WO2022166186A1 - 一种中间汽水分离的直流蒸汽发生的系统和方法 - Google Patents

一种中间汽水分离的直流蒸汽发生的系统和方法 Download PDF

Info

Publication number
WO2022166186A1
WO2022166186A1 PCT/CN2021/115631 CN2021115631W WO2022166186A1 WO 2022166186 A1 WO2022166186 A1 WO 2022166186A1 CN 2021115631 W CN2021115631 W CN 2021115631W WO 2022166186 A1 WO2022166186 A1 WO 2022166186A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
water
outlet
inlet
steam generator
Prior art date
Application number
PCT/CN2021/115631
Other languages
English (en)
French (fr)
Inventor
马晓珑
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022166186A1 publication Critical patent/WO2022166186A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/08Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • G21D5/08Reactor and engine not structurally combined with engine working medium heated in a heat exchanger by the reactor coolant
    • G21D5/12Liquid working medium vaporised by reactor coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention belongs to the technical field of nuclear power, and in particular relates to a system and method for generating once-through steam with intermediate steam-water separation.
  • the steam-water separator is set at the outlet of the evaporator (superheating section), and the water must flow to the superheater during the start-up and shutdown stages.
  • the current design has the following problems:
  • the unit consumes a lot of water and heat during the startup process
  • the high-pressure heater and low-pressure heater lose the heating steam source, the feed water temperature of the evaporator can only be heated to about 120°C, and the outlet temperature of the evaporator is about 570°C.
  • the cooling of the unit for a long time reduces the availability of the unit.
  • the steam-water separator is set at the outlet of the evaporator (superheating section), and the water must flow to the superheater during the start-up and shutdown stages.
  • the current design has the following problems:
  • the unit consumes a lot of water and heat during the startup process
  • the high-pressure heater and low-pressure heater lose the heating steam source, the feed water temperature of the evaporator can only be heated to about 120°C, and the outlet temperature of the evaporator is about 570°C.
  • the cooling of the unit for a long time reduces the availability of the unit.
  • the purpose of the present invention is to provide a system and method for generating once-through steam with intermediate steam-water separation in view of the deficiencies of the current unit system.
  • the present invention adopts following technical scheme to realize:
  • a once-through steam generation system for intermediate steam and water separation comprising a steam generator and a reactor; wherein,
  • the outlet of the reactor is connected to the third inlet of the steam generator, the third outlet of the steam generator is connected to the inlet of the reactor, and the heat generated by the reactor is brought into the steam generator by the flow of the coolant of the reactor.
  • a further improvement of the present invention is that the steam generator is a shell-and-tube heat exchanger with water and steam in the tube, which is called the secondary side of the steam generator, and the coolant of the reactor outside the tube, which is called the heat exchanger of the steam generator.
  • the water on the secondary side of the steam generator absorbs the heat of the coolant of the primary side reactor of the steam generator, and the temperature increases to generate steam, which is called steam generation.
  • the process of generating steam from water is completed in one process, called direct flow.
  • a further improvement of the present invention is that the steam generator includes an evaporation section and a superheat section; wherein, the first inlet of the steam generator is connected to the inlet of the evaporation section, the outlet of the evaporation section is connected to the first outlet of the steam generator, and the steam generator The second inlet of the steam generator is connected to the inlet of the superheating section, and the outlet of the superheating section is connected to the second outlet of the steam generator.
  • a further improvement of the present invention is that it also includes a first valve group, a steam-water separator and a second valve group; wherein, the outlet of the first valve group is connected to the first inlet of the steam generator, and the first outlet of the steam generator is connected to The inlet of the steam-water separator, the first outlet of the steam-water separator is connected to the second inlet of the steam generator, and the second outlet of the steam-water separator is connected to the inlet of the second valve group.
  • a further improvement of the present invention is that the steam-water separator is located between the evaporation section and the superheating section of the steam generator, which is called intermediate steam-water separation.
  • the first outlet of the steam generator enters the second inlet of the steam generator, and the water enters the inlet of the second valve group through the second outlet of the steam-water separator.
  • a further improvement of the present invention lies in that both the first valve group and the second valve group are composed of a shut-off valve and a regulating valve.
  • a further improvement of the present invention is that it also includes a steam turbine, a steam turbine bypass valve group and a condenser; wherein, the outlet of the second valve group is connected to the first inlet of the condenser, and the second outlet of the steam generator is divided into two branches, The first is connected to the inlet of the steam turbine, the second is connected to the inlet of the steam turbine bypass valve group, the outlet of the steam turbine is connected to the second inlet of the condenser, and the outlet of the steam turbine bypass valve group is connected to the third of the condenser. Entrance.
  • a method for generating once-through steam for intermediate steam-water separation is based on the described system for generating once-through steam for intermediate steam-water separation, comprising the following steps:
  • control valve of the first valve group controls the injection of water into the steam generator, and the water injected into the steam generator enters the steam-water separator through the evaporation section;
  • a further improvement of the present invention is that the load of the steam turbine is adjusted synchronously with the change of the reactor power.
  • a system and method for generating once-through steam for intermediate steam-water separation provided by the present invention have obvious advantages in the following aspects:
  • FIG. 1 is a structural block diagram of a system for generating once-through steam for intermediate steam-water separation according to the present invention.
  • the first valve group 2. The steam generator, 3. The evaporation section, 4. The steam-water separator, 5. The second valve group, 6. The condenser, 7. The superheating section, 8. The steam turbine bypass valve group, 9. Steam turbine, 10. Reactor.
  • the present invention provides a system for generating once-through steam for intermediate steam-water separation, including a first valve group 1, a steam generator 2, a steam-water separator 4, a second valve group 5, a condenser 6, Steam turbine bypass valve group 8 , steam turbine 9 and reactor 10 .
  • the steam generator 2 includes an evaporation section 3 and a superheat section 7; wherein, the first inlet of the steam generator 2 is connected to the inlet of the evaporation section 3, the outlet of the evaporation section 3 is connected to the first outlet of the steam generator 2, and the steam generator The second inlet of 2 is connected to the inlet of the superheating section 7, and the outlet of the superheating section 7 is connected to the second outlet of the steam generator 2.
  • the outlet of the reactor 10 is connected to the third inlet of the steam generator 2, the third outlet of the steam generator 2 is connected to the inlet of the reactor 10, the heat generated by the reactor 10 is brought into the steam generator 2 by the flow of the coolant of the reactor 10 middle.
  • the outlet of the first valve group 1 is connected to the first inlet of the steam generator 2, the first outlet of the steam generator 2 is connected to the inlet of the steam-water separator 4, and the first outlet of the steam-water separator 4 is connected to the steam generator 2.
  • the second inlet, the second outlet of the steam-water separator 4 is connected to the inlet of the second valve group 5 .
  • the outlet of the second valve group 5 is connected to the first inlet of the condenser 6, and the second outlet of the steam generator 2 is divided into two branches, the first branch is connected to the inlet of the steam turbine 9, and the second branch is connected to the steam turbine bypass valve group 8, the outlet of the steam turbine 9 is connected to the second inlet of the condenser 6, and the outlet of the steam turbine bypass valve group 8 is connected to the third inlet of the condenser 6.
  • the steam generator 2 is a shell-and-tube heat exchanger, with water and steam in the tube, which is called the secondary side of the steam generator 2, and the coolant of the reactor 10 outside the tube, which is called the secondary side of the steam generator 2.
  • the water on the secondary side of the steam generator 2 absorbs the heat of the coolant of the primary side reactor 10 of the steam generator 2, and then the temperature increases to generate steam, which is called steam generation.
  • the process of generating steam from water is completed in one process, called direct flow .
  • the steam-water separator 4 is located between the evaporation section 3 and the superheating section 7 of the steam generator 2, which is called intermediate steam-water separation.
  • the function of the steam-water separator 4 is to separate the steam-water mixture entering into the steam-water mixture.
  • the first outlet of the separator 4 enters the second inlet of the steam generator 2 , and the water enters the inlet of the second valve group 5 through the second outlet of the steam-water separator 4 .
  • both the first valve group 1 and the second valve group 5 are composed of stop valves and regulating valves.
  • a method for generating straight-through steam for intermediate steam-water separation comprises the following steps:
  • the load of the steam turbine 9 is adjusted synchronously with the change of the power of the reactor 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Turbines (AREA)

Abstract

一种中间汽水分离的直流蒸汽发生的系统和方法,系统包括蒸汽发生器(2)和反应堆(10),其中:反应堆(10)的出口接在蒸汽发生器(2)的第三入口,蒸汽发生器(2)的第三出口接在反应堆(10)的入口,反应堆(10)产生的热量通过反应堆(10)的冷却剂的流动带入到蒸汽发生器(2)中。方法在启动过程中耗水量、耗热量较小,由于汽水分离器(4)放置在蒸汽发生器(2)的过热段(7)前,机组在运行中,当给水发生波动时,水不会进入过热段(7),主蒸汽温度波动小,有利于机组的安全运行,机组突然全面停机后,再启动时,由于水不会进入温度较高的过热段(7),机组再启动过程中冷却时间较短,提高了机组的可用性。

Description

一种中间汽水分离的直流蒸汽发生的系统和方法 技术领域
本发明属于核电技术领域,具体涉及一种中间汽水分离的直流蒸汽发生的系统和方法。
背景技术
目前建造的高温气冷堆核电站,目前建造的高温气冷堆核电站,其汽水分离器设置在蒸发器(过热段)的出口,在启动停堆阶段,水必须流经到过热器。目前设计存在下面几个问题:
(1)机组在启动过程中耗水量、耗热量大;
(2)机组在运行中,当给水发生波动时,水直接进入过热段,主蒸汽温度波动大,不利于机组的安全运行;
(3)机组突然全面停机后,高压加热器、低压加热器丧失了加热汽源,蒸发器给水温度只能加热到120℃左右,蒸发器出口温度570℃左右,二回路要建立水循环必须对蒸发器长时间冷却,降低了机组的可用性。目前建造的高温气冷堆核电站,目前建造的高温气冷堆核电站,其汽水分离器设置在蒸发器(过热段)的出口,在启动停堆阶段,水必须流经到过热器。目前设计存在下面几个问题:
(1)机组在启动过程中耗水量、耗热量大;
(2)机组在运行中,当给水发生波动时,水直接进入过热段,主蒸汽温度波动大,不利于机组的安全运行;
(3)机组突然全面停机后,高压加热器、低压加热器丧失了加热汽源,蒸发器给水温度只能加热到120℃左右,蒸发器出口温度570℃左右,二回路要建立水循环必须对蒸发器长时间冷却,降低了机组的可用性。
技术解决方案
本发明的目的在于针对目前机组系统的不足,提供了一种中间汽水分离的直流蒸汽发生的系统和方法。
本发明采用如下技术方案来实现的:
一种中间汽水分离的直流蒸汽发生的系统,包括蒸汽发生器和反应堆;其中,
反应堆的出口接在蒸汽发生器的第三入口,蒸汽发生器的第三出口接在反应堆的入口,反应堆产生的热量通过反应堆的冷却剂的流动带入到蒸汽发生器中。
本发明进一步的改进在于,蒸汽发生器是一种管壳式换热器,管内为水和蒸汽,称为蒸汽发生器的二次侧,管外为反应堆的冷却剂,称为蒸汽发生器的一次侧,蒸汽发生器二次侧的水吸收蒸汽发生器一次侧反应堆的冷却剂的热量后温度提高产生蒸汽,称为蒸汽发生,水产生汽的过程在一个流程完成,称为直流。
本发明进一步的改进在于,蒸汽发生器包含蒸发段和过热段;其中,蒸汽发生器的第一入口接在蒸发段的入口,蒸发段的出口接在蒸汽发生器的第一出口,蒸汽发生器的第二入口接在过热段的入口,过热段的出口接在蒸汽发生器的第二出口。
本发明进一步的改进在于,还包括第一阀门组、汽水分离器和第二阀门组;其中,第一阀门组的出口接在蒸汽发生器的第一入口,蒸汽发生器的第一出口接在汽水分离器的入口,汽水分离器的第一出口接在蒸汽发生器的第二入口,汽水分离器的第二出口接在第二阀门组的入口。
本发明进一步的改进在于,汽水分离器位于蒸汽发生器的蒸发段和过热段之间,称为中间汽水分离,汽水分离器的作用是将进入其内部的汽水混合物进行水汽分离,汽通过汽水分离器的第一出口进入蒸汽发生器的第二入口,水通过汽水分离器的第二出口进入第二阀门组的入口。
本发明进一步的改进在于,第一阀门组和第二阀门组均由截止阀和调节阀组成。
本发明进一步的改进在于,还包括汽轮机、汽轮机旁路阀门组和凝汽器;其中,第二阀门组的出口接在凝汽器的第一入口,蒸汽发生器的第二出口分两股,第一股接在汽轮机的入口,第二股接在汽轮机旁路阀门组的入口,汽轮机的出口接在凝汽器的第二入口,汽轮机旁路阀门组的出口接在凝汽器的第三入口。
一种中间汽水分离的直流蒸汽发生的方法,该方法基于所述的一种中间汽水分离的直流蒸汽发生的系统,包括以下步骤:
1)在核电机组启动初期,通过第一阀门组的调节阀控制向蒸汽发生器注水,注入到蒸汽发生器的水通过蒸发段进入到汽水分离器中;
2)当蒸发段注满水、汽水分离器水位可见后,通过第二阀门组的调节阀控制汽水分离器的排水,维持汽水分离器正常水位;
3)提高反应堆功率,反应堆冷却剂温度提高,反应堆冷却剂通过蒸汽发生器将热量传给蒸发段内的水;
4)随着反应堆功率的进一步提高,蒸发段的出口产生蒸汽,汽水混合物在汽水分离器内分离,水通过第二阀门组排入凝汽器,汽通过蒸汽发生器内的过热段、汽轮机旁路阀门组进入凝汽器;
5)通过控制汽轮机旁路阀门组控制蒸汽发生器二次侧和汽水分离器内的压力;
6)随着反应堆功率的进一步提高,蒸发段的出口产生蒸汽增多,水量减少,直至全部变为蒸汽;
7)当过热段产生的蒸汽满足汽轮机冲转需求后,蒸汽进入汽轮机,汽轮机 带负荷运行,逐步关小汽轮机旁路阀门组直至全关。
本发明进一步的改进在于,汽轮机的负荷随着反应堆功率的变化而同步调节。
有益效果
本发明至少具有如下有益的技术效果:
本发明提供的一种中间汽水分离的直流蒸汽发生的系统和方法,具有以下几方面明显的优点:
(1)机组在启动过程中耗水量、耗热量较小;
(2)由于汽水分离器放置在蒸发器过热段前,机组在运行中,当给水发生波动时,水不会进入过热段,主蒸汽温度波动小,有利于机组的安全运行;
(3)机组突然全面停机后,再启动时,由于水不会进入温度较高的过热段,机组再启动过程中冷却时间较短,提高了机组的可用性。本发明提供的一种中间汽水分离的直流蒸汽发生的系统和方法,具有以下几方面明显的优点:
(1)机组在启动过程中耗水量、耗热量较小;
(2)由于汽水分离器放置在蒸发器过热段前,机组在运行中,当给水发生波动时,水不会进入过热段,主蒸汽温度波动小,有利于机组的安全运行;
(3)机组突然全面停机后,再启动时,由于水不会进入温度较高的过热段,机组再启动过程中冷却时间较短,提高了机组的可用性。
附图说明
图1为本发明一种中间汽水分离的直流蒸汽发生的系统的结构框图。
附图标记说明:
1、第一阀门组,2、蒸汽发生器,3、蒸发段,4、汽水分离器,5、第二阀门组,6、凝汽器,7、过热段,8、汽轮机旁路阀门组,9、汽轮机,10、反应堆。
本发明的实施方式
以下结合附图对本发明做出进一步的详细说明。
如图1所示,本发明提供的一种中间汽水分离的直流蒸汽发生的系统,包括第一阀门组1、蒸汽发生器2、汽水分离器4、第二阀门组5、凝汽器6、汽轮机旁路阀门组8、汽轮机9和反应堆10。蒸汽发生器2包含蒸发段3和过热段7;其中,蒸汽发生器2的第一入口接在蒸发段3的入口,蒸发段3的出口接在蒸汽发生器2的第一出口,蒸汽发生器2的第二入口接在过热段7的入口,过热段7的出口接在蒸汽发生器2的第二出口。反应堆10的出口接在蒸汽发生器2的第三入口,蒸汽发生器2的第三出口接在反应堆10的入口,反应堆10产生的热量通过反应堆10的冷却剂的流动带入到蒸汽发生器2中。第一阀门组1的出口接在蒸汽发生器2的第一入口,蒸汽发生器2的第一出口接在汽水分离器4的入口,汽水分离器4的第一出口接在蒸汽发生器2的第二入口,汽水分离器4的第二出口接在第二阀门组5的入口。第二阀门组5的出口接在凝汽器6的第一入口,蒸汽发生器2的第二出口分两股,第一股接在汽轮机9的入口,第二股接在汽轮机旁路阀门组8的入口,汽轮机9的出口接在凝汽器6的第二入口,汽轮机旁路阀门组8的出口接在凝汽器6的第三入口。
优选的,蒸汽发生器2是一种管壳式换热器,管内为水和蒸汽,称为蒸汽发生器2的二次侧,管外为反应堆10的冷却剂,称为蒸汽发生器2的一次侧,蒸汽发生器2二次侧的水吸收蒸汽发生器2一次侧反应堆10的冷却剂的热量后温度提高产生蒸汽,称为蒸汽发生,水产生汽的过程在一个流程完成,称为直流。
优选的,汽水分离器4位于蒸汽发生器2的蒸发段3和过热段7之间,称为中间汽水分离,汽水分离器4的作用是将进入其内部的汽水混合物进行水汽分离,汽通过汽水分离器4的第一出口进入蒸汽发生器2的第二入口,水通过汽水分离器4的第二出口进入第二阀门组5的入口。
优选的,第一阀门组1和第二阀门组5均由截止阀和调节阀组成。
本发明提供的一种中间汽水分离的直流蒸汽发生的方法,包括以下步骤:
1)在核电机组启动初期,通过第一阀门组1的调节阀控制向蒸汽发生器2注水,注入到蒸汽发生器2的水通过蒸发段3进入到汽水分离器4中;
2)当蒸发段3注满水、汽水分离器4水位可见后,通过第二阀门组5的调节阀控制汽水分离器4的排水,维持汽水分离器4正常水位;
3)提高反应堆10功率,反应堆10冷却剂温度提高,反应堆10冷却剂通过蒸汽发生器2将热量传给蒸发段3内的水;
4)随着反应堆10功率的进一步提高,蒸发段3的出口产生蒸汽,汽水混合物在汽水分离器4内分离,水通过第二阀门组5排入凝汽器6,汽通过蒸汽发生器4内的过热段7、汽轮机旁路阀门组8进入凝汽器6;
5)通过控制汽轮机旁路阀门组8控制蒸汽发生器2二次侧和汽水分离器4内的压力;
6)随着反应堆10功率的进一步提高,蒸发段3的出口产生蒸汽增多,水量减少,直至全部变为蒸汽;
7)当过热段7产生的蒸汽满足汽轮机9冲转需求后,蒸汽进入汽轮机9,汽轮机9带负荷运行,逐步关小汽轮机旁路阀门组8直至全关。
此后,汽轮机9的负荷随着反应堆10功率的变化而同步调节。

Claims (9)

  1. 一种中间汽水分离的直流蒸汽发生的系统,其特征在于,包括蒸汽发生器(2)和反应堆(10);其中,
    反应堆(10)的出口接在蒸汽发生器(2)的第三入口,蒸汽发生器(2)的第三出口接在反应堆(10)的入口,反应堆(10)产生的热量通过反应堆(10)的冷却剂的流动带入到蒸汽发生器(2)中。
  2. 根据权利要求1所述的一种中间汽水分离的直流蒸汽发生的系统,其特征在于,蒸汽发生器(2)是一种管壳式换热器,管内为水和蒸汽,称为蒸汽发生器(2)的二次侧,管外为反应堆(10)的冷却剂,称为蒸汽发生器(2)的一次侧,蒸汽发生器(2)二次侧的水吸收蒸汽发生器(2)一次侧反应堆(10)的冷却剂的热量后温度提高产生蒸汽,称为蒸汽发生,水产生汽的过程在一个流程完成,称为直流。
  3. 根据权利要求1所述的一种中间汽水分离的直流蒸汽发生的系统,其特征在于,蒸汽发生器(2)包含蒸发段(3)和过热段(7);其中,蒸汽发生器(2)的第一入口接在蒸发段(3)的入口,蒸发段(3)的出口接在蒸汽发生器(2)的第一出口,蒸汽发生器(2)的第二入口接在过热段(7)的入口,过热段(7)的出口接在蒸汽发生器(2)的第二出口。
  4. 根据权利要求1所述的一种中间汽水分离的直流蒸汽发生的系统,其特征在于,还包括第一阀门组(1)、汽水分离器(4)和第二阀门组(5);其中,第一阀门组(1)的出口接在蒸汽发生器(2)的第一入口,蒸汽发生器(2)的第一出口接在汽水分离器(4)的入口,汽水分离器(4)的第一出口接在蒸汽发生器(2)的第二入口,汽水分离器(4)的第二出口接在第二阀门组(5)的入 口。
  5. 根据权利要求4所述的一种中间汽水分离的直流蒸汽发生的系统,其特征在于,汽水分离器(4)位于蒸汽发生器(2)的蒸发段(3)和过热段(7)之间,称为中间汽水分离,汽水分离器(4)的作用是将进入其内部的汽水混合物进行水汽分离,汽通过汽水分离器(4)的第一出口进入蒸汽发生器(2)的第二入口,水通过汽水分离器(4)的第二出口进入第二阀门组(5)的入口。
  6. 根据权利要求4所述的一种中间汽水分离的直流蒸汽发生的系统,其特征在于,第一阀门组(1)和第二阀门组(5)均由截止阀和调节阀组成。
  7. 根据权利要求4所述的一种中间汽水分离的直流蒸汽发生的系统,其特征在于,还包括汽轮机(9)、汽轮机旁路阀门组(8)和凝汽器(6);其中,第二阀门组(5)的出口接在凝汽器(6)的第一入口,蒸汽发生器(2)的第二出口分两股,第一股接在汽轮机(9)的入口,第二股接在汽轮机旁路阀门组(8)的入口,汽轮机(9)的出口接在凝汽器(6)的第二入口,汽轮机旁路阀门组(8)的出口接在凝汽器(6)的第三入口。
  8. 一种中间汽水分离的直流蒸汽发生的方法,其特征在于,该方法基于权利要求7所述的一种中间汽水分离的直流蒸汽发生的系统,包括以下步骤:
    1)在核电机组启动初期,通过第一阀门组(1)的调节阀控制向蒸汽发生器(2)注水,注入到蒸汽发生器(2)的水通过蒸发段(3)进入到汽水分离器(4)中;
    2)当蒸发段(3)注满水、汽水分离器(4)水位可见后,通过第二阀门组(5)的调节阀控制汽水分离器(4)的排水,维持汽水分离器(4)正常水位;
    3)提高反应堆(10)功率,反应堆(10)冷却剂温度提高,反应堆(10) 冷却剂通过蒸汽发生器(2)将热量传给蒸发段(3)内的水;
    4)随着反应堆(10)功率的进一步提高,蒸发段(3)的出口产生蒸汽,汽水混合物在汽水分离器(4)内分离,水通过第二阀门组(5)排入凝汽器(6),汽通过蒸汽发生器(4)内的过热段(7)、汽轮机旁路阀门组(8)进入凝汽器(6);
    5)通过控制汽轮机旁路阀门组(8)控制蒸汽发生器(2)二次侧和汽水分离器(4)内的压力;
    6)随着反应堆(10)功率的进一步提高,蒸发段(3)的出口产生蒸汽增多,水量减少,直至全部变为蒸汽;
    7)当过热段(7)产生的蒸汽满足汽轮机(9)冲转需求后,蒸汽进入汽轮机(9),汽轮机(9)带负荷运行,逐步关小汽轮机旁路阀门组(8)直至全关。
  9. 根据权利要求8所述的一种中间汽水分离的直流蒸汽发生的方法,其特征在于,汽轮机(9)的负荷随着反应堆(10)功率的变化而同步调节。
PCT/CN2021/115631 2021-02-07 2021-08-31 一种中间汽水分离的直流蒸汽发生的系统和方法 WO2022166186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169380.1 2021-02-07
CN202110169380.1A CN112768100A (zh) 2021-02-07 2021-02-07 一种中间汽水分离的直流蒸汽发生的系统和方法

Publications (1)

Publication Number Publication Date
WO2022166186A1 true WO2022166186A1 (zh) 2022-08-11

Family

ID=75705346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115631 WO2022166186A1 (zh) 2021-02-07 2021-08-31 一种中间汽水分离的直流蒸汽发生的系统和方法

Country Status (2)

Country Link
CN (1) CN112768100A (zh)
WO (1) WO2022166186A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768100A (zh) * 2021-02-07 2021-05-07 西安热工研究院有限公司 一种中间汽水分离的直流蒸汽发生的系统和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117101A (zh) * 2013-01-19 2013-05-22 哈尔滨工程大学 用于一体化反应堆的启停辅助装置及一体化反应堆的冷启动方法
US20160196885A1 (en) * 2013-10-24 2016-07-07 Holtec International Steam generator for nuclear steam supply system
CN106678770A (zh) * 2017-02-27 2017-05-17 西安热工研究院有限公司 一种加热核电机组蒸发器给水的系统和方法
CN106981322A (zh) * 2017-04-26 2017-07-25 西安热工研究院有限公司 一种用于验证高温气冷堆启停堆设备功能的系统及方法
CN108278590A (zh) * 2018-03-14 2018-07-13 西安热工研究院有限公司 一种高温气冷堆核电站停堆冷却的系统和方法
CN108665991A (zh) * 2018-05-29 2018-10-16 西安热工研究院有限公司 一种高温气冷堆核电机组极热态启动的系统和方法
CN110010254A (zh) * 2019-04-29 2019-07-12 西安热工研究院有限公司 一种钠冷快堆三回路汽水分离的系统和方法
CN112768100A (zh) * 2021-02-07 2021-05-07 西安热工研究院有限公司 一种中间汽水分离的直流蒸汽发生的系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117101A (zh) * 2013-01-19 2013-05-22 哈尔滨工程大学 用于一体化反应堆的启停辅助装置及一体化反应堆的冷启动方法
US20160196885A1 (en) * 2013-10-24 2016-07-07 Holtec International Steam generator for nuclear steam supply system
CN106678770A (zh) * 2017-02-27 2017-05-17 西安热工研究院有限公司 一种加热核电机组蒸发器给水的系统和方法
CN106981322A (zh) * 2017-04-26 2017-07-25 西安热工研究院有限公司 一种用于验证高温气冷堆启停堆设备功能的系统及方法
CN108278590A (zh) * 2018-03-14 2018-07-13 西安热工研究院有限公司 一种高温气冷堆核电站停堆冷却的系统和方法
CN108665991A (zh) * 2018-05-29 2018-10-16 西安热工研究院有限公司 一种高温气冷堆核电机组极热态启动的系统和方法
CN110010254A (zh) * 2019-04-29 2019-07-12 西安热工研究院有限公司 一种钠冷快堆三回路汽水分离的系统和方法
CN112768100A (zh) * 2021-02-07 2021-05-07 西安热工研究院有限公司 一种中间汽水分离的直流蒸汽发生的系统和方法

Also Published As

Publication number Publication date
CN112768100A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN105157007B (zh) 超超临界二次再热1000mw机组锅炉蒸汽冲管方法
CN108665991B (zh) 一种高温气冷堆核电机组极热态启动的系统和方法
CN110131003B (zh) 一种高温气冷堆核电机组二回路启停的系统和方法
CN108278590B (zh) 一种高温气冷堆核电站停堆冷却的系统和方法
CN108870372A (zh) 基于高低压疏水扩容器的直流炉疏水回收系统及方法
CN107664045B (zh) 一种高温气冷堆汽轮机汽封供汽系统及方法
WO2022011903A1 (zh) 一种燃煤机组低负荷下锅炉湿态水回收系统及工作方法
CN108035776A (zh) 一种热电解耦系统及运行方法
WO2022166186A1 (zh) 一种中间汽水分离的直流蒸汽发生的系统和方法
CN108425706A (zh) 一种用于二次再热机组的轴封供汽系统及其控制方法
CN106887265A (zh) 一种球床模块式高温气冷堆的启停堆系统
CN206711612U (zh) 一种用于验证高温气冷堆启停堆设备功能的系统
CN112768101A (zh) 一种高温气冷堆核电机组滑压启动的系统和方法
CN106765023B (zh) 一种新型超(超)临界锅炉启动系统
CN106246251B (zh) 联合循环热电联供系统及其高排抽汽控制方法
CN110726132B (zh) 一种低功率工况下核电站蒸汽发生器供水的方法及系统
CN110118346A (zh) 一种核电启动电锅炉热备用的系统和方法
CN111964028A (zh) 一种火电机组高品质工质循环利用系统及工作方法
JP2001108201A (ja) 多重圧排熱ボイラ
CN214476441U (zh) 一种中间汽水分离的直流蒸汽发生的系统
CN216521613U (zh) 一种给水加热的系统
CN212177241U (zh) 一种燃气蒸汽联合循环机组快速启动系统
CN212511103U (zh) 一种燃气-蒸汽联合循环机组停机余热利用装置
CN111156058B (zh) 一种回热汽轮机运行压力控制方法
CN211273584U (zh) 一种用于硫酸生产的低温回收蒸发器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924185

Country of ref document: EP

Kind code of ref document: A1