WO2022166394A1 - 一种电阻式多级压力传感器、感应压力方法及应用 - Google Patents

一种电阻式多级压力传感器、感应压力方法及应用 Download PDF

Info

Publication number
WO2022166394A1
WO2022166394A1 PCT/CN2021/136719 CN2021136719W WO2022166394A1 WO 2022166394 A1 WO2022166394 A1 WO 2022166394A1 CN 2021136719 W CN2021136719 W CN 2021136719W WO 2022166394 A1 WO2022166394 A1 WO 2022166394A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensing
electrode layer
conductive
sensing unit
Prior art date
Application number
PCT/CN2021/136719
Other languages
English (en)
French (fr)
Inventor
邱雨
胡忠营
Original Assignee
瑞态常州高分子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞态常州高分子科技有限公司 filed Critical 瑞态常州高分子科技有限公司
Publication of WO2022166394A1 publication Critical patent/WO2022166394A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the invention relates to the technical field of resistive pressure sensors, in particular to a resistive multistage pressure sensor, a multistage stepped pressure sensing method and applications.
  • a touch panel is an input device that allows a user to input information through physical contact with the panel device.
  • Touch panels are commonly used as input devices for various products such as home appliances, televisions, notebook computers and monitors, and portable electronic devices such as notebook computers, e-books, portable multimedia players, GPS navigation units, ultra-mobile computers, Smartphones, smart watches, tablet computers, and mobile communication terminals.
  • the finger When a user sends an instruction to the touch panel, the finger usually touches, moves, hovers, or taps on the surface of the device to perform simple operations, such as page turning, panning, and zooming. For some more complex instructions, such as unlocking the screen, logging in the user, entering a password, etc., the user needs to implement some more complex gestures, or use other input devices (such as keyboard, mouse, etc.). Relatively advanced gestures have also been implemented. For example, a scroll command can be initiated by placing two fingers on the touchpad. When the system recognizes the scroll gesture, move these fingers on the touchpad to perform the scroll event. Most of the gesture commands are implemented by the user's fingers moving in a plane (ie, the x-y plane) on the touch panel. However, there are limited ways to implement these advanced gestures, and overly complex movements can cause inconvenience to users.
  • the first object of the present invention is to provide a resistive multi-stage pressure sensor, which effectively realizes the sensitive induction of pressure conversion into multi-stage resistance under different pressures.
  • a resistive multi-stage pressure sensor comprising a pressure substrate and a support substrate arranged relatively in parallel; a first electrode layer is provided on the side of the pressure substrate facing the support substrate; The first electrode layer includes one or more first conductive paths that are parallel to each other and arranged at an insulating interval; the first conductive path includes a first wire connection area and one or more first conductive channels that are parallel to each other and arranged at an insulating interval; each a first conductive channel is respectively electrically connected to the first wire connecting area;
  • the side of the support substrate facing the pressure substrate is provided with a second electrode layer;
  • the second electrode layer includes one or more second conductive paths parallel to each other and arranged at an insulating interval;
  • the second conductive path includes a second wire connection area and a one or more second conductive channels that are parallel to each other and are insulated and spaced apart; each second conductive channel is electrically connected to the second wire connection area respectively;
  • the first wire connection area and the second wire connection area are respectively electrically connected to the external resistance measurement circuit
  • the first conductive path and the second conductive path intersect at a certain angle; the overlapping area of a first conductive path and a second conductive path forms a pressure sensing unit; the overlapping area of a first conductive path and a second conductive path forms a pressure sensing unit a pressure sensing node;
  • a height adjustment member is also arranged between the first electrode layer and the second electrode layer.
  • the resistance R n under the multi-stage pressure of the pressure sensing unit at the coordinates (x, y) conforms to the following formula:
  • the unit resistances of the first conductive channel and a second conductive channel in the pressure sensing unit can be defined as r 0 and c 0 respectively; a is a correction function for compensating the contact resistance error.
  • the unit resistance in the present invention is the resistance of a conductive channel in a pressure sensing unit.
  • each pressure sensing unit has at least one fixed height adjustment piece
  • the farthest distance between each pressure-sensing node in the pressure-sensing unit and the nearest height adjusting member is D, and the farthest distance in the pressure-sensing unit is D1 to Dn in descending order, where n is greater than or equal to an integer of 2;
  • a pressure sensing unit is subjected to different levels of pressure from small to large, the pressure substrate is concave, the first electrode layer and the second electrode layer are partially in electrical contact, so that the pressure sensing nodes corresponding to D1 to Dn are turned on step by step from first to last. .
  • the furthest relative distance between the outer edge of the pressure sensing node and the height adjustment member in its vicinity in the present invention defines the force required to activate the pressure sensing node. The smaller the distance, the greater the force required.
  • the height adjustment piece is located inside its corresponding pressure sensing node
  • the height adjustment piece is dislocated from the corresponding pressure sensing node.
  • first conductive channel and the second conductive channel of a part of the pressure-sensing nodes in the pressure-sensing unit are respectively set as conductive pads.
  • the present invention precisely controls the number of activated pressure sensing nodes under different pressure levels by setting the difference in the area of the conductive pads in a pressure sensing unit, thereby obtaining a distinct and discrete electrical reading (resistance).
  • Traditional electrode patterns rely on measuring changes in contact resistance to detect pressure. The rate of change of contact resistance decreases as the contact area increases, resulting in reduced accuracy in wide-range pressure detection.
  • the conductive pad of the first conductive channel of the pressure sensing node in which the height adjustment member is located in the middle is further improved, and the conductive pad is provided with an escape hole.
  • the escape hole of the conductive pad can effectively reduce the friction between the electrode layer of the pressure panel and the height adjustment piece, thus prolonging the service life.
  • the second object of the present invention is to provide a method for sensing pressure using the resistive multi-stage pressure sensor, which effectively realizes multi-stage pressure sensitive sensing under different pressures.
  • the technical solution of the present invention is: a method for sensing pressure using a resistive pressure sensor in the present invention, detecting the resistance signal activated by the first conductive channel along the x-direction and the second conductive channel along the y-direction Change the position coordinates (x, y) of the obtained pressure;
  • the farthest distance between each pressure sensing node in a pressure sensing unit and the nearest height adjusting member is D1 to Dn in descending order, where n is an integer greater than or equal to 2;
  • the pressure substrate When the pressure sensing unit is pressurized, the pressure substrate is concave, so that the first conductive channel and the second conductive channel in the pressure sensing nodes in D1 to Dn are electrically contacted step by step, causing the resistance to change in n steps.
  • the pressure is measured, wherein the pressure can be measured.
  • Detected n stepped pressure grade resistors R n meet:
  • the unit resistances of the first electrode layer and the second electrode layer in the pressure sensing unit can be respectively defined as r 0 and c 0 ; a is a correction function for compensating the contact resistance error.
  • the minimum activation pressure of the pressure sensing unit is the pressure at which the pressure substrate is concave and the pressure sensing node within the range of D1 is turned on.
  • the minimum activation pressure of the present invention is controllable and adjustable.
  • the third object of the present invention is to provide an application of a resistive multi-level pressure sensor, which is configured in an electronic system with conventional multi-touch detection hardware and software to detect and process multi-points occurring at different locations at the same time. Touch and applied pressure respectively.
  • the technical scheme of the present invention is: a hardware and software electronic system applying a resistive multi-stage pressure sensor.
  • the input of the combination of different pressure levels realizes one of the functions of selection, cancellation, password input and payment.
  • the input of the combination of different pressure levels realizes one of the functions of selection, cancellation, password input and payment.
  • the sensor control circuit When the first level of strength is pressed, the sensor control circuit performs location identification, and when the second level of strength is pressed, the sensor performs functional operations on the basis of location identification.
  • the input method of different pressure levels is similar to Morse Code, with 1, 2, and 3 representing the first, second, and third pressures respectively. Users can select/cancel, password input, payment and other functions by inputting different pressure level combinations, such as 1-2-1, 2-1-3, 1-1-2, etc.
  • users can combine traditional 2D gestures and hierarchical pressure sensing to implement more complex commands. For example, two fingers perform a pinch gesture on the surface of the touch screen and input a 1-2-3 level pressure gesture to log out of the account and exit the application.
  • the present invention provides a resistive multi-level pressure sensor, each first conductive channel is electrically connected to a first wire connection area, such as silver paste or solder, respectively; the first wire connection area is connected between each first conductive channel and the An electrical connection is formed between the electrical paths (such as wires) of the first polarity terminals of a voltage source (such as a direct current source with a voltage less than 10 volts); the second electrode layer is arranged with the first electrode layer; by measuring the first electrode layer and the A significant resistance step change between the second electrode layers to detect pressure changes;
  • the multi-level pressure sensor device in the present invention can also be configured in an electronic system with conventional multi-touch detection hardware and software to detect and process multi-point touches occurring at different locations at the same time and respectively applied pressure; the present invention will Different levels of pressure sensing are incorporated into gesture recognition, allowing users to implement complex instructions through simple three-dimensional gestures; the present invention can not only recognize traditional two-dimensional gestures (x-y plane), but also measure the obvious feedback in different pressure intervals.
  • the resistance change is used to sense gesture commands in the third dimension (ie, pressure-sensitive input in the z-axis direction).
  • FIG. 1 is a schematic structural diagram of a resistive multistage pressure sensor involved in the present invention
  • FIG. 2 is a schematic diagram of the projection of the first electrode layer and the second electrode layer on the x-y plane;
  • FIG. 3 is a cross-sectional view of a pressure sensing unit in the present invention and a schematic diagram of a multi-stage pressure response principle
  • FIG. 4 is a cross-sectional view of another pressure sensing unit in the present invention and a schematic diagram of a multi-stage pressure response principle
  • FIG. 5 is a schematic structural diagram of three pressure sensing nodes in the present invention.
  • Fig. 6 is the electrode pattern in the electrode path of the pressure panel and the conductive path of the support panel in the pressure sensing unit of the first embodiment
  • Fig. 8 is the electrode pattern in the electrode path of the pressure panel and the conductive path of the support panel in the pressure sensing unit of the third embodiment;
  • FIG. 9 is a schematic diagram of the flow of current under different pressures in the pressure sensing unit of the first embodiment
  • Fig. 10 is a schematic diagram showing an obvious step-like change in the detected resistance value under different pressures under the theoretical situation of the pressure sensing unit of the first embodiment
  • 11 is a pressure comparison between the resistance values detected by the pressure sensing unit of the first embodiment under different pressures and the resistance values detected by the pressure sensing unit in the prior art;
  • FIG. 12 is a schematic structural diagram of a pressure sensing unit according to the fourth embodiment.
  • Fig. 13 is the resistance-pressure curve of the resistive multistage pressure sensor of the fourth embodiment
  • FIG. 14 is a schematic diagram of a pressure sensing structure of a pressure sensor in the prior art
  • Figure 15 is a resistance-pressure curve of a resistance pressure sensor in the prior art.
  • the present embodiment discloses a resistive multi-stage pressure sensor, a pressure sensing method and application, as shown in FIGS. 1 to 6 and 9 to 11 , including a pressure substrate 1 and a support substrate 2 that are arranged relatively in parallel; the pressure substrate 1 faces the One side of the support substrate 2 is provided with a first electrode layer; the first electrode layer includes one or more first conductive paths 3 that are parallel to each other and are insulated and spaced apart; the first conductive path 3 includes a first wire connection area 31 and a plurality of The first conductive channels 32 are parallel to each other and arranged at an insulating interval; each of the first conductive channels 32 is electrically connected to the first wire connecting area 31 respectively;
  • the side of the support substrate 2 facing the pressure substrate 1 is provided with a second electrode layer;
  • the second electrode layer includes one or more second conductive paths 4 that are parallel to each other and arranged at an insulating interval;
  • the second conductive paths 4 include second wires
  • the connection area 41 and a plurality of second conductive channels 42 which are parallel to each other and are insulated and spaced apart; each second conductive channel 42 is electrically connected to the second wire connection area 41 respectively;
  • the first wire connection area 31 and the second wire connection area 41 are respectively electrically connected to the external resistance measurement circuit;
  • first conductive path 3 and the second conductive path 4 are arranged to intersect at a certain angle; the overlapping area of a first conductive path 3 and a second conductive path 4 forms a pressure sensing unit 5; a first conductive path 32 and a first conductive path 3 The overlapping area of the two conductive channels 42 forms a pressure sensing node 51;
  • a height adjustment member 6 is also provided between the first electrode layer and the second electrode layer.
  • the pressure sensing node 51 in the pressure sensing unit 5 changes with the pressure level.
  • the first conductive channel 32 and the second conductive channel 42 in the pressure sensing node 51 are in electrical contact to form the pressure sensing unit 5 conducting step by step, resulting in a multi-step stepped change in resistance to measure pressure.
  • the resistance R n under the multi-stage pressure of the pressure sensing unit 5 at the coordinates (x, y) conforms to the following formula:
  • the unit resistances of the first conductive channel 32 and a second conductive channel 42 in the pressure sensing unit 5 can be respectively defined as r 0 and c 0 ; a is a correction function for compensating the contact resistance error.
  • each pressure sensing unit 5 has at least one fixed height adjustment member 6;
  • the farthest distance between each pressure-sensing node 51 in the pressure-sensing unit 5 and the closest height adjusting member 6 is D, and the farthest distance in the pressure-sensing unit 5 is D1 to Dn in descending order, wherein n is an integer greater than or equal to 2;
  • a pressure sensing unit 5 is subjected to different levels of pressure from small to large, the pressure substrate 1 is concave, and the first electrode layer and the second electrode layer are partially in electrical contact, so that the pressure sensing nodes 51 corresponding to D1 to Dn are arranged from first to last. stage is turned on.
  • the furthest relative distance between the outer edge of the pressure-sensitive node 51 and the height adjustment member 6 near it in the present invention defines the force required to activate the pressure-sensitive node 51 . The smaller the distance, the greater the force required.
  • the height adjusting member 6 is located inside its corresponding pressure sensing node 51;
  • the first conductive channel 32 and the second conductive channel 42 of some pressure sensing nodes 51 in one of the pressure sensing units 5 are respectively set as conductive pads 52 .
  • the present invention precisely controls the number of pressure sensing nodes 51 activated under different pressure levels by setting the difference in the area of the conductive pads 52 in a pressure sensing unit 5, thereby obtaining a distinct and discrete electrical reading (resistance).
  • Traditional electrode patterns rely on measuring changes in contact resistance to detect pressure. The rate of change of the contact resistance decreases as the contact area increases, resulting in reduced accuracy in wide-range pressure detection, as shown in Figures 14 and 15.
  • the multi-level pressure response is achieved by activating different numbers of pressure-sensing nodes 51, ie the number of conductive paths that make electrical contact in the two electrode layers.
  • the force required to activate the pressure sensing node 51 is also different. Therefore, the pressure sensing stages and ranges can be customized by designing the conductive paths and the arrangement of the height adjusting members 6 .
  • the four-stage pressure response in this embodiment can be achieved by three different arrangements of conductive paths and height adjustment members 6 . They are: there is no height adjusting member 6 in the pressure sensing node 51 , there is a height adjusting member 6 in the pressure sensing node 51 and the area is slightly larger, and there is a height adjusting member 6 in the pressure sensing node 51 and the area is slightly smaller.
  • Level 2 Light pressure. When the surface is lightly touched, the upper and lower conductive channels in the pressure sensing node 51 without the height adjusting member 6 are in contact with each other, and the pressure sensing node 51 is activated. The detectable resistance is R1.
  • the third stage medium pressure.
  • the detectable resistance is R2, where R2 ⁇ R1.
  • Level 4 Stress.
  • the detectable resistance is R3, R3 ⁇ R2 ⁇ R1.
  • the resistance of each conductive channel can be adjusted by the width of the path, the length of the path, or the resistivity of the conductive material. The resistance changes between the stages are obvious, and the rate of change remains relatively stable, so as to obtain the characteristics of maintaining high accuracy in a wide range of pressure sensing.
  • the four-level pressure response in this embodiment can be realized by three different arrangements of the conductive path and the height adjustment member 6 (the distance between the pressure sensing node 51 and the height adjustment member 6 ).
  • the third stage medium pressure.
  • Level 4 Stress. When the applied force increases again, the upper and lower conductive channels in the pressure sensing node 51 closest to the height adjustment member 6 begin to contact, the pressure sensing node 51 is activated, and the detectable resistance is R3, R3 ⁇ R2 ⁇ R1.
  • FIG. 6 A schematic structural diagram of the pressure sensing unit 5 in this embodiment is shown in FIG. 6 in detail.
  • the height adjusting member 6 is located in the area of the pressure sensing node 51 .
  • Each pressure sensing node 51 has a conductive pad 52 therein.
  • the shape of the conductive pad 52 is a square, and its size is divided into three categories: large, medium and small.
  • the pair of conductive pads 52 with the largest area is located in the center of the pressure sensing unit 5, and there is no height adjustment member 6 therebetween.
  • Three pairs of conductive pads 52 with a medium area are located at the lower right corner of the pressure sensing unit 5, and there is a height adjusting member 6 therebetween.
  • the five pairs of conductive pads 52 with the smallest area are located on the upper side and the left side of the pressure sensing unit 5, and there is a height adjusting member 6 therebetween.
  • the height adjustment member 6 can also be replaced by a connecting member 7 between the pressure base plate 1 and the support base plate 2 .
  • the present embodiment uses a method for sensing pressure with a resistive pressure sensor, and the specific steps are:
  • the farthest distance between each pressure sensing node 51 in a pressure sensing unit 5 and the nearest height adjusting member 6 is D1 to Dn in descending order, wherein n is an integer greater than or equal to 2;
  • Resistor R n conforms to:
  • the unit resistances of the first electrode layer and the second electrode layer in the pressure sensing unit 5 can be defined as r 0 and c 0 respectively; a is a correction function for compensating the contact resistance error.
  • the minimum activation pressure of the pressure sensing unit 5 is the pressure at which the pressure substrate 1 is depressed to make the pressure sensing node 51 in the range D1 conduct.
  • the minimum activation pressure in this embodiment is controllable and adjustable.
  • This embodiment is configured in an electronic system with conventional multi-touch detection hardware and software to detect and process multi-touches occurring at different locations at the same time and separately applied pressure.
  • a hardware and software electronic system using resistive multistage pressure sensors One of the functions of selection, cancellation, password input and payment is realized through the input of different pressure level combinations.
  • the input of the combination of different pressure levels realizes one of the functions of selection, cancellation, password input and payment.
  • the sensor control circuit When the first level of strength is pressed, the sensor control circuit performs location identification, and when the second level of strength is pressed, the sensor performs functional operations on the basis of location identification.
  • the input method of different pressure levels is similar to Morse Code, with 1, 2, and 3 representing the first, second, and third pressures respectively.
  • Users can select/cancel, password input, payment and other functions by inputting different pressure level combinations, such as 1-2-1, 2-1-3, 1-1-2, etc.
  • users can combine traditional 2D gestures and hierarchical pressure sensing to implement more complex commands. For example, two fingers perform a pinch gesture on the surface of the touch screen and input a 1-2-3 level pressure gesture to log out of the account and exit the application.
  • the present invention provides a resistive multi-level pressure sensor.
  • Each first conductive channel 32 is electrically connected to a first wire connection area 31, such as silver paste or solder, respectively; the first wire connection area 31 is connected to each first conductive channel. 32 and an electrical path (such as a wire) to a first polarity terminal of a voltage source (such as a direct current source with a voltage of less than 10 volts) is electrically connected; the arrangement of the second electrode layer is the same as that of the first electrode layer; A significant resistance step change between the first electrode layer and the second electrode layer to detect pressure changes;
  • the multi-level pressure sensor device in this embodiment can also be configured in an electronic system with conventional multi-touch detection hardware and software, so as to detect and process multi-point touches occurring at different positions at the same time and respectively applied pressure; the present invention will Different levels of pressure sensing are incorporated into gesture recognition, allowing users to implement complex instructions through simple three-dimensional gestures; the present invention can not only recognize traditional two-dimensional gestures (x-y plane), but also measure the obvious feedback in different pressure intervals.
  • the resistance change is used to sense gesture commands in the third dimension (ie, pressure-sensitive input in the z-axis direction).
  • the conductive pad 52 of the first conductive channel 32 of the pressure sensing node 51 with the improved height adjusting member 6 in the middle is provided with an escape hole 521 .
  • the escape hole 521 of the conductive pad 52 can effectively reduce the friction between the first electrode layer and the height adjusting member 6, thereby prolonging the service life.
  • the height adjustment member 6 is located in the area of the pressure sensing node 51 .
  • Each pressure sensing node 51 has a conductive pad 52 therein.
  • the shape of the conductive pads 52 is a square and a hollow square with an escape hole 52 .
  • the area of the square is divided into three categories: large, medium and small, and the area of the spaced hole 521 is slightly larger than the diameter of the height adjusting member 6 .
  • the pair of conductive pads 52 with the largest area is a square, located in the center of the pressure sensing unit 5, and there is no height adjustment member 6 therebetween.
  • the three pairs of conductive pads 52 with a medium area are hollow squares and are located at the lower right corner of the pressure sensing unit 5 .
  • the five pairs of conductive pads 52 with the smallest area are hollow squares and are located on the upper side and the left side of the pressure sensing unit 5 .
  • the hollow design can effectively reduce the friction between the first electrode layer and the height adjusting member 6, thereby prolonging the service life.
  • the present invention precisely controls the number of pressure sensing nodes 51 activated under different pressure levels by setting the difference in the area of the conductive pads 52 in a pressure sensing unit 5, thereby obtaining significantly varying and discrete electrical readings (resistance).
  • Embodiment 1 The main difference between this embodiment and Embodiment 1 is that, as shown in FIG. 5 and FIG. 8 , in this embodiment, the height adjusting member 6 and the corresponding pressure sensing node 51 are dislocated.
  • the height adjustment member 6 is located near the pressure sensing node 51 (outside the area of the pressure sensing node 51 ).
  • Part of the pressure sensing nodes 51 have conductive pads 52 therein.
  • the shape of the conductive pad 52 is a square, and its size is divided into two categories: large and small.
  • a pair of conductive pads 52 with a large area are located in the center of the pressure sensing unit 5, and there is no height adjustment member 6 therebetween.
  • the three pairs of conductive pads 52 with small areas are located at the lower right corner of the pressure sensing unit 5, and there is a height adjustment member 6 near them.
  • There are five pressure sensing nodes 51 on the upper side and the left side of the pressure sensing unit 5 and none of them have conductive pads 52 .
  • the relatively staggered design of the pressure sensing node 51 and the height adjusting member 6 can effectively reduce the friction between the first electrode layer and the height adjusting member 6, thereby prolonging the service life.
  • the position of the height adjustment member 6 and the area of the conductive pad 52 will affect the minimum force (activation pressure) required to activate the pressure sensing node 51 .
  • the pressure sensing node 51 can be activated by deforming the first electrode layer so that the conductive pads 52 are brought into contact with the corresponding conductive pads 52 in the second electrode layer. Referring to FIG. 4 , it can be seen that the difference in the area of the conductive pad 52 will affect the minimum pressure required to activate the pressure sensing node 51 .
  • the minimum force is required for the pair of conductive pads 52 without the height adjustment member 6 in the middle (ie, the pair of conductive pads 52 in the center of the pressure sensing unit 5 ) to contact each other.
  • the small activation pressure of the central conductive pad 52 gives the pressure sensor the ability to detect a light touch (the activation pressure is typically less than 0.2N). Due to the height adjustment member 6 in the middle, the smaller the area of the conductive pad 52, the greater the required activation pressure.
  • the specially designed conductive pads 52 with different areas ensure the detection of different levels of pressure.
  • Figures 9 and 10 illustrate exemplary pressure sensing events in a pressure sensing unit 5 with a multi-stage pressure sensor.
  • P1 the pressure receiving surface
  • the central portion of the pressure substrate 1 that is, the portion without the height adjustment member 6 in the middle, is bent toward the support substrate 2, so that the two conductive pads 52 in the center are in contact with each other (ie, the central pressure sensing node 51 is activated).
  • Figure 10 illustrates a typical series of compression events at different pressure levels from P0 to P3, where P0 ⁇ P1 ⁇ P2 ⁇ P3. At different pressure levels, different numbers of pressure sensing nodes 51 will be activated, which gives the device the ability to obtain discrete and sensitive measurements of a wide range of pressures applied to the pressure sensor device.
  • the location of the pressing event and the magnitude of the force exerted on the pressure sensor device can be obtained.
  • the position of the pressing event ie the xy coordinates (x, y)
  • the magnitude of the applied force can be obtained by converting the resistance between the two electrodes into pressure as a function of pressure (P) and resistance (R).
  • P pressure
  • R resistance
  • the resistances of the pressure conduction channel and the support conduction channel in a pressure sensing unit 5 can be defined as r o and c o , respectively.
  • the resistance at pressure level 1 (P1) can be calculated as
  • R 1 x ⁇ r o +y ⁇ c o +a
  • a is the correction function to compensate the contact resistance error. Due to design factors, the effect of contact resistance is much smaller than the resistance of conductive traces.
  • the resistance (P2) at pressure class 2 can be calculated as
  • the resistance at pressure level 3 (P3) can be calculated as
  • the resistance (Pn) at pressure level n can be calculated as
  • the resistance-pressure curve obtained in this embodiment is shown in FIG. 11 .
  • this embodiment three-stage pressure sensing can be realized, and the steps are obvious.
  • this embodiment is sensitive to pressure, and can effectively convert the pressure into a stepped resistance, thereby realizing further application of the resistance-type multi-stage pressure sensor.
  • FIG. 12 and FIG. 13 The main difference between this embodiment and Embodiment 4 is shown in FIG. 12 and FIG. 13 .
  • a pressure sensing unit 5 is provided with five pressure sensing nodes 51 to realize secondary pressure sensing; its specific resistance-pressure curve
  • FIG. 13 it can be seen from FIG. 13 that the resistive pressure sensor obtained in this embodiment has an obvious second-order step and is sensitive to pressure.
  • the resistance value detected in a pressure sensing unit shows a sharp decrease trend in a small pressure range, and then tends to be flat. Its accuracy drops rapidly in wide-range pressure detection, as shown in Figure 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明公开一种电阻式多级压力传感器,包括相对平行设置的压力基板和支撑基板;压力基板设有第一电极层;支撑基板设有第二电极层;第一电极层和第二电极层之间具有介电层;第一电极层的第一导线连接区和第二电极层的第二导线连接区分别电连接于外部电阻测量电路;第一导电路径和第二导电路径呈一定角度相交设置其重叠区域形成压力感应单元;一条第一导电通道和一条第二导电通道重叠区域形成一压力感应节点;每一个压力感应单元受到不同压力水平时,该压力感应单元随着压力水平的变化逐级导通,引起电阻多级阶梯式变化测量压力;本发明还公开了压力感应方法和应用;该发明在不同压力下有效实现压力转化为多级电阻的灵敏感应。

Description

一种电阻式多级压力传感器、感应压力方法及应用 技术领域
本发明涉及电阻式压力传感器技术领域,特别是涉及一种电阻式多级压力传感器、多级阶梯式感应压力方法及应用。
背景技术
触摸面板是一种输入设备,其允许用户通过与面板设备的物理接触来输入信息。触摸面板通常用作各种产品的输入设备,例如家用电器,电视,笔记本计算机和监视器以及便携式电子设备,例如笔记本电脑,电子书,便携式多媒体播放器,全球定位系统导航单元,超级移动电脑,智能手机,智能手表,平板电脑,和移动通信终端。
用户向触摸面板发出指令时通常以手指在设备表面进行触摸,移动,悬停,或敲击等动作来进行简单操作,如翻页,平移,缩放等。对于一些更复杂的指令,如屏幕解锁,用户登录,输入密码等,用户需要实施一些更复杂的手势,或配合使用其他输入设备(如键盘、鼠标等)。相对先进的手势也已经实现。例如,可以通过将两根手指放在触摸板上以启动滚动指令。当系统识别滚动手势后,在触摸板上移动这些手指来执行滚动事件。绝大部分手势指令是通过用户手指在触摸面板上进行平面(即x-y面)移动来实施的。然而,实现这些高级手势的方法是有限的,过于复杂的移动方式反而会给用户带来不便。
因此,有必要提供一种新型触摸面板及其使用方法来达到通过简单且多变的手势实现复杂指令的效果。
发明内容
本发明的第一目的在于提供一种电阻式多级压力传感器,该发明在不同压力下有效实现压力转化为多级电阻的灵敏感应。
为解决此技术问题,本发明的技术方案是:一种电阻式多级压力传感器,包括相对平行设置的压力基板和支撑基板;压力基板朝向所述支撑基板的一侧设有第一电极层;第一电极层包括一条或多条相互平行且绝缘间隔设置的第一导电路径;第一导电路径包括第一导线连接区和由一条或多条相互平行且绝缘间隔设置的第一导电通道;每一第一导电通道分别电连接于第一导线连接区;
支撑基板朝向所述压力基板的一侧设有第二电极层;第二电极层包括一条或多条相互平行且绝缘间隔设置的第二导电路径;第二导电路径包括第二导线连接区和由一条或多条相互平行且绝缘间隔的第二导电通道;每一第二导电通道分别电连接于第二导线连接区;
第一电极层和第二电极层之间具有介电层;
第一导线连接区和第二导线连接区分别电连接于外部电阻测量电路;
其中,第一导电路径和第二导电路径呈一定角度相交设置;一条第一导电路径和一条第二导电路径重叠区域形成一压力感应单元;一条第一导电通道和一条第二导电通道重叠区域形成一压力感应节点;
一个压力感应单元内至少有两个或以上压力感应节点;
第一电极层之间和第二电极层之间还设有高度调节件,每一个压力感应单元受到不同压力水平时,该压力感应单元中的压力感应节点随着压力水平的变化,压力感应节点中第一导电通道和第二导电通道电接触形成压力感应单元逐级导通,引起电阻多级阶梯式变化测量压力。
优选坐标(x,y)处压力感应单元所受多级压力下电阻R n符合以下公式:
Figure PCTCN2021136719-appb-000001
其中,该压力感应单元中第一导电通道和一条第二导电通道的单位电阻可以分别定义为r 0和c 0;a为补偿接触电阻误差的修正函数。本发明中单位电阻为一条导电通道在一个压力感应单元内的电阻。
进一步改进每一个压力感应单元有至少一个固定的高度调节件;
该压力感应单元中每一个压力感应节点与距离其最近的高度调节件最远的距离为D,该压力感应单元中所述最远距离从大至小依次为D1至Dn,其中n为大于等于2的整数;
一个压力感应单元受到的由小至大不同级别的压力,压力基板下凹,第一电极层和第二电极层部分电接触,使D1至Dn对应的压力感应节点由先至后逐级导通。本发明中没有压力感应节点的外缘和其附近的高度调节件的最远相对距离定义了激活该压力感应节点所需的力。距离越小,所需的力越大。
进一步改进高度调节件位于其对应的压力感应节点内部;
或者,
高度调节件与对应的压力感应节点错位设置。
进一步改进一个所述压力感应单元中的部分压力感应节点的第一导电通道和第二导电通道分别设置为导电垫。本发明通过设置一个压力感应单元中导电垫面积的差异,精确控制不同压力等级下被激活的压力感应节点数目,从而得到变化明显且离散的电读数(电阻)。传统电极图样依靠测量接触电阻的变化来检测压力。接触电阻的变化率随着接触面积增大而减小,从而导致在宽范围压力检测中的精确性下降。
进一步改进高度调节件处于中间的压力感应节点其第一导电通道的导电垫设有让位孔。导电垫的让位孔可有效减少压力面板电极层和高度调节件之间的摩擦,从而延长使用寿命。
本发明的第二目的在于提供使用所述电阻式多级压力传感器感应压力的方法,该发明在不同压力下有效实现多级压力灵敏感应。
为解决此技术问题,本发明的技术方案是:一种使用本发明中电阻式压力传感器感应压力的方法,检测沿x方向的第一导电通道和沿y方向的第二导电通道激活的电阻信号变化获得压力的位置坐标(x,y);
一个压力感应单元中每一个压力感应节点与最近高度调节件最远的距离从大至小依次为D1至Dn,其中n为大于等于2的整数;
当该压力感应单元受压,压力基板下凹使D1至Dn中的压力感应节点中的第一导电通道和第二导电通道电接触逐级导通引起电阻n级阶梯式变化测量压力,其中可以检测到n个阶梯式压力等级电阻R n符合:
Figure PCTCN2021136719-appb-000002
其中,该压力感应单元中第一电极层和第二电极层的单位电阻可以分别定义为r 0和c 0;a为补偿接触电阻误差的修正函数。
优选该压力感应单元的最小激活压力为压力基板下凹使D1范围内压力感应节点导通的压力。本发明的最小激活压力可控可调。
本发明的第三目的在于提供一种电阻式多级压力传感器的应用,该发明被配置具有常规多点触摸检测硬件和软件的电子系统中,以检测和处理在同一时间不同位置发生的多点触摸和分别施加的压力。
为解决此技术问题,本发明的技术方案是:一种应用电阻式多级压力传感器的硬件和软件电子系统。
优选不同压力等级组合的输入实现选择、取消、密码输入和支付中的一种功能。优选不同压力等级组合的输入实现选择、取消、密码输入和支付中的一种功能。当按压第一级力度时,传感器控制电路进行区位识别,当按压第二级力度时,传感器在区位识别的基础上进行功能操作。不同压力等级的输入方式类似摩斯密码(MorseCode),1、2、3分别代表第一、第二、第三级压力。用户可通过输入不同的压力等级组合,如1-2-1、2-1-3、1-1-2等实现选择/取消、密码输入、支付等功能。另外,用户还可结合传统二维手势和等级压力感应来实施更加复杂的指令。如两个手指在触摸屏表面进行收缩的手势并输入1-2-3的等级压力手势来进行登出账号并退出应用程序的操作。
通过采用上述技术方案,本发明的有益效果是:
本发明提供了一种电阻式多级压力传感器,每一第一导电通道分别电连接于第一导线连接区,例如银浆或焊料;第一导线连接区在每条第一导电通道和通往电压源(例如电压小于10伏的直流源)的第一极性端子的电路径(例如导线)之间形成电连接;第二电极层的设置同第一电极层;通过测量第一电极层和第二电极层之间的明显电阻阶梯式变化来检测压力变化;
在不同的压力水平下,激活不同数量的压力感应节点从而检测到压力感应单元电阻的离散变化;通过调节压力感应单元中的压力感应节点和高度调节件的排列自由调节所检测的压力等级范围和数量;压力范围可涵盖轻触,轻压,中压,重压等。在没有施加外力的情况下,第一电极层和第二电极层之间有绝缘空间,可检测到的电阻为无穷大。在力的作用下,例如用户通过手指按压传感器表面,两个第一电极层和第二电极层之间至少有一个压力感应单元中的至 少一个压力感应节点相互接通,第一电极层和第二电极层之间形成闭合回路,可检测到一定电阻。施加的压力越大,相互接通的导电通道数量越多,检测到的电阻越小,从而实现多级压力感应;
本发明中的多级压力传感器装置还能够被配置具有常规多点触摸检测硬件和软件的电子系统中,以检测和处理在同一时间不同位置发生的多点触摸和分别施加的压力;本发明将不同级别的压力感应并入手势识别中,可使用户通过简单的三维手势来实施复杂指令;本发明除了能够识别传统二维手势(x-y面),还可通过测量在不同压力区间内反馈的明显电阻变化来感应第三维度(即z轴方向上的压力感应输入)的手势指令。
从而实现本发明的上述目的。
附图说明
图1是本发明涉及的一种电阻式多级压力传感器结构示意图;
图2第一电极层和第二电极层在x-y平面上的投影示意图;
图3是本发明中压力感应单元的剖面图及多级压力响应原理示意图;
(a)无压力;(b)轻压;(c)中压;(d)重压;
图4是本发明中另一种压力感应单元的剖面图及多级压力响应原理示意图;
(a)无压力;(b)轻压;(c)中压;(d)重压;
图5是本发明中三种压力感应节点的结构示意图;
图6是第一种实施方式压力感应单元中压力面板电极路径及支撑面板导电路径中的电极图样;
图7是第二种实施方式压力感应单元中压力面板电极路径及支撑面板导电路的电极图样;
图8是第三种实施方式压力感应单元中压力面板电极路径及支撑面板导电 路径中的电极图样;
图9是第一种实施方式压力感应单元中在不同压力下电流的流通情况示意图;
图10是第一种实施方式压力感应单元理论情况下,不同压力下所检测到的电阻值呈明显阶梯状变化示意图;
图11是第一种实施方式压力感应单元在不同压力下所检测到的电阻值与现有技术中的压力感应单元检测电阻值的压力对比情况;
图12是第四种实施方式压力感应单元结构示意图;
图13是第四种实施方式电阻式多级压力传感器的电阻-压力曲线;
图14是现有技术中压力传感器的压力感应结构示意图;
图15是现有技术中电阻压力传感器电阻-压力曲线。
图中:
压力基板1;支撑基板2;第一导电路径3;第一导线连接区31;第一导电通道32;第二导电路径4;第二导线连接区41;第二导电通道42;压力感应单元5;压力感应节点51;导电垫52;让位孔521;高度调节件6;连接件7。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
实施例1
本实施例公开一种电阻式多级压力传感器、感应压力方法及应用,如图1至6以及9至11所示,包括相对平行设置的压力基板1和支撑基板2;压力基板1朝向所述支撑基板2的一侧设有第一电极层;第一电极层包括一条或多条相互平行且绝缘间隔设置的第一导电路径3;第一导电路径3包括第一导线连接 区31和由多条相互平行且绝缘间隔设置的第一导电通道32;每一第一导电通道32分别电连接于第一导线连接区31;
支撑基板2朝向所述压力基板1的一侧设有第二电极层;第二电极层包括一条或多条相互平行且绝缘间隔设置的第二导电路径4;第二导电路径4包括第二导线连接区41和由多条相互平行且绝缘间隔的第二导电通道42;每一第二导电通道42分别电连接于第二导线连接区41;
第一电极层和第二电极层之间具有介电层;
第一导线连接区31和第二导线连接区41分别电连接于外部电阻测量电路;
其中,第一导电路径3和第二导电路径4呈一定角度相交设置;一条第一导电路径3和一条第二导电路径4重叠区域形成一压力感应单元5;一条第一导电通道32和一条第二导电通道42重叠区域形成一压力感应节点51;
一个压力感应单元5内至少有两个或以上压力感应节点51;
第一电极层之间和第二电极层之间还设有高度调节件6,每一个压力感应单元5受到不同压力水平时,该压力感应单元5中的压力感应节点51随着压力水平的变化,压力感应节点51中第一导电通道32和第二导电通道42电接触形成压力感应单元5逐级导通,引起电阻多级阶梯式变化测量压力。
本实施例中坐标(x,y)处压力感应单元5所受多级压力下电阻R n符合以下公式:
Figure PCTCN2021136719-appb-000003
其中,该压力感应单元5中第一导电通道32和一条第二导电通道42的单位 电阻可以分别定义为r 0和c 0;a为补偿接触电阻误差的修正函数。
进一步改进每一个压力感应单元5有至少一个固定的高度调节件6;
该压力感应单元5中每一个压力感应节点51与距离其最近的高度调节件6最远的距离为D,该压力感应单元5中所述最远距离从大至小依次为D1至Dn,其中n为大于等于2的整数;
一个压力感应单元5受到的由小至大不同级别的压力,压力基板1下凹,第一电极层和第二电极层部分电接触,使D1至Dn对应的压力感应节点51由先至后逐级导通。本发明中没有压力感应节点51的外缘和其附近的高度调节件6的最远相对距离定义了激活该压力感应节点51所需的力。距离越小,所需的力越大。
本实施例中高度调节件6位于其对应的压力感应节点51内部;
本实施例中一个所述压力感应单元5中的部分压力感应节点51的第一导电通道32和第二导电通道42分别设置为导电垫52。本发明通过设置一个压力感应单元5中导电垫52面积的差异,精确控制不同压力等级下被激活的压力感应节点51数目,从而得到变化明显且离散的电读数(电阻)。传统电极图样依靠测量接触电阻的变化来检测压力。接触电阻的变化率随着接触面积增大而减小,从而导致在宽范围压力检测中的精确性下降,如图14和图15所示。
多级压力响应通过激活不同数量的压力感应节点51,即两个电极层中发生电接触导电路径的数量来实现。根据压力感应节点51外延和高度调节件6的距离不同,激活该压力感应节点51所需的力也不同。因此可通过设计导电路径和高度调节件6的排列,自定义压力感应级数和范围。
本实施例中四级压力响应可通过导电路径和高度调节件6的三种不同排列 来实现。分别是:压力感应节点51中无高度调节件6,压力感应节点51中有高度调节件6且面积稍大,压力感应节点51中有高度调节件6且面积稍小。(a)第一级:无压力。两电极层之间未接触,可检测到的电阻为无穷大。(b)第二级:轻压。轻触表面时,无高度调节件6的压力感应节点51中上下导电通道相互接触,该压力感应节点51被激活。可检测到的电阻为R1。(c)第三级:中压。施加在压力接收面的力增加时,有高度调节件6的面积稍大的压力感应节点51中上下导电通道开始接触,该压力感应节点51被激活。可检测到的电阻为R2,R2<R1。(d)第四级:重压。施加的力再度增加时,有高度调节件6的面积稍小的压力感应节点51中上下导电通道开始接触,该压力感应节点51被激活。可检测到的电阻为R3,R3<R2<R1。各个导电通道的电阻可通过路径的宽度,路径的长度,或者导电材料的电阻率来调节。使得各级之间电阻变化明显,且变化率保持相对稳定,以得到在宽范围压力感应中保持高精确性的特点。
本实施例四级压力响应可通过导电路径和高度调节件6的三种不同排列(压力感应节点51距离高度调节件6的距离)来实现。(a)第一级:无压力。两电极层之间未接触,可检测到的电阻为无穷大。(b)第二级:轻压。轻触表面时,距离高度调节件6最远的压力感应节点51中上下导电通道相互接触,该压力感应节点51被激活,可检测到的电阻为R1。(c)第三级:中压。施加在压力接收面的力增加时,和高度调节件6距离中等的压力感应节点51中上下导电通道开始接触,该压力感应节点51被激活,可检测到的电阻为R2,R2<R1。(d)第四级:重压。施加的力再度增加时,与高度调节件6距离最近的压力感应节点51中上下导电通道开始接触,该压力感应节点51被激活,可检测到的电阻为R3,R3<R2<R1。
本实施例压力感应单元5的结构示意图详见图6所示。本实施例高度调节 件6位于压力感应节点51区域内。每个压力感应节点51内均有一个导电垫52。导电垫52的形状为正方形,其大小分为大、中、小三类。面积最大的一对导电垫52位于压力感应单元5中心,且其间没有高度调节件6。面积中等的三对导电垫52位于压力感应单元5的右下角,其间分别有一个高度调节件6。面积最小的五对导电垫52位于压力感应单元5的上边和左边,其间分别有一个高度调节件6。
高度调节件6也可以由压力基板1和支撑基板2之间的连接件7代替。
本实施例使用电阻式压力传感器感应压力的方法,具体步骤为:
检测沿x方向的第一导电通道32和沿y方向的第二导电通道42激活的电阻信号变化获得压力的位置坐标(x,y);
一个压力感应单元5中每一个压力感应节点51与最近高度调节件6最远的距离从大至小依次为D1至Dn,其中n为大于等于2的整数;
当该压力感应单元5受压,压力基板1下凹使D1至Dn中的压力感应节点51中的第一导电通道32和第二导电通道42电接触逐级导通引起电阻n级阶梯式变化测量压力,其中可以检测到n个阶梯式压力等级电阻R n符合:
Figure PCTCN2021136719-appb-000004
其中,该压力感应单元5中第一电极层和第二电极层的单位电阻可以分别定义为r 0和c 0;a为补偿接触电阻误差的修正函数。
本实施例中该压力感应单元5的最小激活压力为压力基板1下凹使D1范围内压力感应节点51导通的压力。本实施例的最小激活压力可控可调。
本实施例被配置具有常规多点触摸检测硬件和软件的电子系统中,以检测 和处理在同一时间不同位置发生的多点触摸和分别施加的压力。
一种应用电阻式多级压力传感器的硬件和软件电子系统。通过不同压力等级组合的输入实现选择、取消、密码输入和支付中的一种功能。优选不同压力等级组合的输入实现选择、取消、密码输入和支付中的一种功能。当按压第一级力度时,传感器控制电路进行区位识别,当按压第二级力度时,传感器在区位识别的基础上进行功能操作。不同压力等级的输入方式类似摩斯密码(MorseCode),1、2、3分别代表第一、第二、第三级压力。用户可通过输入不同的压力等级组合,如1-2-1、2-1-3、1-1-2等实现选择/取消、密码输入、支付等功能。另外,用户还可结合传统二维手势和等级压力感应来实施更加复杂的指令。如两个手指在触摸屏表面进行收缩的手势并输入1-2-3的等级压力手势来进行登出账号并退出应用程序的操作。
本发明提供了一种电阻式多级压力传感器,每一第一导电通道32分别电连接于第一导线连接区31,例如银浆或焊料;第一导线连接区31在每条第一导电通道32和通往电压源(例如电压小于10伏的直流源)的第一极性端子的电路径(例如导线)之间形成电连接;第二电极层的设置同第一电极层;通过测量第一电极层和第二电极层之间的明显电阻阶梯式变化来检测压力变化;
在不同的压力水平下,激活不同数量的压力感应节点51从而检测到压力感应单元5电阻的离散变化;通过调节压力感应单元5中的压力感应节点51和高度调节件6的排列自由调节所检测的压力等级范围和数量;压力范围可涵盖轻触,轻压,中压,重压等。在没有施加外力的情况下,第一电极层和第二电极层之间有绝缘空间,可检测到的电阻为无穷大。在力的作用下,例如用户通过手指按压传感器表面,两个第一电极层和第二电极层之间至少有一个压力感应单元5中的至少一个压力感应节点51相互接通,第一电极层和第二电极层之间 形成闭合回路,可检测到一定电阻。施加的压力越大,相互接通的导电通道数量越多,检测到的电阻越小,从而实现多级压力感应;
本实施例中多级压力传感器装置还能够被配置具有常规多点触摸检测硬件和软件的电子系统中,以检测和处理在同一时间不同位置发生的多点触摸和分别施加的压力;本发明将不同级别的压力感应并入手势识别中,可使用户通过简单的三维手势来实施复杂指令;本发明除了能够识别传统二维手势(x-y面),还可通过测量在不同压力区间内反馈的明显电阻变化来感应第三维度(即z轴方向上的压力感应输入)的手势指令。
实施例2
本实施例与实施例1的主要区别在于:如图5和图7所示,
本实施例中改进高度调节件6处于中间的压力感应节点51其第一导电通道32的导电垫52设有让位孔521。导电垫52的让位孔521可有效减少第一电极层和高度调节件6之间的摩擦,从而延长使用寿命。
高度调节件6位于压力感应节点51区域内。每个压力感应节点51内均有一个导电垫52。导电垫52的形状为正方形和带有让位孔52的镂空正方形。正方形面积分为大、中、小三类,让位孔521面积略大于高度调节件6直径。面积最大的一对导电垫52为正方形,位于压力感应单元5中心,且其间没有高度调节件6。面积中等的三对导电垫52为镂空正方形,位于压力感应单元5的右下角。其间分别有一个高度调节件6,高度调节件6位于让位孔521内。面积最小的五对导电垫52为镂空正方形,位于压力感应单元5的上边和左边。其间分别有一个高度调节件6,高度调节件6位于镂空区域内。镂空的设计可有效减少第一电极层和高度调节件6之间的摩擦,从而延长使用寿命。
本发明通过设置一个压力感应单元5中导电垫52面积的差异,精确控制不 同压力等级下被激活的压力感应节点51数目,从而得到变化明显且离散的电读数(电阻)。
实施例3
本实施例与实施例1的主要区别在于:如图5和图8所示,本实施例中高度调节件6与对应的压力感应节点51错位设置。
高度调节件6位于压力感应节点51附近(压力感应节点51区域外)。部分压力感应节点51内有导电垫52。导电垫52的形状为正方形,其大小分为大、小两类。面积大的一对导电垫52位于压力感应单元5中心,且其间没有高度调节件6。面积小的三对导电垫52位于压力感应单元5的右下角,其附近分别有一个高度调节件6。压力感应单元5的上边和左边共有五个压力感应节点51,且均无导电垫52。所述五个压力感应节点51附近均有一个高度调节件6。压力感应节点51和高度调节件6的位置相对错开的设计可有效减少第一电极层和高度调节件6之间的摩擦,从而延长使用寿命。
如图9所示,高度调节件6的位置和导电垫52的面积将影响激活压力感应节点51所需的最小力(激活压力)。当压力基板1的压力接收侧受到压力时,可以通过使第一电极层变形,让导电垫52与第二电极层中的相应导电垫52接触,从而激活该压力感应节点51。参照图4可以看出,导电垫52面积的不同会影响激活压力感应节点51所需的最小压力。中间没有高度调节件6的一对导电垫52(即压力感应单元5中心的一对导电垫52)相互接触所需的力最小。中心导电垫52的小激活压力赋予了压力传感器检测轻触的能力(激活压力通常小于0.2N)。由于中间有高度调节件6,导电垫52的面积越小,所需激活压力就越大。特别设计的不同面积的导电垫52,保证了对不同级别压力的检测。
图9和图10说明了一个压力感应单元5中,多级压力传感器的示范性压力 感应事件。在没有施加压力的情况下,即在静止状态下(P0=0),第一电极层和第二电极层不接触,因此存在一个开路,没有可测量的电流流动(即无穷大的电阻)。当轻触压力接收面时(P1),压力基板1的中心部分,即中间没有高度调节件6的部分,会向支撑基板2弯曲,使中心的两个导电垫52相互接触(即中心的压力感应节点51被激活)。在一定的最小施力水平上,如轻触,这将使电路闭合,并使可测量的电流在压力导电通道和支撑导电通道之间流动。此时,可测得第一电极层和第二电极层之间的电阻为R1。当压力增大时(P2),压力基板1弯曲更多,导致位于压力感应单元5右下角的三个中等面积的导电垫52相互接触。更多压力感应节点51被激活,可测电流增大,转换电阻减小(R2<R1)。当压力进一步增加时(P3),压力基板1弯曲,使面积最小的导电垫52相互接触。所有压力感应节点51均被激活,可测电流增大,转换电阻减小(R3<R2<R1)。当压力被移除时,压力基板1将回到其未弯曲的位置,恢复第一导电路径3和第二导电路径4之间的绝缘空间。
一般来说,随着接触的导电垫52越多,被激活的压力感应节点51越多,第一电极层和第二电极层之间的电阻就越小。通过导电垫52面积的差异,不同数量的压力感应节点51将在不同的压力等级下被激活。因此,可以准确测量宽范围的压力等级。图10说明了从P0到P3,其中,P0<P1<P2<P3,不同压力等级下的一系列典型的按压事件。在不同的压力等级下,不同数量的压力感应节点51将被激活,这赋予了该装置对施加到压力传感器装置上的宽范围压力获得离散和敏感测量的能力。
通过计算,可以得到按压事件的位置和施加在压力传感器装置上的力的大小。通过分析沿x方向的第二导电路径4和沿y方向的第一导电路径3哪个被激活,可以获得按压事件的位置,即x y坐标(x,y)。施加力的大小可以通过 压力(P)与电阻(R)的函数将两个电极之间的电阻转换为压力来获得。根据一个优选的实施例,对于具有n 2个导电垫52和n种导电垫52面积的压力感应单元5,可以检测到n个压力等级(不考虑压力为零的情况)。为了简化计算,一个压力感应单元5中压力导电通道和支撑导电通道的电阻可以分别定义为r o和c o。对于一个坐标为(x,y)的按压事件,压力等级1(P1)下的电阻可以计算为
R 1=x×r o+y×c o+a
其中,a为补偿接触电阻误差的修正函数。由于设计的因素,接触电阻的影响远小于导电线路的电阻。
压力等级2下的电阻(P2)可计算为
Figure PCTCN2021136719-appb-000005
3级压力下的阻力(P3)可计算为
Figure PCTCN2021136719-appb-000006
……
压力水平n下的阻力(Pn)可计算为
Figure PCTCN2021136719-appb-000007
本实施例所得的电阻-压力曲线如图11所示,本实施例可以实现三级的压力感应,阶梯明显。相比较于现有技术大电阻式压力传感器,本实施例针对压力敏感,能有效将压力转化为阶梯式电阻,实现该电阻式多级压力传感器的进一步应用。
实施例4
本实施例与实施例4的主要区别如图12和图13所示,本实施例一个压力感应单元5中设置有5个压力感应节点51,实现二级压力感应;其具体的电阻-压力曲 线如图13所示,从图13中可看出本实施例所得电阻式压力传感器具有明显的二级阶梯,针对压力敏感。
根据传统电极图样如图14,一个压力感应单元中所检测到的电阻值在小压力范围内呈现锐减的趋势,随后趋于平缓。其在宽范围压力检测中精确性迅速下降,如图15所示。

Claims (10)

  1. 一种电阻式多级压力传感器,其特征在于:包括相对平行设置的压力基板和支撑基板;
    压力基板朝向所述支撑基板的一侧设有第一电极层;第一电极层包括一条或多条相互平行且绝缘间隔设置的第一导电路径;第一导电路径包括第一导线连接区和由一条或多条相互平行且绝缘间隔设置的第一导电通道;每一第一导电通道分别电连接于第一导线连接区;
    支撑基板朝向所述压力基板的一侧设有第二电极层;第二电极层包括一条或多条相互平行且绝缘间隔设置的第二导电路径;第二导电路径包括第二导线连接区和由一条或多条相互平行且绝缘间隔的第二导电通道;每一第二导电通道分别电连接于第二导线连接区;
    第一电极层和第二电极层之间具有介电层;
    第一导线连接区和第二导线连接区分别电连接于外部电阻测量电路;
    其中,第一导电路径和第二导电路径呈一定角度相交设置;一条第一导电路径和一条第二导电路径重叠区域形成一压力感应单元;一条第一导电通道和一条第二导电通道重叠区域形成一压力感应节点;
    一个压力感应单元内至少有两个或以上压力感应节点;
    第一电极层之间和第二电极层之间还设有高度调节件,每一个压力感应单元受到不同压力水平时,该压力感应单元中的压力感应节点随着压力水平的变化,压力感应节点中第一导电通道和第二导电通道电接触形成压力感应单元逐级导通,引起电阻多级阶梯式变化测量压力。
  2. 如权利要求1所述的一种电阻式多级压力传感器,其特征在于:坐标(x,y)处压力感应单元所受多级压力下电阻R n符合以下公式:
    Figure PCTCN2021136719-appb-100001
    其中,该压力感应单元中第一导电通道和一条第二导电通道的单位电阻可以分别定义为r 0和c 0;a为补偿接触电阻误差的修正函数。
  3. 如权利要求1所述的一种电阻式多级压力传感器,其特征在于:每一个压力感应单元有至少一个固定的高度调节件;
    该压力感应单元中每一个压力感应节点与距离其最近的高度调节件最远的距离为D,该压力感应单元中所述最远距离从大至小依次为D1至Dn,其中n为大于等于2的整数;
    一个压力感应单元受到的由小至大不同级别的压力,压力基板下凹,第一电极层和第二电极层部分电接触,使D1至Dn对应的压力感应节点由先至后逐级导通。
  4. 如权利要求3所述的一种电阻式多级压力传感器,其特征在于:
    高度调节件位于其对应的压力感应节点内部;
    或者,
    高度调节件与对应的压力感应节点错位设置。
  5. 如权利要求4所述的一种电阻式多级压力传感器,其特征在于:一个所述压力感应单元中的部分压力感应节点的第一导电通道和第二导电通道分别设置为导电垫。
  6. 如权利要求5所述的一种电阻式多级压力传感器,其特征在于:高度调节件处于中间的压力感应节点其第一导电通道的导电垫设有让位孔。
  7. 一种使用权1至权6任一项所述电阻式压力传感器感应压力的方法,其特征在于:
    检测沿x方向的第一导电通道和沿y方向的第二导电通道激活的电阻信号变化获得压力的位置坐标(x,y);
    一个压力感应单元中每一个压力感应节点与最近高度调节件最远的距离从大至小依次为D1至Dn,其中n为大于等于2的整数;
    当该压力感应单元受压,压力基板下凹使D1至Dn中的压力感应节点中的第一导电通道和第二导电通道电接触逐级导通引起电阻n级阶梯式变化测量压力,其中可以检测到n个阶梯式压力等级电阻R n符合:
    Figure PCTCN2021136719-appb-100002
    其中,该压力感应单元中第一电极层和第二电极层的单位电阻可以分别定义为r 0和c 0;a为补偿接触电阻误差的修正函数。
  8. 如权7所述感应压力方法,其特征在于:该压力感应单元的最小激活压力为压力基板下凹使D1范围内压力感应节点导通的压力。
  9. 一种应用有权1至权6任一项所述电阻式多级压力传感器的硬件和软件电子系统。
  10. 如权9所述的硬件和软件电子系统,其特征在于:不同压力等级组合的输入实现选择、取消、密码输入和支付中的一种功能。
PCT/CN2021/136719 2021-02-07 2021-12-09 一种电阻式多级压力传感器、感应压力方法及应用 WO2022166394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110182522.8 2021-02-07
CN202110182522.8A CN112860111B (zh) 2021-02-07 2021-02-07 一种电阻式多级压力传感器、感应压力方法及应用

Publications (1)

Publication Number Publication Date
WO2022166394A1 true WO2022166394A1 (zh) 2022-08-11

Family

ID=75989563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136719 WO2022166394A1 (zh) 2021-02-07 2021-12-09 一种电阻式多级压力传感器、感应压力方法及应用

Country Status (2)

Country Link
CN (1) CN112860111B (zh)
WO (1) WO2022166394A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117382015A (zh) * 2023-08-21 2024-01-12 深圳市百事达先进材料有限公司 低渗透率、低水反应性能的聚氨酯复合材料的制备工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112860111B (zh) * 2021-02-07 2022-08-09 瑞态常州高分子科技有限公司 一种电阻式多级压力传感器、感应压力方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214037A (zh) * 2010-04-07 2011-10-12 索尼公司 电子装置和操作检测方法
CN103823592A (zh) * 2014-02-26 2014-05-28 汕头超声显示器(二厂)有限公司 一种带有力学感应功能的显示装置
CN106293192A (zh) * 2015-06-10 2017-01-04 宸鸿科技(厦门)有限公司 压力感测输入装置
US20190187855A1 (en) * 2010-12-02 2019-06-20 Neodrón Limited Position-Sensing and Force Detection Panel
CN112860111A (zh) * 2021-02-07 2021-05-28 瑞态常州高分子科技有限公司 一种电阻式多级压力传感器、感应压力方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192818A (ja) * 1986-02-20 1987-08-24 Agency Of Ind Science & Technol 加圧点検出器
US9684382B2 (en) * 2012-06-13 2017-06-20 Microsoft Technology Licensing, Llc Input device configuration having capacitive and pressure sensors
TWI602101B (zh) * 2016-11-11 2017-10-11 友達光電股份有限公司 具有壓力感測器的觸控顯示面板
CN109238521A (zh) * 2018-09-18 2019-01-18 常州大学 一种高电阻柔性生物压力传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214037A (zh) * 2010-04-07 2011-10-12 索尼公司 电子装置和操作检测方法
US20190187855A1 (en) * 2010-12-02 2019-06-20 Neodrón Limited Position-Sensing and Force Detection Panel
CN103823592A (zh) * 2014-02-26 2014-05-28 汕头超声显示器(二厂)有限公司 一种带有力学感应功能的显示装置
CN106293192A (zh) * 2015-06-10 2017-01-04 宸鸿科技(厦门)有限公司 压力感测输入装置
CN112860111A (zh) * 2021-02-07 2021-05-28 瑞态常州高分子科技有限公司 一种电阻式多级压力传感器、感应压力方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117382015A (zh) * 2023-08-21 2024-01-12 深圳市百事达先进材料有限公司 低渗透率、低水反应性能的聚氨酯复合材料的制备工艺

Also Published As

Publication number Publication date
CN112860111B (zh) 2022-08-09
CN112860111A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022166394A1 (zh) 一种电阻式多级压力传感器、感应压力方法及应用
CN109844697B (zh) 基于力形状确定有效触摸
US9141225B2 (en) Capacitive touch screen with force detection
US9128558B2 (en) Force detecting method for capacitive touch screen
JP6032371B2 (ja) 検出センサ及び入力装置
US20150185946A1 (en) Touch surface having capacitive and resistive sensors
US20100134422A1 (en) Touch sensor panel using regional and local electrodes to increase number of sense locations
JP2010503104A (ja) 触感構造を有するタッチパッド及びそれを用いた接触センサ
TWI398800B (zh) 觸控面板及其輸出方法
US20100097347A1 (en) Pressure Detection Module, and Touch Panel with Pressure Detection Module
US20150084868A1 (en) Pressure-sensitive trackpad
JP3150179U (ja) マルチセンサタッチパッド
TW201533644A (zh) 具有防止誤觸功能的智能裝置
US7215330B2 (en) Touch-sensitive surface which is also sensitive to pressure levels
US10126885B2 (en) Capacitive touch panel and touch position calculation method thereof
US10268301B2 (en) Three-dimensional touch panel
JP5487240B2 (ja) 静電容量式タッチパネルの導電模様構造、およびその構成方法
KR20100022747A (ko) 압전저항층을 포함하는 터치센서와 이를 포함하는 입력장치및 입력감지방법
EP3571574B1 (en) Sensing apparatus
US8791922B2 (en) Resistive touch panel
CN105373270B (zh) 触控装置
CN107422930A (zh) 触控基板和触摸屏
CN110858108A (zh) 一种压力感测模组、触控面板以及触控面板两点触摸压力检测方法
US8810545B2 (en) Control circuit and dual touch control method thereof for a four-wire resistive touch panel
CN214670530U (zh) 一种电阻式多级压力传感器及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924387

Country of ref document: EP

Kind code of ref document: A1