WO2022165845A1 - 一种通信的方法及装置 - Google Patents

一种通信的方法及装置 Download PDF

Info

Publication number
WO2022165845A1
WO2022165845A1 PCT/CN2021/076061 CN2021076061W WO2022165845A1 WO 2022165845 A1 WO2022165845 A1 WO 2022165845A1 CN 2021076061 W CN2021076061 W CN 2021076061W WO 2022165845 A1 WO2022165845 A1 WO 2022165845A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal sequence
indication information
group
groups
Prior art date
Application number
PCT/CN2021/076061
Other languages
English (en)
French (fr)
Inventor
苏立焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/076061 priority Critical patent/WO2022165845A1/zh
Priority to CN202180086760.7A priority patent/CN116686247A/zh
Publication of WO2022165845A1 publication Critical patent/WO2022165845A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and more particularly, to a communication method and apparatus in the field of communication.
  • DMRS demodulation reference signal
  • CDM code division multiplexing
  • OCC orthogonal cover code
  • the network accommodates more DMRS sequences, which doubles the network capacity, but at the same time reduces the effectiveness of transmission due to the reduction of resources used for uplink data transmission. Therefore, both reliability and effectiveness need to be considered.
  • the 24 orthogonal DMRS sequences cannot meet the increasing network capacity requirements, and because of the 24 orthogonal DMRS sequences in the cell, all orthogonal sequences have been used up.
  • the DMRSs of the two cells are necessarily non-orthogonal. Inter-cell DMRS interference is particularly serious when two adjacent cells and terminal devices in the cells are relatively close to each other. Therefore, redesigning the DMRS in this scenario to minimize the DMRS and interference within and between cells is an urgent problem to be solved.
  • the present application provides a communication method and apparatus, and the designed reference sequence can reduce interference between reference signals of adjacent cells.
  • a method of communication is provided, and the method can be performed by a network device.
  • the method may include: the network device determining a first reference signal sequence, where the first reference signal sequence is one reference signal sequence in a group of N reference signal sequences, where N is an integer greater than or equal to 1; the network device then sends the The terminal device sends first indication information to indicate the first reference signal sequence, where the first reference signal sequence is a sequence in a first reference signal sequence group, where the first reference signal sequence group includes the following sequences:
  • serial element number 0 1 2 3 sequence 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j sequence 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j sequence 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
  • sequence 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j sequence 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  • the first indication information may be carried in physical layer signaling, for example, may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • a non-orthogonal DMRS sequence group is designed, which can reduce the interference of DMRSs in adjacent cells, improve the reliability of channel estimation, and improve the flexibility of DMRS configuration.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate the first reference signal sequence group.
  • the network device sends third indication information to the terminal device to indicate M reference signal sequence groups in the N reference signal sequence groups, where M is less than or equal to A positive integer of N.
  • this solution is that before the network device sends the second indication information to the terminal device, that is to say, the network device first indicates to the terminal device M references in the N reference signal sequence groups through the third indication information signal sequence group, and then use the second indication information to indicate to the terminal device one reference signal sequence group among the M reference signal sequence groups, that is, the first reference signal sequence group, and then use the first reference signal sequence group in the first reference signal sequence group.
  • An indication message selects the first reference signal sequence for the terminal device.
  • the third indication information may use high-level signaling, for example, may be notified through radio resource control signaling (radio resource control, RRC) or medium access control signaling (media access control, MAC) or other information.
  • RRC radio resource control
  • MAC medium access control signaling
  • the second indication information and the first indication information may be notified to the terminal device through physical layer signaling, such as DCI.
  • the communication method provided by the present application firstly instructs the terminal equipment to determine M groups of reference signal sequence groups in N groups through high-level signaling, and then instructs the terminal equipment to determine that one of the M groups of reference signal sequences is the first through physical layer signaling.
  • the reference signal sequence group, and the first reference signal sequence in the first reference signal sequence group use the method of high layer signaling and physical layer signaling to jointly indicate, which is beneficial to reduce the load of physical layer signaling and improve the transmission of physical layer signaling reliability and save resources.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • a signal sequence group where M is greater than 0 and less than or equal to N, the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup;
  • the network device sends a cell index to the terminal device, the cell The index is used to indicate the M first reference signal sequence subgroups or the M second reference signal sequence subgroups in the M reference signal sequence groups, wherein the first reference signal sequence group is the M first reference signal sequence subgroups A reference signal sequence subset or one of the M second reference signal sequence subsets.
  • the network device first indicates M reference signal sequence groups in the N reference signal sequence groups for the terminal device through the third indication information, because the reference signal sequence group includes the first reference signal sequence group.
  • the reference signal sequence subgroup and the second reference signal sequence subgroup so it can be understood that the third indication information simultaneously indicates M first reference signal sequence subgroups and M second reference signal sequence subgroups.
  • the network device sends the cell index to the terminal device, which is used to instruct the terminal device to select the first reference signal sequence subgroup or the second reference signal sequence subgroup, in other words, the cell index sent by the network device indicates the The M subgroups shall belong to the same reference sequence subgroup.
  • the terminal device After the terminal device determines the M subgroups, the terminal device receives the second indication information sent by the network device, selects the first reference signal sequence group from the M subgroups according to the second indication information, and then selects the first reference signal sequence group from the M subgroups according to the second indication information, and then according to the first indication information , and the first reference signal sequence is determined from the first reference signal sequence group.
  • the third indication information may be higher layer signaling, for example, may be through RRC signaling or MAC signaling or other information.
  • the second indication information and the first indication information may be physical layer signaling, such as DCI.
  • the non-orthogonal reference signal sequence is configured for the terminal device by combining high-level signaling and physical layer signaling, which saves the signaling overhead of the physical layer and helps to improve the reliability of the physical layer signaling transmission. Because the physical layer signaling can change parameters more flexibly, the network device can flexibly configure reference signal sequences with less interference for the terminal device when indicating non-orthogonal reference sequences, thereby improving the reliability of channel estimation.
  • the reference signal sequence also includes reference signal sequences of neighboring cells, which further improves the flexibility of sequence use.
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • a method of communication is provided, and the method can be performed by a network device.
  • the method includes: the network device determines a first reference signal sequence, where the first reference signal sequence is a reference signal sequence in N reference signal sequence groups, where N is an integer greater than or equal to 1; the network device reports to the terminal The device sends first indication information, where the first indication information is used to indicate a first reference signal sequence group, the first reference signal sequence group is one of the N reference signal sequence groups, and the first reference signal sequence is the first reference signal sequence group.
  • a sequence in a reference signal sequence group the network device sends second indication information to the terminal device, where the second indication information is used to indicate the first reference signal sequence in the first reference signal sequence group.
  • the first indication information and the second indication information may be DCI or other physical layer signaling.
  • the communication method provided by the present application selects the reference signal sequence for the terminal device through physical layer signaling, which is conducive to flexibly changing parameters, that is, the network device can configure different reference signal sequences for the terminal device according to different scenarios or different times or other factors, etc. Therefore, the reliability of channel estimation is improved, and the throughput of the system is further improved.
  • the first reference signal column group may include the following sequence:
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • the communication method provided by the embodiment of the present application is different from the current method for optimizing the design of reference signals in steps.
  • the design of non-orthogonal DMRS sequence groups can reduce the interference between reference signals of adjacent cells.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • the third indication information may be higher layer signaling, for example, may be RRC signaling or MAC signaling or other information.
  • the second indication information and the first indication information may be physical layer signaling, such as DCI.
  • the non-orthogonal reference signal sequence is configured for the terminal device by combining high-level signaling and physical layer signaling, which saves the signaling overhead of the physical layer and helps to improve the reliability of the physical layer signaling transmission. Since physical layer signaling can change parameters more flexibly, the network device can flexibly configure reference signal sequences with less interference for the terminal device when indicating non-orthogonal reference sequences, thereby improving the reliability of channel estimation.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • a signal sequence group wherein M is greater than 0 and less than or equal to N
  • the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is the M One of the reference signal sequence groups; then, the network device sends a cell index to the terminal device, where the cell index is used to indicate the M first reference signal sequence subgroups or the M first reference signal sequence subgroups in the M reference signal sequence groups
  • the second reference signal sequence subgroup wherein the first reference signal sequence group is one of the M first reference signal sequence subgroups or the M second reference signal sequence subgroups.
  • the third indication information may be higher layer signaling, for example, may be through RRC signaling or MAC signaling or other information.
  • the second indication information and the first indication information may be physical layer signaling, such as DCI.
  • the non-orthogonal reference signal sequence is configured for the terminal device by combining high-level signaling and physical layer signaling, which saves the signaling overhead of the physical layer and helps to improve the reliability of the physical layer signaling transmission. Because the physical layer signaling can change parameters more flexibly, the network device can flexibly configure reference signal sequences with less interference for the terminal device when indicating non-orthogonal reference sequences, thereby improving the reliability of channel estimation.
  • the reference signal sequence also includes reference signal sequences of neighboring cells, which further improves the flexibility of sequence use.
  • a communication method in a third aspect, includes: receiving first indication information, and determining a first reference signal sequence according to the first indication information, where the first reference signal sequence is a reference signal sequence in N reference signal sequence groups, where N is greater than or an integer equal to 1, the first reference signal sequence is a sequence in a first reference signal sequence group, and the first reference signal sequence group includes the following sequences:
  • second indication information is received, and the first reference signal sequence group is determined according to the second indication information.
  • third indication information is received, and M reference signal sequence groups in the N reference signal sequence groups are determined according to the third indication information, where M is greater than 0 and less than or equal to N, the first reference signal sequence group is one of the M reference signal sequence groups.
  • third indication information is received, and M reference signal sequence groups in the N reference signal sequence groups are determined according to the third indication information, where M is greater than 0 and less than or equal to N, the reference signal sequence group includes a first reference signal sequence sub-group and a second reference signal sequence sub-group; the cell index is received, and the M reference signal sequence groups in the M reference signal sequence groups are determined according to the cell index.
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • third indication information is received, and M reference signal sequence groups in the N reference signal sequence groups are determined according to the third indication information, where M is greater than 0 and less than or equal to N, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • third indication information is received, where the third indication information is used to indicate M reference signal sequence groups in the N reference signal sequence groups, wherein M Greater than 0 and less than or equal to N, the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • the third indication information is used to indicate M reference signal sequence groups in the N reference signal sequence groups, wherein M Greater than 0 and less than or equal to N
  • the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • a communication method in a fourth aspect, includes: receiving first indication information, and determining a first reference signal sequence group according to the second indication information, where the first reference signal sequence group is one of N reference signal sequence groups, and N is an integer greater than or equal to 1 ; receiving second indication information, and determining a first reference signal sequence according to the first indication information, where the first reference signal sequence is a reference signal sequence in the first reference signal sequence group.
  • the first reference signal sequence group includes the following sequences:
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • third indication information is received, and M reference signal sequence groups in the N reference signal sequence groups are determined according to the third indication information, where M is greater than 0 and less than or equal to N, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • third indication information is received, where the third indication information is used to indicate M reference signal sequence groups in the N reference signal sequence groups, wherein M Greater than 0 and less than or equal to N, the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • the third indication information is used to indicate M reference signal sequence groups in the N reference signal sequence groups, wherein M Greater than 0 and less than or equal to N
  • the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • a communication apparatus is provided, and the apparatus may be a network apparatus or a network device.
  • the apparatus may include a module for executing the method in the first aspect or the second aspect or any possible implementation manner, for example, a processing module, and optionally, a transceiver module may also be included.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver module can also be implemented by a transceiver
  • the processing module can also be implemented by a processor (or a processing circuit).
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected with the radio frequency transceiver component in the communication device to Send and receive information through radio frequency transceiver components.
  • the device includes: a processing module configured to determine a first reference signal sequence, where the first reference signal sequence is a reference signal sequence in N reference signal sequence groups, where N is an integer greater than or equal to 1; a transceiver module, is used to send first indication information to the terminal device, where the first indication information is used to indicate the first reference signal sequence, the first reference signal sequence is a sequence in the first reference signal sequence group, wherein the first reference signal sequence
  • the signal sequence group includes the following sequences:
  • the transceiver module is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the first reference signal sequence group.
  • the transceiver module is further configured to send third indication information, where the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • the transceiver module is further configured to send third indication information, where the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • a signal sequence group where M is greater than 0 and less than or equal to N, and the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup;
  • the transceiver module is further configured to send a cell to the terminal device an index, where the cell index is used to indicate the M first reference signal sequence subgroups or the M second reference signal sequence subgroups in the M reference signal sequence groups, wherein the first reference signal sequence group is the One of the M first reference signal sequence subgroups or the M second reference signal sequence subgroups.
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • a communication apparatus is provided, and the apparatus may be a network apparatus or a network device.
  • the device includes: a processing module configured to determine a first reference signal sequence, where the first reference signal sequence is a reference signal sequence in N reference signal sequence groups, where N is an integer greater than or equal to 1; a transceiver module, is used to send first indication information to the terminal device, where the first indication information is used to indicate a first reference signal sequence group, the first reference signal sequence group is one of the N reference signal sequence groups, the first reference signal sequence group The sequence is a sequence in the first reference signal sequence group; the transceiver module is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the first reference signal sequence group in the first reference signal sequence group. reference signal sequence.
  • the first reference signal sequence group includes the following sequences:
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • the transceiver module is further configured to send third indication information to the terminal device, where the third indication information is used to indicate M in the N reference signal sequence groups the reference signal sequence groups, where M is greater than 0 and less than or equal to N,
  • the first reference signal sequence group is one of the M reference signal sequence groups.
  • the transceiver module is further configured to send third indication information to the terminal device, where the third indication information is used to indicate M in the N reference signal sequence groups each of the reference signal sequence groups, wherein M is greater than 0 and less than or equal to N, the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is One of the M reference signal sequence groups; the transceiver module is further configured to send a cell index to the terminal device, where the cell index is used to indicate the M first reference signal sequence subgroups in the M reference signal sequence groups group or M second reference signal sequence subgroups, wherein the first reference signal sequence group is one of the M first reference signal sequence subgroups or the M second reference signal sequence subgroups.
  • a communication apparatus is provided, and the apparatus may be a terminal apparatus or a terminal device.
  • the device includes: a transceiver module for receiving first indication information, and determining a first reference signal sequence according to the first indication information, wherein the first reference signal sequence is a reference signal sequence in N reference signal sequence groups, Wherein, N is an integer greater than or equal to 1, the first reference signal sequence is a sequence in a first reference signal sequence group, and the first reference signal sequence group includes the following sequences:
  • the transceiver module is further configured to receive second indication information, and determine the first reference signal sequence group according to the second indication information.
  • the transceiver module is further configured to receive third indication information, and determine the M reference signal sequences in the N reference signal sequence groups according to the third indication information group, wherein M is greater than 0 and less than or equal to N, and the first reference signal sequence group is one of the M reference signal sequence groups.
  • the transceiver module is further configured to receive third indication information, and determine the M reference signal sequences in the N reference signal sequence groups according to the third indication information group, where M is greater than 0 and less than or equal to N, and the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup; the transceiver module is further configured to receive a cell index, according to the cell index Determine the M first reference signal sequence subgroups or the M second reference signal sequence subgroups in the M reference signal sequence groups, wherein the first reference signal sequence group is the M first reference signal A sequence subgroup or one of the M second reference signal sequence subgroups.
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • a communication apparatus is provided, and the apparatus may be a terminal apparatus or a terminal device.
  • the device includes: a transceiver module for receiving first indication information, and determining a first reference signal sequence group according to the first indication information, where the first reference signal sequence group is one of N reference signal sequence groups, where N is greater than or equal to or an integer equal to 1; the transceiver module is further configured to receive second indication information, and determine a first reference signal sequence according to the second indication information, where the first reference signal sequence is a reference in the first reference signal sequence group signal sequence.
  • the first reference signal sequence group includes the following sequences:
  • the reference signal sequence group is pre-stored in the terminal device or determined by one or more parameters in a parameter group, where the parameters of the parameter group include: sequence length, The first eigenvalue of the original sequence, the second eigenvalue of the original sequence, the upper limit of the number of cell reference signals, and the interference coefficient.
  • the transceiver module is further configured to receive third indication information, and determine the M reference signals in the N reference signal sequence groups according to the third indication information A sequence group, wherein M is greater than 0 and less than or equal to N, wherein the first reference signal sequence group is one of the M reference signal sequence groups.
  • the transceiver module is further configured to receive third indication information, where the third indication information is used to indicate the M reference signal sequence groups in the N reference signal sequence groups.
  • a signal sequence group wherein M is greater than 0 and less than or equal to N, the reference signal sequence group includes a first reference signal sequence subgroup and a second reference signal sequence subgroup, wherein the first reference signal sequence group is the M One of the reference signal sequence groups; the transceiver module is further configured to receive a cell index, and determine the M first reference signal sequence subgroups or the M second reference signal sequence subgroups in the M reference signal sequence groups according to the cell index A reference signal sequence subgroup, wherein the first reference signal sequence group is one of the M first reference signal sequence subgroups or the M second reference signal sequence subgroups.
  • a communication apparatus comprising: a processor for executing a computer program stored in a memory, so that the communication apparatus executes the first aspect or the second aspect or any possible implementation manners thereof.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program runs on a computer, the computer is made to execute the first aspect or the second aspect or any of the above.
  • a chip system comprising: a processor for invoking and running a computer program from a memory, so that a communication device installed with the chip system executes the first aspect or the second aspect or its The communication method in any possible implementation manner, or the communication method in the third aspect or the fourth aspect or any possible implementation manner thereof.
  • a twelfth aspect provides a computer program product comprising instructions, which, when run on a computer, cause the computer to execute the first aspect or the second aspect or the third aspect or the fourth aspect or any possible implementations thereof Methods.
  • a communication system comprising a device having functions for implementing the methods and various possible designs of the above-mentioned first aspect or the second aspect, and the above-mentioned device capable of implementing the above-mentioned third or fourth aspect of the various methods and functional devices of various possible designs.
  • FIG. 1 is an exemplary architecture diagram of a communication system 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a reference signal sequence provided in the prior art.
  • FIG. 3 is a flowchart of a method for generating a reference signal sequence provided by an embodiment of the present application.
  • FIG. 4 shows a schematic flowchart of a communication method 400 provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of another communication method 500 provided by an embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of another communication method 600 provided by an embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of another communication method 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a reference signal sequence provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an example of a network device of the present application.
  • FIG. 10 is a schematic block diagram of an example of a terminal device of the present application.
  • FIG. 11 is a schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of still another example of a communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device of the present application.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 6G future sixth generation
  • new radio new radio
  • the terminal device in this embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device may also be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or in future evolution of the public land mobile network (PLMN) equipment, etc., which are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system for mobile communication (GSM) system or a code division multiple access (CDMA)
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the base station (base transceiver station, BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolved) in the LTE system NodeB, eNB or eNodeB), it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiments of the present application.
  • FIG. 1 is an exemplary architecture diagram of a communication system 100 according to an embodiment of the present application.
  • the methods in the embodiments of the present application may be applied to the communication system 100 shown in FIG. 1 . It should be understood that more or less network devices or terminal devices may be included in the communication system 100 to which the methods of the embodiments of the present application may be applied.
  • the network device or terminal device in FIG. 1 may be hardware, software divided by functions, or a combination of the above two.
  • the network devices or terminal devices in FIG. 1 may communicate with each other through other devices or network elements.
  • the network device 110 and the terminal device 101 to the terminal device 106 form a communication system 100 .
  • the network device 110 can send downlink data to the terminal device 101 to the terminal device 106 , and of course, the terminal device 101 to the terminal device 106 can also send uplink data to the network device 110 .
  • terminal devices 101 to 106 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, personal digital assistants (PDAs) and/or any other suitable device for communicating over the wireless communication system 100 .
  • PDAs personal digital assistants
  • the communication system 100 may be a PLMN network, a device-to-device (D2D) network, a machine to machine (M2M) network, an internet of things (IoT), or other networks.
  • D2D device-to-device
  • M2M machine to machine
  • IoT internet of things
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106 .
  • the reference signal in the embodiment of the present application uses a demodulation reference signal (DMRS) as an example to describe the technical solution in the embodiment of the present application.
  • DMRS demodulation reference signal
  • the name of the reference signal may be changed, but as long as it is essentially the same as the DMRS, the technical solutions of the present application should be applicable.
  • other signals in the communication system also adopt the technical solutions of the embodiments of the present application, they should all be included in the scope of protection of the present application.
  • the orthogonal DMRS sequence is obtained by multiplying the Gold sequence and the OCC sequence, as follows:
  • the Gold sequence used by the DMRS depends on the scrambling code ID configured by the network equipment.
  • the scrambling code ID is the same as the cell ID, so that the Gold sequences corresponding to the DMRS used by all user equipments in a certain cell are the same.
  • all DMRSs in a cell are orthogonal.
  • the Gold sequence can generate the Gold sequence r l (n) according to the pseudo-random sequence c(n) by formula (1), where n represents the sequence code index value of the DMRS sequence, and l represents the index value of the symbol on a time slot, For example, when a time slot includes 7 symbols, the value of l may be an integer between 0 and 6.
  • the pseudorandom sequence c(n) is calculated as follows:
  • OCC sequence is an 8-length sequence, such as Table 1:
  • Fig. 2 three groups of CDM groups that are orthogonal in the frequency domain of the DMRS are represented by different backgrounds, and each group is composed of 8 REs and can bear 8 orthogonal DMRS sequences. Therefore, two symbols in the time domain can carry a total of 24 orthogonal DMRS sequences, which are obtained by multiplying the Gold sequence and the OCC sequence.
  • the OCC sequence can be a sequence as in Table 2.
  • the three groups of orthogonal CDM groups and 8 orthogonal OCC sequences in FIG. 2 can be understood as a group of orthogonal OCC sequences with a length of 24, that is, Table 2 is obtained by zero-filling the 8-long sequences in Table 1. Then, the cell will contain 24 orthogonal DMRS sequences, that is, all the orthogonal sequences are included in the cell, so that the DMRSs of the adjacent cells must not be orthogonal. Therefore, when two cells are adjacent or the user equipments in the cells are adjacent, the DMRS interference in the cells will be very serious.
  • the solution of the existing solution is to change the Gold sequence of the adjacent cells by setting different cell IDs, thereby reducing the interference of the DMRS of the adjacent cells. It essentially divides the design of the DMRS into two steps, that is, firstly, the orthogonal OCC sequence is determined, and after the orthogonal OCC sequence is determined, the optimization of the DMRS sequence is achieved by optimizing the Gold sequence.
  • N groups of DMRS sequences with the least interference are designed based on formulas (3), (4) and (5).
  • the DMRS sequence with the least interference can be generated according to formula (3) and formula (4).
  • S 1,opt , S 2,opt are the original sequences, and ⁇ i is the characteristic value of the original sequence.
  • the above original sequence is based on the parameters K, ⁇ and ⁇ according to the above formula (3 ), (4), (5) are generated, wherein K is the number of data streams transmitted in each cell, it should be understood that when this formula is used to design non-orthogonal DMRS sequences, each data stream is associated with a DMRS sequence. correspond.
  • is the sequence length (for example, 8 or 24 mentioned above), and ⁇ is the interference coefficient that characterizes the quality of the interference channel of the adjacent cell or adjacent user equipment, ranging from 0 to 1, where the worse the quality of the interference channel, The smaller the value of ⁇ , the better the quality of the interference channel, the closer the value of ⁇ is to 1.
  • Matrix; U is any ⁇ -dimensional unitary matrix, P is any ⁇ -K-dimensional unitary matrix, Q is any 2K- ⁇ -dimensional unitary matrix, V 1 , V 2 are any ⁇ -dimensional unitary matrix.
  • the N groups of DMRS sequences with the least interference can be selected differently according to different usage scenarios, that is, this application does not limit the number of groups of designed non-orthogonal DMRS sequences, as long as the The DMRS sequences calculated by the above method should all be included in the protection scope of the present application.
  • FIG. 3 shows a flowchart of a method for generating a DMRS sequence provided by an embodiment of the present application.
  • Step 301 Determine the parameters for generating the DMRS sequence.
  • Step 302 Generate a corresponding DMRS sequence group according to the parameters.
  • a total of 8 groups of non-orthogonal DMRS sequences are listed, namely Table 3.1 to Table 3.8, and the communication of the present application is introduced by taking the 8 groups of DMRS sequences as an example method and device.
  • Table 3.1 represents the DMRS sequence group configured for one cell
  • each table in Table 3.2-Table 3.8 includes two parts, namely two sequence sub-tables, which can It is understood that the network device configures the terminal device not only the DMRS group of the cell where it is located, but also the DMRS group with the least interference in the neighboring cell through the parameters.
  • the two sequence subgroups respectively correspond to the non-orthogonal DMRS sequences used by the two adjacent cells.
  • Table 3.2 to Table 3.8 can also be used disassembled, that is, divided according to sub-tables. DMRS configured in the cell where the device is located.
  • each row represents a sequence
  • each table corresponds to its own parameter.
  • is an interference coefficient that characterizes the quality of the interference channel of adjacent cells or adjacent user equipment
  • K is the upper limit of the number of DMRS transmitted in each CDM group
  • a row in the above table that is, each element in a reference sequence
  • e j ⁇ j is an imaginary unit
  • is an arbitrary real number
  • e j ⁇ -1, which is equivalent to taking the inverse of each element of the reference sequence.
  • the order of the elements of the reference signal sequence in a certain table in the above table can also be exchanged, for example, the m-th element and the n-th element of all sequences in a certain table are exchanged, that is, the first element of the table Column m is swapped with column n.
  • the non-orthogonal DMRS sequence group provided by the embodiment of the present application does not continue to use Gold in the design, which reduces the complexity of calculating the sequence, and can eliminate the interference of neighboring cells, thereby improving the reliability of channel estimation and system throughput. quantity.
  • the present application further provides a method 400 for indicating a DMRS sequence. For example, the flow shown in FIG. 4 .
  • the network device determines a first reference signal sequence, where the first reference signal sequence is one reference signal sequence in N reference signal sequence groups, where N is an integer greater than or equal to 1.
  • the network device determines the first reference signal sequence from the reference signal sequences in the N reference signal sequence groups, where the reference signal sequence is a reference signal sequence received by the terminal device in downlink or a reference signal sequence sent in uplink.
  • the first reference signal sequence may be, for example, a certain row of the sequence subgroup in Table 3.1 or Table 3.2 to Table 3.8 above.
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate the first reference signal sequence, and the first reference signal sequence is a sequence in the first reference signal sequence group.
  • the network device determines the first reference signal sequence group, and indicates a reference signal sequence in the first reference signal sequence group, that is, the first reference signal sequence, to the terminal device through the first indication information.
  • the first indication information may be carried in physical layer signaling, for example, may be carried in DCI.
  • the network device may indicate the reference signal sequence of the terminal device according to, for example, Table 4.1 and Table 4.2.
  • Table 4.1 and Table 4.2 are only examples and not limitations to describe how the network device indicates the first reference signal sequence in the first reference signal sequence group to the terminal device. It can be seen from the above two tables that the content of the first indication information sent by the network device is determined according to the number of reference sequences in the first reference signal sequence group. That is to say, the number of bits contained in the indication field of the first indication information is related to the number of sequences contained in the first reference signal sequence group.
  • Table 4.1 and Table 4.2 of the above example correspond to the upper limit of the number of reference signal sequences respectively, which is 6 and 7 cases. For example, when the number of reference signal sequences in the first reference signal sequence group is 6, the network device can indicate the first reference signal sequence to the terminal device through DCI through, for example, the correspondence between the bit field and the sequence index described in Table 4.1. .
  • the terminal device determines the first reference signal sequence.
  • the terminal device may determine the first reference signal sequence from the first indication information according to Table 4.1 or Table 4.2 of the foregoing example.
  • the terminal device sends or receives the first reference signal sequence.
  • the terminal device may decide whether to receive the first reference signal sequence or send the first reference signal sequence to the network device according to the first indication information, such as the type of DCI.
  • the DMRS sequence sent by the terminal device to the network device may also be the product of the DMRS sequence determined by the terminal device and the Gold sequence, similar to FIG. 2 , where bn is the non-orthogonal DMRS sequence in this application.
  • the N reference signal sequence groups of the present application may be preset in the network device and the terminal device in advance in the same order, or the terminal device may use the above formulas (3)-(5) and combine The calculation in the parameter group is determined.
  • the network device uses the first indication information to indicate to the terminal device the first a reference signal sequence.
  • the terminal device obtains the first reference signal sequence group through the parameters in the parameter group, and then determines the calculated first reference signal sequence group according to the first indication information sent by the network device The first reference signal sequence in .
  • the network device can select a more suitable DMRS sequence for the terminal device according to the current network state or channel conditions, etc., which increases the flexibility and diversity of the configuration.
  • FIG. 5 shows a schematic flowchart of another communication method 500 provided by an embodiment of the present application.
  • the network device before the network device indicates the first reference signal sequence to the terminal device, it needs to first indicate the first reference signal sequence group to the terminal device, and the indication is sent to the terminal device through the second indication information. That is to say, the terminal device first determines a set of reference signal sequence groups in the N groups of reference information sequence groups as the first reference signal sequence group according to the second indication information, and then determines the reference signal sequence group in the first reference signal sequence group according to the first indication information. The first reference signal sequence.
  • the second indication information may be carried in physical layer signaling, for example, may be carried in DCI.
  • the second indication information is used to indicate that one of the pre-stored N reference signal sequence groups is used as the first reference signal sequence group.
  • the terminal device obtains N reference signal sequence groups by calculating the parameters in the parameter group, and the second indication information uses one of the N reference signal sequence groups obtained by calculation as one The first reference signal sequence group.
  • the second indication information may use, for example, the correspondence between indication fields and sequence groups in Table 4.3 below to indicate the first reference signal sequence group to the terminal device through the second indication information.
  • the corresponding relationship between the indication field and the sequence group in the second indication information may also exist in other combinations, which are not limited in this application.
  • the physical layer signaling configures a non-orthogonal reference signal sequence group for the terminal device, so that the network device can flexibly configure the reference signal with less interference for the terminal device when indicating the non-orthogonal reference sequence. signal sequence, thereby improving the reliability of channel estimation.
  • FIG. 6 shows a schematic flowchart of another communication method 600 provided by an embodiment of the present application.
  • the network device may first indicate M reference signal sequence groups to the terminal device through the third indication information, where M is greater than 0 and less than or equal to N.
  • the third indication information is used to indicate M reference signal sequence groups among the N reference signal sequence groups for the terminal equipment, and then the first reference signal sequence group is indicated to the terminal equipment from the M reference signal sequence groups.
  • the third indication information may include at least one parameter of the parameter group.
  • the third indication information may be carried in higher layer signaling, for example, may be carried in RRC signaling or MAC signaling or other signaling, which is not limited in this application.
  • the terminal device needs to determine the DMRS sequence group according to the parameters in the DMRS sequence parameter group included in the third indication information.
  • the terminal device selects the 5 groups of non-orthogonal DMRS sequences from Table 3.4 to Table 3.8 from the above 8 groups of non-orthogonal DMRS sequences. Orthogonal DMRS sequences.
  • the communication method provided by the embodiment of the present application configures the terminal equipment with a non-orthogonal reference signal sequence by combining high-level signaling and physical layer signaling, which saves the signaling overhead of the physical layer and helps to improve the physical layer signaling.
  • the network device can flexibly configure the reference signal sequence with less interference for the terminal device when indicating the non-orthogonal reference sequence, thereby improving the channel estimation accuracy. reliability.
  • this embodiment provides another communication method 700, as shown in FIG. 7 is the communication method 700 Schematic diagram of the process.
  • the network device determines the first DMRS sequence.
  • the network device sends third indication information to the terminal device, where the third indication information includes a DMRS sequence parameter group, where the parameter group at least includes the DMRS sequence length, the characteristic value ⁇ i of the original sequence, and the upper limit of the number of DMRSs in the CDM group and 0, 1 or more of the interference coefficients ⁇ .
  • the third indication information includes a DMRS sequence parameter group, where the parameter group at least includes the DMRS sequence length, the characteristic value ⁇ i of the original sequence, and the upper limit of the number of DMRSs in the CDM group and 0, 1 or more of the interference coefficients ⁇ .
  • the network device informs the terminal device of the sequence parameters of the DMRS sequence through the third indication information.
  • the third indication information may be carried in high-layer signaling, for example, may be carried in RRC signaling or MAC signaling or other signaling, which is not limited in this application.
  • the terminal device determines, according to the sequence parameter, M groups of sequences that satisfy the sequence parameter.
  • the terminal device selects M groups of non-orthogonal DMRS sequences from the N groups of non-orthogonal DMRS sequences according to the DMRS sequence parameter group included in the received third indication information.
  • the terminal device needs to determine the DMRS sequence group according to the parameters in the DMRS sequence parameter group included in the third indication information.
  • the terminal device can select Table 3.4- Table 3.8 These five groups of non-orthogonal DMRS sequences.
  • the network device sends a cell index to the terminal device, where the cell index is used to instruct the terminal device to determine the first reference signal sequence subgroup or the second reference signal sequence subgroup.
  • Sequence table The determination process is determined by the cell index value sent by the network device.
  • the value range of the cell index value may be ⁇ 0, 1 ⁇ , which may respectively represent the subsequence table in the sequence table.
  • a cell index value of 0 may represent the first reference signal sequence subset
  • a cell index value of 1 may represent the second reference signal sequence subset, and vice versa.
  • the index value of the cell may also have other values, and represent the first reference signal sequence subgroup and the second reference signal sequence subgroup respectively.
  • the cell index value may be sent to the terminal device through higher layer signaling.
  • the index value of the cell may also use the identity of the cell, for example, may be the address of the cell.
  • the indication rule may be: when the cell address is an odd number, the first reference signal sequence subgroup may be indicated, and when the cell address is an even number, the second reference signal sequence subgroup may be indicated. Or the parity of a certain digit or digits in the cell address indicates the subgroup, which is not limited in this application.
  • the terminal device determines the first reference signal sequence subgroup or the second reference signal sequence subgroup according to the cell index.
  • the terminal device selects the first reference signal sequence subgroup or the second reference signal sequence subgroup according to the cell index and the indication rule.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate the first reference signal sequence group.
  • the network device instructs the terminal device to select the first reference signal sequence group from the M subgroups determined above through the second indication information.
  • the second indication information may be carried in physical layer signaling, for example, may carry DCI) or other signaling, which is not limited in this application.
  • the terminal device determines the first reference signal sequence group according to the second indication information.
  • the terminal device determines a group of non-orthogonal DMRS sequence groups from the M groups of non-orthogonal DMRS sequence subgroups according to the indication of the second indication information.
  • An example can be used to illustrate, for example, assuming that the terminal device determines 2 groups of sequences (for example, 2 of the above 7 tables) according to the parameter group sent by the network device, and uses the cell index to determine the use of the first reference signal sequence subgroup, That is, two first reference signal sequence subgroups are determined, and then the terminal device can determine whether to use the first group or the second group of the two groups according to the second indication information sent by the network device.
  • the premise that the terminal device can determine the first group or the second group is that the network device and the terminal device have a predetermined rule of table order. In other words, the order of the above seven tables configured in the network device and the terminal device is the same.
  • the network device can determine the non-orthogonal DMRS sequence group indicating the terminal device through the information used to indicate the sequence group in the second indication information. For example, the network device can indicate the sequence group of the terminal device through 1 bit in the DCI. The possible way is that when the value of the 1 bit is 0, the terminal device is instructed to use the first table, and when the value of the 1 bit is 1 , instructs the end device to use the second form.
  • the size of the indication field occupied by the information indicating the sequence group is related to the number of parameters in the parameter group sent by the network device to the terminal device. This is easy to understand, because the greater the number of parameter groups, the fewer the DMRS sequence groups determined by the terminal device, and the smaller the indication field occupied by the information used to indicate the sequence groups.
  • M determined by the terminal device is 1, that is, when the terminal device has determined a unique sequence group
  • the indication field occupied by the information used to indicate the sequence group in the second indication information received by the terminal device is: 0 bits.
  • the network device sends first indication information to the terminal device, which is used to indicate the first reference signal sequence in the first reference signal sequence group.
  • the network device after the network device indicates the DMRS sequence group of the terminal device or after the terminal device determines the DMRS sequence group, the network device also needs to further indicate the DMRS sequence of the terminal device through physical layer signaling.
  • the network device indicates the DMRS sequence of the terminal device according to, for example, Table 4.3 and Table 4.4.
  • K represents the upper limit of the number of DMRSs in the CDM group
  • Table 4.3 and Table 4.4 correspond to the cases where the upper limit of DMRS in the CDM group is 6 and 7, respectively.
  • the case where the upper limit of DMRS in the CDM group is 18, 20, and 22 is similar to that in Table 4.3 and Table 4.4 above, and this application does not list them in detail.
  • the upper limit of the number of DMRSs in the parameter CDM group in the DMRS sequence parameter group may also be the upper limit of the number of DMRSs in the cell. If the parameter sent by the network device to the terminal device through the third indication information is the upper limit of the number of DMRSs in the cell, the terminal device needs to calculate the DMRS in each CDM group according to the number of CDM groups and the average principle The upper limit of the number.
  • the terminal device learns, according to the parameter group, that the cell’s
  • the number of CDM groups is 3, then.
  • the terminal device determines the first reference signal sequence.
  • the terminal device determines the first reference signal sequence according to the indication of the first indication information.
  • the terminal device determines the sequence indicated by the network device, it determines to receive the DMRS sequence in the downlink shared channel (physical downlink shared channel, PDSCH) or send the DMRS sequence in the uplink shared channel (physical uplink shared channel, PUSCH) according to the type of DCI the DMRS sequence.
  • the downlink shared channel physical downlink shared channel, PDSCH
  • the uplink shared channel physical uplink shared channel, PUSCH
  • a schematic diagram of the DMRS sequence sent by the terminal device may be as shown in FIG. 8 .
  • the DMRS sequence sent by the terminal device in the uplink PUSCH may also be the product of the DMRS sequence determined by the terminal device and the Gold sequence, similar to FIG. 2 , where bn is the non-orthogonal DMRS sequence in this application.
  • the DMRS interference of adjacent cells can be reduced, the reliability of channel estimation can be improved, and the system throughput can be improved.
  • the combination of high-level signaling and physical layer signaling is used to indicate the reference signal sequence for terminal equipment, which is beneficial to reduce the load of physical layer signaling and improve the transmission efficiency of physical layer signaling. reliability.
  • independently selecting the best sequence for each CDM group can further improve the sequence performance and reduce the interference between sequences.
  • the reference signal sequence also includes the reference signal sequence of neighboring cells, which further improves the sequence usage. flexibility.
  • FIG. 9 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 10 may include a processing module 11 and a transceiver module 12 .
  • the communication apparatus 10 may correspond to the network device in the above method embodiment.
  • the communication apparatus 10 may correspond to the network device in the method 400 , the method 500 , the method 600 and the method 700 according to the embodiments of the present application, and the communication apparatus 10 may include a method for executing the method 400 in FIG. 4 or the method in FIG. 5 .
  • each unit in the communication device 10 and the above-mentioned other operations and/or functions are respectively to implement the corresponding method of the method 400 in FIG. 4 or the method 500 in FIG. 5 or the method 600 in FIG. 6 or the method 700 in FIG. 7 . process.
  • the processing module 11 can be used to execute step S410 in the method 400 .
  • the transceiver module 12 may be configured to perform steps 420 and S440 in the method 400 .
  • the processing module 11 can be used to execute step S510 in the method 500 .
  • the transceiver module 12 can be used to perform step S520 , step 540 and step 560 in the method 500 .
  • the processing module 11 can be used to execute step S610 in the method 600 .
  • the transceiver module 12 can be used to perform steps S620 , 640 , 660 and 680 in the method 600 .
  • the processing module 11 can be used to execute step S700 in the method 700 .
  • the transceiver module 12 can be used to perform steps S710 , 730 , 750 , 770 and 790 in the method 700 .
  • FIG. 10 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 20 may include a transceiver module 21 and a processing module 22 .
  • the communication apparatus 20 may correspond to the terminal device in the above method embodiment, or a chip configured in the terminal device.
  • the communication apparatus 20 may correspond to the terminal device in the method 400, the method 500, the method 600, and the method 700 according to the embodiments of the present application, and the communication apparatus 20 may include a method for executing the method 400 in FIG. 4 or the method in FIG. 5 . Modules of the method performed by the terminal device in the method 500 in FIG. 6 or the method 600 in FIG. 6 or the method 700 in FIG. 7 . In addition, each unit in the communication device 20 and the above-mentioned other operations and/or functions are to implement the corresponding method of the method 400 in FIG. 4 or the method 500 in FIG. 5 or the method 600 in FIG. 6 or the method 700 in FIG. 7 respectively. process.
  • the transceiver module 21 can be used to execute steps S420 and S440 in the method 400 .
  • the processing module 22 may be configured to perform step S430 in the method 400 .
  • the transceiver module 21 can be used to execute steps S520 , S540 and 560 in the method 500 .
  • the processing module 22 may be used to perform steps S530 and 550 in the method 500 .
  • the transceiver module 21 can be used to execute steps S620 , S640 , 660 and 680 in the method 600 .
  • the processing module 22 may be configured to perform steps S630 , 650 , and 670 in the method 600 .
  • the transceiver module 21 can be used to execute steps S710 , S730 , 750 , 770 and 790 in the method 700 .
  • the processing module 22 may be used to perform steps S720 , 740 , 760 and 780 in the method 700 .
  • FIG. 11 is a schematic diagram of a communication apparatus 30 provided by an embodiment of the present application.
  • the apparatus 30 may be a communication device, including a network element with an access management function, such as an AMF.
  • the apparatus 30 may include a processor 31 (ie, an example of a processing module) and a memory 32 .
  • the memory 32 is used for storing instructions
  • the processor 31 is used for executing the instructions stored in the memory 32, so that the apparatus 30 implements the steps performed by the network device in the method corresponding to FIG. 4 , FIG. 5 , or FIG. 6 or FIG. 7 .
  • the device 30 may further include an input port 33 (ie, an example of a transceiver module) and an output port 34 (ie, another example of a transceiver module).
  • the processor 31, the memory 32, the input port 33 and the output port 34 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 32 is used to store a computer program, and the processor 31 can be used to call and run the computer program from the memory 32 to control the input port 33 to receive signals, control the output port 34 to send signals, and complete the network device in the above method. step.
  • the memory 32 may be integrated in the processor 31 or may be provided separately from the processor 31 .
  • the input port 33 can be a receiver, and the output port 34 can be a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 33 is an input interface
  • the output port 34 is an output interface
  • the functions of the input port 33 and the output port 34 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 31 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 31 , the input port 33 and the output port 34 are stored in the memory 32 , and the general-purpose processor implements the functions of the processor 31 , the input port 33 and the output port 34 by executing the codes in the memory 32 .
  • each unit or unit in the communication apparatus 30 may be used to perform each action or processing process performed by the network device in the above method, and here, in order to avoid redundant description, the detailed description thereof is omitted.
  • FIG. 12 is a schematic diagram of a communication apparatus 40 provided by an embodiment of the present application. As shown in FIG. 12 , the apparatus 40 may be a terminal device.
  • the apparatus 40 may include a processor 41 (ie, an example of a processing module) and a memory 42 .
  • the memory 42 is used for storing instructions
  • the processor 41 is used for executing the instructions stored in the memory 42, so that the apparatus 40 implements the steps performed by the terminal device in FIG. 4 , FIG. 5 , or FIG. 6 or FIG. 7 .
  • the device 40 may further include an input port 43 (ie, an example of a transceiver module) and an output port 44 (ie, another example of a transceiver module).
  • the processor 41, the memory 42, the input port 43 and the output port 44 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 42 is used to store a computer program, and the processor 41 can be used to call and run the computer program from the memory 42 to control the input port 43 to receive signals, control the output port 44 to send signals, and complete the process of the terminal device in the above method. step.
  • the memory 42 may be integrated in the processor 41 or may be provided separately from the processor 41 .
  • the input port 43 can be a receiver, and the output port 44 can be a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 43 is an input interface
  • the output port 44 is an output interface
  • the functions of the input port 43 and the output port 44 can be considered to be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 41 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 41 , the input port 43 and the output port 44 are stored in the memory 42 , and the general-purpose processor implements the functions of the processor 41 , the input port 43 and the output port 44 by executing the codes in the memory 42 .
  • each module or unit in the communication apparatus 40 may be used to perform each action or processing process performed by the terminal device in the above method, and here, in order to avoid redundant description, the detailed description thereof is omitted.
  • FIG. 13 is a schematic structural diagram of a terminal device 50 provided by the present application. For convenience of explanation, FIG. 13 only shows the main components of the terminal device. As shown in FIG. 13 , the terminal device 50 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device, execute software programs, and process data of the software programs, for example, for supporting the terminal device to execute the above-mentioned transmission precoding matrix instruction method embodiment. the described action.
  • the memory is mainly used to store software programs and data, such as the codebook described in the above embodiments.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit together with the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 13 only shows one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the terminal device 50 includes a transceiver unit 51 and a processing unit 52 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 51 may be regarded as a receiving unit
  • the device for implementing the transmitting function in the transceiver unit 51 may be regarded as a transmitting unit, that is, the transceiver unit 51 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the terminal device shown in FIG. 13 can perform each action performed by the terminal device in the above method 400 , 500 , 600 or 700 , and detailed descriptions thereof are omitted here in order to avoid redundant description.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-only memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically programmable Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct rambus RAM Direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请提供了一种通信方法和装置,该方法包括:网络设备确定第一参考信号序列,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;该网络设备发送第一指示信息向终端设备指示第一参考信号序列,该第一参考信号序列为第一参考信号序列组中的一个序列,其中,该参考信号序列组可以是通过参数确定的或预存在该网络设备和该终端设备中。本申请提供非正交DMRS序列组,能够降低相邻小区的DMRS的干扰,提升信道估计的可靠性,以及提升DMRS配置的灵活性。

Description

一种通信的方法及装置 技术领域
本申请涉及通信技术领域,并且更加具体地,涉及通信领域中的一种通信的方法及装置。
背景技术
在长期演进(long term evolution,LTE)与第五代(fifth generation,5G)无线通信系统——新无线接入技术(new radio access technology,NR)系统中,定义了用于数据解调的解调参考信号(demodulation reference signal,DMRS)。在频域上,不同的DMRS端口被划分成了不同的码分复用(code division multiplexing,CDM)组,在同一个组内的DMRS端口,利用正交掩码(orthogonal cover code,OCC)来进行时频域上的扩展,并能保证不同端口上的正交性。然而,在现有标准中,为保证DMRS在传输中不受干扰,每个资源单位(resource element,RE)只能用来发送DMRS或上行数据,若利用较多的RE传输DMRS,虽然支持了网络容纳更多的DMRS序列,使网络容量成倍提升,但同时因为用于上行数据传输的资源减少,使得传输的有效性降低,因此,需要同时考虑可靠性和有效性。目前,存在扩展长度为24的OCC序列,即每个小区内可存在24个正交DMRS序列,在不明显增强DMRS开销的情况下,最大可支持24个正交DMRS序列。对于相邻小区来讲,该24个正交DMRS序列是不能满足日益增长的网络容量需求,且由于小区内的24个正交DMRS序列,已经用尽了所有的正交序列,因此,相邻两个小区的DMRS必然是不正交的。当相邻的两个小区,以及小区内的终端设备相邻都比较近时,小区间DMRS干扰尤为严重。因此,在这一场景中重新设计DMRS,使得小区内和小区间的DMRS和干扰最低,是一个亟需解决的问题。
发明内容
本申请提供了一种通信的方法和装置,设计的参考序列能够降低相邻小区参考信号之间的干扰。
第一方面,提供了一种通信的方法,该方法可以由网络设备执行。该方法可以包括:网络设备确定第一参考信号序列,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;该网络设备随后向终端设备发送第一指示信息来指示该第一参考信号序列,该第一参考信号序列为第一参考信号序列组中的一个序列,其中,该第一参考信号序列组包括以下序列:
序列元素序号 0 1 2 3
序列0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
序列1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
序列2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
序列3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
序列4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000001
可选的,该第一指示信息可以承载在物理层信令中,例如可以是下行控制信息(downlink control information,DCI)。
本申请提供的通信的方法,设计非正交DMRS序列组,能够降低相邻小区的DMRS的干扰,提升信道估计的可靠性,以及提升DMRS配置的灵活性。
结合第一方面,在第一方面的某些实现方式中,该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示该第一参考信号序列组。
结合第一方面,在第一方面的某些实现方式中,该网络设备向该终端设备发送第三指示信息来指示N个参考信号序列组中的M个参考信号序列组,M是小于或等于N的正整数。
应理解,该方案为该网络设备向该终端设备发送第二指示信息之前,也就是说,该网络设备先通过第三指示信息为该终端设备指示了N个参考信号序列组中的M个参考信号序列组,然后通过第二指示信息为该终端设备指示了M个参考信号序列组中的一个参考信号序列组,即第一参考信号序列组,随后在该第一参考信号序列组中通过第一指示信息为终端设备选择第一参考信号序列。
可选的,该第三指示信息可以使用高层信令,例如可通过无线资源控制信令(radio resource control,RRC)或介质接入控制信令(media access control,MAC)或其他信息等向来通知该终端设备。该第二指示信息与该第一指示信息可以通过物理层信令,例如DCI等来告知该终端设备。
本申请提供的通信的方法,通过高层信令先指示终端设备在N组中确定M组参考信号序列组,再通过物理层信令指示终端设备确定该M组参考信号序列中的一个为第一参考信号序列组,以及第一参考信号序列组中的第一参考信号序列,利用高层信令与物理层信令共同指示的方法,有利于降低物理层信令的负载,提高物理层信令传输的可靠性,节约资源。
结合第一方面,在第一方面的某些实现方式中,该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;该网络设备向该终端设备发送小区索引,该小区索引用于指示该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
应理解,该方案的具体实现为,该网络设备首先通过第三指示信息为该终端设备指示了N个参考信号序列组中的M个该参考信号序列组,由于该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,因此可以理解的是,该第三指示信息同时指示了M个第一参考信号序列子组和M个第二参考信号序列子组。随后,该网络设备向该终端设备发送小区索引,用于指示该终端设备选择第一参考信号序列子组或第二参考信号序列子组,换句话说,该网络设备发送的该小区索引指示的M个子组应属于同一参考序列 子组。即全为M个第一参考信号序列子组或全为M个第二参考信号序列子组。当该终端设备确定出M个子组后,该终端设备接收网络设备发送的第二指示信息,根据第二指示信息从该M个子组中选择出第一参考信号序列组,再根据第一指示信息,从该第一参考信号序列组中确定出第一参考信号序列。
可选的,该第三指示信息可以是高层信令,例如可通过RRC信令或MAC信令或其他信息。该第二指示信息与该第一指示信息可以是物理层信令,例如可以是DCI。
基于上述技术方案,通过高层信令与物理层信令结合的方式为终端设备配置非正交参考信号序列,节省了物理层的信令开销,有助于提升物理层信令传输的可靠性,由于物理层信令可以更加灵活的改变参数,使得该网络设备在指示非正交参考序列时可以为终端设备灵活的配置干扰较小的参考信号序列,从而提升信道估计的可靠性,此外,该参考信号序列还包括邻小区的参考信号序列,使得进一步提升了序列使用的灵活性。
结合第一方面,在第一方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
第二方面,提供了一种通信的方法,该方法可以由网络设备执行。该方法包括:该网络设备确定第一参考信号序列,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;该网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一参考信号序列组,该第一参考信号序列组为该N个参考信号序列组中的一个,该第一参考信号序列为该第一参考信号序列组中的一个序列;该网络设备向终端设备发送第二指示信息,该第二指示信息用于指示该第一参考信号序列组中的该第一参考信号序列。
可选的,该第一指示信息与该第二指示信息可以是DCI或其他物理层信令。
本申请提供的通信方法,通过物理层信令为终端设备选择参考信号序列,有利于灵活改变参数,即网络设备可以根据不同场景或不同时刻或其他因素等为终端设备配置不同的参考信号序列,从而提升信道估计的可靠性,进而提升系统的吞吐量。
结合第二方面,在第二方面的某些实现方式中,该第一参考信号列组可以包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000002
结合第二方面,在第二方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
本申请实施例提供的通信方法,区别于目前分步优化设计参考信号的方法,采用整体优化的设计思路,设计非正交DMRS序列组能够降低相邻小区参考信号之间的干扰。
结合第二方面,在第二方面的某些实现方式中,该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个。
可选的,该第三指示信息可以是高层信令,例如可以是RRC信令或MAC信令或其他信息。该第二指示信息与该第一指示信息可以是物理层信令,例如可以是DCI。
基于上述技术方案,通过高层信令与物理层信令结合的方式为终端设备配置非正交参考信号序列,节省了物理层的信令开销,有助于提升物理层信令传输的可靠性,由于物理层信令可以更加灵活的改变参数,使得该网络设备在指示非正交参考序列时可以为终端设备灵活的配置干扰较小的参考信号序列,从而提升信道估计的可靠性。
结合第二方面,在第二方面的某些实现方式中,该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个;随后,该网络设备向该终端设备发送小区索引,该小区索引用于指示该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
可选的,该第三指示信息可以是高层信令,例如可通过RRC信令或MAC信令或其他信息。该第二指示信息与该第一指示信息可以是物理层信令,例如可以是DCI。
基于上述技术方案,通过高层信令与物理层信令结合的方式为终端设备配置非正交参考信号序列,节省了物理层的信令开销,有助于提升物理层信令传输的可靠性,由于物理层信令可以更加灵活的改变参数,使得该网络设备在指示非正交参考序列时可以为终端设备灵活的配置干扰较小的参考信号序列,从而提升信道估计的可靠性,此外,该参考信号序列还包括邻小区的参考信号序列,使得进一步提升了序列使用的灵活性。
第三方面,提供了一种通信的方法,该方法可由终端设备执行。该方法包括:接收第一指示信息,根据该第一指示信息确定第一参考信号序列,其中,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数,该第一参考信号序列为第一参考信号序列组中的一个序列,该第一参考信号序列组包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000003
结合第三方面,在第三方面的某些实现方式中,接收第二指示信息,根据该第二指示信息确定该第一参考信号序列组。
结合第三方面,在第三方面的某些实现方式中,接收第三指示信息,根据第三指示信 息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第三方面,在第三方面的某些实现方式中,接收第三指示信息,根据第三指示信息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;接收小区索引,根据该小区索引确定该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
结合第三方面,在第三方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
结合第三方面,在第三方面的某些实现方式中,接收第三指示信息,根据该第三指示信息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第三方面,在第三方面的某些实现方式中,接收第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个;接收小区索引,根据该小区索引确定该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
第四方面,提供了一种通信的方法,该方法可以由终端设备执行。该方法包括:接收第一指示信息,根据该第二指示信息确定第一参考信号序列组,该第一参考信号序列组为N个参考信号序列组中的一个,N为大于或等于1的整数;接收第二指示信息,根据该第一指示信息确定第一参考信号序列,该第一参考信号序列为该第一参考信号序列组中的一个参考信号序列。
结合第四方面,在第四方面的某些实现方式中,该第一参考信号序列组包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000004
结合第四方面,在第四方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
结合第四方面,在第四方面的某些实现方式中,接收第三指示信息,根据该第三指示信息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或 等于N,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第四方面,在第四方面的某些实现方式中,接收第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个;接收小区索引,根据该小区索引确定该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
第五方面,提供了一种通信装置,该装置可以是网络装置或者网络设备。
具体地,该装置可以包括用于执行第一方面或第二方面或任一可能的实施方式中的方法的模块,例如包括处理模块,可选的,还可以包括收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。例如,该收发模块也可以通过收发器实现,该处理模块也可以通过处理器(或者,处理电路)实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
该装置包括:处理模块,用于确定第一参考信号序列,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;收发模块,用于向终端设备发送第一指示信息,该第一指示信息用于指示该第一参考信号序列,该第一参考信号序列为第一参考信号序列组中的一个序列,其中,该第一参考信号序列组包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000005
结合第五方面,在第五方面的某些实现方式中,该收发模块,还用于向终端设备发送第二指示信息,该第二指示信息用于指示该第一参考信号序列组。
结合第五方面,在第五方面的某些实现方式中,该收发模块,还用于发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第五方面,在第五方面的某些实现方式中,该收发模块,还用于发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号 序列子组;该收发模块,还用于向该终端设备发送小区索引,该小区索引用于指示该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
结合第五方面,在第五方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
第六方面,提供了一种通信装置,该装置可以是网络装置或者网络设备。
该装置包括:处理模块,用于确定第一参考信号序列,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;收发模块,用于向终端设备发送第一指示信息,该第一指示信息用于指示第一参考信号序列组,该第一参考信号序列组为该N个参考信号序列组中的一个,该第一参考信号序列为该第一参考信号序列组中的一个序列;该收发模块,还用于向终端设备发送第二指示信息,该第二指示信息用于指示该第一参考信号序列组中的该第一参考信号序列。
结合第六方面,在第六方面的某些实现方式中,该第一参考信号序列组包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000006
结合第六方面,在第六方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
结合第六方面,在第六方面的某些实现方式中,该收发模块,还用于向终端设备发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,
其中,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第六方面,在第六方面的某些实现方式中,该收发模块,还用于向终端设备发送第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个;该收发模块,还用于向终端设备发送小区索引,该小区索引用于指示该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
第七方面,提供了一种通信装置,该装置可以是终端装置或者终端设备。
该装置包括:收发模块,用于接收第一指示信息,根据该第一指示信息确定第一参考 信号序列,其中,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数,该第一参考信号序列为第一参考信号序列组中的一个序列,该第一参考信号序列组包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000007
结合第七方面,在第七方面的某些实现方式中,该收发模块,还用于接收第二指示信息,根据该第二指示信息确定该第一参考信号序列组。
结合第七方面,在第七方面的某些实现方式中,该收发模块,还用于接收第三指示信息,根据第三指示信息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第七方面,在第七方面的某些实现方式中,该收发模块,还用于接收第三指示信息,根据第三指示信息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;该收发模块,还用于接收小区索引,根据该小区索引确定该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
结合第七方面,在第七方面的某些实现方式中,该参考信号序列组预存在该终端设备中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
第八方面,提供了一种通信装置,该装置可以是终端装置或者终端设备。
该装置包括:收发模块,用于接收第一指示信息,根据该第一指示信息确定第一参考信号序列组,该第一参考信号序列组为N个参考信号序列组中的一个,N为大于或等于1的整数;该收发模块,还用于接收第二指示信息,根据该第二指示信息确定第一参考信号序列,该第一参考信号序列为该第一参考信号序列组中的一个参考信号序列。
结合第八方面,在第八方面的某些实现方式中,该第一参考信号序列组包括以下序列:
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
其中
Figure PCTCN2021076061-appb-000008
结合第八方面,在第八方面的某些实现方式中,该参考信号序列组预存在该终端设备 中或通过参数组中的一个或多个参数确定,该参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
结合第八方面,在第八方面的某些实现方式中,该收发模块,还用于接收第三指示信息,根据该第三指示信息确定该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个。
结合第八方面,在第八方面的某些实现方式中,该收发模块,还用于接收第三指示信息,该第三指示信息用于指示该N个参考信号序列组中的M个该参考信号序列组,其中,M大于0且小于或等于N,该参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,该第一参考信号序列组为该M个该参考信号序列组中的一个;该收发模块,还用于接收小区索引,根据该小区索引确定该M个该参考信号序列组中M个该第一参考信号序列子组或M个该第二参考信号序列子组,其中,该第一参考信号序列组为该M个该第一参考信号序列子组或该M个该第二参考信号序列子组中的一个。
第九方面,提供了一种通信装置,该装置包括:处理器,用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面或第二方面或其任意可能的实现方式中的通信方法,或执行第三方面或第四方面或其任意可能的实现方式中的通信方法。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行第一方面或第二方面或其任意可能的实现方式中的实现方式中的通信方法,或执行第三方面或第四方面或其任意可能的实现方式中的通信方法。
第十一方面,提供了一种芯片系统,该芯片系统包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行第一方面或第二方面或其任意可能的实现方式中的通信方法,或执行第三方面或第四方面或其任意可能的实现方式中的通信方法。
第十二方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面或第四方面或其任意可能的实现方式中的方法。
第十三方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面或第二方面的各方法及各种可能设计的功能的装置和上述具有实现上述第三方面或第四方面的各方法及各种可能设计的功能的装置。
附图说明
图1是本申请一个实施例的通信系统100的示例性架构图。
图2是现有技术提供的一种参考信号序列示意图。
图3是本申请实施例提供的一种参考信号序列生成方法的流程图。
图4示出了本申请实施例提供的一种通信的方法400的流程示意图。
图5示出了本申请实施例提供的另一种通信的方法500的流程示意图。
图6示出了本申请实施例提供的另一种通信的方法600的流程示意图。
图7示出了本申请实施例提供的另一种通信的方法700的流程示意图。
图8是本申请实施例提供的一种参考信号序列示意图。
图9是本申请的网络设备的一例示意性框图。
图10是本申请的终端设备的一例示意性框图。
图11是本申请实施例提供的通信装置的示意图。
图12为本申请实施例提供的再一例通信装置的示意图。
图13是本申请的终端设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)系统、未来的第六代(6th Generation,6G)或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system for mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请一个实施例的通信系统100的示例性架构图。本申请实施例中的方法可以应用于图1所示的通信系统100中。应理解,可以应用本申请实施例的方法的通信系统100中可以包括更多或更少的网络设备或终端设备。
图1中的网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。图1中的网络设备或终端设备之间可以通过其他设备或网元通信。
图1所示的通信系统100中,网络设备110和终端设备101至终端设备106组成一个通信系统100。在该通信系统100中,网络设备110可以向终端设备101至终端设备106发送下行数据,当然,终端设备101至终端设备106也可以发送上行数据给网络设备110。应理解,终端设备101至终端设备106可以是,例如,蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、个人数字助理(personal digital assistant,PDA)和/或用于在无线通信系统100上通信的任意其它适合设备。
通信系统100可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或者其他网络。
此外,终端设备104至终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行数据给终端设备104或终端设备106。
应理解,作为示例而非限定,本申请实施例中的参考信号是以解调参考信号(demodulation reference signal,DMRS)为例对本申请实施例中的技术方案进行描述的,在未来可能出现的通信系统中,该参考信号的名称可能发生改变,但只要其本质上与DMRS并无差别,本申请的技术方案都应适用。或者,在通信系统中的其他信号,若同样是采用本申请实施例的技术方案,都应包含在本申请要保护的范围内。
为了方便阐述,首先简单介绍一下目前通用的DMRS的序列生成方法。
目前,正交DMRS序列是由Gold序列和OCC序列相乘得到,具体如下:
DMRS所使用的Gold序列,取决于网络设备配置的扰码ID,一般情况下,该扰码ID和小区ID相同,使得某一个小区内的所有用户设备使用的DMRS对应的Gold序列均相同,在与OCC序列相乘后,一个小区内的所有DMRS均正交。Gold序列可以根据伪随机序列c(n)通过公式(1)生成Gold序列r l(n),式中,n表示DMRS序列的序列码索引值,l表示一个时隙上的符号的索引值,比如,一个时隙上包括7个符号时,l的取值可以为0~6之间的整数。
Figure PCTCN2021076061-appb-000009
伪随机序列c(n)的计算如下:
Figure PCTCN2021076061-appb-000010
在(2)式中,
Figure PCTCN2021076061-appb-000011
为时隙编号,l为OFDM符号编号,
Figure PCTCN2021076061-appb-000012
为扰码ID,由高层参数DMRS-DownlinkConfig配置
Figure PCTCN2021076061-appb-000013
其和小区ID解耦,支持UCNC,当不配置高层参数时,默认等于小区ID。
若OCC序列为8长序列,例如表1:
表1 8长OCC序列
序列索引 b 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7
1 1 1 1 1 1 1 1 1
2 1 1 -1 -1 1 1 -1 -1
3 1 -1 1 -1 1 -1 1 -1
4 1 -1 -1 1 1 -1 -1 1
5 1 1 1 1 -1 -1 -1 -1
6 1 1 -1 -1 -1 -1 1 1
7 1 -1 1 -1 -1 1 -1 1
8 1 -1 -1 1 -1 1 1 -1
那么当Gold序列为{a 0,a 1,a 2...}时,不同RE上承载的DMRS的序列如图2所示。可以清楚地从表1中看出,该8个OCC序列任何两个均正交。
在图2中,分别用不同的背景表示DMRS频域正交的三组CDM组,每组由8个RE组成,可以承受8个正交DMRS序列。因此,时域上两个符号共能承载24个正交DMRS序列,由Gold序列和OCC序列相乘得到。
为了增强信道估计,进而增加传输的可靠性,则需要更多的资源传输DMRS,因此,存在扩展的OCC序列,当前,存在序列长度为24的OCC序列,以满足增加传输DMRS的资源的需求。该OCC序列可以是如表2的序列。
表2 24长OCC序列
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 -1 1 -1 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0
1 1 -1 -1 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0
1 -1 -1 1 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0
0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0
0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 1 -1 1 -1
0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 1 1 -1 -1
0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 1 -1 -1 1
1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0
1 -1 1 -1 0 0 0 0 0 0 0 0 -1 1 -1 1 0 0 0 0 0 0 0 0
1 1 -1 -1 0 0 0 0 0 0 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0
1 -1 -1 1 0 0 0 0 0 0 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0
0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 -1 1 -1 1 0 0 0 0
0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 -1 -1 1 1 0 0 0 0
0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 -1 1 1 -1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1
0 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 -1 1 -1 1
0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 -1 -1 1 1
0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 -1 1 1 -1
具体的,可以将图2的三组正交CDM组与8个正交OCC序列理解为一组长为24的正交OCC序列,即表2是由表1的8长序列补零得到的。那么,小区内将含有24个正交DMRS序列,即所有正交序列都包含在小区内,使得相邻小区的DMRS必然不能正交。所以,当两个小区相邻或者小区内的用户设备相邻时,小区内的DMRS干扰将会非常严 重。
经过上述分析,可以很清楚的理解到,现有方案的解决办法是通过设定不同的小区ID,来改变相邻小区的Gold序列,从而减小相邻小区DMRS的干扰。其本质上是将DMRS的设计分成了两个步骤,即,首先确定正交的OCC序列,当正交的OCC序列确定后,通过优化Gold序列从而达到DMRS序列的优化。
毫无疑问的,正是由于这样的拆分,即采用分步优化的手段,会使得设计的DMRS序列无法达到干扰最小。
因此,为了设计出性能更佳的DMRS序列,在本申请中,基于公式(3)、(4)、(5)设计了N组干扰最小的DMRS序列。
首先,对本申请中的DMRS的序列设计方法进行介绍。
具体的,可根据公式(3)和公式(4)生成干扰最小的DMRS序列。
Figure PCTCN2021076061-appb-000014
其中,
Figure PCTCN2021076061-appb-000015
在上述公式中,S 1,opt、S 2,opt为原始序列,λ i是原始序列的特征值,在一种序列生成方案中,上述原始序列根据参数K,β和τ根据上述公式(3)、(4)、(5)生成,其中K是每个小区内传输的数据流数,应理解,当该公式用于设计非正交DMRS序列时,该每个数据流与一个DMRS序列相对应。τ是序列长度(例如上文中提到的8或24),β是表征邻小区或者相邻用户设备干扰信道的质量的干扰系数,取值从0到1,其中,干扰信道的质量越差,β的取值越小,反之,干扰信道的质量越好,β的取值越接近1。U 1、U 2、U 3组成矩阵U,即U=[U 1 U 2 U 3];U 1和U 3均为τ行τ-K列的矩阵,U 2为τ行2K-τ列的矩阵;U为任意τ维酉阵、P为任意τ-K维酉阵、Q为任意2K-τ维酉阵、V 1、V 2为任意τ维酉阵。
应理解,在本申请的中,该干扰最小的N组DMRS序列可以根据使用场景的不同,选择不同,即,本申请对设计的非正交的DMRS序列的组数不进行限定,只要是采用上述方法计算而来的DMRS序列都应包含在本申请的保护范围之内。
图3示出了本申请实施例提供的一种DMRS序列生成方法的流程图。
步骤301,确定DMRS序列生成的参数。
具体的,根据公式(3)、(4)、(5)可以看出,若知道λ i、τ、K、β中的三个,就可以计算出其他的参数值,进而可以确定DMRS序列。
步骤302,根据参数生成对应的DMRS序列组。
具体的,在本申请实施例中,根据参数的不同取值,共列举了8组非正交DMRS序列,即表3.1至表3.8,并以该8组DMRS序列为例,介绍本申请的通信的方法及装置。
需要注意的是,在表3.1至表3.8中,表3.1代表的是为一个小区配置的DMRS序列组,表3.2-表3.8的每张表格包括两个部分,即两个序列子表格,其可以理解为网络设备通过参数为为终端设备不仅配置了其所在小区的DMRS组,并配置了邻区干扰最小的DMRS组。换句话说,两个序列子组,分别对应两个相邻小区使用的非正交DMRS序列。应理解,在本申请中,表3.2-表3.8也可以拆开使用,即按照子表格进行拆分,拆分后的形式与表3.1相同,该种形式的表格代表的意义是,仅为终端设备所在的小区配置的DMRS。
无论表格的形式如何,对于每张表格来讲,其中的每一行代表一个序列,且每张表与各自参数相对应。具体的,在各个参数的取值中,β是表征邻小区或者相邻用户设备干扰信道的质量的干扰系数,K是每个CDM组内传输的DMRS个数的上限值,N_CDM=1表示DMRS的序列长度为8长序列,N_CDM=3表示DMRS的序列长度为24长序列。
表3.1对应的参数可以是:β=1,K=4,N_CDM=1。
表3.1非正交DMRS序列表
  0 1 2 3
0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j
1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j
2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j
3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
表3.2对应的参数可以是:β=0.2,K=6,N_CDM=1。
表3.2非正交DMRS序列表
Figure PCTCN2021076061-appb-000016
表3.3对应的参数可以是:β=0.2,K=7,N_CDM=1。
表3.3非正交DMRS序列表
Figure PCTCN2021076061-appb-000017
表3.4对应的参数可以是:β=0.5,K=6,N_CDM=1。
表3.4非正交DMRS序列表
Figure PCTCN2021076061-appb-000018
Figure PCTCN2021076061-appb-000019
表3.5对应的参数可以是:β=0.5,K=7,N_CDM=1。
表3.5非正交DMRS序列表
Figure PCTCN2021076061-appb-000020
表3.6对应的参数可以是:β=0.5,K=18,N_CDM=3。由于该表3.6为24长的DMRS序列,因此,为了方便阅读,将该3.6表按照列数拆分为以下三段。同样的操作也适用于表3.7和表3.8。
表3.6非正交DMRS序列表
第一段:0-7列,
  0 1 2 3 4 5 6 7
0 2.314550e-01 2.314550e-01 2.314550e-01 2.314550e-01 2.672612e-01 -2.672612e-01 2.672612e-01 -2.672612e-01
1 2.314550e-01 2.314550e-01 -2.314550e-01 -2.314550e-01 2.672612e-01 -2.672612e-01 -2.672612e-01 2.672612e-01
2 2.314550e-01 -2.314550e-01 2.314550e-01 -2.314550e-01 0 0 0 0
3 2.314550e-01 -2.314550e-01 -2.314550e-01 2.314550e-01 0 0 0 0
4 0 0 0 0 2.314550e-01 2.314550e-01 2.314550e-01 2.314550e-01
5 0 0 0 0 2.314550e-01 2.314550e-01 -2.314550e-01 -2.314550e-01
6 2.100156e-16 2.100156e-16 2.100156e-16 2.100156e-16 1.336306e-01 -1.336306e-01 1.336306e-01 -1.336306e-01
7 2.100156e-16 2.100156e-16 -2.100156e-16 -2.100156e-16 1.336306e-01 -1.336306e-01 -1.336306e-01 1.336306e-01
8 2.100156e-16 -2.100156e-16 2.100156e-16 -2.100156e-16 0 0 0 0
9 2.100156e-16 -2.100156e-16 -2.100156e-16 2.100156e-16 0 0 0 0
10 0 0 0 0 2.100156e-16 2.100156e-16 2.100156e-16 2.100156e-16
11 0 0 0 0 2.100156e-16 2.100156e-16 -2.100156e-16 -2.100156e-16
12 4.629100e-01 4.629100e-01 4.629100e-01 4.629100e-01 -1.336306e-01 1.336306e-01 -1.336306e-01 1.336306e-01
13 4.629100e-01 4.629100e-01 -4.629100e-01 -4.629100e-01 -1.336306e-01 1.336306e-01 1.336306e-01 -1.336306e-01
14 4.629100e-01 -4.629100e-01 4.629100e-01 -4.629100e-01 0 0 0 0
15 4.629100e-01 -4.629100e-01 -4.629100e-01 4.629100e-01 0 0 0 0
16 0 0 0 0 4.987163e-01 4.987163e-01 4.987163e-01 4.987163e-01
17 0 0 0 0 4.987163e-01 4.987163e-01 -4.987163e-01 -4.987163e-01
                 
18 0 0 0 0 4.987163e-01 -4.987163e-01 4.987163e-01 -4.987163e-01
19 0 0 0 0 4.987163e-01 -4.987163e-01 -4.987163e-01 4.987163e-01
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 2.314550e-01 2.314550e-01 2.314550e-01 2.314550e-01 -9.782440e-02 9.782440e-02 -9.782440e-02 9.782440e-02
25 2.314550e-01 2.314550e-01 -2.314550e-01 -2.314550e-01 -9.782440e-02 9.782440e-02 9.782440e-02 -9.782440e-02
26 2.314550e-01 -2.314550e-01 2.314550e-01 -2.314550e-01 0 0 0 0
27 2.314550e-01 -2.314550e-01 -2.314550e-01 2.314550e-01 0 0 0 0
28 0 0 0 0 2.314550e-01 2.314550e-01 2.314550e-01 2.314550e-01
29 0 0 0 0 2.314550e-01 2.314550e-01 -2.314550e-01 -2.314550e-01
30 2.314550e-01 2.314550e-01 2.314550e-01 2.314550e-01 9.782440e-02 -9.782440e-02 9.782440e-02 -9.782440e-02
31 2.314550e-01 2.314550e-01 -2.314550e-01 -2.314550e-01 9.782440e-02 -9.782440e-02 -9.782440e-02 9.782440e-02
32 2.314550e-01 -2.314550e-01 2.314550e-01 -2.314550e-01 0 0 0 0
33 2.314550e-01 -2.314550e-01 -2.314550e-01 2.314550e-01 0 0 0 0
34 0 0 0 0 2.314550e-01 2.314550e-01 2.314550e-01 2.314550e-01
35 0 0 0 0 2.314550e-01 2.314550e-01 -2.314550e-01 -2.314550e-01
第二段:8-15列,
Figure PCTCN2021076061-appb-000021
Figure PCTCN2021076061-appb-000022
第三段:16-23列,
Figure PCTCN2021076061-appb-000023
Figure PCTCN2021076061-appb-000024
表3.7对应的参数可以是:β=0.2,K=6,N_CDM=1
表3.7非正交DMRS序列表
第一段:0-7列,
  0 1 2 3 4 5 6 7
0 1.846372e-01 1.846372e-01 1.846372e-01 1.846372e-01 3.015113e-01 3.015113e-01 3.015113e-01 3.015113e-01
1 1.846372e-01 1.846372e-01 -1.846372e-01 -1.846372e-01 3.015113e-01 3.015113e-01 -3.015113e-01 -3.015113e-01
2 1.846372e-01 -1.846372e-01 1.846372e-01 -1.846372e-01 3.015113e-01 -3.015113e-01 3.015113e-01 -3.015113e-01
3 1.846372e-01 -1.846372e-01 -1.846372e-01 1.846372e-01 3.015113e-01 -3.015113e-01 -3.015113e-01 3.015113e-01
4 -1.846372e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01 7.537784e-02 7.537784e-02 7.537784e-02 7.537784e-02
5 -1.846372e-01 -1.846372e-01 1.846372e-01 1.846372e-01 7.537784e-02 7.537784e-02 -7.537784e-02 -7.537784e-02
6 -1.846372e-01 1.846372e-01 -1.846372e-01 1.846372e-01 7.537784e-02 -7.537784e-02 7.537784e-02 -7.537784e-02
7 -1.846372e-01 1.846372e-01 1.846372e-01 -1.846372e-01 7.537784e-02 -7.537784e-02 -7.537784e-02 7.537784e-02
8 4.598782e-01 4.598782e-01 4.598782e-01 4.598782e-01 -7.537784e-02 -7.537784e-02 -7.537784e-02 -7.537784e-02
9 4.598782e-01 4.598782e-01 -4.598782e-01 -4.598782e-01 -7.537784e-02 -7.537784e-02 7.537784e-02 7.537784e-02
10 4.598782e-01 -4.598782e-01 4.598782e-01 -4.598782e-01 -7.537784e-02 7.537784e-02 -7.537784e-02 7.537784e-02
11 4.598782e-01 -4.598782e-01 -4.598782e-01 4.598782e-01 -7.537784e-02 7.537784e-02 7.537784e-02 -7.537784e-02
12 -4.701677e-02 -4.701677e-02 -4.701677e-02 -4.701677e-02 3.137435e-01 3.137435e-01 3.137435e-01 3.137435e-01
13 -4.701677e-02 -4.701677e-02 4.701677e-02 4.701677e-02 3.137435e-01 3.137435e-01 -3.137435e-01 -3.137435e-01
14 -4.701677e-02 4.701677e-02 -4.701677e-02 4.701677e-02 3.137435e-01 -3.137435e-01 3.137435e-01 -3.137435e-01
15 -4.701677e-02 4.701677e-02 4.701677e-02 -4.701677e-02 3.137435e-01 -3.137435e-01 -3.137435e-01 3.137435e-01
16 4.701677e-02 4.701677e-02 4.701677e-02 4.701677e-02 1.629878e-01 1.629878e-01 1.629878e-01 1.629878e-01
17 4.701677e-02 4.701677e-02 -4.701677e-02 -4.701677e-02 1.629878e-01 1.629878e-01 -1.629878e-01 -1.629878e-01
18 4.701677e-02 -4.701677e-02 4.701677e-02 -4.701677e-02 1.629878e-01 -1.629878e-01 1.629878e-01 -1.629878e-01
19 4.701677e-02 -4.701677e-02 -4.701677e-02 4.701677e-02 1.629878e-01 -1.629878e-01 -1.629878e-01 1.629878e-01
                 
20 0 0 0 0 3.015113e-01 3.015113e-01 3.015113e-01 3.015113e-01
21 0 0 0 0 3.015113e-01 3.015113e-01 -3.015113e-01 -3.015113e-01
22 0 0 0 0 3.015113e-01 -3.015113e-01 3.015113e-01 -3.015113e-01
23 0 0 0 0 3.015113e-01 -3.015113e-01 -3.015113e-01 3.015113e-01
24 0 0 0 0 7.537784e-02 7.537784e-02 7.537784e-02 7.537784e-02
25 0 0 0 0 7.537784e-02 7.537784e-02 -7.537784e-02 -7.537784e-02
26 0 0 0 0 7.537784e-02 -7.537784e-02 7.537784e-02 -7.537784e-02
27 0 0 0 0 7.537784e-02 -7.537784e-02 -7.537784e-02 7.537784e-02
28 2.752409e-01 2.752409e-01 2.752409e-01 2.752409e-01 -7.537784e-02 -7.537784e-02 -7.537784e-02 -7.537784e-02
29 2.752409e-01 2.752409e-01 -2.752409e-01 -2.752409e-01 -7.537784e-02 -7.537784e-02 7.537784e-02 7.537784e-02
30 2.752409e-01 -2.752409e-01 2.752409e-01 -2.752409e-01 -7.537784e-02 7.537784e-02 -7.537784e-02 7.537784e-02
31 2.752409e-01 -2.752409e-01 -2.752409e-01 2.752409e-01 -7.537784e-02 7.537784e-02 7.537784e-02 -7.537784e-02
32 1.376205e-01 1.376205e-01 1.376205e-01 1.376205e-01 3.137435e-01 3.137435e-01 3.137435e-01 3.137435e-01
33 1.376205e-01 1.376205e-01 -1.376205e-01 -1.376205e-01 3.137435e-01 3.137435e-01 -3.137435e-01 -3.137435e-01
34 1.376205e-01 -1.376205e-01 1.376205e-01 -1.376205e-01 3.137435e-01 -3.137435e-01 3.137435e-01 -3.137435e-01
35 1.376205e-01 -1.376205e-01 -1.376205e-01 1.376205e-01 3.137435e-01 -3.137435e-01 -3.137435e-01 3.137435e-01
36 -1.376205e-01 -1.376205e-01 -1.376205e-01 -1.376205e-01 1.629878e-01 1.629878e-01 1.629878e-01 1.629878e-01
37 -1.376205e-01 -1.376205e-01 1.376205e-01 1.376205e-01 1.629878e-01 1.629878e-01 -1.629878e-01 -1.629878e-01
38 -1.376205e-01 1.376205e-01 -1.376205e-01 1.376205e-01 1.629878e-01 -1.629878e-01 1.629878e-01 -1.629878e-01
39 -1.376205e-01 1.376205e-01 1.376205e-01 -1.376205e-01 1.629878e-01 -1.629878e-01 -1.629878e-01 1.629878e-01
第二段:8-15列,
  8 9 10 11 12 13 14 15
0 0 0 0 0 1.846372e-01 1.846372e-01 1.846372e-01 1.846372e-01
1 0 0 0 0 1.846372e-01 1.846372e-01 -1.846372e-01 -1.846372e-01
2 0 0 0 0 1.846372e-01 -1.846372e-01 1.846372e-01 -1.846372e-01
3 0 0 0 0 1.846372e-01 -1.846372e-01 -1.846372e-01 1.846372e-01
4 2.919371e-01 2.919371e-01 2.919371e-01 2.919371e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01
5 2.919371e-01 2.919371e-01 -2.919371e-01 -2.919371e-01 -1.846372e-01 -1.846372e-01 1.846372e-01 1.846372e-01
6 2.919371e-01 -2.919371e-01 2.919371e-01 -2.919371e-01 -1.846372e-01 1.846372e-01 -1.846372e-01 1.846372e-01
7 2.919371e-01 -2.919371e-01 -2.919371e-01 2.919371e-01 -1.846372e-01 1.846372e-01 1.846372e-01 -1.846372e-01
8 9.731237e-02 9.731237e-02 9.731237e-02 9.731237e-02 -9.060370e-02 -9.060370e-02 -9.060370e-02 -9.060370e-02
9 9.731237e-02 9.731237e-02 -9.731237e-02 -9.731237e-02 -9.060370e-02 -9.060370e-02 9.060370e-02 9.060370e-02
10 9.731237e-02 -9.731237e-02 9.731237e-02 -9.731237e-02 -9.060370e-02 9.060370e-02 -9.060370e-02 9.060370e-02
11 9.731237e-02 -9.731237e-02 -9.731237e-02 9.731237e-02 -9.060370e-02 9.060370e-02 9.060370e-02 -9.060370e-02
12 -9.731237e-02 -9.731237e-02 -9.731237e-02 -9.731237e-02 -3.222577e-01 -3.222577e-01 -3.222577e-01 -3.222577e-01
13 -9.731237e-02 -9.731237e-02 9.731237e-02 9.731237e-02 -3.222577e-01 -3.222577e-01 3.222577e-01 3.222577e-01
14 -9.731237e-02 9.731237e-02 -9.731237e-02 9.731237e-02 -3.222577e-01 3.222577e-01 -3.222577e-01 3.222577e-01
15 -9.731237e-02 9.731237e-02 9.731237e-02 -9.731237e-02 -3.222577e-01 3.222577e-01 3.222577e-01 -3.222577e-01
16 9.731237e-02 9.731237e-02 9.731237e-02 9.731237e-02 3.222577e-01 3.222577e-01 3.222577e-01 3.222577e-01
17 9.731237e-02 9.731237e-02 -9.731237e-02 -9.731237e-02 3.222577e-01 3.222577e-01 -3.222577e-01 -3.222577e-01
18 9.731237e-02 -9.731237e-02 9.731237e-02 -9.731237e-02 3.222577e-01 -3.222577e-01 3.222577e-01 -3.222577e-01
19 9.731237e-02 -9.731237e-02 -9.731237e-02 9.731237e-02 3.222577e-01 -3.222577e-01 -3.222577e-01 3.222577e-01
                 
20 1.846372e-01 1.846372e-01 1.846372e-01 1.846372e-01 0 0 0 0
21 1.846372e-01 1.846372e-01 -1.846372e-01 -1.846372e-01 0 0 0 0
22 1.846372e-01 -1.846372e-01 1.846372e-01 -1.846372e-01 0 0 0 0
23 1.846372e-01 -1.846372e-01 -1.846372e-01 1.846372e-01 0 0 0 0
24 1.072999e-01 1.072999e-01 1.072999e-01 1.072999e-01 0 0 0 0
25 1.072999e-01 1.072999e-01 -1.072999e-01 -1.072999e-01 0 0 0 0
26 1.072999e-01 -1.072999e-01 1.072999e-01 -1.072999e-01 0 0 0 0
27 1.072999e-01 -1.072999e-01 -1.072999e-01 1.072999e-01 0 0 0 0
28 2.819496e-01 2.819496e-01 2.819496e-01 2.819496e-01 -2.752409e-01 -2.752409e-01 -2.752409e-01 -2.752409e-01
29 2.819496e-01 2.819496e-01 -2.819496e-01 -2.819496e-01 -2.752409e-01 -2.752409e-01 2.752409e-01 2.752409e-01
30 2.819496e-01 -2.819496e-01 2.819496e-01 -2.819496e-01 -2.752409e-01 2.752409e-01 -2.752409e-01 2.752409e-01
31 2.819496e-01 -2.819496e-01 -2.819496e-01 2.819496e-01 -2.752409e-01 2.752409e-01 2.752409e-01 -2.752409e-01
32 -2.819496e-01 -2.819496e-01 -2.819496e-01 -2.819496e-01 -1.376205e-01 -1.376205e-01 -1.376205e-01 -1.376205e-01
33 -2.819496e-01 -2.819496e-01 2.819496e-01 2.819496e-01 -1.376205e-01 -1.376205e-01 1.376205e-01 1.376205e-01
34 -2.819496e-01 2.819496e-01 -2.819496e-01 2.819496e-01 -1.376205e-01 1.376205e-01 -1.376205e-01 1.376205e-01
35 -2.819496e-01 2.819496e-01 2.819496e-01 -2.819496e-01 -1.376205e-01 1.376205e-01 1.376205e-01 -1.376205e-01
36 2.819496e-01 2.819496e-01 2.819496e-01 2.819496e-01 1.376205e-01 1.376205e-01 1.376205e-01 1.376205e-01
37 2.819496e-01 2.819496e-01 -2.819496e-01 -2.819496e-01 1.376205e-01 1.376205e-01 -1.376205e-01 -1.376205e-01
38 2.819496e-01 -2.819496e-01 2.819496e-01 -2.819496e-01 1.376205e-01 -1.376205e-01 1.376205e-01 -1.376205e-01
39 2.819496e-01 -2.819496e-01 -2.819496e-01 2.819496e-01 1.376205e-01 -1.376205e-01 -1.376205e-01 1.376205e-01
第三段:16-23列,
  16 17 18 19 20 21 22 23
0 3.015113e-01 3.015113e-01 3.015113e-01 3.015113e-01 0 0 0 0
1 3.015113e-01 3.015113e-01 -3.015113e-01 -3.015113e-01 0 0 0 0
2 3.015113e-01 -3.015113e-01 3.015113e-01 -3.015113e-01 0 0 0 0
3 3.015113e-01 -3.015113e-01 -3.015113e-01 3.015113e-01 0 0 0 0
4 7.537784e-02 7.537784e-02 7.537784e-02 7.537784e-02 2.919371e-01 2.919371e-01 2.919371e-01 2.919371e-01
5 7.537784e-02 7.537784e-02 -7.537784e-02 -7.537784e-02 2.919371e-01 2.919371e-01 -2.919371e-01 -2.919371e-01
6 7.537784e-02 -7.537784e-02 7.537784e-02 -7.537784e-02 2.919371e-01 -2.919371e-01 2.919371e-01 -2.919371e-01
7 7.537784e-02 -7.537784e-02 -7.537784e-02 7.537784e-02 2.919371e-01 -2.919371e-01 -2.919371e-01 2.919371e-01
8 -7.537784e-02 -7.537784e-02 -7.537784e-02 -7.537784e-02 9.731237e-02 9.731237e-02 9.731237e-02 9.731237e-02
9 -7.537784e-02 -7.537784e-02 7.537784e-02 7.537784e-02 9.731237e-02 9.731237e-02 -9.731237e-02 -9.731237e-02
10 -7.537784e-02 7.537784e-02 -7.537784e-02 7.537784e-02 9.731237e-02 -9.731237e-02 9.731237e-02 -9.731237e-02
11 -7.537784e-02 7.537784e-02 7.537784e-02 -7.537784e-02 9.731237e-02 -9.731237e-02 -9.731237e-02 9.731237e-02
12 -1.629878e-01 -1.629878e-01 -1.629878e-01 -1.629878e-01 -9.731237e-02 -9.731237e-02 -9.731237e-02 -9.731237e-02
13 -1.629878e-01 -1.629878e-01 1.629878e-01 1.629878e-01 -9.731237e-02 -9.731237e-02 9.731237e-02 9.731237e-02
14 -1.629878e-01 1.629878e-01 -1.629878e-01 1.629878e-01 -9.731237e-02 9.731237e-02 -9.731237e-02 9.731237e-02
15 -1.629878e-01 1.629878e-01 1.629878e-01 -1.629878e-01 -9.731237e-02 9.731237e-02 9.731237e-02 -9.731237e-02
16 -3.137435e-01 -3.137435e-01 -3.137435e-01 -3.137435e-01 9.731237e-02 9.731237e-02 9.731237e-02 9.731237e-02
17 -3.137435e-01 -3.137435e-01 3.137435e-01 3.137435e-01 9.731237e-02 9.731237e-02 -9.731237e-02 -9.731237e-02
18 -3.137435e-01 3.137435e-01 -3.137435e-01 3.137435e-01 9.731237e-02 9.731237e-02 9.731237e-02 9.731237e-02
19 -3.137435e-01 3.137435e-01 3.137435e-01 -3.137435e-01 9.731237e-02 9.731237e-02 -9.731237e-02 -9.731237e-02
                 
20 3.015113e-01 3.015113e-01 3.015113e-01 3.015113e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01
21 3.015113e-01 3.015113e-01 -3.015113e-01 -3.015113e-01 -1.846372e-01 -1.846372e-01 1.846372e-01 1.846372e-01
22 3.015113e-01 -3.015113e-01 3.015113e-01 -3.015113e-01 -1.846372e-01 1.846372e-01 -1.846372e-01 1.846372e-01
23 3.015113e-01 -3.015113e-01 -3.015113e-01 3.015113e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01 -1.846372e-01
24 7.537784e-02 7.537784e-02 7.537784e-02 7.537784e-02 4.765743e-01 4.765743e-01 4.765743e-01 4.765743e-01
25 7.537784e-02 7.537784e-02 -7.537784e-02 -7.537784e-02 4.765743e-01 4.765743e-01 -4.765743e-01 -4.765743e-01
26 7.537784e-02 -7.537784e-02 7.537784e-02 -7.537784e-02 4.765743e-01 -4.765743e-01 4.765743e-01 -4.765743e-01
27 7.537784e-02 -7.537784e-02 -7.537784e-02 7.537784e-02 4.765743e-01 -4.765743e-01 -4.765743e-01 4.765743e-01
28 -7.537784e-02 -7.537784e-02 -7.537784e-02 -7.537784e-02 -8.732487e-02 -8.732487e-02 -8.732487e-02 -8.732487e-02
29 -7.537784e-02 -7.537784e-02 7.537784e-02 7.537784e-02 -8.732487e-02 -8.732487e-02 8.732487e-02 8.732487e-02
30 -7.537784e-02 7.537784e-02 -7.537784e-02 7.537784e-02 -8.732487e-02 8.732487e-02 -8.732487e-02 8.732487e-02
31 -7.537784e-02 7.537784e-02 7.537784e-02 -7.537784e-02 -8.732487e-02 8.732487e-02 8.732487e-02 -8.732487e-02
32 -1.629878e-01 -1.629878e-01 -1.629878e-01 -1.629878e-01 8.732487e-02 8.732487e-02 8.732487e-02 8.732487e-02
33 -1.629878e-01 -1.629878e-01 1.629878e-01 1.629878e-01 8.732487e-02 8.732487e-02 8.732487e-02 8.732487e-02
34 -1.629878e-01 1.629878e-01 -1.629878e-01 1.629878e-01 8.732487e-02 8.732487e-02 8.732487e-02 8.732487e-02
35 -1.629878e-01 1.629878e-01 1.629878e-01 -1.629878e-01 8.732487e-02 8.732487e-02 8.732487e-02 8.732487e-02
36 -3.137435e-01 -3.137435e-01 -3.137435e-01 -3.137435e-01 -8.732487e-02 -8.732487e-02 -8.732487e-02 -8.732487e-02
37 -3.137435e-01 -3.137435e-01 3.137435e-01 3.137435e-01 -8.732487e-02 -8.732487e-02 8.732487e-02 8.732487e-02
38 -3.137435e-01 3.137435e-01 -3.137435e-01 3.137435e-01 -8.732487e-02 8.732487e-02 -8.732487e-02 8.732487e-02
39 -3.137435e-01 3.137435e-01 3.137435e-01 -3.137435e-01 -8.732487e-02 8.732487e-02 8.732487e-02 -8.732487e-02
表3.8对应的参数可以是:β=0.2,K=6,N_CDM=1
表3.8非正交DMRS序列表
第一段:0-7列,
  0 1 2 3 4 5 6 7
0 4.573787e-01 -2.020018e-01 4.573787e-01 -2.020018e-01 0 0 0 0
1 4.573787e-01 -2.020018e-01 -4.573787e-01 2.020018e-01 0 0 0 0
2 -9.471946e-02 -1.606575e-01 -9.471946e-02 -1.606575e-01 3.280376e-01 3.280376e-01 3.280376e-01 3.280376e-01
3 -9.471946e-02 -1.606575e-01 9.471946e-02 1.606575e-01 3.280376e-01 3.280376e-01 -3.280376e-01 -3.280376e-01
4 9.471946e-02 1.606575e-01 9.471946e-02 1.606575e-01 3.624551e-01 -2.895578e-01 3.624551e-01 -2.895578e-01
5 9.471946e-02 1.606575e-01 -9.471946e-02 -1.606575e-01 3.624551e-01 -2.895578e-01 -3.624551e-01 2.895578e-01
6 -9.471946e-02 -1.606575e-01 -9.471946e-02 -1.606575e-01 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02
7 -9.471946e-02 -1.606575e-01 9.471946e-02 1.606575e-01 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02
8 9.471946e-02 1.606575e-01 9.471946e-02 1.606575e-01 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02
9 9.471946e-02 1.606575e-01 -9.471946e-02 -1.606575e-01 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02
10 2.209349e-01 1.549969e-01 2.209349e-01 1.549969e-01 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02
11 2.209349e-01 1.549969e-01 -2.209349e-01 -1.549969e-01 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02
12 4.671272e-01 -8.548848e-02 4.671272e-01 -8.548848e-02 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02
13 4.671272e-01 -8.548848e-02 -4.671272e-01 8.548848e-02 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02
14 -8.053112e-02 -3.011076e-01 -8.053112e-02 -3.011076e-01 3.037582e-01 2.222566e-01 3.037582e-01 2.222566e-01
15 -8.053112e-02 -3.011076e-01 8.053112e-02 3.011076e-01 3.037582e-01 2.222566e-01 -3.037582e-01 -2.222566e-01
16 8.053112e-02 3.011076e-01 8.053112e-02 3.011076e-01 3.778464e-01 -1.053117e-01 3.778464e-01 -1.053117e-01
17 8.053112e-02 3.011076e-01 -8.053112e-02 -3.011076e-01 3.778464e-01 -1.053117e-01 -3.778464e-01 1.053117e-01
18 -8.053112e-02 -3.011076e-01 -8.053112e-02 -3.011076e-01 4.564843e-02 -3.181830e-01 4.564843e-02 -3.181830e-01
19 -8.053112e-02 -3.011076e-01 8.053112e-02 3.011076e-01 4.564843e-02 -3.181830e-01 -4.564843e-02 3.181830e-01
20 8.053112e-02 3.011076e-01 8.053112e-02 3.011076e-01 -4.564843e-02 3.181830e-01 -4.564843e-02 3.181830e-01
21 8.053112e-02 3.011076e-01 -8.053112e-02 -3.011076e-01 -4.564843e-02 3.181830e-01 4.564843e-02 -3.181830e-01
                 
22 3.296902e-01 -3.296902e-01 3.296902e-01 -3.296902e-01 0 0 0 0
23 3.296902e-01 -3.296902e-01 -3.296902e-01 3.296902e-01 0 0 0 0
24 3.296902e-01 -3.296902e-01 3.296902e-01 -3.296902e-01 3.280376e-01 3.280376e-01 3.280376e-01 3.280376e-01
25 3.296902e-01 -3.296902e-01 -3.296902e-01 3.296902e-01 3.280376e-01 3.280376e-01 -3.280376e-01 -3.280376e-01
26 -3.296902e-01 3.296902e-01 -3.296902e-01 3.296902e-01 3.624551e-01 -2.895578e-01 3.624551e-01 -2.895578e-01
27 -3.296902e-01 3.296902e-01 3.296902e-01 -3.296902e-01 3.624551e-01 -2.895578e-01 -3.624551e-01 2.895578e-01
28 3.296902e-01 -3.296902e-01 3.296902e-01 -3.296902e-01 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02
29 3.296902e-01 -3.296902e-01 -3.296902e-01 3.296902e-01 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02
30 -3.296902e-01 3.296902e-01 -3.296902e-01 3.296902e-01 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02
31 -3.296902e-01 3.296902e-01 3.296902e-01 -3.296902e-01 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02
32 3.486234e-01 2.826853e-01 3.486234e-01 2.826853e-01 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02
33 3.486234e-01 2.826853e-01 -3.486234e-01 -2.826853e-01 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02
34 3.394387e-01 -2.131770e-01 3.394387e-01 -2.131770e-01 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02
35 3.394387e-01 -2.131770e-01 -3.394387e-01 2.131770e-01 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02
36 4.715736e-02 -1.734191e-01 4.715736e-02 -1.734191e-01 3.037582e-01 2.222566e-01 3.037582e-01 2.222566e-01
37 4.715736e-02 -1.734191e-01 -4.715736e-02 1.734191e-01 3.037582e-01 2.222566e-01 -3.037582e-01 -2.222566e-01
38 -4.715736e-02 1.734191e-01 -4.715736e-02 1.734191e-01 3.778464e-01 -1.053117e-01 3.778464e-01 -1.053117e-01
39 -4.715736e-02 1.734191e-01 4.715736e-02 -1.734191e-01 3.778464e-01 -1.053117e-01 -3.778464e-01 1.053117e-01
40 4.715736e-02 -1.734191e-01 4.715736e-02 -1.734191e-01 4.564843e-02 -3.181830e-01 4.564843e-02 -3.181830e-01
41 4.715736e-02 -1.734191e-01 -4.715736e-02 1.734191e-01 4.564843e-02 -3.181830e-01 -4.564843e-02 3.181830e-01
42 -4.715736e-02 1.734191e-01 -4.715736e-02 1.734191e-01 -4.564843e-02 3.181830e-01 -4.564843e-02 3.181830e-01
43 -4.715736e-02 1.734191e-01 4.715736e-02 -1.734191e-01 -4.564843e-02 3.181830e-01 4.564843e-02 -3.181830e-01
第二段:8-15列,
  8 9 10 11 12 13 14 15
0 0 0 0 0 4.573787e-01 -2.020018e-01 4.573787e-01 -2.020018e-01
1 0 0 0 0 4.573787e-01 -2.020018e-01 -4.573787e-01 2.020018e-01
2 0 0 0 0 -9.471946e-02 -1.606575e-01 -9.471946e-02 -1.606575e-01
3 0 0 0 0 -9.471946e-02 -1.606575e-01 9.471946e-02 1.606575e-01
4 0 0 0 0 9.471946e-02 1.606575e-01 9.471946e-02 1.606575e-01
5 0 0 0 0 9.471946e-02 1.606575e-01 -9.471946e-02 -1.606575e-01
6 3.234495e-01 3.234495e-01 3.234495e-01 3.234495e-01 -9.471946e-02 -1.606575e-01 -9.471946e-02 -1.606575e-01
7 3.234495e-01 3.234495e-01 -3.234495e-01 -3.234495e-01 -9.471946e-02 -1.606575e-01 9.471946e-02 1.606575e-01
8 3.663390e-01 -2.739249e-01 3.663390e-01 -2.739249e-01 9.471946e-02 1.606575e-01 9.471946e-02 1.606575e-01
9 3.663390e-01 -2.739249e-01 -3.663390e-01 2.739249e-01 9.471946e-02 1.606575e-01 -9.471946e-02 -1.606575e-01
10 7.148258e-03 -9.956240e-02 7.148258e-03 -9.956240e-02 -4.103738e-01 -4.763119e-01 -4.103738e-01 -4.763119e-01
11 7.148258e-03 -9.956240e-02 -7.148258e-03 9.956240e-02 -4.103738e-01 -4.763119e-01 4.103738e-01 4.763119e-01
12 -7.148258e-03 9.956240e-02 -7.148258e-03 9.956240e-02 -2.776883e-01 4.068035e-01 -2.776883e-01 4.068035e-01
13 -7.148258e-03 9.956240e-02 7.148258e-03 -9.956240e-02 -2.776883e-01 4.068035e-01 2.776883e-01 -4.068035e-01
14 7.148258e-03 -9.956240e-02 7.148258e-03 -9.956240e-02 -1.089078e-01 -2.020742e-02 -1.089078e-01 -2.020742e-02
15 7.148258e-03 -9.956240e-02 -7.148258e-03 9.956240e-02 -1.089078e-01 -2.020742e-02 1.089078e-01 2.020742e-02
16 -7.148258e-03 9.956240e-02 -7.148258e-03 9.956240e-02 1.089078e-01 2.020742e-02 1.089078e-01 2.020742e-02
17 -7.148258e-03 9.956240e-02 7.148258e-03 -9.956240e-02 1.089078e-01 2.020742e-02 -1.089078e-01 -2.020742e-02
18 2.516531e-01 1.449424e-01 2.516531e-01 1.449424e-01 -1.089078e-01 -2.020742e-02 -1.089078e-01 -2.020742e-02
19 2.516531e-01 1.449424e-01 -2.516531e-01 -1.449424e-01 -1.089078e-01 -2.020742e-02 1.089078e-01 2.020742e-02
20 2.373566e-01 3.440672e-01 2.373566e-01 3.440672e-01 1.089078e-01 2.020742e-02 1.089078e-01 2.020742e-02
21 2.373566e-01 3.440672e-01 -2.373566e-01 -3.440672e-01 1.089078e-01 2.020742e-02 -1.089078e-01 -2.020742e-02
                 
22 1.276885e-01 -1.276885e-01 1.276885e-01 -1.276885e-01 3.296902e-01 -3.296902e-01 3.296902e-01 -3.296902e-01
23 1.276885e-01 -1.276885e-01 -1.276885e-01 1.276885e-01 3.296902e-01 -3.296902e-01 -3.296902e-01 3.296902e-01
24 -1.276885e-01 1.276885e-01 -1.276885e-01 1.276885e-01 3.296902e-01 -3.296902e-01 3.296902e-01 -3.296902e-01
25 -1.276885e-01 1.276885e-01 1.276885e-01 -1.276885e-01 3.296902e-01 -3.296902e-01 -3.296902e-01 3.296902e-01
26 1.276885e-01 -1.276885e-01 1.276885e-01 -1.276885e-01 -3.296902e-01 3.296902e-01 -3.296902e-01 3.296902e-01
27 1.276885e-01 -1.276885e-01 -1.276885e-01 1.276885e-01 -3.296902e-01 3.296902e-01 3.296902e-01 -3.296902e-01
28 1.957610e-01 4.511380e-01 1.957610e-01 4.511380e-01 3.296902e-01 -3.296902e-01 3.296902e-01 -3.296902e-01
29 1.957610e-01 4.511380e-01 -1.957610e-01 -4.511380e-01 3.296902e-01 -3.296902e-01 -3.296902e-01 3.296902e-01
30 4.940275e-01 -4.016134e-01 4.940275e-01 -4.016134e-01 -3.296902e-01 3.296902e-01 -3.296902e-01 3.296902e-01
31 4.940275e-01 -4.016134e-01 -4.940275e-01 4.016134e-01 -3.296902e-01 3.296902e-01 3.296902e-01 -3.296902e-01
32 -1.205402e-01 2.812608e-02 -1.205402e-01 2.812608e-02 -2.826853e-01 -3.486234e-01 -2.826853e-01 -3.486234e-01
33 -1.205402e-01 2.812608e-02 1.205402e-01 -2.812608e-02 -2.826853e-01 -3.486234e-01 2.826853e-01 3.486234e-01
34 1.205402e-01 -2.812608e-02 1.205402e-01 -2.812608e-02 -4.053768e-01 2.791150e-01 -4.053768e-01 2.791150e-01
35 1.205402e-01 -2.812608e-02 -1.205402e-01 2.812608e-02 -4.053768e-01 2.791150e-01 4.053768e-01 -2.791150e-01
36 -1.205402e-01 2.812608e-02 -1.205402e-01 2.812608e-02 1.878068e-02 1.074811e-01 1.878068e-02 1.074811e-01
37 -1.205402e-01 2.812608e-02 1.205402e-01 -2.812608e-02 1.878068e-02 1.074811e-01 -1.878068e-02 -1.074811e-01
38 1.205402e-01 -2.812608e-02 1.205402e-01 -2.812608e-02 -1.878068e-02 -1.074811e-01 -1.878068e-02 -1.074811e-01
39 1.205402e-01 -2.812608e-02 -1.205402e-01 2.812608e-02 -1.878068e-02 -1.074811e-01 1.878068e-02 1.074811e-01
40 1.239646e-01 2.726309e-01 1.239646e-01 2.726309e-01 1.878068e-02 1.074811e-01 1.878068e-02 1.074811e-01
41 1.239646e-01 2.726309e-01 -1.239646e-01 -2.726309e-01 1.878068e-02 1.074811e-01 -1.878068e-02 -1.074811e-01
42 3.650450e-01 2.163787e-01 3.650450e-01 2.163787e-01 -1.878068e-02 -1.074811e-01 -1.878068e-02 -1.074811e-01
43 3.650450e-01 2.163787e-01 -3.650450e-01 -2.163787e-01 -1.878068e-02 -1.074811e-01 1.878068e-02 1.074811e-01
第三段:16-23列
  16 17 18 19 20 21 22 23
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 3.280376e-01 3.280376e-01 3.280376e-01 3.280376e-01 0 0 0 0
3 3.280376e-01 3.280376e-01 -3.280376e-01 -3.280376e-01 0 0 0 0
4 3.624551e-01 -2.895578e-01 3.624551e-01 -2.895578e-01 0 0 0 0
5 3.624551e-01 -2.895578e-01 -3.624551e-01 2.895578e-01 0 0 0 0
6 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02 3.234495e-01 3.234495e-01 3.234495e-01 3.234495e-01
7 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02 3.234495e-01 3.234495e-01 -3.234495e-01 -3.234495e-01
8 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02 3.663390e-01 -2.739249e-01 3.663390e-01 -2.739249e-01
9 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02 3.663390e-01 -2.739249e-01 -3.663390e-01 2.739249e-01
10 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02 7.148258e-03 -9.956240e-02 7.148258e-03 -9.956240e-02
11 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02 7.148258e-03 -9.956240e-02 -7.148258e-03 9.956240e-02
12 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02 -7.148258e-03 9.956240e-02 -7.148258e-03 9.956240e-02
13 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02 -7.148258e-03 9.956240e-02 7.148258e-03 -9.956240e-02
14 -2.951539e-01 -3.766555e-01 -2.951539e-01 -3.766555e-01 7.148258e-03 -9.956240e-02 7.148258e-03 -9.956240e-02
15 -2.951539e-01 -3.766555e-01 2.951539e-01 3.766555e-01 7.148258e-03 -9.956240e-02 -7.148258e-03 9.956240e-02
16 -3.864507e-01 2.597106e-01 -3.864507e-01 2.597106e-01 -7.148258e-03 9.956240e-02 -7.148258e-03 9.956240e-02
17 -3.864507e-01 2.597106e-01 3.864507e-01 -2.597106e-01 -7.148258e-03 9.956240e-02 7.148258e-03 -9.956240e-02
18 -3.704407e-02 1.637842e-01 -3.704407e-02 1.637842e-01 -2.373566e-01 -3.440672e-01 -2.373566e-01 -3.440672e-01
19 -3.704407e-02 1.637842e-01 3.704407e-02 -1.637842e-01 -2.373566e-01 -3.440672e-01 2.373566e-01 3.440672e-01
20 3.704407e-02 -1.637842e-01 3.704407e-02 -1.637842e-01 -2.516531e-01 -1.449424e-01 -2.516531e-01 -1.449424e-01
21 3.704407e-02 -1.637842e-01 -3.704407e-02 1.637842e-01 -2.516531e-01 -1.449424e-01 2.516531e-01 1.449424e-01
                 
22 0 0 0 0 -1.276885e-01 1.276885e-01 -1.276885e-01 1.276885e-01
23 0 0 0 0 -1.276885e-01 1.276885e-01 1.276885e-01 -1.276885e-01
24 3.280376e-01 3.280376e-01 3.280376e-01 3.280376e-01 1.276885e-01 -1.276885e-01 1.276885e-01 -1.276885e-01
25 3.280376e-01 3.280376e-01 -3.280376e-01 -3.280376e-01 1.276885e-01 -1.276885e-01 -1.276885e-01 1.276885e-01
26 3.624551e-01 -2.895578e-01 3.624551e-01 -2.895578e-01 -1.276885e-01 1.276885e-01 -1.276885e-01 1.276885e-01
27 3.624551e-01 -2.895578e-01 -3.624551e-01 2.895578e-01 -1.276885e-01 1.276885e-01 1.276885e-01 -1.276885e-01
28 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02 4.511380e-01 1.957610e-01 4.511380e-01 1.957610e-01
29 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02 4.511380e-01 1.957610e-01 -4.511380e-01 -1.957610e-01
30 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02 2.386505e-01 -1.462364e-01 2.386505e-01 -1.462364e-01
31 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02 2.386505e-01 -1.462364e-01 -2.386505e-01 1.462364e-01
32 4.302177e-03 -7.719943e-02 4.302177e-03 -7.719943e-02 1.348367e-01 -2.272509e-01 1.348367e-01 -2.272509e-01
33 4.302177e-03 -7.719943e-02 -4.302177e-03 7.719943e-02 1.348367e-01 -2.272509e-01 -1.348367e-01 2.272509e-01
34 -4.302177e-03 7.719943e-02 -4.302177e-03 7.719943e-02 -1.348367e-01 2.272509e-01 -1.348367e-01 2.272509e-01
35 -4.302177e-03 7.719943e-02 4.302177e-03 -7.719943e-02 -1.348367e-01 2.272509e-01 1.348367e-01 -2.272509e-01
36 -2.951539e-01 -3.766555e-01 -2.951539e-01 -3.766555e-01 1.348367e-01 -2.272509e-01 1.348367e-01 -2.272509e-01
37 -2.951539e-01 -3.766555e-01 2.951539e-01 3.766555e-01 1.348367e-01 -2.272509e-01 -1.348367e-01 2.272509e-01
38 -3.864507e-01 2.597106e-01 -3.864507e-01 2.597106e-01 -1.348367e-01 2.272509e-01 -1.348367e-01 2.272509e-01
39 -3.864507e-01 2.597106e-01 3.864507e-01 -2.597106e-01 -1.348367e-01 2.272509e-01 1.348367e-01 -2.272509e-01
40 -3.704407e-02 1.637842e-01 -3.704407e-02 1.637842e-01 -1.096681e-01 -4.717557e-01 -1.096681e-01 -4.717557e-01
41 -3.704407e-02 1.637842e-01 3.704407e-02 -1.637842e-01 -1.096681e-01 -4.717557e-01 1.096681e-01 4.717557e-01
42 3.704407e-02 -1.637842e-01 3.704407e-02 -1.637842e-01 -3.793416e-01 -1.725395e-02 -3.793416e-01 -1.725395e-02
43 3.704407e-02 -1.637842e-01 -3.704407e-02 1.637842e-01 -3.793416e-01 -1.725395e-02 3.793416e-01 1.725395e-02
应理解,上述表格中的参考信号序列仅作为示例而非限定,本方案保护的参考信号序列,包括但不限于对上述表格中的序列的进行如下初等操作:
例如,可对上述表格中的某一行,即某个参考序列中的每一个元素,可以同时乘以e ,其中,j是虚数单位,θ是任意实数。当θ=π时,e =-1,此时,相当与对该参考序列的每个元素取相反数。当然的,也可以对上述表格中的的某张表格中的参考信号序列的元 素顺序进行调换,例如将某张表格中的所有序列的第m个元素与第n个元素对调,即将表格的第m列与第n列对调。
因此,需要说明的是,对于不改变序列相关性的任何操作下产生的其他序列组,也应在本申请的保护范围内。
本申请实施例提供的非正交DMRS序列组,在设计中不再继续使用Gold,使计算序列时的复杂度降低,并且能够消除邻小区的干扰,从而提升信道估计的可靠性以及系统的吞吐量。
根据本申请实施例提供的8组DMRS序列,本申请还提供了一种DMRS序列的指示方法400。例如图4示出的流程。
S410、网络设备确定第一参考信号序列,该第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中N为大于或等于1的整数。
具体来说,网络设备在N个参考信号序列组中的参考信号序列中确定出第一参考信号序列,该参考信号序列为终端设备下行接收的参考信号序列或上行发送的参考信号序列。
应理解,该第一参考信号序列可以是例如上述表3.1或者表3.2至表3.8中的序列子组的某一行。
S420、网络设备向终端设备发送第一指示信息,该第一指示信息用于指示该第一参考信号序列,该第一参考信号序列为第一参考信号序列组中的一个序列。
具体地,网络设备确定出第一参考信号序列组,并将该第一参考信号序列组中的一个参考信号序列,即第一参考信号序列通过第一指示信息指示给终端设备。
可选的,该第一指示信息可以承载于物理层信令中,例如,可以是承载于DCI中。
在本申请实施例中,网络设备可以根据例如表4.1和表4.2来指示终端设备的参考信号序列。
表4.1序列指示表
Figure PCTCN2021076061-appb-000025
表4.2序列指示表
Figure PCTCN2021076061-appb-000026
Figure PCTCN2021076061-appb-000027
应理解,表4.1和表4.2仅作为示例而非限定来说明网络设备是如何向终端设备指示第一参考信号序列组中的第一参考信号序列的。从上述两张表格可以看出,网络设备发送的第一指示信息的内容是根据第一参考信号序列组中的参考序列的个数确定的。也就是说,该第一指示信息的指示域所包含的比特数与第一参考信号序列组包含的序列的个数有关,上述示例的表4.1和表4.2分别对应参考信号序列数的上限为6和7的情况。例如,当第一参考信号序列组内的参考信号序列的个数为6是,网络设备可通过例如表4.1所述的比特域与序列索引的对应关系通过DCI为终端设备指示第一参考信号序列。
S430、终端设备确定第一参考信号序列。
具体地,终端设备可以根据上述示例的表4.1或表4.2从第一指示信息中确定出第一参考信号序列。
S440、终端设备发送或接收该第一参考信号序列。
具体地,终端设备可以根据第一指示信息,例如DCI的类型决定接收该第一参考信号序列还是向网络设备发送该第一参考信号序列。
可选的,终端设备向网络设备发送的DMRS序列也可以是终端设备确定的DMRS序列与Gold序列的乘积,与图2类似,其中的b n为本申请中的非正交DMRS序列。
需要说明的是,本申请的N个参考信号序列组可以是按照同样的顺序提前预设在网络设备和终端设备中的,也可以是终端设备通过利用上述公式(3)-(5)并结合参数组中的计算确定的。换句话说,当N个参考信号序列组预存在网络设备和终端设备中时,也就是第一参考信号序列组预存在网络设备和终端设备中,网络设备通过第一指示信息为终端设备指示第一参考信号序列。当网络设备和终端设备没有预存参考信号序列组时,终端设备通过参数组中的参数得到第一参考信号序列组,随后根据网络设备发送的第一指示信息确定该计算的第一参考信号序列组中的第一参考信号序列。
因此,本申请实施例提供的通信方法,网络设备可以根据当前网络状态或信道情况等,为终端设备选择更加合适的DMRS序列,增加了配置的灵活性和多样性。
图5示出了本申请实施例提供的另一种通信的方法500的流程示意图。
在本实施例中,网络设备为终端设备指示第一参考信号序列之前,需要先为终端设备指示第一参考信号序列组,该指示通过第二指示信息发送给终端设备。也就是说,终端设备首先通过第二指示信息确定N组参考信息序列组中的一组参考信号序列组作为第一参考信号序列组,再根据第一指示信息确定第一参考信号序列组中的第一参考信号序列。
需要说明的是,在本实施例当中,存在与上述方法400(图4)相同的步骤,本实施例为了简便,不再赘述。
可选的,该第二指示信息可以承载于物理层信令中,例如,可以是承载于DCI中。
应理解,当N个参考信号序列组预存在网络设备和终端设备中时,该第二指示信息用于指示将预存的N个参考信号序列组中的一个作为第一参考信号序列组。当网络设备和终端设备没有预存参考信号序列组时,终端设备通过参数组中的参数计算得到N个参考信号序列组,该第二指示信息将计算获得的N个参考信号序列组中的一个作为第一参考信号序列组。
例如,第二指示信息可以利用例如下表4.3中指示域与序列组的对应关系通过第二指 示信息为终端设备指示第一参考信号序列组。
表4.3序列组指示表
Figure PCTCN2021076061-appb-000028
当然的,第二指示信息中指示域与序列组的对应关系也可以存在其他组合,本申请对此不做限定。
因此,本申请实施例提供的通信方法,物理层信令为终端设备配置非正交参考信号序列组,使得网络设备在指示非正交参考序列时可以为终端设备灵活的配置干扰较小的参考信号序列,从而提升信道估计的可靠性。
图6示出了本申请实施例提供的另一种通信的方法600的流程示意图。
在本实施例中,网络设备可先通过第三指示信息为终端设备指示M个参考信号序列组,其中,M大于0且小于或等于N。
应理解,该方法首先通过第三指示信息在N个参考信号序列组中为终端设备指示M个参考信号序列组,再从M个参考信号序列组中更为终端设备指示第一参考信号序列组。
具体地,该第三指示信息可以包括参数组的至少一个参数。该第三指示信息可以承载在高层信令,例如,可以承载在RRC信令或MAC信令或其他信令中,本申请不做任何限定。
应理解,由于该DMRS序列参数组中的参数的数量或者取值是不确定的,因此,终端设备确定的M组非正交DMRS序列也是变化的。换句话说,终端设备在每次与网络设备的交互过程中,需要根据第三指示信息中包括的DMRS序列参数组中的参数来判断DMRS序列组。
举一个例子,例如,当网络设备发送的第一指示信息中,只包含一个参数例如β=0.5时,终端设备在上述8组非正交DMRS序列中选择出表3.4-表3.8这5组非正交DMRS序列。
应理解,该参数组中也可以不包含任何参数,或者该种情况也可以理解为网络设备没有通过高层信令为终端设备配置DMRS序列参数组。此时,终端设备选择的非正交DMRS序列组数为M=8。
同样的,在本实施例当中,存在与上述方法400(图4)或上述方法500(图5)相同的步骤,本实施例为了简便,不再赘述。
因此,本申请实施例提供的通信方法,通过高层信令与物理层信令结合的方式为终端设备配置非正交参考信号序列,节省了物理层的信令开销,有助于提升物理层信令传输的可靠性,由于物理层信令可以更加灵活的改变参数,使得该网络设备在指示非正交参考序列时可以为终端设备灵活的配置干扰较小的参考信号序列,从而提升信道估计的可靠性。
此外,网络设备在为终端设备配置DMRS序列时,还会成对的为相邻小区配置DMRS序列,此时本实施例提供了一种另一种通信的方法700,如图7是通信方法700的流程示意图。
S700、网络设备确定第一DMRS序列。
S710、网络设备向终端设备发送第三指示信息,该第三指示信息包括DMRS序列参数组,该参数组至少包括DMRS序列长度、原始序列的特征值λ i、CDM组内DMRS个数上限值以及干扰系数β中的0个1个或多个。
具体来说,网络设备确定了第一DMRS序列之后,网络设备将该DMRS序列的序列参数通过第三指示信息告知给终端设备。
可选的,该第三指示信息可以承载在高层信令,例如,可以承载在RRC信令或MAC信令或其他信令,本申请不做任何限定。
S720、终端设备根据序列参数确定满足该序列参数的M组序列。
具体地,终端设备根据接收到的第三指示信息中包括的DMRS序列参数组,从N组非正交DMRS序列组中选择出M组非正交DMRS序列。
应理解,由于该DMRS序列参数组中的参数的数量或者取值是不确定的,因此,终端设备确定的M组非正交DMRS序列也是变化的。换句话说,终端设备在每次与网络设备的交互过程中,需要根据第三指示信息中包括的DMRS序列参数组中的参数来判断DMRS序列组。
举一个例子,例如,当网络设备发送的第三指示信息中,只包含一个参数例如β=0.5时,终端设备可以在例如上述段落中介绍的8组非正交DMRS序列中选择出表3.4-表3.8这5组非正交DMRS序列。
应理解,该参数组中也可以不包含任何参数,或者该种情况也可以理解为网络设备没有通过高层信令为终端设备配置DMRS序列参数组。此时,终端设备选择的非正交DMRS序列组数为M=8。
S730、网络设备向终端设备发送小区索引,该小区索引用于指示终端设备确定第一参考信号序列子组或第二参考信号序列子组。
由于在本申请的序列组中,存在两个序列子组,也就是上述表3.2-3.8中每张表格的两部分,终端设备想要确定具体的序列,还需要进一步先确定序列表格中的子序列表格。该确定过程是通过网络设备发送的小区索引值来确定的。
例如,该小区索引值的取值范围可以为{0,1},可以分别代表序列表格中的子序列表格。比如小区索引值0可以表示第一参考信号序列子组,小区索引值1可以表示第二参考信号序列子组,反之亦然。应理解,小区的索引值也可以有其他的取值,并分别代表第一参考信号序列子组和第二参考信号序列子组。
可选的,该小区索引值可通过高层信令发送给终端设备。
可选的,该小区的索引值也可以使用小区的标识,例如可以是小区的地址。此时,该指示规则可以是:当小区地址为奇数时,可以指示第一参考信号序列子组,小区地址为偶数时,可以指示第二参考信号序列子组。或者小区地址中的某一位或某几位数字的奇偶性来指示子组,本申请不做限定。
S740、终端设备根据小区索引确定第一参考信号序列子组或第二参考信号序列子组。
具体来说,终端设备接收到小区索引后,根据小区索引以及指示规则,选择第一参考信号序列子组或第二参考信号序列子组。
S750、网络设备向终端设备发送第二指示信息,该第二指示信息用于指示第一参考信号序列组。
具体地,网络设备通过第二指示信息指示终端设备在上述确定的M个子组中选择第一参考信号序列组。
可选的,该第二指示信息可以承载在物理层信令,例如,可以承载DCI)或其他信令中,本申请不做任何限定。
S760、终端设备根据第二指示信息确定第一参考信号序列组。
具体地,终端设备根据第二指示信息的指示,从M组非正交DMRS序列子组中,确定一组非正交DMRS序列组。
可以用一个例子说明,例如,假设终端设备根据网络设备发送的参数组确定了2组序列(例如,上述7张表的其中2张),又通过小区索引确定使用第一参考信号序列子组,即确定两个第一参考信号序列子组,接着终端设备可以根据网络设备发送的第二指示信息来确定是使用2组中的第一组还是第二组。应理解,终端设备能够确定第一组还是第二组的前提是,网络设备和终端设备存在表格顺序的既定规则。换句话说,网络设备和终端设备内配置的例如上述的7张表格的顺序是一样的。如此,网络设备就可以通过第二指示信息中的用于指示序列组的信息,确定的指示终端设备的非正交DMRS序列组。比如,网络设备可以通过DCI中的1个bit来指示终端设备的序列组,可能的方式为,当该1bit的值为0时,指示终端设备使用第一张表格,当该1bit的值为1时,指示终端设备使用第二张表格。
应理解,该指示序列组的信息所占的指示域的大小与网络设备发送给终端设备的参数组中的参数数量有关。这是很容易理解的,因为参数组的数量越多,则终端设备确定的DMRS的序列组越少,那么用于指示序列组的信息所占的指示域就会越小。特别的,当终端设备确定的M为1时,也就是终端设备已经确定了唯一的序列组时,那么终端设备收到的第二指示信息中用于指示序列组的信息所占的指示域为0比特。
S770,网络设备向终端设备发送第一指示信息,用于指示第一参考信号序列组中的第一参考信号序列。
具体来说,当网络设备指示终端设备的DMRS序列组后或者终端设备确定了DMRS序列组后,网络设备还需要通过物理层信令进一步指示终端设备的DMRS序列。
在本申请实施例中,网络设备是根据例如表4.3和表4.4来指示终端设备的DMRS序列的。
表4.3序列指示表
Figure PCTCN2021076061-appb-000029
Figure PCTCN2021076061-appb-000030
表4.4序列指示表
Figure PCTCN2021076061-appb-000031
其中,K表示CDM组内DMRS个数上限值,表4.3和表4.4分别对应CDM组内DMRS上限为6和7的情况。此外,对于CDM组内DMRS上限为18、20、22的情况与上述表4.3和表4.4类似,本申请不进行详细的列举。
需要说明的是,在本申请实施例当中,存在小区内DMRS个数上限值和CDM组内DMRS个数上限值这两个概念,不可混淆。
可选的,该DMRS序列参数组中的参数CDM组内DMRS个数上限值也可以是小区内DMRS个数上限值。若网络设备通过第三指示信息发送给终端设备的参数为小区内DMRS个数上限值时,则终设备需要根据CDM组的个数,并依据平均原则,计算出每个CDM组内的DMRS个数上限值。
例如,网络设备发送给终端设备的第三指示信息中包含的参数组为β=0.5,N_CDM=3,小区内DMRS个数上限值为20时,终端设备根据该参数组获知,该小区的CDM组的个数为3,那么。终端设备会先将小区内DMRS个数上限分解为每个CDM组的DMRS个数上限,并按照从大到小的顺序排列,即分别为7,7,6。则终端设备就从7套序列中选出2套序列,CDM组1和组2使用K=7的序列表格,CDM组3使用K=6的序列表格。
S780、终端设备确定第一参考信号序列。
具体地,终端设备在步骤S760确定的第一参考信号序列组中根据第一指示信息的指示确定出第一参考信号序列。
S790、终端设备确定了网络设备指示的序列后,根据DCI的类型确定在下行共享信道(physical downlink shared channel,PDSCH)中接收该DMRS序列或在上行共享信道(physical uplink shared channel,PUSCH)中发送该DMRS序列。
例如,若终端设备需要在上行PUSCH中发送该DMRS序列,则终端设备发送的DMRS的序列示意图可以如图8所示。
可选的,终端设备在上行PUSCH中发送得DMRS序列也可以是终端设备确定的DMRS序列与Gold序列的乘积,与图2类似,其中的b n为本申请中的非正交DMRS序列。
综上所述,通过设计非正交DMRS序列,可以降低相邻小区的DMRS干扰,提升信道估计的可靠性,进而提升系统吞吐量。同时,结合本申请实施例提供的通信方法,利用高层信令与物理层信令结合的方式,为终端设备指示参考信号序列,有利于降低物理层信令的负载,提高物理层信令传输的可靠性。进一步的,独立的为每个CDM组选择最佳的序列,可以进一步的提升序列性能,降低序列间的干扰,此外,该参考信号序列还包括邻小区的参考信号序列,使得进一步提升了序列使用的灵活性。
以上,结合图3至图8详细说明了本申请实施例提供的方法。以下,结合图9至图13详细说明本申请实施例提供的通信装置。
图9是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置10可以包括处理模块11和收发模块12。
在一种可能的设计中,该通信装置10可对应于上文方法实施例中的网络设备。
具体地,该通信装置10可对应于根据本申请实施例的方法400、方法500、方法600以及方法700中的网络设备,该通信装置10可以包括用于执行图4中的方法400或图5中的方法500或图6中的方法600或图7中的方法700中的网络设备执行的方法的模块。并且,该通信装置10中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400或图5中的方法500或图6中的方法600或图7中的方法700的相应流程。
其中,当该通信装置10用于执行图4中的方法400时,处理模块11可用于执行方法400中的步骤S410。收发模块12可用于执行方法400中的步骤420、步骤S440。
当该通信装置10用于执行图5中的方法500时,处理模块11可用于执行方法500中的步骤S510。收发模块12可用于执行方法500中的步骤S520和步骤540、步骤560。
当该通信装置10用于执行图6中的方法600时,处理模块11可用于执行方法600中的步骤S610。收发模块12可用于执行方法600中的步骤S620、步骤640、步骤660和步骤680。
当该通信装置10用于执行图7中的方法700时,处理模块11可用于执行方法700中的步骤S700。收发模块12可用于执行方法700中的步骤S710、步骤730、步骤750、步骤770和步骤790。
图10是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置20可以包括收发模块21和处理模块22。
在一种可能的设计中,该通信装置20可对应于上文方法实施例中的终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置20可对应于根据本申请实施例的方法400、方法500、方法600以及方法700中的终端设备,该通信装置20可以包括用于执行图4中的方法400或图5中的方法500或图6中的方法600或图7中的方法700中的终端设备执行的方法的模块。并且,该通信装置20中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400或图5中的方法500或图6中的方法600或图7中的方法700的相应流程。
当该通信装置20用于执行图4中的方法400时,收发模块21可用于执行方法400中的步骤S420、步骤S440。处理模块22可用于执行方法400中的步骤S430。
当该通信装置20用于执行图5中的方法500时,收发模块21可用于执行方法500中的步骤S520、步骤S540和步骤560。处理模块22可用于执行方法500中的步骤S530和步骤550。
当该通信装置20用于执行图6中的方法600时,收发模块21可用于执行方法600中的步骤S620、步骤S640、步骤660和步骤680。处理模块22可用于执行方法600中的步骤S630、步骤650、步骤670。
当该通信装置20用于执行图7中的方法700时,收发模块21可用于执行方法700中的步骤S710、步骤S730、步骤750、步骤770和步骤790。处理模块22可用于执行方法700中的步骤S720、步骤740、步骤760和步骤780。
根据前述方法,图11为本申请实施例提供的通信装置30的示意图,如图11所示,该装置30可以为通信设备,包括具有接入管理功能的网元,如AMF等。
该装置30可以包括处理器31(即,处理模块的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现如图4、图5或图6或图7对应的方法中网络设备执行的步骤。
进一步地,该装置30还可以包括输入口33(即,收发模块的一例)和输出口34(即,收发模块的另一例)。进一步地,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算机程序,以控制输入口33接收信号,控制输出口34发送信号,完成上述方法中网络设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
可选地,该输入口33可以为接收器,该输出口34可以为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置30为芯片或电路,该输入口33为输入接口,该输出口34为输出接口。
作为一种实现方式,输入口33和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器31可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器32中,通用处理器通过执行存储器32中的代码来实现处理器31、输入口33和输出口34的功能。
其中,通信装置30中各单元或单元可以用于执行上述方法中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图12为本申请实施例提供的通信装置40的示意图,如图12所示,该装置40可以为终端设备。
该装置40可以包括处理器41(即,处理模块的一例)和存储器42。该存储器42用于存储指令,该处理器41用于执行该存储器42存储的指令,以使该装置40实现如图4、图5或图6或图7中终端设备执行的步骤。
进一步地,该装置40还可以包括输入口43(即,收发模块的一例)和输出口44(即,收发模块的另一例)。进一步地,该处理器41、存储器42、输入口43和输出口44可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器42用于存储计算机程序,该处理器41可以用于从该存储器42中调用并运行该计算机程序,以控制输入口43接收信号,控制输出口44发送信号,完成上述方法中终端设备的步骤。该存储器42可以集成在处理器41中,也可以与处理器41分开设置。
可选地,该输入口43可以为接收器,该输出口44可以为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置40为芯片或电路,该输入口43为输入接口,该输出口44为输出接口。
作为一种实现方式,输入口43和输出口44的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器41可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器41、输入口43和输出口44功能的程序代码存储在存储器42中,通用处理器通过执行存储器42中的代码来实现处理器41、输入口43和输出口44的功能。
其中,通信装置40中各模块或单元可以用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置40所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图13本申请提供的一种终端设备50的结构示意图。为了便于说明,图13仅示出了终端设备的主要部件。如图13所示,终端设备50包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基 带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
如图13所示,终端设备50包括收发单元51和处理单元52。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元51中用于实现接收功能的器件视为接收单元,将收发单元51中用于实现发送功能的器件视为发送单元,即收发单元51包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图13所示的终端设备可以执行上述方法400、500、600或700中终端设备所执行的各动作,这里,为了避免赘述,省略其详细说明。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-only memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(Random access memory,RAM)可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Souble data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存 储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者 该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (43)

  1. 一种通信的方法,其特征在于,包括:
    确定第一参考信号序列,所述第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;
    向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参考信号序列,所述第一参考信号序列为第一参考信号序列组中的一个序列,
    其中,所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    终端设备发送第二指示信息,所述第二指示信息用于指示所述第一参考信号序列组。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  4. 根据权利要求2所述的方法,其特征在于,所述方法包括:
    发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;
    向所述终端设备发送小区索引,所述小区索引用于指示所述M个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  6. 一种通信的方法,其特征在于,包括:
    确定第一参考信号序列,所述第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;
    向终端设备发送第一指示信息,所述第一指示信息用于指示第一参考信号序列组,所述第一参考信号序列组为所述N个参考信号序列组中的一个,所述第一参考信号序列为所述第一参考信号序列组中的一个序列;
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一参考信号序 列组中的所述第一参考信号序列。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  9. 根据权利要求6所述的方法,其特征在于,所述向终端设备发送第一指示信息之前,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,
    其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  10. 根据权利要求6所述的方法,其特征在于,所述向终端设备发送第一指示信息之前,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个;
    向所述终端设备发送小区索引,所述小区索引用于指示所述M个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  11. 一种通信的方法,其特征在于,包括:
    接收第一指示信息,根据所述第一指示信息确定第一参考信号序列,
    其中,所述第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数,所述第一参考信号序列为第一参考信号序列组中的一个序列,所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j
    4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,根据所述第二指示信息确定所述第一参考信号序列组。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述第二指示信息确定所述第一参考信号序列组,包括:
    接收第三指示信息,根据第三指示信息确定所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  14. 根据权利要求12所述的方法,其特征在于,所述根据所述第二指示信息确定所述第一参考信号序列组,包括:
    接收第三指示信息,根据第三指示信息确定所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;
    接收小区索引,根据所述小区索引确定所述M个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  16. 一种通信的方法,其特征在于,包括:
    接收第一指示信息,根据所述第二指示信息确定第一参考信号序列组,所述第一参考信号序列组为N个参考信号序列组中的一个,N为大于或等于1的整数;
    接收第二指示信息,根据所述第一指示信息确定第一参考信号序列,所述第一参考信号序列为所述第一参考信号序列组中的一个参考信号序列。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  18. 根据权利要求16或17所述的方法,其特征在于,
    所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  19. 根据权利要求16所述的方法,其特征在于,所述根据所述第二指示信息确定第一参考信号序列组,包括:
    接收第三指示信息,根据所述第三指示信息确定所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,
    其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  20. 根据权利要求16所述的方法,其特征在于,所述根据所述第二指示信息确定第一参考信号序列组,包括:
    接收第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个;
    接收小区索引,根据所述小区索引确定所述M个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  21. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一参考信号序列,所述第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;
    收发模块,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参考信号序列,所述第一参考信号序列为第一参考信号序列组中的一个序列,
    其中,所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  22. 根据权利要求21所述的装置,其特征在于,
    所述收发模块,还用于向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一参考信号序列组。
  23. 根据权利要求22所述的装置,其特征在于,
    所述收发模块,还用于发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  24. 根据权利要求22所述的装置,其特征在于,
    所述收发模块,还用于发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;
    所述收发模块,还用于向所述终端设备发送小区索引,所述小区索引用于指示所述M 个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  26. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一参考信号序列,所述第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数;
    收发模块,用于向终端设备发送第一指示信息,所述第一指示信息用于指示第一参考信号序列组,所述第一参考信号序列组为所述N个参考信号序列组中的一个,所述第一参考信号序列为所述第一参考信号序列组中的一个序列;
    所述收发模块,还用于向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一参考信号序列组中的所述第一参考信号序列。
  27. 根据权利要求26所述的装置,其特征在于,
    所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  28. 根据权利要求26或27所述的装置,其特征在于,
    所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  29. 根据权利要求26所述的装置,其特征在于,
    所述收发模块,还用于向终端设备发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,
    其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  30. 根据权利要求26所述的装置,其特征在于,
    所述收发模块,还用于向终端设备发送第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个;
    所述收发模块,还用于向终端设备发送小区索引,所述小区索引用于指示所述M个 所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  31. 一种通信装置,其特征在于,包括:
    收发模块,用于接收第一指示信息,根据所述第一指示信息确定第一参考信号序列,
    其中,所述第一参考信号序列为N个参考信号序列组中的一个参考信号序列,其中,N为大于或等于1的整数,所述第一参考信号序列为第一参考信号序列组中的一个序列,所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  32. 根据权利要求31所述的装置,其特征在于,
    所述收发模块,还用于接收第二指示信息,根据所述第二指示信息确定所述第一参考信号序列组。
  33. 根据权利要求32所述的装置,其特征在于,
    所述收发模块,还用于接收第三指示信息,根据第三指示信息确定所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  34. 根据权利要求32所述的装置,其特征在于,
    所述收发模块,还用于接收第三指示信息,根据第三指示信息确定所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组;
    所述收发模块,还用于接收小区索引,根据所述小区索引确定所述M个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  35. 根据权利要求31至34中任一项所述的装置,其特征在于,所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  36. 一种通信装置,其特征在于,包括:
    收发模块,用于接收第一指示信息,根据所述第一指示信息确定第一参考信号序列组,所述第一参考信号序列组为N个参考信号序列组中的一个,N为大于或等于1的整数;
    所述收发模块,还用于接收第二指示信息,根据所述第二指示信息确定第一参考信号 序列,所述第一参考信号序列为所述第一参考信号序列组中的一个参考信号序列。
  37. 根据权利要求36所述的装置,其特征在于,
    所述第一参考信号序列组包括以下序列:
      0 1 2 3 0 -0.64+0.86j 0.23-0.80j -0.80+0.77j -0.94-0.20j 1 -0.89+0.05j -0.26-0.65j 1.06-0.36j 0.17-1.19j 2 -0.63-0.59j 0.52+1.09j 0.01+1.05j -0.84-0.11j 3 -0.84+0.48j -1.04-0.04j -0.47+0.86j 1.00-0.05j 4 1.02-0.57j 0.11-1.12j -0.01+0.67j -0.42-0.86j
  38. 根据权利要求36或37所述的装置,其特征在于,
    所述参考信号序列组预存在所述终端设备中或通过参数组中的一个或多个参数确定,所述参数组的参数包括:序列长度、原始序列的第一特征值、原始序列的第二特征值、小区参考信号个数上限值和干扰系数。
  39. 根据权利要求36所述的装置,其特征在于,
    所述收发模块,还用于接收第三指示信息,根据所述第三指示信息确定所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,
    其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个。
  40. 根据权利要求36所述的装置,其特征在于,
    所述收发模块,还用于接收第三指示信息,所述第三指示信息用于指示所述N个参考信号序列组中的M个所述参考信号序列组,其中,M大于0且小于或等于N,所述参考信号序列组包括第一参考信号序列子组和第二参考信号序列子组,其中,所述第一参考信号序列组为所述M个所述参考信号序列组中的一个;
    所述收发模块,还用于接收小区索引,根据所述小区索引确定所述M个所述参考信号序列组中M个所述第一参考信号序列子组或M个所述第二参考信号序列子组,
    其中,所述第一参考信号序列组为所述M个所述第一参考信号序列子组或所述M个所述第二参考信号序列子组中的一个。
  41. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至10中任一项所述的通信方法,或执行权利要求11至20中任一项所述的通信方法。
  42. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1至10中任一项所述的通信方法,或执行权利要求11至20中任一项所述的通信方法。
  43. 一种芯片系统,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行权利要求1至10中任一项所述的通信方法,或执行权利要求11至20中任一项所述的通信方法。
PCT/CN2021/076061 2021-02-08 2021-02-08 一种通信的方法及装置 WO2022165845A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/076061 WO2022165845A1 (zh) 2021-02-08 2021-02-08 一种通信的方法及装置
CN202180086760.7A CN116686247A (zh) 2021-02-08 2021-02-08 一种通信的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076061 WO2022165845A1 (zh) 2021-02-08 2021-02-08 一种通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2022165845A1 true WO2022165845A1 (zh) 2022-08-11

Family

ID=82741956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076061 WO2022165845A1 (zh) 2021-02-08 2021-02-08 一种通信的方法及装置

Country Status (2)

Country Link
CN (1) CN116686247A (zh)
WO (1) WO2022165845A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104509191A (zh) * 2012-07-27 2015-04-08 华为技术有限公司 用于多点通信的系统和方法
WO2019154400A1 (en) * 2018-02-09 2019-08-15 Qualcomm Incorporated Configuration of non-orthogonal dmrs for uplink transmission
CN110557348A (zh) * 2018-06-01 2019-12-10 成都华为技术有限公司 用于解调数据的方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104509191A (zh) * 2012-07-27 2015-04-08 华为技术有限公司 用于多点通信的系统和方法
WO2019154400A1 (en) * 2018-02-09 2019-08-15 Qualcomm Incorporated Configuration of non-orthogonal dmrs for uplink transmission
CN110557348A (zh) * 2018-06-01 2019-12-10 成都华为技术有限公司 用于解调数据的方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on DMRS design for NoMA with large number of users", 3GPP DRAFT; R1-1801363, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397527 *

Also Published As

Publication number Publication date
CN116686247A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US10932251B2 (en) Data receiving method and apparatus thereof, and data sending method and apparatus thereof
US20210160814A1 (en) Paging determining method and apparatus
CA3050339A1 (en) Method for transmitting downlink control information, terminal device and network device
EP3820095A1 (en) Channel estimation method and apparatus
KR102230746B1 (ko) 통신 방법, 네트워크 디바이스, 단말 디바이스, 컴퓨터 판독 가능형 저장 매체, 컴퓨터 프로그램 제품, 프로세싱 장치 및 통신 시스템
WO2018126414A1 (zh) 传输数据的方法和通信设备
CN111670599A (zh) 控制信息传输方法、网络设备、终端和计算机存储介质
JP2023022023A (ja) チャネル品質指標cqiの計算方法、端末装置、及びネットワーク装置
US20200119848A1 (en) Information Transmission Method And Apparatus
WO2019242738A1 (zh) 发送调制符号的方法、接收调制符号的方法和通信设备
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
US20240090006A1 (en) Wireless communication method and network device
JP2022532351A (ja) D2dシステムにおける通信方法及び端末装置、ネットワーク装置
JP6987242B2 (ja) リソース構成方法、端末装置及びネットワーク装置
EP3570452B1 (en) Signal transmission method and apparatus
EP3813432B1 (en) Bandwidth part processing method, terminal device and network device
JP2020537838A (ja) 無線通信方法、ネットワーク装置及び端末装置
WO2022165845A1 (zh) 一种通信的方法及装置
US20220416980A1 (en) Control Channel Determination Method and Apparatus, and Storage Medium and Processor
CN113784356B (zh) 一种通信参数的确定方法、装置、设备以及存储介质
WO2019033868A1 (zh) 确定预编码矩阵集合的方法和传输装置
US20230133947A1 (en) Ultra-Reliable Low Latency Communication (URLLC) Scheme Selection
KR102293231B1 (ko) 다운링크 제어 정보 전송 방법 및 장치
WO2018228506A1 (zh) 一种传输信息的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086760.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923855

Country of ref document: EP

Kind code of ref document: A1