WO2022166754A1 - 触控面板、电子设备及工作状态的控制方法 - Google Patents

触控面板、电子设备及工作状态的控制方法 Download PDF

Info

Publication number
WO2022166754A1
WO2022166754A1 PCT/CN2022/074301 CN2022074301W WO2022166754A1 WO 2022166754 A1 WO2022166754 A1 WO 2022166754A1 CN 2022074301 W CN2022074301 W CN 2022074301W WO 2022166754 A1 WO2022166754 A1 WO 2022166754A1
Authority
WO
WIPO (PCT)
Prior art keywords
control chip
touch
antenna
working state
processor
Prior art date
Application number
PCT/CN2022/074301
Other languages
English (en)
French (fr)
Inventor
邾志民
简宪静
王义金
马荣杰
丁杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022166754A1 publication Critical patent/WO2022166754A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present application belongs to the technical field of electronic devices, and in particular relates to a touch panel, an electronic device and a method for controlling a working state.
  • touch mainly uses two-dimensional touch, that is, the touch screen can recognize the user's pressing, dragging and other actions on the screen plane.
  • 2D touch technology matures, the industry has been looking for ways to break through the limitations of 2D planes.
  • next-generation smart devices such as Augmented Reality (AR)/Virtual Reality (VR)
  • AR Augmented Reality
  • VR Virtual Reality
  • new interaction methods accompanying these new devices are also on the agenda.
  • new-generation devices such as AR/VR require an immersive and somatosensory experience, so it is difficult to use traditional two-dimensional touch to meet the needs of such next-generation smart devices.
  • the purpose of the embodiments of the present application is to provide a touch panel, an electronic device, and a control method for a working state, which can solve the problem that the existing two-dimensional touch cannot meet the interaction requirements of AR/VR.
  • an embodiment of the present application provides a touch panel, including:
  • the distribution area of the touch electrodes is formed as a touch area
  • a millimeter-wave radar antenna is disposed on the transparent substrate in an area other than the touch area.
  • an embodiment of the present application provides an electronic device, including the above touch panel.
  • an embodiment of the present application provides a method for controlling a working state, which is applied to the electronic device as described above, and the method includes:
  • the touch control chip or the antenna control chip is controlled to be in a working state.
  • an embodiment of the present application provides an apparatus for controlling a working state, which is applied to the electronic device as described above, and the apparatus includes:
  • the first acquisition module is used to acquire the position information of the target object
  • the control module is used to control the touch control chip or the antenna control chip to be in a working state according to the position information of the target object.
  • an embodiment of the present application further provides an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction The steps of the method of the third aspect are implemented when executed by the processor.
  • an embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method according to the third aspect is implemented. step.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the third aspect the method described.
  • an embodiment of the present application provides a computer program product, the computer program product is stored in a non-volatile storage medium, and the computer program product is executed by at least one processor to implement the third aspect. method described.
  • a millimeter-wave radar antenna is arranged on the transparent substrate except the touch area, and three-dimensional gesture recognition can be realized by the millimeter-wave radar antenna. Since the above-mentioned millimeter-wave radar antenna is set in the non-touch area, the two-dimensional touch operation will not be affected, and the AR/VR interaction requirements can be satisfied on the basis of realizing two-dimensional touch.
  • FIG. 1 is a schematic structural diagram of a touch panel according to an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a millimeter-wave radar system according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an angle measured by a millimeter-wave radar system in an embodiment of the present application
  • FIG. 4 is a schematic diagram of the angle between the millimeter wave radar system and the gesture according to the embodiment of the present application
  • FIG. 5 is one of the schematic structural diagrams of the electronic device according to the embodiment of the present application.
  • FIG. 6 is the second schematic structural diagram of the electronic device according to the embodiment of the present application.
  • FIG. 7 is a third schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 8 is a fourth schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for controlling a working state according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a control device in a working state according to an embodiment of the present application.
  • FIG. 11 is a fifth schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 12 is a sixth schematic structural diagram of an electronic device according to an embodiment of the present application.
  • an embodiment of the present application provides a touch panel, including:
  • the millimeter-wave radar antenna 104 is disposed on the transparent substrate 101 except for the touch area 103 .
  • the millimeter-wave radar antenna includes a transmitting antenna and N receiving antennas, where N is an integer greater than 2;
  • At least two of the N receiving antennas are arranged along the first direction of the transparent substrate, and at least two of the N receiving antennas are arranged along the second direction of the transparent substrate Antenna, and the first direction and the second direction are two different directions, for example, the first direction is a horizontal direction, and the second direction is a vertical direction.
  • At least one transmit antenna and N receive antennas may be included. Such as including a transmitting antenna and three receiving antennas. As shown in Figure 3, it includes one transmitting antenna (TX antenna) and three receiving antennas (RX1 antenna, RX2 antenna and RX3 antenna), wherein the TX antenna, RX1 antenna and RX2 antenna are arranged along the x direction, and the RX2 and RX3 antennas are arranged along the x direction. y direction setting.
  • 3D gesture recognition can be realized through the above-mentioned millimeter-wave radar antenna, and the millimeter-wave radar antenna device used for gesture recognition is placed on the transparent substrate for carrying the touch electrodes, so there is no need to set up other modules, and there is no need to add additional antenna layers. , thereby saving space and wirelessly increasing the thickness of the screen.
  • Millimeter-wave radar systems can measure the distance, velocity and angle of target objects. As shown in Figure 2, it is the principle block diagram of the Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar system. The principle block diagram is only to illustrate the main components of the millimeter-wave radar system. Among them, the specific number of transceiver channels and device composition , the location and connection method of different functions can change dynamically with different architectures.
  • a complete mmWave radar system includes analog components such as transmit antenna TX, receive antenna RX, RF components and clocks, as well as digital components such as analog-to-digital converters, microcontrollers and digital signal processors.
  • the millimeter-wave radar can use the horizontal plane to estimate the angle of the reflected signal, which is also called the Angle of Arrival (AoA).
  • the phase change of the leaf change (Fast Fourier Transform, FFT) or Doppler FFT peak, and the change of the phase can calculate the angle of the angle of arrival.
  • At least two receiving antennas are required to calculate the angle of arrival angle, and if 3D gesture recognition is realized, at least two antennas are required in the X and Y directions.
  • the calculation process is as follows: According to the distance between the two receiving antennas And the phase difference of the reflected echoes received by the two antennas, and the trigonometric function, the angle of the angle of arrival is obtained; the specific calculation formula is as follows:
  • l is the distance between the two receiving antennas, as shown in Figure 4, ⁇ is the angle between the millimeter-wave radar and the gesture, ⁇ is the phase difference, ⁇ is the radar signal transmission speed; ⁇ d is the reception of the two receiving antennas The distance difference of the reflected echo transmission.
  • the material of the above-mentioned millimeter-wave radar antenna is a transparent conductive material.
  • the material of the above-mentioned millimeter-wave radar antenna is indium tin oxide (Indium tin Oxide, ITO) or nano-silver wire, etc. Since the material of the millimeter-wave radar antenna is a transparent conductive material, the display effect of the screen of the electronic device will not be affected. .
  • the millimeter-wave radar antenna is a patch antenna.
  • the antenna form may be flexibly selected according to design requirements, for example, a dipole antenna, a slot antenna, a Yagi antenna, and the like may also be used.
  • a millimeter-wave radar antenna is arranged on the transparent substrate except the touch area, and three-dimensional gesture recognition can be realized by the millimeter-wave radar antenna. Since the above-mentioned millimeter-wave radar antenna is set in the non-touch area, the two-dimensional touch operation will not be affected, and the AR/VR interaction requirements can be satisfied on the basis of realizing two-dimensional touch.
  • an embodiment of the present application further provides a display device, where the display device includes the touch panel as described above, and the display device may specifically be a display screen.
  • Embodiments of the present application also provide an electronic device, the electronic device including the above touch panel.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a wearable device, and the like.
  • the electronic device includes a display screen, and the display screen includes the above-mentioned touch panel, the touch panel is located on a touch layer of the display screen, and the touch layer includes a plurality of touch panels arranged in an array.
  • the touch sensor lays the sensing electrodes (touch electrodes) on the surface of the substrate into one or two layers and patterns (mainly diamond), one layer is responsible for the X direction, the other layer is responsible for the Y direction, and then through the X direction Direction and Y-direction electrode capacitance changes to locate.
  • the touch layer pattern will leave a certain insulating area at the edge of the display screen.
  • the part of the insulating area (the upper or lower end of the touch layer) can be used to place the above-mentioned millimeter-wave radar antenna, as shown in Fig. 5 and Fig.
  • the above-mentioned millimeter-wave radar antenna 104 is arranged in the non-conductive area of the edge of the touch layer 105 .
  • the electronic device shown in FIG. 5 is a mobile phone, and the electronic device shown in FIG. 6 is a watch.
  • the above-mentioned millimeter-wave radar antenna is placed on the upper or lower end of the touch layer, so that the path from the millimeter-wave radar antenna to the antenna control chip is the shortest, which effectively reduces the path loss and improves the radiation performance of the antenna.
  • the electronic device in this embodiment of the present application further includes:
  • the flexible circuit board 106 is provided with a touch control chip 108 connected to the touch panel and an antenna control chip 107 connected to the millimeter wave radar antenna.
  • the millimeter-wave radar antenna is connected to the flexible circuit board through an anisotropic conductive film (Anisotropic Conductive Film, ACF) bonding process.
  • ACF anisotropic Conductive Film
  • the millimeter-wave radar antenna is electrically connected to the antenna control chip through a flexible circuit board.
  • a bonding area is set at the lower end of the touch layer, and the millimeter-wave radar antenna is connected to the bonding area through the antenna conductive line.
  • the flexible circuit The pins of the board (Flexible Printed Circuit, FPC) are soldered to the bonding area through the Surface Mounted Technology (SMT) process, so that the electrical connection between the millimeter-wave radar antenna and the flexible circuit board is realized, thereby realizing the The electrical connection between the millimeter wave radar antenna and the antenna control chip on the flexible circuit board, and placing the antenna control chip on the flexible circuit board can effectively reduce the loss from the antenna to the chip.
  • FPC Flexible Printed Circuit
  • the antenna control chip in the embodiment of the present application includes a millimeter wave signal generator, which transmits the generated radio waves (radar waves) through the antenna, and then uses the receiver to receive the echoes.
  • a millimeter wave signal generator which transmits the generated radio waves (radar waves) through the antenna, and then uses the receiver to receive the echoes.
  • the antenna control chip and the touch chip each use one connector or share one connector. ) connection to realize the corresponding function.
  • the processing chip in the antenna control chip will calculate the position data of the target object such as the finger in real time according to the time difference between sending and receiving. By comparing the difference in the position of the finger in different time periods, and comparing with the built-in data, it can obtain the current movement of the finger. Achieve accurate 3D gesture recognition.
  • the electronic device in the embodiment of the present application further includes:
  • a switch module which is respectively connected with the antenna control chip, the touch control chip and the processor of the electronic device;
  • the processor communicates with the antenna control chip
  • the processor communicates with the touch control chip
  • the processor communicates with the antenna control chip and the touch control chip respectively;
  • the processor is disconnected from the antenna control chip and the touch control chip, respectively.
  • the switch module includes:
  • the first switch is respectively connected with the processor and the antenna control chip
  • the second switches are respectively connected with the processor and the touch control chip.
  • the embodiment of the present application also provides a working state control method, which is applied to the above electronic device. As shown in FIG. 9 , the method includes:
  • Step 901 Acquire position information of the target object.
  • the target object may specifically be the user's hand.
  • the position information of the target object can be detected through a millimeter-wave radar antenna.
  • Step 902 Control the touch control chip or the antenna control chip to be in a working state according to the position information of the target object.
  • the millimeter-wave radar antenna when the millimeter-wave radar antenna is working, it can be considered that the three-dimensional gesture recognition function is in progress, and the touch function can be turned off at this time; when the millimeter-wave radar antenna recognizes that the human hand is close to the screen, the touch function is turned on; When the touch sensor detects a human hand, the 3D gesture recognition function is turned off. When the touch sensor does not detect a human hand for a long time, the millimeter-wave radar antenna will be activated to perform a rough scan to check whether the user has performed 3D gesture recognition.
  • the touch control chip or the antenna control chip is controlled to be in a working state, so as to reduce the power consumption of the terminal.
  • controlling the touch control chip or the antenna control chip to be in a working state according to the position information of the target object includes:
  • the touch control chip is controlled to be in a working state, and the antenna control chip is controlled to be in a non-working state.
  • controlling the antenna control chip to be in a working state includes:
  • the antenna control chip is controlled to be in a gesture recognition mode.
  • the method further includes:
  • the power consumption when the antenna control chip works in the ranging mode is less than the power consumption when the antenna control chip works in the gesture recognition mode.
  • the system When it is determined that the user is performing a three-dimensional gesture operation, the system immediately turns off the touch system; because the millimeter-wave radar system has a ranging function, Therefore, when it detects that the human hand is attached to the screen surface and the touch sensor senses the operation of the human hand, the millimeter-wave radar system switches to the low-precision mode (the second working mode), and only performs the low-power ranging function to determine whether the human hand is not. Enter the gesture recognition area; when the millimeter wave radar system senses that the human hand leaves the screen and does not enter the gesture recognition area (determined by detecting the distance between the human hand and the screen), the millimeter wave radar system can think that the human hand is working in different areas on the screen at this time.
  • the touch system and the millimeter-wave radar system still keep working; when the millimeter-wave radar system senses that the human hand leaves the screen and enters the gesture recognition area, the millimeter-wave radar system switches to the high-precision gesture recognition mode (the first working mode) to determine whether the user continues to perform gesture recognition or leaves completely, while the touch system is turned off.
  • the millimeter-wave radar system switches between different functions and the time-sharing coordinated work mode of the millimeter-wave radar system and the touch system can be used without affecting the gesture recognition and touch functions of the array antenna layer. , significantly reduce the power consumption of the array millimeter-wave radar and touch, thereby improving the endurance.
  • some of the touch sensors in the touch layer can also be used as millimeter-wave radar antennas.
  • the execution subject may be a working state control device, or a control module in the working state control device for executing the working state control method.
  • the control device of the working state provided by the embodiment of the present application is described by taking the control device of the working state executing the control method of the working state as an example.
  • an embodiment of the present application further provides an apparatus 1000 for controlling a working state, which is applied to the electronic device as described above, and the apparatus includes:
  • the first acquisition module 1001 is used to acquire the position information of the target object
  • the control module 1002 is configured to control the touch control chip or the antenna control chip to be in a working state according to the position information of the target object.
  • control module is configured to control the antenna control chip to be in a working state and control the touch control chip to be in a non-working state when the target object is located in the gesture recognition area;
  • the touch control chip is controlled to be in a working state, and the antenna control chip is controlled to be in a non-working state.
  • control module is configured to control the antenna control chip to be in a gesture recognition mode.
  • control device in the embodiment of the present application further includes:
  • a processing module configured to control the antenna control chip to be in a ranging mode when the touch control chip does not detect a target object within a first time period
  • the power consumption when the antenna control chip works in the ranging mode is less than the power consumption when the antenna control chip works in the gesture recognition mode.
  • the working state control device provided by the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 9 , and can achieve the same technical effect. To avoid repetition, details are not described here.
  • the device for controlling the working state in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the control device of the working state in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • an embodiment of the present application further provides an electronic device 1100, including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • an electronic device 1100 including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • the program or instruction is executed by the processor 1101
  • each process of the above-mentioned embodiment of the control method for the working state can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 12 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, and a processor 1210, etc. part.
  • the electronic device further includes the above-mentioned touch panel and a flexible circuit board.
  • the flexible circuit board is provided with a touch control chip connected with the touch panel and an antenna control chip connected with the millimeter-wave radar antenna.
  • the electronic device 1200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1210 through a power management system, so that the power management system can manage charging, discharging, and power functions. consumption management and other functions.
  • a power source such as a battery
  • the structure of the electronic device shown in FIG. 12 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here. .
  • the processor 1210 is configured to acquire position information of the target object; and control the touch control chip or the antenna control chip to be in a working state according to the position information of the target object.
  • the processor 1210 is further configured to: when the target object is located in the gesture recognition area, control the antenna control chip to be in a working state, and control the touch control chip to be in a non-working state;
  • the touch control chip is controlled to be in a working state, and the antenna control chip is controlled to be in a non-working state.
  • the processor 1210 is further configured to: control the antenna control chip to be in a gesture recognition mode.
  • the processor 1210 is further configured to: control the antenna control chip to be in a ranging mode when the touch control chip does not detect a target object within a first time period;
  • the power consumption when the antenna control chip works in the ranging mode is less than the power consumption when the antenna control chip works in the gesture recognition mode.
  • the input unit 1204 may include a graphics processor (Graphics Processing Unit, GPU) 12041 and a microphone 12042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1206 may include a display panel 12061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072 .
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • Memory 1209 may be used to store software programs as well as various data including, but not limited to, application programs and operating systems.
  • the processor 1210 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, and the like, and the modem processor mainly processes wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1210.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the control method for a working state is implemented, and can To achieve the same technical effect, in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the control method for the above working state In order to avoid repetition, the details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开了一种触控面板、电子设备及工作状态的控制方法,属于电子设备技术领域。本申请的触控面板包括:透明基板和设置于所述透明基板上的触控电极,所述触控电极的分布区域形成为触控区域;毫米波雷达天线,所述毫米波雷达天线设置于所述透明基板上除所述触控区域之外的区域。

Description

触控面板、电子设备及工作状态的控制方法
相关申请的交叉引用
本申请主张在2021年02月03日在中国提交的中国专利申请No.202110151109.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电子设备技术领域,具体涉及一种触控面板、电子设备及工作状态的控制方法。
背景技术
目前,触控主要是用二维触控,即触摸屏可以识别用户在屏幕平面上的按压,拖动等动作。在二维触控技术成熟之后,业界一直在寻找突破二维平面限制的方法。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:
随着增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)等下一代智能设备概念渐渐落地,伴随着这些新设备的新交互方式也提上了议事日程。众所周知,AR/VR等新一代设备需要沉浸感和体感体验,因此使用传统的二维触控难以满足这类下一代智能设备的需求。
发明内容
本申请实施例的目的是提供一种触控面板、电子设备及工作状态的控制方法,能够解决现有二维触控难以满足AR/VR的交互需求的问题。
第一方面,本申请实施例提供了一种触控面板,包括:
透明基板和设置于所述透明基板上的触控电极,所述触控电极的分布区域形成为触控区域;
毫米波雷达天线,所述毫米波雷达天线设置于所述透明基板上除所述触控区域之外的区域。
第二方面,本申请实施例提供了一种电子设备,包括如上所述的触控面 板。
第三方面,本申请实施例提供了一种工作状态的控制方法,应用于如上所述的电子设备,所述方法包括:
获取目标物体的位置信息;
根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
第四方面,本申请实施例提供了一种工作状态的控制装置,应用于如上所述的电子设备,所述装置包括:
第一获取模块,用于获取目标物体的位置信息;
控制模块,用于根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
第五方面,本申请实施例还提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第六方面,本申请实施例还提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第三方面所述的方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第三方面所述的方法。
第八方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第三方面所述的方法。
在本申请实施例中,在透明基板上除触控区域之外的区域设置毫米波雷达天线,通过该毫米波雷达天线能够实现三维手势识别。由于是在非触控区域设置上述毫米波雷达天线从而不会影响二维触控操作,进而可在实现二维触控的基础上满足AR/VR的交互需求。
附图说明
图1是本申请实施例的触控面板的结构示意图;
图2是本申请实施例的毫米波雷达系统的结构框图;
图3是本申请实施例中毫米波雷达系统测量角度的示意图;
图4是本申请实施例毫米波雷达系统与手势之间的角度示意图
图5是本申请实施例的电子设备的结构示意图之一;
图6是本申请实施例的电子设备的结构示意图之二;
图7是本申请实施例的电子设备的结构示意图之三;
图8是本申请实施例的电子设备的结构示意图之四;
图9是本申请实施例的工作状态的控制方法的流程示意图;
图10是本申请实施例的工作状态的控制装置的模块示意图;
图11是本申请实施例的电子设备的结构示意图之五;
图12是本申请实施例的电子设备的结构示意图之六。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
如图1所示,本申请实施例提供了一种触控面板,包括:
透明基板101和设置于所述透明基板101上的触控电极102,所述触控电极102的分布区域形成为触控区域103;
毫米波雷达天线104,所述毫米波雷达天线104设置于所述透明基板101上除所述触控区域103之外的区域。
可选地,所述毫米波雷达天线包括发射天线和N个接收天线,N为大于 2的整数;
其中沿所述透明基板的第一方向上设置有所述N个接收天线中的至少两个天线,且沿所述透明基板的第二方向上设置有所述N个接收天线中的至少两个天线,且所述第一方向和所述第二方向为两个不同的方向,如第一方向为水平方向,第二方向为竖直方向。
本申请实施例中,可包括至少一个发射天线和N个接收天线。如包括一个发射天线和3个接收天线。如图3所示,包括一个发射天线(TX天线)和三个接收天线(RX1天线、RX2天线和RX3天线),其中,TX天线、RX1天线和RX2天线沿x方向设置,RX2和RX3天线沿y方向设置。
通过上述毫米波雷达天线可以实现3D手势的识别,且将用于手势识别的毫米波雷达天线设备在用于承载触控电极的透明基板上,无需再设置其他的模块,无需增加额外的天线层,从而节省了空间,且无线增加屏幕厚度。
下面对毫米波雷达系统的工作原理进行如下说明。
毫米波雷达系统可以测量目标物体的距离、速度和角度。如图2所示,为调频连续波(Frequency Modulated Continuous Wave,FMCW)毫米波雷达系统的原理框图,该原理框图只是为了说明毫米波雷达系统的主要构成,其中,具体的收发通道数目和器件组成,不同功能区分的位置以及连接方式等可以随着不同的架构动态发生变化。完整的毫米波雷达系统包括发送天线TX、接收天线RX、射频组件和时钟等模拟组件,以及,模数转换器、微控制器和数字信号处理器等数字组件。
具体的,如图3所示,毫米波雷达可以使用水平面估算反射后信号的角度,该角度也称为到达角(Angle of Arrival,AoA),物体距离的很小变化即可导致距离快速傅里叶变化(Fast Fourier Transform,FFT)或多普勒FFT峰值的相位变化,而相位的变化就可以计算到达角的角度。计算到达角的角度至少需要两个接收天线,而如果实现3D的手势识别,则需要在X和Y方向上都要至少有两个天线,其计算过程为:根据两个接收天线之间的距离以及两根天线接收到的反射回波的相位差,以及,三角函数,得到到达角的角度;具体计算公式如下:
Figure PCTCN2022074301-appb-000001
其中,l为两个接收天线之间的距离,如图4所示,θ为毫米波雷达和手势之间的角度,ΔΦ为相位差,λ为雷达信号传输速度;Δd为两个接收天线接收的反射回波传输的距离差。
可选地,上述毫米波雷达天线的材料为透明导电材料。
例如,上述毫米波雷达天线的材料为氧化铟锡(Indium tin Oxide,ITO)或者纳米银线等,由于该毫米波雷达天线的材料为透明导电材料,从而不会影响电子设备的屏幕的显示效果。
可选地,所述毫米波雷达天线为贴片天线。
需要说明的是,本申请实施例中可根据设计需求灵活选择天线形式,如也可采用偶极子天线,缝隙天线,八木天线等。
本申请实施例的触控面板,在透明基板上除触控区域之外的区域设置毫米波雷达天线,通过该毫米波雷达天线能够实现三维手势识别。由于是在非触控区域设置上述毫米波雷达天线从而不会影响二维触控操作,进而可在实现二维触控的基础上满足AR/VR的交互需求。
可选地,本申请实施例还提供了一种显示装置,该显示装置包括如上所述的触控面板,该显示装置可具体为显示屏。
本申请实施例还提供了一种电子设备,该电子设备包括如上所述的触控面板。该电子设备可以为手机、平板电脑、笔记本电脑、可穿戴设备等。
具体的,该电子设备包括显示屏,所述显示屏包括如上所述的触控面板,该触控面板位于所述显示屏的触控层,该触控层包括呈阵列排布的多个触控传感器,触控传感器将位于基材表面的感应电极(触控电极)铺设成一层或两层并且进行图案化(主要是菱形),一层负责X方向,一层负责Y方向,然后通过X方向和Y方向电极电容的变化来定位。其中,触控层图案在显示屏的边缘处会留下一定的绝缘区域,因此,可利用该部分绝缘区域(触控层的上端或下端)放置上述毫米波雷达天线,即如图5和图6所示,在触控层105边缘的非导电区域设置上述毫米波雷达天线104。其中,图5所示的电子设备为手机,图6所示的电子设备为手表。另外,在触控层的上端或下端放 置上述毫米波雷达天线,使得该毫米波雷达天线到天线控制芯片的路径最短,有效降低了路径损耗,提升了天线的辐射性能。
可选地,如图7所示,本申请实施例的电子设备,还包括:
柔性电路板106,所述柔性电路板上设有与所述触控面板连接的触控芯片108以及与所述毫米波雷达天线连接的天线控制芯片107。
进一步可选地,所述毫米波雷达天线通过异方性导电胶膜(Anisotropic Conductive Film,ACF)邦定(bonding)工艺与所述柔性电路板连接。
毫米波雷达天线通过柔性电路板与天线控制芯片电连接,如图5所示,在触控层的下端设置有邦定区域,毫米波雷达天线通过天线导电线路连接至该邦定区域,柔性电路板(Flexible Printed Circuit,FPC)的引脚通过表面贴装技术(Surface Mounted Technology,SMT)工艺焊接于该邦定区域,如此,实现了毫米波雷达天线与柔性电路板的电连接,进而实现了毫米波雷达天线与柔性电路板上的天线控制芯片的电连接,且将天线控制芯片放置在柔性电路板上,能够有效降低天线到芯片的损耗。
另外,本申请实施例中的天线控制芯片包括毫米波信号发生器,其把产生的无线电波(雷达波)通过天线发射出去,然后利用接收器接收回波。FPC上设有一个或多个连接器,天线控制芯片和触控芯片各使用一个连接器或共用一个连接器,该连接器与主板上的板对板连接器(Board-to-board Connectors,BTB)连接,实现相应的功能。天线控制芯片中的处理芯片会根据收发之间的时间差实时计算目标物体如手指的位置数据,通过比较不同时间段手指位置的不同,并与内置的数据进行比较,得到手指正在进行的动作,从而实现精准的三维手势识别。同时由于利用屏幕触控层的非导电区域设置上述雷达天线,因此,不会影响现有的二维触控操作,从而实现了集成二维和三维人机交互体验的全新功能。
可选地,本申请实施例的电子设备,还包括:
开关模组,所述开关模组分别与所述天线控制芯片、触控芯片和所述电子设备的处理器连接;
其中,在所述开关模组处于第一状态的情况下,所述处理器与所述天线控制芯片连通;
在所述开关模组处于第二状态的情况下,所述处理器与所述触控芯片连通;
在所述开关模组处于第三状态的情况下,所述处理器分别与所述天线控制芯片和所述触控芯片连通;
在所述开关模组处于第四状态的情况下,所述处理器分别与所述天线控制芯片和所述触控芯片断开连接。
进一步可选地,如图8所示,所述开关模组包括:
第一开关和第二开关;
其中,所述第一开关分别与所述处理器和所述天线控制芯片连接;
所述第二开关分别与所述处理器和所述触控芯片连接。
基于此,本申请实施例还提供了一种工作状态的控制方法,应用于上述电子设备,如图9所示,该方法包括:
步骤901:获取目标物体的位置信息。
该目标物体可具体为用户的手。具体的,可通过毫米波雷达天线来检测目标物体的位置信息。
步骤902:根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
本申请实施例中,当毫米波雷达天线工作时,可认为三维手势识别功能正在进行,此时可关闭触控功能;当毫米波雷达天线识别到人手贴近屏幕时,开启触控功能;当触控传感器感应到人手时,关闭三维手势识别功能,当触控传感器长时间未检测到人手时,会启动毫米波雷达天线进行粗扫描查看使用者是否进行三维手势识别。
这里,根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态,以降低终端的功耗。
可选地,所述根据所述目标物体的位置信息,控制所述触控芯片或天线控制芯片处于工作状态,包括:
在所述目标物体位于手势识别区域的情况下,控制所述天线控制芯片处于工作状态,并控制所述触控芯片处于非工作状态;
或者,在所述目标物体位于电子设备的显示屏幕的表面的情况下,控制 所述触控芯片处于工作状态,并控制所述天线控制芯片处于非工作状态。
进一步可选地,所述控制所述天线控制芯片处于工作状态,包括:
控制所述天线控制芯片处于手势识别模式。
可选地,所述控制所述触控芯片处于工作状态之后,还包括:
在所述触控芯片在第一时长内未检测到目标物体的情况下,控制所述天线控制芯片处于测距模式;
其中,所述天线控制芯片工作在测距模式时的功耗小于所述天线控制芯片工作在手势识别模式时的功耗。
在本申请的具体实施例中,当屏幕熄灭时,触控系统和毫米波雷达系统都不工作;在屏幕点亮的瞬间,毫米波雷达系统立即工作,协助摄像头进行高速高精度人脸识别,以此可进行人脸解锁(可作为光学人脸识别的补充);当人脸解锁完成后,触控系统开始工作,同时毫米波雷达系统切换到手势识别模式(第一工作模式),搜索人手并判断人手的位置(可设置一定的距离作为手势识别启动的门限)以及姿态等,当确定用户正在进行三维的手势操作时,系统立刻关闭触控系统;由于毫米波雷达系统具有测距功能,因此当其探测到人手贴着屏幕表面同时触控传感器感应到人手操作时,毫米波雷达系统切换到低精度模式(第二工作模式),仅进行低功耗的测距功能,以判断人手是否进入到手势识别的区域;当毫米波雷达系统感应到人手离开屏幕且未进入手势识别区域时(通过探测人手离屏幕的距离判定),毫米波雷达系统可认为此时人手正在进行屏幕上不同区域的触控,触控系统和毫米波雷达系统依旧保持工作;当毫米波雷达系统感应到当人手离开屏幕且进入到手势识别区域时,毫米波雷达系统切换到高精度手势识别模式(第一工作模式)以判断用户是继续进行手势识别还是彻底离开,与此同时触控系统关闭。通过划分手势识别的空间区域,毫米波雷达系统进行不同功能的切换以及毫米波雷达系统和触控系统的分时协调工作的模式,能够在不影响阵列天线层的手势识别和触控功能的同时,明显降低阵列毫米波雷达和触控的功耗,从而提高续航能力。另外,也可将触控层中的部分触控传感器作为毫米波雷达天线。
需要说明的是,本申请实施例提供的工作状态的控制方法,执行主体可以为工作状态的控制装置,或者该工作状态的控制装置中的用于执行工作状 态的控制方法的控制模块。本申请实施例中以工作状态的控制装置执行工作状态的控制方法为例,说明本申请实施例提供的工作状态的控制装置。
如图10所示,本申请实施例还提供了一种工作状态的控制装置1000,应用于如上所述的电子设备,所述装置包括:
第一获取模块1001,用于获取目标物体的位置信息;
控制模块1002,用于根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
本申请实施例的控制装置,所述控制模块用于在所述目标物体位于手势识别区域的情况下,控制所述天线控制芯片处于工作状态,并控制所述触控芯片处于非工作状态;
或者,在所述目标物体位于电子设备的显示屏幕的表面的情况下,控制所述触控芯片处于工作状态,并控制所述天线控制芯片处于非工作状态。
可选地,所述控制模块用于控制所述天线控制芯片处于手势识别模式。
可选地,本申请实施例的控制装置,还包括:
处理模块,用于在所述触控芯片在第一时长内未检测到目标物体的情况下,控制所述天线控制芯片处于测距模式;
其中,所述天线控制芯片工作在测距模式时的功耗小于所述天线控制芯片工作在手势识别模式时的功耗。
本申请实施例提供的工作状态的控制装置能够实现图9的方法实施例实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的工作状态的控制装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的工作状态的控制装置可以为具有操作系统的装置。该 操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
可选地,如图11所示,本申请实施例还提供一种电子设备1100,包括处理器1101,存储器1102,存储在存储器1102上并可在所述处理器1101上运行的程序或指令,该程序或指令被处理器1101执行时实现上述工作状态的控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图12为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、以及处理器1210等部件。该电子设备还包括上述触控面板,柔性电路板,所述柔性电路板上设有与所述触控面板连接的触控芯片以及与所述毫米波雷达天线连接的天线控制芯片。
本领域技术人员可以理解,电子设备1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
处理器1210,用于获取目标物体的位置信息;根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
可选地,处理器1210还用于:在所述目标物体位于手势识别区域的情况下,控制所述天线控制芯片处于工作状态,并控制所述触控芯片处于非工作状态;
或者,在所述目标物体位于电子设备的显示屏幕的表面的情况下,控制所述触控芯片处于工作状态,并控制所述天线控制芯片处于非工作状态。
可选地,处理器1210还用于:控制所述天线控制芯片处于手势识别模式。
可选地,处理器1210还用于:在所述触控芯片在第一时长内未检测到目 标物体的情况下,控制所述天线控制芯片处于测距模式;
其中,所述天线控制芯片工作在测距模式时的功耗小于所述天线控制芯片工作在手势识别模式时的功耗。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1209可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述工作状态的控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述工作状态的控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (15)

  1. 一种触控面板,包括:
    透明基板和设置于所述透明基板上的触控电极,所述触控电极的分布区域形成为触控区域;
    毫米波雷达天线,所述毫米波雷达天线设置于所述透明基板上除所述触控区域之外的区域。
  2. 根据权利要求1所述的触控面板,其中,所述毫米波雷达天线包括发射天线和N个接收天线,N为大于2的整数;
    其中,沿所述透明基板的第一方向上设置有所述N个接收天线中的至少两个天线,且沿所述透明基板的第二方向上设置有所述N个接收天线中的至少两个天线。
  3. 一种电子设备,包括如权利要求1至权利要求2任一项所述的触控面板。
  4. 根据权利要求3所述的电子设备,其中,还包括:
    柔性电路板,所述柔性电路板上设有与所述触控面板连接的触控芯片以及与所述毫米波雷达天线连接的天线控制芯片。
  5. 根据权利要求4所述的电子设备,其中,还包括:
    开关模组,所述开关模组分别与所述天线控制芯片、触控芯片和所述电子设备的处理器连接;
    其中,在所述开关模组处于第一状态的情况下,所述处理器与所述天线控制芯片连通;
    在所述开关模组处于第二状态的情况下,所述处理器与所述触控芯片连通;
    在所述开关模组处于第三状态的情况下,所述处理器分别与所述天线控制芯片和所述触控芯片连通;
    在所述开关模组处于第四状态的情况下,所述处理器分别与所述天线控制芯片和所述触控芯片断开连接。
  6. 根据权利要求5所述的电子设备,其中,所述开关模组包括:
    第一开关和第二开关;
    其中,所述第一开关分别与所述处理器和所述天线控制芯片连接;
    所述第二开关分别与所述处理器和所述触控芯片连接。
  7. 一种工作状态的控制方法,应用于如权利要求3至权利要求6任一项所述的电子设备,所述方法包括:
    获取目标物体的位置信息;
    根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
  8. 根据权利要求7所述的控制方法,其中,所述根据所述目标物体的位置信息,控制所述触控芯片或天线控制芯片处于工作状态,包括:
    在所述目标物体位于手势识别区域的情况下,控制所述天线控制芯片处于工作状态,并控制所述触控芯片处于非工作状态;
    或者,在所述目标物体位于电子设备的显示屏幕的表面的情况下,控制所述触控芯片处于工作状态,并控制所述天线控制芯片处于非工作状态。
  9. 根据权利要求8所述的控制方法,其中,所述控制所述天线控制芯片处于工作状态,包括:
    控制所述天线控制芯片处于手势识别模式。
  10. 根据权利要求8所述的控制方法,其中,所述控制所述触控芯片处于工作状态之后,还包括:
    在所述触控芯片在第一时长内未检测到目标物体的情况下,控制所述天线控制芯片处于测距模式;
    其中,所述天线控制芯片工作在测距模式时的功耗小于所述天线控制芯片工作在手势识别模式时的功耗。
  11. 一种工作状态的控制装置,应用于如权利要求3至权利要求6任一项所述的电子设备,所述装置包括:
    第一获取模块,用于获取目标物体的位置信息;
    控制模块,用于根据所述目标物体的位置信息,控制触控芯片或天线控制芯片处于工作状态。
  12. 一种电子设备,包括处理器、存储器及存储在所述存储器上并可在 所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求7至10中任一项所述的工作状态的控制方法的步骤。
  13. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求7至10中任一项所述的工作状态的控制方法的步骤。
  14. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求7至10中任一项所述的工作状态的控制方法中的步骤。
  15. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求7至10中任一项所述的工作状态的控制方法中的步骤。
PCT/CN2022/074301 2021-02-03 2022-01-27 触控面板、电子设备及工作状态的控制方法 WO2022166754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110151109.5 2021-02-03
CN202110151109.5A CN112882572A (zh) 2021-02-03 2021-02-03 触控面板、电子设备及工作状态的控制方法

Publications (1)

Publication Number Publication Date
WO2022166754A1 true WO2022166754A1 (zh) 2022-08-11

Family

ID=76057086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074301 WO2022166754A1 (zh) 2021-02-03 2022-01-27 触控面板、电子设备及工作状态的控制方法

Country Status (2)

Country Link
CN (1) CN112882572A (zh)
WO (1) WO2022166754A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112882572A (zh) * 2021-02-03 2021-06-01 维沃移动通信有限公司 触控面板、电子设备及工作状态的控制方法
CN114553993A (zh) * 2021-12-27 2022-05-27 云谷(固安)科技有限公司 显示面板及显示装置
CN115134461B (zh) * 2022-06-27 2024-02-20 维沃移动通信有限公司 电子设备及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076911A (zh) * 2011-10-25 2013-05-01 美国博通公司 包括三维触摸屏的便携式计算设备
US20170131395A1 (en) * 2014-06-25 2017-05-11 University Of Washington Devices, systems, and methods for detecting gestures using multiple antennas and/or reflections of signals transmitted by the detecting device
CN210270841U (zh) * 2019-08-05 2020-04-07 维沃移动通信有限公司 一种显示面板和终端设备
CN211743382U (zh) * 2020-05-20 2020-10-23 维沃移动通信有限公司 电子设备
CN112882572A (zh) * 2021-02-03 2021-06-01 维沃移动通信有限公司 触控面板、电子设备及工作状态的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076911A (zh) * 2011-10-25 2013-05-01 美国博通公司 包括三维触摸屏的便携式计算设备
US20170131395A1 (en) * 2014-06-25 2017-05-11 University Of Washington Devices, systems, and methods for detecting gestures using multiple antennas and/or reflections of signals transmitted by the detecting device
CN210270841U (zh) * 2019-08-05 2020-04-07 维沃移动通信有限公司 一种显示面板和终端设备
CN211743382U (zh) * 2020-05-20 2020-10-23 维沃移动通信有限公司 电子设备
CN112882572A (zh) * 2021-02-03 2021-06-01 维沃移动通信有限公司 触控面板、电子设备及工作状态的控制方法

Also Published As

Publication number Publication date
CN112882572A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022166754A1 (zh) 触控面板、电子设备及工作状态的控制方法
US9977549B2 (en) Single substrate touch sensor
EP2929415B1 (en) Electronic device including three-dimensional gesture detecting display
WO2021233284A1 (zh) 检测方法、装置和电子设备
US9383881B2 (en) Input device and method with pressure-sensitive layer
US9298333B2 (en) Gesturing architecture using proximity sensing
US20140035871A1 (en) Capacitance Scanning Proximity Detection
US20140184552A1 (en) Near-field and far-field capacitive sensing
US9335922B2 (en) Electronic device including three-dimensional gesture detecting display
CN211878371U (zh) 显示装置及电子设备
CN112214118A (zh) 触控笔及其控制方法、电子设备
CN103677469A (zh) 实现电容检测和电磁检测的系统
US9785296B2 (en) Force enhanced input device with shielded electrodes
US9772725B2 (en) Hybrid sensing to reduce latency
WO2018166057A1 (zh) 一种输出触控信号的方法和电子设备
CN107272971B (zh) 抓握管理
US20150035764A1 (en) Digitizer pen
US20180341364A1 (en) Interference detection
US11741869B2 (en) Electronic device including variable display and method of operating the same
CN113806157B (zh) 设备的状态检测方法、装置、电子设备和可读存储介质
CN112764583A (zh) 触控显示屏及电子设备
KR101893007B1 (ko) 정전 용량식 터치스크린, 단말, 인터커뮤니케이션 방법 및 상응한 프로그램과 캐리어
EP2946269B1 (en) Electronic device with touch-sensitive display and gesture-detection, method for operating same, and computer-readable storage device
CN113055039A (zh) 电子设备、控制方法和控制装置
US20240012524A1 (en) Antenna in a Capacitance Module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749033

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2024)