JP7312861B2 - ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム - Google Patents

ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム Download PDF

Info

Publication number
JP7312861B2
JP7312861B2 JP2021573381A JP2021573381A JP7312861B2 JP 7312861 B2 JP7312861 B2 JP 7312861B2 JP 2021573381 A JP2021573381 A JP 2021573381A JP 2021573381 A JP2021573381 A JP 2021573381A JP 7312861 B2 JP7312861 B2 JP 7312861B2
Authority
JP
Japan
Prior art keywords
power
transmitter
receiver
transfer system
polyphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021573381A
Other languages
English (en)
Other versions
JP2022536680A (ja
Inventor
ビー. クズネツォフ,スティーブン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2022536680A publication Critical patent/JP2022536680A/ja
Application granted granted Critical
Publication of JP7312861B2 publication Critical patent/JP7312861B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/025Asynchronous motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、水中ビークルのようなビークルに電力を伝達するための電力伝達システムの分野である。
関連技術の説明
水中用または無人自律ビークル(unmanned autonomous vehicle、UAV)用の先行技術の誘導電力伝達システムは、中周波数および高周波数で動作し、10~15キロワットのレベルの電力を、空気または液体媒体を通じて比較的短い距離にわたって伝達するために商業的および軍事的に使用されている。現在、ほとんどのユニットは、電力を伝送するために単相の静的電磁場を使用している。これは、電力送信機ユニットに対する受信機の位置合わせが非常に正確であることが必要とされるという問題を呈する。空間的整列が完全でない場合、電気伝達効率は、非常に急速に低下し、出力電圧の損失および能力の低下が生じる。
よって、この分野の努力には改善の余地がある。
電力伝達システムは、液体、気体、または固体ギャップを横切って電力を誘導電力受信機へ/から伝達するための多相進行波誘導電力送信機を有する。
本発明のある側面によれば、電力伝達システムは:一次および二次電気ポートを含む複数の電気ポートを含む多相ダイナモ電気機械と;前記多相ダイナモ電気機械に結合された機械的慣性エネルギー蓄積装置と;前記二次ポートのそれぞれに結合された多相進行波誘導電力送信機と;前記送信機に誘導結合され、負荷に電力を提供する多相進行波電力受信機とを含む。
この概要の任意の段落のある実施形態によれば、ポートは、一次入力ポートおよび複数の二次出力ポートを含む。
この概要の任意の段落のある実施形態によれば、多相進行波誘導電力送信機は、二次出力ポートのそれぞれに結合される。
この概要の任意の段落のある実施形態によれば、システムは、さらに、電力生成源から電力を伝送線を介して導出する、前記一次入力ポートに結合されたDC-AC電力コンバータを含む。
この概要の任意の段落のある実施形態によれば、多相ダイナモ電気機械は、さらに、前記二次出力ポートと、前記多相進行波誘導電力送信機のそれぞれとの間のそれぞれの電気共振回路を含む。
この概要の任意の段落のある実施形態によれば、前記機械的慣性エネルギー蓄積装置は、前記ダイナモ電気機械の回転子に動作的に結合されたフライホイールを含む。
この概要の任意の段落のある実施形態によれば、前記ダイナモ電気機械および前記機械的慣性エネルギー蓄積装置は、電力およびエネルギーの流れにおいて完全に双方向性であり、エネルギーを電力生成源に戻すことができる。
この概要の任意の段落のある実施形態によれば、前記誘導送信機は、ある周波数範囲にわたって入力電力を受け入れ、対応する範囲の進行速度を有する進行波を生成する。
この概要の任意の段落のある実施形態によれば、前記誘導送信機は、それぞれ少なくとも4極を有する。
この概要の任意の段落のある実施形態によれば、前記誘導送信機は、少なくとも15cm(6インチ)の極ピッチを有する。
この概要の任意の段落のある実施形態によれば、前記ダイナモ電気機械は、制御可能な励起を有する、巻線型DC場同期機械である。
この概要の任意の段落のある実施形態によれば、前記ダイナモ電気機械は永久磁石同期機械である。
この概要の任意の段落のある実施形態によれば、前記ダイナモ電気機械は、二重給電誘導機械である。
この概要の任意の段落のある実施形態によれば、当該システムは、さらに、前記回転子に可変周波数励起または直流励起を提供するために、前記回転子に動作的に結合された電気化学的エネルギー蓄積装置を含む。
この概要の任意の段落のある実施形態によれば、前記受信機のうちの1つは、ビークルの一部であるビークル受信機である。
この概要の任意の段落のある実施形態によれば、前記ビークル受信機は、前記ビークル受信機によって提供される電力に加えて、前記負荷のうちの1つに電力を提供するはたらきをする追加的なエネルギー蓄積装置に動作的に結合される。
この概要の任意の段落のある実施形態によれば、前記追加的なエネルギー蓄積装置は、前記負荷のうちの前記1つに電力を与えるための電気パルスを整形および制御するように構成されたパルス形成ネットワークを含む。
この概要の任意の段落のある実施形態によれば、前記追加的なエネルギー蓄積装置は、前記負荷のうちの前記1つに電力を与えるように構成され、前記ビークル受信機によって再充電可能な電気化学的エネルギー蓄積装置を含む。
この概要の任意の段落のある実施形態によれば、前記ビークル受信機と前記送信機のうちの前記1つとの間の前記結合は、前記ギャップを横切っていずれの方向にも双方向のエネルギー伝達を許容する。
本発明の別の態様によれば、電力伝達システムとビークルとの間の電力制御方法は:前記電力伝達システムの多相進行波誘導電力送信機と、前記ビークルの受信機とを、液体、気体、または固体ギャップを横切って、誘導結合し;前記送信機または前記受信機のうちの一方に対して、前記送信機または前記受信機のうちの他方に伝達するために電力を提供することを含み、負荷エネルギーは散逸される、またはさらなるエネルギー貯蔵される。
この概要の任意の段落のある実施形態によれば、電力を提供することは、前記送信機に電気的に結合されたダイナモ電気機械から電力を提供することを含む。
この概要の任意の段落のある実施形態によれば、本方法は、電源から前記ダイナモ電気機械へ、および、前記ダイナモ電気機械から前記電源へ、双方向の電力を提供することをさらに含み、前記ビークルのエネルギー蓄積装置からの余剰エネルギーが前記電源に戻されることができる。
この概要の任意の段落のある実施形態によれば、前記ギャップは水ギャップであり、前記ビークルは水中ビークルである。
この概要の任意の段落のある実施形態によれば、前記ギャップは、気体ギャップであり、前記ビークルは、気体環境において動作する。
本発明のさらに別の側面によれば、多相ダイナモ電気機械が、一次機械的慣性エネルギー蓄積装置に結合され、該ダイナモ電気機械は、多相進行波誘導電力送信機装置に接続された複数の固定子および回転子〔回転子〕ポートを有し、前記多相進行波誘導電力送信機装置は、パルス状または定常状態の電気負荷とともに使用するための二次エネルギー蓄積装置を再充電するまたは動作させるために、連続的またはパルス状の多相電力を、無人自律ビークル(UAV)または他の水中ビークルへの液体または気体ギャップを通じて、非接触進行波受信機に伝達する手段を有する。
ある実施形態によれば、前記多相ダイナモ電気機械に給電する伝送線は、サージまたはパルス能力において制限されてもよい。それにより、パルス化されたエネルギーの一次源は、第1の電気周波数で慣性蓄積部から導出され、このエネルギーの大半は、第2の、より高い周波数で、非接触多相進行波線形誘導磁気アセンブリを通じて負荷に伝達される。
ある実施形態によれば、誘導電力送信機‐受信機対は、電力伝達に加えて、同じ磁場を用いて、長手方向の、電気力学的制御可能な推進力を生成し、これは、対象UAVをその充電ステーションにドッキングし位置決めするのを助けるためである。
本発明のさらなる側面によれば、電力伝達システムは:電源と;前記電源に動作的に結合された一対の多相ダイナモ電気機械と;前記ダイナモ電気機械のそれぞれに動作的に結合された一対の送信機‐受信機対とを含み、前記送信機‐受信機対のそれぞれは:多相進行波誘導電力送信機と;前記送信機に誘導結合され、負荷に電力を提供する多相進行波電力受信機とを含む。
前述のおよび関連した目的を達成するために、本発明は、以下に十全に記載されかつ特許請求の範囲において具体的に指摘される特徴を含んでいる。以下の記載および添付の図面は、本発明の例示的な実施形態を詳細に示している。しかしながら、これらの実施形態は、本発明の原理が使用されうるさまざまな方法のうちの若干を示しているにすぎない。本発明の他の目的、利点および新規な特徴は、図面との関連で参酌されるときの本発明の詳細な説明から明らかになるであろう。
添付の図面は、必ずしも縮尺どおりではないが、本発明のさまざまな側面を示す。
本発明のある実施形態による、一対の受信機システムと組み合わされた電力伝達システムを示す概略図である。
本発明の別の実施形態による、一対の受信機システムと組み合わされた電力伝達システムを示す概略図である。
一対の受信機システムと組み合わされた代替的な実施形態の電力伝達システムを示す概略図である。
図1および図2Aのシステムにおいて使用可能な誘導送信機および誘導受信機のための巻線図である。
図2Aの電力伝達システムの固定子巻線の巻線図である。
図2Aの電力伝達システムの回転子巻線の巻線図である。
図2Aの電力伝達システムの別の回転子巻線の巻線図である。
図2Aの電力伝達システムの別の固定子巻線の巻線図である。
図2Aの電力伝達システムのさらに別の固定子巻線の巻線図である。
本発明のさらに別の実施形態による電力伝達システムを示す概略図である。
本発明のさらに別の実施形態による電力伝達システムを示す概略図である。
図9および図10の電力伝達システムとともに使用可能なAC-AC長距離伝送システムの概略図である。
本発明のある実施形態による、ソースの特別なバッファリングを備えたマルチマシン・システムおよびデュアル送信機‐受信機セットの概略図である。
従来技術の4段パルス形成ネットワークおよび動的負荷を示す。
誘導電力伝達システムは、空気ギャップまたは液体ギャップのようなギャップを横切って電力を無人自律ビークル(UAV)などに伝達するために使用される。電力伝達システムは、空気または液体ギャップ中に進行磁場を作り出し、共振電磁(EM)場を実現することにより、より大きなギャップ離間と、受信機対送信機の位置の、それほど精密でない位置合わせとを許容する多相システムである。電力伝達システムは、多相進行波誘導電力送信機装置に接続された複数の固定子および回転子ポートを有する、一次機械的慣性エネルギー蓄積装置に取り付けられた多相ダイナモ電気機械(polyphase dynamoelectric machine)を有することができる。このシステムは、海中食塩水環境における水中ビークルに電力を伝達することにおいて有用でありうる。そのような電力伝達システムは、たとえば少なくとも10kmの深さ、および/または1~50kmの距離の、水中電力伝達のためのより大きなシステムの一部であってもよい。
図1は、水の下の一連の位置で電力を提供するための、より大きなシステム12の一部である電力伝達システム10を示しており、これは、一緒に結合された一連の電力伝達システムであってもよい。他の深さが可能であるが少なくとも10キロメートルの深さで、水中、たとえば海中にあってもよい、一連の電力伝達システム10に結合された、風力タービンのような陸上電力生成システム14を含んでいてもよい。電力伝達システム10は、図1に示される電力線16、18のような相当な距離の電力伝送線によって離間されていてもよい。たとえば、電力線16および18は、他の距離が可能であるが、電力伝達システム10の隣接するものの間に1~50kmの長さを有することができる。
より大きなシステム12は、たとえば、直列に結合された追加的なシステム19を含む、システム10のような一連の電力伝達システムを含んでいてもよい。個々の電力伝達システム10は、エネルギー蓄積部42を備えており、電力生成システム14から遮断されたときに、ある程度は、別個に、または互いと協働して行動できる。たとえば、電力伝達システム10のうちの1つが電力伝達システムのうちの他のものに電力を提供する。
電力伝達システム10は、多機能のマルチポートの誘導電力伝達システム(inductive power transfer system、IPT)であってもよく、電力受信機システム22および24のような電力受信機システムとの関連で、蓄積されたエネルギーの2つ以上の段階があり、電力変換の複数の段階があって、受信機システム22および24上の複数の明確に異なる(distinctly-different)電気負荷、たとえば、そのうち3つが脈動負荷である4つの明確に異なる電気負荷を駆動する。これらは、単に本発明の1つの具体的な実施形態の諸側面であり、図1に示され、以下に説明されるシステム10に対して多くの変形が可能であることが理解されるであろう。システム10は、長距離海底伝送線での使用のために適応されてもよく、電力変換器〔コンバータ〕26および27のような一連の複数の電力変換器が定電流DCまたは低周波AC線上で直列に接続される。
電力受信機システム22および24は、以下により詳細に説明されるが、別個のビークル28および29の一部であってもよい。たとえば、電力受信機システム22および24は、水中ビークル、たとえば、無人水中ビークル(UUV)、または無人自律ビークル(UAV)の一部であってもよい。電力伝達システム10は、水中ビークル28、29に電力を与えるために使用されてもよく、たとえば、水中ビークル28、29が搭載エネルギー蓄積装置に蓄積するために、動作のために、またはこのエネルギーを推進もしくは散逸性負荷のために直接使用するために、水中ビークル28、29にエネルギーを供給してもよい。
図1に示される電力伝達システム10の実施形態は、複数の固定子巻線32、34、および36を含み、慣性フライホイールのようなエネルギー蓄積装置42およびDC場励起源44に結合されているマルチポート同期機械30を含む。本明細書の説明において、「ポート」および「巻線」という用語は、ある程度互換的に使用され、同じ参照符号が、巻線および該巻線に接続するためのポートの両方に適用される。通常動作では、マルチポート同期機械30は、電力コンバータ26からエネルギーを受け取り、一対の線形誘導送信機52および54にエネルギーを差し向ける。送信機52、54に送られるエネルギーは、送信機52、54に向かう途中で、それぞれの共振回路62、64を通過する。
巻線32は入力巻線であり、巻線34、36は出力巻線である。コンバータ26は、入力巻線32において回転電気機械30に多相電力を供給する。機械30は、エネルギー蓄積装置42を通じて、一次(慣性)エネルギー蓄積ユニットとして、また、入力巻線における高電圧電位を出力端子34および36における低電圧電位に変化させるための回転変圧器として機能する。コンバータ26は、伝送線から定電流を受け入れ、可変周波数能力を有する定電流または定電力多相出力を有するDC-ACコンバータである。入力巻線ポート32から出力巻線ポート34および36のいずれかへの電気的絶縁が提供される。第1の好ましい実施形態では、電気機械30は、モーターまたは発電機のいずれかとして双方向モードで電力を伝達することができる巻線型DC場同期機械(wound DC-field synchronous machine)である。他の実施形態では、電気機械は、下記でさらに詳細に論じられるように、永久磁石同期機械(permanent magnet synchronous machine)または二重給電誘導機械(doubly-fed induction machine、DFIM)である。
固定子入力巻線32は、図示した実施形態ではデルタ巻線である。通常モードでは、出力巻線34、36が使用されていない(オフにされている)間、固定子巻線32はフライホイール・エネルギー貯蔵部42を充電〔充填/チャージ〕するために使用される。フライホイール42が完全に充電されると、電力コンバータ26は入力巻線32への電力供給を停止し、すべての負荷エネルギーは慣性エネルギー蓄積装置42から取られる。これは、高いインピーダンスを有し、高エネルギー・パルス送達をサポートできない主伝送線16、18上の電流または電力の大きな変動を最小限にする。システムはまた、コンバータ26からの電力とフライホイール42からのエネルギーとを組み合わせて、負荷に同時に供給することができる。図示した実施形態では、固定子巻線34および36に対応する2つの多相出力ポートがある。しかしながら、より多数の出力ポート(および出力巻線)が代わりに使用されてもよいことが理解されよう。
機械30は、DC場源(DC field supply)44から回転子46へのDC励起電力を供給される。回転子46はまた、フライホイールを回転させるなどしてエネルギー蓄積部42に充填するために、巻線32入力とともに、モータリング(motoring)・モードでも使用される。このシステムは双方向であり、UUVまたはUAV内のレギュレータ/エネルギー蓄積部92または118からの負荷エネルギー(loading energy)は、このエネルギーが最終出力94または120で散逸されない場合には、フライホイール42に充填するために逆方向に送ることができる。
固定子出力ポート34は、密封された電磁ユニットにおいて、周波数f2で多極線形誘導インジェクタ/送信機52に電力を与える。これは、送信機52と電力受信機システム22の線形誘導受信機76との間にギャップ72を有する空気または液体媒体中に進行波磁場を生成する。電力は、ギャップ72を横切って線形誘導受信機76に伝送され、線形誘導受信機76は、送信機52と実質的な相互結合を有する多極多相アセンブリでもある。受信機76は、無人自律ビークル(UAV)28に搭載され、パルス状エフェクタ、ナビゲーション、推進、およびソナーのために電力をUAV 28に提供する。共振回路62の一部である一連のキャパシタが、送信機52の一次インダクタンスと組み合わさって、送信機52に共振周波数を提供する。この共振周波数ネットワークは、送信機52に結合されている機械30のポートにおいて巻線34によって励起される。受信機76の出力は、DC出力DC1を生成する多相制御整流器80によって整流される。DC1電位は、スイッチング電源90に送られ、スイッチング電源90は、DC電圧DC2を生成し、これが次いで2つの異なる負荷に送られる。
第1の負荷は、トリガー・スイッチおよび電圧クランプに接続された、高電流DCパルス出力DC3を生成するキャパシタ‐インダクタ・ネットワークからなるパルス形成ネットワーク(pulse forming network、PFN)86である。PFN 86は、キャパシタ・バンクの形のエネルギー貯蔵装置(またはバッテリーのような他の電気化学的エネルギー貯蔵部)として、短期的なエネルギー貯蔵の機能を実行し、その出力において、電磁エフェクタ88を使用するために必要な低インピーダンス出力DC3を生成する。エフェクタ88は、無人水中ビークルに取り付けられたパルス状の負荷である。「エフェクタ」という用語は、本明細書で使用されるところでは、多様な電力を消費する装置の任意のものをなし、例は、電力を消費する兵器、たとえば電気レールガン、誘導ランチャー、もしくは高エネルギー・レーザー、または高電力レーダー・システムである。スイッチング電源90(switching power supply、SPS)が、整流器80とPFN 86との間にある。制御されたAC-DC整流器80はまた、エネルギー蓄積サブシステムおよび電流レギュレータ(FCR)92に電力を与え、該電流レギュレータは、ソナー・システムまたは推進モーターのような、より小さなパルス状の負荷94に電力を与える。受信機76に結合された負荷は、通信装置などの定常的な負荷であってもよいことも理解されたい。
固定子巻線36は、共振回路64の一部である静電キャパシタ・バンクを使用して共振回路64を通じて第2の線形誘導インジェクタ/送信機54に給電する第3の高調波発生器電源の一部である。送信機54は、送信機54と対応する線形誘導受信機108との間に空気ギャップまたは液体ギャップ104を有する8~12極の多相線形誘導進行波電気機械(進行波磁場を生成可能)であってもよい。受信機108は、第2の無人自律ビークル29に取り付けられているか、またはその一部である。以下により詳細に説明する、図示された配置および巻線36のような巻線の一つの利点は、送信機54に対する受信機108の空間位置が決定的に重要ではないことである。これにより、送信機54と受信機108との間の位置合わせ〔アライメント〕が長手方向に1つの極ピッチだけオフセットされたときでも、全電力を送受信することができる。ある例示的な実施形態では、この整列不良に対する許容差は、25cm(10インチ)であってもよい。
受信機108の出力は、制御された位相遅延整流器110によって整流され、DC電圧DC5を生成する。次いで、出力は、誘導容量性π型フィルタ114を通され、フィルタリングされた出力バスDC6を生成する。出力バスDC6は、低電圧または高電圧であってもよい。出力バスDC6からの電力の一部は、DC-ACインバータ・ドライブ118に入り、これは、水中用線形誘導ランチャーまたは推進器回転モーター120に電力を与える。そのようなモーター120は、可変周波数ACを必要とすることによって特徴付けることができる。出力バスDC6電圧の別の部分は、中間エネルギー蓄積システム124に送られる。エネルギー蓄積システム124についての好適な例は、静電ウルトラキャパシタまたは電気化学的バッテリー・バンクを含む。エネルギー蓄積システム124からのエネルギーは、周期的または非周期的なエネルギー・パルスで電磁エフェクタ128に電力を与えるために使用されうる。
図1に示されるシステムは、その諸部分において4つの相異なるエネルギー源を有する。すなわち、ソース発生器の可能なエネルギー蓄積能力に加えて、電力伝達システム10内のエネルギー蓄積装置42、ビークル28内のエネルギー蓄積装置(PFN)86または92、およびビークル29内のエネルギー蓄積装置124である。
同期電気機械30は、一次(入力)巻線32への、または一次(入力)巻線32からの電力の伝達を許容する標準的な制御モードで動作させることができる。該電気機械およびその関連する電力コンバータは双方向である。二次蓄積サブシステムのいずれか(PFN 86またはエネルギー蓄積装置124)において余剰エネルギーが存在する場合、このエネルギーは、必要であれば、負荷サイトで散逸されるのではなく、DC伝送線およびソース発生器に戻されることができる。代替的に、システムは、フライホイール42の速度を上げて、次のサイクルのためにこのエネルギーを保持するために、余剰の負荷エネルギーを慣性エネルギー蓄積部86に戻すことを許容する。図示された機械構成は非標準的な構成であり、一次巻線32からの高圧ガルバニ絶縁を有する複数の二次固定子巻線34の使用、および第3の高調波発生器巻線である三次固定子巻線36の使用において特殊である。
ここで図2Aを参照すると、ある実施形態の電力伝達システム210が示されている。電力伝達システム210は、合計3つの固定子多相巻線232、234、236と、励起のための2つの多相回転子巻線238、239とを有する二重給電誘導機械(DFIM)230を含む。主なエネルギー貯蔵部は、DFIM 230に直接取り付けられた慣性フライホイール242である。フライホイール242は、その、DFIM 230の回転子246への結合によって、充填(回転)される(charged)。フライホイールは、エネルギーE1を蓄積することができ、広範囲の速度および可変エネルギー蓄積にわたって動作することができる。
DFIM 230は双方向性であり、必要であれば、伝送線216および該伝送線216の他端にある電源214にエネルギーを戻すことができる。システム210のすべての電力コンバータは双方向である。回転子励起インバータ(rotor excitation inverter、REI)217があり、これは、回転子246を介してDFIM 230を励起するために、DC電力をAC可変電圧可変周波数多相電流に変換する。REI 217は、必要に応じて、バッテリーまたはウルトラキャパシタなどのエネルギー蓄積装置220からエネルギーを変換することができる。典型的なエネルギー放電ノードにおいては、回転子速度が低下すると、固定子巻線234および236が位置する主ポートにおいてほぼ一定の出力周波数を維持するために、REI 217によって回転子に注入される回転子周波数はブーストされる。その結果、コンバータおよびIPT効率が高くなる。回転子励起コントローラ(rotor excitation controller、REC)218はREI 217に動作的に結合される。
励起バッテリー源220を充電するためのAC-DC電力コンバータ219に電力を供給するために、コンバータ226からの入力電流の経路が提供される。フィードは、コンバータ226の出力から入力巻線232への線である。伝送線障害の場合、DFIM巻線232は、自励誘導発電機として作用し、回転子励起および/またはバッテリー充電のために十分以上の電力を生成する。232巻線の自己励起は、機械巻線232と並列な多相分路キャパシタ・バンク222の組み合わせによって、ベース速度の約5%まで維持され、これは従来技術である。
DFIM 230は、固定子巻線234および236に対応するポートにおいて、個々にまたは同時に、それぞれ異なるパルスレートまたは定常負荷をもって、高電力をサポートするように構成される。固定子巻線234は、線形誘導送信機252に給電し、固定子巻線236は、線形誘導送信機254に給電する。送信機252は、周波数f2で共振回路262の一部であるキャパシタ・バンクを通じて給電される。DFIM機械230のインダクタンス、および送信機252のための固定子アセンブリ234のキャパシタンスおよび内部インダクタンスは、液体または空気ギャップ272を横切る、ビークル228(UAVなど)への電力の効率的で、より高い電圧の伝達を許容する。
送信機252に対応して、誘導伝達を受信するために、線形誘導受信機276がある。ギャップ272を横切る電力伝送は、非限定的な例示値を与えると、100kW以上であってもよい。送信機252は、入力巻線232の主励起周波数f1に対して、固定子巻線234の周波数出力における3:1以上の増加を使用する特別な巻線アセンブリである。これは、ビークル228への電力の、効率的で、より高い周波数の伝達を許容する。送信機252の下流にあるビークル228の構成要素は、ビークル28(図1)の構成要素と同様であってもよく、ここではさらに説明しない。
たとえば、印加される固定子巻線232周波数は、コンバータ226のインバータ可変周波数出力から導出される100~400Hzの範囲であってもよい。モーターとしての電気機械は、フライホイール242に動力を与えるのに好適な速度で動作しなければならないので、この周波数を約700Hzより高くしないことが有利である。しかしながら、固定子236からの周波数出力は、600~5000Hzの範囲であってもよく、これは、電力伝達アセンブリ、たとえば、ギャップ304を横切って電力を伝送する送信機254および受信機308に対する、効率およびサイズの利点である。送信機254および受信機308は、図示のように10極のユニットである多極進行波線形誘導伝達ユニットである。誘導伝達ユニットは、広範な他の構成のいずれかを有することができることが理解されるであろう。送信機254および受信機308のいずれかのための極の数には、特定の制限はなく、それらは、適用部位の物理的寸法によってのみ制約される。極数と極ピッチの積(product of poles×pole pitch)が、送信機254と受信機308の全体的な長さを決定する。送信機254および受信機308のこの多相励起は、送信機254および受信機308の緊密な位置合わせを必要とすることなく、広範囲の長手方向ドッキング位置を許容する。受け入れ可能な整列不良の範囲は、電力伝達システム10(図1)に関して上述したものと同様でありうる。加えて、誘導電力送信機‐受信機対は、UAVのようなビークルを充電ステーションにドッキングさせ、位置決めするのを助けるために、電力伝達に加えて、同じ磁場を用いて、長手方向の電気力学的制御可能な推進力を生成することができ、これは誘導電力伝達と同時に推進力を提供する能力である。これは、本明細書に開示される他の実施形態の特徴でもありうる。
受信機308のAC中間周波数出力(たとえば、限定しない範囲を与えると1800~15,000Hzであってもよい、送信機254に印加されるのと同じ周波数)は、負のバス位相遅延整流器310および正のバス位相遅延整流器312に供給される。これは、DCバス電圧DC5およびDC6を生成する。これらの電圧のそれぞれは、二次中間エネルギー蓄積(intermediate energy storage、IES)サブシステム316に供給され、これは、みなブロック316の一部でもあるフィルタ、電流レギュレータ、および絶縁ゲート伝導サイリスタ(insulated gate conducting thyristor、IGCT)電流故障リミッタの前に、DCバス310および312のそれぞれに接続される。最終的なDC出力の第1のものDC7aは、回転推進モーター324を動作させるDC-AC可変周波数インバータ・ドライブ322に給電する。最終的なDC出力の第2のものDC7bは、ブロック328において、まずパルス整形ネットワークおよび電圧レギュレータを通過した後、低電圧ソナー・サブシステム330に給電する。回転推進モーター324は準定常状態負荷であり、ソナー・システム330はパルス状負荷であり、記述される電力システムは、負荷タイプの混合およびパルスレートの混合を扱うことができる。誘導電力伝達ユニットは、パルス状の負荷を扱い、ギャップ272および304を横切る進行電磁場を有するように設計される。時間遅延は、5000Hzなどの周波数でのパルス化が有望であることを許容する30マイクロ秒未満に制限されてもよい。
電流および電圧の両方について、DFIM 230の出力のマスター制御は、回転子励起コントローラ(rotor excitation controller、REC)218と、たとえば回転子巻線238および239への回転子ポートに給電するDC-ACインバータREI 217のレギュレータ部分とによって制御される。ある好ましい実施形態では、回転子は、2つのデルタ巻線から構成される6相システムのために巻かれる。このレギュレータは、注入された回転子電流の周波数と振幅の両方を制御する。それはまた、実電力および無効電力について、直接および直交軸(d軸およびq軸)回転子電流および回転子電力量PrおよびQrを制御する。
REC 218は、a)シャフト速度が放電サイクルにおいて任意に変化する際に、固定子巻線234、236にほぼ一定の出力周波数をもたらすために、機械速度とともに、印加される回転子周波数f4をブーストまたは遅延させること、b)シャフト速度がフライホイール充填サイクルにおいて任意に変化する際に、ほぼ一定の入力電力をもたらすために、機械速度とともに、印加される回転子周波数f4をブーストまたは遅延させること、c)所与の実電力出力について、直交電流または直交軸電力の大きさを最小となるように調整し、それにより、モータリング・モード入力電力因子を可能な最大値に維持すること、および/または、d)需要に応じて充電または放電サイクルのいずれかにおいて、フライホイールへのシャフトに一定のトルクを発生させるよう、機械励起を調整すること(定電力モードの代替として)のうちの一つまたは複数を達成するように構成されてもよい。
固定子巻線234、236の出力は、互いに影響することなく、異なる周波数で、全く異なるパルスレートまたはデューティサイクルで動作可能であることが望ましいことがありうる。すなわち、2つの出力ポート(それぞれの固定子巻線234および236からの出力)は、主として分離されてもよい。各ポートは、別個のビークル228または229に給電する。よって、ビークル228および229のそれぞれは、それ自身の独立したドッキングまたはミッション・スケジュールを有する。DFIM 230の前記構成は、2つの出力の磁気的および電気的デカップリングを許容するので有利である。出力234および236を磁気的に分離するために、固定子は、共通のフレームを共有する巻線を含んでいるが、固定子コアの磁気構造は、機械的にタンデムではあるが隔離されている。これは、2つの別個の回転子巻線238および239が、それぞれ相異なる固定子出力巻線に結合することを許容し、よって、それぞれの送信機電力入力の独立した電圧および周波数制御を実施するからである。
システム210は、容量E1を有する主エネルギー蓄積部としての慣性フライホイール・エネルギー蓄積部242と;容量E2を有する回転子励起サブシステム用のエネルギー蓄積装置220と;容量E3を有する、パルス形成ネットワーク(PFN)内の磁気および容量蓄積であるビークル228の一部であるエネルギー蓄積装置286と;容量E4を有する、バッテリーまたはウルトラキャパシタ・エネルギー蓄積部であってもよく、ビークル229の一部である、中間エネルギー蓄積(intermediate energy storage、IES)サブシステム316とを含む、複数のエネルギー蓄積サブシステム/装置を有する。いくつかの実施形態では、慣性蓄積部の容量E1は、E1>E2+E3+E4のように、他のすべてのエネルギー蓄積ユニットの合計を超える。
何らかの理由で伝送線216が遮断された場合、または入力インバータ・ドライブ226または227が動作しなかった場合、慣性フライホイール242の慣性蓄積容量(E1)により、システムが、多くの動作をフル電力およびポテンシャルでこなせるよう、システムが構成されてもよい。フライホイール242によって蓄積される最大運動エネルギーは、E0として定義されてもよい。典型的な使用可能なエネルギーE1はE0/2である。このエネルギーは、負荷エネルギーE3およびE4にN(E3+E4)/effとして分配される。ここで、Nは、放電のサイクル数であり、effは、全体的なシステム変換効率である。典型的なシステムでは、Nは、10~500サイクルの範囲でありうる。PFN 286(E3)のような補助エネルギー蓄積ユニットは、パルス先鋭化、または低電流の長パルス入力をパルス状エフェクタに適切な高電流の短いパルス出力に変えるという目的に資することができる。ほとんどの用途では、より小さい蓄積エネルギーは、E3>E4>E2のように配置することができ、それにより、負荷エネルギーのうち最大のものE3は、中間蓄積エネルギーE4および回転子場電源E2を超える。しかしながら、他の構成も可能である。
上記のシステムには多くの変形が可能である。たとえば、図1および図2の電気機械30および230は、1つの機械に接続された複数のUAVおよび複数の誘導電力伝達ユニットを必要とする多様な用途に適合するように、3つより多くの固定子巻線および2つより多くの回転子巻線を備えることができる。さらに、慣性フライホイールは、ステップアップ・ギアボックスまたは同様の装置を通じて直接的または間接的に電気機械に連結されてもよい。慣性フライホイールは、エフェクタによって使用されず、高いストレスを受けるキャパシタ・バンクの中間エネルギー蓄積部において長期間にわたって蓄積されることができない、PFNまたはエネルギーE2またはE3からの余剰の負荷エネルギーを長期間にわたって受け入れ、保持することができる。電力変換装置のすべてが双方向であるため、図2Aのシステムは、ビークル228のE2に蓄積されたエネルギーが、受信機‐送信機対の二重経路を通じて、および電気機械巻線234および236を通じて、ビークル229のエネルギー蓄積部E4に転送されることを許容する。
表1には、ビークル228および229の電力受信および利用システムとの関連で、機械230の1つの可能な構成、および電力伝達システム210の他の諸側面のためのいくつかの例示的な値がある。サンプルDFIM-誘導電力伝達UAVシステムのこれらのパラメータは、2つの主要UAVに分割される、代表的な480kWの出力電力をサポートするのに十分である。これは、特定のハードウェアまたは概念上の問題により50kWよりはるか下に制限される従来の誘導電力伝送システムよりもはるかに高い電力能力である。全蓄積エネルギーE1は、12,000rpmの上限速度で10MJであり、これは3,000rpmのようなより低速では0.625MJの容量に減少する。下記の諸表は、システムの広い範囲を例示するために、3つの異なる固定子電圧と2つの異なるUAV受信機出力電圧(700Vおよび3000V)とを含んでいる。挙げられるパラメータは、2.5cm(1インチ)の空気または液体の「ドッキング」ギャップに対して適切である。このシステムの利点は、その高電力高効率能力に加えて、誘導送信機と受信機の間のUAVの長手方向のオフセットが、30cm(12インチ)のように大きくできることである。

表1―自己整列線形誘導送信機/受信機および二重給電誘導機械を用いた500kW/500kVA誘導電力伝達のパラメータ
DFIMパラメータ
固定子巻線S1 入力電圧:5000Vrms L-L、100-400Hz、57.7Amps/phase
固定子巻線S2 出力電圧:690Vrms、L-L、450Hz、209Amps/phase
固定子巻線S3 出力電圧:1500Vrms、L-L、1200-2400Hz、96Amps/phase
回転子巻線R1+R2 入力電圧:750VL-L 50kVA、3相可変周波数
慣性エネルギー貯蔵 12,000rpmで10MJ
フライホイール型 複合材料
固定子極数 S1に4極、S2に4極、S3に12極
回転子極数 R1に4極、R2に12極
固定子スロット数 すべてのグループのうちで全96
回転子スロット数 24と36
巻線S1型 3相デルタ、二層重ね巻き
巻線S2型 3相ワイ、二層重ね巻き
巻線S3型 3相ワイ、二層重ね巻き
磁場密度 コア内で1.4テスラのベースライン
全体的な変換効率 90%

線形誘導送信機#1
電力定格 進行波場を確立する250kVA、3相
電圧入力 1380V L-L、3相
入力電流 105Amps rms/phase
ベース周波数f2 450Hz
共振周波数f2r 600Hz
巻線型 8極、四重デルタ、二層重ね巻き
空気または液体ドッキング・ギャップ 線形誘導受信機電磁面まで2.5cm(1インチ)
極ピッチ 30cm(12インチ)
機械全長 250cm(98インチ)
機械幅 25cm(10インチ)
磁場密度 1.6テスラ

線形誘導送信機#2
電力定格 進行波場を確立する250kVA、3相
電圧入力 1500V L-L、3相
入力電流 105Amps rms/phase
周波数範囲f32 1200Hz-2400Hz
巻線型 10極、五重デルタ、二層重ね巻き
空気または液体ドッキング・ギャップ 線形誘導受信機電磁面まで2.5cm(1インチ)
極ピッチ 25cm(10インチ)
機械全長 257cm(101インチ)
機械幅 25cm(10インチ)
磁場密度 1.6テスラ・ピーク
磁性鋼型 Hiperco 50A

線形誘導受信機#1
電力定格 240kVA、240キロワット出力
電圧出力 3000V L-L、3相
出力電流 46Amps rms/phase
ベース周波数f2 450Hz
共振周波数f2r 600Hz
巻線型 8極、四重デルタ、重ね巻き
極ピッチ 30cm(12インチ)
機械全長 250cm(98インチ)
機械幅 25cm(10インチ)
磁場密度 1.6テスラ・ピーク
磁性鋼型 Hiperco 50A

線形誘導受信機#2
電力定格 240kVA、240キロワット出力
電圧出力 700V L-L、3相
出力電流 198Amps rms/phase
周波数範囲f3r 1200Hz-2400Hz
巻線型 10極、四重デルタ、重ね巻き
極ピッチ 25cm(10インチ)
機械全長 257cm(101インチ)
機械幅 25cm(10インチ)
磁場密度 1.6テスラ・ピーク
磁性鋼型 Hiperco 50A
図2Bは、そのDFIM 230'が永久磁石回転子237'を含むことを除いて、電力伝達システム210(図2A)と同様の代替的な電力伝達システム210'を示す。他の点では、システム210'はシステム210と同様であってもよい。
図3は、ギャップ410を横切って双方向に電力を誘導的に伝達するために、同期機械(図1に示すような)または二重給電誘導機械(図2に示すような)のいずれかの主電源とともに使用することができる、8極線形インダクタ送信機(linear inductor transmitter、LIT)402および線形誘導受信機(linear induction receiver、LIR)404の組み合わせのためのサンプル巻線図を示す。これは四重デルタ構成であり、四つのデルタはそれぞれ直列に二つの極をもち、すべてのデルタ・グループは並列である。各側に48個のコイルがあり、これらは2つのスロット/極/相として巻かれている。LIT 402とLIR 404との間の長手方向の整列は、電気伝達性能に影響することなく、極ピッチ1つぶん、たとえば30cm(12インチ)もオフセットしてもよい。極ピッチは、少なくとも15cm(6インチ)であってもよい。各LIR出力における位相遅延整流器は、有意な長手方向のオフセットがある場合、HVDC端子で一定の出力を与えるよう、LIR出力電圧における小さな差を補正する。
図4~図8は、機械230についての対応する巻線レイアウトを示す。図4は、固定子入力巻線232についての1つの可能な構成を示す。図5および図6には2つの回転子回路238および239がそれぞれ示されている。回路238は、24スロットの4極巻線であり、回路239は、36スロットの12極巻線である。対応する固定子出力巻線は、それぞれ図7および図8の234および236であり、たとえば、それぞれ、400Hzおよび1200Hzのベース周波数を出力することができる。これら2つの多相巻線は、一般的な機械フレームではあるが、磁気的に隔離されている。多種多様な極の組み合わせが存在しうる。逆相シーケンスで回路239のための回転子インバータを動作させることによって、固定子出力周波数を1200Hzから2400Hzに2倍にすることができる。それぞれの線形誘導送信機に対する固定子出力周波数において6:1の差があるこの構成では、パルス・デューティおよび定常状態動作の両方について、234から236への最小の電気的結合が存在する。巻線234および236は、共通の回転子上の別々のスロットに巻かれ、基本的には、異なる極数および異なるスロットの組み合わせ(36および48)を有するが、共通の蓄積エネルギー242を共有する。図4~図8に示される巻線について、広範な他の構成が可能であることが理解されよう。
図9は、システム10(図1)の変形を示している。システム610では、電力生成源618が長距離AC伝送線616に低周波入力を提供する。コンバータ614は、充電モードで同期電気機械630を動作させるためのAC-ACコンバータである。コンバータ618の出力は、4極機械が選択される場合、1~400Hzの周波数入力を必要とする12,000rpmのような高速までフライホイール642を動作させるのに適した可変電圧および可変周波数である。電気機械630はまた、巻線636において1200Hzを生成する12極巻線を有し、一方、4極の巻線634は、フライホイール642が最高速度にあるときに400Hzを出力する。回転子場励起制御への励起は、はいってくる線電力へのタップされる接続である。巻線634および636のこれらの特性は、単に例であり、多くの変形が可能である。固定子巻線632は、ワイまたはデタ巻きであることができ、巻線634および636に強く結合されてもよい。他の点では、システム610は、システム10と同様であってもよい。
図10は、システム210(図2A)の変形であるシステム810を示す。システム810において、電力生成源818は、長距離AC伝送線816に低周波入力を提供する。コンバータ814は、充電モードで二重給電誘導電気機械830を動作させるためのAC-ACコンバータである。コンバータ814の出力は、1~400Hzの周波数または回転子周波数制御を必要とする12,000rpmのような高速まで慣性エネルギー蓄積部842を動作させるのに適した、中電圧および可変電圧の可変周波数(VVVF)の出力である。システム810は、ウルトラキャパシタまたは電気化学的バッテリーであってもよく、回転子回路838を駆動するインバータ817に励起電力の手段を提供する実質的なエネルギー源820を含む。ある好ましい実施形態では、VVVFインバータ817は、2つの出力コンバータに分割される。該2つの出力コンバータは、周波数および絶対値の出力において独立であり、回転子回路838の一部である2つのデルタ回転子巻き線R1およびR2に接続された2組の三相スリップリングおよびコレクタを通じてDFIM 830に電力を与える。
図11は、図9および図10に示されるシステムにおいて使用可能であり、低周波に適した「ACリンク」タイプのAC-AC長距離伝送システム900の簡略化された電気概略図を示し、電力生成源902および負荷電気機械916を固定子巻線S1入力についてのみ示している。一般に、機械902および916は、誘導発電機または同期発電機であることができる。負荷インダクタ914は、長い伝送線上の脈動負荷がある、または複数の電気負荷機械が伝送線上に直列または並列に配置されている場合に、適切なライン調整を補助するための、可飽和かつ制御可能な多相インダクタである(DCバイアス磁化制御をもつ)。インダクタ918は、パルス状負荷がある場合の入力電力調整を補助するために、DCバイアス磁化を有する可飽和の制御される多相インダクタである。電力コンバータ910、912は、従来技術で既知の「ACリンク」コンバータであるが、伝送線インダクタンスL1、L2、および線路浮遊容量C1を利用して、コンバータの自然な整流を補助する。このコンバータ・システムにはDCリンクがなく、スイッチング装置は強制整流を必要とせずに、負荷のソフト・スイッチングを実行する。この回路は、スイッチング素子に高電力高電圧のサイリスタまたはIGCTを使用することを許容し、より低電力で、より信頼性の低いIGBTまたはパワーMOSFET素子の使用を必要としない。図11はまた、素子C1~C6を用いた入力側および出力側の両方における容量性力率補正(capacitive power factor correction)をも示す。
図12は、図1、図2A、および図2Bに示されるシステムの二重負荷を使用するAC-AC長距離伝送システム950の概略図を示すが、2つの電気負荷機械が使用され、2つの相異なる送信機セットが使用されるという点で異なっている。受信機対は、ここでもまた、液体または空気ギャップにおける進行波磁場とともに使用される。このシステムは、電源および各負荷電気機械固定子入力において可飽和リアクトルを使用することによって従来技術から修正されている一組のACリンク電力コンバータを使用する。伝送線は、インダクタンスL1 958によって表される。
AC源は、中周波数foの多相生成器であり、この周波数は、サイリスタ956をもつ第1のAC入力コンバータ段の後に、より低い周波数fxに変換され、変圧器T1(960)に、その一次巻線P1において給電される。変圧器は、2つの出力巻線S1、S2を有する。ACリンクの共振周波数は、ACキャパシタC4、C5、C6(それぞれ参照符号978、980、982)と組み合わせたL1、L2、L3(それぞれ参照符号958、962、970)の組み合わせによって制御される。入力におけるキャパシタ953は、システムの力率(system power factor)を補正するのに役立つ。負荷機械における多相ACキャパシタ984および986は、負荷機械の固有の力率を補償するように機能し、この無効補償(reactive compensation)は、最適な全体的電力伝達を支援する。電気負荷機械No.1固定子巻線976のための第2段の周波数変換は、サイリスタ・スイッチング・ネットワーク972によって生成され、周波数fxまたはfoよりも著しく高い出力周波数f1を生成する。電気負荷機械No.2固定子巻線968のための第3段の周波数変換は、サイリスタ・スイッチング・ネットワーク964によって生成され、周波数fxまたはfoよりも著しく高い出力周波数f2を生成する。本発明の目的は、図示したタイプの比較的低コストで単純な電力コンバータを有する送信機‐受信機対に比較的高い周波数を印加させることである。別個のセットのDCバイアス電源によって制御される2セットの多相可飽和リアクトル966および974は、サイリスタ・スイッチングに加えて、機械固定子入力電流および電力調整を制御する。
変圧器T1は、いくつかの目的に資する。電源952からのたとえば15kVの入力のような高電圧線を有することが望ましいことがあるが、負荷回路は4kVのような、より低い電圧であってもよく、よって変圧器は通常、降圧〔ステップダウン〕ユニットである。変圧器は、異なる電圧レベルV1およびV2でそれぞれ動作する2つ以上の負荷回路が、電力伝送を組み合わせるまたは共有するためのL1出力(958)などの共通の点において組み合わされることを許容する。変圧器はまた、ガルバニ絶縁を達成し、負荷からの故障電流がシステムまたは電源のフロントエンドに重大な影響を与えることを制限する。変圧器は、Hiperco 50Aのような高透磁率の磁性鋼コアで製造するか、またはナノ結晶磁性コアを使用することができ、いずれのタイプの材料でも、中周波数または高周波数を印加することができる。
各電気機械976、968は、それぞれ、相異なる固定子入力周波数f1またはf2、および相異なる動作シャフト速度を有する。各電気機械は、その独自のフライホイール・エネルギー蓄積ユニットが取り付けられている。2つのシャフト速度は互いに独立しているため、それらのフライホイールは、異なる運動エネルギーおよび異なる総蓄積エネルギー定格を有することができる。ある好ましい実施形態では、各電気機械968および976は、図10に示されるような二重給電誘導機械である。電気機械968は、n2*f2の出力周波数を有する固定子多相出力巻線984を有し、ここで、n2は、2、4、6または固定子入力極数に対する固定子出力極数の比を表す任意の偶数の乗数であってもよい。このより高い周波数n2*f2は、受信機988に結合された送信機進行波ユニット986に、そして必要であれば整流後にAC負荷またはDC負荷990に供給される。機械976は、出力周波数n1*f1を有する固定子多相出力巻線992を有し、ここで、n1は、2、4、6または固定子入力極数に対する固定子出力極数の比を表す任意の偶数であってもよい。このより高い周波数n1*f1は、受信機996に結合された送信機進行波ユニット994に、そして必要であれば整流後にAC負荷またはDC負荷998に供給される。
このシステムの一つの利点は、一方の機械セットがフライホイールを減速し、その負荷をディスチャージさせ、運動エネルギーを減少させる際に、他方の機械セットが、その運動エネルギーをその個別の負荷に解放する前に待機モードある間に、フライホイールを加速し、その運動エネルギーを増加させることができるということである。このやり方では、2つの機械セットが等しい定格のフライホイール最大蓄積エネルギーを有する場合、負荷として単一の電気機械および単一のフライホイールを有する場合と比較して、電源から引き出される全電力は、バッファリングされ、時間的に平均される。
図13は、レイセオン社に譲渡された米国特許第9,705,314号明細書に開示されている、従来技術の4段パルス形成ネットワーク(pulse forming network、PFN)および関連する抵抗‐誘導動的負荷の概略図を示している。その明細書および図面は、参照により組み込まれる。4つのDCキャパシタC1~C4とDC蓄積インダクタL1~L4の組み合わせは、PFNのエネルギー蓄積容量を構成する。充電電源は、電気機械固定子AC出力と関連する全波ブリッジ整流器との組み合わせによって提供され、調整可能なDC充電電源電圧、よって調整可能なエネルギー蓄積レベルを生成する。そのようなPFNは、本明細書に開示されるさまざまな実施形態の一部として使用されてもよい。
本発明は、ある種の好ましい実施形態(単数または複数)に関して図示され説明されてきたが、この明細書と添付された図面とを読んで理解すれば、他の同業者にも等価な変更や修正が思いつくであろうことは明らかである。特に、上述の要素(コンポーネント、アセンブリ、装置、組成物等)によって実行されるさまざまな機能に関して、そのような要素を記述するために使用される用語(「手段」への言及を含む)は、別段の指示がない限り、記載された要素の指定された機能を実行する(すなわち、機能的に同等である)任意の要素に対応することが意図されている。これは、たとえ本発明の本稿に示された例示的な実施形態(単数または複数)においてその機能を実行する開示された構造と構造的には等価ではないとしても同じである。さらに、本発明の特定の特徴が、例示されたいくつかの実施形態のうちの一つまたは複数のみに関して上記で記載されていることがありうるが、そのような特徴は、任意の与えられたまたは特定の用途のために所望され、有利でありうるように、他の実施形態の一つまたは複数の他の特徴と組み合わされてもよい。

Claims (20)

  1. 一次および二次電気ポートを含む複数の電気ポートを含む多相ダイナモ電気機械と;
    前記多相ダイナモ電気機械に結合された機械的慣性エネルギー蓄積装置と;
    前記二次ポートのそれぞれに結合された多相進行波誘導電力送信機と;
    前記送信機に誘導結合され、負荷に電力を提供する多相進行波電力受信機とを含む、
    電力伝達システム。
  2. 前記ポートは、一次入力ポートおよび複数の二次出力ポートを含み、
    前記多相進行波誘導電力送信機は、前記二次出力ポートのそれぞれに結合され、
    当該システムは、さらに、前記一次入力ポートに可変周波数電力を提供するように構成された、伝送線を通じて電力生成源から電力を導き出す、前記一次入力ポートに結合されたDC-AC電力コンバータを有する、
    請求項1に記載の電力伝達システム。
  3. 前記多相ダイナモ電気機械は、さらに、前記送信機への電力伝達効率を高めるように構成された、前記二次出力ポートと、前記多相進行波誘導電力送信機のそれぞれとの間のそれぞれの電気共振回路を含む、請求項2に記載の電力伝達システム。
  4. 前記機械的慣性エネルギー蓄積装置は、前記ダイナモ電気機械の回転子に動作的に結合されたフライホイールを含み、前記エネルギー蓄積装置は、前記フライホイールへの充電レートと前記フライホイールからの放電レートが実質的に等しい、請求項1または請求項1ないし3のうちいずれか一項に記載の電力伝達システム。
  5. 前記ダイナモ電気機械および前記機械的慣性エネルギー蓄積装置は、電力およびエネルギーの流れにおいて完全に双方向性であり、エネルギーを電力生成源に戻すことができるとともに、エネルギーを前記受信機に結合された負荷に差し向けることができる、請求項1または請求項1ないし4のうちいずれか一項に記載の電力伝達システム。
  6. 前記多相進行波誘導電力送信機は、ある周波数範囲にわたる入力電力を受け入れ、対応する範囲の進行速度を有する進行磁気波を生成して、前記送信機が、前記受信機に制御可能な長手方向の推進力を生じさせることができるようにする、請求項1または請求項1ないし5のうちいずれか一項に記載の電力伝達システム。
  7. 前記多相進行波誘導電力送信機は、それぞれ少なくとも4つの極を有する、請求項6に記載の電力伝達システム。
  8. 前記多相進行波誘導電力送信機は、少なくとも15cm(6インチ)の極ピッチを有する、請求項6または請求項6または7に記載の電力伝達システム。
  9. 前記受信機は、前記長手方向の推進力を、前記送信機と前記受信機との間のドッキングを支援するために使うように構成される、請求項6または請求項6ないし8のうちいずれか一項に記載の電力伝達システム。
  10. 前記ダイナモ電気機械は、制御可能な励起を有する、巻線型DC場同期機械である、請求項1または請求項1ないし9のうちいずれか一項に記載の電力伝達システム。
  11. 前記ダイナモ電気機械は永久磁石同期機械である、請求項1または請求項1ないし9のうちいずれか一項に記載の電力伝達システム。
  12. 前記ダイナモ電気機械は、二重給電誘導機械である、請求項1または請求項1ないし9のうちいずれか一項に記載の電力伝達システム。
  13. 前記ダイナモ電気機械は、制御可能な励起を有する、巻線型DC場同期機械であり、
    当該システムは、さらに、前記ダイナモ電気機械の回転子に可変周波数励起または直流励起を提供するために、前記ダイナモ電気機械の回転子に動作的に結合された電気化学的エネルギー蓄積装置を有する、
    請求項12に記載の電力伝達システム。
  14. 前記受信機のうちの1つは、ビークルの一部であるビークル受信機である、請求項1または請求項1ないし13のうちいずれか一項に記載の電力伝達システム。
  15. 前記ビークル受信機は、前記ビークル受信機によって提供される電力に加えて、前記負荷のうちの1つに電力を提供するはたらきをする追加的なエネルギー蓄積装置に動作的に結合される、請求項14に記載の電力伝達システム。
  16. 前記追加的なエネルギー蓄積装置は、前記負荷のうちの前記1つに電力を与えるための電気パルスを整形および制御するように構成されたパルス形成ネットワークを含む、請求項15に記載の電力伝達システム。
  17. 前記追加的なエネルギー蓄積装置は、前記負荷のうちの前記1つに電力を与えるように構成され、前記ビークル受信機によって再充電可能な電気化学的エネルギー蓄積装置を含む、請求項15に記載の電力伝達システム。
  18. 前記ビークル受信機と前記送信機のうちの前記1つとの間の前記結合は、液体または気体ギャップを横切っていずれの方向にも双方向のエネルギー伝達を許容する、請求項14または請求項14ないし17のうちいずれか一項に記載の電力伝達システム。
  19. 電力伝達システムとビークルとの間の電力制御方法であって:
    前記電力伝達システムの多相進行波誘導電力送信機と、前記ビークルの受信機とを、液体または気体ギャップを横切って、誘導結合し;
    前記送信機または前記受信機のうちの一方に対して電力を、前記送信機または前記受信機のうちの他方に該電力を伝達するために提供することを含み、
    前記送信機または前記受信機のうちの前記一方に対して電力を提供することは、前記送信機に電気的に結合されたダイナモ電気機械から電力を提供することを含み、
    当該方法はさらに、電源から前記ダイナモ電気機械へ、および、前記ダイナモ電気機械から前記電源へ、双方向の電力を提供することをさらに含み、前記ビークルのエネルギー蓄積装置からの余剰エネルギーが前記電源に戻されることができる、
    方法。
  20. 電源と;
    前記電源に動作的に結合された一対の多相ダイナモ電気機械と;
    前記ダイナモ電気機械のそれぞれに動作的に結合された一対の送信機‐受信機対とを有する電力伝達システムであって、
    前記送信機‐受信機対のそれぞれは:
    多相進行波誘導電力送信機と;
    前記送信機に誘導結合され、負荷に電力を提供する多相進行波電力受信機とを含む、
    電力伝達システム。
JP2021573381A 2019-06-11 2020-05-29 ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム Active JP7312861B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/437,744 US11489367B2 (en) 2019-06-11 2019-06-11 Polyphase contactless induction power transfer system for transferring electrical power across gap
US16/437,744 2019-06-11
PCT/US2020/035159 WO2020251783A1 (en) 2019-06-11 2020-05-29 Polyphase contactless induction power transfer system for transferring electrical power across gap

Publications (2)

Publication Number Publication Date
JP2022536680A JP2022536680A (ja) 2022-08-18
JP7312861B2 true JP7312861B2 (ja) 2023-07-21

Family

ID=71787069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021573381A Active JP7312861B2 (ja) 2019-06-11 2020-05-29 ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム

Country Status (6)

Country Link
US (1) US11489367B2 (ja)
EP (1) EP3984112B1 (ja)
JP (1) JP7312861B2 (ja)
AU (1) AU2020291900B2 (ja)
IL (1) IL288839A (ja)
WO (1) WO2020251783A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588373B2 (en) * 2019-07-15 2023-02-21 Industrial Technology Research Institute Kinetic energy recovery system with flywheel
US11632021B2 (en) 2021-04-05 2023-04-18 Raytheon Company Dynamo-electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010229A (ja) 2014-06-24 2016-01-18 株式会社Ihi 非接触給電システム、送電装置、受電装置
JP2017073899A (ja) 2015-10-07 2017-04-13 株式会社豊田自動織機 電界結合式非接触給電システム
JP2017513450A (ja) 2014-04-04 2017-05-25 レイセオン カンパニー レーダーパワーシステム及び大規模pfn充電のための慣性エネルギ貯蔵システム及びハイドロフルオロエーテル電力変圧器スキーム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061089A (en) * 1975-09-02 1977-12-06 Elbert Morgan Sawyer Personal rapid transit system
GB2406979B (en) 2003-10-07 2006-03-15 Alstom Linear motor system
DE102011054541A1 (de) 2011-10-17 2013-04-18 Conductix-Wampfler Gmbh Vorrichtung zur induktiven Übertragung elektrischer Energie
DE102012103315B4 (de) 2012-04-17 2014-03-27 Conductix-Wampfler Gmbh Spuleneinheit und Elektrofahrzeug mit einer solchen
US9531289B2 (en) 2012-04-27 2016-12-27 Raytheon Company Electro-mechanical kinetic energy storage device and method of operation
US9373963B2 (en) * 2013-05-24 2016-06-21 Raytheon Company Energy transfer and storage apparatus for delivery of pulsed power
US9306386B2 (en) 2013-09-13 2016-04-05 Raytheon Company Electromagnetic DC pulse power system including integrated fault limiter
US9537311B2 (en) 2014-05-23 2017-01-03 General Electric Company Subsea power transmission
US9685814B1 (en) * 2014-06-13 2017-06-20 Apple Inc. Detection of coil coupling in an inductive charging system
US9837996B2 (en) 2015-01-07 2017-12-05 Raytheon Company Method and apparatus for control of pulsed power in hybrid energy storage module
US9667232B2 (en) 2015-05-13 2017-05-30 Raytheon Company System and method for parallel configuration of hybrid energy storage module
EP3836333A1 (en) 2016-04-01 2021-06-16 Raytheon Company Hybrid energy storage modules for pulsed power effectors with medium voltage direct current (mvdc) power distribution
US11183846B2 (en) 2017-12-22 2021-11-23 Raytheon Company System and method for modulating high power in a submersible energy storage vessel utilizing high voltage DC transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513450A (ja) 2014-04-04 2017-05-25 レイセオン カンパニー レーダーパワーシステム及び大規模pfn充電のための慣性エネルギ貯蔵システム及びハイドロフルオロエーテル電力変圧器スキーム
JP2016010229A (ja) 2014-06-24 2016-01-18 株式会社Ihi 非接触給電システム、送電装置、受電装置
JP2017073899A (ja) 2015-10-07 2017-04-13 株式会社豊田自動織機 電界結合式非接触給電システム

Also Published As

Publication number Publication date
WO2020251783A1 (en) 2020-12-17
AU2020291900B2 (en) 2024-04-04
AU2020291900A1 (en) 2022-01-06
JP2022536680A (ja) 2022-08-18
EP3984112B1 (en) 2023-11-08
US20200395784A1 (en) 2020-12-17
IL288839A (en) 2022-02-01
US11489367B2 (en) 2022-11-01
EP3984112A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US11404876B2 (en) Hybrid energy storage modules for pulsed power effectors with medium voltage direct current (MVDC) power distribution
US10298212B2 (en) Method and apparatus for control of pulsed power in hybrid energy storage module
US9667232B2 (en) System and method for parallel configuration of hybrid energy storage module
US10491074B2 (en) Electro-mechanical kinetic energy storage device and method of operation
JP7297106B2 (ja) 複数のエネルギー蓄積モジュールを有する電力伝達システム
EP3729587B1 (en) System and method for modulating high power in a submersible energy storage vessel utilizing high voltage dc transmission
JP7312861B2 (ja) ギャップを介して電力を伝達するための多相非接触誘導電力伝達システム
RU2737842C1 (ru) Электродвижительный комплекс транспортного средства
WO2022166225A1 (zh) 一种铁心磁路复用的电气系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7312861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150