WO2022165993A1 - 散热元件和电子设备 - Google Patents

散热元件和电子设备 Download PDF

Info

Publication number
WO2022165993A1
WO2022165993A1 PCT/CN2021/087911 CN2021087911W WO2022165993A1 WO 2022165993 A1 WO2022165993 A1 WO 2022165993A1 CN 2021087911 W CN2021087911 W CN 2021087911W WO 2022165993 A1 WO2022165993 A1 WO 2022165993A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
heat dissipation
main body
heat
body frame
Prior art date
Application number
PCT/CN2021/087911
Other languages
English (en)
French (fr)
Inventor
陶建云
Original Assignee
闻泰科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 闻泰科技(深圳)有限公司 filed Critical 闻泰科技(深圳)有限公司
Priority to EP21908084.3A priority Critical patent/EP4068933A4/en
Publication of WO2022165993A1 publication Critical patent/WO2022165993A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to the technical field of heat dissipation, and in particular, to a heat dissipation element and an electronic device.
  • the purpose of the present disclosure is to provide a heat dissipation element and an electronic device, which can diffuse heat from the center to the edge, which is beneficial to improve the heat dissipation capability.
  • An embodiment of the present disclosure provides a heat dissipating element including a main body frame, an inner fin, and an outer fin, the main body frame enclosing an inner space, the inner rib being connected with the main body frame, and partitioning the inner space As a plurality of heat dissipation holes, the outer fins are connected with the main body frame and extend in a direction away from the inner space.
  • the internal fins are multi-level, and the internal fins of each level are arranged in the internal space, and the internal space is divided into a plurality of the heat dissipation holes, wherein the n+th The first-level internal fins are disposed in the heat dissipation holes enclosed by the n-th-level internal fins and the internal space, where n is a positive integer.
  • the inner fins of each stage include first fins and second fins arranged in a crossed manner, and each of the first fins and each of the second fins is connected to the upper stage.
  • the thickness of the internal fins satisfies the following formula:
  • D j represents the thickness of the j-th level internal fins, 1 ⁇ j ⁇ n+1, D 1 represents the thickness of the first-level internal fins, and k is a constant less than 1.
  • the range of k is 1/3 ⁇ k ⁇ 2/3.
  • the external fins are multi-stage, wherein the first-stage external fins are connected to the main body frame and extend in a direction away from the main body frame, and the m+1-th external rib is connected to the m-th external rib.
  • One end of the stage outer fins away from the main body frame is connected, and the m+1th stage outer fins and the mth stage outer fins are arranged in an angular manner, wherein m is a positive integer.
  • the number of the m-th level external fins is multiple, and each of the m-th level external fins is connected with two m+1-th level external fins, and the two m+1-th level external fins are connected.
  • the angle formed by the outer fins and the m-th stage outer fins is equal.
  • the length of the outer fins satisfies the following formula:
  • Li represents the length of the external fin of the i -th level, 1 ⁇ i ⁇ m+1, L 1 represents the thickness of the external fin of the first level, and A is a constant.
  • the range of A is 1/2 ⁇ A ⁇ 1.
  • the thickness of the outer fins satisfies the following formula:
  • D i represents the thickness of the external fins of the i-th level, 1 ⁇ i ⁇ m+1, D 1 represents the thickness of the external fins of the first level, and B is a constant less than 1.
  • the range of B is 1/3 ⁇ B ⁇ 2/3.
  • the angle formed by the m+1-th external fin and the m-th external fin satisfies the following formula:
  • represents the angle formed by the m+1-th level external fins and the m-th level external fins
  • C represents the number of the m+1-th level external fins.
  • the shape of the main body frame is similar to the shape of the main body of the heat generating component.
  • the main body frame is formed substantially in a ring shape.
  • the main body frame is generally formed in a circular shape, and the inner space enclosed by the main body frame is also formed in a circular shape correspondingly.
  • An embodiment of the present disclosure provides an electronic device, including the heat dissipation element according to any of the foregoing embodiments.
  • a base plate is provided on the main body frame, the base plate is connected to the main body frame, and covers a plurality of heat dissipation holes.
  • an interface material with high thermal conductivity is coated on the heat-generating components of the electronic device.
  • the bottom surface of the base plate is in contact with the heat-generating component via the interface material coated on the heat-generating component.
  • the interface material is thermally conductive silicone grease or liquid metal.
  • FIG. 1 is a schematic diagram of the connection between a heat dissipation element and a heat generating component of an electronic device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a heat dissipation element provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of the heat dissipation element in FIG. 2 from another viewing angle;
  • FIG. 4 is a schematic structural diagram of an internal rib provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a recursive relationship of multi-level internal fins provided in an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a recursive relationship of multi-level external fins provided in an embodiment of the present disclosure.
  • the terms “arranged”, “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • the specific meanings of the above terms in the present disclosure can be understood in specific situations.
  • an embodiment of the present disclosure provides a heat dissipation element 100 .
  • the heat-dissipating element 100 can be configured to dissipate heat to the heat-generating parts of the electronic product, and has a good heat-dissipating effect.
  • the heat dissipation element 100 provided by the embodiments of the present disclosure may be applied to various electronic devices, including but not limited to routers, speakers, and the like.
  • the embodiments of the present disclosure do not impose specific requirements or limitations on specific electronic devices, and may be configured to dissipate heat from a processing chip or other heat-generating components 200 of the electronic device.
  • heat can be diffused from the center to the edge, thereby facilitating better heat dissipation effect.
  • the heat dissipation element 100 includes a main body frame 110, inner fins 120 and outer fins 130, the main body frame 110 encloses an inner space, and the inner fins 120 are connected with the main body frame 110 to guide heat to the inner fins 120, and divides the internal space into a plurality of heat dissipation holes, the plurality of heat dissipation holes can make the heat of the heating component 200 evenly and quickly transfer to the inner fins 120, and further to the outer fins 130, which is beneficial to improve the heat dissipation effect,
  • the outer fins 130 are connected with the main frame 110 and extend away from the inner space, which can transfer heat to a region away from the heat-generating component 200, and can improve the radiation and convection heat transfer efficiency by increasing the heat exchange area, thereby improving the heat dissipation capacity. .
  • the internal fins 120 are located in the internal space enclosed by the main body frame 110, and divide the internal space into a plurality of heat dissipation holes.
  • the inner fins 120 may be configured to be connected with heat-generating components 200 of the electronic device (eg, heat source chips, etc.) to transfer heat to the inner fins 120 .
  • the plurality of heat dissipation holes can uniformly and quickly transfer the heat on the heat generating component 200 to the inner fins 120 and further to the outer fins 130 , so as to improve the heat dissipation effect.
  • the outer fins 130 extend in a direction away from the main frame 110 , which can transfer heat to a region away from the heat-generating component 200 , and increase the heat exchange area to improve radiation and convection heat exchange efficiency, thereby improving heat dissipation capacity.
  • the main body frame 110 encloses an inner space
  • the main body frame 110 is generally formed in a ring shape, including but not limited to a circular ring, a square ring or other irregular rings.
  • the main body frame 110 is generally formed in a circular shape, and the inner space enclosed by the main body frame 110 is also formed in a circular shape correspondingly.
  • the shape of the main body frame 110 may be similar to that of the heat-generating component 200 to be dissipated, so that the center of the body frame 110 and the heat-generating component 200 can be basically aligned, and the heat-generating component can be better dissipated.
  • an interface material such as thermal conductive silicone grease, liquid metal, etc. with high thermal conductivity
  • the interface material through which the heat dissipation element 100 and the heat-generating component 200 are closely adhered, is beneficial to ensure the heat conduction and heat dissipation effect.
  • a base plate 140 may be provided on the main frame 110, the base plate 140 is connected to the main frame 110, and covers a plurality of heat dissipation holes, and the bottom surface of the base plate 140 is connected to the heat-generating component 200 through the interface material coated on the heat-generating component 200.
  • the heat can be transferred to the inner fins 120 in a timely and uniform manner.
  • the heat conduction paths are the heat source chip (heat-generating component 200 ), the base plate 14 , the main body frame 110 , the inner fins 120 and the outer fins 130 in this order.
  • the internal fins 120 are multi-level, and each level of internal fins 120 is disposed in the internal space, and the internal space is divided into a plurality of heat dissipation holes, wherein the n+1-th level of internal fins 120 is disposed in the inner space. In the heat dissipation hole surrounded by the n-th level of internal fins 120 and the internal space, where n is a positive integer.
  • each level of inner fins 120 includes first fins 121 and second fins 122 arranged in a crossed manner, and each of the first fins 121 and each of the second fins 122 is connected to The upper level internal fins 120 or the main body frame 110 are connected.
  • the first rib 121 and the second rib 122 are formed substantially at right angles.
  • the main body frame 110 is formed in a substantially annular shape
  • the first rib 121 and the second rib 122 are formed in a substantially right angle
  • the first-level internal rib 120 can divide the circular internal space into four equal parts. divided, that is, four heat dissipation holes are formed; the second-level internal fins 120 further divide each heat dissipation hole into four parts, and the internal space is divided into sixteen heat dissipation holes at this time.
  • the third-pole internal fins 120 Divide the interior space into sixty-four vents, and so on.
  • the thickness of the inner fins 120 may satisfy the following formula:
  • D j represents the thickness of the j-th level internal fins 120 , 1 ⁇ j ⁇ n+1, D 1 represents the thickness of the first-level internal fins 120 , and k is a constant less than 1.
  • the thermal resistance of heat transfer between the internal fins 120 of each stage can be made smaller, which is beneficial to improve the heat dissipation efficiency.
  • the constant k can be any value between 0 and 1.
  • the inventor found that when k ⁇ 1/3, although the number of orthogonal fin series generated is large and the heat exchange area is large, the horizontal direction The heat transfer resistance between the fins and the thermal resistance of the longitudinal fins are greatly increased, resulting in a decrease in the heat dissipation efficiency of the fins; when k>2/3, the heat transfer resistance is reduced, but the fractal series can be generated. less, the heat exchange area is reduced.
  • 1/3 ⁇ k ⁇ 2/3 the heat transfer thermal resistance is relatively small, and sufficient orthogonal fin series and large enough heat transfer area are maintained, so that a better heat dissipation effect can be achieved. Preferred.
  • k about 1/2
  • the best heat dissipation effect can be achieved, so it is more preferable.
  • k may also take other values, and the embodiments of the present disclosure do not make specific requirements or limitations on the value of k.
  • the heat exchange surface area can be increased by arranging the inner fins 120, and each stage of the inner fins 120 arranged in multiple stages can be adjusted according to the principle of bionics (ie, the above-mentioned design formula for the thickness of the inner fins 120).
  • the thickness of the chip is designed to further optimize the thermal path, lower the thermal resistance, and speed up the thermal response, which provides an effective solution to the heat dissipation problem of the high-power heat source chip in a limited space.
  • this The disclosure has the advantages of no noise, no heat dissipation power consumption, less space requirement, and simple system.
  • the external fins 130 are multi-stage, wherein the first-stage external fins 130 are connected to the main body frame 110 and extend away from the main body frame 110 , and the m+1-th external rib 130 is connected to the m-th stage. One end of the outer fins 130 away from the main body frame 110 is connected, and the m+1-th level outer fins 130 and the m-th level outer fins 130 are arranged to form an angle, wherein m is a positive integer.
  • the outer fins 130 are generally formed in a tree shape extending outward in sequence.
  • the number of the m-th level external fins 130 is multiple, and each m-th level external fin 130 is connected with two m+1-th level external fins 130 , and two m+1-th level external fins 130 are connected to each other.
  • the angle formed by the stage outer fin 130 and the mth stage outer fin 130 is equal.
  • the number of the outer fins 130 of the lower stage is twice the number of the outer fins 130 of the upper stage.
  • each m-th level outer fin 130 may also be connected with more than two m+1-th level outer fins 130 .
  • the first-stage outer fins 130 are connected to the main body frame 110 at a distance from each other, and extend in a direction away from the main body frame 110 .
  • the second-stage outer fins 130 are connected to the first-stage outer fins 130 and further extend in a direction away from the main body frame 110 , so that heat is further away from the main body frame 110 and the heat generating component 200 .
  • the third-stage outer fins 130 are connected with the second-stage outer fins 130 and extend further away from the main body frame 110 to keep heat further away from the main body frame 110 and the heat generating component 200 .
  • the length of the outer fins 130 may satisfy the following formula:
  • L i represents the length of the outer fins 130 of the i-th stage, 1 ⁇ i ⁇ m+1, L 1 represents the length of the outer fins 130 of the first stage, and A is a constant.
  • A is the ratio of the length of the outer fins 130 of the lower stage to the length of the outer fins 130 of the upper stage.
  • the inventor's research found that when A ⁇ 1/2, the length of the outer fins 130 to spread evenly around is limited, and the heat transfer specific surface area cannot be effectively increased, and only the primary fins bear the main heat dissipation requirements, and the heat dissipation performance is limited;
  • A>1 the length of the next-level fins is greater than the length of the previous-level fins, and the fractal series of the outer fins 130 in the limited space will decrease, that is, the number of branches of the outer fins 130 will decrease.
  • the equivalent heat exchange area is greatly reduced, and the heat transfer resistance will also increase.
  • 1/2 ⁇ A ⁇ 1 the length, number of stages and the uniform diffusion of the outer fins 130 to the surrounding are all appropriate to ensure sufficient equivalent exchange area, and the heat transfer resistance is moderate, so the heat dissipation performance is excellent, so the preferred .
  • the thickness of the outer fins 130 may satisfy the following formula:
  • D i represents the thickness of the outer fins 130 of the i-th level, 1 ⁇ i ⁇ m+1, D 1 represents the thickness of the outer fins 130 of the first level, and B is a constant less than 1.
  • B is a constant less than 1.
  • the heat transfer resistance of the outer fins 130 of the next stage can not be increased too fast, and the heat dissipation capacity of the outer fins 130 can be fully utilized and waste can be reduced, so it is preferable to .
  • the thermal resistance of heat transfer between each stage can be made smaller, which is beneficial to improve the heat dissipation efficiency.
  • the constants k and B may be set to be equal constants or unequal constants.
  • the thicknesses of the first-stage inner fins 120 , the thickness of the main frame 110 and the first-stage outer fins 130 may be equal, and the above-mentioned constants k and B may also be set to equal constants less than 1.
  • the angle formed by the m+1-th level outer fin 130 and the m-th level outer fin 130 may satisfy the following formula:
  • represents the angle formed by the m+1-th level external fins 130 and the m-th level external fins 130
  • C represents the number of the m+1-th level external fins 130 .
  • the angle ⁇ and the number of branches of the surrounding tree-like outer fins 130 can be adjusted appropriately, so as to prevent the cross-over phenomenon of the outer fins 130 at the end.
  • An embodiment of the present disclosure provides an electronic device including any of the heat dissipation elements 100 described above.
  • the internal fins 120 are located in the internal space enclosed by the main frame 110 and divide the internal space into a plurality of heat dissipation holes.
  • the inner fins 120 may be configured to connect with heat generating components 200 of the electronic device to transfer heat to the inner fins 120 .
  • the plurality of heat dissipation holes can uniformly and quickly transfer the heat on the heat generating component 200 to the inner fins 120 and further to the outer fins 130 , so as to improve the heat dissipation effect.
  • the outer fins 130 extend in a direction away from the main frame 110 , which can transfer heat to a region away from the heat-generating component 200 , and increase the heat exchange area to improve radiation and convection heat exchange efficiency, thereby improving heat dissipation capacity.
  • the heat dissipation element and electronic device provided by the embodiments of the present disclosure can help to improve the heat dissipation effect, and can transfer heat to the area away from the heat generating component, and increase the heat exchange area to improve the radiation and convection heat exchange efficiency, thereby improving the heat dissipation capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本公开实施例提供一种散热元件和电子设备,涉及散热技术领域。该散热元件包括主体框架、内部肋片和外部肋片,主体框架围成内部空间,内部肋片与主体框架连接,并将内部空间分隔为多个散热孔,外部肋片与主体框架连接,并朝远离内部空间的方向延伸。本公开实施例可以使热量从中心向边缘扩散,有利于提升散热能力。

Description

散热元件和电子设备
相关申请的交叉引用
本公开要求于2021年2月2日提交中国专利局的申请号为2021101448405、名称为“散热元件和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及散热技术领域,具体而言,涉及一种散热元件和电子设备。
背景技术
随着电子产品性能的逐渐提升,其芯片的频率和功耗也越来越高,以核心元件CPU(Central Processing Unit,中央处理器)为例,其产热和频率成正比,如果不及时导出热量,将会降低CPU的工作性能,严重时还会造成永久性的硬件损坏。在一些体积较小且有一定散热空间的电子产品(如路由器、音响等)中,常使用添加高导热率的肋片的方式提高散热效果,但其传热效果有限,无法满意日益增长的散热需求。
发明内容
本公开的目的在于提供一种散热元件和电子设备,其可以使热量从中心向边缘扩散,有利于提升散热能力。
本公开的实施例是这样实现的:
本公开实施例提供一种散热元件,包括主体框架、内部肋片和外部肋片,所述主体框架围成内部空间,所述内部肋片与所述主体框架连接,并将所述内部空间分隔为多个散热孔,所述外部肋片与所述主体框架连接,并朝远离所述内部空间的方向延伸。可选地,所述内部肋片为多级,每一级所述内部肋片均设置在所述内部空间内,并将所述内部空间分隔成多个所述散热孔,其中,第n+1级内部肋片设置于第n级内部肋片与所述内部空间围成的散热孔内,其中,n为正整数。
可选地,每一级所述内部肋片中均包括以交叉的方式设置的第一肋片和第二肋片,各个所述第一肋片和各个所述第二肋片与上一级内部肋片或所述主体框架连接。
可选地,所述内部肋片的厚度满足以下公式:
D j=D 1*k j-1
式中,D j表示第j级内部肋片的厚度,1≤j≤n+1,D 1表示第一级内部肋片的厚度,k为 小于1的常数。
可选地,所述k的范围为1/3<k<2/3。
可选地,所述外部肋片为多级,其中,第一级外部肋片与所述主体框架连接,并朝远离所述主体框架的方向延伸,第m+1级外部肋片与第m级外部肋片的远离所述主体框架的一端连接,且所述第m+1级外部肋片与所述第m级外部肋片以形成角的方式设置,其中,m为正整数。
可选地,第m级外部肋片的数量为多个,且各个所述第m级外部肋片均与两个第m+1级外部肋片连接,且所述两个第m+1级外部肋片与所述第m级外部肋片所成的角相等。
可选地,所述外部肋片的长度满足以下公式:
L i=L 1*A i-1
式中,L i表示第i级外部肋片的长度,1≤i≤m+1,L 1表示第一级外部肋片的厚度,A为常数。
可选地,所述A的范围为1/2<A<1。
可选地,所述外部肋片的厚度满足以下公式:
D i=D 1*B i-1
式中,D i表示第i级外部肋片的厚度,1≤i≤m+1,D 1表示第一级外部肋片的厚度,B为小于1的常数。
可选地,所述B的范围为1/3<B<2/3。
可选地,所述第m+1级外部肋片与所述第m级外部肋片所形成的角满足以下公式:
α≥(180-360/C)°
式中,α表示所述第m+1级外部肋片与所述第m级外部肋片所形成的角,C表示所述第m+1级外部肋片的数量。
可选地,所述主体框架的形状与所述发热部件的主体形状相似。
可选地,所述主体框架大致形成为环状。
可选地,所述主体框架大致形成为圆环状,其围成的内部空间也对应地形成为圆形。
本公开实施例提供一种电子设备,包括如上述任一实施例的散热元件。
可选地,在所述主体框架上设置基底板材,所述基底板材与所述主体框架连接,并覆盖多个散热孔。
可选地,在所述电子设备的发热部件上涂覆高导热率的界面材料。
可选地,所述基底板材的底面经由涂覆在所述发热部件上的所述界面材料与所述发热部件接触。
可选地,所述界面材料为导热硅脂或者液态金属。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的散热元件与电子设备的发热部件连接的示意图;
图2为本公开实施例提供的散热元件的结构示意图;
图3为图2中的散热元件在另一视角下的结构示意图;
图4为本公开实施例提供的内部肋片的结构示意图;
图5为本公开实施例提供的多级内部肋片的递推关系示意图;
图6为本公开实施例提供的多级外部肋片的递推关系示意图。
附图标记:100-散热元件;110-主体框架;120-内部肋片;121-第一肋片;122-第二肋片;130-外部肋片;140-基底板材;200-发热部件。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾 斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
如图1至图3所示,本公开实施例提供一种散热元件100。该散热元件100可以配置成对电子产品的发热部位散热,并起到良好的散热效果。
需要指出的是,本公开实施例提供的散热元件100可以应用在多种电子设备中,包括但不限于路由器、音箱等。本公开实施例对于具体的电子设备不做具体要求和限定,可以配置成对电子设备的处理芯片或者其他发热部件200进行散热。利用本公开实施例提供的散热元件100可以将热量从中心向边缘扩散,从而有利于起到更好的散热效果。
在本公开实施例中,散热元件100包括主体框架110、内部肋片120和外部肋片130,主体框架110围成内部空间,内部肋片120与主体框架110连接,以将热量导向内部肋片120,并将内部空间分隔为多个散热孔,多个散热孔可以使发热部件200的热量均匀快速地传递至内部肋片120,并进一步传递至外部肋片130,从而有利于提升散热效果,外部肋片130与主体框架110连接,并朝远离内部空间的方向延伸,可以将热量传递至远离发热部件200的区域,可以换热面积来提高辐射和对流换热效率,从而提高散热能力。。
可以理解的是,在本公开实施例中,内部肋片120位于主体框架110围成的内部空间内,并将内部空间分割成多个散热孔。内部肋片120可以配置成与电子设备的发热部件200(比如热源芯片等)连接,以向内部肋片120传递热量。多个散热孔可以将发热部件200上的热量均匀快速地传递至内部肋片120,并进一步传递至外部肋片130,从而有利于提升散热效果。外部肋片130朝远离主体框架110的方向延伸,可以将热量传递至远离发热部件200的区域,通过增加换热面积来提高辐射和对流换热效率,从而提高散热能力。
在本实施例中,主体框架110围成内部空间,该主体框架110大致形成为环状,包括但不限于圆环状、方形环状或者其他不规则的环状。如图所示,主体框架110大致形成为圆环状,其围成的内部空间也对应地形成为圆形。主体框架110的形状可以与待散热的发热部件200的主体形状相似,以便于将主体框架110与发热部件200的中心基本对准,对发热部件起到更好的散热作用。
需要指出的是,该散热元件100在与电子设备的发热部件200连接时,比如电子设备的热源芯片等,可以在发热部件200上涂覆界面材料,比如导热硅脂、液态金属等高导热 率的界面材料,通过该界面材料实现散热元件100与发热部件200的紧密贴合,有利于保证导热和散热效果。同时,可以在主体框架110上设置基底板材140,该基底板材140与主体框架110连接,并覆盖多个散热孔,基底板材140的底面经由涂覆在发热部件200上的界面材料与发热部件200接触,可以将热量及时、均匀地传递给内部肋片120。此时,导热路径依次为热源芯片(发热部件200)、基底板材14、主体框架110、内部肋片120和外部肋片130。
可选地,内部肋片120为多级,每一级内部肋片120均设置在内部空间内,并将内部空间分隔成多个散热孔,其中,第n+1级内部肋片120设置于第n级内部肋片120与内部空间围成的散热孔内,其中,n为正整数。
如图4所示,进一步地,每一级内部肋片120均包括以交叉的方式设置的第一肋片121和第二肋片122,各个第一肋片121和各个第二肋片122与上一级内部肋片120或主体框架110连接。
可选地,第一肋片121和第二肋片122大致形成为直角。如图5所示,主体框架110大致形成为圆环状,第一肋片121和第二肋片122大致形成为直角,第一级内部肋片120可以将圆形的内部空间分隔为四等分,即形成四个散热孔;第二级内部肋片120进一步地将各个散热孔分隔为四份,此时内部空间被分隔成十六个散热孔,进一步地,第三极内部肋片120将内部空间分隔成六十四个散热孔,并依此类推。
可选地,内部肋片120的厚度可以满足以下公式:
D j=D 1*k j-1
式中,D j表示第j级内部肋片120的厚度,1≤j≤n+1,D 1表示第一级内部肋片120的厚度,k为小于1的常数。
需要指出的是,在按照上述公式设置内部肋片120的厚度时,可以使每一级内部肋片120之间的热量传递的热阻更小,有利于提升散热效率。
可选地,常数k可以在0到1之间任意取值,经发明人研究发现,当k<1/3时,虽然生成的正交肋片级数大,换热面积大,但水平方向肋片之间的传热热阻以及纵向肋片自身的热阻都大幅增加,导致肋片的散热效率降低;当k>2/3时,传热热阻降低,但可生成的分形级数少,换热面积减小。当1/3<k<2/3时,传热热阻相对较小,并保持足够多的正交肋片级数以及足够大的换热面积,从而可以起到更好的散热效果,因而优选。在k=1/2左右时,可以起到最好的散热效果,因而进一步优选。当然,并不仅限于此,在本公开的其他实施例中,k还可以取其他值,本公开实施例对于k的取值不做具体要求和限定。
在本公开实施例中,通过设置内部肋片120可以增加换热表面积,可以根据仿生学原理(即上述关于内部肋片120的厚度设计公式)对多级设置的内部肋片120的每一级的厚 度进行设计,从而进一步优化热路径,使热阻变低、加快热响应速度,为高功耗热源芯片在有限空间内的散热问题提供了有效的解决方法,相比传统风冷散热,本公开具有无噪音,无散热功耗、空间需求少、系统简单的优势。
可选地,外部肋片130为多级,其中,第一级外部肋片130与主体框架110连接,并朝远离主体框架110的方向延伸,第m+1级外部肋片130与第m级外部肋片130的远离主体框架110的一端连接,且第m+1级外部肋片130与第m级外部肋片130以形成角的方式设置,其中,m为正整数。
可选地,外部肋片130大致形成为树状依次向外延伸。
在本实施例中,第m级外部肋片130的数量为多个,且各个第m级外部肋片130均与两个第m+1级外部肋片130连接,且两个第m+1级外部肋片130与第m级外部肋片130所形成的角相等。
也就是说,在实施例中,下一级外部肋片130的数量是上一级外部肋片130的数量的两倍。当然,并不仅限于此,可选地,各个第m级外部肋片130也可以与多于两个的第m+1级外部肋片130连接。如图6所示,在m=1时,第一级外部肋片130相互间隔地与主体框架110连接,并朝远离主体框架110的方向延伸。在m=2时,第二级外部肋片130与第一级外部肋片130连接,并进一步沿远离主体框架110的方向延伸,以使热量进一步远离主体框架110和发热部件200。在m=3时,第三级外部肋片130与第二级外部肋片130连接,并进一步地远离主体框架110延伸,以使热量进一步远离主体框架110和发热部件200。
可选地,外部肋片130的长度可以满足以下公式:
L i=L 1*A i-1
式中,L i表示第i级外部肋片130的长度,1≤i≤m+1,L 1表示第一级外部肋片130的长度,A为常数。
需要指出的是,在按照上述公式设置外部肋片130的长度时,可以使每一级之间的热量传递的热阻更小,有利于提升散热效率。在上述公式中,A为下一级外部肋片130的长度与上一级外部肋片130的长度的比值。经发明人研究发现,当A<1/2时,外部肋片130向四周均匀扩散的长度有限,不能够有效的增加传热比表面积,只靠初级肋片承担主要散热需求,散热性能有限;当A>1时,下一级肋片的长度大于上一级肋片的长度,则在有限空间内外部肋片130的分形级数就会减小,即外部肋片130的分支数变少、等效换热面积大幅降低,传热热阻也会增大。当1/2<A<1时,外部肋片130向四周均匀扩散的长度、级数以及均较为适当,保证足够的等效换面积,且传热热阻适中,因此散热性能优异,因而优选。
可选地,外部肋片130的厚度可以满足以下公式:
D i=D 1*B i-1
式中,D i表示第i级外部肋片130的厚度,1≤i≤m+1,D 1表示第一级外部肋片130的厚度,B为小于1的常数。经发明人研究发现,当B<1/3时,下一级外部肋片130的厚度缩减的太快,变得非常的薄,这样将大大增加了外部肋片130的传热热阻,热量无法及时的往下一级外部肋片130传递,对传热造成阻碍作用;当B>2/3时,上下级外部肋片130等宽,但由于外部肋片130分支数量增加,等效的热传导面积不断增加,保持同等的厚度会降低外部肋片130的散热效率,造成不必要的材料浪费。当1/3<B<2/3时,既能使下一级外部肋片130的传热热阻不增加得过快,又能充分发挥外部肋片130的散热能力并减少浪费,因而优选。当B=1/2时,能够满足大多数场景的应用需求,使散热路径的热阻尽可能的低,传热效果最佳,因而进一步优选。
需要指出的是,在按照上述公式设置外部肋片130的厚度时,可以使每一级之间的热量传递的热阻更小,有利于提升散热效率。同时,也应当理解的是,在外部肋片130和内部肋片120的厚度设计中,可以将常数k和B设置为相等的常数,也可以设置为不相等的常数。
可选地,第一级内部肋片120的厚度、主体框架110的厚度以及第一级外部肋片130的厚度可以相等,上述的常数k、B也可以设置为小于1的相等的常数。
可选地,第m+1级外部肋片130与第m级外部肋片130所形成的角可以满足以下公式:
α≥(180-360/C)°
式中,α表示第m+1级外部肋片130与第m级外部肋片130所形成的角,C表示第m+1级外部肋片130的数量。
应当理解的是,可以适当调整四周树状的外部肋片130的角α和分支数量,以防止末端的外部肋片130出现交叉现象。外部肋片130的长度比越大,级数越多,向四周延展的范围越大,可根据实际的散热空间确定上述参数。
本公开实施例提供一种电子设备,包括如上述任一散热元件100。
如图1至图6所示,本公开实施例提供的散热元件100和电子设备:内部肋片120位于通过主体框架110围成的内部空间内,并将内部空间分割成多个散热孔。内部肋片120可以配置成与电子设备的发热部件200连接,以向内部肋片120传递热量。多个散热孔可以将发热部件200上的热量均匀快速地传递至内部肋片120,并进一步传递至外部肋片130,从而有利于提升散热效果。外部肋片130朝远离主体框架110的方向延伸,可以将热量传递至远离发热部件200的区域,通过增加换热面积来提高辐射和对流换热效率,从而提高散热能力。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来 说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的散热元件和电子设备,能够有利于提升散热效果,可以将热量传递至远离发热部件的区域,通过增加换热面积来提高辐射和对流换热效率,从而提高散热能力。

Claims (20)

  1. 一种散热元件,其特征在于,包括主体框架、内部肋片和外部肋片,所述主体框架围成内部空间,所述内部肋片与所述主体框架连接,并将所述内部空间分隔为多个散热孔,所述外部肋片与所述主体框架连接,并朝远离所述内部空间的方向延伸。
  2. 根据权利要求1所述的散热元件,其特征在于,所述内部肋片为多级,每一级所述内部肋片均设置在所述内部空间内,并将所述内部空间分隔成多个所述散热孔,其中,第n+1级内部肋片设置于第n级内部肋片与所述内部空间围成的散热孔内,其中,n为正整数。
  3. 根据权利要求2所述的散热元件,其特征在于,每一级所述内部肋片中均包括以交叉的方式设置的第一肋片和第二肋片,各个所述第一肋片和各个所述第二肋片与上一级内部肋片或所述主体框架连接。
  4. 根据权利要求2或3所述的散热元件,其特征在于,所述内部肋片的厚度满足以下公式:
    D j=D 1*k j-1
    式中,D j表示第j级内部肋片的厚度,1≤j≤n+1,D 1表示第一级内部肋片的厚度,k为小于1的常数。
  5. 根据权利要求4所述的散热元件,其特征在于,所述k的范围为1/3<k<2/3。
  6. 根据权利要求1至5中任一项所述的散热元件,其特征在于,所述外部肋片为多级,其中,第一级外部肋片与所述主体框架连接,并朝远离所述主体框架的方向延伸,第m+1级外部肋片与第m级外部肋片的远离所述主体框架的一端连接,且所述第m+1级外部肋片与所述第m级外部肋片以形成角的方式设置,其中,m为正整数。
  7. 根据权利要求6所述的散热元件,其特征在于,第m级外部肋片的数量为多个,且各个所述第m级外部肋片均与两个第m+1级外部肋片连接,且所述两个第m+1级外部肋片与所述第m级外部肋片所成的角相等。
  8. 根据权利要求6或7所述的散热元件,其特征在于,所述外部肋片的长度满足以下公式:
    L i=L 1*A i-1
    式中,L i表示第i级外部肋片的长度,1≤i≤m+1,L 1表示第一级外部肋片的长度,A为常数。
  9. 根据权利要求8所述的散热元件,其特征在于,所述A的范围为1/2<A<1。
  10. 根据权利要求6或7所述的散热元件,其特征在于,所述外部肋片的厚度满足以下公式:
    D i=D 1*B i-1
    式中,D i表示第i级外部肋片的厚度,1≤i≤m+1,D 1表示第一级外部肋片的厚度,B为小于1的常数。
  11. 根据权利要求10所述的散热元件,其特征在于,所述B的范围为1/3<B<2/3。
  12. 根据权利要求6或7所述的散热元件,其特征在于,所述第m+1级外部肋片与所述第m级外部肋片所形成的角满足以下公式:
    α≥(180-360/C)°
    式中,α表示所述第m+1级外部肋片与所述第m级外部肋片所形成的角,C表示所述第m+1级外部肋片的数量。
  13. 根据权利要求1~12中任一项所述的散热元件,其特征在于,所述主体框架的形状与所述发热部件的主体形状相似。
  14. 根据权利要求1~12中任一项所述的散热元件,其特征在于,所述主体框架大致形成为环状。
  15. 根据权利要求14所述的散热元件,其特征在于,所述主体框架大致形成为圆环状,其围成的内部空间也对应地形成为圆形。
  16. 一种电子设备,其特征在于,包括如权利要求1-15中任一项所述的散热元件。
  17. 根据权利要求16所述的电子设备,其特征在于,在所述主体框架上设置基底板材,所述基底板材与所述主体框架连接,并覆盖多个散热孔。
  18. 根据权利要求16或17所述的电子设备,其特征在于,在所述电子设备的发热部件上涂覆高导热率的界面材料。
  19. 根据权利要求18所述的电子设备,其特征在于,所述基底板材的底面经由涂覆在所述发热部件上的所述界面材料与所述发热部件接触。
  20. 根据权利要求18或19所述的电子设备,其特征在于,所述界面材料为导热硅脂或者液态金属。
PCT/CN2021/087911 2021-02-02 2021-04-16 散热元件和电子设备 WO2022165993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21908084.3A EP4068933A4 (en) 2021-02-02 2021-04-16 HEAT DISSIPATION ELEMENT AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110144840.5 2021-02-02
CN202110144840.5A CN112969341B (zh) 2021-02-02 2021-02-02 散热元件和电子设备

Publications (1)

Publication Number Publication Date
WO2022165993A1 true WO2022165993A1 (zh) 2022-08-11

Family

ID=76271966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087911 WO2022165993A1 (zh) 2021-02-02 2021-04-16 散热元件和电子设备

Country Status (3)

Country Link
EP (1) EP4068933A4 (zh)
CN (1) CN112969341B (zh)
WO (1) WO2022165993A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285636A (ja) * 1985-06-13 1986-12-16 New Japan Radio Co Ltd 進行波管
CN101394730A (zh) * 2008-04-01 2009-03-25 北京航空航天大学 分形散热器
CN102034773A (zh) * 2010-11-08 2011-04-27 东南大学 构形树状式热管散热器
CN102563575A (zh) * 2010-12-16 2012-07-11 金松山 Led灯具的隔离型散热装置
CN203115915U (zh) * 2013-01-29 2013-08-07 广州市莱帝亚照明科技有限公司 一种led工矿灯散热结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8037927B2 (en) * 2006-11-16 2011-10-18 CUI Global, Inc. Cooling device for an electronic component
KR101181156B1 (ko) * 2011-12-23 2012-09-17 이용훈 공냉식 히트싱크
CN111132524A (zh) * 2020-01-16 2020-05-08 天津商业大学 一种电子产品散热器
CN212081682U (zh) * 2020-04-20 2020-12-04 珠海格力电器股份有限公司 半导体换热器及半导体空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285636A (ja) * 1985-06-13 1986-12-16 New Japan Radio Co Ltd 進行波管
CN101394730A (zh) * 2008-04-01 2009-03-25 北京航空航天大学 分形散热器
CN102034773A (zh) * 2010-11-08 2011-04-27 东南大学 构形树状式热管散热器
CN102563575A (zh) * 2010-12-16 2012-07-11 金松山 Led灯具的隔离型散热装置
CN203115915U (zh) * 2013-01-29 2013-08-07 广州市莱帝亚照明科技有限公司 一种led工矿灯散热结构

Also Published As

Publication number Publication date
CN112969341B (zh) 2022-06-07
EP4068933A4 (en) 2023-10-11
CN112969341A (zh) 2021-06-15
EP4068933A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
US7640968B2 (en) Heat dissipation device with a heat pipe
US3217793A (en) Heat transfer
US20090262505A1 (en) Heat radiator
US11617284B2 (en) Assemblies including heat dispersing elements and related systems and methods
US9795066B2 (en) Inverter
US20170105315A1 (en) Heat conductive plastic radiator and communicaiton device
US6691769B2 (en) Heat sink for convection cooling in horizontal applications
US20110048675A1 (en) Heat sink
US20150096720A1 (en) Heat dissipation module
US20060185821A1 (en) Thermal dissipation device
US20120073794A1 (en) Heat dissipation device with multiple heat conducting pipes
US20220214120A1 (en) Heat sink
WO2022165993A1 (zh) 散热元件和电子设备
US20210063090A1 (en) Inverter And Heat Dissipation Device Thereof
US20100264790A1 (en) Computer enclosure
CN218630720U (zh) 散热装置
US20120181000A1 (en) Heat dissipation assembly
WO2019242697A1 (zh) 具有温度梯度的一体式散热器
US20170031394A1 (en) A heat-dissipating device including a vapor chamber and a radial fin assembly
US20150013955A1 (en) Heat sink
US20160070319A1 (en) Heat sink
JP2003188327A (ja) 熱放散モジュール
CN110739283A (zh) 一种散热器
US20080190590A1 (en) Pneumatically cooled enclosed finned heat sinks
US20190033930A1 (en) Cooling device for use in heat dissipation associated with electronic components

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021908084

Country of ref document: EP

Effective date: 20220629

NENP Non-entry into the national phase

Ref country code: DE