WO2022165933A1 - 一种基于器件端的不良光器件电容元件漏电测试系统及测试方法 - Google Patents

一种基于器件端的不良光器件电容元件漏电测试系统及测试方法 Download PDF

Info

Publication number
WO2022165933A1
WO2022165933A1 PCT/CN2021/081555 CN2021081555W WO2022165933A1 WO 2022165933 A1 WO2022165933 A1 WO 2022165933A1 CN 2021081555 W CN2021081555 W CN 2021081555W WO 2022165933 A1 WO2022165933 A1 WO 2022165933A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
capacitor
rssi
resistor
series
Prior art date
Application number
PCT/CN2021/081555
Other languages
English (en)
French (fr)
Inventor
屈显波
黄祥恩
Original Assignee
桂林芯飞光电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林芯飞光电子科技有限公司 filed Critical 桂林芯飞光电子科技有限公司
Publication of WO2022165933A1 publication Critical patent/WO2022165933A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the invention relates to the field of semiconductor testing, in particular to a leakage testing system and a testing method for a capacitive element of a defective optical device based on a device end.
  • the existing test capacitor adopts the direct test method to measure the capacitance. After charging and discharging the capacitor, the performance test is performed directly. Therefore, only the capacitor in a single independent state can be tested.
  • the existing solution for testing capacitors is a test solution for a single independent capacitor. By charging and discharging the capacitor directly, it can only test the capacitor in a single independent state. It is a direct way to test the capacitor. When the capacitor is assembled with other components in together, existing solutions cannot be tested;
  • Optical devices are finished components that have been packaged with capacitors and other chips. At present, there is no way to test defective capacitors on the optical device side, resulting in defective products flowing out to the client, causing customer complaints and increasing the analysis of defective products by technicians. Time and effort seriously affect future orders.
  • the present invention provides a low-cost, high-efficiency, adjustable resistance, adjustable voltage test system and test method that can screen out bad capacitor components at the device end.
  • the failed capacitors in the optical device are directly screened out at the device end to prevent defective products from being left to customers.
  • the object of the present invention is to provide a device-side-based leakage testing system for capacitive components of defective optical devices, including:
  • a voltmeter (3), an ammeter (7), a variable resistance set and a light receiving device wherein one end of the ammeter (7) and the voltmeter (3) are both grounded, and the other end of the ammeter (7) is connected to the ground.
  • a variable resistance set is connected, and the other end of the variable resistance set is connected with a light-receiving device, and the light-receiving device includes a VCC capacitor (2), a transimpedance amplifier (1), an RSSI capacitor (10) and a detector connected in series (4), one end of the RSSI capacitor (10) is connected to the variable resistor set, one end of the VCC capacitor (2) is grounded, and the other end is connected to the transimpedance amplifier and the voltmeter (3) respectively, One end of the detector (4) is connected to the transimpedance amplifier (1); the variable resistance set is a series circuit and a parallel circuit formed by resistors, and the resistance of the variable resistance set is adjustable, so that the use of the test is different. According to the different requirements for matching resistors in products,
  • variable resistor set is a single resistor.
  • variable resistor set is a series circuit formed by connecting a plurality of resistors in series.
  • variable resistor set is a parallel circuit formed by parallel connection of a plurality of resistors.
  • the voltmeter (3) is a 2400 series digital source voltmeter.
  • the purpose of the present invention is also to provide a device-side-based leakage testing method for defective optical device capacitive elements, comprising the steps of:
  • Step 1 by providing a voltage, obtain the current reading of the ammeter (7) and test whether the RSSI capacitor (10) is a qualified product;
  • Step 2 Test whether the VCC capacitor (2) is a qualified product by supplying a voltage to obtain the current reading of the ammeter (7).
  • the step 1 includes:
  • Step 11 adjust the resistance value of the variable resistance set according to the different requirements of different product types on the matching resistance
  • Step 12 Determine whether the RSSI capacitor (10) is a qualified product according to the current value passing through the variable resistor set.
  • the step 12 includes:
  • Step 121 if the type of the product has a normal demand for resistance, and the variable resistance set is a single first series resistance (9), the current output by the RSSI capacitor (10) will pass through the first series resistance (9). ), and then pass the current data displayed by the ammeter (7); the current passing through the RSSI capacitor (10) will flow through the first series resistor (9).
  • the RSSI capacitor (10) is damaged and fails, the RSSI capacitor (10) has been The breakdown becomes a wire connected to the ground, the resistance of the resistance is very small, and the resistance of the first series resistance (9) is relatively large relative to the RSSI capacitor (10) of the failed product, the current output by the transimpedance amplifier (1) will be.
  • the failed RSSI capacitor (10) is shunted to the ground, resulting in a small current through the first series resistor (9).
  • the current data displayed by the ammeter (7) is very small. It is judged that the RSSI capacitor (10) is damaged and failed; when the RSSI capacitor (10) is a qualified product, the resistance value of the resistance between the RSSI capacitor (10) and the ground is very large, and the resistance value of the first series resistor (9) is relatively large.
  • the quality RSSI capacitor (10) is very small, the current output by the transimpedance amplifier (1) mainly passes through the loop where the first series resistor (9) is located, and the current flowing through the first series resistor (9) will be relatively large.
  • the ammeter ( 7) The displayed current data is very large, and the RSSI capacitor (10) is judged to be a qualified product indirectly through the data display of the ammeter;
  • Step 122 if the type of the product has a large demand for resistance, a second series resistance (6) is connected in series on the loop where the first series resistance (9) through which the output current of the RSSI capacitor (10) passes to increase the loop The total resistance value, so as to match the needs of the circuit; the current output by the RSSI capacitor (10) will pass through the first series resistor (9) and the second series resistor (6), and then through the current data displayed by the ammeter (7); through the RSSI The current of the capacitor (10) will flow through the first series resistor (9) and the second series resistor (6).
  • the RSSI capacitor (10) When the RSSI capacitor (10) is damaged and fails, the RSSI capacitor (10) has been broken down into a wire connected to the ground , the resistance value of the resistor is very small, and the sum of the resistance values of the first series resistor (9) and the second series resistor (6) is relatively large relative to the RSSI capacitor (10) of the failed product, the current output by the transimpedance amplifier (1) It will be shunted to the ground by the failed bad RSSI capacitor (10), resulting in a small current through the first series resistor (9) and the second series resistor (6), and the current data displayed by the ammeter (7) is very high.
  • the RSSI capacitor (10) is indirectly judged to be damaged by the number displayed by the data; when the RSSI capacitor (10) is a qualified product, the resistance value of the resistance between the RSSI capacitor (10) and the ground is very large, at this time the first
  • the current output by the transimpedance amplifier (1) mainly passes through the first series resistor (9) and the second series resistor (10). In the loop where the resistance (6) is located, the current flowing through the first series resistance (9) and the second series resistance (6) will be relatively large.
  • the current data displayed by the ammeter (7) is very large, which is indirectly obtained through the ammeter data display. It is judged that the RSSI capacitor (10) is a qualified product;
  • Step 123 if the type of the product has a small resistance requirement, connect a second resistor (8) in parallel on the circuit of the first series resistance (9) and the second series resistance (6), so that the entire resistance is small to meet the requirements. It is required that the current output by the RSSI capacitor (10) will pass through the parallel circuit formed by the first series resistor (9), the second series resistor (6) and the second resistor (8).
  • the RSSI capacitor (10) When the RSSI capacitor (10) is damaged and fails , the RSSI capacitor (10) has been broken down into a wire connected to the ground, the resistance of the resistance is very small, the parallel circuit formed by the first series resistance (9), the second series resistance (6) and the second resistance (8) When the sum of the resistance values is relatively large relative to the RSSI capacitor (10) of the failed product, the output current of the transimpedance amplifier (1) will be shunted to the ground by the RSSI capacitor (10) of the failed product, resulting in the passage of the first series resistance (10). 9) The current of the parallel circuit formed by the second series resistor (6) and the second resistor (8) is small.
  • the current data displayed by the ammeter (7) is very small, and the RSSI capacitance is indirectly judged by the number displayed by the data. (10) is damage failure; when the RSSI capacitor (10) is a qualified product, the resistance value of the resistance between the RSSI capacitor (10) and the ground is very large.
  • the first series resistance (9) and the second series resistance (6) ) and the second resistor (8) the sum of the resistance values of the parallel circuit is relatively small compared to the RSSI capacitor (10) of the qualified product, the current output by the transimpedance amplifier (1) mainly passes through the first series resistor (9) and the second series resistor (9).
  • the RSSI capacitor (10) is indirectly judged to be a qualified product through the data display of the ammeter;
  • Step 124 if the type of the product has a smaller resistance requirement, continue to connect a third resistor (5) in parallel on the loop formed in the step 123, adjust the overall resistance to meet the requirement, and make the entire resistance smaller to meet the requirement,
  • the current output by the RSSI capacitor (10) will pass through the parallel circuit formed by the first series resistor (9), the second series resistor (6), the second resistor (8) and the third resistor (5). 10)
  • the RSSI capacitor (10) has been broken down into a wire connected to the ground, and the resistance of the resistance is very small.
  • the first series resistance (9), the second series resistance (6), the second resistance (8) ) and the third resistor (5) when the sum of the resistance values of the parallel circuit is relatively large relative to the RSSI capacitor (10) of the failed product, the output current of the transimpedance amplifier (1) will be shunted by the RSSI capacitor (10) of the failed product to the ground, resulting in a smaller current through the parallel circuit formed by the first series resistor (9), the second series resistor (6), the second resistor (8) and the third resistor (5), and the ammeter (7) )
  • the current data displayed is very small, and the RSSI capacitor (10) is indirectly judged to be damaged and failed by the number displayed by the data; when the RSSI capacitor (10) is a qualified product, the resistance value between the RSSI capacitor (10) and the ground is very large.
  • the sum of the resistance values of the parallel circuit formed by the first series resistor (9), the second series resistor (6), the second resistor (8) and the third resistor (5) is relative to the RSSI capacitor (10) of the qualified product.
  • the current output by the transimpedance amplifier (1) mainly passes through the parallel circuit formed by the first series resistor (9), the second series resistor (6), the second resistor (8) and the third resistor (5), and flows through the parallel circuit.
  • the current of the parallel circuit formed by the first series resistor (9), the second series resistor (6), the second resistor (8) and the third resistor (5) will be relatively large.
  • the current data displayed by the ammeter (7) It is very large, and the RSSI capacitor (10) is judged to be a qualified product indirectly through the data display of the ammeter;
  • the steps 121, 122, 123 and 124 are realized by arranging the first electrical switch (11), the second electrical switch (12) and the third electrical switch (13).
  • the first electrical switch (11) will be disconnected, so that the second series resistance (6) will be connected to the series circuit, so that the resistance of the whole circuit will increase to meet the needs of the product;
  • the first series resistance (6) is connected to the series circuit
  • the second electrical switch (12) is closed, so that the second resistance (8) is connected to the circuit to form a parallel relationship with the first series resistance (9), thereby reducing the resistance in the entire circuit
  • the third electrical switch (13) is closed again, so that the third resistance (5) is connected to the circuit to form a parallel relationship with the first series resistance (9), reducing the overall The resistance in the circuit, so as to meet the needs of different products.
  • the step 2 includes:
  • the input voltage When supplying power to the transimpedance amplifier (1), the input voltage will be filtered by the VCC capacitor (2) before reaching the transimpedance amplifier (1).
  • the VCC capacitor (2) When the VCC capacitor (2) is electrostatically charged When damaged or the incoming material itself fails, the VCC capacitor (2) has been broken down into a wire connected to the ground, and the resistance is very small, providing a small voltage value for both ends of the VCC capacitor (2), thereby A loop is formed, the current of the variable resistor set is read through the voltmeter (3), a larger current will be displayed at this time, and the current data is used to determine the damage and failure of the VCC capacitor (2); when the When the VCC capacitor (2) is a qualified product, the resistance between the VCC capacitor (2) and the ground is very large, and a small voltage is provided for both ends of the VCC capacitor (2), thereby forming a loop, through the voltmeter (3) Read the current of the variable resistor set, a small current will be displayed at this time, and use the current data to judge that the VCC
  • the solution of the present invention can directly screen out bad capacitors at the device end, preventing bad products from being left to customers;
  • the scheme of the present invention has high efficiency, and can directly screen out the bad capacitors at the device end in a very short time during the testing process;
  • the resistance of the solution of the present invention is adjustable. When testing different products, the matching resistance requirements are different. In this design, the size of the resistance value is adjusted by parallel and series circuits, so as to meet the needs of mass production of different products;
  • the voltage of the solution of the present invention is adjustable. Different products use different capacitance values. During the testing process, the voltage needs to be selected according to different capacitance values, so as to realize the problem of rapid wire transfer in mass production;
  • This test plan is to indirectly test the capacitance of the optical device, and judge whether the capacitance in the optical device component fails through the change of the indicators on other circuits. Different from the existing direct test method, the direct test method cannot measure the capacitance in the optical device.
  • FIG. 1 is a schematic structural diagram of a leakage test system for capacitive components of defective optical devices based on device terminals according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram and a test schematic diagram of a system in which variable resistors are set as a single resistor according to the first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a system and a test schematic diagram of a series circuit formed by a variable resistor set according to a second embodiment of the present invention
  • FIG. 4 is a schematic structural diagram and a test schematic diagram of a system in which a variable resistor set forms a first parallel circuit according to a third embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a system and a test schematic diagram of a second parallel circuit formed by a variable resistor set according to a fourth embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system and a test schematic diagram for implementing the variable resistor sets according to the first to fourth embodiments of the present invention to form a second parallel circuit through electrical switches.
  • the device-side-based leakage test system for capacitive components of defective optical devices includes: a voltmeter 3, an ammeter 7, a variable resistance set, and a light receiving device, wherein one end of the ammeter 7 and the voltmeter 3 are both Grounding, the other end of the ammeter 7 is connected to the variable resistance set, and the other end of the variable resistance set is connected to the receiving optical device, and the receiving optical device includes the VCC capacitor 2, the transimpedance amplifier 1, the RSSI capacitor 10 and the detector 4 connected in series, One end of the RSSI capacitor 10 is connected to the variable resistor set, one end of the VCC capacitor 2 is grounded, the other end is connected to the transimpedance amplifier and the voltmeter 3 respectively, and one end of the detector 4 is connected to the transimpedance amplifier 1; the variable resistor set is a series connection formed by resistors.
  • the resistance of the variable resistance set can be adjusted, so as to use different requirements for matching resistance when testing different products, by adjusting the voltage value, the current value of the variable resistance set circuit can be obtained, and the received light can be judged by the change of the current value. Whether a capacitor failure has occurred within the device.
  • variable resistor set is a single resistor, a series circuit formed by connecting multiple resistors in series, or a parallel circuit formed by connecting multiple resistors in parallel.
  • the voltmeter 3 selects to use a 2400 series digital source voltmeter.
  • those skilled in the art can also choose other types of voltmeters.
  • Step 1 by providing the voltage, obtain the current reading of the ammeter 7 to test whether the RSSI capacitor 10 is a qualified product;
  • Step 2 by supplying a voltage, obtain the current reading of the ammeter 7 to test whether the VCC capacitor 2 is a qualified product.
  • step 1 includes:
  • Step 11 Adjust the resistance value of the variable resistance set according to the different requirements of different product types on the matching resistance
  • Step 12 according to the current value passing through the variable resistor set, determine whether the RSSI capacitor 10 is a qualified product.
  • step 12 includes:
  • step 121 if the type of product has a normal demand for resistance and the variable resistance set is a single first series resistance 9 , the current output by the RSSI capacitor 10 will pass through the first series resistance 9 , and then pass through the first series resistance 9 .
  • the RSSI capacitor 10 is damaged and fails, the RSSI capacitor 10 has been broken down into a wire connected to the ground, and the resistance of the resistor is very high.
  • the resistance value of the first series resistor 9 When the resistance value of the first series resistor 9 is relatively large relative to the RSSI capacitor 10 of the failed product, the current output by the transimpedance amplifier 1 will be shunted to the ground by the RSSI capacitor 10 of the failed product, resulting in the passage of the first series resistor 9 At this time, the current data displayed by the ammeter 7 is very small. It is indirectly judged that the RSSI capacitor 10 is damaged by the number of data displayed; when the RSSI capacitor 10 is a qualified product, the resistance between the RSSI capacitor 10 and the ground The resistance value is very large. At this time, the resistance value of the first series resistor 9 is very small compared to the RSSI capacitor 10 of the qualified product.
  • the current output by the transimpedance amplifier 1 mainly passes through the loop where the first series resistor 9 is located, and the current that flows through the first series resistor 9 At this time, the current data displayed by the ammeter 7 is very large, and the RSSI capacitor 10 is judged indirectly through the data display of the ammeter to be a qualified product;
  • step 122 if the type of the product has a large demand for resistance, the second series resistance 6 is connected in series on the loop where the first series resistance 9 through which the output current of the RSSI capacitor 10 passes to increase the total resistance value of the loop, Thereby matching the requirements of the circuit; the current output by the RSSI capacitor 10 will pass through the first series resistor 9 and the second series resistor 6, and then through the current data displayed by the ammeter 7; the current through the RSSI capacitor 10 will flow through the first series resistor 9 and the second series resistor 6, when the RSSI capacitor 10 is damaged and fails, the RSSI capacitor 10 has been broken down into a wire connected to the ground, and the resistance of the resistor is very small.
  • the resistance value of the first series resistor 9 and the second series resistor 6 When the sum is relatively large relative to the RSSI capacitor 10 of the failed product, the output current of the transimpedance amplifier 1 will be shunted to the ground by the RSSI capacitor 10 of the failed product, resulting in a relatively high current through the first series resistor 9 and the second series resistor 6. At this time, the current data displayed by the ammeter 7 is very small, and the RSSI capacitor 10 is indirectly judged by the number of data displayed to be damaged and failed; when the RSSI capacitor 10 is a qualified product, the resistance value between the RSSI capacitor 10 and the ground is very high.
  • the current output by the transimpedance amplifier 1 mainly passes through the loop where the first series resistor 9 and the second series resistor 6 are located. , the current flowing through the first series resistance 9 and the second series resistance 6 will be relatively large. At this time, the current data displayed by the ammeter 7 is very large, and the RSSI capacitor 10 is indirectly judged by the data display of the ammeter.
  • step 123 if the type of product has a small demand for resistance, a second resistance 8 is connected in parallel with the circuit of the first series resistance 9 and the second series resistance 6, so that the entire resistance is small to meet the demand, The current output by the RSSI capacitor 10 will pass through the parallel circuit formed by the first series resistor 9, the second series resistor 6 and the second resistor 8. When the RSSI capacitor 10 is damaged and fails, the RSSI capacitor 10 has been broken down into a wire connected to the ground.
  • the resistance of the resistor is very small, when the sum of the resistance values of the parallel circuit formed by the first series resistor 9, the second series resistor 6 and the second resistor 8 is relatively large relative to the RSSI capacitor 10 of the failed product, the output of the transimpedance amplifier 1 The current will be shunted to the ground by the failed bad RSSI capacitor 10, resulting in a smaller current through the parallel circuit formed by the first series resistor 9, the second series resistor 6 and the second resistor 8. At this time, the current displayed by the ammeter 7 The data is very small, and the RSSI capacitor 10 is indirectly judged to be damaged by the number displayed by the data; when the RSSI capacitor 10 is a qualified product, the resistance value between the RSSI capacitor 10 and the ground is very large.
  • the first series resistance 9 When the sum of the resistance values of the parallel circuit formed by the second series resistor 6 and the second resistor 8 is relatively small relative to the RSSI capacitor 10 of the qualified product, the current output by the transimpedance amplifier 1 mainly passes through the first series resistor 9, the second series resistor 6 and the second series resistor 10. In the parallel circuit formed by the resistor 8, the current flowing through the parallel circuit formed by the first series resistor 9, the second series resistor 6 and the second resistor 8 will be relatively large. At this time, the current data displayed by the ammeter 7 is very large. It is displayed indirectly to judge that the RSSI capacitor 10 is a qualified product;
  • step 124 if the type of product has a smaller resistance requirement, continue to connect a third resistor 5 in parallel with the loop formed in step 123, adjust the overall resistance to meet the requirement, and make the entire resistance smaller to meet the requirement,
  • the current output by the RSSI capacitor 10 will pass through the parallel circuit formed by the first series resistor 9, the second series resistor 6, the second resistor 8 and the third resistor 5.
  • the RSSI capacitor 10 is damaged and fails, the RSSI capacitor 10 has been broken down into A wire connected to the ground, the resistance of the resistance is very small, the sum of the resistance values of the parallel circuit formed by the first series resistance 9, the second series resistance 6, the second resistance 8 and the third resistance 5 is relative to the RSSI capacitor 10 of the failed product.
  • the current output by the transimpedance amplifier 1 will be shunted to the ground by the failed and defective RSSI capacitor 10, resulting in a circuit formed by the first series resistor 9, the second series resistor 6, the second resistor 8 and the third resistor 5.
  • the current of the parallel circuit is small.
  • the current data displayed by the ammeter 7 is very small. It is indirectly judged that the RSSI capacitor 10 is damaged by the number of data displayed.
  • the RSSI capacitor 10 is a qualified product, the RSSI capacitor 10 and the ground are connected. The resistance value of the resistor is very large.
  • the total resistance value of the parallel circuit formed by the first series resistor 9, the second series resistor 6, the second resistor 8 and the third resistor 5 is very small compared to the qualified RSSI capacitor 10.
  • the transimpedance amplifier 1 The output current mainly passes through the parallel circuit formed by the first series resistance 9, the second series resistance 6, the second resistance 8 and the third resistance 5, and flows through the first series resistance 9, the second series resistance 6, the second resistance 8
  • the current of the parallel circuit formed with the third resistor 5 will be relatively large.
  • the current data displayed by the ammeter 7 is very large.
  • the RSSI capacitor 10 is judged indirectly through the data display of the ammeter to be a qualified product;
  • steps 121, 122, 123 and 124 are implemented by setting the first electrical switch 11, the second electrical switch 12 and the third electrical switch 13.
  • the The first electrical switch 11 makes the second series resistor 6 connect to the series loop, so that the resistance of the entire loop increases to meet the needs of the product; when the resistance value of the first series resistor 9 is too large, the second electrical switch is closed.
  • the switch 12 enables the second resistor 8 to be connected to the circuit to form a parallel relationship with the first series resistor 9, thereby reducing the resistance in the entire circuit; if the resistance is still too large to exceed the product demand at this time, then close the third electrical switch 13 , so that the third resistor 5 is connected to the circuit to form a parallel relationship with the first series resistor 9, and the resistance in the whole circuit is reduced again, so as to meet the needs of different products.
  • step 2 includes:
  • the input voltage When supplying power to the transimpedance amplifier 1, the input voltage will be filtered by the VCC capacitor 2 before reaching the transimpedance amplifier 1.
  • the VCC capacitor 2 When the VCC capacitor 2 is damaged by static electricity or the incoming material itself fails, the VCC capacitor 2 has been broken down It becomes a wire connected to the ground, the resistance is very small, and a small voltage value is provided for both ends of the VCC capacitor 2, thus forming a loop, and the current of the variable resistance set is read through the voltmeter 3, and a larger value is displayed at this time.
  • VCC capacitor 2 Current, use the current data to judge the damage and failure of VCC capacitor 2; when VCC capacitor 2 is a qualified product, the resistance between VCC capacitor 2 and the ground is very large, providing a small voltage for both ends of VCC capacitor 2, thus forming a loop, through The voltmeter 3 reads the current of the variable resistance set, and a small current will be displayed at this time. Use the current data to judge that the VCC capacitor 2 is a qualified product.
  • the solution of this embodiment can directly screen out bad capacitors at the device end, preventing bad products from being left to customers, low cost to realize the function, convenient for mass production, thereby increasing profits, and high test efficiency, in the process of testing only need In a very short time, bad capacitors can be directly screened out at the device end.
  • the resistance of this embodiment is adjustable. When testing different products, the matching resistance requirements are different. In this design, the resistance value is adjusted by parallel and series circuits, so as to meet the needs of mass production of different products, and the voltage is adjustable. Different products use different capacitance values. During the test process, the voltage needs to be selected according to different capacitance values, so as to realize the problem of fast wire transfer in mass production.
  • This test scheme is to indirectly test the capacitance of the optical device, and judge whether the capacitance in the optical device component fails through the change of the indicators on the other circuits. Different from the logic of the existing direct test method, the direct test method cannot measure the capacitance in the optical device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种基于器件端的不良光器件电容元件漏电测试系统,包括:电压表(3),电流表(7),可变电阻集以及接收光器件,其中电流表(7)与电压表(3)一端均接地,电流表(7)的另一端与可变电阻集连接,可变电阻集另一端与接收光器件连接,接收光器件包括串联连接的VCC电容(2)、跨阻放大器(1)及RSSI电容(10)和探测器(4),RSSI电容(10)一端与可变电阻集连接,VCC电容(2)一端接地,另一端分别连接跨阻放大器(1)以及电压表(3)连接,探测器(4)一端与跨阻放大器(1)连接;可变电阻集为电阻形成的串联或并联电路,可变电阻集的电阻可调,针对不同产品对匹配电阻要求不同,通过调节电压值以及电流值的变化判断接收光器件内是否发生电容失效。还提供了对应的测试方法。

Description

一种基于器件端的不良光器件电容元件漏电测试系统及测试方法 技术领域
本发明涉及半导体测试领域,特别是涉及一种基于器件端的不良光器件电容元件漏电测试系统及测试方法。
背景技术
随着互联网、大数据、人工智能、高清电视的高速发展,对光纤网络传输速率需求越来越高,人类使用各种方法来提高芯片传输速率,随着芯片速率的提高,光器件芯片性能和工艺的要求越来越高,产品生产过程中对工艺要求比较严苛,尤其是在ESD和EOS防护方面,相关措施未做好很容易在生产过程中造成芯片或组件损伤。如图1所示,现有测试电容的采用直接测试方式实施电容测量,给电容进行充电、放电后直接进行性能测试,因此只能测试单个独立状态下的电容,当电容与其他元件组装在一起时,基于目前现有的测试方法和设备,在器件端是无法将被ESD或EOS损伤的电容组件测试出来,导致电容组件已经失效的器件流出,最终在客户端发生产品特性不良及相关质量投诉问题,增加技术人员坏品分析的时间和精力以及质量人员质量异常的整改时间和报告撰写,这是现在行业里面普遍面临的难题。总之,现有技术的缺陷包括:
1、现有测试电容的方案是单个独立电容的测试方案,通过给电容进行充电、放电直接性能测试、只能测试单个独立状态下的电容,是直接方式测试电容,当电容与其他元件组装在一起时,现有的方案无法测试;
2、光器件是已经将电容等芯片一起封装的成品组件,目前没有方法可以将坏品电容在光器件端测试出来,导致不良品流出到客户端,造成客诉问题,增加技术人员坏品分析时间和精力,严重影响未来的订单。
在这种背景下,急需一种能够将封装测试生产过程中损伤或失效的电容组件在器件端筛选出来的测试系统及测试方法。
发明内容
为了克服现有技术的缺陷,本发明提供一种低成本、高效率、可调电阻、可调电压 并能够将不良的电容组件在器件端筛选出来的测试系统和测试方法,通过间接测试原理能够将光器件里面失效的电容在器件端直接筛选出来,防止不良品留至客户。
本发明的目的在于提供一种基于器件端的不良光器件电容元件漏电测试系统,包括:
电压表(3),电流表(7),可变电阻集以及接收光器件,其中所述电流表(7)与所述电压表(3)的一端均接地,所述电流表(7)的另一端与可变电阻集连接,所述可变电阻集另一端与接收光器件连接,所述接收光器件包括串联连接的VCC电容(2)、跨阻放大器(1)以及RSSI电容(10)和探测器(4),所述RSSI电容(10)一端与所述可变电阻集连接,所述VCC电容(2)一端接地,另一端分别连接所述跨阻放大器以及所述电压表(3)连接,所述探测器(4)一端与所述跨阻放大器(1)连接;所述可变电阻集为电阻形成的串联电路和并联电路,所述可变电阻集的电阻可调,从而使用测试不同产品时对匹配电阻的不同要求,通过调节电压值,获得所述可变电阻集电路的电流值,通过电流值的变化判断所述接收光器件内是否发生电容失效。
优选的,所述可变电阻集为单一电阻。
优选的,所述可变电阻集为多个电阻串联形成的串联电路。
优选的,所述可变电阻集为多个电阻并联形成的并联电路。
优选的,所述电压表(3)为2400系列数字源电压表。
本发明的目的还在于提供一种基于器件端的不良光器件电容元件漏电测试方法,包括步骤:
步骤1,通过提供电压,获得所述电流表(7)的电流读数测试RSSI电容(10)是否是合格品;
步骤2,通过提供电压,获得所述电流表(7)的电流读数测试所述VCC电容(2)是否是合格品。
优选的,所述步骤1包括:
步骤11,根据产品种类不同对匹配电阻的不同要求,调节所述可变电阻集的电阻值;
步骤12,根据通过所述可变电阻集的电流数值判断所述RSSI电容(10)是否是合格品。
优选的,所述步骤12包括:
步骤121,若所述产品的种类对电阻需求正常,所述可变电阻集为单一的第一串联 电阻(9)的情况下,RSSI电容(10)输出的电流会经过第一串联电阻(9),再经过电流表(7)显示出来的电流数据;经过RSSI电容(10)的电流会流经第一串联电阻(9),当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)的阻值相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)的阻值相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)所在回路,流经第一串联电阻(9)的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
步骤122,若所述产品的种类对电阻需求偏大时,所述RSSI电容(10)输出电流所经过的第一串联电阻(9)所在的回路上面串联第二串联电阻(6)以增加回路总电阻值,从而匹配电路的需求;RSSI电容(10)输出的电流会经过第一串联电阻(9)和第二串联电阻(6),再经过电流表(7)显示出来的电流数据;经过RSSI电容(10)的电流会流经第一串联电阻(9)和第二串联电阻(6),当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)和第二串联电阻(6)的阻值总和相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)和第二串联电阻(6)的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)和第二串联电阻(6)的阻值总和相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)和第二串联电阻(6)所在回路,流经第一串联电阻(9)和第二串联电阻(6)的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
步骤123,若所述产品的种类对电阻需求偏小时,在第一串联电阻(9)和第二串联电阻(6)的电路上并联一个第二电阻(8),使整个电阻偏小来满足需求,所述RSSI电容(10)输出的电流会经过第一串联电阻(9)、第二串联电阻(6)和第二电阻(8) 构成的并联电路,当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的阻值总和相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的阻值总和相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路,流经第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
步骤124,若所述产品的种类对电阻需求更小,继续在所述步骤123形成的回路上并联一个第三电阻(5),调节整体电阻来满足需求,使整个电阻更小来满足需求,所述RSSI电容(10)输出的电流会经过第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路,当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的阻值总和相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的阻值总和相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路,流经第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流 表数据显示间接来判断RSSI电容(10)是合格品;
优选的,通过设置第一电开关(11)、第二电开关(12)和第三电开关(13)实现所述步骤121,122,123和124,所述当第一串联电阻(9)阻值偏小时,会通过断开第一电开关(11),使得第二串联电阻(6)接入串联回路中,从而使整个回路的电阻增大来满足该产品的需求;当第一串联电阻(9)阻值偏大时,则闭合第二电开关(12),使第二电阻(8)接入电路中与第一串联电阻(9)形成并联关系,从而减少整个电路中的电阻;若此时电阻还是偏大超过产品需求时,则再闭合第三电开关(13),使第三电阻(5)接入电路中与第一串联电阻(9)形成并联关系,再次减少整个电路中的电阻,从而达到不同产品的需求。
优选的,所述步骤2包括:
给所述跨阻放大器(1)供电工作时,输入的电压会经过所述VCC电容(2)进行滤波,然后才到达所述跨阻放大器(1),当所述VCC电容(2)被静电损伤或者来料本身就失效时,所述VCC电容(2)已经被击穿成为一条连接地的导线,电阻很小,为所述VCC电容(2)两端提供一个较小的电压值,从而形成回路,通过所述电压表(3)读取所述可变电阻集的电流,此时会显示一个较大的电流,使用电流数据来判断所述VCC电容(2)损伤失效;当所述VCC电容(2)是合格品时,所述VCC电容(2)与地之间的电阻非常大,为所述VCC电容(2)两端提供一个小电压,从而形成回路,通过所述电压表(3)读取所述可变电阻集的电流,此时会显示一个较小的电流,使用电流数据来判断所述VCC电容(2)是合格品。
本发明的有益效果:
1、本发明方案能够将坏品电容在器件端直接筛选出来,防止不良品留至客户;
2、本发明方案实现功能的成本低,便于量产,从而增加利润;
3、本发明方案效率高,在测试的过程中只需要的极短时间就能够将坏品电容在器件端直接筛选出来;
4、本发明方案电阻可调,在测试不同产品时,对匹配电阻要求是不一样的,本设计通过并联、串联电路来调节电阻值的大小、从而满足量产不同产品的需求;
5、本发明方案电压可调,不同产品时,使用的电容容值是不一样,测试过程中需要根据不同的电容容值来选择电压,从而实现量产中快速转线难题;
6、本测试方案是间接测试光器件电容,通过其他电路上面指标的变化来判断光器 件组件里面电容是否失效,与现有直接测试方式逻辑不同,直接测试方式无法测量光器件里面电容情况。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。本发明的目标及特征考虑到如下结合附图的描述将更加明显,附图中:
附图1为根据本发明实施例的基于器件端的不良光器件电容元件漏电测试系统原理结构图;
附图2为根据本发明第一实施例的可变电阻集为单一电阻的系统原理结构图以及测试原理图;
附图3为根据本发明第二实施例的可变电阻集形成串联电路的系统原理结构图以及测试原理图;
附图4为根据本发明第三实施例的可变电阻集形成第一并联电路的系统原理结构图以及测试原理图;
附图5为根据本发明第四实施例的可变电阻集形成第二并联电路的系统原理结构图以及测试原理图;
附图6为通过电开关实施根据本发明第一到第四实施例的可变电阻集形成第二并联电路的系统原理结构图以及测试原理图。
具体实施方式
参见图1所示,本实施例的基于器件端的不良光器件电容元件漏电测试系统,包括:电压表3,电流表7,可变电阻集以及接收光器件,其中电流表7与电压表3的一端均接地,电流表7的另一端与可变电阻集连接,可变电阻集另一端与接收光器件连接,接收光器件包括串联连接的VCC电容2、跨阻放大器1以及RSSI电容10和探测器4, RSSI电容10一端与可变电阻集连接,VCC电容2一端接地,另一端分别连接跨阻放大器以及电压表3连接,探测器4一端与跨阻放大器1连接;可变电阻集为电阻形成的串联电路和并联电路,可变电阻集的电阻可调,从而使用测试不同产品时对匹配电阻的不同要求,通过调节电压值,获得可变电阻集电路的电流值,通过电流值的变化判断接收光器件内是否发生电容失效。
参见图2-5,可变电阻集为单一电阻、多个电阻串联形成的串联电路或多个电阻并联形成的并联电路。
其中,本实施例中,电压表3选择使用2400系列数字源电压表,当然本领域技术人员也可以选择其他类型的电压表。
本实施例对应的基于器件端的不良光器件电容元件漏电测试方法,包括步骤:
步骤1,通过提供电压,获得电流表7的电流读数测试RSSI电容10是否是合格品;
步骤2,通过提供电压,获得电流表7的电流读数测试VCC电容2是否是合格品。
优选的,步骤1包括:
步骤11,根据产品种类不同对匹配电阻的不同要求,调节可变电阻集的电阻值;
步骤12,根据通过可变电阻集的电流数值判断RSSI电容10是否是合格品。
优选的,步骤12包括:
如图2所示,步骤121,若产品的种类对电阻需求正常,可变电阻集为单一的第一串联电阻9的情况下,RSSI电容10输出的电流会经过第一串联电阻9,再经过电流表7显示出来的电流数据;经过RSSI电容10的电流会流经第一串联电阻9,当RSSI电容10损伤失效时,RSSI电容10已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻9的阻值相对失效坏品的RSSI电容10很大时,跨阻放大器1输出的电流会被失效坏品RSSI电容10分流到地上面,从而导致经过第一串联电阻9的电流较小,此时电流表7显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容10是损伤失效;当RSSI电容10是合格品时候,RSSI电容10与地之间的电阻阻值非常大,此时第一串联电阻9的阻值相对合格品RSSI电容10很小时,跨阻放大器1输出的电流主要经过第一串联电阻9所在回路,流经第一串联电阻9的电流会比较大,此时电流表7显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容10是合格品;
如图3所示,步骤122,若产品的种类对电阻需求偏大时,RSSI电容10输出电流 所经过的第一串联电阻9所在的回路上面串联第二串联电阻6以增加回路总电阻值,从而匹配电路的需求;RSSI电容10输出的电流会经过第一串联电阻9和第二串联电阻6,再经过电流表7显示出来的电流数据;经过RSSI电容10的电流会流经第一串联电阻9和第二串联电阻6,当RSSI电容10损伤失效时,RSSI电容10已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻9和第二串联电阻6的阻值总和相对失效坏品的RSSI电容10很大时,跨阻放大器1输出的电流会被失效坏品RSSI电容10分流到地上面,从而导致经过第一串联电阻9和第二串联电阻6的电流较小,此时电流表7显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容10是损伤失效;当RSSI电容10是合格品时候,RSSI电容10与地之间的电阻阻值非常大,此时第一串联电阻9和第二串联电阻6的阻值总和相对合格品RSSI电容10很小时,跨阻放大器1输出的电流主要经过第一串联电阻9和第二串联电阻6所在回路,流经第一串联电阻9和第二串联电阻6的电流会比较大,此时电流表7显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容10是合格品;
如图4所示,步骤123,若产品的种类对电阻需求偏小时,在第一串联电阻9和第二串联电阻6的电路上并联一个第二电阻8,使整个电阻偏小来满足需求,RSSI电容10输出的电流会经过第一串联电阻9、第二串联电阻6和第二电阻8构成的并联电路,当RSSI电容10损伤失效时,RSSI电容10已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻9、第二串联电阻6和第二电阻8构成的并联电路的阻值总和相对失效坏品的RSSI电容10很大时,跨阻放大器1输出的电流会被失效坏品RSSI电容10分流到地上面,从而导致经过第一串联电阻9、第二串联电阻6和第二电阻8构成的并联电路的电流较小,此时电流表7显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容10是损伤失效;当RSSI电容10是合格品时候,RSSI电容10与地之间的电阻阻值非常大,此时第一串联电阻9、第二串联电阻6和第二电阻8构成的并联电路的阻值总和相对合格品RSSI电容10很小时,跨阻放大器1输出的电流主要经过第一串联电阻9、第二串联电阻6和第二电阻8构成的并联电路,流经第一串联电阻9、第二串联电阻6和第二电阻8构成的并联电路的电流会比较大,此时电流表7显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容10是合格品;
如图5所示,步骤124,若产品的种类对电阻需求更小,继续在步骤123形成的回路上并联一个第三电阻5,调节整体电阻来满足需求,使整个电阻更小来满足需求,RSSI 电容10输出的电流会经过第一串联电阻9、第二串联电阻6、第二电阻8和第三电阻5构成的并联电路,当RSSI电容10损伤失效时,RSSI电容10已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻9、第二串联电阻6、第二电阻8和第三电阻5构成的并联电路的阻值总和相对失效坏品的RSSI电容10很大时,跨阻放大器1输出的电流会被失效坏品RSSI电容10分流到地上面,从而导致经过第一串联电阻9、第二串联电阻6、第二电阻8和第三电阻5构成的并联电路的电流较小,此时电流表7显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容10是损伤失效;当RSSI电容10是合格品时候,RSSI电容10与地之间的电阻阻值非常大,此时第一串联电阻9、第二串联电阻6、第二电阻8和第三电阻5构成的并联电路的阻值总和相对合格品RSSI电容10很小时,跨阻放大器1输出的电流主要经过第一串联电阻9、第二串联电阻6、第二电阻8和第三电阻5构成的并联电路,流经第一串联电阻9、第二串联电阻6、第二电阻8和第三电阻5构成的并联电路的电流会比较大,此时电流表7显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容10是合格品;
如图6所示,通过设置第一电开关11、第二电开关12和第三电开关13实现步骤121,122,123和124,当第一串联电阻9阻值偏小时,会通过断开第一电开关11,使得第二串联电阻6接入串联回路中,从而使整个回路的电阻增大来满足该产品的需求;当第一串联电阻9阻值偏大时,则闭合第二电开关12,使第二电阻8接入电路中与第一串联电阻9形成并联关系,从而减少整个电路中的电阻;若此时电阻还是偏大超过产品需求时,则再闭合第三电开关13,使第三电阻5接入电路中与第一串联电阻9形成并联关系,再次减少整个电路中的电阻,从而达到不同产品的需求。
如图2所示,步骤2包括:
给跨阻放大器1供电工作时,输入的电压会经过VCC电容2进行滤波,然后才到达跨阻放大器1,当VCC电容2被静电损伤或者来料本身就失效时,VCC电容2已经被击穿成为一条连接地的导线,电阻很小,为VCC电容2两端提供一个较小的电压值,从而形成回路,通过电压表3读取可变电阻集的电流,此时会显示一个较大的电流,使用电流数据来判断VCC电容2损伤失效;当VCC电容2是合格品时,VCC电容2与地之间的电阻非常大,为VCC电容2两端提供一个小电压,从而形成回路,通过电压表3读取可变电阻集的电流,此时会显示一个较小的电流,使用电流数据来判断VCC电容2是合格品。
本实施例的方案能够将坏品电容在器件端直接筛选出来,防止不良品留至客户,实现功能的成本低,便于量产,从而增加利润,并且测试效率高,在测试的过程中只需要的极短时间就能够将坏品电容在器件端直接筛选出来。本实施例方案电阻可调,在测试不同产品时,对匹配电阻要求是不一样的,本设计通过并联、串联电路来调节电阻值的大小、从而满足量产不同产品的需求,电压可调,不同产品时,使用的电容容值是不一样,测试过程中需要根据不同的电容容值来选择电压,从而实现量产中快速转线难题。本测试方案是间接测试光器件电容,通过其他电路上面指标的变化来判断光器件组件里面电容是否失效,与现有直接测试方式逻辑不同,直接测试方式无法测量光器件里面电容情况。
虽然本发明已经参考特定的说明性实施例进行了描述,但是不会受到这些实施例的限定而仅仅受到附加权利要求的限定。本领域技术人员应当理解可以在不偏离本发明的保护范围和精神的情况下对本发明的实施例能够进行改动和修改。

Claims (10)

  1. 一种基于器件端的不良光器件电容元件漏电测试系统,其特征在于包括:
    电压表(3),电流表(7),可变电阻集以及接收光器件,其中所述电流表(7)与所述电压表(3)的一端均接地,所述电流表(7)的另一端与可变电阻集连接,所述可变电阻集另一端与接收光器件连接,所述接收光器件包括串联连接的VCC电容(2)、跨阻放大器(1)以及RSSI电容(10)和探测器(4),所述RSSI电容(10)一端与所述可变电阻集连接,所述VCC电容(2)一端接地,另一端分别连接所述跨阻放大器以及所述电压表(3)连接,所述探测器(4)一端与所述跨阻放大器(1)连接;所述可变电阻集为电阻形成的串联电路和并联电路,所述可变电阻集的电阻可调,从而使用测试不同产品时对匹配电阻的不同要求,通过调节电压值,获得所述可变电阻集电路的电流值,通过电流值的变化判断所述接收光器件内是否发生电容失效。
  2. 根据权利要求1所述的一种基于器件端的不良光器件电容元件漏电测试系统,其特征在于:所述可变电阻集为单一电阻。
  3. 根据权利要求1所述的一种基于器件端的不良光器件电容元件漏电测试系统,其特征在于:所述可变电阻集为多个电阻串联形成的串联电路。
  4. 根据权利要求1所述的一种基于器件端的不良光器件电容元件漏电测试系统,其特征在于:所述可变电阻集为多个电阻并联形成的并联电路。
  5. 根据权利要求1所述的一种基于器件端的不良光器件电容元件漏电测试系统,其特征在于:所述电压表(3)为2400系列数字源电压表。
  6. 一种根据权利要求1-5任一所述基于器件端的不良光器件电容元件漏电测试系统的测试方法,其特征在于包括步骤:
    步骤1,通过提供电压,获得所述电流表(7)的电流读数测试RSSI电容(10)是否是合格品;
    步骤2,通过提供电压,获得所述电流表(7)的电流读数测试所述VCC电容(2)是否是合格品。
  7. 根据权利要求6所述的测试方法,其特征在于所述步骤1包括:
    步骤11,根据产品种类不同对匹配电阻的不同要求,调节所述可变电阻集的电阻值;
    步骤12,根据通过所述可变电阻集的电流数值判断所述RSSI电容(10)是否是合格品。
  8. 根据权利要求7所述的测试方法,其特征在于所述步骤12包括:
    步骤121,若所述产品的种类对电阻需求正常,所述可变电阻集为单一的第一串联电阻(9)的情况下,RSSI电容(10)输出的电流会经过第一串联电阻(9),再经过电流表(7)显示出来的电流数据;经过RSSI电容(10)的电流会流经第一串联电阻(9),当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)的阻值相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)的阻值相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)所在回路,流经第一串联电阻(9)的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
    步骤122,若所述产品的种类对电阻需求偏大时,所述RSSI电容(10)输出电流所经过的第一串联电阻(9)所在的回路上面串联第二串联电阻(6)以增加回路总电阻值,从而匹配电路的需求;RSSI电容(10)输出的电流会经过第一串联电阻(9)和第二串联电阻(6),再经过电流表(7)显示出来的电流数据;经过RSSI电容(10)的电流会流经第一串联电阻(9)和第二串联电阻(6),当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)和第二串联电阻(6)的阻值总和相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)和第二串联电阻(6)的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)和第二串联电阻(6)的阻值总和相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)和第二串联电阻(6)所在回路,流经第一串联电阻(9)和第二串联电阻(6)的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
    步骤123,若所述产品的种类对电阻需求偏小时,在第一串联电阻(9)和第二串联电阻(6)的电路上并联一个第二电阻(8),使整个电阻偏小来满足需求,所述RSSI 电容(10)输出的电流会经过第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路,当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的阻值总和相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的阻值总和相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路,流经第一串联电阻(9)、第二串联电阻(6)和第二电阻(8)构成的并联电路的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
    步骤124,若所述产品的种类对电阻需求更小,继续在所述步骤123形成的回路上并联一个第三电阻(5),调节整体电阻来满足需求,使整个电阻更小来满足需求,所述RSSI电容(10)输出的电流会经过第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路,当RSSI电容(10)损伤失效时,RSSI电容(10)已经被击穿成为一条连接地的导线,电阻的阻值很小,第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的阻值总和相对失效坏品的RSSI电容(10)很大时,跨阻放大器(1)输出的电流会被失效坏品RSSI电容(10)分流到地上面,从而导致经过第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的电流较小,此时电流表(7)显示出来的电流数据很小,通过数据显示的数量间接来判断RSSI电容(10)是损伤失效;当RSSI电容(10)是合格品时候,RSSI电容(10)与地之间的电阻阻值非常大,此时第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路的阻值总和相对合格品RSSI电容(10)很小时,跨阻放大器(1)输出的电流主要经过第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构成的并联电路,流经第一串联电阻(9)、第二串联电阻(6)、第二电阻(8)和第三电阻(5)构 成的并联电路的电流会比较大,此时电流表(7)显示出来的电流数据很大,通过电流表数据显示间接来判断RSSI电容(10)是合格品;
  9. 根据权利要求8所述的测试方法,其特征在于通过设置第一电开关(11)、第二电开关(12)和第三电开关(13)实现所述步骤121,122,123和124,所述当第一串联电阻(9)阻值偏小时,会通过断开第一电开关(11),使得第二串联电阻(6)接入串联回路中,从而使整个回路的电阻增大来满足该产品的需求;当第一串联电阻(9)阻值偏大时,则闭合第二电开关(12),使第二电阻(8)接入电路中与第一串联电阻(9)形成并联关系,从而减少整个电路中的电阻;若此时电阻还是偏大超过产品需求时,则再闭合第三电开关(13),使第三电阻(5)接入电路中与第一串联电阻(9)形成并联关系,再次减少整个电路中的电阻,从而达到不同产品的需求。
  10. 根据权利要求6所述的测试方法,其特征在于所述步骤2包括:
    给所述跨阻放大器(1)供电工作时,输入的电压会经过所述VCC电容(2)进行滤波,然后才到达所述跨阻放大器(1),当所述VCC电容(2)被静电损伤或者来料本身就失效时,所述VCC电容(2)已经被击穿成为一条连接地的导线,电阻很小,为所述VCC电容(2)两端提供一个较小的电压值,从而形成回路,通过所述电压表(3)读取所述可变电阻集的电流,此时会显示一个较大的电流,使用电流数据来判断所述VCC电容(2)损伤失效;当所述VCC电容(2)是合格品时,所述VCC电容(2)与地之间的电阻非常大,为所述VCC电容(2)两端提供一个小电压,从而形成回路,通过所述电压表(3)读取所述可变电阻集的电流,此时会显示一个较小的电流,使用电流数据来判断所述VCC电容(2)是合格品。
PCT/CN2021/081555 2021-02-03 2021-03-18 一种基于器件端的不良光器件电容元件漏电测试系统及测试方法 WO2022165933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110152067.7 2021-02-03
CN202110152067.7A CN112710941B (zh) 2021-02-03 2021-02-03 一种基于器件端的不良光器件电容元件漏电测试系统及测试方法

Publications (1)

Publication Number Publication Date
WO2022165933A1 true WO2022165933A1 (zh) 2022-08-11

Family

ID=75549964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081555 WO2022165933A1 (zh) 2021-02-03 2021-03-18 一种基于器件端的不良光器件电容元件漏电测试系统及测试方法

Country Status (2)

Country Link
CN (1) CN112710941B (zh)
WO (1) WO2022165933A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117054796A (zh) * 2023-10-11 2023-11-14 成都光创联科技有限公司 一种光器件测试电路与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068249A (ja) * 2005-08-29 2007-03-15 Hitachi Vehicle Energy Ltd 電気自動車用リーク検出装置
CN101122624A (zh) * 2006-08-09 2008-02-13 日月光半导体制造股份有限公司 检测治具及其检测电容的方法
CN204945287U (zh) * 2015-10-09 2016-01-06 肇庆绿宝石电子科技股份有限公司 一种电容器测试仪
CN111337741A (zh) * 2020-04-17 2020-06-26 常州华威电子有限公司 电解电容漏电流自动测试记录仪
CN111487556A (zh) * 2019-01-28 2020-08-04 日本电产理德股份有限公司 电容器检查装置及电容器检查方法
CN111579910A (zh) * 2020-05-28 2020-08-25 广州鹄志信息咨询有限公司 一种元器件故障电学检测方法
CN111766447A (zh) * 2020-06-19 2020-10-13 珠海市运泰利自动化设备有限公司 一种采用跨导分流结构实现直流阻抗测量的电路及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564338B2 (ja) * 2004-11-17 2010-10-20 ダイハツ工業株式会社 漏電検出装置
CN101295006B (zh) * 2007-04-26 2010-06-09 中芯国际集成电路制造(上海)有限公司 用于电容结构的测试装置及其保护装置
CN103207320B (zh) * 2012-01-17 2016-09-07 海洋王(东莞)照明科技有限公司 电容检测电路
CN108169577B (zh) * 2018-01-26 2020-06-23 京东方科技集团股份有限公司 一种电容检测方法
CN111090060A (zh) * 2020-01-19 2020-05-01 珠海格力新元电子有限公司 一种铝电解电容器极壳检测电路及检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068249A (ja) * 2005-08-29 2007-03-15 Hitachi Vehicle Energy Ltd 電気自動車用リーク検出装置
CN101122624A (zh) * 2006-08-09 2008-02-13 日月光半导体制造股份有限公司 检测治具及其检测电容的方法
CN204945287U (zh) * 2015-10-09 2016-01-06 肇庆绿宝石电子科技股份有限公司 一种电容器测试仪
CN111487556A (zh) * 2019-01-28 2020-08-04 日本电产理德股份有限公司 电容器检查装置及电容器检查方法
CN111337741A (zh) * 2020-04-17 2020-06-26 常州华威电子有限公司 电解电容漏电流自动测试记录仪
CN111579910A (zh) * 2020-05-28 2020-08-25 广州鹄志信息咨询有限公司 一种元器件故障电学检测方法
CN111766447A (zh) * 2020-06-19 2020-10-13 珠海市运泰利自动化设备有限公司 一种采用跨导分流结构实现直流阻抗测量的电路及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117054796A (zh) * 2023-10-11 2023-11-14 成都光创联科技有限公司 一种光器件测试电路与方法
CN117054796B (zh) * 2023-10-11 2023-12-26 成都光创联科技有限公司 一种光器件测试电路与方法

Also Published As

Publication number Publication date
CN112710941B (zh) 2021-06-22
CN112710941A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN208459507U (zh) 避雷器在线监控系统
JP6390359B2 (ja) 太陽光発電システムの検査方法および検査装置
WO2022165933A1 (zh) 一种基于器件端的不良光器件电容元件漏电测试系统及测试方法
US20180348282A1 (en) Method and measurement arrangement for monitoring a production process of a modularly set-up voltage source
CN103837782B (zh) 数据线的检测设备
CN109521391B (zh) 发电机电压互感器绕组匝间短路故障的检测装置及方法
CN101460856B (zh) 用于确定变压器、发电机或电动机的线性电响应的方法
US4424479A (en) Loop fault location
CN116743079A (zh) 光伏组串故障处理方法、装置、光伏管理系统及介质
CN110058189A (zh) 一种基于相位角分析的电能表错接线判断方法
CN206863201U (zh) 一种应用于现场的变压器常用试验仪器比对装置
CN102752623A (zh) 信号测试装置
CN108051699A (zh) 一种变电站互感器二次回路异常带电检测方法及系统
CN105890808A (zh) 用于主变压器的温度校验仪
CN116359704A (zh) 一种ldo芯片的辐照测试系统及方法
CN207133322U (zh) 一种测试装置
CN206848379U (zh) 一种变压器测试仪
CN115856574A (zh) 运算放大器通道性能的测试装置和系统
CN102262203B (zh) 一种在线监测电容套管绝缘状态的装置及其方法
CN110988645B (zh) 晶闸管级均压测试方法、装置
CN107064689B (zh) 一种变压器ta断线的模拟方法及系统
CN112269138A (zh) 一种电源自动切换装置校验设备
CN101387681B (zh) 一种检测大容量电容器隐性击穿的装置
CN220188654U (zh) 老化测试电路和老化测试装置
CN110076098A (zh) 裸电芯端面胶水带痕质检方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923942

Country of ref document: EP

Kind code of ref document: A1