WO2022166229A1 - 一种铁心磁路复用冗余功率驱动系统 - Google Patents

一种铁心磁路复用冗余功率驱动系统 Download PDF

Info

Publication number
WO2022166229A1
WO2022166229A1 PCT/CN2021/121595 CN2021121595W WO2022166229A1 WO 2022166229 A1 WO2022166229 A1 WO 2022166229A1 CN 2021121595 W CN2021121595 W CN 2021121595W WO 2022166229 A1 WO2022166229 A1 WO 2022166229A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
magnetic circuit
groups
circuit multiplexing
iron core
Prior art date
Application number
PCT/CN2021/121595
Other languages
English (en)
French (fr)
Inventor
陈高华
丁荣军
冯江华
刘可安
尚敬
刘海涛
许义景
范祝霞
石煜
张文龙
王禹
韩亮
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Publication of WO2022166229A1 publication Critical patent/WO2022166229A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies

Definitions

  • the invention relates to the field of electrical transmission automation, in particular to an iron core magnetic circuit multiplexing redundant power drive system.
  • linear motor drive technology has become more and more mature since its birth and development. It has the advantages of high precision, no wear, low noise, high efficiency, fast response, space saving, etc. It is widely used in various fields. Linear motors are widely used in civil, industrial, It is widely used in military and other industries. High-power linear motor variable frequency drive is a high-tech involving power electronics, motors, power drag and automation and other disciplines. Key equipment for many national key projects.
  • the long-stator synchronous linear motor driven by the Shanghai maglev line can reach a speed of 500km/h or even higher.
  • the maximum capacity of a single converter in China is limited at present. Even if a segmented double-ended power supply is used, that is to say, if two high-power converters supply power to a long stator section at the same time, the maximum power is also limited by Therefore, the maximum speed of the maglev train is also limited by the capacity of the drive system.
  • a six-phase motor circuit is mentioned in Hou Lijun's doctoral dissertation "Research on Multi-phase Induction Motor Frequency Conversion Speed Regulation System” of Xi'an Jiaotong University, which consists of a power supply, a six-phase converter and a six-phase motor.
  • the topology is characterized by a single unit.
  • the inverter drives a single motor.
  • IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.VOL.55, NO paper "Multiphase Electric Machines for Variable-Speed Applications” mentions an n-phase motor drive system, which consists of an n-phase inverter and an n-phase motor.
  • the structural feature is still that a single converter drives a single motor.
  • the purpose of the present invention is to provide an iron-core magnetic circuit multiplexing redundant power drive system.
  • the magnetic circuit multiplexing iron core of the iron-core magnetic circuit multiplexing motor can be used as a magnetic circuit multiplexing channel for electromagnetic fields and electromagnetic waves, and realizes that the multiple transformers are Connect multiple motor windings of an iron-core magnetic circuit multiplexing motor to drive the iron-core magnetic circuit multiplexing motor, which is not limited by the power of a single converter, and meets the ultra-high power requirements of the drive system. Multiple drive branches meet the Redundancy requirements of the drive system.
  • a first aspect of the present invention provides an iron core magnetic circuit multiplexing redundant power drive system, comprising:
  • Iron core magnetic circuit multiplexing motor at least two converters and at least two sets of power supplies
  • the iron core magnetic circuit multiplexing motor includes at least two sets of motor windings and a magnetic circuit multiplexing iron core;
  • At least two sets of power supplies, at least two converters and at least two sets of motor windings form at least two drive branches, and each drive branch has a set of power supplies, a converter and a set of motor windings;
  • At least two driving branches provide electromagnetic fields respectively, and the magnetic circuit multiplexing iron core serves as a magnetic circuit multiplexing channel of the electromagnetic field.
  • the iron core magnetic circuit multiplexing motors are m groups of n-phase motors, where m is a positive integer greater than or equal to 2, and n is a positive integer greater than or equal to 3;
  • the iron core magnetic circuit multiplexing motor has m groups of n-phase motor windings
  • the number of power supplies is m groups, the number of converters is m sets, and each converter has n phases;
  • each converter outputs n-phase voltage and current to each group of motor windings.
  • the power source is any one or a combination of at least two of a battery, a capacitor, a battery-capacitor composite storage device, a DC power grid, and an AC power grid.
  • the iron core magnetic circuit multiplexing motor is a motor with m groups of n-phase windings.
  • the iron-core magnetic circuit multiplexing motor is a rotary motor
  • the rotary motor is a motor with m groups of n-phase windings
  • the stator of the linear motor is composed of j modules in series, each module has m groups of n-phase windings, j is a positive integer greater than 1, the linear motor can be a unilateral linear motor, a bilateral linear motor Linear motor, polygonal linear motor.
  • the iron core magnetic circuit multiplexing motor includes the main thrust rotary motor, the side thrust rotary motor and the linear motor;
  • the main thrust rotating electrical machine is an n-phase rotating electrical machine in group r, and the n-phase rotating electrical machine in group r has r group n-phase motor windings, r is a positive integer greater than or equal to 2, and n is a positive integer greater than or equal to 3;
  • the linear motor is an n-phase linear motor in group t, the linear motor in group t has n-phase motor windings in group t, and t is a positive integer greater than or equal to 2.
  • stator of the linear motor is composed of j modules connected in series, each module has t groups of n-phase motor windings, and j is a positive integer greater than 1.
  • the power sources corresponding to the main thrust rotary motor and the side thrust rotary motor are power generation systems
  • the power supply corresponding to the linear motor is the power generation system, the t group electric storage device, the combination of the power generation system and the t group electric energy storage device;
  • the drive branch also includes r+s+t group motor controllers
  • the r group motor controllers respectively control the r group driving branches of the main thrust rotating motor
  • the s group motor controllers respectively control the s group driving branches of the thrust rotary motor
  • the motor controller of group t respectively controls the driving branch of group t of the linear motor.
  • the iron-core magnetic circuit multiplexing motors are m groups of n-phase rotating motors, where m is a positive integer greater than or equal to 2, and n is a positive integer greater than or equal to 3;
  • the iron core magnetic circuit multiplexing motor has m groups of n-phase motor windings
  • the power source is an electric storage device, and the electric storage device has m groups;
  • the drive branch also includes m groups of motor controllers
  • the m groups of motor controllers respectively control the m groups of driving branches of the m groups of n-phase rotating electrical machines.
  • the iron-core magnetic circuit multiplexing motors are m groups of n-phase rotating motors, where m is a positive integer greater than or equal to 2, and n is a positive integer greater than or equal to 3;
  • the iron core magnetic circuit multiplexing motor has m groups of n-phase motor windings
  • the power source is a power generation system, m groups of electrical storages, a combination of power generation systems and m groups of electrical storages;
  • the drive branch also includes m groups of motor controllers
  • the m groups of motor controllers respectively control the m groups of driving branches of the m groups of n-phase rotating electrical machines.
  • the iron-core-magnetic-circuit multiplexing redundant power drive system of the present invention includes an iron-core-magnetic-circuit multiplexing motor, at least two converters, and at least two sets of power supplies
  • the iron-core-magnetic circuit multiplexing motor includes at least two sets of motor windings and at least two sets of power supplies.
  • Magnetic circuit multiplexing iron core, at least two sets of power supplies, at least two converters and at least two sets of motor windings form at least two drive branches, each drive branch has a set of power supplies, a converter and a set of motors
  • the winding, at least two driving branches respectively provide electromagnetic fields
  • the magnetic circuit multiplexing iron core serves as the magnetic circuit multiplexing channel of the electromagnetic field.
  • the magnetic circuit multiplexing iron core of the iron core magnetic circuit multiplexing motor can be used as the magnetic circuit multiplexing channel of the electromagnetic field, it is realized that multiple transformers are respectively connected to multiple sets of windings of an iron core magnetic circuit multiplexing motor to jointly drive the iron core magnetic circuit multiplexing.
  • the power of the motor is not limited by the power of a single converter, which meets the needs of the super power of the drive system, and the multiple drive branches meet the redundancy requirements of the drive system.
  • FIG. 1 is a schematic structural diagram of an embodiment of an iron core magnetic circuit multiplexing redundant power drive system provided by the present invention
  • Fig. 2 is the system schematic diagram of the iron core magnetic circuit multiplexing redundant power drive system provided by the present invention
  • FIG. 3 is a schematic structural diagram of an iron core magnetic circuit multiplexing motor provided by the present invention.
  • FIG. 4 is another schematic structural diagram of the iron core magnetic circuit multiplexing motor provided by the present invention.
  • FIG. 5 is a schematic structural diagram of a converter provided by the present invention.
  • FIG. 6 is a schematic diagram of a system applied to a drive system requiring power redundancy and a super-power drive system provided by the present invention
  • FIG. 7 is a schematic diagram of a system applied to an ultra-high-power ship electric propulsion and linear motor drive system provided by the present invention.
  • FIG. 8 is a schematic diagram of a system applied to a pure electric aircraft propulsion system provided by the present invention.
  • FIG. 9 is a schematic diagram of a system applied to a hybrid electric aircraft propulsion system provided by the present invention.
  • the present application discloses an iron-core magnetic circuit multiplexing redundant power drive system.
  • the magnetic circuit multiplexing iron core of the iron-core-magnetic circuit multiplexing motor can be used as the magnetic circuit multiplexing channel of the electromagnetic field, which realizes that multiple converters are connected to one
  • the multiple sets of windings of the iron-core magnetic circuit multiplexing motor jointly drive the iron-core magnetic circuit multiplexing motor, so that the motor power is not limited by the power of a single converter, which meets the needs of the ultra-high power of the drive system. Redundancy requirements of the drive system.
  • the terms "connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • an embodiment of the present invention provides an iron-core magnetic circuit multiplexing redundant power drive system, including:
  • Iron core magnetic circuit multiplexing motor at least two converters and at least two sets of power supplies
  • the iron core magnetic circuit multiplexing motor includes at least two sets of motor windings and a magnetic circuit multiplexing iron core;
  • At least two sets of power supplies, at least two converters and at least two sets of motor windings form at least two drive branches, and each drive branch has a set of power supplies, a converter and a set of motor windings;
  • At least two driving branches provide electromagnetic fields respectively, and the magnetic circuit multiplexing iron core serves as a magnetic circuit multiplexing channel of the electromagnetic field.
  • the magnetic circuit multiplexing iron core of the iron core magnetic circuit multiplexing motor can be used as the magnetic circuit multiplexing channel of the electromagnetic field, it is realized that multiple transformers are respectively connected to multiple sets of windings of an iron core magnetic circuit multiplexing motor to jointly drive the iron core magnetic circuit multiplexing.
  • the power of the motor is not limited by the power of a single converter, which meets the needs of the super power of the drive system, and the multiple drive branches meet the redundancy requirements of the drive system.
  • Figure 2 shows a specific system schematic diagram.
  • the iron core magnetic circuit multiplexing motor is m groups of n-phase motors, m is a positive integer greater than or equal to 2, and n is a positive integer greater than or equal to 3.
  • Figure 2 shows an AC motor. If it is a DC motor, its structure diagram is shown in Figure 3.
  • the motor windings have m groups, and each group of motor windings has n phases; if it is a rotating motor, its structure diagram is shown in Figure 3.
  • the number of power supplies is m groups
  • the number of converters is m
  • each converter has n phases
  • m groups of power supplies supply power to m converters respectively
  • each converter supplies power to each converter.
  • the motor windings of the group output n-phase voltage and current, as shown in Figure 5.
  • K2 DC switch cabinets are respectively connected with 12 groups of electrical storage devices, 12 groups of electrical energy storage devices are respectively connected to electrical energy, 12 groups of electrical energy storage devices are respectively connected with 12 groups of K3 DC switch cabinets, and 12 groups of K3 DC switch cabinets are respectively connected with 12 groups of 6-phase inverters , 12 groups of 6-phase inverters are respectively connected with 12 groups of 6-phase transformers.
  • the drive system requiring power redundancy and the super-power drive system are applicable to maglev trains, which convert electric power into traction power of maglev trains to make the maglev train move.
  • the power source corresponding to the main thrust rotary motor and the side thrust rotary motor is a power generation system, and the power generation system is conventional power generation or nuclear power generation;

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种铁心磁路复用冗余功率驱动系统, 铁心磁路复用电机的磁路复用铁心能够作为电磁场的磁路复用通道, 实现了多台变流器分别连接一台铁心磁路复用电机的多组绕组, 同驱动铁心磁路复用电机, 使电机功率不受到单台变流器功率的限制,满足了驱动系统超大功率的需求, 多条驱动支路满足了驱动系统的冗余需求。系统包括:铁心磁路复用电机、至少两台变流器及至少两组电源;铁心磁路复用电机包括至少两组电机绕组及磁路复用铁心;至少两组电源、至少两台变流器及至少两组电机绕组形成至少两条驱动支路;至少两条驱动支路分别提供电磁场, 磁路复用铁心作为电磁场的磁路复用通道。

Description

一种铁心磁路复用冗余功率驱动系统
本申请要求于2021年2月4日提交至中国专利局、申请号为202110154340.X、发明名称为“一种铁心磁路复用冗余功率驱动系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电气传动自动化领域,特别是涉及一种铁心磁路复用冗余功率驱动系统。
背景技术
直线电机驱动技术至诞生发展至今已越来越成熟,它以精度高、无磨损、噪音低、效率高、响应快、节省空间等优点使其在各领域应用广泛,直线电机在民用、工业、军事等行业中都得到广泛应用。大功率直线电机变频驱动是涉及电力电子、电机、电力拖动及自动化等多个学科领域的高新技术,大功率直线电机和变频驱动系统是现代轨道交通、能源矿业、航空航天和国防军工等领域国家多个重点工程的关键设备。
在交通运输行业中,上海磁浮线采用的长定子同步直线电机驱动,速度可达500km/h,甚至更高。但是受功率器件电压电流限制,目前国内变流器单台最大容量有限,即使采用分段式双端供电,也就是说由两台大功率变流器同时给一个长定子段供电,最大功率也是受限制的,因而磁浮列车最高速度也受到驱动系统容量限制。
西安交通大学侯立军的博士论文《多相感应电机变频调速系统的研究》中提到一种六相电机电路,由电源、六相变流器和六相电机组成,拓扑结构的特点是单台变流器驱动单台电机。IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.VOL.55,NO论文《Multiphase Electric Machines for Variable-Speed Applications》中提到一种n相电机驱动系统,由一台n相逆变器和一台n相电机组成,拓扑结构特点仍然是单台变流器驱动单台电机。
可见,无论是上海磁浮线采用两台大功率变流器同时给一个长定子段 供电,还是以上两篇论文采用单台变流器驱动单台电机,都受到了变流器功率的限制,使得驱动系统的最大功率受到限制,无法满足驱动系统的超大功率需求;并且单个变流器出现故障就会影响到对应电机,无法满足驱动系统的冗余需求。
发明内容
本发明的目的是提供了一种铁心磁路复用冗余功率驱动系统,铁心磁路复用电机的磁路复用铁心能够作为电磁场和电磁波的磁路复用通道,实现了多个变压器分别连接一个铁心磁路复用电机的多个电机绕组,从而驱动铁心磁路复用电机,不会受到单个变流器功率的限制,满足了驱动系统的超大功率需求,多条驱动支路满足了驱动系统的冗余需求。
本发明第一方面提供一种铁心磁路复用冗余功率驱动系统,包括:
铁心磁路复用电机、至少两台变流器及至少两组电源;
铁心磁路复用电机包括至少两组电机绕组及磁路复用铁心;
至少两组电源、至少两台变流器及至少两组电机绕组形成至少两条驱动支路,每一条驱动支路具有一组电源、一台变流器及一组电机绕组;
至少两条驱动支路分别提供电磁场,磁路复用铁心作为电磁场的磁路复用通道。
进一步的,铁心磁路复用电机为m组n相电机,m为大于等于2的正整数,n为大于等于3的正整数;
铁心磁路复用电机具有m组n相电机绕组;
电源的数量为m组,变流器的数量为m台,每台变流器具有n相;
m组电源分别向m台变流器供电,每台变流器向每组电机绕组输出n相电压电流。
进一步的,电源为电池、电容器、电池电容器复合的储电器、直流电网、交流电网中的任意一种或至少两种的组合。
进一步的,应用于需要功率冗余的驱动系统和超大功率驱动系统,
铁心磁路复用电机为一台m组n相绕组的电机。
进一步的,铁心磁路复用电机为旋转电机时,旋转电机为一台m组n相绕组的电机;
铁心磁路复用电机为直线电机时,直线电机的定子由j个模块串联组成,每个模块具有m组n相绕组,j为大于1的正整数,直线电机可以是单边直线电机、双边直线电机、多边直线电机。
进一步的,应用于超大功率船舶电力推进及直线电机驱动系统,
铁心磁路复用电机包括主推旋转电机、侧推旋转电机及直线电机;
主推旋转电机为r组n相旋转电机,r组n相旋转电机具有r组n相电机绕组,r为大于等于2的正整数,n为大于等于3的正整数;
侧推旋转电机为s组n相旋转电机,s组n相旋转电机具有s组n相电机绕组,s为大于等于2的正整数;
直线电机为t组n相直线电机,t组n相直线电机具有t组n相电机绕组,t为大于等于2的正整数。
进一步的,直线电机的定子由j个模块串联组成,每个模块具有t组n相电机绕组,j为大于1的正整数。
进一步的,主推旋转电机及侧推旋转电机对应的电源为发电系统;
直线电机对应的电源为发电系统、t组储电器、发电系统及t组储电器的组合;
驱动支路还包括r+s+t组电机控制器;
r组电机控制器分别控制主推旋转电机的r组驱动支路;
s组电机控制器分别控制侧推旋转电机的s组驱动支路;
t组电机控制器分别控制直线电机的t组驱动支路。
进一步的,应用于纯电飞机推进系统,
铁心磁路复用电机为m组n相旋转电机,m为大于等于2的正整数,n为大于等于3的正整数;
铁心磁路复用电机具有m组n相电机绕组;
电源为储电器,储电器具有m组;
驱动支路还包括m组电机控制器;
m组电机控制器分别控制m组n相旋转电机的m组驱动支路。
进一步的,应用于混合动力电飞机推进系统,
铁心磁路复用电机为m组n相旋转电机,m为大于等于2的正整数,n为大于等于3的正整数;
铁心磁路复用电机具有m组n相电机绕组;
电源为发电系统、m组储电器、发电系统及m组储电器的组合;
驱动支路还包括m组电机控制器;
m组电机控制器分别控制m组n相旋转电机的m组驱动支路。
由此可见,本发明的铁心磁路复用冗余功率驱动系统包括铁心磁路复用电机、至少两台变流器及至少两组电源,铁心磁路复用电机包括至少两组电机绕组及磁路复用铁心,至少两组电源、至少两台变流器及至少两组电机绕组形成至少两条驱动支路,每一条驱动支路具有一组电源、一台变流器及一组电机绕组,至少两条驱动支路分别提供电磁场,磁路复用铁心作为电磁场的磁路复用通道。由于铁心磁路复用电机的磁路复用铁心能够作为电磁场的磁路复用通道,实现了多台变压器分别连接一台铁心磁路复用电机的多组绕组,共同驱动铁心磁路复用电机,使电机功率不受到单台变流器功率的限制,满足了驱动系统超大功率的需求,多条驱动支路满足了驱动系统的冗余需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的铁心磁路复用冗余功率驱动系统的一个实施例的结构示意图;
图2为本发明提供的铁心磁路复用冗余功率驱动系统的系统原理图;
图3为本发明提供的铁心磁路复用电机的一个结构示意图;
图4为本发明提供的铁心磁路复用电机的另一个结构示意图;
图5为本发明提供的变流器的结构示意图;
图6为本发明提供的应用于需要功率冗余的驱动系统和超大功率驱动系统的系统原理图;
图7为本发明提供的应用于超大功率船舶电力推进及直线电机驱动系统的系统原理图;
图8为本发明提供的应用于纯电飞机推进系统的系统原理图;
图9为本发明提供的应用于混合动力电飞机推进系统的系统原理图。
具体实施方式
本申请公开了一种铁心磁路复用冗余功率驱动系统,铁心磁路复用电机的磁路复用铁心能够作为电磁场的磁路复用通道,实现了多台变流器分别连接一台铁心磁路复用电机的多组绕组,共同驱动铁心磁路复用电机,使电机功率不受到单台变流器功率的限制,满足了驱动系统超大功率的需求,多条驱动支路满足了驱动系统的冗余需求。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等 应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参考图1,本发明实施例提供一种铁心磁路复用冗余功率驱动系统,包括:
铁心磁路复用电机、至少两台变流器及至少两组电源;
铁心磁路复用电机包括至少两组电机绕组及磁路复用铁心;
至少两组电源、至少两台变流器及至少两组电机绕组形成至少两条驱动支路,每一条驱动支路具有一组电源、一台变流器及一组电机绕组;
至少两条驱动支路分别提供电磁场,磁路复用铁心作为电磁场的磁路复用通道。
本发明实施例中,铁心磁路复用冗余功率驱动系统包括铁心磁路复用电机、至少两台变流器及至少两组电源,铁心磁路复用电机包括至少两组电机绕组及磁路复用铁心,至少两组电源、至少两台变流器及至少两组电机绕组形成至少两条驱动支路,每一条驱动支路具有一组电源、一台变流器及一组电机绕组,至少两条驱动支路分别提供电磁场,磁路复用铁心作为电磁场的磁路复用通道。由于铁心磁路复用电机的磁路复用铁心能够作为电磁场的磁路复用通道,实现了多台变压器分别连接一台铁心磁路复用电机的多组绕组,共同驱动铁心磁路复用电机,使电机功率不受到单台变流器功率的限制,满足了驱动系统超大功率的需求,多条驱动支路满足了驱动系统的冗余需求。
图2所示为具体的系统原理图,在图2中,铁心磁路复用电机为m组n相电机,m为大于等于2的正整数,n为大于等于3的正整数,具体的,在图2中所示为交流电机,如果为直流电机时,其结构示意图如图3所示,电机绕组具有m组,每组电机绕组具有n相;如果为旋转电机时,其结构示意图如图4所示,同样电机绕组具有m组,每组电机绕组具有n相。
结合图2所示,电源的数量为m组,变流器的数量为m台,每台变流器具有n相,m组电源分别向m台变流器供电,每台变流器向每组电机绕组输出n相电压电流,如图5所示。
需要说明的是,电源可以是电池、电容器、电池电容器复合的储电器、直流电网、交流电网中的任意一种或至少两种的组合。
以上的铁心磁路复用冗余功率驱动系统适用于超大功率驱动需求的实际应用场景中,例如磁浮列车、纯电飞机、混合动力电飞机、船舶电力推进和直线电机驱动等。下面通过实施例分别对应用于不同应用场景进行说明。
(一)、应用于需要功率冗余的驱动系统和超大功率驱动系统;
铁心磁路复用电机为旋转电机时,旋转电机为一台m组n相绕组的电机;
铁心磁路复用电机为直线电机时,直线电机的定子由j个模块串联组成,每个模块具有m组n相绕组,j为大于1的正整数,直线电机可以是单边直线电机、双边直线电机、多边直线电机。
如图6所示,铁心磁路复用电机以永磁双边长定子直线电机为例,永磁双边长定子直线电机具有m组n相电机绕组,电源为储电器,储电器具有m组;在图6中m为12,n为6,;
永磁双边长定子直线电机的定子由j个模块串联组成,即部分的j=334,由334个模块串联,总长度约800米,每个模块具有12组6相电机绕组;
驱动支路还包括:交流(AC)电源、K1开关柜、整流变压器、相控整流器、K2直流开关柜、12组K3直流开关柜及12组n相逆变器;
交流电源与K1开关柜、整流变压器、相控整流器及K2直流开关柜依次连接,将交流(AC)电源转换为直流输出;
K2直流开关柜与12组储电器分别连接,12组储电器分别存储电能,12组储电器分别与12组K3直流开关柜连接,12组K3直流开关柜分别与12组6相逆变器连接,12组6相逆变器分别与12组6相变压器连接。
该需要功率冗余的驱动系统和超大功率驱动系统适用的是磁浮列车,将电功率转换为磁浮列车的牵引动力,使得磁浮列车运动。
(二)、应用于超大功率船舶电力推进和直线电机驱动系统;
如图7所示,整个系统中包括了主推系统、侧推系统及直线电机驱动系统,具体的,主推系统的铁心磁路复用电机是主推旋转电机,侧推系统的铁心磁路复用电机是侧推旋转电机,直线电机驱动系统的铁心磁路复用电机是直线电机;
主推旋转电机为r组n相旋转电机,r组n相旋转电机具有r组n相电机绕组,r为大于等于2的正整数,n为大于等于3的正整数;
侧推旋转电机为s组n相旋转电机,s组n相旋转电机具有s组n相电机绕组,s为大于等于2的正整数;
直线电机为t组n相直线电机,t组n相直线电机具有t组n相电机绕组,t为大于等于2的正整数;直线电机的定子由j个模块串联组成,每个模块具有t组n相电机绕组,j为大于1的正整数;
主推旋转电机及侧推旋转电机对应的电源为发电系统,发电系统为常规动力发电或核动力发电;
直线电机对应的电源为发电系统、t组储电器、发电系统及t组储电器的组合;
在驱动支路中还包括:r+s+t组电机控制器;
r组电机控制器分别控制主推旋转电机的r组驱动支路;
s组电机控制器分别控制侧推旋转电机的s组驱动支路;
t组电机控制器分别控制直线电机的t组驱动支路;
主推旋转电机和侧推旋转电机将电功率转换为机械功率,使得船舶的 螺旋桨转动,从而推动船舶运动,而直线电机是将电功率转换为直线运动的动能。
(三)、应用于纯电飞机推进系统;
如图8所示,铁心磁路复用电机为m组n相旋转电机,m为大于等于2的正整数,n为大于等于3的正整数,铁心磁路复用电机具有m组n相电机绕组;
电源为储电器,储电器具有m组,
驱动支路还包括:m组电机控制器,m组电机控制器分别控制m组n相旋转电机的m组驱动支路。
铁心磁路复用电机将电功率转换为机械功率,使得飞机的螺旋桨转动,从而提供飞机的飞行动力。
(四)、应用于混合动力电飞机推进系统。
如图9所示,铁心磁路复用电机为m组n相旋转电机,m为大于等于2的正整数,n为大于等于3的正整数,铁心磁路复用电机具有m组n相电机绕组;
电源为发电系统、m组储电器、发电系统及m组储电器的组合,发电系统为内燃机发电;
驱动支路还包括:m组电机控制器,m组电机控制器分别控制m组n相旋转电机的m组驱动支路。
与纯电飞机推进系统的不同在于,混合动力电飞机推进系统的发电系统可以使用内燃机发电提供电能,可以通过储电器提供电能,可以通过发电系统及储电器的组合提供电能。铁心磁路复用电机将电功率转换为机械功率,使得飞机的螺旋桨转动,从而提供飞机的飞行动力。
根据以上的实施例的描述,本发明中以铁心磁路复用电机为核心,拓扑结构特点是多台变流器共同驱动单台电机、每台变流器驱动该电机对应的绕组,具有“小马拉大车”(变流器功率不大、电机功率超大)的功能特点;多个驱动支路的存在,具有单支路独立驱动、独立保护、独立切断、不扩大故障保护范围等功能特点;对单个电力电子器件、储电器、开关设 备的电压电流功率要求极大降低,变流器可采用现有成熟技术。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种铁心磁路复用冗余功率驱动系统,其特征在于,包括:
    铁心磁路复用电机、至少两台变流器及至少两组电源;
    所述铁心磁路复用电机包括至少两组电机绕组及磁路复用铁心;
    所述至少两组电源、所述至少两台变流器及所述至少两组电机绕组形成至少两条驱动支路,每一条驱动支路具有一组电源、一台变流器及一组电机绕组;
    所述至少两条驱动支路分别提供电磁场,所述磁路复用铁心作为所述电磁场的磁路复用通道。
  2. 根据权利要求1所述的铁心磁路复用冗余功率驱动系统,其特征在于,
    所述铁心磁路复用电机为m组n相电机,所述m为大于等于2的正整数,所述n为大于等于3的正整数;
    所述铁心磁路复用电机具有m组n相电机绕组;
    所述电源的数量为m组,所述变流器的数量为m台,每台变流器具有n相;
    m组所述电源分别向m台所述变流器供电,每台变流器向每组电机绕组输出n相电压电流。
  3. 根据权利要求2所述的铁心磁路复用冗余功率驱动系统,其特征在于,
    所述电源为电池、电容器、电池电容器复合的储电器、直流电网、交流电网中的任意一种或至少两种的组合。
  4. 根据权利要求1所述的铁心磁路复用冗余功率驱动系统,其特征在于,应用于需要功率冗余的驱动系统和超大功率驱动系统,
    所述铁心磁路复用电机为一台m组n相绕组的电机。
  5. 根据权利要求4所述的铁心磁路复用冗余功率驱动系统,其特征在于,
    所述铁心磁路复用电机为旋转电机时,所述旋转电机为一台m组n相绕组的电机;
    所述铁心磁路复用电机为直线电机时,所述直线电机的定子由j个模块串联组成,每个模块具有m组n相绕组,所述j为大于1的正整数,所述直线电机可以是单边直线电机、双边直线电机、多边直线电机。
  6. 根据权利要求1所述的铁心磁路复用冗余功率驱动系统,其特征在于,应用于超大功率船舶电力推进及直线电机驱动系统,
    所述铁心磁路复用电机包括主推旋转电机、侧推旋转电机及直线电机;
    所述主推旋转电机为r组n相旋转电机,所述r组n相旋转电机具有r组n相电机绕组,所述r为大于等于2的正整数,所述n为大于等于3的正整数;
    所述侧推旋转电机为s组n相旋转电机,所述s组n相旋转电机具有s组n相电机绕组,所述s为大于等于2的正整数;
    所述直线电机为t组n相直线电机,所述t组n相直线电机具有t组n相电机绕组,所述t为大于等于2的正整数。
  7. 根据权利要求6所述的铁心磁路复用冗余功率驱动系统,其特征在于,
    所述直线电机的定子由j个模块串联组成,每个模块具有t组n相电机绕组,所述j为大于1的正整数。
  8. 根据权利要求6或7所述的铁心磁路复用冗余功率驱动系统,其特征在于,
    所述主推旋转电机及所述侧推旋转电机对应的电源为发电系统;
    所述直线电机对应的电源为所述发电系统、t组储电器、所述发电系统及所述t组储电器的组合;
    所述驱动支路还包括r+s+t组电机控制器;
    r组所述电机控制器分别控制所述主推旋转电机的r组驱动支路;
    s组所述电机控制器分别控制所述侧推旋转电机的s组驱动支路;
    t组所述电机控制器分别控制所述直线电机的t组驱动支路。
  9. 根据权利要求1所述的铁心磁路复用冗余功率驱动系统,其特征在于,应用于纯电飞机推进系统,
    所述铁心磁路复用电机为m组n相旋转电机,所述m为大于等于2的正整数,所述n为大于等于3的正整数;
    所述铁心磁路复用电机具有m组n相电机绕组;
    所述电源为储电器,所述储电器具有m组;
    所述驱动支路还包括m组电机控制器;
    m组所述电机控制器分别控制所述m组n相旋转电机的m组驱动支路。
  10. 根据权利要求1所述的铁心磁路复用冗余功率驱动系统,其特征在于,应用于混合动力电飞机推进系统,
    所述铁心磁路复用电机为m组n相旋转电机,所述m为大于等于2的正整数,所述n为大于等于3的正整数;
    所述铁心磁路复用电机具有m组n相电机绕组;
    所述电源为发电系统、m组储电器、所述发电系统及所述m组储电器的组合;
    所述驱动支路还包括m组电机控制器;
    m组所述电机控制器分别控制所述m组n相旋转电机的m组驱动支路。
PCT/CN2021/121595 2021-02-04 2021-09-29 一种铁心磁路复用冗余功率驱动系统 WO2022166229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110154340.X 2021-02-04
CN202110154340.XA CN114865982A (zh) 2021-02-04 2021-02-04 一种铁心磁路复用冗余功率驱动系统

Publications (1)

Publication Number Publication Date
WO2022166229A1 true WO2022166229A1 (zh) 2022-08-11

Family

ID=82623305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121595 WO2022166229A1 (zh) 2021-02-04 2021-09-29 一种铁心磁路复用冗余功率驱动系统

Country Status (2)

Country Link
CN (1) CN114865982A (zh)
WO (1) WO2022166229A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142801A (zh) * 2010-01-28 2011-08-03 会田工程技术有限公司 电动机控制系统以及电动机控制方法
CN202276306U (zh) * 2011-09-19 2012-06-13 北京工业大学 一种双通道冗余无刷直流电机驱动器
CN102594228A (zh) * 2012-03-01 2012-07-18 沈阳永磁电机制造有限公司 用于电动飞机或电动船上的多相永磁无刷直流电动机
CN105186817A (zh) * 2015-08-18 2015-12-23 重庆大学 一种针对于永磁同步电机绕组切换装置的绕组设计
CN106452218A (zh) * 2016-12-09 2017-02-22 华中科技大学 一种模块化三相多端电机及其驱动控制方法
CN109391216A (zh) * 2017-08-08 2019-02-26 上海理工大学 电动驱动装置的多重控制方法
CN111679225A (zh) * 2020-08-11 2020-09-18 南京理工大学 基于模糊逻辑理论的电驱动系统开路故障诊断方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142801A (zh) * 2010-01-28 2011-08-03 会田工程技术有限公司 电动机控制系统以及电动机控制方法
CN202276306U (zh) * 2011-09-19 2012-06-13 北京工业大学 一种双通道冗余无刷直流电机驱动器
CN102594228A (zh) * 2012-03-01 2012-07-18 沈阳永磁电机制造有限公司 用于电动飞机或电动船上的多相永磁无刷直流电动机
CN105186817A (zh) * 2015-08-18 2015-12-23 重庆大学 一种针对于永磁同步电机绕组切换装置的绕组设计
CN106452218A (zh) * 2016-12-09 2017-02-22 华中科技大学 一种模块化三相多端电机及其驱动控制方法
CN109391216A (zh) * 2017-08-08 2019-02-26 上海理工大学 电动驱动装置的多重控制方法
CN111679225A (zh) * 2020-08-11 2020-09-18 南京理工大学 基于模糊逻辑理论的电驱动系统开路故障诊断方法

Also Published As

Publication number Publication date
CN114865982A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Nøland et al. High-power machines and starter-generator topologies for more electric aircraft: A technology outlook
Gan et al. New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion
Gan et al. Multiport bidirectional SRM drives for solar-assisted hybrid electric bus powertrain with flexible driving and self-charging functions
Hu et al. Solar PV-powered SRM drive for EVs with flexible energy control functions
CN101500842B (zh) 柴油电力驱动系统
JP2000217275A (ja) 船舶用集中電力給電装置
CN110061678B (zh) 一种电励磁双凸极电机驱动充电一体化系统
WO2008056580A1 (fr) Système et procédé de commande d'entraînement de machine électrique rotative supraconductrice
CN107565727B (zh) 可变速内燃机发电机组-变速恒频交直流凸极同步发电机组
Zhao et al. An overview of high specific power electrical machines and drives technologies for electrified aircraft
WO2022166229A1 (zh) 一种铁心磁路复用冗余功率驱动系统
CN110011470B (zh) 一种用于城市轨道交通的十八相储能电机系统及其控制方法
Nikouie et al. A highly integrated electric drive system for tomorrow's EVs and HEVs
JP2022536680A (ja) ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム
CN104333191B (zh) 一种永磁电机、风力发电机系统及其控制方法
CN101453184B (zh) 一种开关磁阻电动机调速系统
Cao et al. A double fed three-phase flux-switching linear motor with complementary magnet circuit for urban rail transit
CN107707158A (zh) 一种变频器综合制动系统及其工作方法
CN109391196B (zh) 电动驱动装置以及电动设备
WO2022166225A1 (zh) 一种铁心磁路复用的电气系统
Zhang et al. Speed control of double-sided linear flux-switching permanent magnet motor system for electromagnetic launch system
Dimitrov et al. Features in the selection and operation of AC motors for electric propulsion system in ship
Nithya et al. Design and analysis of new multilevel inverter topology with induction motor load
Xu et al. Regenerated Energy Absorption Methods for More Electric Aircraft Starter/Generator System
Xiying et al. A new control strategy of Doubly-fed Induction Machine for Hybrid Electric Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924226

Country of ref document: EP

Kind code of ref document: A1