WO2022166098A1 - 一种低应力晶体的生长装置及方法 - Google Patents

一种低应力晶体的生长装置及方法 Download PDF

Info

Publication number
WO2022166098A1
WO2022166098A1 PCT/CN2021/104412 CN2021104412W WO2022166098A1 WO 2022166098 A1 WO2022166098 A1 WO 2022166098A1 CN 2021104412 W CN2021104412 W CN 2021104412W WO 2022166098 A1 WO2022166098 A1 WO 2022166098A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
heating
stress
low
growth
Prior art date
Application number
PCT/CN2021/104412
Other languages
English (en)
French (fr)
Inventor
史艳磊
孙聂枫
王书杰
付莉杰
邵会民
赵红飞
李亚旗
刘惠生
孙同年
康永
张晓丹
张鑫
姜剑
李晓岚
王阳
薛静
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120299367.3U external-priority patent/CN214458434U/zh
Priority claimed from CN202110145424.7A external-priority patent/CN112746312B/zh
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/797,063 priority Critical patent/US20230069057A1/en
Publication of WO2022166098A1 publication Critical patent/WO2022166098A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt

Definitions

  • the invention relates to the field of crystal preparation, in particular to a device and method for preparing low-stress and low-defect crystals by using a pulling method.
  • the pulling method is a method of growing crystals from a melt. It is a common growth method for semiconductor crystals, optical crystals, etc. This method has the characteristics of high yield, fast growth rate, and easy observation.
  • the pulling method is commonly used as a growth method with a single heater.
  • the part of the crystal that is pulled out first will be cooled to a lower temperature due to the lower ambient temperature.
  • the temperature at the solid-liquid interface of crystal growth has been maintained near the melting point of the crystal. Therefore, assuming that the longitudinal temperature distribution in the crystal is linear, the gradient in the crystal is approximately equal to (T boundary - T table)/L, and L is The distance from the crystal growth solid-liquid interface to the crystal surface, T table is the crystal surface temperature, and T boundary is the temperature at the crystal growth solid-liquid interface (about the melting point temperature of the crystal).
  • the T boundary is approximately equal to the melting point temperature of the crystal, which is approximately a fixed value.
  • the main way to reduce the crystal temperature gradient is to increase the crystal surface temperature T table. It is a common method to heat and heat the pulled crystal to increase the temperature gradient of the crystal surface.
  • CiAlO3 crystal growth device by pulling method and its control method.
  • the technical solution is to set two sets of fixed The heating mechanism is used to heat the crucible and the pulled crystals, respectively.
  • the heater and the upper cover cover the entire melt.
  • this method has a certain degree of heat preservation effect on the crystal, it has a large defect in practical application.
  • the overall coverage of the crucible body by the heater and the upper cover reduces the temperature gradient of the melt, which leads to the easy instability of the crystal growth process, twinning of the crystal, and even polycrystallization.
  • the crystal is in the central region of the melt with a low temperature gradient, the growth is not stable, and the crystal is very easy to polycrystallize.
  • this method is used to grow compound crystals containing volatile elements (such as indium phosphide, gallium arsenide, gallium phosphide, indium arsenide, indium antimonide, gallium antimonide, phosphorus germanium zinc, etc.)
  • the heater heats the crystal, which will cause the dissociation of the crystal, that is, the volatilization of volatile elements into the atmosphere. Severe crystal dissociation can render the crystal unusable. Therefore, using this thermal field to grow compound crystals of volatile elements, the power of the post-heater is limited.
  • Chinese Patent Application No. 200910112711.7 discloses a method and device for growing large-size yttrium sodium tungstate crystals by two-stage heating and pulling method. Two sets of fixed heating mechanisms are also set up to heat the crucible and the pulled crystals respectively.
  • the top of the crystal is in an open state, the heat dissipation will be serious, the heat preservation effect on the crystal is not strong, and the effect of reducing stress is not obvious.
  • the dissociation phenomenon of the heated crystals will be very serious in a relatively open environment.
  • the high-pressure airflow will have a strong heat dissipation effect on the unsealed crystal, thereby reducing the heating effect of the post-heater.
  • Chinese Patent Application No. 201910631648.1 discloses a coil liftable temperature field structure and a single crystal growth method suitable for the pulling method.
  • the technical solution adopted is to set a rear heating cylinder above the crucible, and move the heating coil to heat the crucible and the rear heating respectively. cylinder.
  • This kind of device uses an external moving coil, which can heat the crucible and the rear heating cylinder at the same time. There is power interference between the two, and the control accuracy is not high. Crystal growth requires high temperature stability in the crucible. The movement of the coil heating the crucible will have a greater impact on the thermal field.
  • the heating cylinder is induced at the same time to divide the coil power, which is easy to cause melt. The temperature gradient fluctuates widely, causing crystal growth to fail.
  • the relative position of the heat preservation cylinder and the crystal is relatively far, and the rear heating cylinder plays a heating role in the whole environment, which will reduce the whole environment, including the temperature gradient in the melt, and also cause the crystal growth to have lower stability.
  • the coil device heats the melt and the crystal during the cooling process at the end of the crystal growth, while the heat preservation and heating effects on the crystal during the crystal growth are not obvious, and the stress caused by the temperature difference between the upper and lower ends of the crystal during the crystal growth process is not obvious. And the defects such as dislocations have no obvious improvement effect.
  • the purpose of the present invention is to solve the problems existing in the prior art.
  • a low-stress crystal growth device comprising a furnace body, a crucible and a heating and heat preservation system placed at the bottom of the furnace body, a crystal pulling mechanism facing the center of the crucible, placed in the furnace body
  • the quartz observation window on the side, the heating and heat preservation system includes a crucible, a heater, a crucible rod, and a heat preservation sleeve, and the crystal pulling mechanism includes a seed rod and a seed crystal chuck.
  • the device also includes a liftable type Heating cover mechanism
  • the liftable heating cover mechanism includes a heating cover body, a heating cover support member, a heating wire arranged around the heating cover body, and a heating cover lifting mechanism, and a thermocouple is arranged inside the heating cover body.
  • the top of the heating cover is conical, and the bottom is cylindrical, and a transparent material is used, and the outer diameter of the cylinder is smaller than the inner diameter of the crucible.
  • the seed rod passes through the heating mantle body, and the heating mantle lifting mechanism drives the elevating heating mantle mechanism to move up and down along the seed rod.
  • an air source box is also arranged inside the liftable heating cover mechanism.
  • the heating mantle descends to cover the growing crystal, forming a consistent temperature field around the crystal.
  • the traditional two-stage temperature field it has the following characteristics:
  • the greater the temperature gradient of the melt the higher the stability of crystal growth. Therefore, it is hoped to strengthen the temperature gradient of the melt to ensure stable crystal crystallization.
  • the greater the temperature gradient within the crystal the greater the thermal stress within the crystal, so it is desirable that the temperature gradient within the crystal be small.
  • the traditional two-stage temperature field often covers the crucible body as a whole, which reduces both the crystal temperature gradient and the melt temperature gradient. Although it can play a certain role in reducing the stress, it also leads to the instability of the crystal growth process, and the crystal appears to be twinned or even polycrystalline.
  • the heating cover body matched with the diameter of the crystal is used to keep the crystal warm without covering the melt, therefore, the temperature gradient in the melt is not significantly reduced, and the stable growth of the crystal can be ensured.
  • the time period covered is different.
  • the crystal In the seeding and shouldering stage, the crystal is in the center of the melt, and the radial temperature gradient of the melt surface in the central area of the crucible is small. Therefore, during the seeding and shouldering process, the crystal with a smaller volume is more prone to instability, resulting in polycrystallization.
  • the traditional non-movable two-stage thermal field covers the crucible during the whole process, and the melt temperature gradient is small, which leads to seeding and polycrystallization during shoulder placement.
  • the present invention also proposes a low-stress crystal growth method, which includes the following steps: after the crystal is pulled out of the melt, it is covered with a liftable heating mantle mechanism.
  • the above-mentioned device and method during the crystal growth stage and after the crystal is pulled out of the melt, it is covered with a liftable heating mantle mechanism to form a relatively consistent temperature field around the crystal, reducing the crystal growth process and after the crystal is lifted.
  • the temperature gradient inside the crystal during the cooling process reduces crystal stress, reduces defects, avoids crystal cracking, and at the same time maintains the temperature gradient in the melt to ensure stable crystal growth process and crystal yield.
  • Fig. 1 is the structural representation of the present invention
  • Figure 2 is a working state diagram
  • FIG. 3 is another working state diagram
  • Figure 4 is a schematic representation of the depth markings on the heating mantle
  • Figure 5 is a schematic diagram of depth markings on another heating mantle.
  • a low-stress crystal growth device referring to FIG. 1, includes a furnace body 19, a crucible 18 placed at the bottom of the furnace body 19 and a heating and heat preservation system, a crystal pulling mechanism facing the center of the crucible, and a quartz crystal placed on the side of the furnace body 19. Observation window 11.
  • the heating and heat preservation system includes a heater 7 placed around the crucible 18 , a crucible rod 12 supporting the crucible 18 below, and a heat preservation jacket 13 outside the heater 7 .
  • the crystal pulling mechanism includes a seed rod 3 and a seed chuck 2 .
  • the device also includes a liftable heating cover mechanism, including a heating cover body 8 , a heating cover support member 9 , a heating wire 14 arranged around the heating cover body 8 , and a heating cover lifting mechanism 10 .
  • the heating mantle lifting mechanism 10 completes the lifting and lowering of the heating mantle body 8 through the heating mantle supporting member 9 .
  • a thermocouple 21 is provided inside the heating mantle 8 for obtaining its internal temperature.
  • the top of the heating cover 8 is conical and the bottom is cylindrical, and is made of transparent materials such as quartz, glass or sapphire.
  • the heat of the heating wire 14 can be radiated into the heating cover to heat the crystal.
  • the peripheral part of the heating wire 14 is covered with the heating wire wrapping 20, so that after the heating cover 8 is lowered, the crystal growth can still be observed through the cover.
  • the inner diameter of the heating mantle 8 is 5-10 mm larger than the diameter of the crystal to be drawn, and its cylindrical outer diameter is smaller than the inner diameter of the crucible 18 , so that the crucible 18 cannot be covered as a whole.
  • the top of the heating cover 8 is a multi-layer hollow structure, forming a plurality of cavities, which has a certain heat preservation effect.
  • the heating mantle mechanism is attached to the seed rod 3 , the seed rod 3 passes through the heating mantle 8 , and the heating mantle lifting mechanism 10 drives the liftable heating mantle mechanism to move up and down along the seed rod 3 .
  • the top of the heating mantle 8 holds the seed rod 3 tightly, and there is a gap between the heating mantle 8 and the seed rod 3, the gap is not more than 2mm, and the interior of the heating mantle 8 and the furnace body 19 are connected, and the pressure is basically the same.
  • An air source box 17 is also provided inside the liftable heating mantle mechanism, and the air source box 17 is positioned on the inner upper end of the heating mantle body 8 using the air source box fixing pins 15 . There are no less than four fixing pins 15 of the air source box along the radial direction of the heating cover 8 to ensure the stable position of the air source box.
  • the heating wire In order to prevent the heating wire 14 from being immersed in the covering agent 5 and the melt 6, the heating wire is not provided at the bottom of the heating cover 8, and the starting position of the heating wire 14 is upward from the bottom of the heating cover 8, which is greater than 1/1 of the length of the heating cover 8. 6 places.
  • a depth marking line is set on the periphery of the heating cover 8 from the bottom, and the depth marking adopts an inverted triangular figure, as shown in FIG. Indicates the depth, as shown in Figure 5.
  • the observation window 11 is made of a transparent material such as quartz, glass or sapphire, and is used to observe the crystal growth. After the liftable heating mantle mechanism is lowered, the quartz observation window 11 is aligned with the set marking line.
  • the heating mantle lifting mechanism 10 can finely adjust the heating mantle 8 up and down to ensure that the lower part of the heating mantle 8 is in continuous contact with the covering agent 5 when the liquid level of the covering agent 5 drops.
  • the gas source material 16 is a volatile element material in compound crystals. Phosphorus is used as the gas source material 16 for growing indium phosphide, gallium phosphide crystal, etc.; arsenic is used as the gas source material 16 for growing gallium arsenide crystal.
  • the air source material 16 is placed in the air source box 17 and placed in the inner heating mantle 8 .
  • the covering agent 5 uses boron oxide.
  • Step 1 Place the raw material and the covering agent in the crucible 18, turn on the heater 7, and continue for a period of time until the raw material and the covering agent 5 in the crucible 18 are melted.
  • step 2 the seed crystal 1 is set on the seed crystal chuck 2, and the crystal pulling mechanism is lowered until the seed crystal 1 is in contact with the surface of the melt 6. If the melt temperature is suitable for crystal growth, then after the contact, the seed crystal 1 and the melt 6 The contact site will gradually grow to become crystal 4.
  • Step 3 Observe the growth of the crystal 4 at the contact position between the seed crystal 1 and the melt 6 through the quartz observation window 11, and adjust the power of the heater 7 according to the expansion/reduction of the crystal 4, so that the crystal 4 grows gradually. In the process of crystal growth, the pulling speed of the pulling mechanism is gradually changed.
  • Step 4 When the crystal 4 grows to the required diameter, turn on the power of the heating wire 14 and lower the heating cover mechanism so that the lower part of the heating cover 8 is in contact with the covering agent 5 .
  • the peripheral part of the heating wire 14 is covered with the heating wire wrap 20, and the position close to the observation window 11 is not covered, leaving the observation window, as shown in FIG. 2 .
  • the above “required diameter” is about standard wafer size + 5mm. For example, if the target diameter is 2 inches, the required diameter is 55.8mm; if the target diameter is 3 inches, the required diameter is 81.2mm; if the target diameter is 4 inches, the required diameter is 105mm; the target diameter is 6 inches , the required diameter is 155mm.
  • Step 5 Gradually increase the heating power of the heating wire 14, so that the temperature of the atmosphere in the heating cover is significantly increased, and the temperature range is determined according to the gas source element. If the gas source element is phosphorus, the temperature is raised to 500-600° C., so that the gas source starts to volatilize gas, so as to ensure the partial pressure of the gas source element atmosphere in the heating cover 8 . Heating is continued to maintain the temperature in the heating mantle 8 . The temperature is determined according to the thermocouple 21 .
  • the gas pressure inside and outside the heating cover 8 is the same, but the partial pressure of the gas source element in the heating cover 8 is relatively high, which can inhibit the dissociation of crystals. effect.
  • the inert gas such as nitrogen, argon, etc.
  • the inert gas has a limited effect on the dissociation of the crystal, and the partial pressure of the corresponding gas element can inhibit the dissociation. Therefore, the gas source material 16 is used to provide the element around the crystal. The partial pressure of the gas used to limit the escape of the element from the crystal surface.
  • Step 6 With the gradual growth and pulling of the crystal 4, the liquid level of the melt 6 and the covering agent 5 gradually declines. Therefore, the heating mantle mechanism also needs to gradually decline with the decline of the liquid level. Observe through the observation window 11, according to the marking line. The position is adjusted to ensure that the heating mantle 8 is in contact with the boron oxide of the covering agent 5 , and at the same time, the heating wire 14 is prevented from being immersed in the covering agent 5 .
  • Step 7 the crystal 4 is pulled to the position that meets the weight, and the crystal pulling mechanism and the elevating heating mantle mechanism are pulled quickly, and the crystal 4 is brought out of the melt 6 and the boron oxide 5, as shown in Figure 3.
  • Step 8 The heater 7 and the heating wire 14 are cooled synchronously.
  • the heater 7 is set with a cooling program, and it will reach room temperature in 5-20 hours; the heating wire 14 is started with a program to cool down, and it will reach room temperature in 5-20 hours.
  • Both the heater 7 and the heating wire 14 are provided with a cooling program, the purpose is to reduce the temperature around the crystal slowly at the same time and reduce the temperature gradient inside the crystal.
  • the lower melt and the polycrystalline material after the solidification of the melt will have the effect of heating or heat preservation under the crystal.
  • the heater and filament cool together to reduce the crystal temperature gradient.
  • Step 9 Dismantle the furnace and remove the crystal.
  • the gas source material 16 is subjected to the double baking effect of the heating wire and the pulled crystal at the same time; the gasification temperature of the gas source material 16 is related to the partial pressure of the nearby gas element, and the gas element partial pressure is small , the vaporization point of the gas source material is lowered, and it is easier to volatilize the gas element, so as to increase the partial pressure of the element.
  • the presence of a sufficient amount of gas source material provides a continuous flow of gas element to the partial pressure of the element inside the enclosure. Therefore, the charging amount of the gas source material should be matched with the gasification rate, crystal growth cycle and other factors.
  • the present invention is particularly suitable for the growth of compound crystals containing volatile elements.
  • the gas source box 17 in the heating cover body in the device can continuously supply volatile elements to ensure the partial pressure of the elements in the atmosphere, thereby avoiding the dissociation of the compounds.
  • the temperature gradient in the crystal is reduced from 70°C/cm in the traditional pulling method to 10°C/cm, and the dislocation density of the P-type and N-type indium phosphide crystals is reduced from 20000-50000cm -3 reduced to 300-3000cm-3.
  • the dislocation density of SI-type indium phosphide crystal is reduced from 50000-100000cm-3 to 2000-10000cm-3.
  • the device and method of the present invention are used to grow crystals, and after the crystals are seeded and shouldered, the heating mantle mechanism is removed.
  • the crystal yield of this method is significantly higher than that of the Czochralski method with a conventional, immovable heat shield.
  • the yield of the method of the present invention is about 60%, and the yield of the Czochralski method with an ordinary, immovable heat shield is only about 30%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供一种低应力晶体的生长装置及方法,涉及晶体制备领域,尤其涉及使用提拉法制备低应力、低缺陷晶体的装置和方法。生长装置包括炉体,置于炉体底部的坩埚及加热保温系统,晶体提拉机构,石英观察窗,所述装置还包括可升降式加热罩机构,包括加热罩体、加热罩支撑部件、设置在加热罩体四周的加热丝、加热罩升降机构。方法为:晶体提拉出熔体后,用可升降式加热罩机构进行覆盖。该生长装置及方法可以降低晶体生长过程中以及晶体提起后降温过程中晶体内部的温度梯度,从而降低晶体应力,降低缺陷,避免晶体开裂,同时保持熔体内的温度梯度,保证晶体生长过程稳定,从而保证晶体成品率。

Description

一种低应力晶体的生长装置及方法 技术领域
本发明涉及晶体制备领域,尤其涉及使用提拉法制备低应力、低缺陷晶体的装置和方法。
背景技术
提拉法是一种从熔体中生长晶体的放法,是半导体晶体、光学晶体等的常见生长方法,该方法具有成品率高、生长速度快、易观察等特点。
提拉法常用单一加热器的生长方式。提拉法因为要将晶体提拉出熔体,尤其是提拉至较高位置时,先提拉出来的部分晶体,会因周边氛围温度较低而降温至较低温度。而晶体生长固液界面处的温度,一直维持在晶体熔点附近,因此,假设晶体中的纵向温度分布是线性分布的,那么晶体中的梯度约等于(T界-T表)/L,L为晶体生长固液界面到晶体表面的距离,T表为晶体表面温度,T界为晶体生长固液界面处温度(约为该晶体的熔点温度)。在稳态生长过程中,T界约等于晶体的熔点温度,约为固定值。而降低晶体温度梯度的主要方式为提高晶体表面温度T表。对提拉出来的晶体进行保温和加热,从而提高晶体表面温度梯度是较为常见的方法。
目前,主流的方式为在坩埚和晶体上方增加保温罩和后加热器的方式,如中国专利申请201810509188.0披露了提拉法CeAlO3晶体生长装置及其控制方法,其技术方案是设置了两组固定的加热机构,并且分别对坩埚加热和提拉出来的晶体进行加热,加热器和上方的盖子对整个熔体形成了覆盖。但此种方式尽管在一定程度上对晶体起到保温作用,但在实际应用中存在着较大的缺陷。首先,加热器和上方的盖子对坩埚体的整体覆盖,降低了熔体温度梯度,从而导致了晶体生长过程容易失稳,晶体出现孪晶,甚至多晶化。尤其在晶体生长的早期阶段(引晶和放肩阶段),晶体处于温度梯度较低的熔体中心区域,生长不平稳,晶体非常容易多晶化。并且,此种方法在用于生长含有易挥发元素的化合物晶体(如磷化铟,砷化镓,磷化镓,砷化铟,锑化铟,锑化镓,磷锗锌等)时,后加热器对晶体加热,会造成晶体离解,也就是易挥发元素的挥发到气氛中。晶体离解程度严重的话,会导致晶体不可用。因此,使用这种热场生长易挥发元素的化合物晶体,后加热器的功率受到了限制。
中国专利申请200910112711.7披露了两段加热提拉法生长大尺寸钨酸钇钠晶体的方法与装置,同样是设置了两组固定的加热机构,分别对坩埚加热和提拉出来的晶体进行加热。但是此种装置,晶体正上方处于开放状态,散热将比较严重,对晶体的保温作用不强,降低 应力效果不明显。尤其对于含有易挥发元素晶体来说,被加热的晶体,在相对敞开的环境中,离解现象将非常的严重。对于某些生长环境压力较高的材料来说,高压气流将对未封闭的晶体起到强烈散热作用,从而降低后加热器的加热效果。
中国专利申请201910631648.1披露了一种适用于提拉法的线圈可升降式温场结构与单晶生长方法,采用的技术方案是在坩埚上方设置后加热筒,通过移动加热线圈分别加热坩埚和后加热筒。此种装置使用外置的移动线圈,可同时对坩埚和后加热筒进行加热,两者之间有功率干扰,控制精度不高。晶体生长,对坩埚内温度的稳定性要求很高,加热坩埚的线圈移动,将对热场产生较大的影响,况且再同时将加热筒进行感应,对线圈功率进行分流,很容易造成熔体温度梯度大范围波动,导致晶体生长失败。保温筒与晶体的相对位置较远,后加热桶对整个环境起到加热作用,从而会降低整个环境,包括熔体内的温度梯度,也会造成晶体生长具有较低的稳定性。并且此线圈装置,分别对熔体和晶体生长结束降温过程中的晶体进行加热,而对晶体生长中的晶体的保温和加热作用不明显,对晶体生长过程中因晶体上下端温差而产生的应力以及位错等缺陷没有明显改善作用。
发明内容
本发明的目的是解决现有技术存在的问题。
为此,本发明采用以下技术手段实现:一种低应力晶体的生长装置,包括炉体,置于炉体底部的坩埚及加热保温系统,正对坩埚中心的晶体提拉机构,置于炉体侧面的石英观察窗,所述加热保温系统包括坩埚、加热器、坩埚杆、保温套,所述晶体提拉机构包括籽晶杆,籽晶夹头,关键在于,所述装置还包括可升降式加热罩机构,所述可升降式加热罩机构包括加热罩体、加热罩支撑部件、设置在加热罩体四周的加热丝、加热罩升降机构,加热罩体内部设置热偶加热罩体内部设置热偶。
进一步地,所述加热罩体顶部为圆锥形,下面为圆柱形,采用透明材料,其圆柱形外径小于坩埚的内径。
进一步地,所述籽晶杆穿过所述加热罩体,加热罩升降机构驱动可升降式加热罩机构沿籽晶杆上下移动。
进一步地,所述可升降式加热罩机构内部还设置气源盒。
采用上述装置,在晶体生长阶段,加热罩下降,覆盖正在生长的晶体,在晶体周围形成一致的温度场,与传统的两段温度场相比,具有以下特点:
覆盖区域不同。
原理上讲,熔体温度梯度越大晶体生长的稳定性越高,因此希望加强熔体的温度梯 度,以保证晶体结晶平稳。晶体内的温度梯度越大,则晶体内部的热应力越大,因此希望晶体内温度梯度小。传统的两段式温度场,往往是对坩埚体的整体覆盖,这样一来,既降低了晶体温度梯度,也降低了熔体温度梯度。尽管可以起到一定的降低应力作用,但同时也导致了晶体生长过程容易失稳,晶体出现孪晶,甚至多晶化。本发明,利用与晶体直径相匹配的加热罩体,对晶体进行保温,不覆盖熔体,因此,不会明显降低熔体内温度梯度,可以保证晶体生长平稳。
覆盖的时间段不同。
在引晶,放肩阶段,晶体处于熔体中心,坩埚中心区域熔体表面径向温度梯度小,因此引晶放肩过程中体积更小的晶体更容易失稳,造成多晶化。传统不可移动两段式热场,因整个过程都将坩埚覆盖,熔体温度梯度小,从而导致引晶,放肩过程容易多晶化。
基于上述低应力晶体的生长装置,本发明还提出了一种低应力晶体的生长方法,包括以下步骤:晶体提拉出熔体后,用可升降式加热罩机构进行覆盖。
采用上述装置及方法,在晶体生长阶段,以及晶体提拉出熔体后,用可升降式加热罩机构进行覆盖,在晶体周围形成较为一致的温度场,降低晶体生长过程中、以及晶体提起后降温过程中晶体内部的温度梯度,从而降低晶体应力,降低缺陷,避免晶体开裂,同时保持熔体内的温度梯度,保证晶体生长过程稳定,从而保证晶体成品率。
附图说明
图1是本发明的结构示意图,
图2是一个工作状态图,
图3是另一个工作状态图,
图4是加热罩上的深度标线示意,
图5是另一种加热罩上的深度标线示意。
其中,籽晶1,籽晶夹头2,籽晶杆3,晶体4,覆盖剂5,熔体6,加热器7,加热罩体8,加热罩支撑部件9,加热罩升降机构10,石英观察窗11,坩埚杆12,保温套13,加热丝14,气源盒固定销钉15,气源材料16,气源盒17,坩埚18,炉体19,加热丝包裹20,热偶21。
具体实施方式
下面结合附图对本发明做进一步说明。
一种低应力晶体的生长装置,参看图1,包括炉体19,置于炉体19底部的坩埚18 及加热保温系统,正对坩埚中心的晶体提拉机构,置于炉体19侧面的石英观察窗11。
加热保温系统包括置于坩埚18四周的加热器7、在下面支撑坩埚18的坩埚杆12、在加热器7外面的保温套13。
所述晶体提拉机构包括籽晶杆3,籽晶夹头2。
所述装置还包括可升降式加热罩机构,包括加热罩体8、加热罩支撑部件9、设置在加热罩体8四周的加热丝14、加热罩升降机构10。加热罩升降机构10通过加热罩支撑部件9完成加热罩体8的升降。加热罩体8内部设置热偶21,用于获取其内部温度。
所述加热罩体8顶部为圆锥形,下面为圆柱形,采用石英、玻璃或蓝宝石等透明材质,加热丝14的热量可以辐射进加热罩体内部,以对晶体进行加热。加热丝14外围部分覆盖加热丝包裹20,便于加热罩体8下降后,依然能透过罩体观察晶体生长情况。
加热罩体8内径比所需拉制晶体的直径大5-10mm,其圆柱形外径小于坩埚18的内径,不可对坩埚18有整体的覆盖效果。
加热罩体8顶部为多层中空结构,形成多个腔体,起到一定的保温效果。
加热罩机构附在籽晶杆3上,籽晶杆3穿过所述加热罩体8,加热罩升降机构10驱动可升降式加热罩机构沿籽晶杆3上下移动。
加热罩8的顶部抱紧籽晶杆3,加热罩8和籽晶杆3之间留有缝隙,缝隙不超过2mm,连通加热罩8内部和炉体19内部,保持压力基本相同。
可升降式加热罩机构内部还设置气源盒17,气源盒17使用气源盒固定销钉15定位在加热罩体8的内部上端。气源盒固定销钉15沿加热罩体8径向分布不少于4个,以保证气源盒位置稳固。
为了避免加热丝14浸入覆盖剂5和熔体6,加热罩体8的底部不设置加热丝,设置加热丝14的开始位置是从加热罩体8底部向上,大于加热罩体8长度的1/6处。
为了便于观察,在加热罩体8外围从底部开始设置深度标线,深度标线采用倒三角图形,如图4所示,直观表现加热罩体8浸入覆盖剂5的深度,也可以采用间隔线表示深度,如图5所示。
观察窗11为石英、玻璃或者蓝宝石等透明材质,用于观察晶体生长情况。可升降式加热罩机构下降后,石英观察窗11对准设置的标线。
加热罩升降机构10可以对加热罩体8进行上下的微调,以保证覆盖剂5液面下降时,加热罩体8下部与覆盖剂5持续接触。
工作过程:
气源材料16用化合物晶体中易挥发的元素材料。生长磷化铟、磷化镓晶体等使用磷作为气源材料16;生长砷化镓晶体,砷作为气源材料16。将气源材料16放置在气源盒17中,置于内部加热罩体8。覆盖剂5使用氧化硼。
步骤一、坩埚18内放置原料和覆盖剂,开启加热器7,持续一段时间,待坩埚18内原料和覆盖剂5熔化,覆盖剂5因密度较原料低,覆盖于原料熔体6上方。
步骤二、籽晶夹头2上设置籽晶1,晶体提拉机构下降,至籽晶1与熔体6表面相接触,如果熔体温度合适晶体生长,那么接触后,籽晶1与熔体6接触位置将逐渐长大,成为晶体4。
步骤三、通过石英观察窗11观察籽晶1与熔体6接触位置晶体4长大情况,通过晶体4扩大/缩小情况,调节加热器7的功率,使得晶体4逐渐长大。在晶体逐渐长大的过程中,逐渐改变提拉机构的提拉速度。
步骤四、待晶体4长大至所需直径时,开启加热丝14电源,并且降低加热罩机构,使得加热罩体8的下方与覆盖剂5相接触。加热丝14外围部分覆盖加热丝包裹20,靠近观察窗11的位置不覆盖,留出观察窗,如图2所示。
上述“所需直径”为标准晶圆尺寸+5mm左右。如制作目标直径为2英寸的晶体,所需直径为55.8mm;目标直径为3英寸晶体,所需直径为81.2mm;目标直径为4英寸晶体,所需直径为105mm;目标直径为6英寸晶体,所需直径为155mm。
步骤五、逐渐增加加热丝14的加热功率,使得加热罩内的气氛温度显著提升,根据气源元素来确定温度范围。如气源元素是磷,则升至500-600℃,让气源开始挥发出气体,保证加热罩体8内的气源元素气氛分压。持续加热,保持加热罩体8内的温度。温度根据热偶21来确定。
加热罩体8和籽晶杆3之间有很小的缝隙,加热罩体8内外气体压力是相同的,但加热罩体8内的气源元素分压比较高,能够起到抑制晶体离解的作用。
炉体19内是惰性气体,如氮气,氩气等,但是惰性气体对晶体离解作用有限,相应气体元素的分压才有抑制离解的作用,因此采用气源材料16,提供晶体周围的该元素气体分压,用于限制该元素从晶体表面逸出。
步骤六、随着晶体4的逐渐长大和提拉,熔体6及覆盖剂5液面逐渐下降,因此加热罩机构也需要随液面下降而进行逐步下降,通过观察窗11观察,根据标线调整位置,以保证加热罩体8与覆盖剂5氧化硼相接触,同时避免加热丝14浸入覆盖剂5。
步骤七、晶体4提拉到满足重量的位置,快速提拉晶体提拉机构和可升降式加热罩 机构,将晶体4提出熔体6和氧化硼5,如图3所示。
步骤八、加热器7和加热丝14同步降温。加热器7设置降温程序,5-20小时将至室温;加热丝14开启程序降温,5-20小时将至室温。
加热器7和加热丝14均设置一个降温程序,目的是使得晶体周围温度同时缓慢降低,减小晶体内部的温度梯度。
在晶体生长完成后的降温过程中,因为加热罩体8下部是开口的,下方熔体以及熔体凝固后的多晶材料会对晶体下方产生加热或者保温的作用。加热器和加热丝协同降温,以减少晶体温度梯度。
步骤九、拆炉,拆出晶体。
需要注意的是,气源材料16同时受到了加热丝和提拉出的晶体的双重烘烤作用;气源材料16的气化温度与附近该气体元素的分压有关系,气体元素分压小,气源材料气化点降低,便更容易挥发出气体元素,以提高该元素分压。足够量的气源材料的存在,给罩体内部该元素分压提供源源不断的气体元素。因此,气源材料的装料量,要与气化速率,晶体生长周期等因素相匹配。
本发明特别适用于含有易挥发元素的化合物晶体生长,装置中加热罩体中的气源盒17可以持续供应易挥发元素,保证该元素在气氛中的分压,从而避免化合物的离解。
在使用传统提拉法(带有上加热器或者保温罩)生长含有易挥发元素化合物晶体生长时,即想提高晶体温度降低温度梯度从而降低缺陷,同时要考虑晶体处于高温状态,持续离解,从而造成晶体不可用。因此,对含有易挥发元素的化合物晶体的保温、加热操作投鼠忌器,实际工艺中不能有效降低晶体温度梯度。本装置中加热罩机构工作时,与覆盖剂相接触,晶体周围环境处于半封闭状态,并且设置有气源盒,易挥发元素在罩体内持续保持较高分压,通过加热罩体加热,大幅度提高罩体内的温度,而不担心化合物离解。实际工艺中,磷化铟晶体周边温度增加至880℃,持续10小时,晶体表面无明显离解。
采用本发明装置生长4英寸磷化铟单晶,晶体中温度梯度由传统提拉法的70℃/cm降低至10℃/cm,P型和N型磷化铟晶体位错密度由20000-50000cm-3降低至300-3000cm-3。SI型磷化铟晶体位错密度由50000-100000cm-3降低至2000-10000cm-3。
采用本发明装置及方法生长晶体,在晶体完成引晶和放肩工艺后,再将加热罩机构移下去。此方法的晶体成品率明显高于带有普通的、不可移动的热罩的直拉法的成品率。如4英寸磷化铟晶体,使用本发明方法的成品率约60%,带有普通的、不可移动的热罩的直拉法的成品率仅为30%左右。

Claims (10)

  1. 一种低应力晶体的生长装置,包括炉体(19),置于炉体(19)底部的坩埚(18)及加热保温系统,正对坩埚(18)中心的晶体提拉机构,置于炉体(19)侧面的石英观察窗(11),所述加热保温系统包括加热器(7)、坩埚杆(12)、保温套(13),所述晶体提拉机构包括籽晶杆(3),籽晶夹头(2),其特征在于,所述装置还包括可升降式加热罩机构,所述可升降式加热罩机构包括加热罩体(8)、加热罩支撑部件(9)、设置在加热罩体(8)四周的加热丝(14)、加热罩升降机构(10),加热罩体(8)内部设置热偶(21)。
  2. 根据权利要求1所述的低应力晶体的生长装置,其特征在于,所述加热罩体(8)顶部为圆锥形多层中空结构,下面为圆柱形,采用透明材料,其圆柱形外径小于坩埚(18)的内径。
  3. 根据权利要求1或2所述的低应力晶体的生长装置,其特征在于,所述籽晶杆(3)穿过所述加热罩体(8),加热罩升降机构(10)驱动可升降式加热罩机构沿籽晶杆(3)上下移动;
    所述籽晶杆(3)与加热罩体(8)顶部之间缝隙不超过2mm。
  4. 根据权利要求1所述的低应力晶体的生长装置,其特征在于,所述可升降式加热罩机构内部还设置气源盒(17),所述气源盒(17)使用气源盒固定销钉(15)定位在加热罩体(8)的内部上端。
  5. 根据权利要求1所述的低应力晶体的生长装置,其特征在于,设置加热丝(14)的开始位置是从加热罩体(8)底部向上,大于加热罩体(8)长度的1/6处。
  6. 根据权利要求1所述的低应力晶体的生长装置,其特征在于,所述加热罩体(8)外围从底部开始设置深度标线。
  7. 根据权利要求6所述的低应力晶体的生长装置,其特征在于,可升降式加热罩机构下降后,所述石英观察窗(11)对准设置的标线。
  8. 一种低应力晶体的生长方法,基于权利要求1-7任一项所述的低应力晶体的生长装置完成,所述生长方法包括以下步骤:
    晶体提拉出熔体后,用可升降式加热罩机构进行覆盖。
  9. 根据权利要求8所述低应力晶体的生长方法,其特征在于,所述生长方法包括以下步骤:
    A、坩埚(18)内放置原料和覆盖剂(5),将气源材料(16)放置在气源盒(17)中;开启加热器(7),加热至原料和覆盖剂(5)熔化,原料形成熔体(6);
    B、籽晶夹头(2)上设置籽晶(1),籽晶杆(3)下降,至籽晶(1)与熔体(6)表面相接触;
    C、待晶体(4)长大至所需直径时,开启加热丝(14)电源,降低可升降式晶体加热罩, 使得加热罩体(8)的下方与覆盖剂(5)相接触;所需直径指为晶圆尺寸+5mm;
    D、晶体(4)生长过程中,保持加热罩体(8)内的温度;随覆盖剂(5)液面降低而降低加热罩机构,保持加热罩体(8)的下方与覆盖剂(5)相接触;
    通过罩内热偶(21)测量罩内温度,晶体(4)将要被提拉出覆盖剂(5)的时候,提高加热丝(14)的功率,确保罩内的温度达到气源材料(16)气化温度;
    E、晶体(4)生长完成后,将晶体(5)提至覆盖剂(5)液面上方;
    F、加热丝14开启程序降温,5-20小时将至室温;同时对加热器(7)设置降温程序,5-20小时将至室温;
    G、拆炉,拆出晶体(4);
    设置加热丝(14)的开始位置是从加热罩体(8)底部向上,大于加热罩体(8)长度的1/6处;
    步骤C和D中,避免加热丝(14)浸入覆盖剂(5);
    步骤A中所述的原料为生成晶圆的半导体材料。
  10. 根据权利要求9所述低应力晶体的生长方法,其特征在于:所述的原料为磷化铟、砷化镓、磷化镓、砷化铟、锑化铟、锑化镓、磷锗锌其中的一种;所述气源材料(16)根据原料选择,为磷、砷、锑其中的一种。
PCT/CN2021/104412 2021-02-03 2021-07-05 一种低应力晶体的生长装置及方法 WO2022166098A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/797,063 US20230069057A1 (en) 2021-02-03 2021-07-05 Growth Device and Method for Low-Stress Crystals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120299367.3U CN214458434U (zh) 2021-02-03 2021-02-03 一种晶体生长装置
CN202110145424.7 2021-02-03
CN202110145424.7A CN112746312B (zh) 2021-02-03 2021-02-03 一种低应力晶体的生长方法
CN202120299367.3 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022166098A1 true WO2022166098A1 (zh) 2022-08-11

Family

ID=82740817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104412 WO2022166098A1 (zh) 2021-02-03 2021-07-05 一种低应力晶体的生长装置及方法

Country Status (2)

Country Link
US (1) US20230069057A1 (zh)
WO (1) WO2022166098A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822449A (en) * 1987-06-10 1989-04-18 Massachusetts Institute Of Technology Heat transfer control during crystal growth
CN102051686A (zh) * 2009-10-28 2011-05-11 中国科学院福建物质结构研究所 两段加热提拉法生长大尺寸钨酸钇钠晶体的方法与装置
CN110760931A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的系统
CN110923806A (zh) * 2019-12-24 2020-03-27 西安奕斯伟硅片技术有限公司 一种单晶炉及单晶硅棒的制备方法
CN112695376A (zh) * 2021-02-03 2021-04-23 中国电子科技集团公司第十三研究所 一种晶体生长装置
CN112746312A (zh) * 2021-02-03 2021-05-04 中国电子科技集团公司第十三研究所 一种低应力晶体的生长方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822449A (en) * 1987-06-10 1989-04-18 Massachusetts Institute Of Technology Heat transfer control during crystal growth
CN102051686A (zh) * 2009-10-28 2011-05-11 中国科学院福建物质结构研究所 两段加热提拉法生长大尺寸钨酸钇钠晶体的方法与装置
CN110760931A (zh) * 2019-11-22 2020-02-07 中国电子科技集团公司第十三研究所 一种利用铟磷混合物制备磷化铟晶体的系统
CN110923806A (zh) * 2019-12-24 2020-03-27 西安奕斯伟硅片技术有限公司 一种单晶炉及单晶硅棒的制备方法
CN112695376A (zh) * 2021-02-03 2021-04-23 中国电子科技集团公司第十三研究所 一种晶体生长装置
CN112746312A (zh) * 2021-02-03 2021-05-04 中国电子科技集团公司第十三研究所 一种低应力晶体的生长方法

Also Published As

Publication number Publication date
US20230069057A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
CN112746312B (zh) 一种低应力晶体的生长方法
RU2448204C2 (ru) САПФИР С r-ПЛОСКОСТЬЮ, СПОСОБ И УСТРОЙСТВО ДЛЯ ЕГО ПОЛУЧЕНИЯ
CN105189834B (zh) 冷却速率控制装置及包括其的铸锭生长装置
CN1323196C (zh) 单晶硅的制造方法及单晶硅以及硅晶片
US11326272B2 (en) Mono-crystalline silicon growth apparatus
CN112695376A (zh) 一种晶体生长装置
JP2008508187A (ja) 溶融物から単結晶を成長させる方法
CN108149324B (zh) 一种氮化铝自成核生长方法
JP2015182944A (ja) サファイア単結晶の製造方法
WO2022166098A1 (zh) 一种低应力晶体的生长装置及方法
KR101675903B1 (ko) 반도체 단결정의 제조 장치 및 제조 방법
KR101530349B1 (ko) 사파이어 초고온 단결정 성장로 단열 구조
JP2943430B2 (ja) 単結晶の製造方法および製造装置
JPH09221380A (ja) チョクラルスキー法による結晶製造装置、結晶製造方法、およびこの方法から製造される結晶
CN214458434U (zh) 一种晶体生长装置
JP2705809B2 (ja) 単結晶引上装置
CN219218218U (zh) 一种带加热罩的晶体生长装置
CN105803518B (zh) 类提拉法单晶生长装置及方法
JP2013119500A (ja) 単結晶成長方法およびその装置
KR20140080222A (ko) 사파이어 단결정 성장장치
CN210856407U (zh) 一种砷化镓单晶结晶潜热释放装置
JP2004203687A (ja) 化合物半導体製造装置
JP2024504533A (ja) 単結晶成長用の熱場調整装置及び方法
US20150075419A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
TW202229669A (zh) 氧化鎵結晶之製造裝置及氧化鎵結晶之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924105

Country of ref document: EP

Kind code of ref document: A1