WO2022166225A1 - 一种铁心磁路复用的电气系统 - Google Patents

一种铁心磁路复用的电气系统 Download PDF

Info

Publication number
WO2022166225A1
WO2022166225A1 PCT/CN2021/121189 CN2021121189W WO2022166225A1 WO 2022166225 A1 WO2022166225 A1 WO 2022166225A1 CN 2021121189 W CN2021121189 W CN 2021121189W WO 2022166225 A1 WO2022166225 A1 WO 2022166225A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic circuit
iron core
circuit multiplexing
motor
transformer
Prior art date
Application number
PCT/CN2021/121189
Other languages
English (en)
French (fr)
Inventor
陈高华
丁荣军
冯江华
刘可安
尚敬
刘海涛
许义景
石煜
范祝霞
张文龙
王禹
韩亮
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Publication of WO2022166225A1 publication Critical patent/WO2022166225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission

Definitions

  • the invention relates to the fields of electrical transmission and automation, in particular to an electrical system with an iron core and a magnetic circuit multiplexing.
  • Figure 1 and Figure 2 are the topology diagrams of the existing railway converter "big horse-drawn trolley” traction system
  • Figure 1 shows a single traction converter driving a single motor
  • Figure 2 shows a single traction converter Drive multiple motors.
  • the characteristic is the railway converter "big horse-drawn trolley", that is, the large converter matches the small motor.
  • Figure 3 and Figure 4 are the topology diagrams of the existing "big horse-drawn cart” type drive system of the rolling converter, Figure 3 is a single inverter unit cascaded to drive a single motor, and Figure 4 is a single inverter The variable units are cascaded to drive multiple motors. Typical applications are H-bridge cascading to achieve high power with high voltage. The characteristic is the "big horse-drawn cart", that is, the high-voltage inverter unit matches the high-voltage large motor.
  • the purpose of the present invention is to provide an electrical system for the multiplexing of the iron core and the magnetic circuit.
  • the carrier of the channel can meet the application requirements of ultra-high power, ultra-high speed and multiple function integration.
  • a first aspect of the present invention provides an electrical system for iron core magnetic circuit multiplexing, comprising:
  • the functional system provides the electromagnetic field and electromagnetic wave of the iron core magnetic circuit multiplexing equipment
  • iron core of the iron core magnetic circuit multiplexing device as a magnetic circuit multiplexing channel for electromagnetic fields and electromagnetic waves and their combinations
  • the frequency, amplitude and phase of the electromagnetic field and electromagnetic wave are freely transmitted in the magnetic circuit multiplexing channel.
  • the iron core magnetic circuit multiplexing device includes any one or more combinations of motors, transformers, electromagnets, reactors and antennas.
  • the iron core magnetic circuit multiplexing device is a motor, and the number of motors is one or more;
  • Iron core magnetic circuit multiplexing equipment includes:
  • Motor stator core, motor rotor core and motor traction winding the number of motor traction windings is one or more groups;
  • the functional system is a traction system, and the traction system is connected with the traction winding of the motor.
  • the iron core magnetic circuit multiplexing device is a transformer, and the number of transformers is one or more;
  • Iron core magnetic circuit multiplexing equipment includes:
  • the primary core of the transformer, the secondary core of the transformer, the primary winding of the transformer and the secondary winding of the transformer, the primary winding of the transformer and the secondary winding of the transformer are one or more sets;
  • the functional system is a substation system, and the substation system is connected with the primary winding of the transformer and the secondary winding of the transformer.
  • the iron core magnetic circuit multiplexing device is an electromagnet, and the number of electromagnets is one or more;
  • Iron core magnetic circuit multiplexing equipment includes:
  • Electromagnet core and electromagnet winding the number of electromagnet windings is one or more groups;
  • the functional system is an electromagnetic force system, and the electromagnetic force system is connected with the electromagnet winding.
  • the iron core magnetic circuit multiplexing device is a reactor, and the number of reactors is one or more;
  • Iron core magnetic circuit multiplexing equipment includes:
  • Reactor core and reactor winding the number of reactor windings is one or more groups;
  • the functional system is a current variation suppression system, and the current variation suppression system is connected with the reactor winding.
  • the iron core magnetic circuit multiplexing device is an antenna, and the number of antennas is one or more;
  • Iron core magnetic circuit multiplexing equipment includes:
  • Antenna core and communication coil the number of communication coils is one or more groups;
  • the functional system is a communication system, and the communication system is connected with the communication coil.
  • the iron core magnetic circuit multiplexing equipment is a combination of any two, any three, or any four of the motor, transformer, electromagnet, reactor and antenna, and the number of the motor, transformer, electromagnet, reactor and antenna is one or more.
  • the iron core magnetic circuit multiplexing device is all combinations of motors, transformers, electromagnets, reactors and antennas, and the number of motors, transformers, electromagnets, reactors and antennas is one or more.
  • the electrical system of the iron core magnetic circuit multiplexing device of the present invention includes the iron core magnetic circuit multiplexing device and its functional system.
  • the magnetic circuit multiplexing channel of electromagnetic field and electromagnetic wave and their combination the magnetic circuit multiplexing channel is used to realize the function of the iron core magnetic circuit multiplexing device.
  • the iron core magnetic circuit is used as the common channel of the electromagnetic field and electromagnetic wave of the functional system and its combination, so that the iron core of the iron core magnetic circuit multiplexing device becomes the carrier of the multi-function channel, which can meet the requirements of ultra-high power, ultra-high speed and multi-function integration. Application requirements.
  • Fig. 1 is a topology diagram of the existing railway converter "big horse-drawn trolley” type traction system
  • Fig. 2 is another topology diagram of the existing railway converter "big horse-drawn trolley” type traction system
  • Fig. 3 is a topological diagram of the existing "big horse-drawn cart” type drive system of the rolling converter
  • Fig. 4 is another topology diagram of the existing "big horse-drawn cart” type drive system of the rolling converter
  • Fig. 5 is the electrical system topology diagram of the iron core magnetic circuit multiplexing provided by the present invention.
  • FIG. 6 is a topology diagram of an electrical system in which the iron core magnetic circuit multiplexing device provided by the present invention is a motor;
  • FIG. 7 is an electrical system topology diagram in which the iron core magnetic circuit multiplexing equipment provided by the present invention is a transformer
  • FIG 8 is an electrical system topology diagram in which the core magnetic circuit multiplexing device provided by the present invention is an electromagnet
  • FIG. 9 is a topology diagram of an electrical system in which the iron core magnetic circuit multiplexing device provided by the present invention is a reactor;
  • FIG. 10 is an electrical system topology diagram in which the iron core magnetic circuit multiplexing device provided by the present invention is an antenna;
  • FIG. 11 is a topological diagram of an electrical system in which the core magnetic circuit multiplexing device provided by the present invention is a combination of a motor and an electromagnet;
  • the core magnetic circuit multiplexing equipment provided by the present invention is a combination of a motor, an electromagnet and a transformer;
  • FIG. 13 is a topology diagram of an electrical system in which the core magnetic circuit multiplexing device provided by the present invention is a combination of a motor, an electromagnet, a transformer, and an antenna.
  • the present application discloses an electrical system for multiplexing iron-core magnetic circuits, which uses the iron-core magnetic circuit multiplexing as a common channel for electromagnetic fields and electromagnetic waves of a functional system and their combinations, so that the iron core of the iron-core-magnetic circuit multiplexing device becomes the carrier of the multi-function channel , can meet the application requirements of ultra-high power, ultra-high speed, and multiple function integration.
  • the terms "connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • an embodiment of the present invention provides an electrical system for multiplexing iron-core magnetic circuits, including:
  • the functional system provides the electromagnetic field and electromagnetic wave of the iron core magnetic circuit multiplexing equipment
  • iron core of the iron core magnetic circuit multiplexing device as a magnetic circuit multiplexing channel for electromagnetic fields and electromagnetic waves and their combinations
  • the description is given by taking the integration of a motor, a transformer, a reactor, an electromagnet, and an antenna as an example.
  • 501 and 507 are motor windings
  • 502 and 508 are transformer windings
  • 504 and 510 are reactor windings
  • 505 and 511 are electromagnet windings
  • 506 and 512 are antenna transmit/receive coils
  • 503 and 509 are iron cores with air gaps ⁇ is 0mm ⁇
  • motor winding 501 corresponds to n1 motors
  • transformer winding 502 corresponds to n2 transformers
  • reactor winding 504 corresponds to n3 reactors
  • electromagnet winding 505 corresponds to n4 electromagnets
  • antenna transmitting coil/receiving coil 506 corresponds to n5
  • n1, n2, n3, n4, and n5 are natural numbers greater than or equal to 0.
  • the drive circuit of the motor winding 507 connected to its functional system is excited to generate i motor magnetic fluxes, i is a natural number greater than or equal to 0, and the total magnetic flux of the i magnetic circuit multiplexed motor magnetic fluxes in the iron core is:
  • the drive circuit of the transformer winding 508 connected to its functional system is excited to generate j transformer magnetic fluxes, where j is a natural number greater than or equal to 0, and the total magnetic flux of the j magnetic circuit multiplexed transformer fluxes in the iron core is:
  • the drive circuit of the electromagnet winding 511 connected to its functional system is excited to generate k electromagnet magnetic fluxes, where k is a natural number greater than or equal to 0, and the total magnetic flux of the electromagnet fluxes of the k magnetic circuits in the core is:
  • the drive circuit of the reactor winding 510 connected to its functional system is excited to generate r reactor magnetic fluxes, r is a natural number greater than or equal to 0, and the total magnetic flux of the r magnetic circuit multiplexed reactor magnetic fluxes in the iron core is:
  • the drive circuit of the antenna transmitting coil/receiving coil 512 connected to its functional system is excited to generate s antenna magnetic fluxes, where s is a natural number greater than or equal to 0, and the total magnetic flux of the s magnetic circuit multiplexed antenna fluxes in the iron core is:
  • any one or more of the motor, transformer, reactor, electromagnet, and antenna can be combined with the drive circuit of the corresponding functional system, and the motor magnetic flux, transformer magnetic flux,
  • the magnetic flux of the reactor, the magnetic flux of the electromagnet, and the magnetic flux of the antenna are all contained in the iron core, realizing the common channel of the electromagnetic field and electromagnetic wave and their combination of the magnetic circuit of the iron core, which makes the magnetic circuit of the iron core a common channel of the equipment.
  • the iron core becomes the carrier of the multi-function channel, which can meet the application requirements of ultra-high power, ultra-high speed and multi-function integration.
  • the electromagnetic fields and electromagnetic waves provided by the functional systems corresponding to all core magnetic circuit multiplexing devices The frequency, amplitude and phase are freely transmitted in the magnetic circuit multiplexing channel. That is, the iron core of the magnetic circuit can accommodate an infinite variety of electromagnetic fields and electromagnetic waves, and there is no "crash" in the physical space and the problem of channel crowding.
  • the core magnetic circuit multiplexing device is any one or more of a motor, a transformer, a reactor, an electromagnet, and an antenna through the embodiment. The combinations are described separately.
  • the iron core magnetic circuit multiplexing equipment is a motor, and the number of motors is one or more;
  • the iron core magnetic circuit multiplexing can derive electrical independent power supplies with different numbers of channels and different voltage levels. These power supplies can be single-phase power, three-phase power and load.
  • the sum of these derived power supply and load characteristics is the input generator characteristics, and what kind of input generator characteristics has what kind of derived power supply and load characteristics.
  • iron core magnetic circuit multiplexing provides a way for multiple power sources with different voltages, currents, frequencies and waveforms to jointly drive the same mechanical load. It can be an asynchronous motor or a synchronous motor; it can be a rotating motor. , can also be a linear motor.
  • the power supply characteristics of different transfer functions are coupled with the magnetic field to generate various required mechanical characteristics.
  • FIG. 6 it is a topology diagram of the electrical system in which the iron core magnetic circuit multiplexing equipment is a motor, 601 is the motor stator core, 605 is the rotor core, 602 is the motor traction winding 1, 603 is the motor traction winding 2, 604 is the motor traction Winding i', where the air gap ⁇ is 0.1 to 20 mm, i' motor drive circuits connected to the traction system by i' motor traction windings are excited to generate i motor magnetic fluxes.
  • the motor drive circuit can be either The circuit that drives the motor, in turn, can be a circuit driven by the motor, or a combination of driving and driven circuits.
  • the corresponding motor flux 1, 2 and i functions are constructed according to specific needs. i and i' are natural numbers greater than or equal to 0, and the total amount of magnetic flux in the iron core of the motor magnetic flux multiplexed by i magnetic circuits is:
  • the magnetic fluxes of i motors form a magnetic circuit multiplexing in the iron core.
  • the device can realize the function of the rotating electrical machine and realize the mechanical energy and the mechanical energy.
  • the mutual conversion of electric energy when the magnetic field of the magnetic circuit multiplexing meets the magnetic field requirements of the linear motor, and with the specific iron core shape and transmission device, the device can realize the function of the linear motor and realize the mutual conversion of mechanical energy and electric energy.
  • the electrical system can be used in many fields, suitable for asynchronous motors and synchronous motors, suitable for rotary motors, linear motors, reciprocating motors and other motor drive systems with customized motion characteristics, suitable for electric excitation motors, permanent magnet motors and electric excitation and
  • the drive system of the permanent magnet combined motor is suitable for the electrical system of the electromagnetic transformer with customized characteristics and the special communication antenna;
  • the iron core magnetic circuit multiplexing equipment is a transformer, and the number of transformers is one or more;
  • iron core magnetic circuit multiplexing provides a multi-power source with different voltages, currents, frequencies and waveforms to jointly drive the same power conversion path, which can be single-phase transformers or multi-phase transformers.
  • the sum of these power sources is the input characteristic of the transformer, what kind of input has what kind of output and load characteristics, and the power source characteristics of different transfer functions are coupled in the form of magnetic fields to generate various required magnetic fields .
  • FIG. 7 it is a topology diagram of the electrical system in which the core magnetic circuit multiplexing device is a transformer, 701 is the primary core of the transformer, 702 is the primary winding 1 of the transformer, 703 is the secondary core of the transformer, 704 is the secondary winding 1 of the transformer, 705 is the transformer secondary winding 2, 706 is the transformer secondary winding j", 707 is the transformer primary winding j', and 708 is the transformer primary winding 2.
  • the air gap ⁇ is 0mm ⁇ x
  • the j' transformer primary winding and j" The secondary winding of the transformer is connected to the substation system to excite and generate j transformer magnetic fluxes.
  • the magnetic fluxes of the j transformers form a magnetic circuit multiplexing in the iron core.
  • the magnetic field of the magnetic circuit multiplexing meets the requirements of the transformer energy conversion, and with the specific form of the core shape and transmission device, the electric energy conversion function can be realized.
  • the iron core magnetic circuit multiplexing equipment is an electromagnet, and the number of electromagnets is one or more;
  • iron core magnetic circuit multiplexing provides a way for multiple power sources with different voltages, currents, frequencies, and waveforms to jointly drive the same electromagnet mechanism. It can be a levitation electromagnet, a guide electromagnet, or a Eddy current braking electromagnet, can be access control electromagnet, etc.
  • the power supply characteristics of different transfer functions generate various required electromagnetic transmission characteristics in the form of magnetic field coupling.
  • FIG. 8 it is a topology diagram of the electrical system in which the iron core magnetic circuit multiplexing device is an electromagnet, 801 is the electromagnet core, 802 is the electromagnet core, 803 is the electromagnet winding 1, 804 is the electromagnet winding 2, and 805 is the electromagnet core.
  • the electromagnet winding k' where the air gap ⁇ is 0mm ⁇ x, is excited by k' electromagnet windings connected to the electromagnetic force system to generate k electromagnet magnetic fluxes, k, k' are natural numbers greater than or equal to 0, k magnetic fluxes
  • the total amount of magnetic flux of the multiplexed electromagnet in the core is:
  • the magnetic fluxes of the k transformers form a magnetic circuit multiplexing in the iron core.
  • the magnetic field of the magnetic circuit multiplexing meets the working requirements of the electromagnet, and with the specific form of the core shape and transmission device, the electric energy conversion function can be realized.
  • the iron core magnetic circuit multiplexing equipment is a reactor, and the number of reactors is one or more;
  • iron core magnetic circuit multiplexing provides a way for multiple power sources with different voltages, currents, frequencies and waveforms to jointly drive the same electromagnetic mechanism, which can be single-phase reactors or multi-phase reactors. .
  • the power characteristics of different transfer functions generate various required electromagnetic fluxes by magnetic field coupling, and through the magnetic circuit multiplexing, the functions of reactive power compensation, overvoltage, and overcurrent limitation are realized.
  • the magnetic circuit is not saturated when all units are working at full load. In this way, single or multiple units will not be saturated when working, and there will be no "crash" in the physical space and the problem of channel crowding.
  • FIG. 9 it is a topology diagram of an electrical system in which the iron core magnetic circuit multiplexing equipment is a reactor, 901 is the reactor core, 902 is the reactor core, 903 is the reactor winding 1, 904 is the reactor winding 2, 905 is the The reactor winding r', where the air gap ⁇ is 0mm ⁇ x, is excited by the r' reactor winding connection current change suppression system to generate r reactor magnetic fluxes, r, r' are natural numbers greater than or equal to 0, r
  • the total amount of magnetic flux in the iron core of the reactor with the magnetic circuit multiplexing is:
  • the magnetic fluxes of r reactors form a magnetic circuit multiplexing in the iron core.
  • the magnetic field of the magnetic circuit multiplexing meets the working requirements of the reactor, and cooperates with a specific form of core shape and transmission device, it can realize reactive power compensation, voltage limiting, Current limiting and other functions.
  • the iron core magnetic circuit multiplexing device is an antenna, and the number of antennas is one or more;
  • the iron core magnetic circuit multiplexing provides a multi-power source with different voltage, current, frequency and waveform to jointly drive the same electromagnetic wave emission path.
  • the power characteristics of different transfer functions are coupled in the form of electromagnetic waves to generate various required electromagnetic waves, and the signals are transmitted through magnetic circuit multiplexing.
  • the transmitted signals can be communication signals, control signals, etc.
  • FIG. 10 it is a topology diagram of the electrical system in which the iron core magnetic circuit multiplexing device is an antenna, 1001 is the antenna transmitting coil 1, 1002 is the antenna transmitting coil 2, 1003 is the antenna iron core, 1004 is the antenna transmitting coil s', 1005 is the antenna transmitting coil s', 1005 is the Antenna receiving coils 1 and 1006 are antenna receiving coils 2 and 1007 are antenna receiving coils s", where when the air gap ⁇ is ⁇ , s' antenna transmitting coils are connected to the communication system to stimulate and generate s antenna magnetic fluxes, s, s' , s" is a natural number greater than or equal to 0, and the total amount of magnetic flux in the iron core of the antenna magnetic flux multiplexed by s magnetic circuits is:
  • the magnetic fluxes of the s antennas form a magnetic circuit multiplexing in the iron core.
  • the magnetic field of the magnetic circuit multiplexing conforms to the signal transmission law, and with the special form of the core shape and transmission device, the transmission and transmission functions and pickup of electromagnetic waves can be realized.
  • the iron core magnetic circuit multiplexing equipment is a combination of any two of the motors, transformers, electromagnets, reactors and antennas, and the number of motors, transformers, electromagnets, reactors and antennas is one or more;
  • the iron core magnetic circuit multiplexing equipment is a motor, a transformer, an electromagnet, a reactor and an antenna as described in the above (1), (2), (3), (4), (5).
  • FIG. 11 is the electrical system topology diagram in which the core magnetic circuit multiplexing device is a combination of a motor and an electromagnet, 1101 is the motor stator core, 1102 is the motor rotor core, and 1103 is the motor traction Winding, 1104 electromagnet winding and rotor excitation winding, 1104 is connected to the electromagnetic force system to excite k-way electromagnet flux, 1103 is connected to the traction system to excite and generate i-way motor flux, reuse the same pair of iron cores, i+k-way magnetic flux In the magnetic circuit multiplexing channel of the iron core, the function corresponding to each magnetic circuit is constructed according to specific needs. The same pair of cores is both part of the motor and part of the electromagnet.
  • the iron core magnetic circuit multiplexing equipment is a combination of any three of motors, transformers, electromagnets, reactors and antennas, and the number of motors, transformers, electromagnets, reactors and antennas is one or more;
  • the combination of motor, transformer and electromagnet the combination of motor, transformer and reactor, the combination of motor, transformer and antenna, the combination of motor, electromagnet and reactor, the combination of motor, electromagnet, Combination of antenna, combination of motor, reactor, antenna, combination of transformer, electromagnet, reactor, combination of transformer, electromagnet, antenna, combination of transformer, reactor, antenna, combination of electromagnet, reactor, antenna.
  • the iron core magnetic circuit multiplexing equipment is a motor, a transformer, an electromagnet, a reactor and an antenna as described in the above (1), (2), (3), (4), (5).
  • the electrical system topology diagram of the core magnetic circuit multiplexing equipment is the combination of motor, electromagnet and transformer
  • 1201 is the motor stator core
  • 1202 is the motor rotor core
  • 1203 is the motor traction winding
  • 1204 is the primary winding of the transformer
  • 1205 is the secondary winding of the transformer
  • 1206 is the electromagnet winding and rotor excitation winding
  • 1206 is connected to the electromagnetic force system to generate k-way electromagnet flux
  • 1203 is connected to the traction system to excite Generate i-circuit motor magnetic flux
  • 1204 and 1205 are connected with the substation system to excite and generate j-channel transformer magnetic flux, reuse the same pair of iron cores, i+j+k-way magnetic flux is in the magnetic circuit multiplexing channel of the iron core, each magnetic circuit
  • the corresponding functions are constructed according to specific needs.
  • the same pair of cores is part of the motor, part of the electromagnet, and part of the
  • the iron core magnetic circuit multiplexing equipment is a combination of any four of the motors, transformers, electromagnets, reactors and antennas, and the number of motors, transformers, electromagnets, reactors and antennas is one or more;
  • the iron core magnetic circuit multiplexing equipment is a motor, a transformer, an electromagnet, a reactor and an antenna as described in the above (1), (2), (3), (4), (5).
  • the electrical system topology diagram of the core magnetic circuit multiplexing device is the combination of motor, electromagnet, transformer and antenna
  • 1301 is the motor stator core
  • 1302 is the electrical system topology
  • Motor rotor core 1303 is the motor traction winding
  • 1304 is the primary winding of the transformer
  • 1305 is the communication winding
  • 1306 is the secondary winding of the transformer
  • 1307 is the electromagnet winding and the rotor excitation winding
  • 1307 is connected with the electromagnetic force system to generate k-way electromagnets Magnetic flux
  • 1303 is connected with the traction system to excite the i-circuit motor flux
  • 1304 and 1306 are connected with the substation system to excite the j-circuit transformer flux
  • 1305 is connected with the communication system to excite the s-circuit antenna flux.
  • the same pair of iron cores are multiplexed, and the magnetic flux of i+j+k+s is in the magnetic circuit multiplexing channel of the iron core, and the function corresponding to each magnetic circuit is constructed according to specific needs.
  • the same pair of cores is part of the motor, part of the electromagnet, part of the transformer, and part of the antenna.
  • any four of the core magnetic circuit multiplexing equipment as a motor, a transformer, an electromagnet, a reactor, and an antenna, reference may be made to the electrical system topology diagram shown in FIG. 13 .
  • the iron core magnetic circuit multiplexing equipment is all combinations of motors, transformers, electromagnets, reactors and antennas, and the number of motors, transformers, electromagnets, reactors and antennas is one or more.
  • each winding is connected to the drive circuit of the corresponding functional system to generate i motor magnetic fluxes, j transformer magnetic fluxes, k electromagnet magnetic fluxes, r reactor magnetic fluxes and s antenna magnetic fluxes.
  • the total magnetic flux and electromagnetic waves in the multiplexed core are:
  • the functions corresponding to each magnetic circuit are constructed according to specific needs.
  • the same pair of cores is part of the motor, part of the transformer, part of the electromagnet, part of the reactor, and part of the antenna.
  • the iron-core magnetic circuit multiplexing devices in the electrical system are motors, transformers, electromagnets, reactors, and antennas and their combinations, and the functional systems corresponding to each device provide driving and driven circuits. It can realize the transformation and transfer the electromagnetic field, power, voltage, current, frequency, electromagnetic wave waveform and communication signal carried by various Fourier functions and function combinations that meet the needs of the application, and perform coupling and decoupling. Functions and function combinations of motors, transformers, electromagnets, reactors and antennas.
  • the advantages of the invention are that the upper limit requirements of the power electronic device and its electrical system for voltage, current and power can be reduced, so that the electrical system has a better safety margin, and the super power and super speed that cannot be achieved by the original electrical system can be realized. And super multifunctional integration.
  • the magnetic circuit multiplexing AC motor works in the motor mode, and the converter works in the inverter mode, which inverts the DC power of the battery into a three-phase AC drive.
  • the ship's integrated power system realizes the integration of ship electric propulsion and power system, realizes accurate and efficient control of the whole ship's energy and flexible access to various renewable energy sources, and reduces the dependence of ship power on fossil fuels. Including low-voltage AC integrated power system, medium-voltage AC integrated power system and medium-voltage DC integrated power system.
  • multiple inverters can drive a single ultra-high-power motor and transformer.
  • the present invention is not applicable to the electrical system of ironless application. Unless specially designed, it is also not suitable for ordinary applications of power frequency motors, power frequency transformers and public telecommunication wireless communication antennas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种铁心磁路复用的电气系统,将铁心磁路复用为功能系统的电磁场和电磁波及其组合的公共通道,使得铁心磁路复用设备的铁心成为多功能通道的载体,能够满足超大功率、超高速度、多种功能集成的应用需求。铁心磁路复用的电气系统包括:铁心磁路复用设备及其功能系统;功能系统提供铁心磁路复用设备的电磁场和电磁波;将铁心磁路复用设备的铁心作为电磁场和电磁波及其组合的磁路复用通道;利用磁路复用通道实现铁心磁路复用设备的功能。

Description

一种铁心磁路复用的电气系统
本申请要求于2021年02月04日提交至中国专利局、申请号为202110155522.9、发明名称为“一种铁心磁路复用的电气系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电气传动及自动化领域,特别是涉及一种铁心磁路复用的电气系统。
背景技术
自发现法拉第电磁感应定律和安培环路定律以来,人们发明了电机、变压器、电磁铁和电抗器;自发现电磁波以来,人们发明了无线电及其天线。
如图1和图2所示,分别为现有的铁路变流器“大马拉小车”型牵引系统拓扑图,图1为单牵引变流器驱动单电机,图2为单牵引变流器驱动多电机。特点是铁路变流器“大马拉小车”,即大变流器匹配小电机。
如图3和图4所示,分别为现有的轧钢变流器“大马拉大车”型驱动系统拓扑图,图3为单逆变单元级联后驱动单电机,图4为单逆变单元级联后驱动多电机。典型应用有H桥级联,以高压来实现大功率。特点是“大马拉大车”,即高压逆变单元匹配高压大电机。
我国将内燃机混合动力、混合动力列车、高速磁浮列车、船舶电力综合系统及电力推进系统、混合动力电飞机及纯电飞机等列为重点科研方向,尤其是高速磁浮列车、船舶电力综合系统及电力推进系统、混合动力电飞机及纯电飞机等对驱动系统功率要求极高,为功率电磁场和信号电磁波的更进一步利用提供了重大需求。
但是,图1、图2、图3和图4所示的驱动系统,对于超大功率、超高速度、多种电磁场功能的应用需求是无法满足的,并且现有技术中没有能够为电机、变压器、电磁铁、电抗器和天线及其组合提供驱动和被驱动电路,不能实现多功能集成应用的目的。
发明内容
本发明的目的是提供了一种铁心磁路复用的电气系统,将铁心磁路复用为功能系统的电磁场和电磁波及其组合的公共通道,使得铁心磁路复用设备的铁心成为多功能通道的载体,能够满足超大功率、超高速度、多种功能集成的应用需求。
本发明第一方面提供一种铁心磁路复用的电气系统,包括:
铁心磁路复用设备及其功能系统;
功能系统提供铁心磁路复用设备的电磁场和电磁波;
将铁心磁路复用设备的铁心作为电磁场和电磁波及其组合的磁路复用通道;
利用磁路复用通道实现铁心磁路复用设备的功能。
进一步的,电磁场和电磁波的频率、幅值及相位,在磁路复用通道中自由传递。
进一步的,铁心磁路复用设备包括电机、变压器、电磁铁、电抗器和天线中任意一种或多种组合。
进一步的,铁心磁路复用设备为电机,电机数量为一个或多个;
铁心磁路复用设备包括:
电机定子铁心、电机转子铁心及电机牵引绕组,电机牵引绕组数量为一组或多组;
功能系统为牵引系统,牵引系统与电机牵引绕组连接。
进一步的,铁心磁路复用设备为变压器,变压器数量为一个或多个;
铁心磁路复用设备包括:
变压器初级铁心、变压器次级铁心、变压器初级绕组及变压器次级绕组,变压器初级绕组和变压器次级绕组为一组或多组;
功能系统为变电系统,变电系统与变压器初级绕组及变压器次级绕组连接。
进一步的,铁心磁路复用设备为电磁铁,电磁铁数量为一个或多个;
铁心磁路复用设备包括:
电磁铁铁心及电磁铁绕组,电磁铁绕组数量为一组或多组;
功能系统为电磁力系统,电磁力系统与电磁铁绕组连接。
进一步的,铁心磁路复用设备为电抗器,电抗器数量为一个或多个;
铁心磁路复用设备包括:
电抗器铁心及电抗器绕组,电抗器绕组数量为一组或多组;
功能系统为电流变化抑制系统,电流变化抑制系统与电抗器绕组连接。
进一步的,铁心磁路复用设备为天线,天线数量为一个或多个;
铁心磁路复用设备包括:
天线铁心及通信线圈,通信线圈数量为一组或多组;
功能系统为通信系统,通信系统与通信线圈连接。
进一步的,铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中任意两种、任意三种、任意四种的组合,电机、变压器、电磁铁、电抗器和天线的数量为一个或多个。
进一步的,铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线的全部组合,电机、变压器、电磁铁、电抗器和天线的数量为一个或多个。
由此可见,本发明的铁心磁路复用的电气系统包括铁心磁路复用设备及其功能系统,功能系统提供铁心磁路复用设备的电磁场和电磁波,将铁心磁路复用设备的铁心作为电磁场和电磁波及其组合的磁路复用通道,利用磁路复用通道实现铁心磁路复用设备的功能。将铁心磁路复用为功能系统的电磁场和电磁波及其组合的公共通道,使得铁心磁路复用设备的铁心成为多功能通道的载体,能够满足超大功率、超高速度、多种功能集成的应用需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其 他的附图。
图1为现有的铁路变流器“大马拉小车”型牵引系统的一种拓扑图;
图2为现有的铁路变流器“大马拉小车”型牵引系统的另一种拓扑图;
图3为现有的轧钢变流器“大马拉大车”型驱动系统的一种拓扑图;
图4为现有的轧钢变流器“大马拉大车”型驱动系统的另一种拓扑图;
图5为本发明提供的铁心磁路复用的电气系统拓扑图;
图6为本发明提供的铁心磁路复用设备为电机的电气系统拓扑图;
图7为本发明提供的铁心磁路复用设备为变压器的电气系统拓扑图;
图8为本发明提供的铁心磁路复用设备为电磁铁的电气系统拓扑图;
图9为本发明提供的铁心磁路复用设备为电抗器的电气系统拓扑图;
图10为本发明提供的铁心磁路复用设备为天线的电气系统拓扑图;
图11为本发明提供的铁心磁路复用设备为电机和电磁铁组合的电气系统拓扑图;
图12为本发明提供的铁心磁路复用设备为电机、电磁铁、变压器组合的电气系统拓扑图;
图13为本发明提供的铁心磁路复用设备为电机、电磁铁、变压器、天线组合的电气系统拓扑图。
具体实施方式
本申请公开了一种铁心磁路复用的电气系统,将铁心磁路复用为功能系统的电磁场和电磁波及其组合的公共通道,使得铁心磁路复用设备的铁心成为多功能通道的载体,能够满足超大功率、超高速度、多种功能集成的应用需求。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参考图5,本发明实施例提供一种铁心磁路复用的电气系统,包括:
铁心磁路复用设备及其功能系统;
功能系统提供铁心磁路复用设备的电磁场和电磁波;
将铁心磁路复用设备的铁心作为电磁场和电磁波及其组合的磁路复用通道;
利用磁路复用通道实现铁心磁路复用设备的功能。
本发明实施例中,在图5所示的铁心磁路复用的电气系统的拓扑图中,以电机、变压器、电抗器、电磁铁、天线集成于一体为例进行说明。501和507为电机绕组、502和508为变压器绕组、504和510为电抗器绕组、 505和511为电磁铁绕组、506和512为天线发射线圈/接收线圈、503和509为铁心,其中气隙δ为0mm~∞,电机绕组501对应n1台电机,变压器绕组502对应n2台变压器、电抗器绕组504对应n3台电抗器、电磁铁绕组505对应n4台电磁铁、天线发射线圈/接收线圈506对应n5根天线,n1、n2、n3、n4、n5为大于等于0的自然数。
由电机绕组507连接其功能系统的驱动电路激发产生i个电机磁通,i为大于等于0的自然数,i个磁路复用的电机磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000001
由变压器绕组508连接其功能系统的驱动电路激发产生j个变压器磁通,j为大于等于0的自然数,j个磁路复用的变压器磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000002
由电磁铁绕组511连接其功能系统的驱动电路激发产生k个电磁铁磁通,k为大于等于0的自然数,k个磁路复用的电磁铁磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000003
由电抗器绕组510连接其功能系统的驱动电路激发产生r个电抗器磁通,r为大于等于0的自然数,r个磁路复用的电抗器磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000004
由天线发射线圈/接收线圈512连接其功能系统的驱动电路激发产生s个天线磁通,s为大于等于0的自然数,s个磁路复用的天线磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000005
由此可见,在图5中,可以将电机、变压器、电抗器、电磁铁、天线中任意一种或多种组合对应的功能系统的驱动电路,所激发产生的电机磁通、变压器磁通、电抗器磁通、电磁铁磁通、天线磁通都在容纳在铁心中,实现了将铁心磁路复用为功能系统的电磁场和电磁波及其组合的公共通道,使得铁心磁路复用设备的铁心成为多功能通道的载体,能够满足超大功率、超高速度、多种功能集成的应用需求。
可选的,除了以上图5中例举的电机、变压器、电抗器、电磁铁、天线中任意一种或多种组合之外,所有铁心磁路复用设备对应的功能系统提供的电磁场和电磁波的频率、幅值及相位,在磁路复用通道中自由传递。即磁路复用的铁心可以容纳无限的多种多样电磁场和电磁波,不存在实体空间的“撞车”和通道挤占问题。
在以上图5所示的实施例中,是以整体的思路进行描述的,下面通过实施例对铁心磁路复用设备是电机、变压器、电抗器、电磁铁、天线中任意一种或多种组合分别进行描述。
(一)、铁心磁路复用设备为电机,电机数量为一个或多个;
铁心磁路复用对发电机而言,可派生出不同路数和不同电压等级的彼此电气上独立的电源,这些电源可以是单相电源、三相电源和多相电源,可以供应给不同的负载。
根据傅里叶变换可知,这些派生出的电源和负载特性的总和是输入的发电机特性,有什么样的输入发电机特性就有什么样的派生电源及负载特性。
铁心磁路复用对电动机而言,提供了一种电压、电流、频率、波形各异的多电源共同驱动同一个机械负载的途径,可以是异步电动机,也可以是同步电动机;可以是旋转电机,也可以是直线电机。
根据傅里叶逆变换可知,不同传递函数的电源特性以磁场耦合生成各种需要的机械特性。
这些机械特性可以是正向旋转、制动、堵转、反向旋转、步进、进X步退Y步、往复运动、振动、冲击和其它运动等。
如图6所示,为铁心磁路复用设备为电机的电气系统拓扑图,601为电机定子铁心、605为转子铁心、602为电机牵引绕组1、603为电机牵引绕组2、604为电机牵引绕组i’,其中气隙δ为0.1~20mm时,由i’个电机牵引绕组连接牵引系统的i’个电机驱动电路激发产生i个电机磁通,需要说明的是,电机驱动电路既可以是驱动电机的电路,又可以是被电机驱动的电路,以及是驱动和被驱动电路的组合。对应的电机磁通1、2和i各函数根据具体需要来构造。i和i’为大于等于0的自然数,i个磁路复用的电机磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000006
i个电机磁通在铁心内形成磁路复用,当磁路复用的磁场符合旋转电机磁场要求时,并配合特定形式的铁心形状及传动装置,该装置可实现旋转电机功能,实现机械能与电能的相互转化;磁路复用的磁场符合直线电机磁场要求时,并配合特定性是的铁心形状及传动装置,该装置可实现直线电机功能,实现机械能与电能的相互转化。
该电气系统可以应用于多领域,适用于异步电机和同步电机,适用于旋转电机、直线电机、往复运动电机以及其它定制运动特性电机驱动系统,适用于电励磁电机、永磁电机以及电励磁与永磁组合电机的驱动系统,适用于定制特性电磁变压器和特种通信天线的电气系统;
还适用于超大功率牵引、单台逆变器和H桥级联逆变器不能满足牵引功率需求的场合。多台逆变器共同驱动同一台超大功率电机,采用成熟的逆变器,根据逆变器功率和电机功率来确定逆变器数量。以大电流来实现超大功率,同时实现系统冗余可用性。特点是“小马拉大车”,即高铁逆变器匹配超大功率船舶电机、汽车级电池逆变器驱动大功率飞机电机;
还适用于船舶电力推进、大推力电磁驱动、火箭冷发射、电飞机等小变流器驱动大电机的场合。
(二)、铁心磁路复用设备为变压器,变压器数量为一个或多个;
铁心磁路复用对变压器而言,提供了一种电压、电流、频率、波形各异的多电源共同驱动同一个电能转换途径,可以是单相变压器、也可以是多相变压器。
根据傅里叶逆变换可知,这些电源和的总和是变压器的输入特性,有什么样的输入就有什么样的输出及负载特性,不同传递函数的电源特性以磁场形式耦合生成各种需要的磁场。
如图7所示,为铁心磁路复用设备为变压器的电气系统拓扑图,701为变压器初级铁心、702为变压器初级绕组1、703为变压器次级铁心、704为变压器次级绕组1、705为变压器次级绕组2、706为变压器次级绕组j”、707为变压器初级绕组j’、708为变压器初级绕组2,其中气隙δ为0mm~x时,由j’变压器初级绕组和j”变压器次级绕组连接变电系统激发产生j个变压器磁通,j、j’、j”为大于等于0的自然数,j个磁路复用的变压器磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000007
j个变压器磁通在铁心内形成磁路复用,当磁路复用的磁场符合变压器能量转换要求时,并配合特定形式的铁心形状及传动装置,可实现电能的转换功能。
(三)、铁心磁路复用设备为电磁铁,电磁铁数量为一个或多个;
铁心磁路复用对电磁铁而言,提供了一种电压、电流、频率、波形各异的多电源共同驱动同一个电磁机构的途径,可以是悬浮电磁铁,可以是导向电磁铁,可以是涡流制动电磁铁,可以是门禁电磁铁等。
根据傅里叶变换可知,不同传递函数的电源特性以磁场耦合形式生成各种需要的电磁传动特性。
这些电磁传动特性可以使装置悬浮、引导运动体方向、制动运动体和吸合等。
如图8所示,为铁心磁路复用设备为电磁铁的电气系统拓扑图,801为电磁铁铁心、802为电磁铁铁心、803为电磁铁绕组1、804为电磁铁绕组2、805为电磁铁绕组k’,其中气隙δ为0mm~x时,由k’个电磁铁绕组连接电磁力系统激发产生k个电磁铁磁通,k、k’为大于等于0的自然数,k个磁路复用的电磁铁磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000008
k个变压器磁通在铁心内形成磁路复用,当磁路复用的磁场符合电磁铁工作要求时,并配合特定形式的铁心形状及传动装置,可实现电能的转换功能。
(四)、铁心磁路复用设备为电抗器,电抗器数量为一个或多个;
铁心磁路复用对电抗器而言,提供了一种电压、电流、频率、波形各异的多电源共同驱动同一个电磁机构的途径,可以是单相电抗器,也可以是多相电抗器。
根据傅里叶变换可知,不同传递函数的电源特性以磁场耦合生成各种需要的电磁磁通,通过磁路复用,实现无功功率的补偿、过压、过流限制等功能。通过特殊设计保证所有单元满负荷工作时磁路不饱和,这样一来,单个或多个单元进行工作时不会出现饱和,不存在实体空间的“撞车”和通道挤占问题。
如图9所示,为铁心磁路复用设备为电抗器的电气系统拓扑图,901为电抗器铁心、902为电抗器铁心、903为电抗器绕组1、904为电抗器绕组2、905为电抗器绕组r’,其中气隙δ为0mm~x时,由r’个电抗器绕组连接电流变化抑制系统激发产生r个电抗器磁通,r、r’为大于等于0的自然数,r个磁路复用的电抗器磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000009
r个电抗器磁通在铁心内形成磁路复用,当磁路复用的磁场符合电抗器工作要求时,并配合特定形式的铁心形状及传动装置,可实现无功功率补偿、限压、限流等功能。
(五)、铁心磁路复用设备为天线,天线数量为一个或多个;
铁心磁路复用对天线而言,提供了一种电压、电流、频率、波形各异的多电源共同驱动同一个电磁波发射途径。
根据傅里叶变换可知,不同传递函数的电源特性以电磁波形式耦合生成各种需要的电磁波,通过磁路复用进行信号发射,发射的信号可以是通信信号、控制信号等。
如图10所示,为铁心磁路复用设备为天线的电气系统拓扑图,1001为天线发射线圈1、1002为天线发射线圈2、1003为天线铁心、1004为天线发射线圈s’、1005为天线接收线圈1、1006为天线接收线圈2、1007为天线接收线圈s”,其中气隙δ为∞时,由s’个天线发射线圈连接通信系统激发产生s个天线磁通,s、s’、s”为大于等于0的自然数,s个磁路复用的天线磁通在铁心内磁通总量为:
Figure PCTCN2021121189-appb-000010
s个天线磁通在铁心内形成磁路复用,当磁路复用的磁场符合信号发射规律时,并配合特定形式的铁心形状及传动装置,可实现电磁波的发射与传递功能与拾取。
(六)、铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中任意两种的组合,电机、变压器、电磁铁、电抗器和天线的数量为一个或多个;
具体可以是十种,分别是:电机和变压器的组合,电机和电磁铁的组合,电机和电抗器的组合,电机和天线的组合,变压器和电磁铁的组合,变压器和电抗器的组合,变压器和天线的组合,电磁铁和电抗器的组合,电磁铁和天线的组合,电抗器和天线的组合。其中铁心磁路复用设备为电 机、变压器、电磁铁、电抗器和天线如以上(一)、(二)、(三)、(四)、(五)中描述。
以电机和电磁铁的组合为例,如图11所示为铁心磁路复用设备为电机和电磁铁组合的电气系统拓扑图,1101为电机定子铁心、1102为电机转子铁心、1103为电机牵引绕组、1104电磁铁绕组和转子励磁绕组,1104与电磁力系统连接激发产生k路电磁铁磁通,1103与牵引系统连接激发产生i路电机磁通,复用同一对铁心,i+k路磁通在铁心的磁路复用通道中,各磁路对应的函数根据具体需要来构造。同一对铁心既是电机的一部分,又是电磁铁的一部分。
需要说明的是,对于铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中其他任意两种的组合,可以参考图11所示的电气系统拓扑图。
(七)、铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中任意三种的组合,电机、变压器、电磁铁、电抗器和天线的数量为一个或多个;
具体可以是十种,分别是:电机、变压器、电磁铁的组合,电机、变压器、电抗器的组合,电机、变压器、天线的组合,电机、电磁铁、电抗器的组合,电机、电磁铁、天线的组合,电机、电抗器、天线的组合,变压器、电磁铁、电抗器的组合,变压器、电磁铁、天线的组合,变压器、电抗器、天线,电磁铁、电抗器、天线的组合。其中铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线如以上(一)、(二)、(三)、(四)、(五)中描述。
以电机、电磁铁、变压器的组合为例,如图12所示为铁心磁路复用设备为电机、电磁铁、变压器组合的电气系统拓扑图,1201为电机定子铁心、1202为电机转子铁心、1203为电机牵引绕组、1204为变压器初级绕组、1205为变压器次级绕组、1206为电磁铁绕组和转子励磁绕组,1206与电磁力系统连接激发产生k路电磁铁磁通,1203与牵引系统连接激发产生i路电机磁通,1204和1205与变电系统连接激发产生j路变压器磁通,复用 同一对铁心,i+j+k路磁通在铁心的磁路复用通道中,各磁路对应的函数根据具体需要来构造。同一对铁心既是电机的一部分,又是电磁铁的一部分,又是变压器的一部分。
需要说明的是,对于铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中其他任意三种的组合,可以参考图12所示的电气系统拓扑图。
(八)、铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中任意四种的组合,电机、变压器、电磁铁、电抗器和天线的数量为一个或多个;
具体可以是五种,分别是:电机、变压器、电磁铁、电抗器的组合,电机、变压器、电磁铁、天线的组合,电机、变压器、电磁铁、电抗器的组合,电机、电磁铁、电抗器、天线的组合,变压器、电磁铁、电抗器、天线的组合。其中铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线如以上(一)、(二)、(三)、(四)、(五)中描述。
以电机、电磁铁、变压器、天线的组合为例,如图13所示为铁心磁路复用设备为电机、电磁铁、变压器、天线组合的电气系统拓扑图,1301为电机定子铁心、1302为电机转子铁心、1303为电机牵引绕组、1304为变压器初级绕组、1305为通信绕组、1306为变压器次级绕组、1307为电磁铁绕组和转子励磁绕组,1307与电磁力系统连接激发产生k路电磁铁磁通,1303与牵引系统连接激发产生i路电机磁通,1304和1306与变电系统连接激发产生j路变压器磁通,1305与通信系统连接激发产生s路天线磁通。复用同一对铁心,i+j+k+s路磁通在铁心的磁路复用通道中,各磁路对应的函数根据具体需要来构造。同一对铁心既是电机的一部分,又是电磁铁的一部分,又是变压器的一部分,又是天线的一部分。
需要说明的是,对于铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中其他任意四种的组合,可以参考图13所示的电气系统拓扑图。
(九)、铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线的全部组合,电机、变压器、电磁铁、电抗器和天线的数量为一个或多个。
如图5所示各绕组连接对应功能系统的驱动电路激发产生i个电机磁通、j个变压器磁通、k个电磁铁磁通、r个电抗器磁通及s个天线磁通,磁路复用的铁心中的总磁通及电磁波为:
Figure PCTCN2021121189-appb-000011
共同构成i+j+k+r+s路磁通,由不同的驱动电路驱动或者被驱动,它们都复用同一对铁心。各磁路对应的函数根据具体需要来构造。同一对铁心既是电机的一部分,又是变压器的一部分,又是电磁铁的一部分,又是电抗器的一部分,又是天线的一部分。
根据以上实施例的描述,电气系统中铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线及其组合,各设备对应的功能系统提供驱动和被驱动电路,利用铁心磁路复用的公共通道,以使其实现变换传递各种满足应用需要的傅里叶函数和函数组合所承载的电磁场、功率、电压、电流、频率、电磁波波形和通信信号,进行耦合和解耦,实现电机、变压器、电磁铁、电抗器和天线的功能及功能组合。
本发明的优点是:可降低电力电子器件及其电气系统对电压、电流和功率的上限要求,使得电气系统有更好的安全裕量,实现原有电气系统不能实现的超大功率、超高速度和超多功能集成。
需要说明的是,本发明的铁心磁路复用的电气系统典型应用场景有:
(1)、内燃机车;
磁路复用对内燃机车的“柴油机+交流电机”拓扑而言,磁路复用的交流电机工作在电动机模式,其中变流器工作在逆变模式,将蓄电池直流电逆变成三相交流电驱动磁路复用电动机来启动柴油机;柴油机启动完成后, 磁路复用的交流电机转而工作在发电机模式,其中变流器转而工作在整流器模式,将磁路复用三相交流电整流成直流电供给直流负载和蓄电池充电。
(2)、船舶综合电力系统;
船舶综合电力系统实现船舶电力推进和电力系统集成,实现全船能量精确高效控制以及多种再生能源的灵活接入,降低船舶动力对化石燃料的依赖度。包括低压交流综合电力系统、中压交流综合电力系统和中压直流综合电力系统。
(3)、混合动力飞机和纯电飞机;
(4)、大型振动冲击试验;
利用磁路复用电动机及变压器特性,实现多台逆变器驱动单台超大功率电机及变压器。
需要说明的是,本发明不适用于无铁心应用的电气系统。除非经特殊设计,否则,也不适用于工频电机、工频变压器和公共电信无线通信天线的普通应用。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的 这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种铁心磁路复用的电气系统,其特征在于,包括:
    铁心磁路复用设备及其功能系统;
    所述功能系统提供所述铁心磁路复用设备的电磁场和电磁波;
    将所述铁心磁路复用设备的铁心作为所述电磁场和所述电磁波及其组合的磁路复用通道;
    利用所述磁路复用通道实现所述铁心磁路复用设备的功能。
  2. 根据权利要求1所述的电气系统,其特征在于,所述电磁场和所述电磁波的频率、幅值及相位,在所述磁路复用通道中自由传递。
  3. 根据权利要求1所述的电气系统,其特征在于,所述铁心磁路复用设备包括电机、变压器、电磁铁、电抗器和天线中任意一种或多种组合。
  4. 根据权利要求3所述的电气系统,其特征在于,所述铁心磁路复用设备为电机,所述电机数量为一个或多个;
    所述铁心磁路复用设备包括:
    电机定子铁心、电机转子铁心及电机牵引绕组,所述电机牵引绕组数量为一组或多组;
    所述功能系统为牵引系统,所述牵引系统与所述电机牵引绕组连接。
  5. 根据权利要求3所述的电气系统,其特征在于,所述铁心磁路复用设备为变压器,所述变压器数量为一个或多个;
    所述铁心磁路复用设备包括:
    变压器初级铁心、变压器次级铁心、变压器初级绕组及变压器次级绕组,所述变压器初级绕组和所述变压器次级绕组为一组或多组;
    所述功能系统为变电系统,所述变电系统与所述变压器初级绕组及所述变压器次级绕组连接。
  6. 根据权利要求3所述的电气系统,其特征在于,所述铁心磁路复用设备为电磁铁,所述电磁铁数量为一个或多个;
    所述铁心磁路复用设备包括:
    电磁铁铁心及电磁铁绕组,所述电磁铁绕组数量为一组或多组;
    所述功能系统为电磁力系统,所述电磁力系统与所述电磁铁绕组连接。
  7. 根据权利要求3所述的电气系统,其特征在于,所述铁心磁路复用设备为电抗器,所述电抗器数量为一个或多个;
    所述铁心磁路复用设备包括:
    电抗器铁心及电抗器绕组,所述电抗器绕组数量为一组或多组;
    所述功能系统为电流变化抑制系统,所述电流变化抑制系统与所述电抗器绕组连接。
  8. 根据权利要求3所述的电气系统,其特征在于,所述铁心磁路复用设备为天线,所述天线数量为一个或多个;
    所述铁心磁路复用设备包括:
    天线铁心及通信线圈,所述通信线圈数量为一组或多组;
    所述功能系统为通信系统,所述通信系统与所述通信线圈连接。
  9. 根据权利要求3-8中任意一项所述的电气系统,其特征在于,所述铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线中任意两种、任意三种、任意四种的组合,所述电机、所述变压器、所述电磁铁、所述电抗器和所述天线的数量为一个或多个。
  10. 根据权利要求3-8中任意一项所述的电气系统,其特征在于,所述铁心磁路复用设备为电机、变压器、电磁铁、电抗器和天线的全部组合,所述电机、所述变压器、所述电磁铁、所述电抗器和所述天线的数量为一个或多个。
PCT/CN2021/121189 2021-02-04 2021-09-28 一种铁心磁路复用的电气系统 WO2022166225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110155522.9 2021-02-04
CN202110155522.9A CN114864234A (zh) 2021-02-04 2021-02-04 一种铁心磁路复用的电气系统

Publications (1)

Publication Number Publication Date
WO2022166225A1 true WO2022166225A1 (zh) 2022-08-11

Family

ID=82622803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121189 WO2022166225A1 (zh) 2021-02-04 2021-09-28 一种铁心磁路复用的电气系统

Country Status (2)

Country Link
CN (1) CN114864234A (zh)
WO (1) WO2022166225A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283521A (zh) * 2005-10-14 2008-10-08 国际商业机器公司 电磁感应型rfid标签和访问装置
CN202923659U (zh) * 2012-10-24 2013-05-08 江苏大学 一种电磁式磁轨制动器
CN103107704A (zh) * 2013-02-28 2013-05-15 浙江昱能光伏科技集成有限公司 适用于交错并联反激电路的集成变压器
CN103400011A (zh) * 2013-08-08 2013-11-20 华北电力大学 一种新型磁控式并联电抗器的仿真建模方法
CN211654529U (zh) * 2020-02-19 2020-10-09 联合汽车电子有限公司 基于cllc电路的磁集成器件及功率转换电路
CN211791199U (zh) * 2020-04-23 2020-10-27 上海航天智能装备有限公司 一种电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283521A (zh) * 2005-10-14 2008-10-08 国际商业机器公司 电磁感应型rfid标签和访问装置
CN202923659U (zh) * 2012-10-24 2013-05-08 江苏大学 一种电磁式磁轨制动器
CN103107704A (zh) * 2013-02-28 2013-05-15 浙江昱能光伏科技集成有限公司 适用于交错并联反激电路的集成变压器
CN103400011A (zh) * 2013-08-08 2013-11-20 华北电力大学 一种新型磁控式并联电抗器的仿真建模方法
CN211654529U (zh) * 2020-02-19 2020-10-09 联合汽车电子有限公司 基于cllc电路的磁集成器件及功率转换电路
CN211791199U (zh) * 2020-04-23 2020-10-27 上海航天智能装备有限公司 一种电机

Also Published As

Publication number Publication date
CN114864234A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US10491074B2 (en) Electro-mechanical kinetic energy storage device and method of operation
US6580185B2 (en) Integrated system of a permanent magnet excited motor and a non-contact power feeding apparatus
Farrok et al. Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion
Liu et al. Design and realization of a coreless and magnetless electric motor using magnetic resonant coupling technology
CN110112876A (zh) 一种可控横向磁场调制直线发电机
CN110994821A (zh) 一种使用轴向分段式磁滞环的磁通调制定子结构
Wang et al. Performance analysis and design optimization of an annular winding bilateral linear switch reluctance machine for low cost linear applications
JP7312861B2 (ja) ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム
CN112436780B (zh) 一种电驱动系统、动力总成以及电动汽车
WO2022166225A1 (zh) 一种铁心磁路复用的电气系统
Li et al. A phase-decoupled flux-reversal linear generator for low-speed oscillatory energy conversion using impedance matching strategy
Feng et al. Design of high power density 100 kW surface permanent magnet machine with no heavy rare earth material using current source inverter for traction application
WO2022166228A1 (zh) 一种铁心磁路复用方法
Xu et al. Optimal design of high-speed double-sided linear permanent magnet motors with segmented trapezoidal magnetic poles
Zhao et al. Comparative Research on Four-Phase Dual Armature-Winding Wound-Field Doubly Salient Generator With Distributed Field Magnetomotive Forces for High-Reliability Application
Sun et al. Analysis of a hybrid excitation brushless DC generator with an integrated shared-flux-path exciter
WO2022166229A1 (zh) 一种铁心磁路复用冗余功率驱动系统
CN208285088U (zh) 一种非重叠绕组齿槽型双转子永磁同步电机
JPS5939961B2 (ja) 超高速磁気浮上列車の車内電源装置
Aljohani The flywheel energy storage system: a conceptual study, design, and applications in modern power systems
Aoyama et al. Proposal of self-excited wound-field magnetic geared motor for HEV application
Schmidhofer et al. Range extender optimisation for electrical vehicles
CN114400798B (zh) 一种单绕组直流励磁无刷双馈电机及其控制电路
Feng et al. A novel detent force reduction method for primary permanent magnet linear motor traction system in subway applications
CN208904858U (zh) 一种非重叠绕组齿槽型双转子电励磁同步电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924222

Country of ref document: EP

Kind code of ref document: A1