WO2013081138A1 - Modified cellulose fibers and rubber composition containing modified cellulose fibers - Google Patents

Modified cellulose fibers and rubber composition containing modified cellulose fibers Download PDF

Info

Publication number
WO2013081138A1
WO2013081138A1 PCT/JP2012/081179 JP2012081179W WO2013081138A1 WO 2013081138 A1 WO2013081138 A1 WO 2013081138A1 JP 2012081179 W JP2012081179 W JP 2012081179W WO 2013081138 A1 WO2013081138 A1 WO 2013081138A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose fiber
modified
acid
modified cellulose
rubber
Prior art date
Application number
PCT/JP2012/081179
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 浩之
文明 中坪
隼人 加藤
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2013547250A priority Critical patent/JP6014860B2/en
Publication of WO2013081138A1 publication Critical patent/WO2013081138A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a modified cellulose fiber substituted with a substituent containing a hydrocarbon group having at least one unsaturated bond, and a rubber composition containing the modified cellulose fiber.
  • Cellulose fiber is the basic skeletal material of all plants and has an accumulation of over 1 trillion tons on the earth.
  • Cellulose fiber is a fiber having a strength five times that of steel and a low linear thermal expansion coefficient of 1/50 that of glass, although it is 1/5 lighter than steel. It is expected to be used as a filler in a matrix such as rubber to impart mechanical strength.
  • cellulose fibers rich in hydroxyl groups are hydrophilic, highly polar, and poorly compatible with general-purpose resins such as rubber and polypropylene that are hydrophobic. Therefore, when cellulose fibers are blended in these material matrices, agglomeration occurs, and the material is rather inferior in mechanical strength.
  • Patent Document 1 describes a modified cellulose nanofiber obtained by modifying a cellulose nanofiber with a substituent such as an alkanoyl group.
  • the modified cellulose fiber as described above is blended with a matrix material such as highly hydrophobic resin or rubber, the dispersibility of the modified cellulose fiber in the matrix is improved, but the matrix and the modified cellulose fiber are not dispersed.
  • the present situation is that no chemical bond between them is brought about, and sufficient elastic properties and low linear thermal expansibility cannot be exhibited.
  • the modified cellulose fiber is well dispersed in the rubber component having high hydrophobicity, and the crosslinked structure is not only formed by the crosslinking agent but also between the rubber component and the modified cellulose fiber. It aims at providing the rubber composition which can be formed.
  • the present invention also provides a novel modified cellulose obtained by modifying hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber used in the rubber composition with a substituent containing a hydrocarbon group having an unsaturated bond. It is also an object to provide a fiber.
  • modified cellulose fibers can be well dispersed in a highly hydrophobic rubber component, and that a crosslinked structure with sulfur can be formed between the rubber component and the cellulose fiber. It was.
  • the present invention is an invention that has been completed based on such findings and further earnest studies. That is, this invention provides the modified cellulose fiber shown to the following term, its manufacturing method, and the rubber composition containing the said modified cellulose fiber.
  • Hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber are represented by the formula (1): -AR 1 (1) (In formula (1), R 1 is a hydrocarbon having 3 to 30 carbon atoms having at least one unsaturated bond, and A is a carbonyl group (—CO—) or a single bond (—)).
  • R 1 is a hydrocarbon having 3 to 30 carbon atoms having at least one unsaturated bond
  • A is a carbonyl group (—CO—) or a single bond (—)).
  • Item 2 The modified cellulose fiber according to Item 1, wherein the cellulose fiber is a fibrillated cellulose fiber.
  • Item 3. The modified cellulose fiber according to Item 1 or 2, wherein the degree of substitution (DS) is 0.05 to 2.0.
  • Cellulose fiber is represented by the formula (1 ′): R 1 -AB (1 ') (Wherein A is a carbonyl group (—CO—) or a single bond ( ⁇ ), and B is a leaving group)
  • the manufacturing method of the modified cellulose fiber including the process modified
  • Item 5 The method for producing a modified cellulose fiber according to Item 4, wherein the cellulose fiber is a fibrillated cellulose fiber.
  • Item 6. A rubber composition comprising the modified cellulose fiber according to any one of Items 1 to 3 and a rubber component.
  • Item 7. The rubber composition according to Item 6, further comprising sulfur.
  • Item 8 A vulcanized product obtained by vulcanizing the rubber composition according to Item 7.
  • the hydrogen atoms of some hydroxyl groups in the cellulose constituting the cellulose fiber are modified by a substituent having a hydrocarbon, so that the hydrophilicity of the cellulose fiber can be reduced, It can be well dispersed in a matrix material such as rubber having high hydrophobicity.
  • the hydrocarbon forming the substituent which is a modified part, has at least one unsaturated bond, and therefore, a modified cellulose fiber is blended in the rubber component, and a vulcanizing agent such as sulfur is blended.
  • a vulcanizing agent such as sulfur is blended.
  • FIG. 2 is an SEM image of fibrillated cellulose (FC) produced in Reference Example 1 at a magnification of 20,000 times.
  • FIG. 3 is an SEM image at a magnification of 20,000 times of a modified FC (crtFC) modified with trans-crotonic acid chloride produced in Example 1-1.
  • FIG. 2 is an SEM image at a magnification of 20,000 times of a modified FC (oleFC) modified with cis-oleoyl chloride produced in Example 1-2.
  • FIG. 3 is an SEM image of a modified FC (orFC) modified with trans, trans-sorbic acid chloride produced in Example 1-3 at a magnification of 20,000 times.
  • FIG. 5 is an SEM image at a magnification of 20,000 times of a modified FC (acFC) modified with acetyl chloride produced in Comparative Example 1-1.
  • FIG. 3 is an SEM image of a modified FC (myrFC) modified with myristoyl chloride produced in Comparative Example 1-2 at a magnification of 20,000 times.
  • FIG. 3 is an SEM image at a magnification of 20,000 times of a modified FC (stFC) modified with stearoyl chloride produced in Comparative Example 1-3. It is the spectrum of FC manufactured in Reference Example 1 measured by FT-IR analysis. 2 is a spectrum of crtFC produced in Example 1-1, measured by FT-IR analysis.
  • Example 6 is a graph plotting stress-strain curves for each vulcanized rubber sheet obtained in Example 2-2 and Comparative Example 2-3. Thermal expansion at various temperatures for each vulcanized rubber sheet produced in Reference Example 2-1, Reference Example 2-3, Example 2-1, Example 2-2, and Comparative Examples 2-1 to 2-3 ( It is the graph which plotted Thermal (expansion).
  • This is a plotted graph.
  • the tan ⁇ at each temperature was plotted for each vulcanized rubber sheet (containing 5% by weight of (modified) FC) produced in Reference Example 2-2, Reference Example 2-3, Example 2-2, and Comparative Example 2-3. It is a graph.
  • modified cellulose fiber of the present invention a rubber composition containing the modified cellulose fiber, a method for producing the same, and a molding material using the rubber composition will be described in detail.
  • Modified cellulose fiber In the modified cellulose fiber of the present invention, hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber are represented by the formula (1): -AR 1 (1) It has the structure substituted by the substituent represented by these.
  • R 1 in the formula (1) is a hydrocarbon group having 3 to 30 carbon atoms, preferably about 3 to 20 carbon atoms, having at least one unsaturated bond.
  • a crosslinking agent such as sulfur by dehydrogenation of ⁇ -methyl or ⁇ -methylene located next to the unsaturated bond from C—H. It becomes possible.
  • the lower limit of the carbon number of the hydrocarbon group is 2Y + 1 (Y represents the number of unsaturated bonds).
  • hydrophobicity can be imparted to the cellulose fiber by setting the number of carbon atoms of the hydrocarbon group to 30 or less.
  • the unsaturated bond in R 1 include a double bond and a triple bond. Among these, a double bond is preferable.
  • the number of unsaturated bonds in R 1 may be 1 or may be 2 or more.
  • the upper limit of the number of unsaturated bonds is not particularly limited, but for example, about 6 is preferable.
  • the unsaturated bond in R 1 is a double bond, it has a cis isomer or a trans isomer, but is not particularly limited, and any structural isomer can be applied.
  • A represents a carbonyl group (—CO—) or a single bond (—).
  • a in the formula (1) is a carbonyl group (—CO—)
  • a in the formula (1) is a carbonyl group (—CO—)
  • monounsaturated aliphatic carboxylic acids such as acid, gadoleic acid, eicosenoic acid, erucic acid and nervonic acid
  • diunsaturated aliphatic carboxylic acids such as sorbic acid, linoleic acid, eicosadienoic acid and docosadienoic acid
  • linolenic acid, pinolenic acid Triunsaturated aliphatic carboxylic acids such as eleostearic acid, dihomo- ⁇ -linolenic acid, eicosatrienoic acid
  • tetraunsaturated aliphatic carboxylic acids such as stearidonic acid, arachidonic acid, eicos
  • Specific examples of the structure (—R 1 ) when A in the formula (1) is a single bond (—) include allyl alcohol, octadecadienol, docosenol, dodecedienol, oleyl alcohol, tridecenol, linolyl. Examples thereof include residues obtained by removing —OH groups from unsaturated alcohols such as alcohols.
  • the substituent represented by the above formula (1) modified on the cellulose fiber may have one or more substituents.
  • the degree of substitution (DS) of the modified cellulose fiber is 0 because the highly hydrophilic cellulose fiber is uniformly dispersed in a highly hydrophobic rubber component matrix or the water resistance of the cellulose fiber is improved.
  • DS should be analyzed by various analytical methods such as weight gain, elemental analysis, neutralization titration, FT-IR, 1 H and 13 C-NMR after removing by-products from the modified cellulose fiber. Can do.
  • the hydrogen atoms of some hydroxyl groups of the cellulose in the modified cellulose fiber are optionally included.
  • formula (2) -A-R a (2)
  • R a is a linear or branched alkyl group having 1 to 30 carbon atoms
  • A is a carbonyl group (—CO—) or a single bond (—)). It may be substituted by a substituent represented by
  • Cellulose fibers used as raw materials for modified cellulose fibers include pulps obtained from natural plant materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth; regenerated cellulose fibers such as rayon and cellophane Can be mentioned.
  • pulp and fibrillated cellulose obtained by fibrillating pulp are preferable raw materials.
  • the pulp includes chemical pulp (kraft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both. ), Chemi-Grand Pulp (CGP), Chemi-Mechanical Pulp (CMP), Groundwood Pulp (GP), Refiner Mechanical Pulp (RMP), Thermo-Mechanical Pulp (TMP), Chemi-thermo-Mechanical Pulp (CTMP), and these pulps Preferred examples include deinked waste paper pulp, corrugated waste paper pulp and magazine waste paper pulp as components. These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the pulp.
  • NUKP coniferous unbleached kraft pulps
  • NOKPs softwood oxygen-bleached unbleached kraft pulps
  • NBKP Softwood bleached kraft pulp
  • Pulp is mainly composed of cellulose, hemicellulose, and lignin.
  • the lignin content in the pulp is not particularly limited, but is usually about 0 to 40% by weight, preferably about 0 to 10% by weight.
  • the lignin content can be measured by the Klason method.
  • the modified cellulose fiber of the present invention can be obtained by substituting a hydrogen atom of a hydroxyl group of a part of cellulose constituting the cellulose fiber with a substituent represented by the above formula (1).
  • a substituent represented by the above formula (1) By increasing the specific surface area of the cellulose fiber, the contact area with the rubber can be increased, and the modified cellulose fiber into which a substituent having an unsaturated bond is introduced and the rubber component has a more crosslinked structure with sulfur. It can be formed firmly.
  • Examples of the cellulose fiber having a large specific surface area include fibrillated cellulose obtained by fibrillating the pulp.
  • the specific surface area of the modified cellulose fiber is not particularly limited, and is preferably about 10 to 400 m 2 / g, for example, from the viewpoint of increasing the contact area with the rubber component, cost, etc., and 20 to 300 m 2. / G is more preferable, and about 30 to 300 m 2 / g is still more preferable.
  • the average diameter of the modified cellulose fiber is usually about 4 nm to 500 ⁇ m, preferably about 10 nm to 500 ⁇ m, particularly preferably about 20 nm to 200 ⁇ m.
  • cellulose microfibrils single cellulose nanofibers
  • cellulose fiber obtained by using plant fiber as a raw material is substituted with a substituent represented by the above formula (1).
  • the cellulose fiber may be fibrillated cellulose obtained by unwinding cellulose fiber obtained from a material containing plant fiber (for example, wood pulp, cotton, etc.) until it becomes a bundle of fibrils or cellulose microfibrils.
  • a material containing plant fiber for example, wood pulp, cotton, etc.
  • the modified cellulose fiber of the present invention has a structure in which a part of hydroxyl groups in cellulose constituting the cellulose fiber is modified with a substituent having a hydrocarbon group having an unsaturated bond as described above. Hydrophobicity can be imparted to the fiber. Therefore, the modified cellulose fiber can be well dispersed in a matrix such as a rubber component having high hydrophobicity.
  • the modified substituent in the modified cellulose fiber has a hydrocarbon group having an unsaturated bond
  • the CH of ⁇ -methyl or ⁇ -methylene located next to the unsaturated bond is easily dehydrogenated. It has a structure. Therefore, if the modified cellulose fiber of the present invention and a crosslinking agent such as sulfur are blended in a matrix material such as a rubber component capable of forming a crosslink and crosslinked, the matrix and the cellulose fiber are not only crosslinked between the matrix materials. It is possible to form a cross-linked structure between the two.
  • the modified cellulose fiber of the present invention can be suitably used as a reinforcing agent for a matrix material such as a rubber component used by being blended with a crosslinking agent such as sulfur.
  • the method for producing a modified cellulose fiber of the present invention includes a step of modifying cellulose fiber with a modifying agent.
  • the cellulose fiber used as a raw material those mentioned in the above-mentioned “1. Modified cellulose fiber” can be used.
  • the cellulose fiber can increase the contact area with the rubber component by increasing the specific surface area, and a sulfur-crosslinked structure between the modified cellulose fiber introduced with a substituent having an unsaturated bond and the rubber component. From the viewpoint that it can be formed more firmly, fibrillated cellulose obtained by fibrillating pulp or the like can be used.
  • a method of fibrillating cellulose fibers to obtain fibrillated cellulose As a method of fibrillating cellulose fibers to obtain fibrillated cellulose, a method of defibrating pulp can be mentioned.
  • the defibrating method a known method can be adopted, for example, an aqueous suspension or slurry of the pulp-containing material, a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably a biaxial kneader), a bead mill. It is possible to use a method of mechanically grinding or defibrating by beating. You may process combining the said defibrating method as needed.
  • defibrating methods for example, the defibrating methods described in Japanese Patent Application Nos. 2011-079440, JP2011-213754, and JP2011-195738 can be used.
  • the cellulose fiber is modified with a modifying agent.
  • R 1 -AB (1 ') (In the formula, A is a carbonyl group (—CO—) or a single bond (—), and B is a leaving group) Represented by
  • a halogen atom As the leaving group for B in the formula (1 ′), a halogen atom, a hydroxyl group, or —OCOR 2 (Wherein R 2 is R 1 or a lower alkyl group).
  • the “lower” of the lower alkyl group in R 2 means “1 to 5 carbon atoms, preferably 1 to 3 carbon atoms”.
  • a in formula (1 ′) is a single bond ( ⁇ ) as a modifying agent
  • modified cellulose in which A in formula (1) is substituted with a substituent that is a single bond ( ⁇ ) When a fiber is obtained and a modifying agent in which A in the formula (1 ′) is a carbonyl group (—CO—) is used, A in the formula (1) is a carbonyl group (—CO—).
  • a modified cellulose fiber substituted with a substituent group is obtained.
  • Examples of the modifying agent include those in which A in the formula (1 ′) is a single bond ( ⁇ ) and B is a hydroxyl group (R 1 —OH). Specific examples include allyl alcohol, octadecadienol, docosenol. And unsaturated alcohols such as dodecedienol, oleyl alcohol, tridecenol, and linoleyl alcohol.
  • a in the formula (1 ′) is a single bond ( ⁇ ) and B is a halogen atom
  • the —OH group of the unsaturated alcohol is substituted with a halogen atom.
  • halogenated hydrocarbons having at least one unsaturated bond.
  • modifying agent (R 1 —CO—B) in which A in the formula (1 ′) is a carbonyl group (—CO—) include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid Monounsaturated aliphatic carboxylic acids such as elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid and nervonic acid; diunsaturated aliphatic carboxylic acids such as sorbic acid, linoleic acid, eicosadienoic acid and docosadienoic acid; Triunsaturated aliphatic carboxylic acids such as acid, pinolenic acid, eleostearic acid, dihomo- ⁇ -linolenic acid and eicosatrienoic acid; tetraunsaturated such as stearidonic acid, arachidonic acid, eicosatetraenoic acid and
  • Japanese aliphatic carboxylic acids unsaturated aliphatic carboxylic acids such as hexaunsaturated aliphatic carboxylic acids such as docosahexaenoic acid and nisic acid, and acid halides and acid anhydrides of these unsaturated aliphatic carboxylic acids.
  • the substituent represented by the formula (1) is substituted with a hydrogen atom of a hydroxyl group of a part of cellulose constituting the cellulose fiber.
  • the blending amount of the modifying agent when the cellulose fiber is modified with the modifying agent represented by the formula (1 ′) is preferably about 0.1 to 20 mol with respect to 1 mol of glucose unit of the cellulose fiber. About 0.4 to 10 mol is more preferable.
  • the modified cellulose fiber may be modified, for example, by formula (2 ′): B-A-R a (2 ') (In the formula (2 ′), R a has the same definition as in the formula (2), B represents a leaving group, and A represents a carbonyl group (—CO—) or a single bond (—). It may be modified by a modifying agent represented by
  • the substituent represented by the above formula (2) is further substituted with the hydrogen atom of the remaining hydroxyl group of cellulose constituting the modified cellulose fiber. be able to.
  • the reaction of modifying the cellulose fiber with the above-described modifying agent can be progressed to some extent by heating if sufficient dehydration is performed without using a catalyst, but the use of a catalyst is milder. It is more preferable because the cellulose fiber can be modified under conditions and with high efficiency.
  • Examples of the catalyst used for modification of cellulose fiber include acids such as hydrochloric acid, sulfuric acid and acetic acid, and amine catalysts.
  • the acid catalyst is usually an aqueous solution, and in addition to esterification by addition of the acid catalyst, acid hydrolysis of the cellulose fiber may occur, so an alkali catalyst or an amine catalyst is more preferable.
  • the amine catalyst include pyridine compounds such as pyridine and dimethylaminopyridine (DMAP), and non-cyclic or cyclic tertiary amine compounds such as triethylamine, trimethylamine and diazabicyclooctane.
  • pyridine, dimethylaminopyridine (DMAP), and diazabicyclooctane are preferable from the viewpoint of excellent catalytic activity.
  • powders of alkali compounds such as potassium carbonate and sodium carbonate may be used as a catalyst, or may be used in combination with an amine compound.
  • the compounding amount of the amine catalyst is equimolar or more than that of the modifying agent.
  • a larger amount may be used as a catalyst and solvent.
  • the amount used is, for example, about 0.1 to 10 moles per mole of glucose units in the cellulose fiber.
  • the catalyst can be added to the cellulose fiber in excess, and the reaction can be stopped after reacting to the prescribed DS, or the required minimum catalyst is added, and the reaction time, temperature, etc. are adjusted. It is also possible to react up to the DS. It is generally preferable to remove the catalyst after the reaction by washing, distillation or the like.
  • the DS of the modified cellulose fiber modified with the modifying agent is preferably in the above-mentioned range.
  • the reaction temperature when the cellulose fiber is modified with a modifying agent is preferably about 20 to 160 ° C., more preferably about 40 to 120 ° C., and further preferably about 60 to 100 ° C.
  • a higher temperature is preferable because the reaction efficiency of the cellulose fiber is higher. However, if the temperature is too high, the cellulose fiber is partially deteriorated. Therefore, the above temperature range is preferable.
  • the modification of cellulose fiber can be performed in water, but the reaction efficiency is very low, so that it is preferably performed in a non-aqueous solvent.
  • the non-aqueous solvent is preferably an organic solvent that does not react with the modifying agent.
  • specific examples include non-aqueous solvents such as halogenated solvents such as methylene chloride, chloroform, and carbon tetrachloride; ketone solvents such as acetone and methyl ethyl ketone (MEK); tetrahydrofuran (THF), ethylene glycol, propylene glycol, polyethylene glycol, and the like.
  • Ether solvents such as dimethyl and diethyl compounds of ethers; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, nonpolar solvents such as hexane, heptane, benzene and toluene, or a mixed solvent thereof .
  • the modified cellulose fiber may be further defibrated by the above production method in order to improve the specific surface area.
  • a method of defibrating the methods mentioned above are used.
  • Rubber composition The rubber composition of the present invention comprises a modified cellulose fiber and a rubber component.
  • modified cellulose fiber those mentioned in “1. Modified cellulose fiber” can be used.
  • the rubber component examples include diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR). ), Acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, hydrogen Natural rubber, deproteinized natural rubber and the like.
  • Rubber components may be used alone or in a blend of two or more. What is necessary is just to mix
  • the content of the modified cellulose fiber in the rubber composition is 1 to 50 with respect to 100 parts by weight of the rubber component from the viewpoint that the rubber reinforcing effect can be exhibited without deteriorating the dispersibility of the cellulose fiber in the rubber component.
  • About 2 parts by weight is preferable, about 2 to 35 parts by weight is more preferable, and about 3 to 20 parts by weight is more preferable.
  • the rubber composition of the present invention may further contain sulfur.
  • sulfur By containing sulfur, the rubber component can be vulcanized, and a crosslinked structure can be formed between the modified substituent in the modified cellulose fiber and the rubber component.
  • the sulfur content is preferably about 0.1 to 50 parts by weight, more preferably about 0.5 to 35 parts by weight, and still more preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
  • the content of the modified cellulose fiber in the rubber component is preferably about 0.1 to 50% by weight, more preferably about 0.5 to 40% by weight, and further preferably about 0.7 to 20% by weight.
  • the rubber composition of the present invention is produced by a step of mixing modified cellulose fibers and a rubber component.
  • the method of mixing the modified cellulose fiber and the rubber component is not particularly limited.
  • the modified cellulose fiber and the rubber component are dispersed in a dispersion medium and mixed, whereby the modified cellulose fiber is mixed in the rubber component.
  • the dispersion medium include halogenated solvents such as methylene chloride, chloroform, and carbon tetrachloride; ketone solvents such as acetone and methyl ethyl ketone (MEK); ethers such as tetrahydrofuran (THF), ethylene glycol, propylene glycol, and polyethylene glycol.
  • ether solvents such as dimethyl and diethyl compounds; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; nonpolar solvents such as hexane, heptane, benzene and toluene; and mixed solvents thereof.
  • the amount of the modified cellulose fiber is preferably about 1 to 50 parts by weight, more preferably about 2 to 35 parts by weight, more preferably 3 to 20 parts by weight with respect to 100 parts by weight of the rubber component. More preferred is about part.
  • the rubber composition obtained by the above method may further contain a reinforcing filler such as carbon black and silica; a process oil; a wax; an anti-aging agent; a vulcanization aid such as zinc oxide and stearic acid as appropriate. Can do.
  • a vulcanizing agent such as sulfur and a vulcanization accelerator may be further blended.
  • the sulfur content is preferably about 0.1 to 50 parts by weight, more preferably about 0.5 to 35 parts by weight, and still more preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
  • the method of mixing the modified cellulose fiber with the rubber component and other optional additives is not particularly limited.
  • the mixer, blender, twin-screw kneader, kneader, lab plast mill, homogenizer, high-speed homogenizer, high-pressure homogenizer, planetary stirring The method of mixing and stirring with the apparatus which can mix or stir, such as an apparatus and a 3 roll, is mentioned.
  • the mixing temperature when sulfur or a vulcanization accelerator is blended, is preferably a temperature at which the rubber component and the modified cellulose fiber do not undergo a crosslinking reaction at the time of mixing.
  • a temperature at which the rubber component and the modified cellulose fiber do not undergo a crosslinking reaction at the time of mixing is preferably.
  • about 70 to 140 ° C. is preferable, and 80 to About 120 ° C. is more preferable.
  • the rubber composition of the present invention is molded into a desired shape and can be used as a molding material.
  • the shape of the molding material include sheets, pellets, and powders.
  • a molding material having these shapes can be used to obtain an unvulcanized molded product having a desired shape by using a desired molding machine such as mold molding, injection molding, extrusion molding, hollow molding, and foam molding. .
  • Vulcanizate The vulcanizate of the present invention can be obtained by vulcanizing the rubber composition containing the modified cellulose fiber, the rubber component and sulfur.
  • the vulcanization temperature is preferably about 150 to 200 ° C, more preferably about 150 to 180 ° C.
  • Examples of the vulcanization method include press vulcanization.
  • the vulcanizate of the present invention has a modified cellulose fiber dispersed well and uniformly in the rubber component, and further has a crosslinked structure in which the rubber component and the modified cellulose fiber are crosslinked by sulfur. For this reason, a crosslinked structure is formed not only between the molecular chains of the rubber component but also between the rubber component and the modified cellulose fiber. Therefore, the molded article of the present invention has the characteristics that the elastic modulus is high and the linear thermal expansion coefficient is very low.
  • the molded body of the present invention include, for example, transportation equipment such as automobiles, trains, ships, airplanes, etc .; electrical appliances such as personal computers, televisions, telephones, watches, etc .; mobile communications equipment such as mobile phones; Recycling equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; building materials; office equipment such as stationery, containers, containers, etc., can be applied to members using rubber or flexible plastic It is.
  • transportation equipment such as automobiles, trains, ships, airplanes, etc .
  • electrical appliances such as personal computers, televisions, telephones, watches, etc .
  • mobile communications equipment such as mobile phones
  • building materials office equipment such as stationery, containers, containers, etc.
  • office equipment such as stationery, containers, containers, etc.
  • Reference Example 1 Preparation of fibrillated cellulose
  • Softwood bleached kraft pulp (NBKP) (refiner-treated, manufactured by Oji Paper Co., Ltd.) was dispersed in water to prepare an NBKP water suspension having a solid concentration of 1% by weight.
  • the obtained aqueous suspension was fibrillated by repeating the fibrillation three times at a disc rotation speed of 1500 rpm using a stone mill grinder (Mellow Industrial Co., Ltd., Serendipeater MKCA6-3).
  • a cellulose (hereinafter also referred to as FC) aqueous suspension (solid content concentration: 1% by weight) was obtained.
  • FIG. 1A SEM image of the obtained FC at a magnification of 20,000 times is shown in FIG. 1A. From FIG. 1A, it was confirmed that the obtained FC was uniformly fibrillated.
  • Example 1-1 Preparation of modified FC modified with trans-crotonic acid chloride (hereinafter also referred to as crtFC))
  • the water in the FC water suspension obtained in Reference Example 1 was replaced with N-methylpyrrolidone (NMP) to prepare an FC suspension with a solid content concentration of 0.5% by weight.
  • NMP N-methylpyrrolidone
  • pyridine is added as a catalyst at a ratio of BR> Q moles per mole of FC glucose units
  • TRANS-crotonic acid chloride is added per mole of FC glucose units. 1 mol was added and reacted at 30 ° C.
  • the obtained product was sufficiently washed with ethanol, and then the solvent was replaced with toluene, and crtFC was suspended in toluene to obtain a 1 wt% crtFC suspension.
  • FIG. 1B shows an SEM image of the obtained crtFC at a magnification of 20,000 times. From FIG. 1B, it was confirmed that the obtained crtFC was uniformly fibrillated.
  • DS was obtained from the ratio of the peak intensity of the hydroxyl group and the substituent modified with the modifying agent using FC shown in FIG. 2A as a reference substance.
  • FT-IR was measured by ATR (Attenuated Total Reflection) method using Spectrum 100 manufactured by PerkinElmer. The DS obtained by the above method was 0.4.
  • FIG. 2B shows a spectrum obtained by FT-IR analysis of crtFC.
  • Example 1-2 (Preparation of modified FC modified with cis-oleoyl chloride (hereinafter referred to as oleFC)) FC modification was carried out in the same manner as in Example 1-1 except that cis-oleoyl chloride was used instead of trans-crotonic acid chloride to obtain oleFC.
  • oleFC cis-oleoyl chloride
  • FIG. 1C shows an SEM image at a magnification of 20,000 times of the obtained oleFC. From FIG. 1C, it was confirmed that the obtained oleFC was uniformly fibrillated.
  • DS of obtained oleFC was 0.4.
  • the DS was calculated by the same method as in Example 1-1.
  • FIG. 2C shows the spectrum of oleFC obtained by FT-IR analysis.
  • Example 1-3 Preparation of modified FC modified with trans, trans-sorbic acid chloride (hereinafter referred to as sorFC)) FC was modified by the same method as in Example 1-1 except that trans, trans-sorbic acid chloride was used instead of trans-crotonic acid chloride to obtain sorFC.
  • sorFC trans, trans-sorbic acid chloride
  • FIG. 1D shows an SEM image of the obtained sorFC at a magnification of 20,000 times. From FIG. 1D, it was confirmed that the obtained sorFC was uniformly fibrillated.
  • the DS of the obtained sorFC was 0.4.
  • the DS was calculated by the same method as in Example 1-1.
  • FIG. 2D shows a spectrum of sorFC obtained by FT-IR analysis.
  • Comparative Example 1-1 (Preparation of modified FC modified with acetyl chloride (hereinafter referred to as acFC)) FC was modified by the same method as in Example 1-1 except that acetyl chloride was used instead of trans-crotonic acid chloride to obtain acFC.
  • acFC modified FC modified with acetyl chloride
  • FIG. 1E The SEM image at a magnification of 20,000 times of the obtained acFC is shown in FIG. 1E. From FIG. 1E, it was confirmed that the obtained acFC was uniformly fibrillated.
  • the DS of the obtained acFC was 0.4.
  • the DS was calculated by the same method as in Example 1-1.
  • FIG. 2E shows the spectrum of acFC obtained by FT-IR analysis.
  • Comparative Example 1-2 Preparation of modified FC modified with myristoyl chloride (hereinafter referred to as myrFC)) FC was modified by the same method as in Example 1-1 except that myristoyl chloride was used instead of trans-crotonic acid chloride to obtain myrFC.
  • myrFC myristoyl chloride
  • FIG. 1F shows an SEM image of the obtained myrFC at a magnification of 20,000 times. From FIG. 1F, it was confirmed that the obtained myrFC was uniformly fibrillated.
  • FIG. 2F shows a myrFC spectrum obtained by FT-IR analysis.
  • Comparative Example 1-3 Preparation of modified FC modified with stearoyl chloride (hereinafter referred to as stFC)) FC was modified by the same method as in Example 1-1 except that stearoyl chloride was used instead of trans-crotonic acid chloride to obtain stFC.
  • stFC modified FC modified with stearoyl chloride
  • FIG. 1G The SEM image at a magnification of 20,000 times of the obtained stFC is shown in FIG. 1G. From FIG. 1G, it was confirmed that the obtained stFC was uniformly fibrillated.
  • FIG. 2G shows the spectrum of stFC obtained by FT-IR analysis.
  • Reference Example 2-1 Preparation of vulcanized rubber
  • Formic acid was added to a natural rubber (NR) latex (manufactured by SimDarby Plantation, solid content concentration: 60% by weight), acid coagulated, and dried at 50 ° C.
  • the obtained dried NR was masticated at 90 ° C. for 5 minutes with a three roll, and then 1.5 parts by weight of stearic acid and 2.5 parts by weight of zinc oxide were added to 100 parts by weight of NR and kneaded for 7 minutes.
  • NR for 100 parts by weight of NR, 3.0 parts by weight of sulfur and 2.0 parts by weight of a vulcanization accelerator (N-cyclohexyl-2-benzothiazolesulfenamide (manufactured by Wako Pure Chemical Industries, Ltd.)) were added.
  • the rubber composition was obtained by kneading for 10 minutes.
  • the obtained rubber composition was hot-pressed at 156 ° C. and vulcanized to obtain a vulcanized rubber sheet.
  • Reference Example 2-2 Preparation of vulcanized rubber (dissolved in toluene)
  • Formic acid was added to NR latex (solid content concentration 60 wt%), acid coagulated, dried at 50 ° C., and toluene was added to the obtained dry NR to prepare a 3 wt% NR solution.
  • the obtained NR solution was cast on a Teflon (registered trademark) petri dish and dried.
  • Additives were added to the obtained dry NR in the same manner as in Reference Example 2-1, followed by vulcanization to obtain a vulcanized rubber sheet.
  • Example 2-1 Preparation of vulcanized rubber compounded with crtFC
  • Formic acid was added to NR latex (solid content concentration 60 wt%), acid coagulated, dried at 50 ° C., and toluene was added to the obtained dry NR to prepare a 3 wt% NR solution.
  • a crtFC dispersion solid content concentration: 1% by weight
  • toluene was added to the obtained dry NR to prepare a 3 wt% NR solution.
  • a crtFC dispersion solid content concentration: 1% by weight
  • the obtained dispersion was cast into a Teflon (registered trademark) petri dish, dried, and stearic acid and zinc oxide were added at the same blending ratio as in Reference Example 2-1, and kneaded for 7 minutes. Further, sulfur and a vulcanization accelerator were added at the same blending ratio as in Reference Example 2-1, and kneaded for 10 minutes to obtain a rubber composition. Further, the obtained rubber composition was crosslinked by the same method as in Reference Example 2-1 to prepare a vulcanized rubber sheet.
  • Example 2-2 Preparation of vulcanized rubber compounded with oleFC
  • a vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that oleFC was used instead of crtFC.
  • Example 2-3 Preparation of vulcanized rubber compounded by sorFC
  • a vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that sorFC was used instead of crtFC.
  • Comparative Example 2-1 Preparation of vulcanized rubber compounded with acFC
  • a vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that acFC was used instead of crtFC.
  • Comparative Example 2-2 Preparation of vulcanized rubber compounded with myrFC
  • a vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that myrFC was used instead of crtFC.
  • Comparative Example 2-3 Preparation of vulcanized rubber compounded with stFC
  • a vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that stFC was used instead of crtFC.
  • Test example 1 tensile physical properties of vulcanized rubber sheet
  • seat each test piece of the dumbbell type
  • Each test piece was pulled under the following conditions to measure a stress-strain curve.
  • the stress-strain curve is shown in FIG.
  • FIG. 3 is a stress-strain curve for each test piece having a (modified) FC content of 5% by weight.
  • a vulcanized rubber sheet (Example 2-1) obtained by combining crtFC obtained by crotonoylizing FC with NR, and oleFC obtained by combining oleoylized FC with NR are obtained. It was confirmed that the vulcanized rubber sheet (Example 2-2) had a significantly improved elastic modulus.
  • Example 2-1 and Example 2-2 when the modified substituent has a double bond as in Example 2-1 and Example 2-2, the resulting vulcanized rubber sheet has not only a crosslinking reaction with sulfur in NR. It is considered that a crosslinked structure was formed between NR and modified FC. For this reason, it is considered that the elastic modulus is much improved compared to the vulcanized rubber using the modified FC used in Comparative Example 2-1 and Comparative Example 2-2.
  • Test example 2 tensile physical properties of vulcanized rubber sheet
  • a stress-strain curve was measured by the same method as in Test Example 1.
  • the stress-strain curve is shown in FIG. FIG. 4 is a stress-strain curve for each test piece having a modified FC content of 5% by weight.
  • the vulcanized rubber sheet (Example 2-2) obtained by combining oleFC obtained by oleoylating FC with NR is obtained by combining stFC obtained by stearoylizing FC with NR.
  • the elastic modulus is greatly improved.
  • Test Example 3 Measurement of linear thermal expansion coefficient of vulcanized rubber sheet
  • Each vulcanized rubber sheet produced in Reference Example 2-1, Reference Example 2-3, Example 2-1, Example 2-2, and Comparative Examples 2-1 to 2-3 has a size of 40 mm ⁇ 4 mm.
  • Each test piece of ⁇ 1 mm was prepared, and using a thermal stress strain measuring device (EXSTAR TMA / SS6100 manufactured by SII NanoTechnology Co., Ltd.), a temperature range of 20 to 150 ° C., a heating rate of 5 ° C./min.
  • the thermal expansion (Thermal expansion) at each temperature of each test piece was measured under the conditions, and the linear thermal expansion coefficient (CTE) of each test piece was measured from the obtained value.
  • FIG. 5 shows a graph plotting the thermal expansion with respect to each temperature
  • Table 3 shows the linear thermal expansion coefficient of each test piece.
  • a vulcanized rubber sheet obtained by vulcanizing NR containing FC and obtained by vulcanizing NR containing modified FC obtained by modifying FC with saturated fatty acid.
  • the vulcanized rubber sheet (Comparative Examples 2-1 to 2-3) has a lower CTE than the vulcanized rubber sheet (Reference Example 2-1) obtained by vulcanizing NR not containing FC. However, sufficient effect is not obtained.
  • Example 2-2 using oleFC, only 5 wt% of oleFC was added, and the CTE of vulcanized rubber of NR not containing FC of Reference Example 2-1 was from 226.1 ppm / ° C. to 18. It dropped dramatically to 6 ppm / ° C.
  • Test example 4 Each vulcanized rubber sheet containing 5% by weight (modified) FC manufactured in Reference Example 2-2, Reference Example 2-3, Example 2-2, and Comparative Example 2-3 has a size of 40 mm ⁇ 4 mm ⁇ Each test piece of 1 mm was prepared, and dynamic viscoelasticity (DMA) measurement was performed in a tensile mode using a dynamic viscoelasticity measuring apparatus (EXSTAR DMS6100 manufactured by SII Nano Technology Co., Ltd.), frequency 1 Hz, temperature Storage elastic modulus E ′ and tan ⁇ (loss tangent) were measured under the conditions of ⁇ 100 to 150 ° C. and a temperature increase rate of 3 ° C./min.
  • DMA dynamic viscoelasticity
  • FIG. 6 is a graph plotting storage elastic modulus against each temperature
  • FIG. 7 is a graph plotting tan ⁇ (loss tangent) against each temperature
  • Table 4 shows ⁇ 90 ° C., ⁇ 20 ° C., 0 ° C., 70 ° C.
  • Table 5 shows the temperature of the tan ⁇ peak shown in FIG.
  • the vulcanized rubber sheet of Example 2-2 has a smaller tan ⁇ (loss tangent) than the other comparative examples and reference examples. This is because, by introducing a side chain having a double bond as a modifying group of the modified FC, a strong interfacial interaction occurs between the NR and the FC due to a cross-linked structure, and friction is caused between the NR and the FC at the interface. This is probably because the thermal energy loss has been reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Provided are: a rubber composition, wherein modified cellulose fibers are well dispersed in a highly hydrophobic rubber component, and wherein not only the rubber composition is crosslinked but also a crosslinked structure is formed between the rubber component and the modified cellulose fibers by means of a crosslinking agent; and novel modified cellulose fibers which constitute the cellulose fibers to be used in the rubber composition and wherein hydrogen atoms in some hydroxy groups in the cellulose are modified by substituents each containing a hydrocarbon group that has an unsaturated bond. Modified cellulose fibers wherein hydrogen atoms in some hydroxy groups in the cellulose that constitutes the cellulose fibers are substituted by substituents that are represented by formula (1): -A-R1. (In formula (1), R1 represents a hydrocarbon group having at least one unsaturated bond and 3-30 carbon atoms; and A represents a carbonyl group (-CO-) or a single bond (-).)

Description

変性セルロースファイバー及び変性セルロースファイバーを含むゴム組成物Modified cellulose fiber and rubber composition containing modified cellulose fiber
 本発明は、少なくとも1個の不飽和結合を有する炭化水素基を含む置換基に置換された変性セルロースファイバー及び当該変性セルロースファイバーを含むゴム組成物に関する。 The present invention relates to a modified cellulose fiber substituted with a substituent containing a hydrocarbon group having at least one unsaturated bond, and a rubber composition containing the modified cellulose fiber.
 セルロースファイバーは、全ての植物の基本骨格物質であり、地球上に一兆トンを超える蓄積がある。また、セルロースファイバーは、鋼鉄の1/5の軽さであるにも関わらず、鋼鉄の5倍以上の強度、ガラスの1/50の低線熱膨張係数を有する繊維であることから、樹脂やゴム等のマトリックス中にフィラーとして含有させ、機械的強度を付与させるという利用が期待されている。 Cellulose fiber is the basic skeletal material of all plants and has an accumulation of over 1 trillion tons on the earth. Cellulose fiber is a fiber having a strength five times that of steel and a low linear thermal expansion coefficient of 1/50 that of glass, although it is 1/5 lighter than steel. It is expected to be used as a filler in a matrix such as rubber to impart mechanical strength.
 しかしながら、水酸基を豊富に有するセルロースファイバーは親水性であり極性が強く、疎水性であるゴムやポリプロピレン等の汎用性樹脂との相溶性が悪い。そのため、これらの材料マトリックス中にセルロースファイバーを配合させると、凝集が生じてしまい、むしろ機械的強度の劣る材料となってしまう。 However, cellulose fibers rich in hydroxyl groups are hydrophilic, highly polar, and poorly compatible with general-purpose resins such as rubber and polypropylene that are hydrophobic. Therefore, when cellulose fibers are blended in these material matrices, agglomeration occurs, and the material is rather inferior in mechanical strength.
 フィラーとして高い補強効果を発現させるには、何らかの化学的な処理が不可欠である。例えば、特許文献1においては、セルロースナノファイバーにアルカノイル基等の置換基に変性した変性セルロースナノファイバーが記載されている。 Some chemical treatment is indispensable for exhibiting a high reinforcing effect as a filler. For example, Patent Document 1 describes a modified cellulose nanofiber obtained by modifying a cellulose nanofiber with a substituent such as an alkanoyl group.
 しかしながら、上記のような変性したセルロースファイバーを疎水性の高い樹脂やゴム等のマトリックス材料に配合した場合、マトリックス中での変性セルロースファイバーの分散性が改善されるものの、マトリックスと変性セルロースファイバーとの間での化学的な結合がもたらされず、十分な弾性特性、低線熱膨張性が発揮できていない、というのが現状である。 However, when the modified cellulose fiber as described above is blended with a matrix material such as highly hydrophobic resin or rubber, the dispersibility of the modified cellulose fiber in the matrix is improved, but the matrix and the modified cellulose fiber are not dispersed. The present situation is that no chemical bond between them is brought about, and sufficient elastic properties and low linear thermal expansibility cannot be exhibited.
特開2007-51266号公報JP 2007-51266 A
 本発明は、疎水性の高いゴム成分中において、変性セルロースファイバーが良好に分散され、さらに、架橋剤によってゴム成分の架橋形成のみならず、ゴム成分と変性セルロースファイバーとの間においても架橋構造が形成し得るゴム組成物を提供することを目的とする。 In the present invention, the modified cellulose fiber is well dispersed in the rubber component having high hydrophobicity, and the crosslinked structure is not only formed by the crosslinking agent but also between the rubber component and the modified cellulose fiber. It aims at providing the rubber composition which can be formed.
 また、本発明は、当該ゴム組成物に用いられるセルロースファイバーを構成するセルロース中の一部の水酸基の水素原子を、不飽和結合を有する炭化水素基を含む置換基によって変性した、新規な変性セルロースファイバーを提供することも目的とする。 The present invention also provides a novel modified cellulose obtained by modifying hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber used in the rubber composition with a substituent containing a hydrocarbon group having an unsaturated bond. It is also an object to provide a fiber.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、セルロースファイバーを構成するセルロース中の一部の水酸基の水素原子を、不飽和結合を有する特定の置換基に変性することにより、疎水性の高いゴム成分中で、変性セルロースファイバーを良好に分散させることができ、かつ当該ゴム成分とセルロースファイバーとの間で、硫黄による架橋構造を形成し得ることが可能となることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have modified the hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber to specific substituents having an unsaturated bond. It has been found that modified cellulose fibers can be well dispersed in a highly hydrophobic rubber component, and that a crosslinked structure with sulfur can be formed between the rubber component and the cellulose fiber. It was.
 本発明はこのような知見に基づき、更に鋭意検討を重ねて完成した発明である。すなわち、本発明は下記項に示す変性セルロースファイバー及びその製造方法、並びに当該変性セルロースファイバーを含有するゴム組成物を提供する。 The present invention is an invention that has been completed based on such findings and further earnest studies. That is, this invention provides the modified cellulose fiber shown to the following term, its manufacturing method, and the rubber composition containing the said modified cellulose fiber.
 項1.セルロースファイバーを構成するセルロース中の一部の水酸基の水素原子が、式(1):
  -A-R   (1)
(式(1)中、Rは、少なくとも1個の不飽和結合を有する炭素数3~30の炭化水素であり、Aはカルボニル基(-CO-)又は単結合(-)である)
で表される置換基によって置換された変性セルロースファイバー。
Item 1. Hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber are represented by the formula (1):
-AR 1 (1)
(In formula (1), R 1 is a hydrocarbon having 3 to 30 carbon atoms having at least one unsaturated bond, and A is a carbonyl group (—CO—) or a single bond (—)).
The modified cellulose fiber substituted by the substituent represented by these.
 項2.セルロースファイバーが、フィブリル化セルロースファイバーである項1に記載の変性セルロースファイバー。 Item 2. Item 2. The modified cellulose fiber according to Item 1, wherein the cellulose fiber is a fibrillated cellulose fiber.
 項3.置換度(DS)が0.05~2.0である項1又は2に記載の変性セルロースファイバー。 Item 3. Item 3. The modified cellulose fiber according to Item 1 or 2, wherein the degree of substitution (DS) is 0.05 to 2.0.
 項4.セルロースファイバーを、式(1’):
  R-A-B   (1’)
(式中、Aはカルボニル基(-CO-)又は単結合(-)であり、Bは脱離基である)
によって表される変性化剤によって変性する工程を含む
変性セルロースファイバーの製造方法。
Item 4. Cellulose fiber is represented by the formula (1 ′):
R 1 -AB (1 ')
(Wherein A is a carbonyl group (—CO—) or a single bond (−), and B is a leaving group)
The manufacturing method of the modified cellulose fiber including the process modified | denatured with the modifier | denaturant represented by these.
 項5.セルロースファイバーがフィブリル化セルロースファイバーである項4に記載の変性セルロースファイバーの製造方法。 Item 5. Item 5. The method for producing a modified cellulose fiber according to Item 4, wherein the cellulose fiber is a fibrillated cellulose fiber.
 項6.項1~3のいずれかに記載の変性セルロースファイバー、及び
ゴム成分を含むゴム組成物。
Item 6. Item 4. A rubber composition comprising the modified cellulose fiber according to any one of Items 1 to 3 and a rubber component.
 項7.さらに硫黄を含む項6に記載のゴム組成物。 Item 7. Item 7. The rubber composition according to Item 6, further comprising sulfur.
 項8.項7に記載のゴム組成物を加硫することによって得られる加硫化物。 Item 8. Item 8. A vulcanized product obtained by vulcanizing the rubber composition according to Item 7.
 本発明の変性セルロースファイバーは、セルロースファイバーを構成するセルロース中の一部の水酸基の水素原子が、炭化水素を有する置換基によって変性されているため、セルロースファイバーの親水性を低減することができ、疎水性の高いゴム等のマトリックス材料中において良好に分散することができる。 In the modified cellulose fiber of the present invention, the hydrogen atoms of some hydroxyl groups in the cellulose constituting the cellulose fiber are modified by a substituent having a hydrocarbon, so that the hydrophilicity of the cellulose fiber can be reduced, It can be well dispersed in a matrix material such as rubber having high hydrophobicity.
 また、変性された部分である置換基を形成する炭化水素には、少なくとも1個の不飽和結合を有するため、ゴム成分中に変性セルロースファイバーを配合させ、さらに硫黄等の加硫剤を配合することで、ゴム成分中での硫黄による架橋構造の形成のみならず、ゴム成分と変性セルロースファイバーとの間でも硫黄による架橋構造が形成され、化学的に結合される。そのため、本発明のゴム組成物から形成される加硫化物は、弾性率が高く、線熱膨張係数が非常に低いという効果を奏する。 In addition, the hydrocarbon forming the substituent, which is a modified part, has at least one unsaturated bond, and therefore, a modified cellulose fiber is blended in the rubber component, and a vulcanizing agent such as sulfur is blended. As a result, not only the cross-linked structure is formed by sulfur in the rubber component, but also a cross-linked structure by sulfur is formed and chemically bonded between the rubber component and the modified cellulose fiber. Therefore, the vulcanizate formed from the rubber composition of the present invention has an effect that the elastic modulus is high and the linear thermal expansion coefficient is very low.
参考例1において製造されたフィブリル化セルロース(FC)の倍率2万倍におけるSEM画像である。2 is an SEM image of fibrillated cellulose (FC) produced in Reference Example 1 at a magnification of 20,000 times. 実施例1-1において製造されたtrans-クロトン酸クロライドによって変性した変性FC(crtFC)の倍率2万倍におけるSEM画像である。FIG. 3 is an SEM image at a magnification of 20,000 times of a modified FC (crtFC) modified with trans-crotonic acid chloride produced in Example 1-1. 実施例1-2において製造されたcis-オレオイルクロライドによって変性した変性FC(oleFC)の倍率2万倍におけるSEM画像である。FIG. 2 is an SEM image at a magnification of 20,000 times of a modified FC (oleFC) modified with cis-oleoyl chloride produced in Example 1-2. 実施例1-3において製造されたtrans,trans-ソルビン酸クロライドによって変性した変性FC(sorFC)の倍率2万倍におけるSEM画像である。FIG. 3 is an SEM image of a modified FC (orFC) modified with trans, trans-sorbic acid chloride produced in Example 1-3 at a magnification of 20,000 times. FIG. 比較例1-1において製造されたアセチルクロライドによって変性した変性FC(acFC)の倍率2万倍におけるSEM画像である。FIG. 5 is an SEM image at a magnification of 20,000 times of a modified FC (acFC) modified with acetyl chloride produced in Comparative Example 1-1. 比較例1-2において製造されたミリストイルクロライドによって変性した変性FC(myrFC)の倍率2万倍におけるSEM画像である。FIG. 3 is an SEM image of a modified FC (myrFC) modified with myristoyl chloride produced in Comparative Example 1-2 at a magnification of 20,000 times. 比較例1-3において製造されたステアロイルクロライドによって変性した変性FC(stFC)の倍率2万倍におけるSEM画像である。FIG. 3 is an SEM image at a magnification of 20,000 times of a modified FC (stFC) modified with stearoyl chloride produced in Comparative Example 1-3. FT-IR分析によって測定された、参考例1において製造されたFCのスペクトルである。It is the spectrum of FC manufactured in Reference Example 1 measured by FT-IR analysis. FT-IR分析によって測定された、実施例1-1において製造されたcrtFCのスペクトルである。2 is a spectrum of crtFC produced in Example 1-1, measured by FT-IR analysis. FT-IR分析によって測定された、実施例1-2において製造されたoleFCのスペクトルである。It is the spectrum of oleFC manufactured in Example 1-2 measured by FT-IR analysis. FT-IR分析によって測定された、実施例1-3において製造されたsorFCのスペクトルである。It is the spectrum of sorFC manufactured in Example 1-3 measured by FT-IR analysis. FT-IR分析によって測定された、比較例1-1において製造されたacFCのスペクトルである。2 is a spectrum of acFC produced in Comparative Example 1-1, measured by FT-IR analysis. FT-IR分析によって測定された、比較例1-2において製造されたmyrFCのスペクトルである。2 is a spectrum of myrFC produced in Comparative Example 1-2, measured by FT-IR analysis. FT-IR分析によって測定された、比較例1-3において製造されたstFCのスペクトルである。It is the spectrum of stFC manufactured in Comparative Example 1-3 measured by FT-IR analysis. 参考例2-1、参考例2-2、参考例2-3、実施例2-1、実施例2-2、比較例2-1、及び比較例2-2において製造した各加硫ゴムシートについての応力-ひずみ曲線をプロットしたグラフである。Each vulcanized rubber sheet produced in Reference Example 2-1, Reference Example 2-2, Reference Example 2-3, Example 2-1, Example 2-2, Comparative Example 2-1, and Comparative Example 2-2 Is a graph in which a stress-strain curve is plotted. 実施例2-2及び比較例2-3で得られた各加硫ゴムシートについての応力-ひずみ曲線をプロットしたグラフである。6 is a graph plotting stress-strain curves for each vulcanized rubber sheet obtained in Example 2-2 and Comparative Example 2-3. 参考例2-1、参考例2-3、実施例2-1、実施例2-2、及び比較例2-1~2-3において製造した各加硫ゴムシートについての各温度における熱膨張(Thermal expansion)をプロットしたグラフである。Thermal expansion at various temperatures for each vulcanized rubber sheet produced in Reference Example 2-1, Reference Example 2-3, Example 2-1, Example 2-2, and Comparative Examples 2-1 to 2-3 ( It is the graph which plotted Thermal (expansion). 参考例2-2、参考例2-3、実施例2-2、及び比較例2-3において製造した各加硫ゴムシート((変性)FC5重量%含有)についての各温度における貯蔵弾性率をプロットしたグラフである。The storage elastic modulus at each temperature for each vulcanized rubber sheet (containing 5% by weight of (modified) FC) produced in Reference Example 2-2, Reference Example 2-3, Example 2-2, and Comparative Example 2-3. This is a plotted graph. 参考例2-2、参考例2-3、実施例2-2、及び比較例2-3において製造した各加硫ゴムシート((変性)FC5重量%含有)についての各温度におけるtanδをプロットしたグラフである。The tan δ at each temperature was plotted for each vulcanized rubber sheet (containing 5% by weight of (modified) FC) produced in Reference Example 2-2, Reference Example 2-3, Example 2-2, and Comparative Example 2-3. It is a graph.
 以下、本発明の変性セルロースファイバー、該変性セルロースファイバーを含むゴム組成物、及びその製造方法、並びに当該ゴム組成物を用いた成形材料について、詳述する。 Hereinafter, the modified cellulose fiber of the present invention, a rubber composition containing the modified cellulose fiber, a method for producing the same, and a molding material using the rubber composition will be described in detail.
 1.変性セルロースファイバー
 本発明の変性セルロースファイバーは、セルロースファイバーを構成するセルロース中の一部の水酸基の水素原子が、式(1):
 -A-R   (1)
によって表される置換基に置換された構造を有する。
1. Modified cellulose fiber In the modified cellulose fiber of the present invention, hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber are represented by the formula (1):
-AR 1 (1)
It has the structure substituted by the substituent represented by these.
 式(1)中におけるRは、少なくとも1個の不飽和結合を有する炭素数3~30、好ましくは3~20程度の炭化水素基である。炭化水素基の炭素数を3以上に設定することで、不飽和結合の隣に位置するα-メチル又はα-メチレンのC-Hからの脱水素により、硫黄等の架橋剤等と反応を行うことが可能となる。なお、不飽和結合の数が2個以上の場合は、炭化水素基の炭素数の下限は、2Y+1(Yは、不飽和結合の数を示す)となる。 R 1 in the formula (1) is a hydrocarbon group having 3 to 30 carbon atoms, preferably about 3 to 20 carbon atoms, having at least one unsaturated bond. By setting the number of carbon atoms of the hydrocarbon group to 3 or more, it reacts with a crosslinking agent such as sulfur by dehydrogenation of α-methyl or α-methylene located next to the unsaturated bond from C—H. It becomes possible. When the number of unsaturated bonds is 2 or more, the lower limit of the carbon number of the hydrocarbon group is 2Y + 1 (Y represents the number of unsaturated bonds).
 また、炭化水素基の炭素数を30以下に設定することで、セルロースファイバーに疎水性を付与することができる。R中の不飽和結合としては、二重結合、及び三重結合が挙げられる。これらの中で、二重結合であることが好ましい。Rにおける不飽和結合の数は、1個であってもよく、また、2個以上有していてもよい。また、不飽和結合の数の上限は、特に限定されるものではないが、例えば6個程度が好ましい。 Moreover, hydrophobicity can be imparted to the cellulose fiber by setting the number of carbon atoms of the hydrocarbon group to 30 or less. Examples of the unsaturated bond in R 1 include a double bond and a triple bond. Among these, a double bond is preferable. The number of unsaturated bonds in R 1 may be 1 or may be 2 or more. The upper limit of the number of unsaturated bonds is not particularly limited, but for example, about 6 is preferable.
 Rにおける不飽和結合が二重結合である場合、cis体又はtrans体の構造異性体を有するが、特に限定されず、いずれの構造異性体も適用することができる。 When the unsaturated bond in R 1 is a double bond, it has a cis isomer or a trans isomer, but is not particularly limited, and any structural isomer can be applied.
 式(1)中におけるAは、カルボニル基(-CO-)又は単結合(-)である。 In the formula (1), A represents a carbonyl group (—CO—) or a single bond (—).
 式(1)中におけるAがカルボニル基(-CO-)である場合の構造(-CO-R)の具体例としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸等のモノ不飽和脂肪族カルボン酸;ソルビン酸、リノール酸、エイコサジエン酸、ドコサジエン酸等のジ不飽和脂肪族カルボン酸;リノレン酸、ピノレン酸、エレオステアリン酸、ジホモ-γ-リノレン酸、エイコサトリエン酸等のトリ不飽和脂肪族カルボン酸;ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸等のテトラ不飽和脂肪族カルボン酸;ボセオペンタエン酸、エイコサペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸等のペンタ不飽和脂肪族カルボン酸;ドコサヘキサエン酸、ニシン酸等のヘキサ不飽和脂肪族カルボン酸等の不飽和脂肪族カルボン酸におけるカルボン酸基から-OHを除いた残基が挙げられる。 Specific examples of the structure (—CO—R 1 ) when A in the formula (1) is a carbonyl group (—CO—) include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vacsen Monounsaturated aliphatic carboxylic acids such as acid, gadoleic acid, eicosenoic acid, erucic acid and nervonic acid; diunsaturated aliphatic carboxylic acids such as sorbic acid, linoleic acid, eicosadienoic acid and docosadienoic acid; linolenic acid, pinolenic acid, Triunsaturated aliphatic carboxylic acids such as eleostearic acid, dihomo-γ-linolenic acid, eicosatrienoic acid; tetraunsaturated aliphatic carboxylic acids such as stearidonic acid, arachidonic acid, eicosatetraenoic acid, adrenic acid; Penta unsaturation such as boseopentaenoic acid, eicosapentaenoic acid, ozbond acid, sardine acid, tetracosapentaenoic acid Aliphatic carboxylic acid; a residue obtained by removing —OH from a carboxylic acid group in an unsaturated aliphatic carboxylic acid such as hexaunsaturated aliphatic carboxylic acid such as docosahexaenoic acid and nisic acid.
 また、式(1)中におけるAが単結合(-)である場合の構造(-R)の具体例としては、アリルアルコール、オクタデカジエノール、ドコセノール、ドデセジエノール、オレイルアルコール、トリデセノール、リノリルアルコール等の不飽和アルコールにおける-OH基を除いた残基が挙げられる。 Specific examples of the structure (—R 1 ) when A in the formula (1) is a single bond (—) include allyl alcohol, octadecadienol, docosenol, dodecedienol, oleyl alcohol, tridecenol, linolyl. Examples thereof include residues obtained by removing —OH groups from unsaturated alcohols such as alcohols.
 セルロースファイバー上に変性される上記式(1)で表される置換基は、一種又は二種以上の置換基を有していてもよい。 The substituent represented by the above formula (1) modified on the cellulose fiber may have one or more substituents.
 変性セルロースファイバーの置換度(DS)としては、親水性の高いセルロースファイバーを、疎水性の高いゴム成分等のマトリックス中に均一に分散させたり、セルロースファイバーの耐水性を向上させる点等から、0.05~2.0程度が好ましく、0.1~2.0程度がより好ましく、0.1~0.8程度が更に好ましい。 The degree of substitution (DS) of the modified cellulose fiber is 0 because the highly hydrophilic cellulose fiber is uniformly dispersed in a highly hydrophobic rubber component matrix or the water resistance of the cellulose fiber is improved. About 0.05 to 2.0, preferably about 0.1 to 2.0, and more preferably about 0.1 to 0.8.
 なお、DSは、変性セルロースファイバーから副生成物等を除去した後、重量増加率、元素分析、中和滴定法、FT-IR、H及び13C-NMR等の各種分析方法により分析することができる。 DS should be analyzed by various analytical methods such as weight gain, elemental analysis, neutralization titration, FT-IR, 1 H and 13 C-NMR after removing by-products from the modified cellulose fiber. Can do.
 上記の式(1)で表される置換基による置換に加えて、変性セルロースファイバーの疎水性をさらに向上させるために、必要に応じて変性セルロースファイバー中のセルロースの一部の水酸基の水素原子が、例えば、式(2):
  -A-R   (2)
(式(2)中、Rは、炭素数1~30の直鎖状又は分枝鎖状のアルキル基であり、Aは、カルボニル基(-CO-)又は単結合(-)である)
で表される置換基に置換されていてもよい。
In addition to the substitution by the substituent represented by the above formula (1), in order to further improve the hydrophobicity of the modified cellulose fiber, the hydrogen atoms of some hydroxyl groups of the cellulose in the modified cellulose fiber are optionally included. For example, formula (2):
-A-R a (2)
(In the formula (2), R a is a linear or branched alkyl group having 1 to 30 carbon atoms, and A is a carbonyl group (—CO—) or a single bond (—)).
It may be substituted by a substituent represented by
 変性セルロースファイバーの原料として用いられるセルロースファイバーは、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布といった天然植物原料から得られるパルプ;レーヨン、セロファン等の再生セルロース繊維等が挙げられる。これらの中で、パルプやパルプをフィブリル化したフィブリル化セルロースが好ましい原材料として挙げられる。 Cellulose fibers used as raw materials for modified cellulose fibers include pulps obtained from natural plant materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth; regenerated cellulose fibers such as rayon and cellophane Can be mentioned. Among these, pulp and fibrillated cellulose obtained by fibrillating pulp are preferable raw materials.
 前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、及びこれらのパルプを主成分とする脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプが好ましいものとして挙げられる。これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該パルプ中のリグニン量を調整することができる。 The pulp includes chemical pulp (kraft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both. ), Chemi-Grand Pulp (CGP), Chemi-Mechanical Pulp (CMP), Groundwood Pulp (GP), Refiner Mechanical Pulp (RMP), Thermo-Mechanical Pulp (TMP), Chemi-thermo-Mechanical Pulp (CTMP), and these pulps Preferred examples include deinked waste paper pulp, corrugated waste paper pulp and magazine waste paper pulp as components. These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the pulp.
 これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(以下、NUKPということがある)、針葉樹酸素晒し未漂白クラフトパルプ(以下、NOKPということがある)、針葉樹漂白クラフトパルプ(以下、NBKPということがある))が特に好ましい。 Among these pulps, various kraft pulps derived from conifers with strong fiber strength (coniferous unbleached kraft pulps (hereinafter sometimes referred to as NUKP), softwood oxygen-bleached unbleached kraft pulps (hereinafter sometimes referred to as NOKPs), Softwood bleached kraft pulp (hereinafter sometimes referred to as NBKP)) is particularly preferred.
 パルプは主にセルロース、ヘミセルロース、リグニンから構成される。パルプ中のリグニン含有量は、特に限定されるものではないが、通常0~40重量%程度、好ましくは0~10重量%程度である。リグニン含有量の測定は、Klason法により測定することができる。 Pulp is mainly composed of cellulose, hemicellulose, and lignin. The lignin content in the pulp is not particularly limited, but is usually about 0 to 40% by weight, preferably about 0 to 10% by weight. The lignin content can be measured by the Klason method.
 本発明の変性セルロースファイバーは、上記のセルロースファイバーを構成するセルロースの一部の水酸基の水素原子を、上記式(1)で表される置換基によって置換させることによって得られる。上記のセルロースファイバーは、比表面積を大きくすることによって、ゴムとの接触面積を大きくすることができ、不飽和結合を有する置換基を導入した変性セルロースファイバーとゴム成分との硫黄による架橋構造をより強固に形成させることができる。 The modified cellulose fiber of the present invention can be obtained by substituting a hydrogen atom of a hydroxyl group of a part of cellulose constituting the cellulose fiber with a substituent represented by the above formula (1). By increasing the specific surface area of the cellulose fiber, the contact area with the rubber can be increased, and the modified cellulose fiber into which a substituent having an unsaturated bond is introduced and the rubber component has a more crosslinked structure with sulfur. It can be formed firmly.
 このような比表面積の大きいセルロースファイバーとしては、前記パルプをフィブリル化したフィブリル化セルロース等が挙げられる。 Examples of the cellulose fiber having a large specific surface area include fibrillated cellulose obtained by fibrillating the pulp.
 変性セルロースファイバーの比表面積としては、特に限定されるものではなく、ゴム成分との接触面積を大きくさせる点や、コスト面等から、例えば、10~400m/g程度が好ましく、20~300m/g程度がより好ましく、30~300m/g程度が更に好ましい。また、変性セルロースファイバーの繊維径は、平均値が通常4nm~500μm程度、好ましくは10nm~500μm程度、特に好ましくは20nm~200μm程度である。 The specific surface area of the modified cellulose fiber is not particularly limited, and is preferably about 10 to 400 m 2 / g, for example, from the viewpoint of increasing the contact area with the rubber component, cost, etc., and 20 to 300 m 2. / G is more preferable, and about 30 to 300 m 2 / g is still more preferable. The average diameter of the modified cellulose fiber is usually about 4 nm to 500 μm, preferably about 10 nm to 500 μm, particularly preferably about 20 nm to 200 μm.
 植物の細胞壁の中では、幅4nm程のセルロースミクロフィブリル(シングルセルロースナノファイバー)が最小単位として存在する。そして、このセルロースナノファイバーが集まって、植物細胞、さらにはその集合体である植物繊維を形成している。本発明においては、植物繊維を原料材料として用いて得られるセルロースファイバーを上記式(1)で表される置換基に置換されたものである。 In the cell walls of plants, cellulose microfibrils (single cellulose nanofibers) with a width of about 4 nm are present as a minimum unit. And this cellulose nanofiber gathers and forms the plant cell which is the plant cell and also the aggregate. In the present invention, cellulose fiber obtained by using plant fiber as a raw material is substituted with a substituent represented by the above formula (1).
 またセルロースファイバーは、植物繊維を含む材料(例えば、木材パルプ、コットン等)から得られるセルロースファイバーをフィブリルの束やセルロースミクロフィブリルになるまで解きほぐした、フィブリル化セルロースであってもよい。 Further, the cellulose fiber may be fibrillated cellulose obtained by unwinding cellulose fiber obtained from a material containing plant fiber (for example, wood pulp, cotton, etc.) until it becomes a bundle of fibrils or cellulose microfibrils.
 本発明の変性セルロースファイバーは、セルロースファイバーを構成するセルロース中の一部の水酸基が、上記の不飽和結合を有する炭化水素基を有する置換基に変性された構造を有するため、親水性の高いセルロースファイバーに疎水性を付与することができる。そのため、疎水性の高いゴム成分等のマトリックス中で、変性セルロースファイバーを良好に分散させることができる。 The modified cellulose fiber of the present invention has a structure in which a part of hydroxyl groups in cellulose constituting the cellulose fiber is modified with a substituent having a hydrocarbon group having an unsaturated bond as described above. Hydrophobicity can be imparted to the fiber. Therefore, the modified cellulose fiber can be well dispersed in a matrix such as a rubber component having high hydrophobicity.
 また、変性セルロースファイバーにおける変性された置換基は、不飽和結合を有する炭化水素基を有するため、不飽和結合の隣に位置するα-メチル又はα-メチレンのC-Hが脱水素化されやすい構造を有する。そのため、架橋を形成し得るゴム成分等のマトリックス材料中に、本発明の変性セルロースファイバーと硫黄等の架橋剤を配合させ、架橋させると、マトリックス材料間での架橋のみならず、マトリックスとセルロースファイバーとの間でも、架橋構造を形成することが可能となる。 In addition, since the modified substituent in the modified cellulose fiber has a hydrocarbon group having an unsaturated bond, the CH of α-methyl or α-methylene located next to the unsaturated bond is easily dehydrogenated. It has a structure. Therefore, if the modified cellulose fiber of the present invention and a crosslinking agent such as sulfur are blended in a matrix material such as a rubber component capable of forming a crosslink and crosslinked, the matrix and the cellulose fiber are not only crosslinked between the matrix materials. It is possible to form a cross-linked structure between the two.
 そのため、本発明の変性セルロースファイバーは、硫黄等の架橋剤と共に配合されて用いられるゴム成分等のマトリックス材料の補強剤等に好適に用いることができる。 Therefore, the modified cellulose fiber of the present invention can be suitably used as a reinforcing agent for a matrix material such as a rubber component used by being blended with a crosslinking agent such as sulfur.
 2.変性セルロースファイバーの製造方法
 本発明の変性セルロースファイバーの製造方法は、セルロースファイバーを、変性化剤によって変性する工程を含む。
2. Method for Producing Modified Cellulose Fiber The method for producing a modified cellulose fiber of the present invention includes a step of modifying cellulose fiber with a modifying agent.
 原料として用いられるセルロースファイバーは、前記「1.変性セルロースファイバー」で挙げられたものを用いることができる。また、セルロースファイバーは、比表面積を大きくすることによって、ゴム成分との接触面積が大きくすることができ、不飽和結合を有する置換基を導入した変性セルロースファイバーとゴム成分との硫黄による架橋構造をより強固に形成させることができる、という観点から、パルプ等をフィブリル化したフィブリル化セルロースを用いることができる。 As the cellulose fiber used as a raw material, those mentioned in the above-mentioned “1. Modified cellulose fiber” can be used. In addition, the cellulose fiber can increase the contact area with the rubber component by increasing the specific surface area, and a sulfur-crosslinked structure between the modified cellulose fiber introduced with a substituent having an unsaturated bond and the rubber component. From the viewpoint that it can be formed more firmly, fibrillated cellulose obtained by fibrillating pulp or the like can be used.
 セルロースファイバーをフィブリル化し、フィブリル化セルロースを得る方法としては、パルプを解繊する方法が挙げられる。解繊方法としては、公知の方法が採用でき、例えば、前記パルプ含有材料の水懸濁液、スラリーをリファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは二軸混練機)、ビーズミル等により機械的に摩砕、ないし叩解することにより解繊する方法が使用できる。必要に応じて、上記の解繊方法を組み合わせて処理してもよい。 As a method of fibrillating cellulose fibers to obtain fibrillated cellulose, a method of defibrating pulp can be mentioned. As the defibrating method, a known method can be adopted, for example, an aqueous suspension or slurry of the pulp-containing material, a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably a biaxial kneader), a bead mill. It is possible to use a method of mechanically grinding or defibrating by beating. You may process combining the said defibrating method as needed.
 これらの解繊処理の方法としては、例えば、特願2011-079440号、特開2011-213754号公報、特開2011-195738号公報に記載された解繊方法等を用いることができる。 As these defibrating methods, for example, the defibrating methods described in Japanese Patent Application Nos. 2011-079440, JP2011-213754, and JP2011-195738 can be used.
 前記セルロースファイバーは、変性化剤によって変性させる。 The cellulose fiber is modified with a modifying agent.
 変性化剤としては、式(1’):
  R-A-B   (1’)
(式中、Aはカルボニル基(-CO-)又は単結合(-)であり、Bは脱離基である)
によって表される。
As the denaturing agent, the formula (1 ′):
R 1 -AB (1 ')
(In the formula, A is a carbonyl group (—CO—) or a single bond (—), and B is a leaving group)
Represented by
 式(1’)中におけるBの脱離基としては、ハロゲン原子、水酸基、又は-OCOR
(式中、Rは、R又は低級アルキル基)等が挙げられる。
As the leaving group for B in the formula (1 ′), a halogen atom, a hydroxyl group, or —OCOR 2
(Wherein R 2 is R 1 or a lower alkyl group).
 なお、Rにおける低級アルキル基の「低級」とは、「炭素数1~5、好ましくは炭素数1~3」を意味する。 The “lower” of the lower alkyl group in R 2 means “1 to 5 carbon atoms, preferably 1 to 3 carbon atoms”.
 変性化剤として、式(1’)中のAが、単結合(-)である場合には、前記式(1)におけるAが、単結合(-)である置換基に置換された変性セルロースファイバーが得られ、前記式(1’)中のAがカルボニル基(-CO-)で表される変性化剤を用いる場合には、前記式(1)におけるAが、カルボニル基(-CO-)である置換基に置換された変性セルロースファイバーが得られる。 When A in formula (1 ′) is a single bond (−) as a modifying agent, modified cellulose in which A in formula (1) is substituted with a substituent that is a single bond (−) When a fiber is obtained and a modifying agent in which A in the formula (1 ′) is a carbonyl group (—CO—) is used, A in the formula (1) is a carbonyl group (—CO—). A modified cellulose fiber substituted with a substituent group is obtained.
 変性化剤としては、式(1’)中のAが単結合(-)であり、Bが水酸基である場合(R-OH)の具体例としては、アリルアルコール、オクタデカジエノール、ドコセノール、ドデセジエノール、オレイルアルコール、トリデセノール、リノリルアルコール等の不飽和アルコールが挙げられる。 Examples of the modifying agent include those in which A in the formula (1 ′) is a single bond (−) and B is a hydroxyl group (R 1 —OH). Specific examples include allyl alcohol, octadecadienol, docosenol. And unsaturated alcohols such as dodecedienol, oleyl alcohol, tridecenol, and linoleyl alcohol.
 変性化剤としては、式(1’)中のAが単結合(-)であり、Bがハロゲン原子である場合の具体例としては、前記不飽和アルコールの-OH基がハロゲン原子に置換された少なくとも1個の不飽和結合を有するハロゲン化炭化水素が挙げられる。 As a modifying agent, a specific example in which A in the formula (1 ′) is a single bond (−) and B is a halogen atom, the —OH group of the unsaturated alcohol is substituted with a halogen atom. And halogenated hydrocarbons having at least one unsaturated bond.
 前記式(1’)中のAがカルボニル基(-CO-)で表される変性化剤(R-CO-B)の具体例としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸等のモノ不飽和脂肪族カルボン酸;ソルビン酸、リノール酸、エイコサジエン酸、ドコサジエン酸等のジ不飽和脂肪族カルボン酸;リノレン酸、ピノレン酸、エレオステアリン酸、ジホモ-γ-リノレン酸、エイコサトリエン酸等のトリ不飽和脂肪族カルボン酸;ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸等のテトラ不飽和脂肪族カルボン酸;ボセオペンタエン酸、エイコサペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸等のペンタ不飽和脂肪族カルボン酸;ドコサヘキサエン酸、ニシン酸等のヘキサ不飽和脂肪族カルボン酸等の不飽和脂肪族カルボン酸、及びこれらの不飽和脂肪族カルボン酸の酸ハロゲン化物、酸無水物等が挙げられる。 Specific examples of the modifying agent (R 1 —CO—B) in which A in the formula (1 ′) is a carbonyl group (—CO—) include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid Monounsaturated aliphatic carboxylic acids such as elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid and nervonic acid; diunsaturated aliphatic carboxylic acids such as sorbic acid, linoleic acid, eicosadienoic acid and docosadienoic acid; Triunsaturated aliphatic carboxylic acids such as acid, pinolenic acid, eleostearic acid, dihomo-γ-linolenic acid and eicosatrienoic acid; tetraunsaturated such as stearidonic acid, arachidonic acid, eicosatetraenoic acid and adrenic acid Aliphatic carboxylic acids; pentasenopentaenoic acid, eicosapentaenoic acid, ozbond acid, sardine acid, tetracosapentaenoic acid, etc. Japanese aliphatic carboxylic acids; unsaturated aliphatic carboxylic acids such as hexaunsaturated aliphatic carboxylic acids such as docosahexaenoic acid and nisic acid, and acid halides and acid anhydrides of these unsaturated aliphatic carboxylic acids. .
 前記式(1’)の変性化剤とセルロースファイバーを反応させることで、前記式(1)で表される置換基がセルロースファイバーを構成するセルロースの一部の水酸基の水素原子に置換される。 By reacting the modifying agent of the formula (1 ′) with cellulose fiber, the substituent represented by the formula (1) is substituted with a hydrogen atom of a hydroxyl group of a part of cellulose constituting the cellulose fiber.
 前記式(1’)によって表される変性化剤によりセルロースファイバーを変性させる際の変性化剤の配合量は、セルロースファイバーのグルコース単位1モルに対して、0.1~20モル程度が好ましく、0.4~10モル程度がより好ましい。 The blending amount of the modifying agent when the cellulose fiber is modified with the modifying agent represented by the formula (1 ′) is preferably about 0.1 to 20 mol with respect to 1 mol of glucose unit of the cellulose fiber. About 0.4 to 10 mol is more preferable.
 また、セルロースファイバーに対して上記変性化剤を過剰に加え、所定のDSまで反応させた後、反応を停止させることも可能であり、必要最小限の変性化剤を配合し、反応時間、温度、触媒量等を調製することで所定のDSまで反応させることも可能である。 It is also possible to stop the reaction after adding the above modifier to cellulose fiber in excess and reacting to a predetermined DS. It is also possible to react to a predetermined DS by adjusting the catalyst amount and the like.
 上記式(1’)で表される変性化剤によって変性された変性セルロースファイバーの疎水性をさらに向上するために、必要に応じて、変性セルロースファイバーに、例えば、式(2’):
  B-A-R    (2’)
(式(2’)中、Rは、式(2)中の定義と同じであり、Bは、脱離基を表し、Aはカルボニル基(-CO-)又は単結合(-)である)によって表される変性化剤によって変性されていてもよい。
In order to further improve the hydrophobicity of the modified cellulose fiber modified by the modifying agent represented by the above formula (1 ′), the modified cellulose fiber may be modified, for example, by formula (2 ′):
B-A-R a (2 ')
(In the formula (2 ′), R a has the same definition as in the formula (2), B represents a leaving group, and A represents a carbonyl group (—CO—) or a single bond (—). It may be modified by a modifying agent represented by
 上記式(2’)の変性化剤と変性セルロースファイバーを反応させることで、前記式(2)で表される置換基が変性セルロースファイバーを構成するセルロースの残存する水酸基の水素原子にさらに置換することができる。 By reacting the modifying agent of the above formula (2 ′) with the modified cellulose fiber, the substituent represented by the above formula (2) is further substituted with the hydrogen atom of the remaining hydroxyl group of cellulose constituting the modified cellulose fiber. be able to.
 セルロースファイバーを上記の変性化剤により変性する反応は、触媒を用いなくても脱水を十分に行えば加熱することによりある程度は進行させることが可能であるが、触媒を用いた方がより温和な条件で、かつ高効率でセルロースファイバーを変性化させることができるため、より好ましい。 The reaction of modifying the cellulose fiber with the above-described modifying agent can be progressed to some extent by heating if sufficient dehydration is performed without using a catalyst, but the use of a catalyst is milder. It is more preferable because the cellulose fiber can be modified under conditions and with high efficiency.
 セルロースファイバーの変性に用いる触媒としては、塩酸、硫酸、酢酸等の酸類、アミン系触媒が挙げられる。酸触媒は通常、水溶液であり、酸触媒の添加によりエステル化に加え、セルロースファイバーの酸加水分解が起こることがあるので、アルカリ触媒、又はアミン系触媒がより好ましい。 Examples of the catalyst used for modification of cellulose fiber include acids such as hydrochloric acid, sulfuric acid and acetic acid, and amine catalysts. The acid catalyst is usually an aqueous solution, and in addition to esterification by addition of the acid catalyst, acid hydrolysis of the cellulose fiber may occur, so an alkali catalyst or an amine catalyst is more preferable.
 アミン系触媒の具体例としては、ピリジン、ジメチルアミノピリジン(DMAP)等のピリジン系化合物、トリエチルアミン、トリメチルアミン、ジアザビシクロオクタン等の非環状、或いは環状三級アミン化合物等が挙げられ、これらの中で、ピリジン、ジメチルアミノピリジン(DMAP)、ジアザビシクロオクタンが、触媒活性が優れるという観点から好ましい。必要に応じて炭酸カリウム、炭酸ナトリウム等のアルカリ化合物の粉末を触媒として使用してもよく、また、アミン系化合物と併用して使用してもよい。 Specific examples of the amine catalyst include pyridine compounds such as pyridine and dimethylaminopyridine (DMAP), and non-cyclic or cyclic tertiary amine compounds such as triethylamine, trimethylamine and diazabicyclooctane. Of these, pyridine, dimethylaminopyridine (DMAP), and diazabicyclooctane are preferable from the viewpoint of excellent catalytic activity. If necessary, powders of alkali compounds such as potassium carbonate and sodium carbonate may be used as a catalyst, or may be used in combination with an amine compound.
 アミン系触媒の配合量は、変性化剤と等モル又はそれ以上で、例えばピリジンのように液状のアミン化合物の場合は触媒兼溶媒として多めに使用しても構わない。使用量としては例えば、セルロースファイバーのグルコース単位1モルに対して0.1~10モル程度である。なお、セルロースファイバーに対して触媒を過剰に加え、所定のDSまで反応させた後、反応を停止させることもできるし、必要最小限の触媒を加え、反応時間、温度等を調製することで所定のDSまで反応させることもできる。反応後の触媒は洗浄、蒸留等により除去することが一般には好ましい。 The compounding amount of the amine catalyst is equimolar or more than that of the modifying agent. For example, in the case of a liquid amine compound such as pyridine, a larger amount may be used as a catalyst and solvent. The amount used is, for example, about 0.1 to 10 moles per mole of glucose units in the cellulose fiber. The catalyst can be added to the cellulose fiber in excess, and the reaction can be stopped after reacting to the prescribed DS, or the required minimum catalyst is added, and the reaction time, temperature, etc. are adjusted. It is also possible to react up to the DS. It is generally preferable to remove the catalyst after the reaction by washing, distillation or the like.
 上記変性化剤によって変性された変性セルロースファイバーのDSは、前記で挙げられた範囲であることが好ましい。 The DS of the modified cellulose fiber modified with the modifying agent is preferably in the above-mentioned range.
 セルロースファイバーを変性化剤により変性させる際の反応温度としては、20~160℃程度が好ましく、40~120℃程度がより好ましく、60~100℃程度が更に好ましい。温度が高い方がセルロースファイバーの反応効率が高くなり好ましいが温度が高すぎると一部セルロースファイバーの劣化が起こる為、上記の様な温度範囲とすることが好ましい。 The reaction temperature when the cellulose fiber is modified with a modifying agent is preferably about 20 to 160 ° C., more preferably about 40 to 120 ° C., and further preferably about 60 to 100 ° C. A higher temperature is preferable because the reaction efficiency of the cellulose fiber is higher. However, if the temperature is too high, the cellulose fiber is partially deteriorated. Therefore, the above temperature range is preferable.
 また、セルロースファイバーの変性は、水中で行うことも可能であるが、反応効率が非常に低くなる為、非水系溶媒中で行った方が好ましい。非水系溶媒としては変性化剤と反応しない有機溶媒であることが好ましい。具体例としては、非水系溶媒としては塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化溶媒、アセトン、メチルエチルケトン(MEK)等のケトン系溶媒;テトラヒドロフラン(THF)、エチレングリコール、プロピレングリコール、ポリエチレングリコール等のエーテル類のジメチル、ジエチル化物等のエーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒、ヘキサン、ヘプタン、ベンゼン、トルエン等の非極性溶媒、又はこれらの混合溶媒である。 Further, the modification of cellulose fiber can be performed in water, but the reaction efficiency is very low, so that it is preferably performed in a non-aqueous solvent. The non-aqueous solvent is preferably an organic solvent that does not react with the modifying agent. Specific examples include non-aqueous solvents such as halogenated solvents such as methylene chloride, chloroform, and carbon tetrachloride; ketone solvents such as acetone and methyl ethyl ketone (MEK); tetrahydrofuran (THF), ethylene glycol, propylene glycol, polyethylene glycol, and the like. Ether solvents such as dimethyl and diethyl compounds of ethers; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, nonpolar solvents such as hexane, heptane, benzene and toluene, or a mixed solvent thereof .
 前記製造方法によって変性セルロースファイバーは、比表面積を向上させるために、解繊処理をさらに行ってもよい。解繊の方法としては、前記で挙げられた方法が用いられる。 The modified cellulose fiber may be further defibrated by the above production method in order to improve the specific surface area. As a method of defibrating, the methods mentioned above are used.
 3.ゴム組成物
 本発明のゴム組成物は、変性セルロースファイバー及びゴム成分を含む。
3. Rubber composition The rubber composition of the present invention comprises a modified cellulose fiber and a rubber component.
 変性セルロースファイバーとしては、前記「1.変性セルロースファイバー」で挙げられたものを用いることができる。 As the modified cellulose fiber, those mentioned in “1. Modified cellulose fiber” can be used.
 ゴム成分としては、ジエン系ゴム成分が挙げられ、具体的には、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。 Examples of the rubber component include diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR). ), Acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, hydrogen Natural rubber, deproteinized natural rubber and the like.
 これらのゴム成分は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比においても、各種用途に応じて適宜配合すればよい。 These rubber components may be used alone or in a blend of two or more. What is necessary is just to mix | blend suitably also in the blend ratio in the case of blending according to various uses.
 ゴム組成物中における変性セルロースファイバーの含有量は、ゴム成分中でのセルロースファイバーの分散性を悪化させずにゴム補強効果を発現できるという観点から、ゴム成分100重量部に対して、1~50重量部程度が好ましく、2~35重量部程度がより好ましく、3~20重量部程度がさらに好ましい。 The content of the modified cellulose fiber in the rubber composition is 1 to 50 with respect to 100 parts by weight of the rubber component from the viewpoint that the rubber reinforcing effect can be exhibited without deteriorating the dispersibility of the cellulose fiber in the rubber component. About 2 parts by weight is preferable, about 2 to 35 parts by weight is more preferable, and about 3 to 20 parts by weight is more preferable.
 また、本発明のゴム組成物には、さらに硫黄を含有していてもよい。硫黄を含有することで、ゴム成分を加硫させることができ、さらに変性セルロースファイバー中の変性された置換基とゴム成分との間で、架橋構造を形成させることができる。 Further, the rubber composition of the present invention may further contain sulfur. By containing sulfur, the rubber component can be vulcanized, and a crosslinked structure can be formed between the modified substituent in the modified cellulose fiber and the rubber component.
 硫黄の含有量としては、ゴム成分100重量部に対して、0.1~50重量部程度が好ましく、0.5~35重量部程度がより好ましく、1~20重量部程度がさらに好ましい。 The sulfur content is preferably about 0.1 to 50 parts by weight, more preferably about 0.5 to 35 parts by weight, and still more preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
 ゴム成分中における変性セルロースファイバーの含有割合としては、0.1~50重量%程度が好ましく、0.5~40重量%程度がより好ましく、0.7~20重量%程度が更に好ましい。 The content of the modified cellulose fiber in the rubber component is preferably about 0.1 to 50% by weight, more preferably about 0.5 to 40% by weight, and further preferably about 0.7 to 20% by weight.
 4.ゴム組成物の製造方法
 本発明のゴム組成物は、変性セルロースファイバーとゴム成分を混合する工程によって製造される。
4). Method for Producing Rubber Composition The rubber composition of the present invention is produced by a step of mixing modified cellulose fibers and a rubber component.
 変性セルロースファイバーとゴム成分を混合する方法としては、特に限定されるものではないが、例えば、変性セルロースファイバーとゴム成分を分散媒に分散させ、混合することが、ゴム成分中に変性セルロースファイバーを均一に分散させることができるという点から、好ましい。分散媒としては、例えば、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化溶媒;アセトン、メチルエチルケトン(MEK)等のケトン系溶媒;テトラヒドロフラン(THF)、エチレングリコール、プロピレングリコール、ポリエチレングリコール等のエーテル類のジメチル、ジエチル化物等のエーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒、ヘキサン、ヘプタン、ベンゼン、トルエン等の非極性溶媒、又はこれらの混合溶媒等が挙げられる。これらの分散媒中で変性セルロースファイバー及びゴム成分を混合後、分散媒は乾燥等の工程により除去される。 The method of mixing the modified cellulose fiber and the rubber component is not particularly limited. For example, the modified cellulose fiber and the rubber component are dispersed in a dispersion medium and mixed, whereby the modified cellulose fiber is mixed in the rubber component. This is preferable because it can be uniformly dispersed. Examples of the dispersion medium include halogenated solvents such as methylene chloride, chloroform, and carbon tetrachloride; ketone solvents such as acetone and methyl ethyl ketone (MEK); ethers such as tetrahydrofuran (THF), ethylene glycol, propylene glycol, and polyethylene glycol. And ether solvents such as dimethyl and diethyl compounds; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; nonpolar solvents such as hexane, heptane, benzene and toluene; and mixed solvents thereof. After mixing the modified cellulose fiber and the rubber component in these dispersion media, the dispersion media are removed by a process such as drying.
 前記工程によって得られるゴム組成物は、変性セルロースファイバーの配合量は、ゴム成分100重量部に対して、1~50重量部程度が好ましく、2~35重量部程度がより好ましく、3~20重量部程度がさらに好ましい。 In the rubber composition obtained by the above process, the amount of the modified cellulose fiber is preferably about 1 to 50 parts by weight, more preferably about 2 to 35 parts by weight, more preferably 3 to 20 parts by weight with respect to 100 parts by weight of the rubber component. More preferred is about part.
 前記の方法により得られるゴム組成物は、さらに、カーボンブラック、シリカ等の補強用充填剤;プロセスオイル;ワックス;老化防止剤;酸化亜鉛、ステアリン酸等の加硫助剤等を適宜配合することができる。 The rubber composition obtained by the above method may further contain a reinforcing filler such as carbon black and silica; a process oil; a wax; an anti-aging agent; a vulcanization aid such as zinc oxide and stearic acid as appropriate. Can do.
 さらに、前記ゴム組成物を加硫する場合には、さらに硫黄及び加硫促進剤等の加硫剤を配合してもよい。硫黄の含有量としては、ゴム成分100重量部に対して、0.1~50重量部程度が好ましく、0.5~35重量部程度がより好ましく、1~20重量部程度がさらに好ましい。 Furthermore, when the rubber composition is vulcanized, a vulcanizing agent such as sulfur and a vulcanization accelerator may be further blended. The sulfur content is preferably about 0.1 to 50 parts by weight, more preferably about 0.5 to 35 parts by weight, and still more preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
 変性セルロースファイバーとゴム成分、その他の任意の添加剤を混合する方法としては、特に限定されないが、ミキサー、ブレンダー、二軸混練機、ニーダー、ラボプラストミル、ホモジナイザー、高速ホモジナイザー、高圧ホモジナイザー、遊星攪拌装置、3本ロール等の混合又は攪拌できる装置で混合、攪拌する方法が挙げられる。 The method of mixing the modified cellulose fiber with the rubber component and other optional additives is not particularly limited. However, the mixer, blender, twin-screw kneader, kneader, lab plast mill, homogenizer, high-speed homogenizer, high-pressure homogenizer, planetary stirring The method of mixing and stirring with the apparatus which can mix or stir, such as an apparatus and a 3 roll, is mentioned.
 混合温度としては、硫黄や加硫促進剤が配合される場合には、混合時にゴム成分及び変性セルロースファイバーが架橋反応しない温度であることが好ましく、例えば、70~140℃程度が好ましく、80~120℃程度がより好ましい。 The mixing temperature, when sulfur or a vulcanization accelerator is blended, is preferably a temperature at which the rubber component and the modified cellulose fiber do not undergo a crosslinking reaction at the time of mixing. For example, about 70 to 140 ° C. is preferable, and 80 to About 120 ° C. is more preferable.
 本発明のゴム組成物は、所望の形状に成形され、成形材料として用いることができる。成形材料の形状としては、例えば、シート、ペレット、粉末等が挙げられる。これらの形状を有する成形材料を、例えば金型成形、射出成形、押出成形、中空成形、発泡成形等の所望の成形機を用いて、所望の形状の未加硫の成形物を得ることができる。 The rubber composition of the present invention is molded into a desired shape and can be used as a molding material. Examples of the shape of the molding material include sheets, pellets, and powders. A molding material having these shapes can be used to obtain an unvulcanized molded product having a desired shape by using a desired molding machine such as mold molding, injection molding, extrusion molding, hollow molding, and foam molding. .
 5.加硫化物
 本発明の加硫化物は、前記、変性セルロースファイバー、ゴム成分及び硫黄を含有するゴム組成物を加硫することによって得られる。
5. Vulcanizate The vulcanizate of the present invention can be obtained by vulcanizing the rubber composition containing the modified cellulose fiber, the rubber component and sulfur.
 加硫温度としては、150~200℃程度が好ましく、150~180℃程度がより好ましい。加硫方法としては、プレス加硫等が挙げられる。 The vulcanization temperature is preferably about 150 to 200 ° C, more preferably about 150 to 180 ° C. Examples of the vulcanization method include press vulcanization.
 本発明の加硫化物は、ゴム成分中に変性セルロースファイバーが良好に均一に分散されており、さらに、ゴム成分及び変性セルロースファイバーが、硫黄によって架橋した架橋構造を有する。そのため、ゴム成分の分子鎖間での架橋のみならず、ゴム成分と変性セルロースファイバーとの間でも、架橋構造を形成している。よって本発明の成形体は、弾性率が高く、線熱膨張係数の非常に低いという特徴を有している。 The vulcanizate of the present invention has a modified cellulose fiber dispersed well and uniformly in the rubber component, and further has a crosslinked structure in which the rubber component and the modified cellulose fiber are crosslinked by sulfur. For this reason, a crosslinked structure is formed not only between the molecular chains of the rubber component but also between the rubber component and the modified cellulose fiber. Therefore, the molded article of the present invention has the characteristics that the elastic modulus is high and the linear thermal expansion coefficient is very low.
 本発明の成形体の具体例としては、例えば、自動車、電車、船舶、飛行機等の輸送機器等;パソコン、テレビ、電話、時計等の電化製品等;携帯電話等の移動通信機器等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等;建築材;文具等の事務機器等、容器、コンテナー等における、ゴムや柔軟なプラスチックが用いられている部材に適用することが可能である。特に、軽量で高弾性率、低振動吸収性が求められる自動車等のタイヤ部材、フレキシブルでかつ低熱膨張性が求められる電子デバイス部材等に好適に使用することができる。 Specific examples of the molded body of the present invention include, for example, transportation equipment such as automobiles, trains, ships, airplanes, etc .; electrical appliances such as personal computers, televisions, telephones, watches, etc .; mobile communications equipment such as mobile phones; Recycling equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; building materials; office equipment such as stationery, containers, containers, etc., can be applied to members using rubber or flexible plastic It is. In particular, it can be suitably used for tire members such as automobiles that are lightweight and require high elastic modulus and low vibration absorption, and electronic device members that are flexible and require low thermal expansion.
 [実施例]
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to these.
 ・参考例1(フィブリル化セルロースの調製)
 針葉樹漂白クラフトパルプ(NBKP)(リファイナー処理済み、王子製紙(株)製)を水に分散させ、固形分濃度1重量%のNBKP水懸濁液を調整した。
Reference Example 1 (Preparation of fibrillated cellulose)
Softwood bleached kraft pulp (NBKP) (refiner-treated, manufactured by Oji Paper Co., Ltd.) was dispersed in water to prepare an NBKP water suspension having a solid concentration of 1% by weight.
 得られた水懸濁液を石臼式磨砕機(グラインダー)(増幸産業(株)製のセレンディピターMKCA6-3)を用い、ディスク回転速度:1500rpmで3回繰り返し、フィブリル化を行い、フィブリル化セルロース(以下、FCとも表記する)水懸濁液(固形分濃度:1重量%)を得た。 The obtained aqueous suspension was fibrillated by repeating the fibrillation three times at a disc rotation speed of 1500 rpm using a stone mill grinder (Mellow Industrial Co., Ltd., Serendipeater MKCA6-3). A cellulose (hereinafter also referred to as FC) aqueous suspension (solid content concentration: 1% by weight) was obtained.
 得られたFCの倍率2万倍におけるSEM画像を図1Aに示す。図1Aより、得られたFCは、均一にフィブリル化されていることが確認できた。 SEM image of the obtained FC at a magnification of 20,000 times is shown in FIG. 1A. From FIG. 1A, it was confirmed that the obtained FC was uniformly fibrillated.
 ・実施例1-1(trans-クロトン酸クロライドによって変性した変性FC(以下、crtFCとも表記する)の調製)
 参考例1によって得られたFC水懸濁液中の水をN-メチルピロリドン(NMP)により置換し、固形分濃度0.5重量%のFC懸濁液を調製した。得られたFC懸濁液に、触媒としてピリジンをFCのグルコース単位1モルに対して・BR>Qモルの割合で添加し、さらに、TRANS-クロトン酸クロライドをFCのグルコース単位1モルに対して1モルの割合で添加し、30℃で反応させた。反応終了後、得られた生成物をエタノールで十分に洗浄後、トルエンにより溶媒置換し、トルエン中でcrtFCを懸濁させ、1重量%のcrtFC懸濁液を得た。
Example 1-1 (Preparation of modified FC modified with trans-crotonic acid chloride (hereinafter also referred to as crtFC))
The water in the FC water suspension obtained in Reference Example 1 was replaced with N-methylpyrrolidone (NMP) to prepare an FC suspension with a solid content concentration of 0.5% by weight. To the obtained FC suspension, pyridine is added as a catalyst at a ratio of BR> Q moles per mole of FC glucose units, and TRANS-crotonic acid chloride is added per mole of FC glucose units. 1 mol was added and reacted at 30 ° C. After the completion of the reaction, the obtained product was sufficiently washed with ethanol, and then the solvent was replaced with toluene, and crtFC was suspended in toluene to obtain a 1 wt% crtFC suspension.
 crtFCにおける変性された置換基の部分の構造を以下に示す。 The structure of the modified substituent portion in crtFC is shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 得られたcrtFCの倍率2万倍におけるSEM画像を図1Bに示す。図1Bより、得られたcrtFCは、均一にフィブリル化されていることが確認できた。 FIG. 1B shows an SEM image of the obtained crtFC at a magnification of 20,000 times. From FIG. 1B, it was confirmed that the obtained crtFC was uniformly fibrillated.
 また、FT-IR分析により、図2Aに示すFCを基準物質とし、変性化剤によって変性された置換基と、水酸基のピーク強度の比よりDSを求めた。FT-IRはPerkinElmer社製のSpectrum100を用い、ATR(減衰全反射)法により測定した。上記方法により得られたDSは、0.4であった。図2BにcrtFCのFT-IR分析によって得られたスペクトルを示す。 Further, by FT-IR analysis, DS was obtained from the ratio of the peak intensity of the hydroxyl group and the substituent modified with the modifying agent using FC shown in FIG. 2A as a reference substance. FT-IR was measured by ATR (Attenuated Total Reflection) method using Spectrum 100 manufactured by PerkinElmer. The DS obtained by the above method was 0.4. FIG. 2B shows a spectrum obtained by FT-IR analysis of crtFC.
 ・実施例1-2(cis-オレオイルクロライドによって変性した変性FC(以下、oleFCと表記する)の調製)
 trans-クロトン酸クロライドに変えて、cis-オレオイルクロライドを用いた以外は、実施例1-1と同様の方法により、FCの変性を行い、oleFCを得た。
Example 1-2 (Preparation of modified FC modified with cis-oleoyl chloride (hereinafter referred to as oleFC))
FC modification was carried out in the same manner as in Example 1-1 except that cis-oleoyl chloride was used instead of trans-crotonic acid chloride to obtain oleFC.
 oleFCにおける変性された置換基の部分の構造を以下に示す。 The structure of the modified substituent in oleFC is shown below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 得られたoleFCの倍率2万倍におけるSEM画像を図1Cに示す。図1Cより、得られたoleFCは、均一にフィブリル化されていることが確認できた。 FIG. 1C shows an SEM image at a magnification of 20,000 times of the obtained oleFC. From FIG. 1C, it was confirmed that the obtained oleFC was uniformly fibrillated.
 また、得られたoleFCのDSは0.4であった。なお、前記DSは、実施例1-1と同様の方法により算出した。図2CにFT-IR分析によって得られたoleFCのスペクトルを示す。 Moreover, DS of obtained oleFC was 0.4. The DS was calculated by the same method as in Example 1-1. FIG. 2C shows the spectrum of oleFC obtained by FT-IR analysis.
 ・実施例1-3(trans,trans-ソルビン酸クロライドによって変性した変性FC(以下、sorFCと表記する)の調製)
 trans-クロトン酸クロライドに変えて、trans,trans-ソルビン酸クロライドを用いた以外は、実施例1-1と同様の方法により、FCの変性を行い、sorFCを得た。
Example 1-3 (Preparation of modified FC modified with trans, trans-sorbic acid chloride (hereinafter referred to as sorFC))
FC was modified by the same method as in Example 1-1 except that trans, trans-sorbic acid chloride was used instead of trans-crotonic acid chloride to obtain sorFC.
 sorFCにおける変性された置換基の部分の構造を以下に示す。 The structure of the modified substituent portion in sorFC is shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 得られたsorFCの倍率2万倍におけるSEM画像を図1Dに示す。図1Dより、得られたsorFCは、均一にフィブリル化されていることが確認できた。 FIG. 1D shows an SEM image of the obtained sorFC at a magnification of 20,000 times. From FIG. 1D, it was confirmed that the obtained sorFC was uniformly fibrillated.
 また、得られたsorFCのDSは0.4であった。なお、前記DSは、実施例1-1と同様の方法により算出した。図2DにFT-IR分析によって得られたsorFCのスペクトルを示す。 Moreover, the DS of the obtained sorFC was 0.4. The DS was calculated by the same method as in Example 1-1. FIG. 2D shows a spectrum of sorFC obtained by FT-IR analysis.
 ・比較例1-1(アセチルクロライドによって変性した変性FC(以下、acFCと表記する)の調製)
 trans-クロトン酸クロライドに変えて、アセチルクロライドを用いた以外は、実施例1-1と同様の方法により、FCの変性を行い、acFCを得た。
Comparative Example 1-1 (Preparation of modified FC modified with acetyl chloride (hereinafter referred to as acFC))
FC was modified by the same method as in Example 1-1 except that acetyl chloride was used instead of trans-crotonic acid chloride to obtain acFC.
 acFCにおける変性された置換基の部分の構造を以下に示す。 The structure of the modified substituent portion in acFC is shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 得られたacFCの倍率2万倍におけるSEM画像を図1Eに示す。図1Eより、得られたacFCは、均一にフィブリル化されていることが確認できた。 The SEM image at a magnification of 20,000 times of the obtained acFC is shown in FIG. 1E. From FIG. 1E, it was confirmed that the obtained acFC was uniformly fibrillated.
 また、得られたacFCのDSは0.4であった。なお、前記DSは、実施例1-1と同様の方法により算出した。図2EにFT-IR分析によって得られたacFCのスペクトルを示す。 Moreover, the DS of the obtained acFC was 0.4. The DS was calculated by the same method as in Example 1-1. FIG. 2E shows the spectrum of acFC obtained by FT-IR analysis.
 ・比較例1-2(ミリストイルクロライドによって変性した変性FC(以下、myrFCと表記する)の調製)
 trans-クロトン酸クロライドに変えて、ミリストイルクロライドを用いた以外は、実施例1-1と同様の方法により、FCの変性を行い、myrFCを得た。
Comparative Example 1-2 (Preparation of modified FC modified with myristoyl chloride (hereinafter referred to as myrFC))
FC was modified by the same method as in Example 1-1 except that myristoyl chloride was used instead of trans-crotonic acid chloride to obtain myrFC.
 myrFCにおける変性された置換基の部分の構造を以下に示す。 The structure of the modified substituent portion in myrFC is shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 得られたmyrFCの倍率2万倍におけるSEM画像を図1Fに示す。図1Fより、得られたmyrFCは、均一にフィブリル化されていることが確認できた。 FIG. 1F shows an SEM image of the obtained myrFC at a magnification of 20,000 times. From FIG. 1F, it was confirmed that the obtained myrFC was uniformly fibrillated.
 また、得られたmyrFCのDSは0.4であった。なお、前記DSは、実施例1-1と同様の方法により算出した。図2FにFT-IR分析によって得られたmyrFCのスペクトルを示す。 Moreover, DS of myrFC obtained was 0.4. The DS was calculated by the same method as in Example 1-1. FIG. 2F shows a myrFC spectrum obtained by FT-IR analysis.
 ・比較例1-3(ステアロイルクロライドによって変性した変性FC(以下、stFCと表記する)の調製)
 trans-クロトン酸クロライドに変えて、ステアロイルクロライドを用いた以外は、実施例1-1と同様の方法により、FCの変性を行い、stFCを得た。
Comparative Example 1-3 (Preparation of modified FC modified with stearoyl chloride (hereinafter referred to as stFC))
FC was modified by the same method as in Example 1-1 except that stearoyl chloride was used instead of trans-crotonic acid chloride to obtain stFC.
 stFCにおける変性された置換基の部分の構造を以下に示す。 The structure of the modified substituent in stFC is shown below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 得られたstFCの倍率2万倍におけるSEM画像を図1Gに示す。図1Gより、得られたstFCは、均一にフィブリル化されていることが確認できた。 The SEM image at a magnification of 20,000 times of the obtained stFC is shown in FIG. 1G. From FIG. 1G, it was confirmed that the obtained stFC was uniformly fibrillated.
 また、得られたstFCのDSは0.4であった。なお、前記DSは、実施例1-1と同様の方法により算出した。図2GにFT-IR分析によって得られたstFCのスペクトルを示す。 Also, the DS of the obtained stFC was 0.4. The DS was calculated by the same method as in Example 1-1. FIG. 2G shows the spectrum of stFC obtained by FT-IR analysis.
 ・参考例2-1(加硫ゴムの調製)
 天然ゴム(NR)ラテックス(SimeDarby Plantaion製、固形分濃度:60重量%)にギ酸を添加し、酸凝固させ、50℃で乾燥させた。得られた乾燥NRを三本ロールにより90℃で5分間素練り後、NR100重量部に対して、ステアリン酸1.5重量部、及び酸化亜鉛2.5重量部を加えて7分間混練した。さらにNR100重量部に対して、硫黄3.0重量部、及び加硫促進剤(N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(和光純薬工業(株)製))2.0重量部添加し、10分間混練しゴム組成物を得た。得られたゴム組成物を、156℃で熱圧し加硫を施し、加硫ゴムシートを得た。
Reference Example 2-1 (Preparation of vulcanized rubber)
Formic acid was added to a natural rubber (NR) latex (manufactured by SimDarby Plantation, solid content concentration: 60% by weight), acid coagulated, and dried at 50 ° C. The obtained dried NR was masticated at 90 ° C. for 5 minutes with a three roll, and then 1.5 parts by weight of stearic acid and 2.5 parts by weight of zinc oxide were added to 100 parts by weight of NR and kneaded for 7 minutes. Further, for 100 parts by weight of NR, 3.0 parts by weight of sulfur and 2.0 parts by weight of a vulcanization accelerator (N-cyclohexyl-2-benzothiazolesulfenamide (manufactured by Wako Pure Chemical Industries, Ltd.)) were added. The rubber composition was obtained by kneading for 10 minutes. The obtained rubber composition was hot-pressed at 156 ° C. and vulcanized to obtain a vulcanized rubber sheet.
 ・参考例2-2(加硫ゴム(トルエン溶解)の調製)
 NRラテックス(固形分濃度60重量%)にギ酸を添加し、酸凝固させ、50℃で乾燥させ、得られた乾燥NRにトルエンを添加し、3重量%のNR溶液を調製した。得られたNR溶液をテフロン(登録商標)シャーレにキャストし、乾燥させた。得られた乾燥NRを参考例2-1と同様の方法で添加剤を加え、加硫を行い、加硫ゴムシートを得た。
Reference Example 2-2 (Preparation of vulcanized rubber (dissolved in toluene))
Formic acid was added to NR latex (solid content concentration 60 wt%), acid coagulated, dried at 50 ° C., and toluene was added to the obtained dry NR to prepare a 3 wt% NR solution. The obtained NR solution was cast on a Teflon (registered trademark) petri dish and dried. Additives were added to the obtained dry NR in the same manner as in Reference Example 2-1, followed by vulcanization to obtain a vulcanized rubber sheet.
 ・参考例2-3(FCを含む加硫ゴムの調製)
 参考例1で調製した1重量%のFC水分散液とNRラテックス(固形分濃度:60重量%)とをFCが最終生成物中に5重量%含有するように混合し撹拌させた。その後、ギ酸により酸凝固させ、50℃で乾燥させた。得られたゴム組成物を、三本ロールにより90℃で5分間素練りし、参考例2-1と同様の配合比率で、ステアリン酸、及び酸化亜鉛を加えて7分間混練した。さらに、参考例2-1と同様の配合比率で、硫黄、及び加硫促進剤を添加し、10分間混練し各ゴム組成物を得た。得られたゴム組成物を156℃で熱圧し加硫を施し、各加硫ゴムシートを得た。
Reference Example 2-3 (Preparation of vulcanized rubber containing FC)
The 1% by weight FC aqueous dispersion prepared in Reference Example 1 and NR latex (solid content concentration: 60% by weight) were mixed and stirred so that FC contained 5% by weight in the final product. Then, it was acid-coagulated with formic acid and dried at 50 ° C. The resulting rubber composition was masticated at 90 ° C. for 5 minutes with a three roll, and stearic acid and zinc oxide were added at the same blending ratio as in Reference Example 2-1, and kneaded for 7 minutes. Further, sulfur and a vulcanization accelerator were added at the same blending ratio as in Reference Example 2-1, and kneaded for 10 minutes to obtain each rubber composition. The resulting rubber composition was hot-pressed at 156 ° C. and vulcanized to obtain each vulcanized rubber sheet.
 ・実施例2-1(crtFCにより複合化された加硫ゴムの調製)
 NRラテックス(固形分濃度60重量%)にギ酸を添加し、酸凝固させ、50℃で乾燥させ、得られた乾燥NRにトルエンを添加し、3重量%のNR溶液を調製した。得られたNR溶液に対し、あらかじめトルエンに分散させたcrtFC分散液(固形分濃度1重量%)を加え、最終成形物中に5重量%含有するように混合し、24時間撹拌し、分散液を調製した。得られた分散液をテフロン(登録商標)シャーレにキャストし、乾燥させ、参考例2-1と同様の配合比率で、ステアリン酸、及び酸化亜鉛を加えて7分間混練した。さらに、参考例2-1と同様の配合比率で、硫黄、及び加硫促進剤を添加し、10分間混練しゴム組成物を得た。さらに得られたゴム組成物を参考例2-1と同様の方法により架橋し、加硫ゴムシートを調製した。
Example 2-1 (Preparation of vulcanized rubber compounded with crtFC)
Formic acid was added to NR latex (solid content concentration 60 wt%), acid coagulated, dried at 50 ° C., and toluene was added to the obtained dry NR to prepare a 3 wt% NR solution. To the obtained NR solution, a crtFC dispersion (solid content concentration: 1% by weight) previously dispersed in toluene is added, mixed so as to contain 5% by weight in the final molded product, and stirred for 24 hours. Was prepared. The obtained dispersion was cast into a Teflon (registered trademark) petri dish, dried, and stearic acid and zinc oxide were added at the same blending ratio as in Reference Example 2-1, and kneaded for 7 minutes. Further, sulfur and a vulcanization accelerator were added at the same blending ratio as in Reference Example 2-1, and kneaded for 10 minutes to obtain a rubber composition. Further, the obtained rubber composition was crosslinked by the same method as in Reference Example 2-1 to prepare a vulcanized rubber sheet.
 ・実施例2-2(oleFCにより複合化された加硫ゴムの調製)
 crtFCに変えてoleFCを用いた以外は、実施例2-1と同様の方法により、加硫ゴムシートを得た。
Example 2-2 (Preparation of vulcanized rubber compounded with oleFC)
A vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that oleFC was used instead of crtFC.
 ・実施例2-3(sorFCにより複合化された加硫ゴムの調製)
 crtFCに変えてsorFCを用いた以外は、実施例2-1と同様の方法により、加硫ゴムシートを得た。
Example 2-3 (Preparation of vulcanized rubber compounded by sorFC)
A vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that sorFC was used instead of crtFC.
 ・比較例2-1(acFCにより複合化された加硫ゴムの調製)
 crtFCに変えてacFCを用いた以外は、実施例2-1と同様の方法により、加硫ゴムシートを得た。
Comparative Example 2-1 (Preparation of vulcanized rubber compounded with acFC)
A vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that acFC was used instead of crtFC.
 ・比較例2-2(myrFCにより複合化された加硫ゴムの調製)
 crtFCに変えてmyrFCを用いた以外は、実施例2-1と同様の方法により、加硫ゴムシートを得た。
Comparative Example 2-2 (Preparation of vulcanized rubber compounded with myrFC)
A vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that myrFC was used instead of crtFC.
 ・比較例2-3(stFCにより複合化された加硫ゴムの調製)
 crtFCに変えてstFCを用いた以外は、実施例2-1と同様の方法により、加硫ゴムシートを得た。
Comparative Example 2-3 (Preparation of vulcanized rubber compounded with stFC)
A vulcanized rubber sheet was obtained in the same manner as in Example 2-1, except that stFC was used instead of crtFC.
 ・試験例1(加硫ゴムシートの引張り物性)
 参考例2-1、参考例2-2、参考例2-3、実施例2-1、実施例2-2、比較例2-1、及び比較例2-2において得られた各加硫ゴムシートについて、JIS K6251のダンベル型7号形の各試験片を作製し、万能試験機(Instron社製の電気機械式万能試験機3365)を用いて、クロスヘッドスピード200mm/分、及びスパン:20mmの条件にて各試験片を引っ張り、応力-ひずみ曲線を測定した。応力-ひずみ曲線を図3に示す。なお、図3は、(変性)FCの含有割合が5重量%の各試験片における応力-ひずみ曲線である。
Test example 1 (tensile physical properties of vulcanized rubber sheet)
Each vulcanized rubber obtained in Reference Example 2-1, Reference Example 2-2, Reference Example 2-3, Example 2-1, Example 2-2, Comparative Example 2-1, and Comparative Example 2-2 About a sheet | seat, each test piece of the dumbbell type | mold No. 7 type of JISK6251 was produced, and the crosshead speed 200mm / min and span: 20mm using the universal testing machine (the electromechanical universal testing machine 3365 by Instron). Each test piece was pulled under the following conditions to measure a stress-strain curve. The stress-strain curve is shown in FIG. FIG. 3 is a stress-strain curve for each test piece having a (modified) FC content of 5% by weight.
 また、前記測定した応力-ひずみ曲線から、各試験片における弾性率を測定した。評価結果を表1に示す。 In addition, the elastic modulus of each test piece was measured from the measured stress-strain curve. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<結果と考察>
 図3及び表1より、FCをクロトノイル化したcrtFCをNRと複合化して得られた加硫ゴムシート(実施例2-1)、及びFCをオレオイル化したoleFCをNRと複合化して得られた加硫ゴムシート(実施例2-2)は、弾性率が大幅に向上していることが確認できた。
<Results and discussion>
From FIG. 3 and Table 1, a vulcanized rubber sheet (Example 2-1) obtained by combining crtFC obtained by crotonoylizing FC with NR, and oleFC obtained by combining oleoylized FC with NR are obtained. It was confirmed that the vulcanized rubber sheet (Example 2-2) had a significantly improved elastic modulus.
 FCを含有しないNRのみを加硫して得られた加硫ゴムシート(参考例2-1及び2-2)と比較して、未変性のFCとNRを含む加硫ゴムシート(参考例2-3)では、弾性率が若干向上しているが、あまり顕著な効果が得られていない。これについては、疎水性の高いNRに対して、親水性の高いFCを配合することで、NR中でFCが凝集し、良好な分散性が得られなかったため、十分な弾性率が得られなかったものと考えられる。 Compared to vulcanized rubber sheets obtained by vulcanizing only NR not containing FC (Reference Examples 2-1 and 2-2), vulcanized rubber sheets containing unmodified FC and NR (Reference Example 2) In −3), although the elastic modulus is slightly improved, a remarkable effect is not obtained. About this, by blending FC with high hydrophilicity to NR with high hydrophobicity, FC aggregated in NR and good dispersibility could not be obtained, so sufficient elastic modulus could not be obtained. It is thought that.
 また、FCをアセチル化したacFCをNRと複合化して得られた加硫ゴムシート(比較例2-1)、及びFCをミリストイル化したmyrFCをNRと複合化して得られた加硫ゴムシート(比較例2-2)では、未変性FCを用いた参考例2-3と比較して、弾性率は2~3倍向上しているが、実施例2-1や実施例2-2のような弾性率の大幅な向上は見られなかった。 Further, a vulcanized rubber sheet obtained by combining acFC obtained by acetylating FC with NR (Comparative Example 2-1), and a vulcanized rubber sheet obtained by combining myrFC obtained by forming myristoyl FC with NR ( In Comparative Example 2-2), the elastic modulus was improved by 2 to 3 times compared to Reference Example 2-3 using unmodified FC, but as in Example 2-1 and Example 2-2. No significant improvement in elastic modulus was observed.
 これは、FCのアセチル化やミリストイル化により、FCに疎水性が付与され、NR中での分散性が改善されたものによると考えられる。しかしながら、比較例2-1及び2-2の変性FCは、二重結合を有さず、変性FC中の置換基が架橋の反応点とはならないため、実施例2-1及び2-2のような弾性率の向上までには至らなかったものと考えられる。 This is thought to be due to the FC being acetylated or myristoylated to impart hydrophobicity to the FC and to improve dispersibility in NR. However, the modified FCs of Comparative Examples 2-1 and 2-2 do not have a double bond, and the substituents in the modified FC do not serve as crosslinking reaction points. Therefore, the modified FCs of Examples 2-1 and 2-2 It is considered that the elastic modulus was not improved.
 一方で、実施例2-1及び実施例2-2のように、変性された置換基に二重結合を有する場合、得られる加硫ゴムシートは、NR中での硫黄による架橋反応だけでなく、NRと変性FC間においても、架橋構造が形成されたものと考えられる。そのため、比較例2-1や比較例2-2で用いた変性FCを用いた加硫ゴムよりも、はるかに弾性率が向上したものと考えられる。 On the other hand, when the modified substituent has a double bond as in Example 2-1 and Example 2-2, the resulting vulcanized rubber sheet has not only a crosslinking reaction with sulfur in NR. It is considered that a crosslinked structure was formed between NR and modified FC. For this reason, it is considered that the elastic modulus is much improved compared to the vulcanized rubber using the modified FC used in Comparative Example 2-1 and Comparative Example 2-2.
 ・試験例2(加硫ゴムシートの引張り物性)
 実施例2-2及び比較例2-3で得られた各加硫ゴムシートについて、試験例1と同様の方法により、応力-ひずみ曲線を測定した。応力-ひずみ曲線を図4に示す。なお、図4は、変性FCの含有割合が5重量%の各試験片における応力-ひずみ曲線である。
Test example 2 (tensile physical properties of vulcanized rubber sheet)
For each vulcanized rubber sheet obtained in Example 2-2 and Comparative Example 2-3, a stress-strain curve was measured by the same method as in Test Example 1. The stress-strain curve is shown in FIG. FIG. 4 is a stress-strain curve for each test piece having a modified FC content of 5% by weight.
 また、前記測定した応力-ひずみ曲線から、各試験片における弾性率を測定した。評価結果を表2に示す。 In addition, the elastic modulus of each test piece was measured from the measured stress-strain curve. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<結果と考察>
 図4及び表2より、FCをオレオイル化したoleFCをNRと複合化して得られた加硫ゴムシート(実施例2-2)は、FCをステアロイル化したstFCをNRと複合化して得られた加硫ゴムシート(比較例2-3)と比較して、弾性率が大幅に向上していることが確認できる。
<Results and discussion>
4 and Table 2, the vulcanized rubber sheet (Example 2-2) obtained by combining oleFC obtained by oleoylating FC with NR is obtained by combining stFC obtained by stearoylizing FC with NR. Compared with the vulcanized rubber sheet (Comparative Example 2-3), it can be confirmed that the elastic modulus is greatly improved.
 この結果から、変性FCにおける変性された置換基の炭素数が同じであるにもかかわらず、二重結合を有する置換基を有する変性FCを用いた方が、得られる加硫ゴムシートの弾性率が向上する、ということが明らかとなった。 From this result, the elastic modulus of the resulting vulcanized rubber sheet is obtained when the modified FC having a substituent having a double bond is used even though the carbon number of the modified substituent in the modified FC is the same. It became clear that it improved.
 これは、変性FCを用いることによるNR中での分散性の向上だけでなく、NRと変性FC間においても、架橋構造が形成されたことに起因するものであると考えられる。 This is considered to be caused not only by the improvement in dispersibility in NR by using modified FC, but also by the formation of a crosslinked structure between NR and modified FC.
 試験例3(加硫ゴムシートの線熱膨張係数測定)
 参考例2-1、参考例2-3、実施例2-1、実施例2-2、及び比較例2-1~2-3において製造した各加硫ゴムシートについて、大きさが40mm×4mm×1mmの各試験片を作製し、熱応力歪測定装置(エスアイアイ・ナノテクノロジー(株)製のEXSTAR TMA/SS6100)を用いて、温度範囲20~150℃、昇温速度5℃/分の条件にて各試験片の各温度における熱膨張(Thermal expansion)を測定し、得られた値から各試験片の線熱膨張係数(CTE)を測定した。図5に各温度に対する熱膨張をプロットしたグラフを示し、各試験片の線熱膨張係数を表3に示す。
Test Example 3 (Measurement of linear thermal expansion coefficient of vulcanized rubber sheet)
Each vulcanized rubber sheet produced in Reference Example 2-1, Reference Example 2-3, Example 2-1, Example 2-2, and Comparative Examples 2-1 to 2-3 has a size of 40 mm × 4 mm. Each test piece of × 1 mm was prepared, and using a thermal stress strain measuring device (EXSTAR TMA / SS6100 manufactured by SII NanoTechnology Co., Ltd.), a temperature range of 20 to 150 ° C., a heating rate of 5 ° C./min. The thermal expansion (Thermal expansion) at each temperature of each test piece was measured under the conditions, and the linear thermal expansion coefficient (CTE) of each test piece was measured from the obtained value. FIG. 5 shows a graph plotting the thermal expansion with respect to each temperature, and Table 3 shows the linear thermal expansion coefficient of each test piece.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<結果と考察>
 図5及び表3より、FCを含むNRを加硫して得られる加硫ゴムシート(参考例2-2)、及びFCを飽和脂肪酸で変性した変性FCを含むNRを加硫して得られる加硫ゴムシート(比較例2-1~2-3)は、FCを含まないNRを加硫して得られる加硫ゴムシート(参考例2-1)と比較して、CTEが低下しているが、十分な効果は得られていない。
<Results and discussion>
From FIG. 5 and Table 3, a vulcanized rubber sheet (Reference Example 2-2) obtained by vulcanizing NR containing FC and obtained by vulcanizing NR containing modified FC obtained by modifying FC with saturated fatty acid. The vulcanized rubber sheet (Comparative Examples 2-1 to 2-3) has a lower CTE than the vulcanized rubber sheet (Reference Example 2-1) obtained by vulcanizing NR not containing FC. However, sufficient effect is not obtained.
 これに対して、FCをクロトノイル化したcrtFCをNRと複合化して得られた加硫ゴムシート(実施例2-1)、及びFCをオレオイル化したoleFCをNRと複合化して得られた加硫ゴムシート(実施例2-2)は、表3の他の比較例及び参考例と比較して、CTEが大幅に低下していることが分かる。 On the other hand, a vulcanized rubber sheet (Example 2-1) obtained by combining crtFC obtained by crotonoylizing FC with NR, and vulcanized rubber sheet obtained by combining oleFC obtained by oleoylizing FC with NR. It can be seen that the vulcanized rubber sheet (Example 2-2) has a significantly lower CTE than the other comparative examples and reference examples in Table 3.
 特に、oleFCを用いた実施例2-2では、わずか5重量%のoleFCの添加で、参考例2-1のFCを含まないNRの加硫ゴムのCTEである226.1ppm/℃から18.6ppm/℃にまで劇的に低下した。 In particular, in Example 2-2 using oleFC, only 5 wt% of oleFC was added, and the CTE of vulcanized rubber of NR not containing FC of Reference Example 2-1 was from 226.1 ppm / ° C. to 18. It dropped dramatically to 6 ppm / ° C.
 試験例1及び2の弾性率と同様、変性FCの変性基として、二重結合を有する側鎖を導入したことにより、NRと変性FC間で架橋構造による強い界面相互作用が生じたためと推察される。 As with the elastic modulus of Test Examples 1 and 2, it is presumed that the introduction of a side chain having a double bond as a modifying group of the modified FC caused a strong interfacial interaction between the NR and the modified FC due to the crosslinked structure. The
 ・試験例4
 参考例2-2、参考例2-3、実施例2-2、及び比較例2-3において製造した(変性)FC5重量%を含有する各加硫ゴムシートについて、大きさが40mm×4mm×1mmの各試験片を作製し、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー(株)製のEXSTAR DMS6100)を用いて引張モードで動的粘弾性(DMA)測定を行い、周波数1Hz、温度範囲-100~150℃、昇温速度3℃/分の条件にて、貯蔵弾性率E’、及びtanδ(損失正接)を測定した。
Test example 4
Each vulcanized rubber sheet containing 5% by weight (modified) FC manufactured in Reference Example 2-2, Reference Example 2-3, Example 2-2, and Comparative Example 2-3 has a size of 40 mm × 4 mm × Each test piece of 1 mm was prepared, and dynamic viscoelasticity (DMA) measurement was performed in a tensile mode using a dynamic viscoelasticity measuring apparatus (EXSTAR DMS6100 manufactured by SII Nano Technology Co., Ltd.), frequency 1 Hz, temperature Storage elastic modulus E ′ and tan δ (loss tangent) were measured under the conditions of −100 to 150 ° C. and a temperature increase rate of 3 ° C./min.
 図6に各温度に対する貯蔵弾性率をプロットしたグラフ、図7に各温度に対するtanδ(損失正接)をプロットしたグラフを示し、表4に-90℃、-20℃、0℃、70℃、及び150℃における各サンプルシートの貯蔵弾性率を示す。また、表5に図7に示されるtanδのピークの温度を示す。 FIG. 6 is a graph plotting storage elastic modulus against each temperature, FIG. 7 is a graph plotting tan δ (loss tangent) against each temperature, and Table 4 shows −90 ° C., −20 ° C., 0 ° C., 70 ° C., and The storage elastic modulus of each sample sheet at 150 ° C. is shown. Table 5 shows the temperature of the tan δ peak shown in FIG.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 <結果と考察>
 図6及び表4より、NRに対して未変性FCの配合(参考例2-3)、及び変性FCにおいて、不飽和結合を有していないstFCの配合(比較例2-3)だけでも、貯蔵弾性率が向上しているが、その効果は、二重結合を有しているオレオイル化されたoleFCを配合(実施例2-2)することにより飛躍的に向上していることが分かる。
<Results and discussion>
From FIG. 6 and Table 4, the blend of unmodified FC with respect to NR (Reference Example 2-3) and the blend of stFC that does not have an unsaturated bond in modified FC (Comparative Example 2-3) Although the storage elastic modulus is improved, it can be seen that the effect is drastically improved by blending oleoylated oleFC having a double bond (Example 2-2). .
 また、図7において、実施例2-2の加硫ゴムシートは、他の比較例及び参考例と比較して、tanδ(損失正接)が小さくなっていることが分かる。これは、変性FCの変性基として、二重結合を有する側鎖を導入したことにより、NRとFC間で架橋構造による強い界面相互作用が生じ、当該界面でのNRとFC間での摩擦による熱的なエネルギーロスが低減したためであると推察される。 Further, in FIG. 7, it can be seen that the vulcanized rubber sheet of Example 2-2 has a smaller tan δ (loss tangent) than the other comparative examples and reference examples. This is because, by introducing a side chain having a double bond as a modifying group of the modified FC, a strong interfacial interaction occurs between the NR and the FC due to a cross-linked structure, and friction is caused between the NR and the FC at the interface. This is probably because the thermal energy loss has been reduced.

Claims (8)

  1. セルロースファイバーを構成するセルロース中の一部の水酸基の水素原子が、式(1):
      -A-R   (1)
    (式(1)中、Rは、少なくとも1個の不飽和結合を有する炭素数3~30の炭化水素であり、Aはカルボニル基(-CO-)又は単結合(-)である)
    で表される置換基によって置換された変性セルロースファイバー。
    Hydrogen atoms of some hydroxyl groups in cellulose constituting the cellulose fiber are represented by the formula (1):
    -AR 1 (1)
    (In Formula (1), R 1 is a hydrocarbon having 3 to 30 carbon atoms having at least one unsaturated bond, and A is a carbonyl group (—CO—) or a single bond (—)).
    The modified cellulose fiber substituted by the substituent represented by these.
  2. セルロースファイバーが、フィブリル化セルロースファイバーである請求項1に記載の変性セルロースファイバー。 The modified cellulose fiber according to claim 1, wherein the cellulose fiber is a fibrillated cellulose fiber.
  3. 置換度(DS)が0.05~2.0である請求項1又は2に記載の変性セルロースファイバー。 The modified cellulose fiber according to claim 1 or 2, wherein the degree of substitution (DS) is 0.05 to 2.0.
  4. セルロースファイバーを、式(1’):
      R-A-B   (1’)
    (式中、Aはカルボニル基(-CO-)又は単結合(-)であり、Bは脱離基である)
    によって表される変性化剤によって変性する工程を含む
    変性セルロースファイバーの製造方法。
    Cellulose fiber is represented by the formula (1 ′):
    R 1 -AB (1 ')
    (Wherein A is a carbonyl group (—CO—) or a single bond (−), and B is a leaving group)
    The manufacturing method of the modified cellulose fiber including the process modified | denatured with the modifier | denaturant represented by these.
  5. セルロースファイバーがフィブリル化セルロースファイバーである請求項4に記載の変性セルロースファイバーの製造方法。 The method for producing a modified cellulose fiber according to claim 4, wherein the cellulose fiber is a fibrillated cellulose fiber.
  6. 請求項1~3のいずれかに記載の変性セルロースファイバー、及び
    ゴム成分を含むゴム組成物。
    A rubber composition comprising the modified cellulose fiber according to any one of claims 1 to 3 and a rubber component.
  7. さらに硫黄を含む請求項6に記載のゴム組成物。 The rubber composition according to claim 6, further comprising sulfur.
  8. 請求項7に記載のゴム組成物を加硫することによって得られる加硫化物。 A vulcanized product obtained by vulcanizing the rubber composition according to claim 7.
PCT/JP2012/081179 2011-11-30 2012-11-30 Modified cellulose fibers and rubber composition containing modified cellulose fibers WO2013081138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013547250A JP6014860B2 (en) 2011-11-30 2012-11-30 Modified cellulose fiber and rubber composition containing modified cellulose fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011262205 2011-11-30
JP2011-262205 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013081138A1 true WO2013081138A1 (en) 2013-06-06

Family

ID=48535585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081179 WO2013081138A1 (en) 2011-11-30 2012-11-30 Modified cellulose fibers and rubber composition containing modified cellulose fibers

Country Status (2)

Country Link
JP (1) JP6014860B2 (en)
WO (1) WO2013081138A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129509A (en) * 2012-11-29 2014-07-10 Nishikawa Rubber Co Ltd Elastomer composition and method for producing the same
JP5940192B1 (en) * 2015-03-31 2016-06-29 兵庫県 Rubber-based cross-linked foamed molded article and method for producing the same
EP3070119A1 (en) * 2015-03-19 2016-09-21 Sumitomo Rubber Industries, Ltd. Rubber composition and tire
JP2016216608A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
JP2016216611A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Run flat tire
JP2016216612A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
JP2016216610A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
JP2016216609A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
US9982114B2 (en) * 2015-05-20 2018-05-29 Sumitomo Rubber Industries, Ltd. Rubber composition, rubber composition for tires, and pneumatic tire
WO2018110566A1 (en) * 2016-12-14 2018-06-21 星光Pmc株式会社 Composition for molded foam and production method therefor, molded foam and production method therefor, and modified cellulose-containing resin composition for molded foam
WO2018164131A1 (en) * 2017-03-07 2018-09-13 花王株式会社 Method for producing modified cellulose fibers
WO2018173868A1 (en) * 2017-03-22 2018-09-27 株式会社ダイセル Oily cosmetic and method for manufacturing same
US10227480B2 (en) 2014-12-18 2019-03-12 Bridgestone Americas Tire Operations, Inc. Rubber compositions containing whey protein
US10233319B2 (en) 2014-12-18 2019-03-19 Bridgestone Americas Tire Operations, Llc Rubber compositions containing whey protein
US10246581B2 (en) 2014-12-18 2019-04-02 Bridgestone Americas Tire Operations, Llc Rubber compositions containing whey protein
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
US10544268B2 (en) 2014-12-18 2020-01-28 Bridgestone Americas Tire Operations, Llc Rubber compositions containing carbon black and whey protein
JP2020164642A (en) * 2019-03-29 2020-10-08 日本製紙株式会社 Carboxyl group-containing modified cellulose fiber, and dried solid thereof and method for producing the same
EP3885410A4 (en) * 2018-11-20 2022-08-24 Furukawa Electric Co., Ltd. Resin formed body and resin composition
WO2024116889A1 (en) * 2022-11-29 2024-06-06 東亞合成株式会社 Modified nanocellulose, rubber composition, rubber, and rubber reinforcer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051266A (en) * 2005-02-01 2007-03-01 Kyoto Univ Fiber-reinforced composite material and method for producing the same
JP2008525571A (en) * 2004-12-23 2008-07-17 オルガノクリック エービー Modification of amines and alcohols
WO2010069330A2 (en) * 2008-12-16 2010-06-24 Carlsberg A/S Coating of hydroxylated surfaces by gas phase grafting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263417A (en) * 2008-04-22 2009-11-12 Bridgestone Corp Rubber composition and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525571A (en) * 2004-12-23 2008-07-17 オルガノクリック エービー Modification of amines and alcohols
JP2007051266A (en) * 2005-02-01 2007-03-01 Kyoto Univ Fiber-reinforced composite material and method for producing the same
WO2010069330A2 (en) * 2008-12-16 2010-06-24 Carlsberg A/S Coating of hydroxylated surfaces by gas phase grafting

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JANDURA P. ET AL.: "Fibrous Long-Chain Organic Acid Cellulose Esters and Their Characterization by Diffuse Reflectance FTIR Spectroscopy, Solid-State CP/MAS 13C-NMR, and X-Ray Diffraction", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 78, no. 7, 2000, pages 1354 - 1365 *
JANDURA P. ET AL.: "Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids", POLYMER DEGRADATION AND STABILITY, vol. 70, no. 3, 2000, pages 387 - 394, XP004295059, DOI: doi:10.1016/S0141-3910(00)00132-4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129509A (en) * 2012-11-29 2014-07-10 Nishikawa Rubber Co Ltd Elastomer composition and method for producing the same
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
US10544268B2 (en) 2014-12-18 2020-01-28 Bridgestone Americas Tire Operations, Llc Rubber compositions containing carbon black and whey protein
US11999830B2 (en) 2014-12-18 2024-06-04 Bridgestone Americas Tire Operations, Llc Rubber compositions containing carbon black and whey protein
US10233319B2 (en) 2014-12-18 2019-03-19 Bridgestone Americas Tire Operations, Llc Rubber compositions containing whey protein
US10227480B2 (en) 2014-12-18 2019-03-12 Bridgestone Americas Tire Operations, Inc. Rubber compositions containing whey protein
US10246581B2 (en) 2014-12-18 2019-04-02 Bridgestone Americas Tire Operations, Llc Rubber compositions containing whey protein
US11046824B2 (en) 2014-12-18 2021-06-29 Bridgestone Americas Tire Operations, Llc Rubber compositions containing carbon black and whey protein
US20160272792A1 (en) * 2015-03-19 2016-09-22 Sumitomo Rubber Industries, Ltd. Rubber composition and tire
CN105985540B (en) * 2015-03-19 2020-04-21 住友橡胶工业株式会社 Rubber composition and tire
JP2016175992A (en) * 2015-03-19 2016-10-06 住友ゴム工業株式会社 Rubber composition and tire
CN105985540A (en) * 2015-03-19 2016-10-05 住友橡胶工业株式会社 Rubber composition and tire
EP3070119A1 (en) * 2015-03-19 2016-09-21 Sumitomo Rubber Industries, Ltd. Rubber composition and tire
JP2016191007A (en) * 2015-03-31 2016-11-10 兵庫県 Rubber-based crosslinking foam molded body and manufacturing method therefor
WO2016159081A1 (en) * 2015-03-31 2016-10-06 兵庫県 Rubber crosslinked foamed molded article
JP5940192B1 (en) * 2015-03-31 2016-06-29 兵庫県 Rubber-based cross-linked foamed molded article and method for producing the same
JP2016216611A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Run flat tire
JP2016216608A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
US9982114B2 (en) * 2015-05-20 2018-05-29 Sumitomo Rubber Industries, Ltd. Rubber composition, rubber composition for tires, and pneumatic tire
JP2016216609A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
JP2016216610A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
JP2016216612A (en) * 2015-05-20 2016-12-22 住友ゴム工業株式会社 Pneumatic tire
WO2018110566A1 (en) * 2016-12-14 2018-06-21 星光Pmc株式会社 Composition for molded foam and production method therefor, molded foam and production method therefor, and modified cellulose-containing resin composition for molded foam
JP2018145427A (en) * 2017-03-07 2018-09-20 花王株式会社 Method for producing modified cellulose fiber
WO2018164131A1 (en) * 2017-03-07 2018-09-13 花王株式会社 Method for producing modified cellulose fibers
WO2018173868A1 (en) * 2017-03-22 2018-09-27 株式会社ダイセル Oily cosmetic and method for manufacturing same
EP3885410A4 (en) * 2018-11-20 2022-08-24 Furukawa Electric Co., Ltd. Resin formed body and resin composition
US11820883B2 (en) 2018-11-20 2023-11-21 Furukawa Electric Co., Ltd. Resin formed body and resin composition
JP2020164642A (en) * 2019-03-29 2020-10-08 日本製紙株式会社 Carboxyl group-containing modified cellulose fiber, and dried solid thereof and method for producing the same
JP7336783B2 (en) 2019-03-29 2023-09-01 日本製紙株式会社 Carboxyl group-containing modified cellulose fiber, its dry solid and its production method
WO2024116889A1 (en) * 2022-11-29 2024-06-06 東亞合成株式会社 Modified nanocellulose, rubber composition, rubber, and rubber reinforcer

Also Published As

Publication number Publication date
JP6014860B2 (en) 2016-10-26
JPWO2013081138A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6014860B2 (en) Modified cellulose fiber and rubber composition containing modified cellulose fiber
US9567455B2 (en) Rubber composition, method for manufacturing same, vulcanized rubber, and tire
US9896553B2 (en) Method for manufacturing rubber composition, rubber composition, vulcanized rubber, and tire
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
JP5763995B2 (en) Rubber composition and method for producing the same
JP6543086B2 (en) Rubber composition, rubber composition for tire and pneumatic tire
JP5865063B2 (en) Method for producing rubber composition
JP6146115B2 (en) Cellulose fiber, rubber composition, vulcanized rubber composition and tire
JP6155415B1 (en) Masterbatch, rubber composition, and production method thereof
JP2012025949A (en) Fine cellulose fiber dispersion, cellulose fiber composite, and its manufacturing method
JP2013177540A (en) Rubber modifying material, rubber latex-dispersed solution and rubber composition
WO2017043453A1 (en) Rubber composition
JP5966859B2 (en) Method for producing fine cellulose fiber dispersion
JP2013155304A (en) Rubber composition for tire, method of producing the same, and pneumatic tire
JP6160457B2 (en) Rosin-modified cellulose, rosin-modified cellulose microfibril and method for producing them
JP6787533B1 (en) Method for Producing Modified Cellulose Fiber Blended Resin Composition
WO2019230719A1 (en) Master batch containing carboxymethylated cellulose nanofibers and method for producing same
JP2018193465A (en) Master batch and manufacturing method of rubber composition
WO2019194032A1 (en) Resin composition for solid molding material, method for producing same, and solid molded article
WO2022177014A1 (en) Composition containing cellulose nanofibers
WO2022177012A1 (en) Composition containing cellulose nanofibers
JP2014074164A (en) Rubber modifier, rubber latex dispersion, and rubber composition
WO2023136130A1 (en) Rubber composition and method for producing same
JP6378131B2 (en) Pneumatic tire
WO2024106173A1 (en) Resin composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854148

Country of ref document: EP

Kind code of ref document: A1