the pre-fibrillated material obtained in Comparative Example 3 was used.
  • the proportions having an average fiber width of 1 ⁇ m or less were 75% by volume and 71% by volume, respectively.
  • 40% or more and less than 58% of the cellulose fiber pre-defibrated material obtained by mechanically treating the pulp of the present invention has a fiber length of 0.1 mm or more and less than 0.5 mm, and a fiber length of 1
  • a resin composite obtained by kneading a cellulose fiber pre-fibrillated product in which 5 mm or more and less than 2.0 mm is present at a ratio of 5% or more and less than 10% with a resin using a uniaxial or multiaxial kneader is When the ratio of cellulose fibers having an average fiber width of 1 ⁇ m or less contained in is 50% by volume or more, the balance between tensile strength or tensile elastic modulus and tensile elongation is excellent.

Abstract

A resin composite which comprises a resin and cellulose fibers, and is obtained by kneading the resin and pre-fibrillated cellulose fibers with a single- or multi-screw kneader. The pre-fibrillated cellulose fibers are ones which are obtained by mechanically processing a pulp and in which the content of fibers having a length of 0.1-0.5 mm, excluding 0.5 mm, is 40% or higher but less than 58% and the content of fibers having a length of 1.5-2.0 mm, excluding 2.0 mm, is 5% or higher but less than 10%. The cellulose fibers contained in the resin composite comprise 50 vol% or more cellulose fibers having an average fiber width of 1 μm or less.

Description

樹脂複合体、樹脂複合体の製造方法、及びセルロース繊維予備解繊物Resin composite, method for producing resin composite, and cellulose fiber pre-fibrillated material
 本発明は、微細化したセルロース繊維を含有する樹脂複合体、及びこの樹脂複合体の製造方法、並びにこの樹脂複合体に用いられるセルロース繊維予備解繊物に関するものである。 The present invention relates to a resin composite containing finely divided cellulose fibers, a method for producing this resin composite, and a cellulose fiber pre-fibrillated material used for this resin composite.
 植物繊維を細かく解すことで得られる微細繊維状セルロースは、ミクロフィブリルセルロース及びセルロースナノファイバーを包含するものであり、約1nm~数10μm程度の繊維径の微細繊維である。微細繊維状セルロースは、軽量で、且つ、高い強度および高い弾性率を有し、低い線熱膨張係数を有することから、樹脂組成物の補強材料として好適に使用されている。 The fine fibrous cellulose obtained by finely disintegrating plant fibers includes microfibril cellulose and cellulose nanofibers, and is fine fibers with a fiber diameter of about 1 nm to several tens of μm. Fine fibrous cellulose is lightweight, has high strength and high modulus of elasticity, and has a low coefficient of linear thermal expansion, and is therefore suitably used as a reinforcing material for resin compositions.
 微細化したセルロース繊維を含有する樹脂複合体を製造する方法としては、予めナノレベルに微細化したセルロースを樹脂に複合化させる方法と、機械解繊などの方法で軽めの予備解繊を施したセルロースを樹脂と共に混練機で解繊する方法があるが、特許文献1は後者の方法に関して、低濃度の条件下におけるパルプの叩解処理について開示している。また、特許文献1には、当該方法で予備解繊を施したセルロースを含む樹脂複合体は、樹脂単独の場合と比較して、引張弾性率および引張強度に優れることが記載されている。 Methods for producing a resin composite containing finely divided cellulose fibers include a method in which cellulose that has been finely refined to a nano-level is combined with a resin, and a method in which light pre-fibrillation is performed by a method such as mechanical fibrillation. There is a method of fibrillating cellulose together with a resin using a kneader, and Patent Document 1 discloses a beating treatment of pulp under low-concentration conditions regarding the latter method. Moreover, Patent Document 1 describes that a resin composite containing cellulose preliminarily fibrillated by the method is superior in tensile modulus and tensile strength as compared to the resin alone.
 また、特許文献2では、セルロース原料と尿素とを加熱処理することにより、セルロースのヒドロキシ基の一部をカルバメート基で置換したセルロース原料を得て、これを機械的処理(予備解繊)により微細化し、微細繊維状セルロースを得ている。予備解繊時のセルロース原料の固形分濃度の記載はないが、この方法で得られた微細繊維状セルロースは濾水度が100mL以下であり、従来の微細繊維状セルロースと比較して親水性が低く、極性の低い樹脂等との親和性が高いため、樹脂に均一性高く分散し、高い引張強度を有する複合体を与える。また、特許文献3及び4には、当該固形分濃度を向上させるために、叩解して微細化を進めたフィブリルセルロースのpHを低くして保水性を低下させて、高濃度化する技術が開示されている。 Further, in Patent Document 2, by heat-treating a cellulose raw material and urea, a cellulose raw material in which a part of the hydroxy groups of cellulose is substituted with a carbamate group is obtained, and this is mechanically treated (preliminary fibrillation) to obtain fine particles. to obtain fine fibrous cellulose. Although there is no description of the solid content concentration of the cellulose raw material at the time of preliminary fibrillation, the fine fibrous cellulose obtained by this method has a freeness of 100 mL or less, and is more hydrophilic than conventional fine fibrous cellulose. Since it has a high affinity with low-polarity resins and the like, it disperses in resins with high uniformity and provides a composite with high tensile strength. In addition, Patent Documents 3 and 4 disclose a technique for increasing the solid content concentration by lowering the pH of fibril cellulose that has been beaten and refined to reduce water retention and increase the concentration. It is
 しかし、引張強度が高いだけでなく、引張伸びなどの他の特性とのバランスに優れる樹脂複合体が求められていた。 However, there has been a demand for a resin composite that not only has high tensile strength but also has an excellent balance with other properties such as tensile elongation.
特開2016-176052号公報JP 2016-176052 A 特開2019-1876号公報JP 2019-1876 A 特表2015-508839号公報Japanese Patent Publication No. 2015-508839 特表2017-527660号公報Japanese Patent Application Publication No. 2017-527660
 本発明は、高い引張弾性率および高い引張強度を有し、さらに、引張伸びとのバランスに優れる樹脂複合体を提供することを目的とする。また本発明は、この樹脂複合体を得ることが可能な樹脂複合体の製造方法を提供することを目的とする。また本発明は、この樹脂複合体に用いるセルロース繊維予備解繊物を提供することを目的とする。 An object of the present invention is to provide a resin composite that has a high tensile modulus and a high tensile strength, and furthermore has an excellent balance with tensile elongation. Another object of the present invention is to provide a method for producing a resin composite that can obtain this resin composite. Another object of the present invention is to provide a pre-fibrillated cellulose fiber material for use in this resin composite.
 本発明は、以下を提供する。
(1) 樹脂およびセルロース繊維を含む樹脂複合体であって、前記樹脂複合体は、前記樹脂と、セルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練してなり、前記セルロース繊維予備解繊物は、パルプを機械的処理してなり、前記セルロース繊維予備解繊物は、繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在し、前記樹脂複合体に含まれる前記セルロース繊維は、平均繊維幅が1μm以下の割合が50体積%以上であることを特徴とする、樹脂複合体。
(2) 前記機械的処理時の前記パルプの固形分濃度が10質量%以上であることを特徴とする、(1)記載の樹脂複合体。
(3) 前記機械的処理が、ディスクリファイナーおよびコニカルリファイナーの少なくとも一方を用いて行われることを特徴とする、(1)または(2)記載の樹脂複合体。
(4) 樹脂およびセルロース繊維を含む樹脂複合体の製造方法であって、パルプを機械的処理してセルロース繊維予備解繊物を得る機械的処理工程と、前記樹脂と、前記セルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練することにより樹脂複合体を得る混練工程とを含み、前記セルロース繊維予備解繊物は、繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在し、前記樹脂複合体に含まれる前記セルロース繊維は、平均繊維幅が1μm以下の割合が50体積%以上である、樹脂複合体の製造方法。
(5) 樹脂複合体に用いられるセルロース繊維予備解繊物であって、繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在するセルロース繊維予備解繊物。
The present invention provides the following.
(1) A resin composite containing a resin and cellulose fibers, wherein the resin composite is obtained by kneading the resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader, and the cellulose The pre-fibrillated cellulose fiber material is obtained by mechanically treating pulp, and the cellulose fiber pre-fibrillated material has a fiber length of 0.1 mm or more and less than 0.5 mm in 40% or more and less than 58%, and a fiber length of 1.5 mm or more. .0 mm is present at a rate of 5% or more and less than 10%, and the cellulose fibers contained in the resin composite have an average fiber width of 1 μm or less at a rate of 50% or more by volume. Complex.
(2) The resin composite according to (1), wherein the pulp has a solid content concentration of 10% by mass or more during the mechanical treatment.
(3) The resin composite according to (1) or (2), wherein the mechanical treatment is performed using at least one of a disc refiner and a conical refiner.
(4) A method for producing a resin composite containing a resin and cellulose fibers, comprising a mechanical treatment step of mechanically treating pulp to obtain a cellulose fiber pre-fibrillation product, the resin and the cellulose fiber pre-fibrillation. and a kneading step of obtaining a resin composite by kneading the material with a uniaxial or multiaxial kneader, and the cellulose fiber pre-disentangled material has a fiber length of 0.1 mm or more and less than 0.5 mm at 40% or more. Less than 58%, a fiber length of 1.5 mm or more and less than 2.0 mm exists at a rate of 5% or more and less than 10%, and the cellulose fibers contained in the resin composite have an average fiber width of 1 μm or less. % or more, a method for producing a resin composite.
(5) A cellulose fiber pre-fibrillated material used for a resin composite, in which the fiber length is 0.1 mm or more and less than 0.5 mm is 40% or more and less than 58%, and the fiber length is 1.5 mm or more and less than 2.0 mm is 5%. A cellulose fiber pre-fibrillated material present at a rate of not less than 10%.
 本発明によれば、高い引張弾性率および高い引張強度を有し、さらに、引張伸びとのバランスに優れる樹脂複合体を提供することができる。また、この樹脂複合体を得ることが可能な樹脂複合体の製造方法を提供することができる。また、この樹脂複合体に用いるセルロース繊維予備解繊物を提供することができる。 According to the present invention, it is possible to provide a resin composite that has a high tensile modulus and a high tensile strength, and is excellent in balance with tensile elongation. In addition, it is possible to provide a method for producing a resin composite by which this resin composite can be obtained. Moreover, it is possible to provide a cellulose fiber pre-fibrillated material used for this resin composite.
 以下、本発明の樹脂複合体について説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。 The resin composite of the present invention will be described below. In the present invention, "-" includes end values. That is, "X through Y" includes the values X and Y at both ends.
 本発明の樹脂複合体は、樹脂およびセルロース繊維を含むものであり、前記樹脂複合体は、前記樹脂と、セルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練してなり、前記セルロース繊維予備解繊物は、パルプを機械的処理してなり、前記セルロース繊維予備解繊物は、繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在し、前記樹脂複合体に含まれる前記セルロース繊維は、平均繊維幅が1μm以下の割合が50体積%以上である。セルロース繊維予備解繊物の繊維長分布およびファイン分測定は、ISO16065に基づく数平均繊維長の事を示しており、Lorentzen & Wettre社製ファイバーテスター、ABB株式会社製ファイバーテスター、バルメット株式会社製フラクショネータ等の画像解析に供して平均繊維長を求めることができる。 The resin composite of the present invention contains a resin and cellulose fibers, and the resin composite is obtained by kneading the resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader, The cellulose fiber pre-fibrillated material is obtained by mechanically treating pulp, and the cellulose fiber pre-fibrillated material has a fiber length of 0.1 mm or more and less than 0.5 mm in 40% or more and less than 58%, and a fiber length of 1.5 mm. More than 2.0 mm and less than 2.0 mm are present at a rate of 5% or more and less than 10%, and the rate of the cellulose fibers contained in the resin composite having an average fiber width of 1 μm or less is 50% or more by volume. The fiber length distribution and fine content measurement of the cellulose fiber pre-fibrillated product indicates the number average fiber length based on ISO16065, and is measured using a fiber tester manufactured by Lorentzen & Wettre, a fiber tester manufactured by ABB, and a flak manufactured by Valmet. The average fiber length can be determined by image analysis such as Sionator.
 (セルロース繊維)
 本発明において、セルロース繊維とは、繊維状のセルロースであり、繊維状のセルロース誘導体をさらに含んでもよい。本発明の樹脂複合体に含まれるセルロース繊維は、平均繊維幅が1μm以下の割合が、十分な強度の向上効果と伸びのバランスが得られるという観点から50体積%以上であり、55体積%以上が好ましく、60体積%以上がより好ましく、65体積%以上がさらに好ましい。ここで、樹脂複合体に含まれるセルロース繊維の平均繊維幅は、X線コンピューティッドトモグラフィ(以下、X-CTと略することがある。)により、測定することができる。
(cellulose fiber)
In the present invention, the cellulose fiber is fibrous cellulose, and may further contain a fibrous cellulose derivative. The cellulose fiber contained in the resin composite of the present invention has an average fiber width of 1 μm or less, and is 50% by volume or more, and 55% by volume or more from the viewpoint of obtaining a sufficient balance between strength improvement effect and elongation. is preferred, 60% by volume or more is more preferred, and 65% by volume or more is even more preferred. Here, the average fiber width of the cellulose fibers contained in the resin composite can be measured by X-ray computed tomography (hereinafter sometimes abbreviated as X-CT).
 本発明の樹脂複合体に含まれるセルロース繊維の含有量は、十分な補強効果を得るという観点から樹脂複合体の全体に対して、0.5~30質量%が好ましく、1.0~25質量%がより好ましく、3.0~20質量%がさらに好ましい。 The content of the cellulose fiber contained in the resin composite of the present invention is preferably 0.5 to 30% by mass, preferably 1.0 to 25% by mass, with respect to the entire resin composite from the viewpoint of obtaining a sufficient reinforcing effect. % is more preferred, and 3.0 to 20% by mass is even more preferred.
 (樹脂)
 本発明に用いる樹脂としては、溶融温度が250℃以下の、以下の一般的な熱可塑性樹脂を挙げることができる。
(resin)
As resins used in the present invention, the following general thermoplastic resins having a melting temperature of 250° C. or less can be mentioned.
 一般的な熱可塑性樹脂としては、ポリオレフィン樹脂、ポリアミド樹脂、ポリ塩化ビニル、ポリスチレン、ポリ塩化ビニリデン、フッ素樹脂、(メタ)アクリル系樹脂、ポリエステル、ポリ乳酸、乳酸とエステルとの共重合樹脂、ポリグリコール酸、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリフェニレンオキシド、ポリウレタン、ポリアセタール、ビニルエーテル樹脂、ポリスルホン系樹脂、セルロース系樹脂(トリアセチル化セルロース、ジアセチル化セルロースなど)等を使用することができる。 General thermoplastic resins include polyolefin resin, polyamide resin, polyvinyl chloride, polystyrene, polyvinylidene chloride, fluororesin, (meth)acrylic resin, polyester, polylactic acid, copolymer resin of lactic acid and ester, poly Glycolic acid, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyphenylene oxide, polyurethane, polyacetal, vinyl ether resin, polysulfone resin, cellulose resin (triacetylated cellulose, diacetylated cellulose, etc.), etc. can be used. can.
 ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン(以下「PP」とも記す)、エチレン-プロピレン共重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエンなどを使用することが可能である。 As the polyolefin resin, it is possible to use polyethylene, polypropylene (hereinafter also referred to as "PP"), ethylene-propylene copolymer, polyisobutylene, polyisoprene, polybutadiene, and the like.
 またポリアミド樹脂(PA)は、尿素の作用を受けていないセルロースの水酸基やアセチル基との相互作用も期待され、好適に使用することができる。PAとしては、ポリアミド6(ナイロン6、PA6)、ポリアミド11(ナイロン11、PA11)、ポリアミド12(ナイロン12、PA12)、ポリアミド66(ナイロン66、PA66)、ポリアミド46(ナイロン46、PA46)、ポリアミド610(ナイロン610、PA610)、ポリアミド612(ナイロン612、PA612))等の脂肪族PA、フェニレンジアミン等の芳香族ジアミンと塩化テレフタロイルや塩化イソフタロイル等の芳香族ジカルボン酸又はその誘導体からなる芳香族PA等を挙げることができる。セルロース繊維、セルロースナノファイバーとの親和性が高い観点から、脂肪族PAを用いることが好ましく、PA6、PA11、PA12を用いることがより好ましく、PA6を用いることが特に好ましい。また、ポリアミド樹脂は、1種類を単独で使用してもよく、2種以上のポリアミド樹脂を混合して使用してもよい。 Polyamide resin (PA) is also expected to interact with hydroxyl groups and acetyl groups of cellulose that are not affected by urea, so it can be used favorably. PA includes polyamide 6 (nylon 6, PA6), polyamide 11 (nylon 11, PA11), polyamide 12 (nylon 12, PA12), polyamide 66 (nylon 66, PA66), polyamide 46 (nylon 46, PA46), polyamide 610 (nylon 610, PA610), polyamide 612 (nylon 612, PA612)), etc., aromatic diamines such as phenylenediamine and aromatic dicarboxylic acids such as terephthaloyl chloride and isophthaloyl chloride, or aromatic PAs composed of derivatives thereof etc. can be mentioned. From the viewpoint of high affinity with cellulose fibers and cellulose nanofibers, it is preferable to use aliphatic PA, more preferably PA6, PA11, and PA12, and particularly preferably PA6. Moreover, a polyamide resin may be used individually by 1 type, and may be used in mixture of 2 or more types of polyamide resins.
 上記で例示した樹脂は、ホモポリマーとしての使用の他に、各種公知の機能を有する樹脂を半量以下含むコポリマーとしたブロック共重合体として使用することも可能である。 The resins exemplified above can be used not only as homopolymers, but also as block copolymers containing less than half of resins having various known functions.
 また、後述する「マスターバッチ用樹脂」として、相溶化樹脂を含むものを用いても良い。ここで、相溶化樹脂は、セルロース繊維と希釈用樹脂との均一混合や密着性を高める目的で用いられるものである。 Also, as the "masterbatch resin" described later, one containing a compatibilizing resin may be used. Here, the compatibilizing resin is used for the purpose of improving uniform mixing and adhesion between the cellulose fibers and the diluent resin.
 (相溶化樹脂)
 本発明に用いることができる相溶化樹脂としては、マレイン酸、コハク酸、グルタル酸などの酸無水物を形成することが可能な低分子量のジカルボン酸を、ポリプロピレンやポリエチレンなどのポリオレフィン鎖上に有する高分子樹脂を挙げることができ、中でもマレイン酸を付加させた無水マレイン酸変性ポリプロピレン(MAPP)や無水マレイン酸変性ポリエチレン(MAPE)を主成分とする樹脂を、それぞれ希釈用樹脂と共に用いることが好ましい。
(Compatibilizing resin)
Compatibilizing resins that can be used in the present invention include low-molecular-weight dicarboxylic acids capable of forming acid anhydrides such as maleic acid, succinic acid, and glutaric acid on polyolefin chains such as polypropylene and polyethylene. Among them, it is preferable to use a resin mainly composed of maleic anhydride-modified polypropylene (MAPP) or maleic anhydride-modified polyethylene (MAPE) added with maleic acid together with a diluent resin. .
 相溶化樹脂としての特徴を決める要素には、ジカルボン酸の付加量と母材となるポリオレフィン樹脂の重量平均分子量がある。ジカルボン酸の付加量が多いポリオレフィン樹脂はセルロースのような親水性高分子との相溶性を高めるが、付加の過程で樹脂としての分子量が小さくなってしまい成形物の強度が低下する。最適なバランスとしてジカルボン酸の付加量は、20~100mgKOH/gであり、さらに好ましくは45~65mgKOH/gである。付加量が少ない場合、樹脂中でセルロースの水酸基や変性セルロースに含まれる水酸基や変性官能基との相互作用をする点が少なくなる。また付加量が多い場合、樹脂中のカルボキシル基同士の水素結合などによる自己凝集や、過大な付加反応による母材となるオレフィン樹脂の分子量の減少により強化樹脂としての強度が未達となる。ポリオレフィン樹脂の分子量としては35,000~250,000が好ましく、50,000~100,000がさらに好ましい。分子量がこの範囲から小さい場合は樹脂として強度が低下し、この範囲から大きい場合は溶融時の粘度上昇が大きく、混練時の作業性が低下するとともに成形不良の原因となる。 The factors that determine the characteristics of a compatibilizing resin include the amount of dicarboxylic acid added and the weight average molecular weight of the base material polyolefin resin. A polyolefin resin having a large amount of dicarboxylic acid added increases compatibility with a hydrophilic polymer such as cellulose, but the molecular weight of the resin decreases during the addition process, resulting in a decrease in the strength of the molded product. As an optimum balance, the amount of dicarboxylic acid added is 20-100 mgKOH/g, more preferably 45-65 mgKOH/g. When the amount added is small, the number of points that interact with the hydroxyl groups of cellulose and the hydroxyl groups and modified functional groups contained in modified cellulose in the resin decreases. Further, when the addition amount is large, self-aggregation due to hydrogen bonding between carboxyl groups in the resin, or reduction in the molecular weight of the base material olefin resin due to excessive addition reaction, the strength as a reinforced resin is not achieved. The molecular weight of the polyolefin resin is preferably 35,000 to 250,000, more preferably 50,000 to 100,000. If the molecular weight is smaller than this range, the strength of the resin is lowered, and if it is larger than this range, the viscosity increases significantly when melted, resulting in poor workability during kneading and molding defects.
 上記の特徴を有する相溶化樹脂の添加量は、セルロース繊維に含まれるセルロースとヘミセルロースを合わせたセルロース繊維分の量(以後これを「セルロース量」と呼ぶことがある)に対し10~70質量%が好ましく、20~50質量%がさらに好ましい。添加量が70質量%を超えると尿素由来のイソシアン酸のセルロース繊維への導入阻害や、相溶化剤と尿素の複合体形成が促進されると考えられる。 The amount of the compatibilizing resin having the above characteristics is 10 to 70% by mass with respect to the amount of cellulose fiber (hereinafter sometimes referred to as "cellulose amount"), which is the total amount of cellulose and hemicellulose contained in the cellulose fiber. is preferred, and 20 to 50% by mass is more preferred. If the amount added exceeds 70% by mass, it is thought that the introduction of urea-derived isocyanic acid into cellulose fibers is inhibited and the formation of a complex between the compatibilizer and urea is promoted.
 また相溶化樹脂は、1種を単独で用いてもよく、2種以上の混合樹脂として用いてもよい。また1種または2種以上のポリマーとポリオレフィンとのグラフト体として使用の場合、グラフト体を構成するポリオレフィン樹脂は特に限定されないが、グラフト体を製造しやすいという観点で、ポリエチレン、ポリプロピレン、ポリブテン等を使用することができる。 Also, the compatibilizing resin may be used singly or as a mixed resin of two or more. In the case of use as a graft of one or more polymers and polyolefin, the polyolefin resin constituting the graft is not particularly limited. can be used.
 本発明において、樹脂に上記の相溶化樹脂が含まれる場合は、得られる樹脂複合体の強度が向上する観点から、尿素などの一級アミンを付与する低分子量の助剤を添加してもよい。尿素は温度が135℃を超える状態でアンモニアとイソシアン酸に分解されるが、尿素をセルロース繊維と同時に混練することにより、混練によって新たにセルロース繊維内部から現れた未変性水酸基と発生したイソシアン酸とが反応しウレタン結合の生成を促すと考えられ、尿素処理を行わないセルロース繊維と比較して疎水性が高まることが推測される。さらに酸無水物を有する相溶化樹脂と同時に溶融混練することで、セルロース繊維の表面に尿素処理によって新たに導入されたアミノ基と相溶化樹脂が有するカルボン酸のイオン結合を促し、より強固にセルロース繊維と相溶化樹脂との複合体を形成することが可能となっていると考えられる。 In the present invention, when the resin contains the above-mentioned compatibilizing resin, a low-molecular-weight auxiliary agent that imparts primary amines such as urea may be added from the viewpoint of improving the strength of the resulting resin composite. Urea is decomposed into ammonia and isocyanic acid when the temperature exceeds 135°C. is considered to promote the formation of urethane bonds by reaction, and it is speculated that the hydrophobicity increases compared to cellulose fibers that are not treated with urea. Furthermore, by melt-kneading at the same time as the compatibilizing resin containing an acid anhydride, the ionic bonds between the amino groups newly introduced on the surface of the cellulose fiber by the urea treatment and the carboxylic acid possessed by the compatibilizing resin are promoted, and the cellulose is further strengthened. It is believed that it is possible to form a composite of the fiber and the compatibilizing resin.
 助剤として尿素を併用する場合の配合量は、尿素の配合量が多すぎるために繊維が凝集し、強度が低下することを抑制する観点から、セルロース繊維に含まれるセルロースとヘミセルロースを合わせたセルロース繊維分の量(以後これを「セルロース量」と呼ぶことがある)100質量%に対して10~100質量%が好ましく、15~80質量%がより好ましく、20~70質量%がさらに好ましい。 When urea is used as an auxiliary agent, the blending amount is cellulose, which is a combination of cellulose and hemicellulose contained in cellulose fibers, from the viewpoint of suppressing the decrease in strength due to aggregation of fibers due to too much urea. It is preferably 10 to 100% by mass, more preferably 15 to 80% by mass, and even more preferably 20 to 70% by mass based on 100% by mass of the amount of fiber (hereinafter sometimes referred to as "cellulose amount").
 (樹脂複合体の製造方法)
 本発明の樹脂複合体の製造方法は、パルプを機械的処理してセルロース繊維予備解繊物を得る機械的処理工程、及び樹脂と、得られたセルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練することにより樹脂複合体を得る混練工程とを含む。
(Method for producing resin composite)
The method for producing a resin composite of the present invention includes a mechanical treatment step of mechanically treating pulp to obtain a cellulose fiber pre-fibrillated product, and a uniaxial or multiaxial treatment of the resin and the obtained cellulose fiber pre-fibrillated product. and a kneading step of obtaining a resin composite by kneading using a kneader.
 (機械的処理工程)
 本発明の機械的処理工程では、セルロース原料のうちパルプを機械的処理してセルロース繊維予備解繊物を得る。
(Mechanical treatment process)
In the mechanical treatment step of the present invention, the pulp of the cellulose raw material is mechanically treated to obtain a cellulose fiber pre-disentanglement product.
 (セルロース原料)
 本発明において、セルロース原料とは、セルロースを主体とした様々な形態の材料をいい、リグノセルロース(NUKP)を含むものであり、パルプ(晒又は未晒木材パルプ、晒又は未晒非木材パルプ、精製リンター、ジュート、マニラ麻、ケナフ等の草本由来のパルプなど)、酢酸菌等の微生物によって生産されるセルロース等の天然セルロース、セルロースを銅アンモニア溶液、モルホリン誘導体等の何らかの溶媒に溶解した後に再沈殿された再生セルロース、及び上記セルロース原料に加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル等の機械的処理等をすることによってセルロースを解重合した微細セルロース、アセチル化変性に影響を及ぼさない程度の各種セルロース誘導体などが例示される。
(raw material for cellulose)
In the present invention, the cellulose raw material refers to various forms of materials mainly composed of cellulose, including lignocellulose (NUKP), pulp (bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, Refined linters, jute, Manila hemp, kenaf and other herbaceous pulps), natural cellulose such as cellulose produced by microorganisms such as acetic acid bacteria, reprecipitation after dissolving cellulose in some solvent such as cuprammonium solution, morpholine derivative, etc. Regenerated cellulose, fine cellulose obtained by depolymerizing cellulose by subjecting the above cellulose raw material to hydrolysis, alkaline hydrolysis, enzymatic decomposition, explosion treatment, mechanical treatment such as vibration ball mill, etc., and acetylation denaturation are not affected. Various cellulose derivatives and the like are exemplified.
 なお、リグノセルロースは、植物の細胞壁を構成する、複合炭水化物ポリマーであり、主に多糖類のセルロース、ヘミセルロースと、芳香族高分子であるリグニンから構成されている。リグニンの含有量は、原材料となるパルプ等に対して、脱リグニン、又は漂白を行うことにより、調整することができる。 Lignocellulose is a complex carbohydrate polymer that makes up the cell walls of plants, and is mainly composed of polysaccharides cellulose and hemicellulose, and aromatic polymer lignin. The content of lignin can be adjusted by delignifying or bleaching the raw material pulp or the like.
 本発明は、セルロース原料としてパルプを用いるものであり、パルプに対して機械的処理を行い、セルロース繊維予備解繊物を得る。本発明において機械的処理とは、一般には水に代表される分散媒中の繊維を混合しさらに微細化またはフィブリル化することをいい、叩解、解繊、分散等を含む。微細化は繊維長、繊維径等が小さくなることいい、フィブリル化は繊維の毛羽立ちが多くなることをいう。機械的処理に用いる装置は限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧または超高圧ホモジナイザー、リファイナー、シングルディスクリファイナーやダブルディスクリファイナー等のディスクリファイナー、コニカルリファイナー、ビーター、PFIミル、ボールミル、石臼型ミル、サンドグラインダーミル、インパクトミル、ダイノーミル、超音波ミル、カンダグラインダ、アトライタ、振動ミル、カッターミル、ジェットミル、家庭用ジューサーミキサー、乳鉢、ニーダー、ディスパーザー、高速離解機、トップファイナーなど回転軸を中心として、含水するパルプを金属または刃物とパルプ繊維を作用させるもの、あるいはパルプ繊維同士の摩擦によるものを使用することができる。本発明においては、繊維のフィブリル化を効率的に進めることができるため、機械的処理はナイアガラビーター、リファイナーやニーダーを用いた叩解であることが好ましく、高濃度処理が可能なディスクリファイナーやコニカルリファイナーを用いた叩解処理であることがさらに好ましい。 In the present invention, pulp is used as a cellulose raw material, and the pulp is subjected to mechanical treatment to obtain a cellulose fiber pre-fibrillated material. In the present invention, the mechanical treatment generally refers to mixing fibers in a dispersion medium represented by water and further pulverizing or fibrillating, and includes beating, fibrillation, dispersion, and the like. Refinement means that the fiber length, fiber diameter, etc. are reduced, and fibrillation means that the fiber becomes more fluffy. Apparatuses used for mechanical treatment are not limited, but examples include apparatus of types such as high-speed rotary, colloid mill, high pressure, roll mill, ultrasonic, high pressure or ultrahigh pressure homogenizers, refiners, single disc refiners and Disc refiners such as double disc refiners, conical refiners, beaters, PFI mills, ball mills, stone mill mills, sand grinder mills, impact mills, dyno mills, ultrasonic mills, canda grinders, attritors, vibration mills, cutter mills, jet mills, home use Juicer Mixer, mortar, kneader, disperser, high-speed disaggregator, top finisher, etc. Using a rotating shaft to make wet pulp act on a metal or a blade and pulp fibers, or by friction between pulp fibers be able to. In the present invention, the mechanical treatment is preferably beating using a Niagara beater, a refiner, or a kneader, and a disc refiner or conical refiner capable of high-concentration treatment, since the fibrillation of the fibers can be efficiently advanced. It is more preferable to be a beating treatment using.
 機械的処理は上記パルプと分散媒を含む混合物を用いて実施されるが、その際の固形分濃度は10質量%以上、好ましくは15質量%以上、18質量%以上であるとさらに好ましい。(当該濃度での機械的処理を「高濃度機械的処理」ともいう。)分散媒は限定されず、有機溶媒や水を用いることができるが、好ましくは水である。固形分濃度とは、機械的処理に供される前記混合物における固形分の濃度である。固形分濃度が10質量%以上と高い条件にてパルプに対して叩解等の機械的処理を行うことで、処理効率の向上、ハンドリング性の向上などのメリットが得られる。ハンドリング性としては、例えば、高濃度機械的処理を行った後に希釈処理せずに高濃度のまま輸送することができる点や、高濃度機械的処理を経たパルプ分散液の粘度が高くなくポンプでの輸送効率が良好であること、さらには当該分散液の保存容器内への張り付きなどが少ない等の点が挙げられる。さらに、高濃度機械的処理の後に乾燥工程を実施する場合、揮発する分散媒量が少なく乾燥効率が良好である点も挙げられる。さらに本発明のパルプにおいて化学変性を施したパルプを高濃度機械的処理すると分散液の粘度が上昇しにくいため好ましい。
 機械的処理を行う際のパルプ濃度を高く設定することで、パルプの膨潤のし過ぎによる後述するファイン分の増加を抑え、樹脂複合体中に適切な長繊維を残すことが可能となる。
The mechanical treatment is performed using a mixture containing the above pulp and a dispersion medium, and the solid content concentration at that time is 10% by mass or more, preferably 15% by mass or more, more preferably 18% by mass or more. (Mechanical treatment at this concentration is also referred to as “high-concentration mechanical treatment”.) The dispersion medium is not limited, and an organic solvent or water can be used, but water is preferred. Solids concentration is the concentration of solids in the mixture subjected to mechanical treatment. By subjecting the pulp to mechanical treatment such as beating under conditions of a high solid content concentration of 10% by mass or more, merits such as improved treatment efficiency and improved handling properties can be obtained. As handling properties, for example, after high-concentration mechanical treatment, it can be transported as it is at high concentration without dilution, and the viscosity of the pulp dispersion that has undergone high-concentration mechanical treatment is not high and can be pumped. Another advantage is that the dispersion is less likely to stick to the inside of the storage container. Furthermore, when the drying step is performed after the high-concentration mechanical treatment, the amount of volatilized dispersion medium is small and the drying efficiency is good. Furthermore, it is preferable to subject the pulp of the present invention to chemically modified pulp to high-concentration mechanical treatment because the viscosity of the dispersion is less likely to increase.
By setting the pulp concentration at the time of mechanical treatment to a high value, it is possible to suppress an increase in the fine content, which will be described later, due to excessive swelling of the pulp, and to leave suitable long fibers in the resin composite.
 機械的処理時の固形分濃度が50質量%を超えると、処理に伴い装置内で乾燥が進み、材料の焦げ付きが発生しやすくなるため、50質量%以下の条件で処理することが好ましく、40質量%以下の条件がさらに好ましい。 If the solid content concentration during mechanical treatment exceeds 50% by mass, drying proceeds in the apparatus during the treatment and scorching of the material is likely to occur. A condition of mass % or less is more preferable.
 機械的処理の程度としては、濾水度(C.S.F)が100mL~500mL程度が好ましく、より好ましくは120mL~450mL程度であり、更に好ましくは150mL~250mL程度である。濾水度を上限以下とすることにより、その効果を発揮することが出来、濾水度を下限以上とすることにより、ハンドリングに優れるものであり、更にセルロース繊維へのダメージに起因して短繊維化が促進されることによる、樹脂と混練して得られた樹脂複合体における強度向上効果が阻害されるという現象を抑制することができる。 As for the degree of mechanical treatment, the freeness (C.S.F) is preferably about 100 mL to 500 mL, more preferably about 120 mL to 450 mL, still more preferably about 150 mL to 250 mL. By setting the freeness to the upper limit or lower, the effect can be exhibited. It is possible to suppress the phenomenon that the effect of improving the strength of the resin composite obtained by kneading with the resin is inhibited due to the acceleration of the hardening.
 本発明において、セルロース繊維予備解繊物は、高濃度機械的処理により繊維長分布が広がり、最終的な樹脂複合物中に強度物性の補強に有利な長繊維と、高補強性を保った状態で樹脂の引張伸び値向上に有利な微細繊維を程よく含む構成となるという観点から、繊維長分布が、繊維長0.1mm以上0.5mm未満の繊維が40%以上58%未満、かつ、繊維長1.5mm以上2.0mm未満の繊維が5%以上10%未満で存在するものであり、好ましくは繊維長0.1mm以上0.5mm未満の繊維が50%以上55%未満、かつ、繊維長1.5mm以上2.0mm未満の繊維が6%以上10%未満で存在する。なお、本発明において繊維長とは、ISO16065に基づく数平均繊維長のことを示す。 In the present invention, the cellulose fiber pre-fibrillated product has a wide fiber length distribution due to high-concentration mechanical treatment, and the final resin composite has long fibers that are advantageous for reinforcing strength properties and a state in which high reinforcing properties are maintained. From the viewpoint that the structure contains a moderate amount of fine fibers that are advantageous for improving the tensile elongation value of the resin, the fiber length distribution has a fiber length distribution of 40% or more and less than 58% of the fibers with a fiber length of 0.1 mm or more and less than 0.5 mm, and Fibers with a length of 1.5 mm or more and less than 2.0 mm are present in 5% or more and less than 10%, preferably fibers with a fiber length of 0.1 mm or more and less than 0.5 mm are present in 50% or more and less than 55%, and fibers Fibers with a length of 1.5 mm or more and less than 2.0 mm are present at 6% or more and less than 10%. In addition, the fiber length in the present invention indicates the number average fiber length based on ISO16065.
 本発明において、セルロース繊維予備解繊物は、ファイン分を35~50%含むことが好ましく、37~48%含むことがより好ましい。ここで、ファイン分とは、繊維長が0.2mm以下の繊維長をもつ繊維を示す。ファイン分が多いと、後述する混練によって解繊が進むものの、50%を超える条件となると樹脂複合体中に長繊維を残すことが難しくなるため、適切な量であることが好ましい。 In the present invention, the cellulose fiber pre-fibrillated material preferably contains 35 to 50% fines, more preferably 37 to 48%. Here, the fine portion refers to fibers having a fiber length of 0.2 mm or less. If the fines content is large, fibrillation proceeds by kneading, which will be described later, but if the condition exceeds 50%, it becomes difficult to leave long fibers in the resin composite, so an appropriate amount is preferable.
 なお、本発明においては、セルロース繊維予備解繊物は、未変性の状態で使用してもよいが、アセチル化、酸化、エーテル化、エステル化等の化学変性がされていても良い。 In addition, in the present invention, the cellulose fiber pre-fibrillated material may be used in an undenatured state, but may be chemically denatured by acetylation, oxidation, etherification, esterification, or the like.
 (アセチル化変性)
 本発明に用いることができるアセチル化変性されたセルロース繊維予備解繊物(単に、「アセチル化パルプ」ということがある。)は、セルロース原料のセルロース表面に存在する水酸基の水素原子がアセチル基(CH-CO-)で置換されているものである。アセチル基で置換されることにより疎水性が高まり、乾燥時の凝集が減少するため作業性が高まり、混練後の樹脂中で分散や解繊しやすくなる。また反応性の高い水酸基がアセチル基で置換されるためセルロースの熱分解が抑制され、混練時の耐熱性が向上する。アセチル化パルプのアセチル基置換度(DS)は、作業性およびセルロース繊維の結晶性維持の観点から、好ましくは0.4~1.3、より好ましくは0.6~1.1となるように調整する。
(acetylation modification)
In the acetylation-modified cellulose fiber pre-fibrillated product (sometimes simply referred to as “acetylated pulp”) that can be used in the present invention, the hydrogen atoms of the hydroxyl groups present on the cellulose surface of the cellulose raw material are acetyl groups ( CH 3 —CO—). Substitution with an acetyl group increases hydrophobicity and reduces aggregation during drying, thereby improving workability and facilitating dispersion and fibrillation in the resin after kneading. In addition, since highly reactive hydroxyl groups are substituted with acetyl groups, thermal decomposition of cellulose is suppressed and heat resistance during kneading is improved. The degree of acetyl group substitution (DS) of the acetylated pulp is preferably 0.4 to 1.3, more preferably 0.6 to 1.1, from the viewpoint of workability and maintaining the crystallinity of cellulose fibers. adjust.
 (アセチル化反応)
 アセチル化反応は、セルロース原料を膨潤させることのできる無水非プロトン性極性溶媒、例えばN-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)中に原料を懸濁し、無水酢酸、アセチルクロリド等のハロゲン化アセチル等を使用して、塩基の存在下で行うと短時間で反応を行うことが可能となる。このアセチル化反応で用いる塩基としては、ピリジン、N,N-ジメチルアニリン、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等が好ましく、炭酸カリウムがより好ましい。また、無水酢酸などのアセチル化試薬を過剰に使用することで無水非プロトン性極性溶媒や塩基を使用しない条件で反応を行うことも可能である。
(acetylation reaction)
The acetylation reaction is carried out by suspending the raw material in an anhydrous aprotic polar solvent capable of swelling the cellulose raw material, such as N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), adding acetic anhydride, acetyl chloride, It is possible to carry out the reaction in a short time by using an acetyl halide such as, for example, in the presence of a base. As the base used in this acetylation reaction, pyridine, N,N-dimethylaniline, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, etc. are preferred, and potassium carbonate is more preferred. Also, by using an excess amount of an acetylation reagent such as acetic anhydride, the reaction can be carried out under conditions that do not use an anhydrous aprotic polar solvent or a base.
 アセチル化反応は、例えば、室温~100℃で撹拌しながら行うことが好ましい。反応処理後はアセチル化試薬の除去のため減圧乾燥を行ってもよい。また目標のアセチル基置換度に到達していない場合、アセチル化反応とそれに続く減圧乾燥を任意の回数繰り返し行ってもよい。 The acetylation reaction is preferably carried out with stirring, for example, at room temperature to 100°C. After the reaction treatment, drying may be performed under reduced pressure to remove the acetylation reagent. If the target degree of acetyl group substitution is not reached, the acetylation reaction and subsequent vacuum drying may be repeated any number of times.
 (洗浄)
 アセチル化反応により得られたアセチル化パルプは、アセチル化処理後に水置換などの洗浄処理を行うことが好ましい。
(Washing)
The acetylated pulp obtained by the acetylation reaction is preferably subjected to washing treatment such as water replacement after the acetylation treatment.
 (脱水)
 洗浄処理においては必要に応じて脱水を行ってもよい。脱水法としてはスクリュープレスを用いた加圧脱水法、揮発などによる減圧脱水法などで実施も可能だが、効率の点から遠心脱水法が好ましい。脱水は、溶媒中の固形分が10~60%程度になるまで行うことが好ましい。
(dehydration)
In the washing treatment, dehydration may be performed as necessary. As the dehydration method, a pressurized dehydration method using a screw press, a vacuum dehydration method using volatilization or the like can be used, but the centrifugal dehydration method is preferable from the viewpoint of efficiency. Dehydration is preferably carried out until the solid content in the solvent reaches approximately 10 to 60%.
 (乾燥)
 本発明に用いることができるアセチル化パルプは、上記脱水工程の後、乾燥処理が施される。乾燥処理は、例えば、マイクロ波乾燥機、送風乾燥機や真空乾燥機を用いて行うことができるが、ドラム乾燥機、パドルドライヤー、ナウターミキサー、攪拌羽根のついた回分乾燥機など、攪拌しながら乾燥することができる乾燥機が好ましい。乾燥は、アセチル化パルプの含水率が1~40%程度になるまで行うことが好ましく、1~10%まで乾燥するがより好ましく、1~5%まで乾燥することがさらに好ましい。乾燥を施したパルプを使用することで、後述する混練工程において水によるパルプへの加水分解の影響を小さくすることが可能となる。
(dry)
The acetylated pulp that can be used in the present invention is subjected to a drying treatment after the dehydration step. The drying treatment can be performed, for example, by using a microwave dryer, a blow dryer or a vacuum dryer, but a drum dryer, a paddle dryer, a Nauta mixer, a batch dryer with stirring blades, etc., can be used. A dryer that can dry while drying is preferred. Drying is preferably carried out until the moisture content of the acetylated pulp reaches about 1 to 40%, more preferably 1 to 10%, even more preferably 1 to 5%. By using the dried pulp, it is possible to reduce the influence of hydrolysis of the pulp by water in the kneading step, which will be described later.
 (酸化変性)
 酸化は公知のとおりに実施できる。酸化処理により、予備解繊時のパルプ高濃度化の際のハンドリングが良好となる。例えばN-オキシル化合物と、臭化物、ヨウ化物およびこれらの混合物からなる群より選択される物質との存在下で、酸化剤を用いて水中で原料パルプを酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、アルデヒド基、カルボキシル基、およびカルボキシレート基からなる群より選ばれる基が生じる。あるいは、オゾン酸化方法が挙げられる。この酸化反応によればセルロースを構成するグルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。
(oxidative modification)
Oxidation can be carried out as known. Oxidation treatment improves the handling when increasing the density of the pulp during preliminary fibrillation. For example, there is a method of oxidizing raw pulp in water using an oxidizing agent in the presence of an N-oxyl compound and a substance selected from the group consisting of bromides, iodides and mixtures thereof. According to this method, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized to generate a group selected from the group consisting of an aldehyde group, a carboxyl group and a carboxylate group. Alternatively, an ozone oxidation method may be mentioned. According to this oxidation reaction, at least the hydroxyl groups at the 2nd and 6th positions of the glucopyranose rings constituting cellulose are oxidized, and the cellulose chain is decomposed.
 カルボキシル基量の測定方法の一例を以下に説明する。酸化セルロースの0.5質量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/g酸化セルロース〕=a〔mL〕×0.05/酸化セルロース質量〔g〕
An example of the method for measuring the amount of carboxyl groups is described below. Prepare 60 mL of a 0.5% by mass slurry (aqueous dispersion) of oxidized cellulose, add 0.1 M hydrochloric acid aqueous solution to adjust the pH to 2.5, and then drop 0.05 N sodium hydroxide aqueous solution to adjust the pH to 11. Measure the electrical conductivity until the It can be calculated using the following formula from the amount (a) of sodium hydroxide consumed in the neutralization stage of the weak acid whose electrical conductivity changes slowly.
Carboxyl group amount [mmol/g oxidized cellulose] = a [mL] x 0.05/oxidized cellulose mass [g]
 このようにして測定した酸化セルロース中のカルボキシル基の量は、絶乾質量に対して、好ましくは0.1mmol/g以上、より好ましくは0.3mmol/g以上、さらに好ましくは0.5mmol/g以上、よりさらに好ましくは0.8mmol/g以上である。当該量の上限は、好ましくは3.0mmol/g以下、より好ましくは2.5mmol/g以下、さらに好ましくは2.0mmol/g以下である。従って、当該量は0.1~3.0mmol/gが好ましく、0.3~2.5mmol/gがより好ましく、0.5~2.5mmol/gがさらに好ましく、0.8~2.0mmol/gがよりさらに好ましい。 The amount of carboxyl groups in the oxidized cellulose measured in this way is preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, still more preferably 0.5 mmol/g, relative to the absolute dry mass. 0.8 mmol/g or more, more preferably 0.8 mmol/g or more. The upper limit of the amount is preferably 3.0 mmol/g or less, more preferably 2.5 mmol/g or less, still more preferably 2.0 mmol/g or less. Therefore, the amount is preferably 0.1 to 3.0 mmol/g, more preferably 0.3 to 2.5 mmol/g, still more preferably 0.5 to 2.5 mmol/g, and 0.8 to 2.0 mmol /g is even more preferred.
 (エーテル化及びエステル化)
 エーテル化及びエステル化としては、カルボキシメチル化や、リン酸エステル化、亜リン酸エステル、硫酸エステル化等、公知の方法で変性を行うことができる。
(Etherification and esterification)
As etherification and esterification, modification can be performed by known methods such as carboxymethylation, phosphate esterification, phosphite esterification, and sulfate esterification.
 (カルボキシメチル化変性)
 カルボキシメチル化は公知のとおりに実施できる。カルボキシメチル化処理により、予備解繊時のパルプ高濃度化の際のハンドリングが良好となる。カルボキシメチル化セルロースのグルコース単位当たりのカルボキシメチル置換度の測定は例えば、次の方法による。すなわち、1)カルボキシメチル化セルロース(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)硝酸メタノール(メタノール1000mLに特級濃硝酸100mLを加えた液)100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(カルボキシメチル化セルロース)を水素型カルボキシメチル化セルロースにする。3)水素型カルボキシメチル化セルロース(絶乾)を1.5g以上2.0g以下程度精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで水素型カルボキシメチル化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する:
 A=[(100×F’-(0.1NのHSO)(mL)×F)×0.1]/(水素型カルボキシメチル化セルロースの絶乾質量(g))
 DS=0.162×A/(1-0.058×A)
A:水素型カルボキシメチル化セルロースの1gの中和に要する1NのNaOH量(mL)
F:0.1NのHSOのファクター
F’:0.1NのNaOHのファクター
(Carboxymethylation modification)
Carboxymethylation can be carried out as known. The carboxymethylation treatment improves the handling of the pulp during preliminary fibrillation to increase the density of the pulp. The degree of carboxymethyl substitution per glucose unit of carboxymethylated cellulose is measured, for example, by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose (absolute dry) is precisely weighed and placed in a 300 mL Erlenmeyer flask with a common stopper. 2) Add 100 mL of methanol nitrate (100 mL of special grade concentrated nitric acid added to 1000 mL of methanol) and shake for 3 hours to convert carboxymethyl cellulose salt (carboxymethyl cellulose) into hydrogen carboxymethyl cellulose. 3) About 1.5 g to 2.0 g of hydrogen-form carboxymethylated cellulose (absolute dry) is accurately weighed and placed in a 300 mL conical flask equipped with a common stopper. 4) Wet hydrogen carboxymethyl cellulose with 15 mL of 80% methanol, add 100 mL of 0.1N NaOH, and shake at room temperature for 3 hours. 5 ) Back - titrate excess NaOH with 0.1N H2SO4 using phenolphthalein as indicator. 6) Calculate the degree of carboxymethyl substitution (DS) by the formula:
A = [(100 × F'-(0.1 N H 2 SO 4 ) (mL) × F) × 0.1]/(absolute dry weight of hydrogen-form carboxymethylated cellulose (g))
DS = 0.162 x A/(1 - 0.058 x A)
A: Amount of 1N NaOH (mL) required to neutralize 1 g of hydrogen-type carboxymethylated cellulose
F: factor of 0.1N H2SO4 F': factor of 0.1N NaOH
 カルボキシメチル化セルロース中の無水グルコース単位当たりのカルボキシメチル置換度は、0.01以上が好ましく、0.05以上がより好ましく、0.10以上がさらに好ましい。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。従って、カルボキシメチル基置換度は、0.01~0.50が好ましく、0.05~0.40がより好ましく、0.10~0.35がさらに好ましい。 The degree of carboxymethyl substitution per anhydroglucose unit in carboxymethylated cellulose is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.10 or more. The upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.40 or less, and even more preferably 0.35 or less. Therefore, the degree of carboxymethyl group substitution is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, even more preferably 0.10 to 0.35.
 (混練工程)
 本発明の混練工程では、樹脂と、セルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練することにより、樹脂複合体を得る。本発明においては、セルロース繊維予備解繊物と樹脂とを一括して混練する方法により樹脂複合体を得ても良いし、セルロース繊維予備解繊物と樹脂(以下、「マスターバッチ用樹脂」ということがある)とを含むマスターバッチを作製し、次いでこのマスターバッチと樹脂(希釈用樹脂)とを混練(希釈混練)して樹脂複合体を得ても良い。また、混練工程においては、必要に応じて、尿素等を一緒に混練しても良い。
(Kneading process)
In the kneading step of the present invention, a resin composite is obtained by kneading a resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader. In the present invention, a resin composite may be obtained by a method of collectively kneading a cellulose fiber pre-fibrillated material and a resin, or a cellulose fiber pre-fibrillated material and a resin (hereinafter referred to as "masterbatch resin") may be obtained. ), and then kneading (diluting and kneading) this masterbatch and a resin (dilution resin) to obtain a resin composite. Moreover, in the kneading step, urea or the like may be kneaded together, if necessary.
 混練機に投入する際には、市販されている各種フィーダーやサイドフィーダーを用いることができる。樹脂と必要に応じて用いられる尿素は、あらかじめ粉末化しておいた場合は、投入前にセルロース繊維予備解繊物、樹脂、及び尿素を市販の混合機などにより混合して投入することができる。樹脂等が粉末化していない場合でも、例えばペレット用のフィーダーとセルロース繊維予備解繊物用のフィーダーのように、複数台のフィーダーを準備することで投入することができる。マスターバッチを作製するための混練工程において、混練機に投入するセルロース繊維予備解繊物のセルロース繊維分の配合量は、セルロース繊維予備解繊物、樹脂、及び必要に応じて用いられる尿素の合計量に対して、35~85質量%であることが好ましく、40~65質量%であることがより好ましい。 When feeding into the kneader, various commercially available feeders and side feeders can be used. If the resin and optionally used urea are powdered in advance, the cellulose fiber pre-fibrillated product, the resin, and the urea can be mixed with a commercially available mixer or the like before being added. Even if the resin or the like is not pulverized, it can be fed by preparing a plurality of feeders, such as a feeder for pellets and a feeder for pre-fibrillated cellulose fibers. In the kneading step for producing the masterbatch, the amount of the cellulose fiber content of the cellulose fiber preliminary defibrated material to be fed into the kneader is the sum of the cellulose fiber preliminary defibrated material, resin, and optionally used urea. It is preferably 35 to 85% by mass, more preferably 40 to 65% by mass, based on the amount.
 (混練機)
 本発明の混練工程では、一軸または多軸混練機を用いる。樹脂、及びセルロース繊維予備解繊物を溶融混練可能であることに加え、セルロース繊維予備解繊物のナノ化を促す強い混練力を有する観点から、二軸混練機、四軸混練機等の多軸混練機を使用し、スクリューを構成するパーツにニーディングやローターなどを複数含む構成であることが望ましい。
(kneader)
In the kneading step of the present invention, a single-screw or multi-screw kneader is used. In addition to being able to melt and knead the resin and the cellulose fiber pre-fibrillated material, from the viewpoint of having a strong kneading power that promotes nanoization of the cellulose fiber pre-fibrillated material, a multi-axis kneader such as a twin-screw kneader or a four-screw kneader is used. It is desirable that a shaft kneader is used and that the parts constituting the screw include a plurality of kneaders, rotors, and the like.
 溶融混練の設定温度は使用する樹脂の溶融温度に合わせて調整することができる。溶融混練時の加熱設定温度は、熱可塑性樹脂供給業者が推奨する、最低加工温度±10℃程度が好ましい。混合温度をこの温度範囲に設定することにより、セルロース繊維予備解繊物および樹脂を均一に混合することができる。 The set temperature for melt-kneading can be adjusted according to the melting temperature of the resin used. The heating setting temperature during melt-kneading is preferably about ±10° C., the lowest processing temperature recommended by the supplier of the thermoplastic resin. By setting the mixing temperature within this temperature range, the cellulose fiber pre-defibrated material and the resin can be uniformly mixed.
 本発明においては、混練工程で混練機に投入された樹脂、セルロース繊維予備解繊物、及び必要に応じて用いられる尿素等は、溶融混練され、この溶融混練時に発生するせん断力により少なくとも一部のセルロース繊維予備解繊物が本解繊され、平均繊維幅が1μm以下の割合が50体積%以上であるセルロース繊維を含む樹脂複合体が調製される。 In the present invention, the resin, the cellulose fiber pre-fibrillated material, and optionally used urea or the like that are put into the kneader in the kneading step are melt-kneaded, and at least a portion of the resin is melted and kneaded by the shearing force generated during this melt-kneading. is subjected to main defibration to prepare a resin composite containing cellulose fibers having an average fiber width of 1 μm or less at a rate of 50% by volume or more.
 (希釈混練工程)
 本発明の樹脂複合体の製造方法は、上記の混練工程で得られた樹脂複合体と、希釈用樹脂とを混練する希釈混練工程をさらに含んでいても良い。希釈混練工程を含む場合、混練工程によって調製した樹脂複合体をマスターバッチとして使用することが可能である。また、希釈混練工程を含む場合、希釈混練工程後に得られる樹脂複合体が、平均繊維幅が1μm以下の割合が50体積%以上であるセルロース繊維を含むものであればよい。
(Dilution kneading process)
The method for producing a resin composite of the present invention may further include a dilution kneading step of kneading the resin composite obtained in the kneading step and a diluent resin. When the dilution kneading step is included, the resin composite prepared by the kneading step can be used as a masterbatch. Moreover, when the dilution-kneading step is included, the resin composite obtained after the dilution-kneading step may contain cellulose fibers having an average fiber width of 1 μm or less at a rate of 50% by volume or more.
 (希釈用樹脂)
 本発明で用いる希釈用樹脂としては、上記した溶融温度が250℃以下の、一般的な熱可塑性樹脂を使用することができる。希釈用樹脂は、1種類を単独で使用してもよく、2種以上の樹脂を混合して使用してもよい。
(Resin for dilution)
As the diluent resin used in the present invention, a general thermoplastic resin having a melting temperature of 250° C. or lower can be used. The diluent resin may be used singly or as a mixture of two or more resins.
 混練工程で得られた樹脂複合体をマスターバッチとして使用する場合は、マスターバッチに希釈用樹脂を加えて溶融混練することにより、希釈用樹脂をさらに含む樹脂複合体を得ることができる。希釈用樹脂を加えて溶融混練する場合、両成分を室温下で加熱せずに混合してから溶融混練しても、加熱しながら混合して溶融混練しても良い。 When the resin composite obtained in the kneading step is used as a masterbatch, a resin composite further containing the diluent resin can be obtained by adding a diluent resin to the masterbatch and melt-kneading it. When the diluent resin is added and melt-kneaded, the two components may be mixed at room temperature without heating and then melt-kneaded, or may be mixed with heating and melt-kneaded.
 希釈用樹脂を加えて溶融混練する場合における混練機としては、上記の混練工程で用いる混練機と同様のものを使用することができる。また、溶融混練温度は、混練工程で使用する樹脂に合わせて調整することができる。溶融混練時の加熱設定温度は、熱可塑性樹脂供給業者が推奨する最低加工温度±10℃程度が好ましい。温度をこの温度範囲に設定することにより、セルロース繊維予備解繊物と樹脂を均一に混合することができる。 The same kneader as used in the kneading process can be used as the kneader for melting and kneading by adding the resin for dilution. Also, the melt-kneading temperature can be adjusted according to the resin used in the kneading step. The heating setting temperature during melt-kneading is preferably about ±10° C., the lowest processing temperature recommended by the supplier of the thermoplastic resin. By setting the temperature within this temperature range, the cellulose fiber pre-defibrated material and the resin can be uniformly mixed.
 本発明の製造方法により製造される樹脂複合体は、更に、例えば、界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤、酸化防止剤等の添加剤を配合してもよい。任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されてもよい。 The resin composite produced by the production method of the present invention further includes, for example, surfactants; polysaccharides such as starches and alginic acid; natural proteins such as gelatin, glue and casein; tannins, zeolites, ceramics, metal powders, etc. colorants; plasticizers; fragrances; pigments; flow control agents; leveling agents; conductive agents; may The content of any additive may be appropriately contained within a range that does not impair the effects of the present invention.
 (樹脂複合体)
 本発明の製造方法により得られる樹脂複合体は、樹脂とセルロース繊維予備解繊物とを一括して混練する方法により得られたものであっても良いし、樹脂とセルロース繊維予備解繊物とを混練して得られたマスターバッチと、希釈用樹脂とを混練する希釈混練工程で得られた樹脂複合体であっても良い。
(resin composite)
The resin composite obtained by the production method of the present invention may be obtained by a method of kneading the resin and the cellulose fiber pre-fibrillated material at once, or may be obtained by kneading the resin and the cellulose fiber pre-fibrillated material together. It may be a resin composite obtained in a dilution kneading step of kneading a masterbatch obtained by kneading and a resin for dilution.
 本発明によれば、高い引張弾性率および高い引張強度を有し、さらに、引張伸びとのバランスに優れる樹脂複合体を提供することができる。また、この樹脂複合体を得ることが可能な樹脂複合体の製造方法を提供することができる。また、この樹脂複合体に用いるセルロース繊維予備解繊物を提供することができる。 According to the present invention, it is possible to provide a resin composite that has a high tensile modulus and a high tensile strength, and is excellent in balance with tensile elongation. In addition, it is possible to provide a method for producing a resin composite by which this resin composite can be obtained. Moreover, it is possible to provide a cellulose fiber pre-fibrillated material used for this resin composite.
 (用途)
 本発明の樹脂複合体を用いて、成形材料及び成形体(成型材料及び成型体)を製造することができる。成形体の形状としては、フィルム状、シート状、板状、ペレット状、粉末状、立体構造など各種形状等の各種形状の成形体が挙げられる。成形方法として、金型成形、射出成形、押出成形、中空成形、発泡成形等を用いることができる。
(Application)
A molding material and a molded article (molding material and molded article) can be produced using the resin composite of the present invention. Examples of the shape of the molded body include various shaped bodies such as film-like, sheet-like, plate-like, pellet-like, powder-like, and three-dimensional structures. As a molding method, die molding, injection molding, extrusion molding, blow molding, foam molding, etc. can be used.
 成形体(成型体)は、セルロース繊維を含むマトリックス成形物(成型物)が使用される繊維強化プラスチック分野に加え、熱可塑性及び機械強度(引張り強度等)が要求される分野にも使用できる。 The molded product (molded product) can be used not only in the field of fiber-reinforced plastics, where matrix molded products (molded products) containing cellulose fibers are used, but also in fields where thermoplasticity and mechanical strength (tensile strength, etc.) are required.
 自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等、容器、コンテナー等として有効に使用することができる。 Interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, and airplanes; housings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, and clocks; mobile communications such as mobile phones Housings, structural materials, internal parts, etc. of equipment; housings, structural materials, internal parts, etc. of portable music players, video players, printers, copiers, sporting goods; building materials; office equipment such as stationery, etc. It can be effectively used as a vessel, container, or the like.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.
 (セルロース繊維予備解繊物の繊維長分布、ファイン分測定)
 セルロース繊維予備解繊物の繊維長分布およびファイン分測定は、Lorentzen & Wettre社製ファイバーテスターを用いて測定した。本発明において繊維長とは、ISO16065に基づく数平均繊維長の事を示す。具体的には、パルプ乾燥質量0.1gを300mLの水で撹拌・離解し、ファイバーテスターにて測定した。
(Fiber length distribution of cellulose fiber pre-fibrillated product, measurement of fine content)
The fiber length distribution and fine content of the cellulose fiber pre-fibrillated product were measured using a fiber tester manufactured by Lorentzen & Wettre. In the present invention, the fiber length indicates the number average fiber length based on ISO16065. Specifically, 0.1 g of pulp dry mass was stirred and disaggregated with 300 mL of water, and measured with a fiber tester.
 本発明において、ファイン分とは繊維長が0.2mm以下の繊維長をもつ繊維をさす。その値は高い方が後述する混練によって解繊が進むが、50%を超える条件となると樹脂複合体中に長繊維を残すことが難しくなり好ましくない。その含有量はファイン分を含む全繊維のうち、35~50%であることが好ましく、37~48%であることがより好ましい。 In the present invention, the fine portion refers to fibers having a fiber length of 0.2 mm or less. The higher the value, the more the defibration proceeds by kneading, which will be described later. However, if the value exceeds 50%, it is difficult to leave long fibers in the resin composite, which is not preferable. Its content is preferably 35 to 50%, more preferably 37 to 48%, of the total fibers including fines.
 (アセチル基置換度(DS)の測定方法)
 (逆滴定方法によるDSの測定)
 アセチル化セルロースパルプの試料を乾燥し、0.5g(A)を正確に秤量した。そこにエタノール75mL、0.5NのNaOH 50mL(0.025mol)(B)を加え、3~4時間撹拌した。これを濾過、水洗、乾燥し、濾紙上の試料のFT-IR測定を行い、エステル結合のカルボニルに基づく吸収ピークが消失していること、つまりエステル結合が加水分解されていることを確認した。
 濾液を下記の逆滴定に用いた。
 濾液には加水分解の結果生じた酢酸ナトリウム塩及び過剰に加えられたNaOHが存在する。このNaOHの中和滴定を1NのHClを用いて行った(指示薬にはフェノールフタレインを使用)。
(Method for measuring degree of acetyl group substitution (DS))
(DS measurement by back titration method)
A sample of acetylated cellulose pulp was dried and accurately weighed 0.5 g (A). 75 mL of ethanol and 50 mL of 0.5N NaOH (0.025 mol) (B) were added thereto and stirred for 3 to 4 hours. This was filtered, washed with water and dried, and the sample on the filter paper was subjected to FT-IR measurement, and it was confirmed that the absorption peak based on the carbonyl of the ester bond disappeared, that is, the ester bond was hydrolyzed.
The filtrate was used for back titration below.
The filtrate contains sodium acetate resulting from hydrolysis and NaOH added in excess. This NaOH neutralization titration was performed using 1N HCl (using phenolphthalein as an indicator).
・0.025mol(B)-(中和に使用したHClのモル数)
 =セルロースなどの水酸基にエステル結合していたアセチル基のモル数(C)
・(セルロース繰り返しユニット分子量162
 ×セルロース繰り返しユニットのモル数(未知(D))
    +(アセチル基の分子量43×(C))
 =秤量した試料0.5g(A)
 上記式より、セルロースの繰り返しユニットのモル数(D)を算出した。
・ 0.025 mol (B) - (number of moles of HCl used for neutralization)
= Number of moles of acetyl groups ester-bonded to hydroxyl groups of cellulose, etc. (C)
(Cellulose repeating unit molecular weight 162
× number of moles of cellulose repeating units (unknown (D))
+ (molecular weight of acetyl group 43 × (C))
= 0.5 g (A) of weighed sample
The number of moles (D) of repeating units of cellulose was calculated from the above formula.
 DSは、下記式により算出した。
 ・DS=(C)/(D)
DS was calculated by the following formula.
・DS = (C)/(D)
 (樹脂複合体中のアセチル化セルロース繊維の平均繊維幅)
 樹脂複合体中のアセチル化セルロース繊維について、平均繊維幅が1μm以下の割合は、X線コンピューティッドトモグラフィ(以下X-CTと略する)(SKYSCAN1272(ブルカー社製):分解能0.5μm)により行った。本装置は具体的には、作製したセルロース繊維を10%含有する樹脂複合体内部を1cm角で切り出し、これを上述の1ボクセル0.5μmの条件で測定した。これを3次元に再構成の後、200×200μm以上の平面を選択し、形状から繊維部と非繊維部を分離したのち、この画像を2値化し2ボクセル以下の繊維およびノイズを除去した。この平面画像をZ軸方向に対し200μmの範囲で10平面以上を使用して、繊維部(未解繊繊維量)の平均を求めた。上記操作により画像中に表示されている繊維は繊維幅が1μmより大きい繊維を意味する。この平均した未解繊繊維量の値を用いて以下の式で、平均繊維幅が1μm以下のセルロース繊維の割合を求めた。
Figure JPOXMLDOC01-appb-M000001
 なお、上記式において、実施例ではセルロース繊維を10%含有しているため、セルロース量は10%、セルロース密度は1.5g/cmとした。
(Average fiber width of acetylated cellulose fibers in resin composite)
Regarding the acetylated cellulose fibers in the resin composite, the ratio of the average fiber width of 1 μm or less was obtained by X-ray computed tomography (hereinafter abbreviated as X-CT) (SKYSCAN1272 (manufactured by Bruker): resolution 0.5 μm). It was done by Specifically, this apparatus cut out a 1 cm square from the inside of the resin composite containing 10% of the produced cellulose fiber, and measured this under the above-mentioned conditions of 1 voxel of 0.5 μm. After reconstructing this three-dimensionally, a plane of 200×200 μm or more was selected, and after separating the fiber portion and the non-fiber portion from the shape, this image was binarized to remove fibers and noise of 2 voxels or less. Using 10 planes or more of this planar image in the range of 200 μm in the Z-axis direction, the average of the fiber portion (undisentangled fiber amount) was obtained. The fibers displayed in the image by the above operation mean fibers having a fiber width of more than 1 μm. The ratio of cellulose fibers having an average fiber width of 1 μm or less was determined by the following formula using this averaged amount of unfibrillated fibers.
Figure JPOXMLDOC01-appb-M000001
In the above formula, the cellulose content was 10% and the cellulose density was 1.5 g/cm 3 because the example contained 10% cellulose fiber.
 (引張弾性率、引張強度、及び引張伸びの測定)
 実施例および比較例で得られたペレット状の樹脂成型体150gを小型成形機(Xplore Instruments社製「MC15」)に投入し、加熱筒(シリンダー)の温度200℃、金型温度は40℃の条件で、ダンベル型試験片(タイプA12、JIS K 7139)を成形した。得られた試験片について、精密万能試験機(島津製作所(株)製「オートグラフAG-Xplus」)を用いて、試験速度1mm/分、初期標線間距離は30mmで、引張弾性率、引張強度、及び引張伸び(破断までのひずみ、伸び)を測定した。引張伸びの結果を表1に示す。また、希釈用樹脂のみを用いて上記と同様にダンベル型試験片を成形し、得られた試験片について上記と同様に引張弾性率、引張強度を測定し、PA6ニート樹脂およびPPニート樹脂の引張弾性率及び引張強度を100としたときの、各サンプルの測定値の比率を補強率とし、その結果を表1に示す。
(Measurement of tensile modulus, tensile strength, and tensile elongation)
150 g of pellet-shaped resin moldings obtained in Examples and Comparative Examples were put into a small molding machine ("MC15" manufactured by Xplore Instruments), and the temperature of the heating cylinder (cylinder) was 200 ° C., and the mold temperature was 40 ° C. A dumbbell-shaped test piece (type A12, JIS K 7139) was molded under the conditions. Using a precision universal testing machine (manufactured by Shimadzu Corporation, "Autograph AG-Xplus"), the obtained test piece was tested at a test speed of 1 mm/min and an initial distance between marked lines of 30 mm. Strength and tensile elongation (strain and elongation until breakage) were measured. Table 1 shows the tensile elongation results. Also, using only the diluent resin, a dumbbell-shaped test piece was molded in the same manner as described above, and the tensile modulus and tensile strength of the obtained test piece were measured in the same manner as described above. The ratio of the measured values of each sample to the modulus of elasticity and tensile strength of 100 is defined as the reinforcement ratio, and Table 1 shows the results.
 (マスターバッチ及び樹脂複合体の製造に使用した混練機と運転条件)
 (株)テクノベル製「MFU15TW-45HG-NH」二軸混練機
 スクリュー径:15mm、L/D:45、処理速度:300g/時
 スクリュー回転数200rpm、設定温度は各樹脂の融点+5℃で運転した。
(Kneader and operating conditions used for manufacturing masterbatch and resin composite)
"MFU15TW-45HG-NH" twin-screw kneader manufactured by Technobell Co., Ltd. Screw diameter: 15 mm, L/D: 45, Processing speed: 300 g/h, Screw rotation speed: 200 rpm, Set temperature: Operating at the melting point of each resin + 5 ° C. .
 (実施例1)
 (パルプの叩解処理)
 50%含水の針葉樹未漂白クラフトパルプ(NUKP:リグニン含量8質量%)を固形分濃度20%に調整し、この20kgに対してシングルディスクリファイナー(熊谷理機工業社製、プレートの刃幅:4mm、溝幅:5mm)を用い、クリアランス:0.25mmの条件で2回通し、濾水度が5点の測定値が350mL~450mLになるよう処理することにより(叩解処理)、セルロース繊維予備解繊物を準備した。得られたセルロース繊維予備解繊物について、Lorentzen & Wettre社製を用いて繊維長分布を測定した。結果を表1に示す。
(Example 1)
(Beating treatment of pulp)
Unbleached softwood kraft pulp containing 50% water (NUKP: lignin content 8% by mass) was adjusted to a solid concentration of 20%, and 20 kg of this was treated with a single disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd., plate blade width: 4 mm, Groove width: 5 mm), clearance: 0.25 mm, passing twice, and processing so that the measured value of freeness at 5 points is 350 mL to 450 mL (beating treatment), cellulose fiber pre-fibrillation prepared things. The fiber length distribution of the obtained cellulose fiber pre-fibrillated product was measured using Lorentzen & Wettre. Table 1 shows the results.
 (アセチル化パルプの調製)
 上記のセルロース繊維予備解繊物、すなわち叩解処理を行った含水針葉樹未漂白クラフトパルプ(NUKP)20.0kg(固形分4.0kg)を、撹拌機(日本コークス工業(株)製「FM150L」)に投入した後、撹拌を開始し、50℃で減圧脱水した。次いで、無水酢酸4.0kgを加え、80℃で2時間反応させた。反応後、パルプを十分に水洗・脱水・減圧乾燥をしてパルプ固形分濃度が98質量%のアセチル化パルプ、すなわちアセチル化セルロース繊維予備解繊物を得た。アセチル化セルロース繊維予備解繊物のアセチル基置換度(DS)は0.5であった。
(Preparation of acetylated pulp)
20.0 kg (solid content: 4.0 kg) of hydrous softwood unbleached kraft pulp (NUKP) that has been subjected to the above-mentioned cellulose fiber pre-fibrillation, that is, beating treatment, is added to a stirrer ("FM150L" manufactured by Nippon Coke Industry Co., Ltd.) , stirring was started and dehydration was carried out under reduced pressure at 50°C. Then, 4.0 kg of acetic anhydride was added and reacted at 80° C. for 2 hours. After the reaction, the pulp was sufficiently washed with water, dehydrated, and dried under reduced pressure to obtain acetylated pulp having a pulp solid content concentration of 98% by mass, that is, an acetylated cellulose fiber pre-fibrillated material. The degree of acetyl group substitution (DS) of the acetylated cellulose fiber pre-fibrillated product was 0.5.
 (マスターバッチA及び樹脂複合体Aの製造に使用した材料)
 (a)アセチル化セルロース繊維予備解繊物
 (b)マスターバッチ用樹脂
  ・PA6:(宇部興産(株)製PA6 P1011F)
 (c)希釈用樹脂
  ・PA6:(宇部興産(株)製PA6 1011FB)
(Materials used for manufacturing masterbatch A and resin composite A)
(a) Pre-fibrillated acetylated cellulose fiber (b) Resin for masterbatch PA6: (PA6 P1011F manufactured by Ube Industries, Ltd.)
(c) Resin for dilution PA6: (PA6 1011FB manufactured by Ube Industries, Ltd.)
 (マスターバッチAの製造)
 上記のアセチル化セルロース繊維予備解繊物(絶対乾燥物として460g)、マスターバッチ用樹脂(PA6:720g)を、ポリエチレン製の袋に入れ、振り交ぜて混合した。得られた混合物1180gを前述の二軸混練機に付属するフィーダー((株)テクノベル製)を用いて混練機に投入、加熱温度下で混練し、アセチル化セルロース繊維予備解繊物が樹脂との混練により本解繊されて得られたアセチル化セルロース繊維、及びマスターバッチ用樹脂を含むマスターバッチAを製造した。
(Production of masterbatch A)
The above acetylated cellulose fiber pre-fibrillated product (460 g as absolute dry product) and masterbatch resin (PA6: 720 g) were placed in a polyethylene bag and mixed by shaking. 1180 g of the obtained mixture was put into a kneader using a feeder (manufactured by Technobell Co., Ltd.) attached to the above-mentioned twin-screw kneader, and kneaded at a heating temperature to mix the acetylated cellulose fiber pre-fibrillated material with the resin. A masterbatch A containing the acetylated cellulose fibers obtained by main disentanglement by kneading and a masterbatch resin was produced.
 (樹脂複合体Aの製造)
 得られたマスターバッチA60gと希釈用樹脂(PA6)120gとを混合し、前記二軸混練機にて加熱温度下で混練した。次いで溶融混練物を、ペレタイザーを用いてペレット化し、アセチル化セルロース繊維、マスターバッチ用樹脂、及び希釈用樹脂を含むペレット状の樹脂複合体(成形体)Aを得た。なお、樹脂複合体Aに含まれるアセチル化セルロース繊維は、平均繊維幅が1μm以下の割合が67体積%であった。なお、樹脂と混練後のアセチル化セルロース繊維については、樹脂と繊維の分離が困難なため、繊維長の測定が困難であった。
(Production of resin composite A)
60 g of the obtained masterbatch A and 120 g of the diluent resin (PA6) were mixed and kneaded at the heating temperature in the twin-screw kneader. The melt-kneaded product was then pelletized using a pelletizer to obtain a resin composite (molded product) A in the form of pellets containing the acetylated cellulose fibers, the masterbatch resin, and the diluent resin. In the acetylated cellulose fibers contained in the resin composite A, the ratio of the average fiber width of 1 μm or less was 67% by volume. As for the acetylated cellulose fiber after kneading with the resin, it was difficult to separate the resin from the fiber, so it was difficult to measure the fiber length.
 (マスターバッチB及び樹脂複合体Bの製造に使用した材料)
 (a)アセチル化セルロース繊維予備解繊物
 (b)マスターバッチ用樹脂
  ・ MAPP:(東洋紡製MAPP PMAH1000P)
 (c)尿素:(和光純薬工業製)
 (d)希釈用樹脂
  ・ PP:(日本ポリプロ(株)製PP MA04A)
(Materials used for manufacturing masterbatch B and resin composite B)
(a) Pre-fibrillated acetylated cellulose fiber (b) Masterbatch resin MAPP: (MAPP PMAH1000P manufactured by Toyobo)
(c) Urea: (manufactured by Wako Pure Chemical Industries)
(d) Dilution resin PP: (PP MA04A manufactured by Japan Polypropylene Corporation)
 (マスターバッチBの製造)
 上記のアセチル化セルロース繊維予備解繊物(絶対乾燥物として460g)、マスターバッチ用樹脂(MAPP:110g)及び粉末状の尿素(180g)を、ポリエチレン製の袋に入れ、振り交ぜて混合した。得られた混合物750gを前述の二軸混練機に付属するフィーダー((株)テクノベル製)を用いて混練機に投入、加熱温度下で混練し、アセチル化セルロース繊維の予備解繊物が樹脂との混練により本解繊されて得られたアセチル化セルロース繊維、及びマスターバッチ用樹脂を含むマスターバッチBを製造した。
(Production of masterbatch B)
The above acetylated cellulose fiber pre-fibrillation product (460 g as absolute dry product), masterbatch resin (MAPP: 110 g) and powdered urea (180 g) were placed in a polyethylene bag and mixed by shaking. 750 g of the obtained mixture was put into the kneader using a feeder (manufactured by Technobell Co., Ltd.) attached to the above-mentioned twin-screw kneader, and kneaded at a heating temperature, and the pre-defibrated product of the acetylated cellulose fibers was mixed with the resin. A masterbatch B containing the acetylated cellulose fibers obtained by the main defibration by kneading and the masterbatch resin was produced.
 (樹脂複合体Bの製造)
 得られたマスターバッチB38gと希釈用樹脂(PP)142gとを混合し、前記二軸混練機にて加熱温度下で混練した。次いで溶融混練物を、ペレタイザーを用いてペレット化し、アセチル化セルロース繊維、マスターバッチ用樹脂、及び希釈用樹脂を含むペレット状の樹脂複合体(成形体)Bを得た。なお、樹脂成形体Bに含まれるアセチル化セルロース繊維は、平均繊維幅が1μm以下の割合が60体積%であった。
(Production of resin composite B)
38 g of the obtained masterbatch B and 142 g of diluent resin (PP) were mixed and kneaded at the heating temperature by the twin-screw kneader. The melt-kneaded product was then pelletized using a pelletizer to obtain a pellet-shaped resin composite (molded product) B containing the acetylated cellulose fibers, the masterbatch resin, and the diluent resin. The acetylated cellulose fibers contained in the resin molding B had a ratio of 60% by volume having an average fiber width of 1 μm or less.
 (実施例2)
 パルプの叩解処理において、シングルディスクリファイナーに通す回数を3回とし、濾水度5点の測定値が150mL~250mLとなるように変更したこと以外は実施例1と同様に、セルロース繊維予備解繊物を準備した。また、このセルロース繊維予備解繊物を用いたこと以外は実施例1と同様にアセチル化セルロース繊維予備解繊物を準備した。実施例2で得られた予備解繊物を用いたこと以外は、実施例1と同様にマスターバッチA,Bおよび樹脂複合体A,Bを製造した。なお、樹脂複合体A,Bに含まれるアセチル化セルロース繊維は、平均繊維幅が1μm以下の割合がそれぞれ71体積%、65体積%であった。
(Example 2)
Cellulose fiber pre-defibrated material in the same manner as in Example 1 except that in the beating treatment of pulp, the number of passes through the single disc refiner was set to 3 times, and the measured value of freeness at 5 points was changed to 150 mL to 250 mL. prepared. Also, an acetylated cellulose fiber pre-fibrillated material was prepared in the same manner as in Example 1 except that this pre-fibrillated cellulose fiber material was used. Masterbatches A and B and resin composites A and B were produced in the same manner as in Example 1 except that the pre-fibrillated material obtained in Example 2 was used. In the acetylated cellulose fibers contained in the resin composites A and B, the proportions having an average fiber width of 1 μm or less were 71% by volume and 65% by volume, respectively.
 (比較例1)
 パルプに対して叩解処理をおこなわず、これを実施例1の条件でアセチル化したものをアセチル化セルロース繊維予備解繊物に代えて用いたこと以外は、実施例1と同様にマスターバッチA,Bおよび樹脂複合体A,Bを製造した。なお、樹脂複合体A,Bに含まれるアセチル化セルロース繊維は、平均繊維幅が1μm以下の割合がそれぞれ59体積%、51体積%であった。
(Comparative example 1)
Masterbatch A, B and resin composites A and B were produced. The acetylated cellulose fibers contained in the resin composites A and B had an average fiber width of 1 μm or less at 59% by volume and 51% by volume, respectively.
 (比較例2)
 パルプの叩解処理において、シングルディスクリファイナーに通す回数を1回とし、濾水度5点の測定値が450mL~550mLとなるように変更したこと以外は実施例1と同様に、セルロース繊維予備解繊物を準備した。また、このセルロース繊維予備解繊物を用いたこと以外は実施例1と同様にアセチル化セルロース繊維予備解繊物を準備した。比較例2で得られた予備解繊物を用いたこと以外は、実施例1と同様にマスターバッチA,Bおよび樹脂複合体A,Bを製造した。なお、樹脂複合体A,Bに含まれるアセチル化セルロース繊維は、平均繊維幅が1μm以下の割合がそれぞれ61体積%、54体積%であった。
(Comparative example 2)
Cellulose fiber pre-defibrated material in the same manner as in Example 1 except that in the beating treatment of pulp, the number of passes through the single disc refiner was set to 1 time, and the measured value of freeness at 5 points was changed to 450 mL to 550 mL. prepared. Also, an acetylated cellulose fiber pre-fibrillated material was prepared in the same manner as in Example 1 except that this pre-fibrillated cellulose fiber material was used. Masterbatches A and B and resin composites A and B were produced in the same manner as in Example 1, except that the pre-fibrillated material obtained in Comparative Example 2 was used. In the acetylated cellulose fibers contained in the resin composites A and B, the proportions having an average fiber width of 1 μm or less were 61% by volume and 54% by volume, respectively.
 (比較例3)
 パルプの叩解処理において、固形分濃度を3%に調整したNUKPに対して、シングルディスクリファイナーのクリアランスを0.15mmの条件で5回処理し、濾水度5点の測定値が150mL~250mLのセルロース繊維予備解繊物を得たこと以外は実施例1と同様に、セルロース繊維予備解繊物を準備した。また、このセルロース繊維予備解繊物を用いたこと以外は実施例1と同様にアセチル化セルロース繊維予備解繊物を準備した。比較例3で得られた予備解繊物を用いたこと以外は、実施例1と同様にマスターバッチA,Bおよび樹脂複合体A,Bを製造した。なお、樹脂複合体A、Bに含まれるアセチル化セルロース繊維は、平均繊維幅が1μm以下の割合がそれぞれ75体積%、71体積%であった。
(Comparative Example 3)
In the pulp beating treatment, NUKP adjusted to a solid content concentration of 3% is treated five times under the condition of a single disc refiner clearance of 0.15 mm, and the measured value of freeness at 5 points is 150 mL to 250 mL. A cellulose fiber pre-fibrillated material was prepared in the same manner as in Example 1, except that a pre-fibrillated material was obtained. Also, an acetylated cellulose fiber pre-fibrillated material was prepared in the same manner as in Example 1 except that this pre-fibrillated cellulose fiber material was used. Masterbatches A and B and resin composites A and B were produced in the same manner as in Example 1, except that the pre-fibrillated material obtained in Comparative Example 3 was used. In the acetylated cellulose fibers contained in the resin composites A and B, the proportions having an average fiber width of 1 μm or less were 75% by volume and 71% by volume, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、本発明の、パルプを機械的処理して得られるセルロース繊維予備解繊物であって繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在するセルロース繊維予備解繊物と、樹脂とを一軸または多軸混練機を用いて混練して得られる樹脂複合体は、これに含まれるセルロース繊維の平均繊維幅が1μm以下の割合が50体積%以上であると、引張強度又は引張弾性率と引張伸びのバランスに優れる。
 
As shown in Table 1, 40% or more and less than 58% of the cellulose fiber pre-defibrated material obtained by mechanically treating the pulp of the present invention has a fiber length of 0.1 mm or more and less than 0.5 mm, and a fiber length of 1 A resin composite obtained by kneading a cellulose fiber pre-fibrillated product in which 5 mm or more and less than 2.0 mm is present at a ratio of 5% or more and less than 10% with a resin using a uniaxial or multiaxial kneader is When the ratio of cellulose fibers having an average fiber width of 1 μm or less contained in is 50% by volume or more, the balance between tensile strength or tensile elastic modulus and tensile elongation is excellent.

Claims (5)

  1.  樹脂およびセルロース繊維を含む樹脂複合体であって、
     前記樹脂複合体は、前記樹脂と、セルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練してなり、
     前記セルロース繊維予備解繊物は、パルプを機械的処理してなり、
     前記セルロース繊維予備解繊物は、繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在し、
     前記樹脂複合体に含まれる前記セルロース繊維は、平均繊維幅が1μm以下の割合が50体積%以上であることを特徴とする、樹脂複合体。
    A resin composite comprising a resin and cellulose fibers,
    The resin composite is obtained by kneading the resin and a cellulose fiber pre-fibrillated material using a uniaxial or multiaxial kneader,
    The cellulose fiber pre-fibrillated material is obtained by mechanically treating pulp,
    The cellulose fiber pre-fibrillated material has a fiber length of 0.1 mm or more and less than 0.5 mm at a rate of 40% or more and less than 58%, and a fiber length of 1.5 mm or more and less than 2.0 mm at a rate of 5% or more and less than 10%,
    A resin composite, wherein the cellulose fibers contained in the resin composite have an average fiber width of 1 μm or less at a rate of 50% by volume or more.
  2.  前記機械的処理時の前記パルプの固形分濃度が10質量%以上であることを特徴とする、請求項1記載の樹脂複合体。 The resin composite according to claim 1, wherein the pulp has a solid content concentration of 10% by mass or more during the mechanical treatment.
  3.  前記機械的処理が、ディスクリファイナーおよびコニカルリファイナーの少なくとも一方を用いて行われることを特徴とする、請求項1または2記載の樹脂複合体。 The resin composite according to claim 1 or 2, wherein the mechanical treatment is performed using at least one of a disc refiner and a conical refiner.
  4.  樹脂およびセルロース繊維を含む樹脂複合体の製造方法であって、
     パルプを機械的処理してセルロース繊維予備解繊物を得る機械的処理工程と、
     前記樹脂と、前記セルロース繊維予備解繊物とを一軸または多軸混練機を用いて混練することにより樹脂複合体を得る混練工程とを含み、
     前記セルロース繊維予備解繊物は、繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在し、
     前記樹脂複合体に含まれる前記セルロース繊維は、平均繊維幅が1μm以下の割合が50体積%以上である、樹脂複合体の製造方法。
    A method for producing a resin composite containing a resin and cellulose fibers,
    a mechanical treatment step of mechanically treating the pulp to obtain a cellulose fiber pre-fibrillated product;
    a kneading step of obtaining a resin composite by kneading the resin and the cellulose fiber pre-fibrillated material using a uniaxial or multi-axial kneader,
    The cellulose fiber pre-fibrillated material has a fiber length of 0.1 mm or more and less than 0.5 mm at a rate of 40% or more and less than 58%, and a fiber length of 1.5 mm or more and less than 2.0 mm at a rate of 5% or more and less than 10%,
    The method for producing a resin composite, wherein the cellulose fibers contained in the resin composite have an average fiber width of 1 μm or less at a rate of 50% by volume or more.
  5.  樹脂複合体に用いられるセルロース繊維予備解繊物であって、
     繊維長0.1mm以上0.5mm未満が40%以上58%未満、繊維長1.5mm以上2.0mm未満が5%以上10%未満の割合で存在する
     セルロース繊維予備解繊物。
    A cellulose fiber pre-fibrillated material used for a resin composite,
    A cellulose fiber pre-defibrated material having a fiber length of 0.1 mm or more and less than 0.5 mm at a rate of 40% or more and less than 58% and a fiber length of 1.5 mm or more and less than 2.0 mm at a rate of 5% or more and less than 10%.
PCT/JP2021/046164 2021-02-03 2021-12-15 Resin composite, method for producing resin composite, and pre-fibrillated cellulose fibers WO2022168459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021015479A JP7108727B1 (en) 2021-02-03 2021-02-03 Method for producing resin composite, and pre-fibrillated cellulose fiber
JP2021-015479 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022168459A1 true WO2022168459A1 (en) 2022-08-11

Family

ID=82610372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046164 WO2022168459A1 (en) 2021-02-03 2021-12-15 Resin composite, method for producing resin composite, and pre-fibrillated cellulose fibers

Country Status (3)

Country Link
JP (1) JP7108727B1 (en)
TW (1) TWI807559B (en)
WO (1) WO2022168459A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222266A (en) * 2011-04-13 2012-11-12 Mitsubishi Paper Mills Ltd Separator for electrochemical element and electrochemical element using the same
JP2016129094A (en) * 2015-01-09 2016-07-14 三菱製紙株式会社 Lithium primary battery separator and lithium primary battery arranged by use thereof
WO2020166653A1 (en) * 2019-02-14 2020-08-20 三菱製紙株式会社 Enthalpy exchange element paper and enthalpy exchange element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091589B2 (en) * 2015-03-19 2017-03-08 国立大学法人京都大学 Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
JP2019178216A (en) * 2018-03-30 2019-10-17 第一工業製薬株式会社 Fine fibrous cellulose and resin composition thereof
EP3815541A4 (en) * 2018-05-18 2022-04-13 Nippon Paper Industries Co., Ltd. Pulverized product of carboxymethylated pulp and additive containing said pulverized product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222266A (en) * 2011-04-13 2012-11-12 Mitsubishi Paper Mills Ltd Separator for electrochemical element and electrochemical element using the same
JP2016129094A (en) * 2015-01-09 2016-07-14 三菱製紙株式会社 Lithium primary battery separator and lithium primary battery arranged by use thereof
WO2020166653A1 (en) * 2019-02-14 2020-08-20 三菱製紙株式会社 Enthalpy exchange element paper and enthalpy exchange element

Also Published As

Publication number Publication date
TW202231962A (en) 2022-08-16
JP7108727B1 (en) 2022-07-28
TWI807559B (en) 2023-07-01
JP2022118772A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
CN108779261B (en) Master batch containing acylation modified microfibrillated plant fiber
JP2009293167A (en) Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
EP2975077B1 (en) Method for manufacturing rubber composition, rubber composition, vulcanized rubber, and tire
JP6847327B1 (en) Method for manufacturing resin composition
JP6944451B2 (en) Masterbatch manufacturing method
JP7108727B1 (en) Method for producing resin composite, and pre-fibrillated cellulose fiber
JP7159510B1 (en) Method for producing resin composite
JP7151024B1 (en) Fiber-reinforced resin masterbatch, resin composition, method for producing fiber-reinforced resin masterbatch, and method for producing resin composition
WO2019230719A1 (en) Master batch containing carboxymethylated cellulose nanofibers and method for producing same
JP6930040B2 (en) Method for manufacturing resin composition
JP7227068B2 (en) Method for producing resin composite
WO2022224716A1 (en) Fiber-reinforced-resin masterbatch, resin composition, method for producing fiber-reinforced-resin masterbatch, and method for producing resin composition
JP7483461B2 (en) Method for producing resin composition
JP6936353B2 (en) Masterbatch and resin composition
JP7483462B2 (en) Method for producing resin composition
JP2023125110A (en) Master batch, resin composition, method for producing master batch, and method for producing resin composition
JP7348351B2 (en) resin composition
JP7303015B2 (en) METHOD FOR MANUFACTURING RESIN COMPOSITE AND MODIFIED CELLULOSE FIBER
JP2023050075A (en) Method for producing resin composition
WO2021112182A1 (en) Method for producing resin composition
CN114008123A (en) Master batch and resin composition
JP7085583B2 (en) Master Badge
JP2023115611A (en) Fiber-reinforced resin master batch, resin composition, method for producing fiber-reinforced resin master batch, and method for producing resin composition
WO2024009850A1 (en) Method for producing rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924844

Country of ref document: EP

Kind code of ref document: A1