WO2019230719A1 - Master batch containing carboxymethylated cellulose nanofibers and method for producing same - Google Patents

Master batch containing carboxymethylated cellulose nanofibers and method for producing same Download PDF

Info

Publication number
WO2019230719A1
WO2019230719A1 PCT/JP2019/021087 JP2019021087W WO2019230719A1 WO 2019230719 A1 WO2019230719 A1 WO 2019230719A1 JP 2019021087 W JP2019021087 W JP 2019021087W WO 2019230719 A1 WO2019230719 A1 WO 2019230719A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
carboxymethylated cellulose
rubber
carboxymethylated
water
Prior art date
Application number
PCT/JP2019/021087
Other languages
French (fr)
Japanese (ja)
Inventor
裕亮 多田
井上 一彦
丈史 中谷
玲子 大島
貴史 川崎
俊則 藤本
隼人 加藤
喜威 山田
康太郎 伊藤
芽衣 高木
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2020522210A priority Critical patent/JPWO2019230719A1/en
Publication of WO2019230719A1 publication Critical patent/WO2019230719A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/02Synthetic cellulose fibres
    • D21H13/04Cellulose ethers

Definitions

  • the present invention relates to a carboxymethylated cellulose nanofiber-containing masterbatch. Specifically, the present invention relates to a masterbatch containing carboxymethylated cellulose nanofibers having a specific range of carboxymethyl substitution degree and a crystallinity degree of cellulose type I and exhibiting high transparency when made into an aqueous dispersion, and a method for producing the same. .
  • a rubber composition produced by a masterbatch containing a rubber component and cellulosic fibers has excellent mechanical strength.
  • Patent Document 1 a dispersion obtained by fibrillating short fibers having an average fiber diameter of less than 0.5 ⁇ m in water and a rubber latex are mixed and dried to uniformly distribute the short fibers in the rubber. It is described that a master batch of dispersed rubber / short fibers can be obtained, and that a rubber composition having an excellent balance between rubber reinforcement and fatigue resistance can be produced from this master batch.
  • an object of the present invention is to provide a method for producing a rubber composition having a good strength and produced by a masterbatch containing a rubber component and cellulosic fibers.
  • the present inventors have conducted mercerization (cellulose alkali treatment) in a carboxymethylation of cellulose in a solvent mainly composed of water, and then carboxymethylation. (Also referred to as etherification) in a mixed solvent of water and an organic solvent, so that a conventional aqueous medium method (a method in which both mercerization and carboxymethylation are carried out using water as a solvent) or a solvent method (Mercel).
  • a conventional aqueous medium method a method in which both mercerization and carboxymethylation are carried out using water as a solvent
  • a solvent method Mercel
  • the present invention includes, but is not limited to, the following.
  • the carboxymethylated cellulose nanofiber is an aqueous dispersion having a cellulose I type crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a solid content of 1% (w / v).
  • the said manufacturing method whose transmittance
  • a mercerization reaction is performed in a solvent mainly containing water, and then a carboxymethylation cellulose is produced by performing a carboxymethylation reaction in a mixed solvent of water and an organic solvent.
  • a rubber composition comprising: producing a masterbatch by the method according to any one of [1] to [4]; and producing a rubber composition using the obtained masterbatch.
  • a masterbatch containing carboxymethylated cellulose nanofibers The carboxymethylated cellulose nanofiber is an aqueous dispersion having a cellulose I type crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a solid content of 1% (w / v).
  • the master batch according to [6] wherein the amount of foreign matter in the carboxymethylated cellulose nanofiber is 20% or less.
  • Carboxymethylated cellulose nanofiber The wavelength of the present invention when an aqueous dispersion having a carboxymethyl substitution degree of 0.50 or less and a cellulose I type crystallinity of 60% or more and a solid content of 1% (w / v) is used.
  • the present invention relates to a masterbatch containing carboxymethylated cellulose nanofibers having a light transmittance of 660 nm of 60% or more.
  • Carboxymethylated cellulose has a structure in which a part of hydroxyl groups in a glucose residue constituting cellulose is ether-bonded to a carboxymethyl group.
  • the carboxymethylated cellulose nanofibers are those obtained by converting carboxymethylated cellulose having the above structure into nanofibers having nanoscale fiber diameters.
  • the carboxymethylated cellulose may be in the form of a salt such as a metal salt such as a sodium salt of carboxymethylated cellulose, and the nanofibers of carboxymethylated cellulose may be in the form of a salt.
  • the carboxymethylated cellulose nanofiber used in the present invention maintains at least a part of the fibrous shape even when dispersed in water. That is, when an aqueous dispersion of carboxymethyl cellulose nanofibers is observed with an electron microscope, a fibrous substance can be observed. Moreover, when the carboxymethylated cellulose nanofiber is measured by X-ray diffraction, the peak of the cellulose I-type crystal can be observed.
  • the crystallinity of cellulose in the carboxymethylated cellulose nanofiber used in the present invention is 60% or more, preferably 65% or more, for the crystalline I type.
  • the crystallinity of cellulose I type is as high as 60% or more, the ratio of cellulose that maintains the crystal structure without dissolving in the solvent is high, so that the strength can be improved when added to rubber or resin. Is obtained.
  • the crystallinity of cellulose can be controlled by the concentration of mercerizing agent and the temperature during processing, as well as the degree of carboxymethylation. In mercerization and carboxymethylation, a high concentration of alkali is used, so cellulose type I crystals are easily converted to type II.
  • the amount of modification can be reduced by adjusting the amount of alkali (mercellizing agent) used.
  • the desired crystallinity can be maintained by adjusting the degree.
  • the upper limit of the crystallinity of cellulose type I is not particularly limited. In reality, it is considered that the upper limit is about 90%.
  • Xc (I002c ⁇ Ia) / I002c ⁇ 100
  • the ratio of the type I crystal in the carboxymethylated cellulose nanofiber is usually the same as that in the carboxymethylated cellulose before the nanofiber.
  • the carboxymethylated cellulose nanofibers used in the present invention have a carboxymethyl substitution degree per cellulose anhydroglucose unit of 0.50 or less. If the degree of carboxymethyl substitution exceeds 0.50, it will be dissolved in water and the fiber shape cannot be maintained. In consideration of operability, the degree of substitution is preferably 0.02 to 0.50, more preferably 0.05 to 0.50, still more preferably 0.10 to 0.40, More preferably, it is 0.20 to 0.40.
  • carboxymethylation in which the degree of carboxymethyl substitution is in the range of 0.20 to 0.40 and the degree of crystallinity of cellulose type I is 60% or more. It has been found that cellulose nanofibers can be produced.
  • the degree of carboxymethyl substitution can be adjusted by controlling the amount of carboxymethylating agent to be reacted, the amount of mercerizing agent, the composition ratio of water and organic solvent, and the like.
  • an anhydroglucose unit means an individual anhydroglucose (glucose residue) constituting cellulose.
  • the degree of carboxymethyl substitution (also referred to as etherification degree) is the proportion of hydroxyl groups in the glucose residues constituting cellulose that are substituted with carboxymethyl ether groups (carboxymethyl per glucose residue). The number of ether groups).
  • the degree of carboxymethyl substitution may be abbreviated as DS.
  • the method for measuring the degree of carboxymethyl substitution is as follows: About 2.0 g of sample is precisely weighed and placed in a 300 mL conical flask with a stopper. Add 100 mL of methanol nitric acid (a solution obtained by adding 100 mL of special concentrated nitric acid to 1000 mL of methanol) and shake for 3 hours to convert carboxymethylated cellulose nanofiber salt (CMC) to H-CMC (hydrogen-type carboxymethylated cellulose nanofiber). Convert to Accurately weigh 1.5-2.0 g of the absolutely dry H-CMC and place it in a 300 mL conical flask with a stopper.
  • CMC carboxymethylated cellulose nanofiber salt
  • the degree of carboxymethyl substitution in the carboxymethylated cellulose nanofiber is usually the same as the degree of carboxymethyl substitution in the carboxymethylated cellulose before the nanofiber.
  • Nanofibers of carboxymethylated cellulose used in the present invention have a characteristic of exhibiting high transparency when water is used as a dispersion medium (water dispersion). Nanofibers with high transparency can be used as additives for applications where transparency is required, which is preferable. In addition, since nanofibers with high transparency are considered to have few unfibrillated cellulose fibers, it is thought that when they are contained in rubber, the occurrence frequency of cracks that cause a decrease in the strength of the rubber can be reduced. It is done.
  • transparency refers to the transmittance of light having a wavelength of 660 nm when carboxymethylated cellulose nanofibers are made into an aqueous dispersion having a solid content of 1% (w / v).
  • a method for measuring the transparency of carboxymethylated cellulose nanofibers is as follows: A cellulose nanofiber dispersion (solid content 1% (w / v), dispersion medium: water) was prepared, and a UV-VIS spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) was used to form a square cell with an optical path length of 10 mm. Used to measure the transmittance of light at 660 nm.
  • the transparency of the carboxymethylated cellulose nanofiber of the present invention is 60% or more. More preferably, it is 60 to 100%, still more preferably 70 to 100%, still more preferably 80 to 100%, and further preferably 90 to 100%.
  • Such cellulose nanofibers can be optimally used for applications requiring transparency. It also reduces the frequency of cracking in the rubber and contributes to improving the strength of the rubber.
  • the above-mentioned cellulose I type crystallinity and carboxymethyl substitution degree, and such transparency, carboxymethylated cellulose nanofibers can be produced, for example, by the method described later.
  • the carboxymethylated cellulose nanofiber used in the present invention has a nanoscale fiber diameter.
  • the average fiber diameter is preferably 1 nm to 500 nm, more preferably 1 nm to 150 nm, further preferably 1 nm to 20 nm, more preferably 3 nm to 10 nm, and further preferably 3 nm to 6 nm.
  • the aspect ratio of the carboxymethylated cellulose nanofiber is not particularly limited, but is preferably 350 or less, more preferably 300 or less, further preferably 200 or less, and further preferably 120 or less. 100 or less, more preferably 80 or less.
  • the aspect ratio is 350 or less, the fibers are not excessively long, the entanglement of the fibers is reduced, the generation of lump of cellulose nanofibers can be reduced, and it can be used as an additive. Suitable.
  • the fluidity is high, it is easy to use even at a high concentration, and there is an advantage that it is easy to use even in applications requiring a high solid content.
  • the minimum of an aspect-ratio is not specifically limited, Preferably it is 25 or more, More preferably, it is 30 or more.
  • the aspect ratio of the carboxymethylated cellulose nanofiber can be controlled by the mixing ratio of the solvent and water at the time of carboxymethylation, the chemical addition amount, and the degree of carboxymethylation, and can be produced, for example, by the production method described later. .
  • the nanofibers of carboxymethylated cellulose used in the present invention preferably exhibit high thixotropy when water is used as a dispersion medium (water dispersion).
  • the thixotropy refers to a property in which the viscosity gradually decreases by receiving a shearing stress, and the viscosity gradually increases when resting. In the present specification, a value obtained by dividing the viscosity measured at a low shear rate by the viscosity measured at a high shear rate is used as an index of thixotropy.
  • viscosity and thixotropy are measured by the following methods: A cellulose nanofiber dispersion (solid content: 1% (w / v), dispersion medium: water) was prepared, allowed to stand at 25 ° C. for 16 hours, then stirred at 3000 rpm for 1 minute using a stirrer, and a sample for viscosity measurement And About a part of obtained sample for viscosity measurement, using a B-type viscometer (made by Toki Sangyo Co., Ltd.) The viscosity after 3 minutes is measured at 4 rotors / rotation speed 6 rpm.
  • the carboxymethylated cellulose nanofiber used in the present invention is an aqueous dispersion having a solid content of 1% (w / v) at 25 ° C. and 6 rpm when the aqueous dispersion has a solid content of 1% (w / v).
  • the value divided by the viscosity at 25 ° C. and 60 rpm (also simply referred to as “the value obtained by dividing the viscosity at 6 rpm by the viscosity at 60 rpm”) is preferably 6.0 or more. The higher this value, the greater the change in viscosity due to the difference in shear stress, and the higher the thixotropy.
  • Cellulose nanofibers with high thixotropy are suitable for use as a shape-retaining agent or a viscosity modifier.
  • the upper limit of the value obtained by dividing the viscosity at 6 rpm by the viscosity at 60 rpm is not limited, it is considered that the upper limit is actually about 15.0.
  • the viscosity at 6 rpm of the carboxymethyl cellulose nanofiber is preferably 15000 mPa ⁇ s or more, and more preferably 20000 mPa ⁇ s or more. .
  • the upper limit of the viscosity at 6 rpm is not particularly limited, but in reality, it is considered to be about 50000 mPa ⁇ s.
  • the viscosity at 60 rpm of the carboxymethylated cellulose nanofiber is preferably about 1500 to 8400 mPa ⁇ s, and about 2000 to 7000 mPa ⁇ s. More preferably, it is about 2500 to 7000 mPa ⁇ s, more preferably about 3000 to 7000 mPa ⁇ s.
  • undefibrated cellulose fibers may remain as foreign substances.
  • the strength against breakage, abrasion, tearing, etc. of rubber can be improved by suppressing the occurrence and growth of rubber cracks.
  • a foreign substance having a size of several tens of ⁇ m or more is present in the rubber, it can be a starting point of cracking. Therefore, the amount of the foreign substance in the cellulose nanofiber is preferably small.
  • the amount of foreign matter in the carboxymethylated cellulose nanofiber is measured using the following method.
  • fine cellulose nanofibers are not detected through two orthogonal polarizing plates because they do not block the light that has passed through the polarizing plates, whereas foreign substances such as undefibrated fibers cause irregular reflection, so It utilizes the property of being specifically detected through the two polarizing plates: Add 1.0 g of polyethylene glycol (PEG, molecular weight 600) to an aqueous suspension containing 0.5 g of cellulose nanofibers, and stir for 2 hours using a stirrer. Foaming was performed to prepare a cellulose nanofiber (CNF) dispersion.
  • PEG polyethylene glycol
  • a rubber frame was placed on a polyethylene terephthalate (PET) film and fixed firmly, poured in pure water, and after confirming that it did not leak, the water inside was discarded. Thereby, the dust adhering to the PET film was also removed.
  • the CNF dispersion was poured into a rubber frame on the dried PET film so as not to be bubbled, and was allowed to stand at 40 ° C. overnight. After confirming that the drying was sufficient, the CNF film was taken out.
  • the obtained CNF film had a size of 18 cm ⁇ 18 cm and a thickness of 0.1 mm.
  • the presence / absence of foreign matter in the CNF dispersion was confirmed based on the obtained photographed image, and the area ratio of the foreign matter was calculated by image analysis of the obtained photographed image to obtain the amount of foreign matter.
  • image analysis software ImageJ provided by Wayne Rasband was used.
  • the amount of foreign matter in the cellulose nanofiber of the present invention is preferably 20% or less. More preferably, it is 15% or less, More preferably, it is 10% or less. Thereby, a rubber composition excellent in mechanical strength is obtained.
  • the carboxymethylated cellulose nanofiber having such a degree of carboxymethyl substitution, viscosity and thixotropy, and the amount of foreign matter can be produced, for example, by the method described later.
  • the carboxymethylated cellulose nanofibers used in the present invention may be those obtained by appropriately modifying a carboxyl group (—COOH) derived from a carboxymethyl group within a range not inhibiting the effects of the present invention.
  • a carboxyl group —COOH
  • an amine compound or phosphorus compound having an alkyl group, an aryl group, an aralkyl group or the like is bonded to a carboxyl group to hydrophobize the carboxymethylated cellulose nanofiber.
  • ⁇ Method for producing carboxymethylated cellulose nanofiber Cellulose I type crystallinity of 60% or more, carboxymethyl substitution degree of 0.50 or less, and light transmittance at a wavelength of 660 nm when an aqueous dispersion having a solid content of 1% (w / v) is obtained.
  • Nanofibers of carboxymethylated cellulose having a ratio of 60% or more are not limited to this, but can be produced by defibrating carboxymethylated cellulose produced by the following method.
  • carboxymethylated cellulose is obtained by treating cellulose with an alkali (mercelization), and then reacting the obtained mercerized cellulose (also referred to as alkali cellulose) with a carboxymethylating agent (also referred to as an etherifying agent).
  • a carboxymethylating agent also referred to as an etherifying agent
  • Carboxymethylated cellulose capable of forming nanofibers having the above characteristics of the present invention is subjected to mercerization (alkali treatment of cellulose) in a solvent mainly containing water, and then carboxymethylation (also referred to as etherification). .) In a mixed solvent of water and an organic solvent.
  • the carboxymethylated cellulose thus obtained can be obtained by using a conventional aqueous medium method (a method in which both mercerization and carboxymethylation are performed using water as a solvent) and a solvent method (in which both mercerization and carboxymethylation are performed using an organic solvent).
  • a conventional aqueous medium method a method in which both mercerization and carboxymethylation are performed using water as a solvent
  • a solvent method in which both mercerization and carboxymethylation are performed using an organic solvent.
  • the cellulose nanofiber dispersion is highly transparent when defibrated while having a high effective utilization rate of the carboxymethylating agent. Can be converted.
  • cellulose means a polysaccharide having a structure in which D-glucopyranose (simply referred to as “glucose residue” or “anhydroglucose”) is linked by ⁇ -1,4 bonds.
  • Cellulose is generally classified into natural cellulose, regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, based on the origin, production method, and the like. In the present invention, any of these celluloses can be used as a raw material for mercerized cellulose.
  • cellulose I in order to maintain a cellulose I type crystallinity of 60% or more in carboxymethylated cellulose nanofibers, cellulose I It is preferable to use cellulose having a high mold crystallinity as a raw material.
  • the cellulose I type crystallinity of the raw material cellulose is preferably 70% or more, and more preferably 80% or more.
  • the method for measuring the crystallinity of cellulose type I is as described above.
  • Examples of natural cellulose include bleached pulp or unbleached pulp (bleached wood pulp or unbleached wood pulp); linters, refined linters; cellulose produced by microorganisms such as acetic acid bacteria, and the like.
  • the raw material of bleached pulp or unbleached pulp is not particularly limited, and examples thereof include wood, cotton, straw, bamboo, hemp, jute, kenaf and the like.
  • the manufacturing method of a bleached pulp or an unbleached pulp is not specifically limited, either, a mechanical method, a chemical method, or the method which combined two in the middle may be sufficient.
  • bleached or unbleached pulp classified according to the production method examples include mechanical pulp (thermomechanical pulp (TMP), groundwood pulp), chemical pulp (conifer unbleached sulfite pulp (NUSP), conifer bleach sulfite pulp (NBSP). ) And the like, and softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), and kraft pulp such as hardwood bleached kraft pulp (LBKP)).
  • dissolving pulp may be used in addition to papermaking pulp.
  • Dissolving pulp is chemically refined pulp, which is mainly used by dissolving in chemicals, and is a main raw material for artificial fibers, cellophane and the like.
  • regenerated cellulose examples include those obtained by dissolving cellulose in some solvent such as a copper ammonia solution, a cellulose xanthate solution, and a morpholine derivative and spinning again.
  • the fine cellulose is obtained by depolymerizing a cellulose-based material such as the above natural cellulose or regenerated cellulose (for example, acid hydrolysis, alkali hydrolysis, enzyme decomposition, explosion treatment, vibration ball mill treatment, etc.). And those obtained by mechanically treating the cellulose-based material.
  • a cellulose-based material such as the above natural cellulose or regenerated cellulose (for example, acid hydrolysis, alkali hydrolysis, enzyme decomposition, explosion treatment, vibration ball mill treatment, etc.). And those obtained by mechanically treating the cellulose-based material.
  • mercerized cellulose also referred to as alkali cellulose
  • alkali mercerizing agent
  • water is mainly used as a solvent in this mercerization reaction, and a mixed solvent of an organic solvent and water is used in the next carboxymethylation, so that Carboxymethylated cellulose that can be made into a cellulose nanofiber dispersion having a very high transparency can be obtained economically.
  • the main use of water as a solvent refers to a solvent containing water in a proportion higher than 50% by mass.
  • Water in the solvent mainly composed of water is preferably 55% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more.
  • the solvent mainly composed of water is 100% by mass of water (that is, water). The greater the proportion of water during mercerization, the greater the transparency of the cellulose nanofiber dispersion obtained by defibrating carboxymethylated cellulose.
  • Examples of the solvent other than water (used by mixing with water) in the solvent mainly containing water include organic solvents used as a solvent in the subsequent carboxymethylation.
  • organic solvents used as a solvent in the subsequent carboxymethylation.
  • alcohols such as methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol and tertiary butanol, ketones such as acetone, diethyl ketone and methyl ethyl ketone, and dioxane, diethyl ether, benzene and dichloromethane
  • ketones such as acetone, diethyl ketone and methyl ethyl ketone
  • dioxane diethyl ether, benzene and dichloromethane
  • the organic solvent in the solvent mainly composed of water is preferably 45% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and further preferably 20% by mass or less. More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less, More preferably, it is 0 mass%.
  • mercerizing agents include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and any one of these or a combination of two or more thereof can be used.
  • the mercerizing agent is not limited to this, but these alkali metal hydroxides are added to the reactor as an aqueous solution of, for example, 1 to 60% by mass, preferably 2 to 45% by mass, more preferably 3 to 25% by mass. Can be added.
  • the amount of the mercerizing agent used is an amount capable of maintaining a cellulose I type crystallinity of 60% or more in carboxymethylated cellulose. In one embodiment, 0.1 mol or more and 2 mol per 100 g of cellulose (absolutely dry). 0.5 mol or less is preferable, 0.3 mol or more and 2.0 mol or less is more preferable, and 0.4 mol or more and 1.5 mol or less is more preferable.
  • the amount of the solvent mainly composed of water at the time of mercerization is preferably 1.5 to 20 times by mass and more preferably 2 to 10 times by mass with respect to the cellulose raw material. By using such an amount, the raw materials can be easily stirred and mixed, and the raw materials can be uniformly reacted.
  • the bottoming material (cellulose) and a solvent mainly composed of water are mixed, and the temperature of the reactor is adjusted to 0 to 70 ° C., preferably 10 to 60 ° C., more preferably 10 to 40 ° C. Then, an aqueous solution of mercerizing agent is added and stirred for 15 minutes to 8 hours, preferably 30 minutes to 7 hours, more preferably 30 minutes to 3 hours. Thereby, mercerized cellulose (alkali cellulose) is obtained.
  • the pH during mercerization is preferably 9 or more, whereby the mercerization reaction can proceed.
  • the pH is more preferably 11 or more, still more preferably 12 or more, and may be 13 or more.
  • the upper limit of pH is not particularly limited.
  • the soot mercerization can be performed using a reactor capable of mixing and stirring the above components while controlling the temperature, and various reactors conventionally used in mercerization reactions can be used.
  • a batch type stirring apparatus in which two shafts are stirred and the above components are mixed is preferable from the viewpoints of both uniform mixing and productivity.
  • Carboxymethylated cellulose is obtained by adding a carboxymethylating agent (also referred to as an etherifying agent) to mercerized cellulose.
  • a carboxymethylating agent also referred to as an etherifying agent
  • water is mainly used as a solvent for mercerization, and a mixed solvent of water and an organic solvent is used for carboxymethylation.
  • Carboxymethylated cellulose that can be made into a cellulose nanofiber dispersion having a very high transparency can be obtained economically.
  • carboxymethylating agent examples include monochloroacetic acid, sodium monochloroacetate, methyl monochloroacetate, ethyl monochloroacetate, isopropyl monochloroacetate and the like. Of these, monochloroacetic acid or sodium monochloroacetate is preferable from the viewpoint of easy availability of raw materials.
  • the amount of the carboxymethylating agent used is an amount that can maintain a crystallinity of 60% or more of cellulose type I, and an amount that provides a carboxymethyl substitution degree of 0.50 or less. Although not particularly limited, in one embodiment, it is preferably added in the range of 0.5 to 1.5 mol per anhydroglucose unit of cellulose.
  • the lower limit of the above range is more preferably 0.6 mol or more, still more preferably 0.7 mol or more, and the upper limit is more preferably 1.3 mol or less, still more preferably 1.1 mol or less.
  • the carboxymethylating agent is not limited to this, but for example, it can be added to the reactor as an aqueous solution of 5 to 80% by mass, more preferably 30 to 60% by mass. You can also.
  • the molar ratio of mercerizing agent to carboxymethylating agent is generally 0.9 to 2.45 when monochloroacetic acid or sodium monochloroacetate is used as the carboxymethylating agent. Adopted. The reason is that if it is less than 0.9, the carboxymethylation reaction may be insufficient, and unreacted monochloroacetic acid or sodium monochloroacetate may remain, resulting in waste, and 2.45. If it exceeds 1, the side reaction between the excess mercerizing agent and monochloroacetic acid or sodium monochloroacetate may proceed to produce an alkali metal glycolate, which may be uneconomical.
  • the effective utilization rate of the carboxymethylating agent is preferably 15% or more. More preferably, it is 20% or more, more preferably 25% or more, and particularly preferably 30% or more.
  • the effective utilization rate of a carboxymethylating agent refers to the proportion of carboxymethyl groups introduced into cellulose among carboxymethyl groups in the carboxymethylating agent.
  • the effective utilization rate of the carboxymethylating agent is high (ie, the carboxymethylating agent).
  • Carboxymethylated cellulose capable of obtaining a cellulose nanofiber dispersion having high transparency when defibrated can be produced economically without greatly increasing the use amount of.
  • the upper limit of the effective utilization rate of the carboxymethylating agent is not particularly limited, but in reality, the upper limit is about 80%.
  • the effective utilization rate of the carboxymethylating agent may be abbreviated as AM.
  • the concentration of the cellulose raw material in the carboxymethylation reaction is not particularly limited, but is preferably 1 to 40% (w / v) from the viewpoint of increasing the effective utilization rate of the carboxymethylating agent.
  • an organic solvent or an aqueous solution of the organic solvent is appropriately added to the reactor, or water other than the water used in the mercerization process by reducing the pressure.
  • the organic solvent is appropriately reduced to form a mixed solvent of water and the organic solvent, and the carboxymethylation reaction proceeds under the mixed solvent of the water and the organic solvent.
  • the timing of addition or reduction of the organic solvent may be from the end of the mercerization reaction to immediately after the addition of the carboxymethylating agent, and is not particularly limited. For example, 30 minutes before and after adding the carboxymethylating agent Is preferred.
  • organic solvent examples include alcohols such as methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol and tertiary butanol, ketones such as acetone, diethyl ketone and methyl ethyl ketone, and dioxane, diethyl ether, Benzene, dichloromethane, etc. can be mentioned, These alone or a mixture of two or more thereof can be added to water and used as a solvent for carboxymethylation. Of these, monohydric alcohols having 1 to 4 carbon atoms are preferred and monohydric alcohols having 1 to 3 carbon atoms are more preferred because of their excellent compatibility with water.
  • alcohols such as methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol and tertiary butanol
  • ketones such as acetone, diethyl ketone and methyl
  • the ratio of the organic solvent in the mixed solvent in the carboxymethylation is preferably 20% by mass or more, more preferably 30% by mass or more, based on the sum of water and the organic solvent, It is more preferably 40% by mass or more, further preferably 45% by mass or more, and particularly preferably 50% by mass or more. As the proportion of the organic solvent is higher, an advantage that the transparency when the cellulose nanofiber dispersion is obtained becomes higher.
  • the upper limit of the ratio of the organic solvent is not limited, and may be 99% by mass or less, for example. Considering the cost of the organic solvent to be added, it is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the reaction medium at the time of carboxymethylation (a mixed solvent of water and an organic solvent, which does not contain cellulose) has a smaller proportion of water than the reaction medium at the time of mercerization (in other words, the proportion of the organic solvent is lower).
  • the proportion of the organic solvent is lower.
  • the temperature is preferably kept constant in the range of 10 to 40 ° C. for 15 minutes to 4 hours, preferably 15 Stir for about 1 to 1 hour.
  • the mixing of the mercerized cellulose-containing liquid and the carboxymethylating agent is preferably performed in a plurality of times or by dropping in order to prevent the reaction mixture from becoming high temperature.
  • the temperature is raised if necessary, and the reaction temperature is set to 30 to 90 ° C, preferably 40 to 90 ° C, more preferably 60 to 80 ° C, and 30 minutes to
  • the etherification (carboxymethylation) reaction is carried out for 10 hours, preferably 1 to 4 hours to obtain carboxymethylated cellulose.
  • the reactor used in the mercerization may be used as it is, or another reactor capable of mixing and stirring the above components while controlling the temperature may be used. .
  • the remaining alkali metal salt may be neutralized with a mineral acid or an organic acid.
  • by-product inorganic salts, organic acid salts, and the like may be removed by washing with water-containing methanol, dried, pulverized, and classified to obtain carboxymethylated cellulose or a salt thereof.
  • the acid form may be linearized in advance, and the salt form may be restored after washing.
  • the apparatus used in the dry pulverization include impact mills such as a hammer mill and a pin mill, medium mills such as a ball mill and a tower mill, and jet mills.
  • the apparatus used in the wet pulverization include apparatuses such as a homogenizer, a mass collider, and a pearl mill.
  • a dispersion of carboxymethylated cellulose obtained by the above method is prepared.
  • the dispersion medium is preferably water from the viewpoint of ease of handling.
  • the concentration of carboxymethylated cellulose in the dispersion during defibration is preferably 0.01 to 10% (w / v) in consideration of the efficiency of defibration and dispersion.
  • the apparatus used for defibrating carboxymethylated cellulose is not particularly limited, and apparatuses such as a high speed rotation type, a colloid mill type, a high pressure type, a roll mill type, and an ultrasonic type can be used.
  • defibration it is preferable to apply a strong shearing force to the carboxymethylated cellulose dispersion.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force.
  • the pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the dispersion may be pretreated using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. .
  • High-pressure homogenizer is emulsified and dispersed by total energy such as collision between particles and shear force due to pressure difference by pressurizing (high pressure) the fluid with a pump and ejecting it from a very delicate gap provided in the flow path.
  • the rubber component is a raw material of rubber and refers to a material that is crosslinked to become rubber.
  • the rubber component there are a rubber component for natural rubber and a rubber component for synthetic rubber.
  • the rubber component for natural rubber includes, for example, natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; Rubber; Deproteinized natural rubber.
  • Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • BR butadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • IR isoprene rubber
  • NBR acrylonitrile-butadiene rubber
  • chloroprene rubber chloroprene rubber
  • styrene-isoprene copolymer examples include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • Diene rubbers such as united rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydride
  • Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM).
  • NBR, NR, SBR, chloroprene rubber, and BR are preferable.
  • the rubber component may be used alone or in combination with two or more carboxymethylated cellulose nanofibers.
  • the manufacturing method of a masterbatch includes mixing a rubber component and carboxymethylated cellulose nanofibers.
  • the form of the rubber component and the carboxymethylated cellulose nanofiber during mixing is not particularly limited.
  • the form which mixes the dispersion liquid of a cellulose nanofiber, the dry solid substance of this dispersion liquid, or the wet solid substance of the said dispersion liquid, and a rubber component (solid substance) or its dispersion liquid is mentioned.
  • the form which mixes the dispersion liquid of a cellulose nanofiber and the dispersion liquid of a rubber component is preferable.
  • the mixing ratio of the rubber component and the cellulose nanofiber is not particularly limited, but is preferably as follows.
  • the content of carboxymethylated cellulose nanofibers is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the upper limit is preferably 25 parts by mass or less, preferably 20 parts by mass or less, and more preferably 15 parts by mass or less. Thereby, the workability in the manufacturing process can be maintained. Therefore, 0.5 to 25 parts by mass is preferable, 1 to 20 parts by mass is more preferable, and 3 to 15 parts by mass is further preferable.
  • the present invention provides a master batch by mixing carboxymethyl cellulose nanofibers having the above-mentioned specific degree of carboxymethyl substitution, cellulose type I crystallinity, and transparency with a rubber component. It has been found that a vulcanized rubber composition obtained from a batch has high strength.
  • the carboxymethylated cellulose nanofiber having the above-described properties used in the present invention is useful as a filler (rubber filler) in the finally obtained rubber product.
  • the carboxymethylated cellulose nanofiber and the rubber component may be mixed and then coagulated.
  • a polyvalent metal or an acid it is preferable to use a polyvalent metal or an acid.
  • the acid may be either an organic acid or an inorganic acid as long as it does not inhibit coagulation. Examples of the organic acid include formic acid and acetic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, and carbonic acid. What is necessary is just to select an acid suitably according to the polyvalent metal used together. One or a combination of two or more acids may be used.
  • the addition timing of the acid is not particularly limited, and the acid may be added simultaneously with the polyvalent metal, or may be added before or after the addition of the polyvalent metal.
  • the amount of the acid used is preferably such that the pH in the mixed solution is 3.0 to 6.0, more preferably the pH is 3.5 to 5.0.
  • the production method of the present invention preferably further includes at least one step selected from the group consisting of a solid-liquid separation step and a water washing step after the coagulation step, and more preferably includes both steps. Thereby, content of the impurity in a rubber composition can be reduced, and the intensity
  • the aspect of a solid-liquid separation process and a water washing process has a preferable aspect which repeats the set of solid-liquid separation and water washing twice or more.
  • the solid-liquid separation step is a step for solid-liquid separation of the liquid mixture containing the solidified rubber component obtained in the coagulation step. Therefore, the time for performing the solid-liquid separation step is usually after the coagulation step.
  • Solid-liquid separation is preferably performed using a filter medium.
  • filter media include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, membranes, filter cloths, filters made by sintering metal powder, Or a slit filter is mentioned. Among these, a nylon filter is preferable.
  • a preferable average pore diameter of the filter medium is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and further preferably 1 to 30 ⁇ m.
  • the water washing step is a step of washing the solid phase obtained in the solid-liquid separation step.
  • the production method of the present invention may further include a drying step after mixing the rubber component and the carboxymethylated cellulose nanofiber. Thereby, a masterbatch with little moisture content can be obtained.
  • a drying process is a process which uses for the drying by heating the processing liquid obtained by a coagulation process, or the processing liquid obtained by the solid-liquid separation process and washing
  • Conditions such as heating temperature and heating time are not particularly limited.
  • the heating temperature is preferably 40 ° C. or higher.
  • the upper limit is preferably less than 100 ° C.
  • the heating time is preferably 1 hour or longer.
  • the upper limit is preferably 24 hours or less. By setting the heating condition within the above range, damage to the rubber component can be suppressed. Heating may be performed using a dryer such as an oven.
  • a master batch can be obtained by mixing carboxymethylated cellulose nanofibers and a rubber component and optionally performing one or more of a coagulation step, a solid-liquid separation step, a water washing step, and a drying step.
  • a composition containing an uncrosslinked rubber component and not containing a crosslinking component is referred to as a “masterbatch” for convenience.
  • the master batch of the present invention includes a crosslinking component (crosslinking agent, vulcanization acceleration) described in the column of ⁇ Kneading Step> described later It may be in a state containing components other than the agent and the vulcanization accelerating aid), or it may be in a state before adding these components.
  • a crosslinking component crosslinking agent, vulcanization acceleration
  • rubber compositions those vulcanized (crosslinked) are called vulcanized rubber compositions, and those that are not vulcanized are called unvulcanized rubber compositions.
  • vulcanized rubber compositions those vulcanized (crosslinked) are called vulcanized rubber compositions, and those that are not vulcanized are called unvulcanized rubber compositions.
  • a rubber composition that has been molded, vulcanized, and subjected to finishing treatment as necessary may be referred to as “rubber” or “rubber product” as a final product.
  • the kneading and kneading temperature may be about room temperature (for example, about 15 to 30 ° C.), but may be heated to a high temperature so that the rubber component does not undergo a crosslinking reaction.
  • it is 140 ° C. or lower, more preferably 120 ° C. or lower.
  • a minimum is 40 degreeC or more, Preferably it is 60 degreeC or more.
  • the heating temperature is preferably about 40 to 140 ° C., more preferably about 60 to 120 ° C.
  • optional components that may be added during kneading include, for example, reinforcing agents (for example, carbon black, silica, etc.), silane coupling agents, crosslinking agents (sulfur, peroxides, etc.), vulcanization accelerators, Vulcanization accelerator (zinc oxide, stearic acid), oil, curing resin, wax, anti-aging agent, colorant, peptizer, softener, plasticizer, curing agent (eg phenol resin, high styrene resin, etc.) ), Foaming agents, fillers (carbon black, silica, etc.), coupling agents, adhesives (eg, macron resins, phenols, terpene resins, petroleum hydrocarbon resins, rosin derivatives, etc.), dispersants (eg, fatty acids) Etc.), adhesion promoters (for example, organic cobalt salts, etc.), lubricants (for example, paraffins, hydrocarbon resins, fatty acids, fatty acids
  • sulfur and vulcanization accelerators are preferred.
  • the vulcanization accelerator include Nt-butyl-2-benzothiazole sulfenamide (BBS) and N-oxydiethylene-2-benzothiazolyl sulfenamide.
  • BBS Nt-butyl-2-benzothiazole sulfenamide
  • N-oxydiethylene-2-benzothiazolyl sulfenamide When adding an arbitrary component, 1 type may be added and 2 or more types may be added.
  • the addition timing of optional ingredients is not particularly limited.
  • the addition timing of sulfur and the vulcanization accelerator is preferably after the addition timing of other optional components. It is preferable to start kneading by mixing other optional components without adding sulfur and a vulcanization accelerator, and then further kneading by adding sulfur and a vulcanization accelerator.
  • the amount of sulfur added is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and still more preferably 1.7% by mass or more based on the rubber component.
  • the upper limit is preferably 10% by mass or less, preferably 7% by mass or less, and more preferably 5% by mass or less.
  • the addition amount of the vulcanization accelerator is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.4% by mass or more based on the rubber component.
  • the upper limit is preferably 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less.
  • molding may be performed as necessary.
  • the molding apparatus include mold molding, injection molding, extrusion molding, hollow molding, and foam molding, and may be appropriately selected according to the shape, application, and molding method of the final product.
  • ⁇ Vulcanization and crosslinking process> It is preferable to heat (vulcanize, crosslink) the rubber composition after mastication and kneading, preferably after molding. Thereby, an unvulcanized rubber composition can be converted into a vulcanized rubber composition, and the rubber composition can be effectively reinforced.
  • the heating temperature is preferably 150 ° C. or higher, and the upper limit is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. Therefore, about 150 to 200 ° C. is preferable, and about 150 to 180 ° C. is more preferable.
  • the heating device include vulcanization devices such as mold vulcanization, can vulcanization, and continuous vulcanization.
  • finishing treatment As necessary before making the final product.
  • finishing treatment include polishing, surface treatment, lip finishing, lip cutting, and chlorination, and only one of these treatments may be performed, or two or more may be performed in combination.
  • the “rubber composition” is obtained by blending a crosslinking component into a master batch and kneading as necessary, and includes a crosslinking component but in an uncrosslinked state. Both the rubber composition and the rubber composition after vulcanization are included. Further, rubber as a final product is also included in the rubber composition.
  • the rubber composition may contain one or more optional components depending on the above-described use.
  • the optional components are those described in the ⁇ Kneading step> column.
  • a vulcanization accelerator and a vulcanization acceleration auxiliary for example, zinc oxide and stearic acid
  • What is necessary is just to determine suitably content of an arbitrary component according to the kind etc. of an arbitrary component, and it does not specifically limit.
  • the contents of sulfur and vulcanization accelerator are as described above.
  • the rubber component and the optional component may be present independently, or may be present as a composite such as a reaction product of at least two components.
  • the use of the rubber product obtained using the rubber composition of the present invention is not particularly limited, and examples thereof include transportation equipment such as automobiles, trains, ships, airplanes, and belt conveyors; personal computers, televisions, telephones, watches, and the like. Electrical appliances, etc .; mobile communication equipment such as mobile phones; portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; building materials; office equipment such as stationery, containers, containers, etc. Other than these, application to members using rubber or flexible plastic is possible, and application to industrial belts and tires is preferable.
  • the industrial belt include a flat belt, a conveyor belt, a cogged belt, a V belt, a rib belt, and a round belt.
  • Examples of the tire include pneumatic tires for passenger cars, trucks, buses, heavy vehicles, and the like.
  • the obtained sodium salt of carboxymethylated cellulose was dispersed in water to obtain a 1% (w / v) solid content aqueous dispersion. This was treated three times with an ultra-high pressure homogenizer (20 ° C., 150 MPa) to obtain a nanofiber dispersion of carboxymethylated cellulose.
  • the transparency and viscosity of the obtained dispersion, the average fiber diameter of cellulose nanofibers, the degree of carboxymethyl substitution, and the crystallinity of cellulose type I were measured by the methods described above.
  • Production Example 2 A dispersion of nanofibers of carboxymethylated cellulose was obtained in the same manner as in Production Example 1, except that the ultrahigh pressure homogenizer treatment at 150 MPa was performed 5 times.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g. This was adjusted to 1.0% (w / v) with water and treated three times with an ultra-high pressure homogenizer (20 ° C., 150 MPa) to obtain an oxidized (carboxylated) cellulose nanofiber dispersion.
  • Example 1 325 g of an aqueous dispersion of carboxymethylated cellulose nanofibers obtained in Production Example 1 having a solid content concentration of 1% and 100 g of natural rubber latex (trade name: HA latex, Restex, solid content concentration of 65%) are mixed.
  • the mass ratio of the rubber component (solid content of natural rubber latex) and the solid content of carboxymethylated cellulose nanofibers was 100: 5, and the mixture was stirred for 10 minutes with a TK homomixer (8000 rpm). Thereafter, the obtained mixed solution was dried in a heating oven at 70 ° C. for 5 hours to obtain a master batch.
  • the above master batch was kneaded with an open roll (manufactured by Kansai Roll Co., Ltd.) at 30 ° C. for 10 minutes.
  • This sheet was sandwiched between molds and press vulcanized at 150 ° C. for 10 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm.
  • This is cut into a test piece of a predetermined shape, and in accordance with JIS K6251 “vulcanized rubber and thermoplastic rubber-Determination of tensile properties”, tensile strength and elongation, which are one of reinforcing properties, and stress at 50% elongation ( M50), stress at 100% elongation (M100) was measured.
  • JIS K6251 vulcanized rubber and thermoplastic rubber-Determination of tensile properties
  • tensile strength and elongation which are one of reinforcing properties
  • stress at 50% elongation ( M50) stress at 50% elongation
  • M100 stress at 100% elongation
  • Example 2 The same procedure as in Example 1 was performed except that the carboxymethylated cellulose nanofibers obtained in Production Example 1 were changed to the carboxymethylated cellulose nanofibers obtained in Production Example 2.
  • the carboxymethyl substitution degree is 0.50 or less, and the transmittance of light having a wavelength of 660 nm when an aqueous dispersion having a solid content of 1% (w / v) is 60% or more.
  • the vulcanized rubber compositions (Examples 1 and 2) obtained using the master batch containing methylated cellulose nanofibers had a tensile strength, an elongation, as compared with the vulcanized rubber compositions of Comparative Examples 1 to 3. It can be seen that the stress at 50% elongation (M50) and the stress at 100% elongation (M100) are large. It can be seen that the rubber compositions of Examples 1 and 2 are well reinforced and excellent in the mechanical strength of the rubber.

Abstract

A master batch which contains a rubber component and carboxymethylated cellulose nanofibers; and a method for producing this master batch. The carboxymethylated cellulose nanofibers have a crystallinity of cellulose type I of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a light transmittance at the wavelength of 660 nm of 60% or more if measured in the form of an aqueous dispersion that has a solid content of 1% (w/v).

Description

カルボキシメチル化セルロースナノファイバー含有マスターバッチおよびその製造方法Carboxymethylated cellulose nanofiber-containing masterbatch and method for producing the same
 本発明は、カルボキシメチル化セルロースナノファイバー含有マスターバッチに関する。詳細には、特定範囲のカルボキシメチル置換度及びセルロースI型の結晶化度を有し、水分散体とした際に高い透明度を呈するカルボキシメチル化セルロースナノファイバーを含有するマスターバッチおよびその製造方法に関する。 The present invention relates to a carboxymethylated cellulose nanofiber-containing masterbatch. Specifically, the present invention relates to a masterbatch containing carboxymethylated cellulose nanofibers having a specific range of carboxymethyl substitution degree and a crystallinity degree of cellulose type I and exhibiting high transparency when made into an aqueous dispersion, and a method for producing the same. .
 ゴム成分とセルロース系繊維とを含むマスターバッチにより製造されたゴム組成物は、優れた機械強度を有することが知られている。例えば、特許文献1には、平均繊維径が0.5μm未満の短繊維を水中でフィブリル化させて得られる分散液とゴムラテックスとを混合し乾燥させることにより、短繊維をゴム中に均一に分散させたゴム/短繊維のマスターバッチが得られること、および、このマスターバッチからゴム補強性と耐疲労性のバランスに優れるゴム組成物を製造できることが記載されている。 It is known that a rubber composition produced by a masterbatch containing a rubber component and cellulosic fibers has excellent mechanical strength. For example, in Patent Document 1, a dispersion obtained by fibrillating short fibers having an average fiber diameter of less than 0.5 μm in water and a rubber latex are mixed and dried to uniformly distribute the short fibers in the rubber. It is described that a master batch of dispersed rubber / short fibers can be obtained, and that a rubber composition having an excellent balance between rubber reinforcement and fatigue resistance can be produced from this master batch.
特開2006-206864号公報JP 2006-206864 A
 しかしながら、ゴム成分とセルロース系繊維を含む従来のゴム組成物を様々な分野に応用するには、ゴム組成物の更なる強度の向上が必要とされている。 However, in order to apply a conventional rubber composition containing a rubber component and cellulosic fibers to various fields, it is necessary to further improve the strength of the rubber composition.
 そこで本発明は、強度が良好な、ゴム成分とセルロース系繊維とを含むマスターバッチにより製造されたゴム組成物の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a rubber composition having a good strength and produced by a masterbatch containing a rubber component and cellulosic fibers.
 本発明者らは、上記目的に対して鋭意検討を行った結果、セルロースのカルボキシメチル化において、マーセル化(セルロースのアルカリ処理)を、水を主とする溶媒下で行い、その後、カルボキシメチル化(エーテル化ともいう。)を水と有機溶媒との混合溶媒下で行うことにより、従来の水媒法(マーセル化とカルボキシメチル化の両方を、水を溶媒として行う方法)や溶媒法(マーセル化とカルボキシメチル化の両方を、有機溶媒を主とする溶媒下で行う方法)で得たカルボキシメチル化セルロースに比べて、解繊した際に、従来より透明度の高いセルロースナノファイバー分散体を、カルボキシメチル化剤の高い有効利用率で、経済的に製造することができることを見出した。また、このカルボキシメチル化セルロースナノファイバーとゴム成分を含有するマスターバッチを用いて、強度が良好なゴム組成物が製造できることを見出した。 As a result of intensive studies on the above object, the present inventors have conducted mercerization (cellulose alkali treatment) in a carboxymethylation of cellulose in a solvent mainly composed of water, and then carboxymethylation. (Also referred to as etherification) in a mixed solvent of water and an organic solvent, so that a conventional aqueous medium method (a method in which both mercerization and carboxymethylation are carried out using water as a solvent) or a solvent method (Mercel). Compared with carboxymethylated cellulose obtained by a method in which both glycation and carboxymethylation are carried out in a solvent mainly composed of an organic solvent, when defibrated, a cellulose nanofiber dispersion having a higher transparency than before is obtained. It has been found that the carboxymethylating agent can be produced economically with a high effective utilization rate. Moreover, it discovered that the rubber composition with favorable intensity | strength can be manufactured using this carboxymethylated cellulose nanofiber and the masterbatch containing a rubber component.
 本発明としては、以下に限定されないが、次のものが挙げられる。
[1]マスターバッチの製造方法であって、
 ゴム成分とカルボキシメチル化セルロースナノファイバーとを混合することを含み、
 前記カルボキシメチル化セルロースナノファイバーが、セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上である、上記製造方法。
[2]水を主とする溶媒下でマーセル化反応を行い、次いで、水と有機溶媒との混合溶媒下でカルボキシメチル化反応を行うことによりカルボキシメチル化セルロースを製造すること、及び
 得られたカルボキシメチル化セルロースを解繊することによりカルボキシメチル化セルロースナノファイバーを製造すること
をさらに含む、[1]に記載の製造方法。
[3]前記水を主とする溶媒が、水を50質量%より多く含む溶媒である、[2]に記載の製造方法。
[4]前記カルボキシメチル化セルロースナノファイバーに含まれる異物量が20%以下である、[1]~[3]のいずれか1項に記載の製造方法。
[5][1]~[4]のいずれか1項に記載の方法によりマスターバッチを製造すること、及び
 得られたマスターバッチを用いてゴム組成物を製造すること
を含む、ゴム組成物の製造方法
[6]カルボキシメチル化セルロースナノファイバーを含有するマスターバッチであって、
 前記カルボキシメチル化セルロースナノファイバーは、セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上である、マスターバッチ。
[7]カルボキシメチル化セルロースナノファイバーの異物量が20%以下である、[6]記載のマスターバッチ。
[8][6]または[7]に記載のマスターバッチを用いて製造されたゴム組成物。
[9]セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上であるカルボキシメチル化セルロースナノファイバーを含有するゴム用充填剤。
The present invention includes, but is not limited to, the following.
[1] A method for producing a masterbatch,
Mixing the rubber component and carboxymethylated cellulose nanofibers,
The carboxymethylated cellulose nanofiber is an aqueous dispersion having a cellulose I type crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a solid content of 1% (w / v). The said manufacturing method whose transmittance | permeability of the light of the wavelength of 660nm at the time is 60% or more.
[2] A mercerization reaction is performed in a solvent mainly containing water, and then a carboxymethylation cellulose is produced by performing a carboxymethylation reaction in a mixed solvent of water and an organic solvent. The production method according to [1], further comprising producing carboxymethylated cellulose nanofibers by defibrating carboxymethylated cellulose.
[3] The production method according to [2], wherein the solvent mainly containing water is a solvent containing more than 50% by mass of water.
[4] The production method according to any one of [1] to [3], wherein the amount of foreign matter contained in the carboxymethylated cellulose nanofiber is 20% or less.
[5] A rubber composition comprising: producing a masterbatch by the method according to any one of [1] to [4]; and producing a rubber composition using the obtained masterbatch. Manufacturing method [6] A masterbatch containing carboxymethylated cellulose nanofibers,
The carboxymethylated cellulose nanofiber is an aqueous dispersion having a cellulose I type crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a solid content of 1% (w / v). A master batch in which the transmittance of light having a wavelength of 660 nm is 60% or more.
[7] The master batch according to [6], wherein the amount of foreign matter in the carboxymethylated cellulose nanofiber is 20% or less.
[8] A rubber composition produced using the master batch according to [6] or [7].
[9] Light having a wavelength of 660 nm when the cellulose I type has a crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and an aqueous dispersion having a solid content of 1% (w / v). A filler for rubber containing carboxymethylated cellulose nanofibers having a transmittance of 60% or more.
 本発明によれば、ゴム成分と変性セルロース繊維を含み、強度が良好なゴム組成物の製造方法を提供することが出来る。 According to the present invention, it is possible to provide a method for producing a rubber composition containing a rubber component and modified cellulose fibers and having good strength.
 <カルボキシメチル化セルロースのナノファイバー>
 本発明は、カルボキシメチル置換度が0.50以下であり、かつ、セルロースI型の結晶化度が60%以上であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上であるカルボキシメチル化セルロースナノファイバーを含むマスターバッチに関する。カルボキシメチル化セルロースは、セルロースを構成するグルコース残基中の水酸基の一部がカルボキシメチル基とエーテル結合した構造を有するものである。
<Carboxymethylated cellulose nanofiber>
The wavelength of the present invention when an aqueous dispersion having a carboxymethyl substitution degree of 0.50 or less and a cellulose I type crystallinity of 60% or more and a solid content of 1% (w / v) is used. The present invention relates to a masterbatch containing carboxymethylated cellulose nanofibers having a light transmittance of 660 nm of 60% or more. Carboxymethylated cellulose has a structure in which a part of hydroxyl groups in a glucose residue constituting cellulose is ether-bonded to a carboxymethyl group.
 カルボキシメチル化セルロースのナノファイバーとは、上記の構造を有するカルボキシメチル化セルロースをナノスケールの繊維径を有するナノファイバーへと変換したものをいう。カルボキシメチル化セルロースは、例えばカルボキシメチル化セルロースのナトリウム塩などの金属塩といった塩の形態をとる場合もあり、カルボキシメチル化セルロースのナノファイバーも塩の形態をとっていてもよい。 The carboxymethylated cellulose nanofibers are those obtained by converting carboxymethylated cellulose having the above structure into nanofibers having nanoscale fiber diameters. The carboxymethylated cellulose may be in the form of a salt such as a metal salt such as a sodium salt of carboxymethylated cellulose, and the nanofibers of carboxymethylated cellulose may be in the form of a salt.
 本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものである。すなわち、カルボキシメチル化セルロースナノファイバーの水分散体を電子顕微鏡で観察すると、繊維状の物質を観察することができるものである。また、カルボキシメチル化セルロースナノファイバーをX線回折で測定した際にセルロースI型結晶のピークを観測することができるものである。 The carboxymethylated cellulose nanofiber used in the present invention maintains at least a part of the fibrous shape even when dispersed in water. That is, when an aqueous dispersion of carboxymethyl cellulose nanofibers is observed with an electron microscope, a fibrous substance can be observed. Moreover, when the carboxymethylated cellulose nanofiber is measured by X-ray diffraction, the peak of the cellulose I-type crystal can be observed.
 <セルロースI型の結晶化度>
  本発明に用いられるカルボキシメチル化セルロースナノファイバーにおけるセルロースの結晶化度は、結晶I型が60%以上であり、好ましくは65%以上である。セルロースI型の結晶化度が60%以上と高いと、溶媒中で溶解せずに結晶構造を維持するセルロースの割合が高いため、ゴムや樹脂に添加した場合に、その強度を向上できるという利点が得られる。セルロースの結晶性は、マーセル化剤の濃度と処理時の温度、並びにカルボキシメチル化の度合によって制御できる。マーセル化及びカルボキシメチル化においては高濃度のアルカリが使用されるために、セルロースのI型結晶がII型に変換されやすいが、アルカリ(マーセル化剤)の使用量を調整するなどして変性の度合いを調整することによって、所望の結晶性を維持させることができる。セルロースI型の結晶化度の上限は特に限定されない。現実的には90%程度が上限となると考えられる。
<Crystallinity of cellulose type I>
The crystallinity of cellulose in the carboxymethylated cellulose nanofiber used in the present invention is 60% or more, preferably 65% or more, for the crystalline I type. When the crystallinity of cellulose I type is as high as 60% or more, the ratio of cellulose that maintains the crystal structure without dissolving in the solvent is high, so that the strength can be improved when added to rubber or resin. Is obtained. The crystallinity of cellulose can be controlled by the concentration of mercerizing agent and the temperature during processing, as well as the degree of carboxymethylation. In mercerization and carboxymethylation, a high concentration of alkali is used, so cellulose type I crystals are easily converted to type II. However, the amount of modification can be reduced by adjusting the amount of alkali (mercellizing agent) used. The desired crystallinity can be maintained by adjusting the degree. The upper limit of the crystallinity of cellulose type I is not particularly limited. In reality, it is considered that the upper limit is about 90%.
  カルボキシメチル化セルロースナノファイバーのセルロースI型の結晶化度の測定方法は、以下の通りである:
 試料をガラスセルに乗せ、X線回折測定装置(LabX XRD-6000、島津製作所製)を用いて測定する。結晶化度の算出はSegal等の手法を用いて行い、X線回折図の2θ=10°~30°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出する。
 Xc=(I002c―Ia)/I002c×100
 Xc=セルロースI型の結晶化度(%)
 I002c:2θ=22.6°、002面の回折強度
 Ia:2θ=18.5°、アモルファス部分の回折強度。
A method for measuring the crystallinity of cellulose type I of carboxymethylated cellulose nanofibers is as follows:
The sample is placed on a glass cell and measured using an X-ray diffractometer (LabX XRD-6000, manufactured by Shimadzu Corporation). The degree of crystallinity is calculated using a method such as Segal, and the diffraction intensity of 2θ = 10 ° to 30 ° in the X-ray diffraction diagram is used as a baseline, and the diffraction intensity of the 002 plane of 2θ = 22.6 ° and 2θ = It is calculated by the following formula from the diffraction intensity of the amorphous part at 18.5 °.
Xc = (I002c−Ia) / I002c × 100
Xc = Crystallinity of cellulose type I (%)
I002c: 2θ = 22.6 °, diffraction intensity of 002 plane Ia: 2θ = 18.5 °, diffraction intensity of amorphous part.
 カルボキシメチル化セルロースのナノファイバーにおけるI型結晶の割合は、ナノファイバーとする前のカルボキシメチル化セルロースにおけるものと、通常、同じである。 The ratio of the type I crystal in the carboxymethylated cellulose nanofiber is usually the same as that in the carboxymethylated cellulose before the nanofiber.
 <カルボキシメチル置換度>
 本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル置換度が、0.50以下である。カルボキシメチル置換度が0.50を超えると水へ溶解し、繊維形状を維持できなくなると考えられる。操業性を考慮すると当該置換度は0.02~0.50であることが好ましく、0.05~0.50であることがさらに好ましく、0.10~0.40であることがさらに好ましく、0.20~0.40であることがさらに好ましい。セルロースにカルボキシメチル基を導入することで、セルロース同士が電気的に反発するため、ナノファイバーへと解繊することができるようになるが、無水グルコース単位当たりのカルボキシメチル置換度が0.02より小さいと、解繊が不十分となり、透明性の高いセルロースナノファイバーが得られない場合がある。なお、従来の水媒法では、カルボキシメチル置換度が0.20~0.40の範囲では、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースのナノファイバーを得ることは困難であったが、本発明者らは、例えば後述する方法により、カルボキシメチル置換度が0.20~0.40の範囲であり、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースのナノファイバーを製造できることを見出した。カルボキシメチル置換度は、反応させるカルボキシメチル化剤の添加量、マーセル化剤の量、水と有機溶媒の組成比率をコントロールすること等によって調整することができる。
<Carboxymethyl substitution degree>
The carboxymethylated cellulose nanofibers used in the present invention have a carboxymethyl substitution degree per cellulose anhydroglucose unit of 0.50 or less. If the degree of carboxymethyl substitution exceeds 0.50, it will be dissolved in water and the fiber shape cannot be maintained. In consideration of operability, the degree of substitution is preferably 0.02 to 0.50, more preferably 0.05 to 0.50, still more preferably 0.10 to 0.40, More preferably, it is 0.20 to 0.40. By introducing a carboxymethyl group into cellulose, cellulose repels each other, so that it can be fibrillated into nanofibers, but the degree of carboxymethyl substitution per anhydroglucose unit is 0.02 If it is small, defibration becomes insufficient and cellulose nanofibers with high transparency may not be obtained. In the conventional aqueous medium method, it is difficult to obtain nanofibers of carboxymethylated cellulose having a cellulose I type crystallinity of 60% or more when the degree of carboxymethyl substitution is in the range of 0.20 to 0.40. However, the present inventors, for example, by the method described later, carboxymethylation in which the degree of carboxymethyl substitution is in the range of 0.20 to 0.40 and the degree of crystallinity of cellulose type I is 60% or more. It has been found that cellulose nanofibers can be produced. The degree of carboxymethyl substitution can be adjusted by controlling the amount of carboxymethylating agent to be reacted, the amount of mercerizing agent, the composition ratio of water and organic solvent, and the like.
 本発明において無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味する。また、カルボキシメチル置換度(エーテル化度ともいう。)とは、セルロースを構成するグルコース残基中の水酸基のうちカルボキシメチルエーテル基に置換されているものの割合(1つのグルコース残基当たりのカルボキシメチルエーテル基の数)を示す。なお、カルボキシメチル置換度はDSと略すことがある。 In the present invention, an anhydroglucose unit means an individual anhydroglucose (glucose residue) constituting cellulose. The degree of carboxymethyl substitution (also referred to as etherification degree) is the proportion of hydroxyl groups in the glucose residues constituting cellulose that are substituted with carboxymethyl ether groups (carboxymethyl per glucose residue). The number of ether groups). The degree of carboxymethyl substitution may be abbreviated as DS.
 カルボキシメチル置換度の測定方法は以下の通りである:
 試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れる。硝酸メタノール(メタノール1000mLに特級濃硝酸100mLを加えた液)100mLを加え、3時間振盪して、カルボキシメチル化セルロースナノファイバーの塩(CMC)をH-CMC(水素型カルボキシメチル化セルロースナノファイバー)に変換する。その絶乾H-CMCを1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れる。80%メタノール15mLでH-CMCを湿潤し、0.1N-NaOHを100mL加え、室温で3時間振盪する。指示薬として、フェノールフタレインを用いて、0.1N-H2SO4で過剰のNaOHを逆滴定し、次式によってカルボキシメチル置換度(DS値)を算出する。
A=[(100×F’-0.1N-H2SO4(mL)×F)×0.1]/(H-CMCの絶乾質量(g))
カルボキシメチル置換度=0.162×A/(1-0.058×A)
F’:0.1N-H2SO4のファクター
F:0.1N-NaOHのファクター。
The method for measuring the degree of carboxymethyl substitution is as follows:
About 2.0 g of sample is precisely weighed and placed in a 300 mL conical flask with a stopper. Add 100 mL of methanol nitric acid (a solution obtained by adding 100 mL of special concentrated nitric acid to 1000 mL of methanol) and shake for 3 hours to convert carboxymethylated cellulose nanofiber salt (CMC) to H-CMC (hydrogen-type carboxymethylated cellulose nanofiber). Convert to Accurately weigh 1.5-2.0 g of the absolutely dry H-CMC and place it in a 300 mL conical flask with a stopper. Wet H-CMC with 15 mL of 80% methanol, add 100 mL of 0.1 N NaOH, and shake at room temperature for 3 hours. Using phenolphthalein as an indicator, excess NaOH is back titrated with 0.1N—H 2 SO 4 , and the degree of carboxymethyl substitution (DS value) is calculated by the following formula.
A = [(100 × F′−0.1N—H 2 SO 4 (mL) × F) × 0.1] / (absolute dry mass of H-CMC (g))
Carboxymethyl substitution = 0.162 × A / (1−0.058 × A)
F ′: Factor of 0.1N—H 2 SO 4 F: Factor of 0.1N—NaOH
 カルボキシメチル化セルロースのナノファイバーにおけるカルボキシメチル置換度は、ナノファイバーとする前のカルボキシメチル化セルロースにおけるカルボキシメチル置換度と、通常、同じである。 The degree of carboxymethyl substitution in the carboxymethylated cellulose nanofiber is usually the same as the degree of carboxymethyl substitution in the carboxymethylated cellulose before the nanofiber.
 <水分散体における透明度>
 本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、水を分散媒として分散体としたときに(水分散体)、高い透明度を呈するという特徴を有する。透明度の高いナノファイバーは、透明性が要求されるような用途の添加剤としても使用することができ、好ましい。また、透明度の高いナノファイバーは、未解繊のセルロース繊維が少ないと考えられるため、ゴムに含有させた場合に、ゴムの強度低下の原因となる亀裂の発生頻度を低下させることができると考えられる。本明細書において、透明度は、カルボキシメチル化セルロースナノファイバーを固形分1%(w/v)の水分散体とした際の、波長660nmの光の透過率をいうものとする。カルボキシメチル化セルロースナノファイバーの透明度の測定方法は、以下の通りである:
  セルロースナノファイバー分散体(固形分1%(w/v)、分散媒:水)を調製し、UV-VIS分光光度計 UV-1800(島津製作所製)を用い、光路長10mmの角型セルを用いて、660nm 光の透過率を測定する。
<Transparency in water dispersion>
The nanofibers of carboxymethylated cellulose used in the present invention have a characteristic of exhibiting high transparency when water is used as a dispersion medium (water dispersion). Nanofibers with high transparency can be used as additives for applications where transparency is required, which is preferable. In addition, since nanofibers with high transparency are considered to have few unfibrillated cellulose fibers, it is thought that when they are contained in rubber, the occurrence frequency of cracks that cause a decrease in the strength of the rubber can be reduced. It is done. In this specification, transparency refers to the transmittance of light having a wavelength of 660 nm when carboxymethylated cellulose nanofibers are made into an aqueous dispersion having a solid content of 1% (w / v). A method for measuring the transparency of carboxymethylated cellulose nanofibers is as follows:
A cellulose nanofiber dispersion (solid content 1% (w / v), dispersion medium: water) was prepared, and a UV-VIS spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) was used to form a square cell with an optical path length of 10 mm. Used to measure the transmittance of light at 660 nm.
 本発明のカルボキシメチル化セルロースナノファイバーの透明度は、60%以上である。より好ましくは60~100%であり、さらに好ましくは70~100%であり、さらに好ましくは80~100%であり、さらに好ましくは90~100%である。このようなセルロースナノファイバーは、透明性が要求されるような用途に最適に使用することができる。また、ゴムの亀裂発生頻度を低下させ、ゴムの強度向上にも寄与する。上述のセルロースI型の結晶化度とカルボキシメチル置換度を有し、このような透明度を有するカルボキシメチル化セルロースナノファイバーは、例えば、後述する方法により製造することができる。 The transparency of the carboxymethylated cellulose nanofiber of the present invention is 60% or more. More preferably, it is 60 to 100%, still more preferably 70 to 100%, still more preferably 80 to 100%, and further preferably 90 to 100%. Such cellulose nanofibers can be optimally used for applications requiring transparency. It also reduces the frequency of cracking in the rubber and contributes to improving the strength of the rubber. The above-mentioned cellulose I type crystallinity and carboxymethyl substitution degree, and such transparency, carboxymethylated cellulose nanofibers can be produced, for example, by the method described later.
 <繊維径、アスペクト比>
  本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、ナノスケールの繊維径を有するものである。平均繊維径は、好ましくは1nm~500nm、さらに好ましくは1nm~150nm、さらに好ましくは1nm~20nm、さらに好ましくは3nm~10nm、さらに好ましくは3nm~6nmである。
<Fiber diameter, aspect ratio>
The carboxymethylated cellulose nanofiber used in the present invention has a nanoscale fiber diameter. The average fiber diameter is preferably 1 nm to 500 nm, more preferably 1 nm to 150 nm, further preferably 1 nm to 20 nm, more preferably 3 nm to 10 nm, and further preferably 3 nm to 6 nm.
 カルボキシメチル化セルロースナノファイバーのアスペクト比は、特に限定されないが、350以下であることが好ましく、300以下であることがさらに好ましく、200以下であることがさらに好ましく、120以下であることがさらに好ましく、100以下であることがさらに好ましく、80以下であることがさらに好ましい。アスペクト比が350以下であると、繊維が過度に長すぎず、繊維同士の絡まり合いが少なくなり、セルロースナノファイバーの塊(ダマ)の発生を低減することができ、添加剤として使用するのに適する。また、流動性が高いので、高濃度でも使用しやすくなり、高固形分が要求される用途においても使いやすくなるという利点が得られる。アスペクト比の下限は、特に限定されないが、好ましくは25以上であり、さらに好ましくは30以上である。アスペクト比が25以上であると、その繊維状の形状から、チキソ性の向上といった効果が得られる。カルボキシメチル化セルロースナノファイバーのアスペクト比は、カルボキシメチル化時の溶媒と水の混合比、薬品添加量、及びカルボキシメチル化の度合によって制御でき、また、例えば、後述する製法により製造することができる。 The aspect ratio of the carboxymethylated cellulose nanofiber is not particularly limited, but is preferably 350 or less, more preferably 300 or less, further preferably 200 or less, and further preferably 120 or less. 100 or less, more preferably 80 or less. When the aspect ratio is 350 or less, the fibers are not excessively long, the entanglement of the fibers is reduced, the generation of lump of cellulose nanofibers can be reduced, and it can be used as an additive. Suitable. Further, since the fluidity is high, it is easy to use even at a high concentration, and there is an advantage that it is easy to use even in applications requiring a high solid content. Although the minimum of an aspect-ratio is not specifically limited, Preferably it is 25 or more, More preferably, it is 30 or more. When the aspect ratio is 25 or more, an effect of improving thixotropy can be obtained from the fibrous shape. The aspect ratio of the carboxymethylated cellulose nanofiber can be controlled by the mixing ratio of the solvent and water at the time of carboxymethylation, the chemical addition amount, and the degree of carboxymethylation, and can be produced, for example, by the production method described later. .
  カルボキシメチル化セルロースのナノファイバーの平均繊維径および平均繊維長は、径が20nm以下の場合は原子間力顕微鏡(AFM)、20nm以上の場合は電界放出型走査電子顕微鏡(FE-SEM)を用いて、ランダムに選んだ200本の繊維について解析し、平均を算出することにより、測定することができる。また、アスペクト比は下記の式により算出することができる:
アスペクト比=平均繊維長/平均繊維径。
The average fiber diameter and average fiber length of nanofibers of carboxymethylated cellulose are determined using an atomic force microscope (AFM) when the diameter is 20 nm or less, and a field emission scanning electron microscope (FE-SEM) when the diameter is 20 nm or more. Then, it is possible to measure by analyzing 200 randomly selected fibers and calculating an average. Also, the aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length / average fiber diameter.
 <水分散体における粘度とチキソ性>
 本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、水を分散媒として分散体(水分散体)としたときに高いチキソ性を奏するものが好ましい。チキソ性(チキソトロピー)とは、剪断応力を受けることにより粘度が次第に低下し、静止すると粘度が次第に上昇する性質をいう。本願明細書では、チキソ性の指標として、低い剪断速度で測定した粘度を高い剪断速度で測定した粘度で除した値を用いる。具体的には、粘度及びチキソ性は以下の方法で測定する:
  セルロースナノファイバー分散体(固形分1%(w/v)、分散媒:水)を調製し、25℃で16時間放置した後、撹拌機を用いて3000rpmで1分間撹拌し、粘度測定用サンプルとする。得られた粘度測定用サンプルの一部について、B型粘度計(東機産業社製)を用いて、No.4ローター/回転数6rpmで3分後の粘度を測定する。また、粘度測定用サンプルの別の一部(粘度をまだ測定していないもの)を用いて、B型粘度計(東機産業社製)を用いて、No.4ローター/回転数60rpmで3分後の粘度を測定する。粘度の測定時にはJIS-Z-8803の方法に準じる。得られた6rpmにおける粘度を60rpmにおける粘度で除した値を、チキソ性の指標として用いる。
<Viscosity and thixotropy in aqueous dispersion>
The nanofibers of carboxymethylated cellulose used in the present invention preferably exhibit high thixotropy when water is used as a dispersion medium (water dispersion). The thixotropy (thixotropy) refers to a property in which the viscosity gradually decreases by receiving a shearing stress, and the viscosity gradually increases when resting. In the present specification, a value obtained by dividing the viscosity measured at a low shear rate by the viscosity measured at a high shear rate is used as an index of thixotropy. Specifically, viscosity and thixotropy are measured by the following methods:
A cellulose nanofiber dispersion (solid content: 1% (w / v), dispersion medium: water) was prepared, allowed to stand at 25 ° C. for 16 hours, then stirred at 3000 rpm for 1 minute using a stirrer, and a sample for viscosity measurement And About a part of obtained sample for viscosity measurement, using a B-type viscometer (made by Toki Sangyo Co., Ltd.) The viscosity after 3 minutes is measured at 4 rotors / rotation speed 6 rpm. Further, using another part of the sample for measuring viscosity (those whose viscosity has not been measured yet), using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.), The viscosity after 3 minutes is measured at 4 rotors / 60 rpm. The viscosity is measured according to the method of JIS-Z-8803. A value obtained by dividing the obtained viscosity at 6 rpm by the viscosity at 60 rpm is used as an index of thixotropy.
 本発明に用いられるカルボキシメチル化セルロースナノファイバーは、固形分1%(w/v)の水分散体とした際の25℃、6rpmにおける粘度を固形分1%(w/v)の水分散体とした際の25℃、60rpmにおける粘度で除した値(単に「6rpmの粘度を60rpmの粘度で除した値」とも呼ぶ)が、6.0以上であることが好ましい。この値が高いほど、剪断応力の差によって粘度の変化が大きいことを示しており、チキソ性が高いことを示している。チキソ性の高いセルロースナノファイバーは、保形性付与剤や粘度調整剤として使用するのに適している。6rpmの粘度を60rpmの粘度で除した値の上限は限定されないが、実際は15.0程度が上限となると考えられる。 The carboxymethylated cellulose nanofiber used in the present invention is an aqueous dispersion having a solid content of 1% (w / v) at 25 ° C. and 6 rpm when the aqueous dispersion has a solid content of 1% (w / v). The value divided by the viscosity at 25 ° C. and 60 rpm (also simply referred to as “the value obtained by dividing the viscosity at 6 rpm by the viscosity at 60 rpm”) is preferably 6.0 or more. The higher this value, the greater the change in viscosity due to the difference in shear stress, and the higher the thixotropy. Cellulose nanofibers with high thixotropy are suitable for use as a shape-retaining agent or a viscosity modifier. Although the upper limit of the value obtained by dividing the viscosity at 6 rpm by the viscosity at 60 rpm is not limited, it is considered that the upper limit is actually about 15.0.
 カルボキシメチル化セルロースナノファイバーの6rpmにおける粘度(固形分1%(w/v)の水分散体、25℃)は、15000mPa・s以上であることが好ましく、20000mPa・s以上であることがさらに好ましい。低い剪断速度(6rpm)における粘度が高いほど、チキソ性が高くなる可能性がある。6rpmにおける粘度の上限は特に限定されないが、現実的には50000mPa・s程度となると考えられる。 The viscosity at 6 rpm of the carboxymethyl cellulose nanofiber (aqueous dispersion with a solid content of 1% (w / v), 25 ° C.) is preferably 15000 mPa · s or more, and more preferably 20000 mPa · s or more. . The higher the viscosity at a low shear rate (6 rpm), the higher the thixotropy can be. The upper limit of the viscosity at 6 rpm is not particularly limited, but in reality, it is considered to be about 50000 mPa · s.
 カルボキシメチル化セルロースナノファイバーの60rpmにおける粘度(固形分1%(w/v)の水分散体、25℃)は、1500~8400mPa・s程度であることが好ましく、2000~7000mPa・s程度であることがさらに好ましく、2500~7000mPa・s程度であることがさらに好ましく、3000~7000mPa・s程度であることがさらに好ましい。 The viscosity at 60 rpm of the carboxymethylated cellulose nanofiber (aqueous dispersion with a solid content of 1% (w / v), 25 ° C.) is preferably about 1500 to 8400 mPa · s, and about 2000 to 7000 mPa · s. More preferably, it is about 2500 to 7000 mPa · s, more preferably about 3000 to 7000 mPa · s.
 <セルロースナノファイバー中の異物量の測定>
 セルロースナノファイバー中には、異物として未解繊セルロース繊維が残留する場合がある。一般的にゴムの亀裂の発生と成長を抑制することで、ゴムの破断、摩耗、引き裂きなどに対する強度を向上することができると考えられている。数十μm以上の大きさの異物がゴム中に存在すると、亀裂発生の起点となり得るため、セルロースナノファイバー中の異物量は少ないほうが好ましい。
<Measurement of amount of foreign matter in cellulose nanofiber>
In cellulose nanofibers, undefibrated cellulose fibers may remain as foreign substances. In general, it is considered that the strength against breakage, abrasion, tearing, etc. of rubber can be improved by suppressing the occurrence and growth of rubber cracks. If a foreign substance having a size of several tens of μm or more is present in the rubber, it can be a starting point of cracking. Therefore, the amount of the foreign substance in the cellulose nanofiber is preferably small.
 本発明において、カルボキシメチル化セルロースナノファイバー中の異物量は、以下の方法を用いて測定する。この方法は、微細なセルロースナノファイバーは偏光板を通った光を阻害しないため、直交した2枚の偏光板を通して検出されないのに対し、未解繊繊維物などの異物は乱反射を起こすため、直交した2枚の偏光板を通して特異的に検出されるという性質を利用している:
 セルロースナノファイバーを絶乾で0.5g含有する水性懸濁液に、ポリエチレングリコール(PEG、分子量600)を1.0g加えて、スターラーを用いて2時間撹拌したあと、超音波洗浄機にて脱泡して、セルロースナノファイバー(CNF)分散液を調製した。
In the present invention, the amount of foreign matter in the carboxymethylated cellulose nanofiber is measured using the following method. In this method, fine cellulose nanofibers are not detected through two orthogonal polarizing plates because they do not block the light that has passed through the polarizing plates, whereas foreign substances such as undefibrated fibers cause irregular reflection, so It utilizes the property of being specifically detected through the two polarizing plates:
Add 1.0 g of polyethylene glycol (PEG, molecular weight 600) to an aqueous suspension containing 0.5 g of cellulose nanofibers, and stir for 2 hours using a stirrer. Foaming was performed to prepare a cellulose nanofiber (CNF) dispersion.
 ポリエチレンテレフタレート(PET)フィルム上にゴム枠を載せてしっかりと固定し、純水を注ぎ込み、漏れないことを確認した後、内部の水を捨てた。これにより、上記PETフィルムに付着していた埃も除去した。乾燥させた上記PETフィルム上のゴム枠内に上記CNF分散液を泡立てないように注ぎ、40℃で一昼夜静置した。乾燥が十分であることを確認し、CNFフィルムを取り出した。得られた上記CNFフィルムの大きさは18cm×18cmであり、厚さは、0.1mmであった。 A rubber frame was placed on a polyethylene terephthalate (PET) film and fixed firmly, poured in pure water, and after confirming that it did not leak, the water inside was discarded. Thereby, the dust adhering to the PET film was also removed. The CNF dispersion was poured into a rubber frame on the dried PET film so as not to be bubbled, and was allowed to stand at 40 ° C. overnight. After confirming that the drying was sufficient, the CNF film was taken out. The obtained CNF film had a size of 18 cm × 18 cm and a thickness of 0.1 mm.
 次いで、暗幕の中に、板状のLEDライトを設置し、エアダスターで埃を除去しながら、LEDライトの上に、検体である上記CNFフィルムを2枚の偏光板で挟んだ状態で設置した。これら2枚の偏光板はそれらの偏光軸方向が互いに直交するような状態に配置した。なお、上記CNFフィルムは、18cm×18cmの大きさとし、2枚の偏光板についてもCNFフィルム全体を覆うことができる大きさとした。 Next, a plate-shaped LED light was installed in the dark curtain, and the CNF film as the sample was sandwiched between the two polarizing plates on the LED light while removing dust with an air duster. . These two polarizing plates were arranged in a state in which their polarization axes were orthogonal to each other. In addition, the said CNF film was taken as the magnitude | size of 18 cm x 18 cm, and it was set as the magnitude | size which can cover the whole CNF film also about two polarizing plates.
 そして、下方のLEDライトから光を照射し、フィルム全体が視野に収まるように上方からデジタルカメラで透過画像を撮影した。 Then, light was emitted from the lower LED light, and a transmission image was taken from above with a digital camera so that the entire film was in view.
 得られた撮影画像をもとに、上記CNF分散液中の異物の有無を確認するとともに、得られた撮影画像の画像解析により、異物の面積比率を算出し、異物量とした。画像解析は、WayneRasband社が提供している画像解析ソフトImageJを使用した。 The presence / absence of foreign matter in the CNF dispersion was confirmed based on the obtained photographed image, and the area ratio of the foreign matter was calculated by image analysis of the obtained photographed image to obtain the amount of foreign matter. For image analysis, image analysis software ImageJ provided by Wayne Rasband was used.
 本発明のセルロースナノファイバーの異物量は20%以下が好ましい。より好ましくは15%以下であり、さらにより好ましくは10%以下である。これにより機械強度に優れたゴム組成物が得られる。 The amount of foreign matter in the cellulose nanofiber of the present invention is preferably 20% or less. More preferably, it is 15% or less, More preferably, it is 10% or less. Thereby, a rubber composition excellent in mechanical strength is obtained.
 このようなカルボキシメチル置換度、粘度及びチキソ性、ならびに異物量を有するカルボキシメチル化セルロースナノファイバーは、例えば、後述する方法により製造することができる。 The carboxymethylated cellulose nanofiber having such a degree of carboxymethyl substitution, viscosity and thixotropy, and the amount of foreign matter can be produced, for example, by the method described later.
 <疎水化>
 本発明に用いられるカルボキシメチル化セルロースナノファイバーは、本発明の効果を阻害しない範囲で、カルボキシメチル基由来のカルボキシル基(-COOH)を、適宜変性したものであってもよい。そのような変性としては、例えばアルキル基やアリール基、アラルキル基などを有するアミン系化合物やリン系化合物などをカルボキシル基に結合させて、カルボキシメチル化セルロースナノファイバーを疎水化することが挙げられる。
<Hydrophobicization>
The carboxymethylated cellulose nanofibers used in the present invention may be those obtained by appropriately modifying a carboxyl group (—COOH) derived from a carboxymethyl group within a range not inhibiting the effects of the present invention. As such modification, for example, an amine compound or phosphorus compound having an alkyl group, an aryl group, an aralkyl group or the like is bonded to a carboxyl group to hydrophobize the carboxymethylated cellulose nanofiber.
 <カルボキシメチル化セルロースナノファイバーの製造方法>
 セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上であるカルボキシメチル化セルロースのナノファイバーは、これに限定されないが、以下の方法により製造したカルボキシメチル化セルロースを解繊することにより、製造することができる。
<Method for producing carboxymethylated cellulose nanofiber>
Cellulose I type crystallinity of 60% or more, carboxymethyl substitution degree of 0.50 or less, and light transmittance at a wavelength of 660 nm when an aqueous dispersion having a solid content of 1% (w / v) is obtained. Nanofibers of carboxymethylated cellulose having a ratio of 60% or more are not limited to this, but can be produced by defibrating carboxymethylated cellulose produced by the following method.
 カルボキシメチル化セルロースは、一般に、セルロースをアルカリで処理(マーセル化)した後、得られたマーセル化セルロース(アルカリセルロースともいう。)を、カルボキシメチル化剤(エーテル化剤ともいう。)と反応させることにより製造することができる。本発明の上記特徴を有するナノファイバーを形成することができるカルボキシメチル化セルロースは、マーセル化(セルロースのアルカリ処理)を水を主とする溶媒下で行い、その後、カルボキシメチル化(エーテル化ともいう。)を水と有機溶媒との混合溶媒下で行うことにより、製造することができる。このようにして得たカルボキシメチル化セルロースは、従来の水媒法(マーセル化とカルボキシメチル化の両方を水を溶媒として行う方法)や溶媒法(マーセル化とカルボキシメチル化の両方を有機溶媒を主とする溶媒下で行う方法)で得たカルボキシメチル化セルロースに比べて、カルボキシメチル化剤の高い有効利用率を有しながら、解繊した際に、透明度の高いセルロースナノファイバー分散体へと変換することができる。 In general, carboxymethylated cellulose is obtained by treating cellulose with an alkali (mercelization), and then reacting the obtained mercerized cellulose (also referred to as alkali cellulose) with a carboxymethylating agent (also referred to as an etherifying agent). Can be manufactured. Carboxymethylated cellulose capable of forming nanofibers having the above characteristics of the present invention is subjected to mercerization (alkali treatment of cellulose) in a solvent mainly containing water, and then carboxymethylation (also referred to as etherification). .) In a mixed solvent of water and an organic solvent. The carboxymethylated cellulose thus obtained can be obtained by using a conventional aqueous medium method (a method in which both mercerization and carboxymethylation are performed using water as a solvent) and a solvent method (in which both mercerization and carboxymethylation are performed using an organic solvent). Compared to the carboxymethylated cellulose obtained in the main solvent), the cellulose nanofiber dispersion is highly transparent when defibrated while having a high effective utilization rate of the carboxymethylating agent. Can be converted.
 <セルロース>
 本発明においてセルロースとは、D-グルコピラノース(単に「グルコース残基」、「無水グルコース」ともいう。)がβ-1,4結合で連なった構造の多糖を意味する。セルロースは、一般に起源、製法等から、天然セルロース、再生セルロース、微細セルロース、非結晶領域を除いた微結晶セルロース等に分類される。本発明では、これらのセルロースのいずれも、マーセル化セルロースの原料として用いることができるが、カルボキシメチル化セルロースナノファイバーにおいて60%以上のセルロースI型の結晶化度を維持するためには、セルロースI型の結晶化度が高いセルロースを原料として用いることが好ましい。原料となるセルロースのセルロースI型の結晶化度は、好ましくは、70%以上であり、さらに好ましくは80%以上である。セルロースI型の結晶化度の測定方法は、上述した通りである。
<Cellulose>
In the present invention, cellulose means a polysaccharide having a structure in which D-glucopyranose (simply referred to as “glucose residue” or “anhydroglucose”) is linked by β-1,4 bonds. Cellulose is generally classified into natural cellulose, regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, based on the origin, production method, and the like. In the present invention, any of these celluloses can be used as a raw material for mercerized cellulose. However, in order to maintain a cellulose I type crystallinity of 60% or more in carboxymethylated cellulose nanofibers, cellulose I It is preferable to use cellulose having a high mold crystallinity as a raw material. The cellulose I type crystallinity of the raw material cellulose is preferably 70% or more, and more preferably 80% or more. The method for measuring the crystallinity of cellulose type I is as described above.
 天然セルロースとしては、晒パルプまたは未晒パルプ(晒木材パルプまたは未晒木材パルプ);リンター、精製リンター;酢酸菌等の微生物によって生産されるセルロース等が例示される。晒パルプ又は未晒パルプの原料は特に限定されず、例えば、木材、木綿、わら、竹、麻、ジュート、ケナフ等が挙げられる。また、晒パルプ又は未晒パルプの製造方法も特に限定されず、機械的方法、化学的方法、あるいはその中間で二つを組み合せた方法でもよい。製造方法により分類される晒パルプ又は未晒パルプとしては例えば、メカニカルパルプ(サーモメカニカルパルプ(TMP)、砕木パルプ)、ケミカルパルプ(針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)等の亜硫酸パルプ、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)等のクラフトパルプ)等が挙げられる。さらに、製紙用パルプの他に溶解パルプを用いてもよい。溶解パルプとは、化学的に精製されたパルプであり、主として薬品に溶解して使用され、人造繊維、セロハンなどの主原料となる。 Examples of natural cellulose include bleached pulp or unbleached pulp (bleached wood pulp or unbleached wood pulp); linters, refined linters; cellulose produced by microorganisms such as acetic acid bacteria, and the like. The raw material of bleached pulp or unbleached pulp is not particularly limited, and examples thereof include wood, cotton, straw, bamboo, hemp, jute, kenaf and the like. Moreover, the manufacturing method of a bleached pulp or an unbleached pulp is not specifically limited, either, a mechanical method, a chemical method, or the method which combined two in the middle may be sufficient. Examples of bleached or unbleached pulp classified according to the production method include mechanical pulp (thermomechanical pulp (TMP), groundwood pulp), chemical pulp (conifer unbleached sulfite pulp (NUSP), conifer bleach sulfite pulp (NBSP). ) And the like, and softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), and kraft pulp such as hardwood bleached kraft pulp (LBKP)). Furthermore, dissolving pulp may be used in addition to papermaking pulp. Dissolving pulp is chemically refined pulp, which is mainly used by dissolving in chemicals, and is a main raw material for artificial fibers, cellophane and the like.
 再生セルロースとしては、セルロースを銅アンモニア溶液、セルロースザンテート溶液、モルフォリン誘導体など何らかの溶媒に溶解し、改めて紡糸されたものが例示される。 Examples of the regenerated cellulose include those obtained by dissolving cellulose in some solvent such as a copper ammonia solution, a cellulose xanthate solution, and a morpholine derivative and spinning again.
 微細セルロースとしては、上記天然セルロースや再生セルロースをはじめとする、セルロース系素材を、解重合処理(例えば、酸加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル処理等)して得られるものや、前記セルロース系素材を、機械的に処理して得られるものが例示される。 The fine cellulose is obtained by depolymerizing a cellulose-based material such as the above natural cellulose or regenerated cellulose (for example, acid hydrolysis, alkali hydrolysis, enzyme decomposition, explosion treatment, vibration ball mill treatment, etc.). And those obtained by mechanically treating the cellulose-based material.
 <マーセル化>
 原料として前述のセルロースを用い、マーセル化剤(アルカリ)を添加することによりマーセル化セルロース(アルカリセルロースともいう。)を得る。本明細書に記載の方法にしたがって、このマーセル化反応における溶媒に水を主として用い、次のカルボキシメチル化の際に有機溶媒と水との混合溶媒を使用することにより、解繊した際に非常に高い透明度を有するセルロースナノファイバー分散体とすることができるカルボキシメチル化セルロースを経済的に得ることができる。
<Mercelization>
The cellulose described above is used as a raw material, and mercerized cellulose (also referred to as alkali cellulose) is obtained by adding a mercerizing agent (alkali). According to the method described in this specification, water is mainly used as a solvent in this mercerization reaction, and a mixed solvent of an organic solvent and water is used in the next carboxymethylation, so that Carboxymethylated cellulose that can be made into a cellulose nanofiber dispersion having a very high transparency can be obtained economically.
 溶媒に水を主として用いる(水を主とする溶媒)とは、水を50質量%より高い割合で含む溶媒をいう。水を主とする溶媒中の水は、好ましくは55質量%以上であり、より好ましくは60質量%以上であり、より好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。特に好ましくは水を主とする溶媒は、水が100質量%(すなわち、水)である。マーセル化時の水の割合が多いほど、カルボキシメチル化セルロースを解繊して得られるセルロースナノファイバー分散体の透明度が高まる。水を主とする溶媒中の水以外の(水と混合して用いられる)溶媒としては、後段のカルボキシメチル化の際の溶媒として用いられる有機溶媒が挙げられる。例えば、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等のアルコールや、アセトン、ジエチルケトン、メチルエチルケトンなどのケトン、ならびに、ジオキサン、ジエチルエーテル、ベンゼン、ジクロロメタンなどを挙げることができ、これらの単独または2種以上の混合物を水に50質量%未満の量で添加してマーセル化の際の溶媒として用いることができる。水を主とする溶媒中の有機溶媒は、好ましくは45質量%以下であり、さらに好ましくは40質量%以下であり、さらに好ましくは30質量%以下であり、さらに好ましくは20質量%以下であり、さらに好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、より好ましくは0質量%である。 The main use of water as a solvent (a solvent mainly containing water) refers to a solvent containing water in a proportion higher than 50% by mass. Water in the solvent mainly composed of water is preferably 55% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more. Particularly preferably, the solvent mainly composed of water is 100% by mass of water (that is, water). The greater the proportion of water during mercerization, the greater the transparency of the cellulose nanofiber dispersion obtained by defibrating carboxymethylated cellulose. Examples of the solvent other than water (used by mixing with water) in the solvent mainly containing water include organic solvents used as a solvent in the subsequent carboxymethylation. For example, alcohols such as methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol and tertiary butanol, ketones such as acetone, diethyl ketone and methyl ethyl ketone, and dioxane, diethyl ether, benzene and dichloromethane These can be used alone or a mixture of two or more thereof can be added to water in an amount of less than 50% by mass and used as a solvent for mercerization. The organic solvent in the solvent mainly composed of water is preferably 45% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, and further preferably 20% by mass or less. More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less, More preferably, it is 0 mass%.
 マーセル化剤としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物が挙げられ、これらのうちいずれか1種または2種以上を組み合わせて用いることができる。マーセル化剤は、これに限定されないが、これらのアルカリ金属水酸化物を、例えば、1~60質量%、好ましくは2~45質量%、より好ましくは3~25質量%の水溶液として反応器に添加することができる。 Examples of mercerizing agents include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and any one of these or a combination of two or more thereof can be used. The mercerizing agent is not limited to this, but these alkali metal hydroxides are added to the reactor as an aqueous solution of, for example, 1 to 60% by mass, preferably 2 to 45% by mass, more preferably 3 to 25% by mass. Can be added.
 マーセル化剤の使用量は、カルボキシメチル化セルロースにおけるセルロースI型の結晶化度60%以上を維持できる量であり、一実施形態において、セルロース100g(絶乾)に対して0.1モル以上2.5モル以下であることが好ましく、0.3モル以上2.0モル以下であることがより好ましく、0.4モル以上1.5モル以下であることがさらに好ましい。 The amount of the mercerizing agent used is an amount capable of maintaining a cellulose I type crystallinity of 60% or more in carboxymethylated cellulose. In one embodiment, 0.1 mol or more and 2 mol per 100 g of cellulose (absolutely dry). 0.5 mol or less is preferable, 0.3 mol or more and 2.0 mol or less is more preferable, and 0.4 mol or more and 1.5 mol or less is more preferable.
 マーセル化の際の水を主とする溶媒の量は、セルロース原料に対し、1.5~20質量倍が好ましく、2~10質量倍であることがより好ましい。このような量とすることにより、原料の撹拌混合が容易になり、原料に均一に反応を生じさせることができるようになる。 The amount of the solvent mainly composed of water at the time of mercerization is preferably 1.5 to 20 times by mass and more preferably 2 to 10 times by mass with respect to the cellulose raw material. By using such an amount, the raw materials can be easily stirred and mixed, and the raw materials can be uniformly reacted.
 マーセル化処理は、発底原料(セルロース)と水を主とする溶媒とを混合し、反応器の温度を0~70℃、好ましくは10~60℃、より好ましくは10~40℃に調整して、マーセル化剤の水溶液を添加し、15分~8時間、好ましくは30分~7時間、より好ましくは30分~3時間撹拌することにより行う。これによりマーセル化セルロース(アルカリセルロース)を得る。 In the mercerization treatment, the bottoming material (cellulose) and a solvent mainly composed of water are mixed, and the temperature of the reactor is adjusted to 0 to 70 ° C., preferably 10 to 60 ° C., more preferably 10 to 40 ° C. Then, an aqueous solution of mercerizing agent is added and stirred for 15 minutes to 8 hours, preferably 30 minutes to 7 hours, more preferably 30 minutes to 3 hours. Thereby, mercerized cellulose (alkali cellulose) is obtained.
 マーセル化の際のpHは、9以上が好ましく、これによりマーセル化反応を進めることができる。該pHは、より好ましくは11以上であり、更に好ましくは12以上であり、13以上でもよい。pHの上限は特に限定されない。 The pH during mercerization is preferably 9 or more, whereby the mercerization reaction can proceed. The pH is more preferably 11 or more, still more preferably 12 or more, and may be 13 or more. The upper limit of pH is not particularly limited.
  マーセル化は、温度制御しつつ上記各成分を混合撹拌することができる反応機を用いて行うことができ、従来からマーセル化反応に用いられている各種の反応機を用いることができる。例えば、2本の軸が撹拌し、上記各成分を混合するようなバッチ型攪拌装置は、均一混合性と生産性の両観点から好ましい。 The soot mercerization can be performed using a reactor capable of mixing and stirring the above components while controlling the temperature, and various reactors conventionally used in mercerization reactions can be used. For example, a batch type stirring apparatus in which two shafts are stirred and the above components are mixed is preferable from the viewpoints of both uniform mixing and productivity.
 <カルボキシメチル化>
 マーセル化セルロースに対し、カルボキシメチル化剤(エーテル化剤ともいう。)を添加することにより、カルボキシメチル化セルロースを得る。本明細書に記載の方法にしたがって、マーセル化の際は水を主とする溶媒として用い、カルボキシメチル化の際には水と有機溶媒との混合溶媒を用いることにより、解繊した際に非常に高い透明度を有するセルロースナノファイバー分散体とすることができるカルボキシメチル化セルロースを経済的に得ることができる。
<Carboxymethylation>
Carboxymethylated cellulose is obtained by adding a carboxymethylating agent (also referred to as an etherifying agent) to mercerized cellulose. According to the method described in this specification, water is mainly used as a solvent for mercerization, and a mixed solvent of water and an organic solvent is used for carboxymethylation. Carboxymethylated cellulose that can be made into a cellulose nanofiber dispersion having a very high transparency can be obtained economically.
 カルボキシメチル化剤としては、モノクロロ酢酸、モノクロロ酢酸ナトリウム、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸イソプロピルなどが挙げられる。これらのうち、原料の入手しやすさという点でモノクロロ酢酸、またはモノクロロ酢酸ナトリウムが好ましい。 Examples of the carboxymethylating agent include monochloroacetic acid, sodium monochloroacetate, methyl monochloroacetate, ethyl monochloroacetate, isopropyl monochloroacetate and the like. Of these, monochloroacetic acid or sodium monochloroacetate is preferable from the viewpoint of easy availability of raw materials.
 カルボキシメチル化剤の使用量は、セルロースI型の結晶化度60%以上を維持できる量であり、また、0.50以下のカルボキシメチル置換度となる量である。特に限定されないが、一実施形態において、セルロースの無水グルコース単位当たり、0.5~1.5モルの範囲で添加することが好ましい。上記範囲の下限はより好ましくは0.6モル以上、さらに好ましくは0.7モル以上であり、上限はより好ましくは1.3モル以下、さらに好ましくは1.1モル以下である。カルボキシメチル化剤は、これに限定されないが、例えば、5~80質量%、より好ましくは30~60質量%の水溶液として反応器に添加することができるし、溶解せず、粉末状態で添加することもできる。 The amount of the carboxymethylating agent used is an amount that can maintain a crystallinity of 60% or more of cellulose type I, and an amount that provides a carboxymethyl substitution degree of 0.50 or less. Although not particularly limited, in one embodiment, it is preferably added in the range of 0.5 to 1.5 mol per anhydroglucose unit of cellulose. The lower limit of the above range is more preferably 0.6 mol or more, still more preferably 0.7 mol or more, and the upper limit is more preferably 1.3 mol or less, still more preferably 1.1 mol or less. The carboxymethylating agent is not limited to this, but for example, it can be added to the reactor as an aqueous solution of 5 to 80% by mass, more preferably 30 to 60% by mass. You can also.
 マーセル化剤とカルボキシメチル化剤のモル比(マーセル化剤/カルボキシメチル化剤)は、カルボキシメチル化剤としてモノクロロ酢酸又はモノクロロ酢酸ナトリウムを使用する場合では、0.9~2.45が一般的に採用される。その理由は、0.9未満であるとカルボキシメチル化反応が不十分となる可能性があり、未反応のモノクロロ酢酸又はモノクロロ酢酸ナトリウムが残って無駄が生じる可能性があること、及び2.45を超えると過剰のマーセル化剤とモノクロロ酢酸又はモノクロロ酢酸ナトリウムによる副反応が進行してグリコール酸アルカリ金属塩が生成する恐れがあるため、不経済となる可能性があることにある。 The molar ratio of mercerizing agent to carboxymethylating agent (mercelling agent / carboxymethylating agent) is generally 0.9 to 2.45 when monochloroacetic acid or sodium monochloroacetate is used as the carboxymethylating agent. Adopted. The reason is that if it is less than 0.9, the carboxymethylation reaction may be insufficient, and unreacted monochloroacetic acid or sodium monochloroacetate may remain, resulting in waste, and 2.45. If it exceeds 1, the side reaction between the excess mercerizing agent and monochloroacetic acid or sodium monochloroacetate may proceed to produce an alkali metal glycolate, which may be uneconomical.
 カルボキシメチル化において、カルボキシメチル化剤の有効利用率は、15%以上であることが好ましい。より好ましくは20%以上であり、さらに好ましくは25%以上であり、特に好ましくは30%以上である。カルボキシメチル化剤の有効利用率とは、カルボキシメチル化剤におけるカルボキシメチル基のうち、セルロースに導入されたカルボキシメチル基の割合を指す。マーセル化の際に水を主とする溶媒を用い、カルボキシメチル化の際に水と有機溶媒との混合溶媒を用いることにより、高いカルボキシメチル化剤の有効利用率で(すなわち、カルボキシメチル化剤の使用量を大きく増やすことなく、経済的に)、解繊した際に高い透明度を有するセルロースナノファイバー分散体を得ることができるカルボキシメチル化セルロースを製造することができる。カルボキシメチル化剤の有効利用率の上限は特に限定されないが、現実的には80%程度が上限となる。なお、カルボキシメチル化剤の有効利用率は、AMと略すことがある。 In carboxymethylation, the effective utilization rate of the carboxymethylating agent is preferably 15% or more. More preferably, it is 20% or more, more preferably 25% or more, and particularly preferably 30% or more. The effective utilization rate of a carboxymethylating agent refers to the proportion of carboxymethyl groups introduced into cellulose among carboxymethyl groups in the carboxymethylating agent. By using a solvent mainly composed of water at the time of mercerization and using a mixed solvent of water and an organic solvent at the time of carboxymethylation, the effective utilization rate of the carboxymethylating agent is high (ie, the carboxymethylating agent). Carboxymethylated cellulose capable of obtaining a cellulose nanofiber dispersion having high transparency when defibrated can be produced economically without greatly increasing the use amount of. The upper limit of the effective utilization rate of the carboxymethylating agent is not particularly limited, but in reality, the upper limit is about 80%. The effective utilization rate of the carboxymethylating agent may be abbreviated as AM.
 カルボキシメチル化剤の有効利用率の算出方法は以下の通りである:
AM = (DS × セルロースのモル数)/ カルボキシメチル化剤のモル数
DS: カルボキシメチル置換度(測定方法は上述の通り)
セルロースのモル数:パルプ質量(100℃で60分間乾燥した際の乾燥質量)/162
(162はセルロースのグルコース単位当たりの分子量)。
The calculation method of the effective utilization rate of the carboxymethylating agent is as follows:
AM = (DS × number of moles of cellulose) / number of moles of carboxymethylating agent DS: Degree of carboxymethyl substitution (measurement method is as described above)
Number of moles of cellulose: Pulp mass (dry mass when dried at 100 ° C. for 60 minutes) / 162
(162 is the molecular weight of cellulose per glucose unit).
  カルボキシメチル化反応におけるセルロース原料の濃度は、特に限定されないが、カルボキシメチル化剤の有効利用率を高める観点から、1~40%(w/v)であることが好ましい。 The concentration of the cellulose raw material in the carboxymethylation reaction is not particularly limited, but is preferably 1 to 40% (w / v) from the viewpoint of increasing the effective utilization rate of the carboxymethylating agent.
 カルボキシメチル化剤を添加するのと同時に、あるいはカルボキシメチル化剤の添加の前または直後に、反応器に有機溶媒または有機溶媒の水溶液を適宜添加し、又は減圧などによりマーセル化処理時の水以外の有機溶媒等を適宜削減して、水と有機溶媒との混合溶媒を形成し、この水と有機溶媒との混合溶媒下で、カルボキシメチル化反応を進行させる。有機溶媒の添加または削減のタイミングは、マーセル化反応の終了後からカルボキシメチル化剤を添加した直後までの間であればよく、特に限定されないが、例えば、カルボキシメチル化剤を添加する前後30分以内が好ましい。 Simultaneously with the addition of the carboxymethylating agent, or before or immediately after the addition of the carboxymethylating agent, an organic solvent or an aqueous solution of the organic solvent is appropriately added to the reactor, or water other than the water used in the mercerization process by reducing the pressure. The organic solvent is appropriately reduced to form a mixed solvent of water and the organic solvent, and the carboxymethylation reaction proceeds under the mixed solvent of the water and the organic solvent. The timing of addition or reduction of the organic solvent may be from the end of the mercerization reaction to immediately after the addition of the carboxymethylating agent, and is not particularly limited. For example, 30 minutes before and after adding the carboxymethylating agent Is preferred.
 有機溶媒としては、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等のアルコールや、アセトン、ジエチルケトン、メチルエチルケトンなどのケトン、ならびに、ジオキサン、ジエチルエーテル、ベンゼン、ジクロロメタンなどを挙げることができ、これらの単独または2種以上の混合物を水に添加してカルボキシメチル化の際の溶媒として用いることができる。これらのうち、水との相溶性が優れることから、炭素数1~4の一価アルコールが好ましく、炭素数1~3の一価アルコールがさらに好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol and tertiary butanol, ketones such as acetone, diethyl ketone and methyl ethyl ketone, and dioxane, diethyl ether, Benzene, dichloromethane, etc. can be mentioned, These alone or a mixture of two or more thereof can be added to water and used as a solvent for carboxymethylation. Of these, monohydric alcohols having 1 to 4 carbon atoms are preferred and monohydric alcohols having 1 to 3 carbon atoms are more preferred because of their excellent compatibility with water.
  カルボキシメチル化の際の混合溶媒中の有機溶媒の割合は、水と有機溶媒との総和に対して有機溶媒が20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましい。有機溶媒の割合が高いほど、セルロースナノファイバー分散体としたときの透明度が高くなるという利点が得られる。有機溶媒の割合の上限は限定されず、例えば、99質量%以下であってよい。添加する有機溶媒のコストを考慮すると、好ましくは90質量%以下であり、更に好ましくは85質量%以下であり、更に好ましくは80質量%以下であり、更に好ましくは70質量%以下である。 The ratio of the organic solvent in the mixed solvent in the carboxymethylation is preferably 20% by mass or more, more preferably 30% by mass or more, based on the sum of water and the organic solvent, It is more preferably 40% by mass or more, further preferably 45% by mass or more, and particularly preferably 50% by mass or more. As the proportion of the organic solvent is higher, an advantage that the transparency when the cellulose nanofiber dispersion is obtained becomes higher. The upper limit of the ratio of the organic solvent is not limited, and may be 99% by mass or less, for example. Considering the cost of the organic solvent to be added, it is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, and further preferably 70% by mass or less.
 カルボキシメチル化の際の反応媒(セルロースを含まない、水と有機溶媒等との混合溶媒)は、マーセル化の際の反応媒よりも、水の割合が少ない(言い換えれば、有機溶媒の割合が多い)ことが好ましい。本範囲を満たすことで、得られるカルボキシメチル化セルロースの結晶化度を維持しながらカルボキシメチル置換度を高くしやすくなり、解繊した際に透明度の高いセルロースナノファイバー分散体となるカルボキシメチル化セルロースを、より効率的に得ることができるようになる。また、カルボキシメチル化の際の反応媒が、マーセル化の際の反応媒よりも水の割合が少ない(有機溶媒の割合が多い)場合、マーセル化反応からカルボキシメチル化反応に移行する際に、マーセル化反応終了後の反応系に所望の量の有機溶媒を添加するという簡便な手段でカルボキシメチル化反応用の混合溶媒を形成させることができるという利点も得られる。 The reaction medium at the time of carboxymethylation (a mixed solvent of water and an organic solvent, which does not contain cellulose) has a smaller proportion of water than the reaction medium at the time of mercerization (in other words, the proportion of the organic solvent is lower). Many). By satisfying this range, it becomes easy to increase the degree of carboxymethyl substitution while maintaining the crystallinity of the resulting carboxymethylated cellulose, and becomes a highly transparent cellulose nanofiber dispersion when fibrillated. Can be obtained more efficiently. In addition, when the reaction medium at the time of carboxymethylation is less than the reaction medium at the time of mercerization (the ratio of the organic solvent is large), when shifting from the mercerization reaction to the carboxymethylation reaction, There is also an advantage that a mixed solvent for the carboxymethylation reaction can be formed by a simple means of adding a desired amount of an organic solvent to the reaction system after completion of the mercerization reaction.
 水と有機溶媒との混合溶媒を形成し、マーセル化セルロースにカルボキシメチル化剤を投入した後、温度を好ましくは10~40℃の範囲で一定に保ったまま15分~4時間、好ましくは15分~1時間程度撹拌する。マーセル化セルロースを含む液とカルボキシメチル化剤との混合は、反応混合物が高温になることを防止するために、複数回に分けて、または、滴下により行うことが好ましい。カルボキシメチル化剤を投入して一定時間撹拌した後、必要であれば昇温して、反応温度を30~90℃、好ましくは40~90℃、さらに好ましくは60~80℃として、30分~10時間、好ましくは1時間~4時間、エーテル化(カルボキシメチル化)反応を行い、カルボキシメチル化セルロースを得る。 After forming a mixed solvent of water and an organic solvent and adding a carboxymethylating agent to mercerized cellulose, the temperature is preferably kept constant in the range of 10 to 40 ° C. for 15 minutes to 4 hours, preferably 15 Stir for about 1 to 1 hour. The mixing of the mercerized cellulose-containing liquid and the carboxymethylating agent is preferably performed in a plurality of times or by dropping in order to prevent the reaction mixture from becoming high temperature. After adding a carboxymethylating agent and stirring for a certain time, the temperature is raised if necessary, and the reaction temperature is set to 30 to 90 ° C, preferably 40 to 90 ° C, more preferably 60 to 80 ° C, and 30 minutes to The etherification (carboxymethylation) reaction is carried out for 10 hours, preferably 1 to 4 hours to obtain carboxymethylated cellulose.
  カルボキシメチル化の際には、マーセル化の際に用いた反応器をそのまま用いてもよく、あるいは、温度制御しつつ上記各成分を混合撹拌することが可能な別の反応器を用いてもよい。 In the carboxymethylation, the reactor used in the mercerization may be used as it is, or another reactor capable of mixing and stirring the above components while controlling the temperature may be used. .
 反応終了後、残存するアルカリ金属塩を鉱酸または有機酸で中和してもよい。また、必要に応じて、副生する無機塩、有機酸塩等を含水メタノールで洗浄して除去し、乾燥、粉砕、分級してカルボキシメチル化セルロース又はその塩としてもよい。副生物除去のために洗浄する際は、予め酸型にして線状し、洗浄後に塩型に戻しても良い。乾式粉砕で用いる装置としてはハンマーミル、ピンミル等の衝撃式ミル、ボールミル、タワーミル等の媒体ミル、ジェットミル等が例示される。湿式粉砕で用いる装置としてはホモジナイザー、マスコロイダー、パールミル等の装置が例示される。 After the reaction, the remaining alkali metal salt may be neutralized with a mineral acid or an organic acid. If necessary, by-product inorganic salts, organic acid salts, and the like may be removed by washing with water-containing methanol, dried, pulverized, and classified to obtain carboxymethylated cellulose or a salt thereof. When washing for removing by-products, the acid form may be linearized in advance, and the salt form may be restored after washing. Examples of the apparatus used in the dry pulverization include impact mills such as a hammer mill and a pin mill, medium mills such as a ball mill and a tower mill, and jet mills. Examples of the apparatus used in the wet pulverization include apparatuses such as a homogenizer, a mass collider, and a pearl mill.
 <ナノファイバーへの解繊>
 上記の方法により得たカルボキシメチル化セルロースを解繊することにより、ナノスケールの繊維径を有するセルロースナノファイバーへと変換することができる。
<Disentanglement to nanofiber>
By defibrating the carboxymethylated cellulose obtained by the above method, it can be converted into cellulose nanofibers having nanoscale fiber diameters.
 解繊の際には、上記の方法で得られたカルボキシメチル化セルロースの分散体を準備する。分散媒は、取扱いの容易性から、水が好ましい。解繊時の分散体におけるカルボキシメチル化セルロースの濃度は、解繊、分散の効率を考慮すると、0.01~10%(w/v)であることが好ましい。 In the case of defibration, a dispersion of carboxymethylated cellulose obtained by the above method is prepared. The dispersion medium is preferably water from the viewpoint of ease of handling. The concentration of carboxymethylated cellulose in the dispersion during defibration is preferably 0.01 to 10% (w / v) in consideration of the efficiency of defibration and dispersion.
 カルボキシメチル化セルロースを解繊する際に用いる装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いることができる。解繊の際にはカルボキシメチル化セルロースの分散体に強力な剪断力を印加することが好ましい。特に、効率よく解繊するには、前記分散体に50MPa以上の圧力を印加し、かつ強力な剪断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊及び分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、撹拌、乳化、分散装置を用いて、前記分散体に予備処理をほどこしてもよい。 The apparatus used for defibrating carboxymethylated cellulose is not particularly limited, and apparatuses such as a high speed rotation type, a colloid mill type, a high pressure type, a roll mill type, and an ultrasonic type can be used. In defibration, it is preferable to apply a strong shearing force to the carboxymethylated cellulose dispersion. In particular, for efficient defibration, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force. The pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more. Further, prior to defibration and dispersion treatment with a high-pressure homogenizer, if necessary, the dispersion may be pretreated using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. .
 高圧ホモジナイザーとは、ポンプにより流体に加圧(高圧)し、流路に設けた非常に繊細な間隙より噴出させることにより、粒子間の衝突、圧力差による剪断力等の総合エネルギーによって乳化、分散、解細、粉砕、及び超微細化を行う装置である。 High-pressure homogenizer is emulsified and dispersed by total energy such as collision between particles and shear force due to pressure difference by pressurizing (high pressure) the fluid with a pump and ejecting it from a very delicate gap provided in the flow path. , A device that performs de-pulverization, pulverization, and ultra-miniaturization.
 上記の方法により、透明度が高いセルロースナノファイバーが得られる理由は明らかではないが、上記の方法によれば比較的高いセルロースI型の結晶化度を維持することができ、したがって、カルボキシメチル置換度を比較的高くしてもカルボキシメチル化セルロースの繊維状の形状を維持させることができることを本発明者らは確認している。繊維状の形状を維持しながらカルボキシメチル置換度を高くできる(すなわち、カルボキシメチル基を多く導入する)ことは、カルボキシメチル化セルロースの解繊性の向上につながると考えられ、これが、透明度が高いナノファイバー分散体が得られることの理由の1つであると推測される。しかし、これに限定されない。 The reason why high-transparency cellulose nanofibers can be obtained by the above method is not clear, but according to the above-mentioned method, it is possible to maintain a relatively high degree of crystallinity of cellulose type I. The present inventors have confirmed that the fibrous shape of carboxymethylated cellulose can be maintained even if it is relatively high. The ability to increase the degree of carboxymethyl substitution while maintaining the fibrous shape (that is, introducing more carboxymethyl groups) is thought to lead to improved defibration of carboxymethylated cellulose, which is highly transparent It is speculated that this is one of the reasons why a nanofiber dispersion is obtained. However, it is not limited to this.
 <ゴム成分>
 ゴム成分とはゴムの原料であり、架橋してゴムとなるものをいう。ゴム成分としては、天然ゴム用のゴム成分と合成ゴム用のゴム成分が存在する。天然ゴム用のゴム成分としては、例えば、化学修飾を施さない狭義の天然ゴム(NR);塩素化天然ゴム、クロロスルホン化天然ゴム、エポキシ化天然ゴム等の化学修飾した天然ゴム;水素化天然ゴム;脱タンパク天然ゴムが挙げられる。合成ゴム用のゴム成分としては、例えば、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム等のジエン系ゴム;ブチルゴム(IIR)、エチレン-プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(CO、ECO)、フッ素ゴム(FKM)、シリコーンゴム(Q)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)等の非ジエン系ゴムが挙げられる。これらの中で、NBR、NR、SBR、クロロプレンゴム、BRが好ましい。
<Rubber component>
The rubber component is a raw material of rubber and refers to a material that is crosslinked to become rubber. As the rubber component, there are a rubber component for natural rubber and a rubber component for synthetic rubber. The rubber component for natural rubber includes, for example, natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; Rubber; Deproteinized natural rubber. Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer. Diene rubbers such as united rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydride Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM). Among these, NBR, NR, SBR, chloroprene rubber, and BR are preferable.
 ゴム成分は、1種単独のものをカルボキシメチル化セルロースナノファイバーと混合してもよいし、2種以上を組み合わせて混合してもよい。 The rubber component may be used alone or in combination with two or more carboxymethylated cellulose nanofibers.
 <混合工程>
 マスターバッチの製造方法は、ゴム成分とカルボキシメチル化セルロースナノファイバーとを混合することを含む。混合の際のゴム成分及びカルボキシメチル化セルロースナノファイバーの形態は特に限定されない。例えば、セルロースナノファイバーの分散液、該分散液の乾燥固形物、又は当該分散液の湿潤固形物と、ゴム成分(固形物)又はその分散液とを混合する形態が挙げられる。これらのうち、セルロースナノファイバーの分散液とゴム成分の分散液とを混合する形態が好ましい。
<Mixing process>
The manufacturing method of a masterbatch includes mixing a rubber component and carboxymethylated cellulose nanofibers. The form of the rubber component and the carboxymethylated cellulose nanofiber during mixing is not particularly limited. For example, the form which mixes the dispersion liquid of a cellulose nanofiber, the dry solid substance of this dispersion liquid, or the wet solid substance of the said dispersion liquid, and a rubber component (solid substance) or its dispersion liquid is mentioned. Among these, the form which mixes the dispersion liquid of a cellulose nanofiber and the dispersion liquid of a rubber component is preferable.
 ゴム成分とセルロースナノファイバーとの混合割合は特に限定されないが、好ましくは以下のとおりである。 The mixing ratio of the rubber component and the cellulose nanofiber is not particularly limited, but is preferably as follows.
 カルボキシメチル化セルロースナノファイバーの含有量は、ゴム成分100質量部に対して0.5質量部以上が好ましく、1質量部以上がより好ましく、3質量部以上がさらに好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、25質量部以下が好ましく、20質量部以下が好ましく、15質量部以下がさらに好ましい。これにより、製造工程における加工性を保持することができる。従って、0.5~25質量部が好ましく、1~20質量部がより好ましく、3~15質量部がさらに好ましい。 The content of carboxymethylated cellulose nanofibers is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. Thereby, the improvement effect of tensile strength can fully express. The upper limit is preferably 25 parts by mass or less, preferably 20 parts by mass or less, and more preferably 15 parts by mass or less. Thereby, the workability in the manufacturing process can be maintained. Therefore, 0.5 to 25 parts by mass is preferable, 1 to 20 parts by mass is more preferable, and 3 to 15 parts by mass is further preferable.
 本発明は、上述の特定のカルボキシメチル置換度と、セルロースI型の結晶化度と、透明度とを有するカルボキシメチル化セルロースナノファイバーを、ゴム成分と混合してマスターバッチとすることにより、このマスターバッチから得られた加硫ゴム組成物が高い強度を有することを見出したものである。本発明に用いられる上述の特性を有するカルボキシメチル化セルロースナノファイバーは、最終的に得られるゴム製品における充填剤(ゴム用充填剤)として有用である。 The present invention provides a master batch by mixing carboxymethyl cellulose nanofibers having the above-mentioned specific degree of carboxymethyl substitution, cellulose type I crystallinity, and transparency with a rubber component. It has been found that a vulcanized rubber composition obtained from a batch has high strength. The carboxymethylated cellulose nanofiber having the above-described properties used in the present invention is useful as a filler (rubber filler) in the finally obtained rubber product.
 <凝固工程>
 カルボキシメチル化セルロースナノファイバーとゴム成分とを混合した後、凝固させてもよい。凝固工程においては、多価金属または酸を用いることが好ましい。また多価金属と酸を併用してもよい。酸は、有機酸または無機酸のいずれであってもよく、凝固を阻害しないものであればよい。有機酸としては、例えば、ギ酸、酢酸などが挙げられ、無機酸としては、例えば、硫酸、塩酸、炭酸などが挙げられる。酸は、併用する多価金属にあわせて適宜選択すればよい。酸は、1種または2種以上の組み合わせでもよい。
<Coagulation process>
The carboxymethylated cellulose nanofiber and the rubber component may be mixed and then coagulated. In the coagulation step, it is preferable to use a polyvalent metal or an acid. Moreover, you may use a polyvalent metal and an acid together. The acid may be either an organic acid or an inorganic acid as long as it does not inhibit coagulation. Examples of the organic acid include formic acid and acetic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, and carbonic acid. What is necessary is just to select an acid suitably according to the polyvalent metal used together. One or a combination of two or more acids may be used.
 酸を使用する場合、酸の添加時期は特に限定されず、多価金属と同時に添加してもよいし、多価金属の添加前または後に添加してもよい。酸の使用量は、混合液中のpHが3.0~6.0となる量が好ましく、pH3.5~5.0となる量がより好ましい。 When an acid is used, the addition timing of the acid is not particularly limited, and the acid may be added simultaneously with the polyvalent metal, or may be added before or after the addition of the polyvalent metal. The amount of the acid used is preferably such that the pH in the mixed solution is 3.0 to 6.0, more preferably the pH is 3.5 to 5.0.
 <固液分離工程(脱水工程)、水洗工程>
 本発明の製造方法は、凝固工程の後、固液分離工程及び水洗工程からなる群より選ばれる少なくとも1つの工程を更に含むことが好ましく、両方の工程を更に含むことがより好ましい。これにより、ゴム組成物中の不純物の含有量を低下させることができ、ゴム組成物の強度を向上させることができる。固液分離工程と水洗工程の態様は、固液分離と水洗のセットを2回以上繰り返す態様が好ましい。
<Solid-liquid separation process (dehydration process), washing process>
The production method of the present invention preferably further includes at least one step selected from the group consisting of a solid-liquid separation step and a water washing step after the coagulation step, and more preferably includes both steps. Thereby, content of the impurity in a rubber composition can be reduced, and the intensity | strength of a rubber composition can be improved. The aspect of a solid-liquid separation process and a water washing process has a preferable aspect which repeats the set of solid-liquid separation and water washing twice or more.
 固液分離工程(脱水工程)は、凝固工程にて得られる凝固したゴム成分を含む混合液を固液分離する工程である。そのため、固液分離工程を行う時期は、通常は、凝固工程の後である。固液分離は、ろ材を用いて行うことが好ましい。ろ材としては、例えば、金属繊維、セルロース、ポリプロピレン、ポリエステル、ナイロン、ガラス、コットン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等の素材からなるフィルター、メンブレン、ろ布、金属粉を焼結させてなるフィルター、またはスリット状フィルターが挙げられる。これらの中でも、ナイロンフィルターが好ましい。ろ材の好ましい平均孔径は、好ましくは0.01~100μmであり、より好ましくは0.1~50μmであり、さらに好ましくは1~30μmである。
 水洗工程は、固液分離工程で得られる固相を洗浄する工程である。
The solid-liquid separation step (dehydration step) is a step for solid-liquid separation of the liquid mixture containing the solidified rubber component obtained in the coagulation step. Therefore, the time for performing the solid-liquid separation step is usually after the coagulation step. Solid-liquid separation is preferably performed using a filter medium. Examples of filter media include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, membranes, filter cloths, filters made by sintering metal powder, Or a slit filter is mentioned. Among these, a nylon filter is preferable. A preferable average pore diameter of the filter medium is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm, and further preferably 1 to 30 μm.
The water washing step is a step of washing the solid phase obtained in the solid-liquid separation step.
 <乾燥工程>
 本発明の製造方法は、ゴム成分とカルボキシメチル化セルロースナノファイバーとを混合した後に、乾燥工程を更に含んでもよい。これにより、水分量の少ないマスターバッチを得ることができる。乾燥工程は、凝固工程により得られる処理液、又は、その後必要に応じて行われる固液分離工程及び洗浄工程により得られる処理液を、加熱による乾燥に供する工程である。加熱温度、加熱時間等の条件は特に限定されない。加熱温度は、40℃以上が好ましい。上限は100℃未満が好ましい。加熱時間は、1時間以上が好ましい。上限は24時間以下が好ましい。加熱の条件を上記範囲とすることで、ゴム成分に対するダメージを抑えることができる。加熱は、オーブン等の乾燥機を用いて行えばよい。
<Drying process>
The production method of the present invention may further include a drying step after mixing the rubber component and the carboxymethylated cellulose nanofiber. Thereby, a masterbatch with little moisture content can be obtained. A drying process is a process which uses for the drying by heating the processing liquid obtained by a coagulation process, or the processing liquid obtained by the solid-liquid separation process and washing | cleaning process performed after that as needed. Conditions such as heating temperature and heating time are not particularly limited. The heating temperature is preferably 40 ° C. or higher. The upper limit is preferably less than 100 ° C. The heating time is preferably 1 hour or longer. The upper limit is preferably 24 hours or less. By setting the heating condition within the above range, damage to the rubber component can be suppressed. Heating may be performed using a dryer such as an oven.
 <マスターバッチ>
 上記の通り、カルボキシメチル化セルロースナノファイバーとゴム成分とを混合し、所望により凝固工程、固液分離工程、水洗工程、及び乾燥工程の1以上を行うことにより、マスターバッチを得ることができる。本明細書では、未架橋状態のゴム成分を含み、架橋成分を含まない組成物のことを便宜上、「マスターバッチ」と呼ぶこととする。したがって、本発明のマスターバッチは、上述のカルボキシメチル化セルロースナノファイバーと、未架橋のゴム成分に加えて、後述する<混練り工程>の欄に記載される架橋成分(架橋剤、加硫促進剤、及び加硫促進助剤)以外の成分を含んだ状態のものであってもよく、また、これらの成分を添加する前の状態であってもよい。本明細書では、マスターバッチに架橋成分を配合し、必要に応じて混練りしたものを、便宜上、「ゴム組成物」と呼ぶ。ゴム組成物のうち、加硫(架橋)されたものを加硫ゴム組成物、加硫されていないものを未加硫ゴム組成物と呼ぶ。また、成形し、加硫し、必要に応じて仕上げ処理を施したゴム組成物を、最終製品としての「ゴム」または「ゴム製品」と呼ぶことがある。
<Master batch>
As described above, a master batch can be obtained by mixing carboxymethylated cellulose nanofibers and a rubber component and optionally performing one or more of a coagulation step, a solid-liquid separation step, a water washing step, and a drying step. In the present specification, a composition containing an uncrosslinked rubber component and not containing a crosslinking component is referred to as a “masterbatch” for convenience. Therefore, in addition to the above-mentioned carboxymethylated cellulose nanofibers and the uncrosslinked rubber component, the master batch of the present invention includes a crosslinking component (crosslinking agent, vulcanization acceleration) described in the column of <Kneading Step> described later It may be in a state containing components other than the agent and the vulcanization accelerating aid), or it may be in a state before adding these components. In this specification, what blended a crosslinking component with the masterbatch and knead | mixed as needed is called a "rubber composition" for convenience. Of the rubber compositions, those vulcanized (crosslinked) are called vulcanized rubber compositions, and those that are not vulcanized are called unvulcanized rubber compositions. In addition, a rubber composition that has been molded, vulcanized, and subjected to finishing treatment as necessary may be referred to as “rubber” or “rubber product” as a final product.
 <素練り工程、混練り工程>
 次いで、上述のマスターバッチをそのまま、又は必要に応じて任意成分を添加して、素練り及び/または混練りする。素練り及び混練りの際の温度は、常温程度(例えば、15~30℃程度)でもよいが、ゴム成分が架橋反応しない程度に高温に加熱してもよい。例えば140℃以下、より好ましくは120℃以下である。また下限は40℃以上、好ましくは60℃以上である。従って加熱温度は、40~140℃程度が好ましく、60~120℃程度がより好ましい。
<Kneading process, kneading process>
Next, the above-described master batch is kneaded and / or kneaded as it is or optionally with optional components. The kneading and kneading temperature may be about room temperature (for example, about 15 to 30 ° C.), but may be heated to a high temperature so that the rubber component does not undergo a crosslinking reaction. For example, it is 140 ° C. or lower, more preferably 120 ° C. or lower. Moreover, a minimum is 40 degreeC or more, Preferably it is 60 degreeC or more. Accordingly, the heating temperature is preferably about 40 to 140 ° C., more preferably about 60 to 120 ° C.
 混練りの際に添加してもよい任意成分としては、例えば、補強剤(例えば、カーボンブラック、シリカ等)、シランカップリング剤、架橋剤(硫黄、過酸化物等)、加硫促進剤、加硫促進助剤(酸化亜鉛、ステアリン酸)、オイル、硬化レジン、ワックス、老化防止剤、着色剤、素練り促進剤、軟化剤、可塑剤、硬化剤(例えば、フェノール樹脂、ハイスチレン樹脂等)、発泡剤、充填剤(カーボンブラック、シリカ等)、カップリング剤、粘着剤(例えば、マクロン樹脂、フェノール、テルペン系樹脂、石油系炭化水素樹脂、ロジン誘導体等)、分散剤(例えば、脂肪酸等)、接着増進剤(例えば、有機コバルト塩等)、滑剤(例えば、パラフィン、炭化水素樹脂、脂肪酸、脂肪酸誘導体等)などゴム工業で使用され得る配合剤が挙げられる。このうち硫黄、加硫促進剤が好ましい。加硫促進剤としては例えば、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド(BBS)、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドが挙げられる。任意成分を添加する場合は、1種を添加してもよいし、2種以上を添加してもよい。 Examples of optional components that may be added during kneading include, for example, reinforcing agents (for example, carbon black, silica, etc.), silane coupling agents, crosslinking agents (sulfur, peroxides, etc.), vulcanization accelerators, Vulcanization accelerator (zinc oxide, stearic acid), oil, curing resin, wax, anti-aging agent, colorant, peptizer, softener, plasticizer, curing agent (eg phenol resin, high styrene resin, etc.) ), Foaming agents, fillers (carbon black, silica, etc.), coupling agents, adhesives (eg, macron resins, phenols, terpene resins, petroleum hydrocarbon resins, rosin derivatives, etc.), dispersants (eg, fatty acids) Etc.), adhesion promoters (for example, organic cobalt salts, etc.), lubricants (for example, paraffins, hydrocarbon resins, fatty acids, fatty acid derivatives, etc.) and the like, which can be used in the rubber industry. That. Of these, sulfur and vulcanization accelerators are preferred. Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazole sulfenamide (BBS) and N-oxydiethylene-2-benzothiazolyl sulfenamide. When adding an arbitrary component, 1 type may be added and 2 or more types may be added.
 任意成分の添加時期は特に限定されない。硫黄及び加硫促進剤の添加時期は、他の任意成分の添加時期より後が好ましい。硫黄及び加硫促進剤を添加せずに、その他の任意成分を混合して混練りを開始し、その後に、硫黄及び加硫促進剤を追加してさらに混練りを行うことが好ましい。 The addition timing of optional ingredients is not particularly limited. The addition timing of sulfur and the vulcanization accelerator is preferably after the addition timing of other optional components. It is preferable to start kneading by mixing other optional components without adding sulfur and a vulcanization accelerator, and then further kneading by adding sulfur and a vulcanization accelerator.
 硫黄の添加量は、ゴム成分に対し1.0質量%以上が好ましく、1.5質量%以上がより好ましく、1.7質量%以上がさらに好ましい。上限は、10質量%以下が好ましく、7質量%以下が好ましく、5質量%以下がさらに好ましい。 The amount of sulfur added is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and still more preferably 1.7% by mass or more based on the rubber component. The upper limit is preferably 10% by mass or less, preferably 7% by mass or less, and more preferably 5% by mass or less.
 加硫促進剤の添加量は、ゴム成分に対し0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.4質量%以上がさらに好ましい。上限は、5質量%以下が好ましく、3質量%以下が好ましく、2質量%以下がさらに好ましい。 The addition amount of the vulcanization accelerator is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.4% by mass or more based on the rubber component. The upper limit is preferably 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less.
 素練り及び混練りの終了後に、必要に応じて成形を行ってもよい。成形装置としては、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等が挙げられ、最終製品の形状、用途、成形方法に応じて適宜選択すればよい。 After kneading and kneading, molding may be performed as necessary. Examples of the molding apparatus include mold molding, injection molding, extrusion molding, hollow molding, and foam molding, and may be appropriately selected according to the shape, application, and molding method of the final product.
 <加硫及び架橋工程>
 素練り及び混練りの終了後に、好ましくは成形後に、ゴム組成物を加熱する(加硫、架橋)ことが好ましい。これにより未加硫のゴム組成物を加硫ゴム組成物に変換して、ゴム組成物を効果的に補強できる。加熱温度は、150℃以上が好ましく、上限は200℃以下が好ましく、180℃以下がより好ましい。従って、150~200℃程度が好ましく、150~180℃程度がより好ましい。加熱装置としては例えば、型加硫、缶加硫、連続加硫等の加硫装置が挙げられる。
<Vulcanization and crosslinking process>
It is preferable to heat (vulcanize, crosslink) the rubber composition after mastication and kneading, preferably after molding. Thereby, an unvulcanized rubber composition can be converted into a vulcanized rubber composition, and the rubber composition can be effectively reinforced. The heating temperature is preferably 150 ° C. or higher, and the upper limit is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. Therefore, about 150 to 200 ° C. is preferable, and about 150 to 180 ° C. is more preferable. Examples of the heating device include vulcanization devices such as mold vulcanization, can vulcanization, and continuous vulcanization.
 加硫後、最終製品とする前に、必要に応じ仕上げ処理を行ってもよい。仕上げ処理としては例えば、研磨、表面処理、リップ仕上げ、リップ裁断、塩素処理などが挙げられ、これらの処理のうち1つのみを行ってもよいし2つ以上を組み合わせて行ってもよい。 After vulcanization, it may be subjected to finishing treatment as necessary before making the final product. Examples of the finishing treatment include polishing, surface treatment, lip finishing, lip cutting, and chlorination, and only one of these treatments may be performed, or two or more may be performed in combination.
 <ゴム組成物>
 本明細書において、「ゴム組成物」は、上述の通り、マスターバッチに架橋成分を配合し、必要に応じて混練りすることにより得られるものであり、架橋成分を含むが未架橋の状態のゴム組成物と、加硫後のゴム組成物の両方を含む。また、最終製品としてのゴムもゴム組成物に含まれるものとする。
<Rubber composition>
In the present specification, as described above, the “rubber composition” is obtained by blending a crosslinking component into a master batch and kneading as necessary, and includes a crosslinking component but in an uncrosslinked state. Both the rubber composition and the rubber composition after vulcanization are included. Further, rubber as a final product is also included in the rubber composition.
 ゴム組成物は、上述の用途等に応じて、1種または2種以上の任意成分を含んでいてもよい。任意成分は、<混練り工程>の欄に記載したものである。このうち加硫促進剤と加硫促進助剤(例えば、酸化亜鉛、ステアリン酸)が含まれていることが好ましい。任意成分の含有量は、任意成分の種類等に応じて適宜決定すればよく、特に限定されない。例えば、硫黄及び加硫促進剤の含有量は、上述した通りである。 The rubber composition may contain one or more optional components depending on the above-described use. The optional components are those described in the <Kneading step> column. Among these, it is preferable that a vulcanization accelerator and a vulcanization acceleration auxiliary (for example, zinc oxide and stearic acid) are contained. What is necessary is just to determine suitably content of an arbitrary component according to the kind etc. of an arbitrary component, and it does not specifically limit. For example, the contents of sulfur and vulcanization accelerator are as described above.
 ゴム組成物中、ゴム成分および任意成分は、それぞれ独立して存在してもよく、また、少なくとも2成分の反応物など複合体として存在してもよい。 In the rubber composition, the rubber component and the optional component may be present independently, or may be present as a composite such as a reaction product of at least two components.
 <用途>
 本発明のゴム組成物を用いて得られたゴム製品の用途は、特に制限されず、例えば、自動車、電車、船舶、飛行機、ベルトコンベア等の輸送機器等;パソコン、テレビ、電話、時計等の電化製品等;携帯電話等の移動通信機器等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等;建築材;文具等の事務機器等、容器、コンテナー等が挙げられる。これら以外であっても、ゴムや柔軟なプラスチックが用いられている部材への適用が可能であり、産業用ベルトやタイヤへの適用が好適である。産業用ベルトとしては例えば、フラットベルト、コンベアベルト、コグドベルト、Vベルト、リブベルト、丸ベルトが挙げられる。また、タイヤとしては例えば、乗用車用、トラック用、バス用、重車両用などの空気入りタイヤが挙げられる。
<Application>
The use of the rubber product obtained using the rubber composition of the present invention is not particularly limited, and examples thereof include transportation equipment such as automobiles, trains, ships, airplanes, and belt conveyors; personal computers, televisions, telephones, watches, and the like. Electrical appliances, etc .; mobile communication equipment such as mobile phones; portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; building materials; office equipment such as stationery, containers, containers, etc. Other than these, application to members using rubber or flexible plastic is possible, and application to industrial belts and tires is preferable. Examples of the industrial belt include a flat belt, a conveyor belt, a cogged belt, a V belt, a rib belt, and a round belt. Examples of the tire include pneumatic tires for passenger cars, trucks, buses, heavy vehicles, and the like.
 以下、本発明を実施例及び比較例をあげてより具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断らない限り、部および%は質量部および質量%を示す。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, a part and% show a mass part and mass%.
 (製造例1)
 回転数を150rpmに調節した二軸ニーダーに、水130部と、水酸化ナトリウム20部を水100部に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃60分間乾燥した際の乾燥質量で100部仕込んだ。35℃で80分間撹拌、混合しマーセル化セルロースを調製した。更に撹拌しつつイソプロパノール(IPA)230部と、モノクロロ酢酸ナトリウム60部を添加し、30分間撹拌した後、70℃に昇温して90分間カルボキシメチル化反応をさせた。カルボキシメチル化反応時の反応媒中のIPAの濃度は、50%である。反応終了後、pH7になるまで酢酸で中和、含水メタノールで洗浄、脱液、乾燥、粉砕して、カルボキシメチル化セルロースのナトリウム塩を得た。
(Production Example 1)
Add 130 parts of water and 20 parts of sodium hydroxide dissolved in 100 parts of water to a biaxial kneader whose rotational speed is adjusted to 150 rpm, and hardwood pulp (NBK, LBKP) at 100 ° C. 60 100 parts were charged in a dry mass when dried for a minute. Mercerized cellulose was prepared by stirring and mixing at 35 ° C. for 80 minutes. Further, 230 parts of isopropanol (IPA) and 60 parts of sodium monochloroacetate were added with stirring, and the mixture was stirred for 30 minutes, and then heated to 70 ° C. to cause carboxymethylation reaction for 90 minutes. The concentration of IPA in the reaction medium during the carboxymethylation reaction is 50%. After completion of the reaction, the reaction mixture was neutralized with acetic acid until pH 7 and washed with water-containing methanol, lysed, dried and ground to obtain a sodium salt of carboxymethylated cellulose.
 得られたカルボキシメチル化セルロースのナトリウム塩を水に分散し、固形分1%(w/v)水分散体とした。これを、超高圧ホモジナイザー(20℃、150MPa)で3回処理し、カルボキシメチル化セルロースのナノファイバーの分散体を得た。得られた分散体の透明度と粘度、また、セルロースナノファイバーの平均繊維径、カルボキシメチル置換度、セルロースI型の結晶化度を、上述の方法で測定した。 The obtained sodium salt of carboxymethylated cellulose was dispersed in water to obtain a 1% (w / v) solid content aqueous dispersion. This was treated three times with an ultra-high pressure homogenizer (20 ° C., 150 MPa) to obtain a nanofiber dispersion of carboxymethylated cellulose. The transparency and viscosity of the obtained dispersion, the average fiber diameter of cellulose nanofibers, the degree of carboxymethyl substitution, and the crystallinity of cellulose type I were measured by the methods described above.
 (製造例2)
 150MPaの超高圧ホモジナイザー処理を5回とした以外は製造例1と同様の方法でカルボキシメチル化セルロースのナノファイバーの分散体を得た。
(Production Example 2)
A dispersion of nanofibers of carboxymethylated cellulose was obtained in the same manner as in Production Example 1, except that the ultrahigh pressure homogenizer treatment at 150 MPa was performed 5 times.
 (製造例3)
 150MPaの超高圧ホモジナイザー処理を1回とした以外は製造例1と同様の方法でカルボキシメチル化セルロースのナノファイバーの分散体を得た。
(Production Example 3)
A dispersion of nanofibers of carboxymethylated cellulose was obtained in the same manner as in Production Example 1, except that the 150 MPa ultrahigh pressure homogenizer treatment was performed once.
 (製造例4)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)を固形分1%(w/v)となるように水に分散し、TEMPO(Sigma Aldrich社)と臭化ナトリウムを絶乾1gのセルロースに対し0.05mmol、1.0mmolとなるように加え、均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。これを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回処理して、酸化(カルボキシル化)セルロースナノファイバー分散液を得た。
(Production Example 4)
Bleached unbeaten kraft pulp derived from conifers (whiteness 85%) is dispersed in water to a solid content of 1% (w / v), and TEMPO (Sigma Aldrich) and sodium bromide are completely dried in 1 g of cellulose. It added to 0.05 mmol and 1.0 mmol with respect to this, and it stirred until it disperse | distributed uniformly. An aqueous sodium hypochlorite solution was added to the reaction system so that sodium hypochlorite was 6.0 mmol / g, and the oxidation reaction was started. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose). The pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g. This was adjusted to 1.0% (w / v) with water and treated three times with an ultra-high pressure homogenizer (20 ° C., 150 MPa) to obtain an oxidized (carboxylated) cellulose nanofiber dispersion.
 (実施例:マスターバッチ、ゴム組成物)
 <実施例1>
 製造例1で得られたカルボキシメチル化セルロースナノファイバーの固形分濃度1%の水分散液325gと、天然ゴムラテックス(商品名:HAラテックス、レヂテックス社、固形分濃度65%)100gとを混合してゴム成分(天然ゴムラテックスの固形分)とカルボキシメチル化セルロースナノファイバーの固形分との質量比が100:5となるようにし、TKホモミキサー(8000rpm)で10分間攪拌した。その後得られた混合液を、70℃の加熱オーブン中で5時間乾燥させることにより、マスターバッチを得た。
(Example: Masterbatch, rubber composition)
<Example 1>
325 g of an aqueous dispersion of carboxymethylated cellulose nanofibers obtained in Production Example 1 having a solid content concentration of 1% and 100 g of natural rubber latex (trade name: HA latex, Restex, solid content concentration of 65%) are mixed. The mass ratio of the rubber component (solid content of natural rubber latex) and the solid content of carboxymethylated cellulose nanofibers was 100: 5, and the mixture was stirred for 10 minutes with a TK homomixer (8000 rpm). Thereafter, the obtained mixed solution was dried in a heating oven at 70 ° C. for 5 hours to obtain a master batch.
 上記のマスターバッチを、オープンロール(関西ロール株式会社製)にて、30℃で10分間混練した。次に、硫黄2.3g(ゴム成分に対し3.5質量%)、加硫促進剤(BBS、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド)0.5g(ゴム成分に対し0.5質量%)を加え、オープンロール(関西ロール株式会社製)を用い、30℃で10分間混練して、未加硫のゴム組成物のシートを得た。 The above master batch was kneaded with an open roll (manufactured by Kansai Roll Co., Ltd.) at 30 ° C. for 10 minutes. Next, 2.3 g of sulfur (3.5% by mass with respect to the rubber component), 0.5 g of vulcanization accelerator (BBS, Nt-butyl-2-benzothiazolesulfenamide) (0.2% with respect to the rubber component). 5 mass%) was added, and an unrolled rubber composition sheet was obtained by kneading at 30 ° C. for 10 minutes using an open roll (manufactured by Kansai Roll Co., Ltd.).
 このシートを、金型にはさみ、150℃で10分間プレス加硫することにより、厚さ2mmの加硫ゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、JIS K6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に従い、補強性の一つである引張強度および伸び、50%伸長時の応力(M50)、100%伸長時の応力(M100)を測定した。各々の数値が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度に優れることを示す。 This sheet was sandwiched between molds and press vulcanized at 150 ° C. for 10 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm. This is cut into a test piece of a predetermined shape, and in accordance with JIS K6251 “vulcanized rubber and thermoplastic rubber-Determination of tensile properties”, tensile strength and elongation, which are one of reinforcing properties, and stress at 50% elongation ( M50), stress at 100% elongation (M100) was measured. The larger each value, the better the vulcanized rubber composition is reinforced and the better the mechanical strength of the rubber.
 <実施例2>
 製造例1で得られたカルボキシメチル化セルロースナノファイバーを、製造例2で得られたカルボキシメチル化セルロースナノファイバーに変更した以外は実施例1と同様の方法で行った。
<Example 2>
The same procedure as in Example 1 was performed except that the carboxymethylated cellulose nanofibers obtained in Production Example 1 were changed to the carboxymethylated cellulose nanofibers obtained in Production Example 2.
 <比較例1>
 製造例1で得られたカルボキシメチル化セルロースナノファイバーを、製造例3で得られたカルボキシメチル化セルロースナノファイバーに変更した以外は実施例1と同様の方法で行った。
<Comparative Example 1>
The same procedure as in Example 1 was performed except that the carboxymethylated cellulose nanofiber obtained in Production Example 1 was changed to the carboxymethylated cellulose nanofiber obtained in Production Example 3.
 <比較例2>
 製造例1で得られたカルボキシメチル化セルロースナノファイバーを、製造例4で得られた酸化セルロースナノファイバーに変更した以外は実施例1と同様の方法で行った。
<Comparative Example 2>
The same procedure as in Example 1 was performed, except that the carboxymethylated cellulose nanofiber obtained in Production Example 1 was changed to the oxidized cellulose nanofiber obtained in Production Example 4.
 <比較例3>
 カルボキシメチル化セルロースナノファイバーを配合しなかった以外は実施例1と同様の方法で行った。
<Comparative Example 3>
It carried out by the same method as Example 1 except not having blended carboxymethylated cellulose nanofiber.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上である、カルボキシメチル化セルロースナノファイバーを含有するマスターバッチを用いて得られた加硫ゴム組成物(実施例1及び2)は、比較例1~3の加硫ゴム組成物に比べて、引張強度、伸び、50%伸長時の応力(M50)、及び100%伸長時の応力(M100)が大きいことがわかる。実施例1及び2のゴム組成物は良好に補強されており、ゴムの機械強度に優れることがわかる。 From the results shown in Table 1, the carboxymethyl substitution degree is 0.50 or less, and the transmittance of light having a wavelength of 660 nm when an aqueous dispersion having a solid content of 1% (w / v) is 60% or more. The vulcanized rubber compositions (Examples 1 and 2) obtained using the master batch containing methylated cellulose nanofibers had a tensile strength, an elongation, as compared with the vulcanized rubber compositions of Comparative Examples 1 to 3. It can be seen that the stress at 50% elongation (M50) and the stress at 100% elongation (M100) are large. It can be seen that the rubber compositions of Examples 1 and 2 are well reinforced and excellent in the mechanical strength of the rubber.

Claims (9)

  1.  マスターバッチの製造方法であって、
     ゴム成分とカルボキシメチル化セルロースナノファイバーとを混合することを含み、
     前記カルボキシメチル化セルロースナノファイバーが、セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上である、上記製造方法。
    A method for manufacturing a masterbatch,
    Mixing the rubber component and carboxymethylated cellulose nanofibers,
    The carboxymethylated cellulose nanofiber is an aqueous dispersion having a cellulose I type crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a solid content of 1% (w / v). The said manufacturing method whose transmittance | permeability of the light of the wavelength of 660nm at the time is 60% or more.
  2.  水を主とする溶媒下でマーセル化反応を行い、次いで、水と有機溶媒との混合溶媒下でカルボキシメチル化反応を行うことによりカルボキシメチル化セルロースを製造すること、及び
     得られたカルボキシメチル化セルロースを解繊することによりカルボキシメチル化セルロースナノファイバーを製造すること
    をさらに含む、請求項1に記載の製造方法。
    Producing a carboxymethylated cellulose by carrying out a mercerization reaction under a solvent mainly containing water and then carrying out a carboxymethylation reaction under a mixed solvent of water and an organic solvent, and the obtained carboxymethylation The production method according to claim 1, further comprising producing carboxymethylated cellulose nanofibers by defibrating cellulose.
  3.  前記水を主とする溶媒が、水を50質量%より多く含む溶媒である、請求項2に記載の製造方法。 The production method according to claim 2, wherein the solvent mainly containing water is a solvent containing more than 50% by mass of water.
  4.  前記カルボキシメチル化セルロースナノファイバーに含まれる異物量が20%以下である、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the amount of foreign matter contained in the carboxymethylated cellulose nanofiber is 20% or less.
  5.  請求項1~4のいずれか1項に記載の方法によりマスターバッチを製造すること、及び
     得られたマスターバッチを用いてゴム組成物を製造すること
    を含む、ゴム組成物の製造方法
    A method for producing a rubber composition, comprising producing a master batch by the method according to any one of claims 1 to 4, and producing a rubber composition using the obtained master batch.
  6.  カルボキシメチル化セルロースナノファイバーを含有するマスターバッチであって、
     前記カルボキシメチル化セルロースナノファイバーは、セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上である、マスターバッチ。
    A masterbatch containing carboxymethylated cellulose nanofibers,
    The carboxymethylated cellulose nanofiber is an aqueous dispersion having a cellulose I type crystallinity of 60% or more, a carboxymethyl substitution degree of 0.50 or less, and a solid content of 1% (w / v). A master batch in which the transmittance of light having a wavelength of 660 nm is 60% or more.
  7.  カルボキシメチル化セルロースナノファイバーの異物量が20%以下である、請求項6記載のマスターバッチ。 The master batch according to claim 6, wherein the amount of foreign matter of the carboxymethylated cellulose nanofiber is 20% or less.
  8.  請求項6または7に記載のマスターバッチを用いて製造されたゴム組成物。 A rubber composition produced using the master batch according to claim 6 or 7.
  9.  セルロースI型の結晶化度が60%以上であり、カルボキシメチル置換度が0.50以下であり、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が60%以上であるカルボキシメチル化セルロースナノファイバーを含有するゴム用充填剤。 Cellulose I type crystallinity of 60% or more, carboxymethyl substitution degree of 0.50 or less, and light transmittance at a wavelength of 660 nm when an aqueous dispersion having a solid content of 1% (w / v) is obtained. A filler for rubber containing carboxymethylated cellulose nanofibers having a selenium content of 60% or more.
PCT/JP2019/021087 2018-05-29 2019-05-28 Master batch containing carboxymethylated cellulose nanofibers and method for producing same WO2019230719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522210A JPWO2019230719A1 (en) 2018-05-29 2019-05-28 Masterbatch containing carboxymethylated cellulose nanofibers and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018101979 2018-05-29
JP2018-101979 2018-05-29
JP2018146583 2018-08-03
JP2018-146583 2018-08-03

Publications (1)

Publication Number Publication Date
WO2019230719A1 true WO2019230719A1 (en) 2019-12-05

Family

ID=68698852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021087 WO2019230719A1 (en) 2018-05-29 2019-05-28 Master batch containing carboxymethylated cellulose nanofibers and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2019230719A1 (en)
WO (1) WO2019230719A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114808522A (en) * 2022-03-28 2022-07-29 湖北恒大包装有限公司 Reinforcing master batch for high-folding-resistance high-strength wear-resistance corrugated board and preparation method thereof
WO2024009850A1 (en) * 2022-07-07 2024-01-11 日本製紙株式会社 Method for producing rubber composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088072A1 (en) * 2012-12-07 2014-06-12 日本製紙株式会社 Carboxymethylated cellulose fiber
JP2017095611A (en) * 2015-11-25 2017-06-01 日本製紙株式会社 Rubber composition
WO2018030392A1 (en) * 2016-08-08 2018-02-15 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
JP6337225B1 (en) * 2018-01-19 2018-06-06 日本製紙株式会社 Carboxymethylated cellulose nanofiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088072A1 (en) * 2012-12-07 2014-06-12 日本製紙株式会社 Carboxymethylated cellulose fiber
JP2017095611A (en) * 2015-11-25 2017-06-01 日本製紙株式会社 Rubber composition
WO2018030392A1 (en) * 2016-08-08 2018-02-15 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
JP6337225B1 (en) * 2018-01-19 2018-06-06 日本製紙株式会社 Carboxymethylated cellulose nanofiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114808522A (en) * 2022-03-28 2022-07-29 湖北恒大包装有限公司 Reinforcing master batch for high-folding-resistance high-strength wear-resistance corrugated board and preparation method thereof
WO2024009850A1 (en) * 2022-07-07 2024-01-11 日本製紙株式会社 Method for producing rubber composition

Also Published As

Publication number Publication date
JPWO2019230719A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP6155415B1 (en) Masterbatch, rubber composition, and production method thereof
WO2013081138A1 (en) Modified cellulose fibers and rubber composition containing modified cellulose fibers
JP6276489B1 (en) Modified cellulose nanofiber and rubber composition containing the same
EP2975077B1 (en) Method for manufacturing rubber composition, rubber composition, vulcanized rubber, and tire
CN110291149B (en) Rubber composition and method for producing same
JP6146115B2 (en) Cellulose fiber, rubber composition, vulcanized rubber composition and tire
JP6700741B2 (en) Rubber composition
JPWO2018181224A1 (en) Rubber composition and method for producing the same
WO2019230719A1 (en) Master batch containing carboxymethylated cellulose nanofibers and method for producing same
JP6877158B2 (en) Masterbatch, rubber compositions, and methods of making them
JP6944451B2 (en) Masterbatch manufacturing method
JP6994345B2 (en) Rubber composition and molded products
WO2018012505A1 (en) Method for producing master batch
JP2018193465A (en) Master batch and manufacturing method of rubber composition
JP6951844B2 (en) Masterbatch manufacturing method
JP7015970B2 (en) Rubber composition and its manufacturing method
JP6915170B2 (en) Method for manufacturing rubber composition
JP2024044892A (en) Rubber composition and its manufacturing method
JP6832110B2 (en) Masterbatch manufacturing method
WO2024009850A1 (en) Method for producing rubber composition
WO2023136130A1 (en) Rubber composition and method for producing same
JP2022118772A (en) Production method of resin composite, and cellulose fiber preliminary defibrated article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812015

Country of ref document: EP

Kind code of ref document: A1