WO2022165709A1 - 一种激光冲击波和超声冲击波实时耦合装置及方法 - Google Patents

一种激光冲击波和超声冲击波实时耦合装置及方法 Download PDF

Info

Publication number
WO2022165709A1
WO2022165709A1 PCT/CN2021/075282 CN2021075282W WO2022165709A1 WO 2022165709 A1 WO2022165709 A1 WO 2022165709A1 CN 2021075282 W CN2021075282 W CN 2021075282W WO 2022165709 A1 WO2022165709 A1 WO 2022165709A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
shock wave
laser
hydraulic cylinder
impact
Prior art date
Application number
PCT/CN2021/075282
Other languages
English (en)
French (fr)
Inventor
孟宪凯
赵曜民
周建忠
鲁金忠
黄舒
蔡杰
张彦虎
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2022165709A1 publication Critical patent/WO2022165709A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel

Definitions

  • the invention relates to the technical field of laser processing, in particular to a device and method for realizing real-time coupling of laser shock waves and ultrasonic shock waves.
  • Laser shock technology uses the shock wave generated by the interaction of nanosecond pulse laser and material to achieve surface strengthening and forming of metal materials.
  • the shock wave pressure induced by a single laser beam has a low amplitude and a short time, resulting in a low residual compressive stress amplitude on the surface of the part, a low degree of grain refinement, and poor strengthening/forming effect and controllability.
  • the Chinese invention patent proposes a surface strengthening method for vibration-assisted laser shock treatment of metal components.
  • the invention patent combines laser shock strengthening technology with vibration aging treatment to refine the surface grains and homogenize the internal residual stress.
  • the whole sample is aged by a vibration exciter, and local area strengthening treatment cannot be achieved;
  • the laser shock and vibration aging are separated, and the technology of low laser shock wave pressure amplitude and short time cannot be improved. Defects, plastic deformation and residual compressive stress are low, and the strengthening effect is poor.
  • the Chinese invention patent proposes an ultrasonic vibration device for coaxial ultrasonic-assisted laser shot peening.
  • the invention patent realizes the coaxial propagation of ultrasonic vibration wave and laser shock wave, promotes the dynamic recrystallization behavior of materials, and makes the surface of the material obtain ultra-high fine grain.
  • the invention realizes the coaxial propagation of the ultrasonic shock wave and the laser shock wave, because the propagation speed of the laser shock wave is much higher than that of the ultrasonic shock wave, the invention cannot realize the real-time coupling of the laser shock wave and the ultrasonic shock wave, so it cannot improve the laser shock wave pressure.
  • Technical defects with low amplitude and short time, low plastic deformation and residual compressive stress are examples of the laser shock wave and the ultrasonic shock wave.
  • the Chinese invention patent proposes an ultrasonic-assisted laser shot peening method for obtaining ultra-fine grained surface layers.
  • the method uses ultrasonic-induced high-frequency vibration waves to form periodic atom-dense regions and loose regions on the propagation path of the laser shock waves to promote the grain size of the material.
  • the invention can form atom-dense regions and loose regions on the propagation path of the laser shock wave to promote grain refinement, but has the following disadvantages: (1) It cannot compensate for the difference in propagation speed between the laser shock wave and the ultrasonic shock wave, and cannot realize the laser shock wave and the ultrasonic shock wave.
  • the real-time coupling leads to the existence of periodic atomic loose areas on the path of the laser shock wave; (2) The atomic loose areas will reduce the pressure amplitude of the laser shock wave, and although it can promote grain refinement, it will reduce the plastic deformation and residual compressive stress, thereby weakening the Strengthening effect.
  • the Chinese invention patent proposes a hollow laser shock and ultrasonic synergistic strengthening anti-fatigue device and processing method.
  • the invention patent prevents unevenness in the impact area after laser shot peening by applying ultrasonic vibration. A reasonable residual compressive stress distribution is formed on the surface of the material.
  • the invention cannot make up for the difference in propagation speed between the laser shock wave and the ultrasonic shock wave, cannot realize the real-time coupling of the laser shock wave and the ultrasonic shock wave, and cannot improve the technical defects of low pressure amplitude and short time of the laser shock wave, and the plastic deformation and residual compressive stress are low.
  • the present invention provides a real-time coupling strengthening device and method of the laser shock wave and the ultrasonic shock wave.
  • the starting time, rotation angle and speed of the impact device realize the dynamic control of the ultrasonic wave direction and wavefront position, thereby making up for the difference in propagation speed between the ultrasonic wave and the laser shock wave, finally realizing the real-time coupling of the laser shock wave and the ultrasonic shock wave, and effectively improving the pressure of the laser shock wave.
  • Technical defects with low amplitude and short time which in turn increase the effect of metal material structure/stress strengthening or forming processing.
  • the present invention achieves the above technical purpose through the following technical means.
  • a real-time coupling strengthening device of laser shock wave and ultrasonic shock wave comprising a synchronization device, a laser device, an ultrasonic shock device, a working platform and a control system;
  • the working platform includes an upper casing, a first hydraulic cylinder, a second hydraulic cylinder, a limit slide rail and a base, on which a workpiece that can move horizontally is clamped, and the upper casing is supported on the base by the second hydraulic cylinder.
  • the supporting beam is installed on the bottom of the upper casing through the second hydraulic cylinder, and the two supporting beams are connected with the limit slide rail through the sliding pair, and the limit slide rail is installed on the upper casing through the first hydraulic cylinder bottom; any of the support beams is provided with a transmission pile; two of the ultrasonic impact devices are installed in the upper shell, and the two ultrasonic impact devices are connected by a synchronizing device for the ultrasonic impact device to move synchronously and Synchronous rotation; the laser device is used to generate a laser beam to pass through the upper casing and irradiate on the surface of the workpiece; the control system controls the laser device to delay the laser impact with the ultrasonic impact device, so as to realize real-time coupling.
  • the synchronizing device includes a driving device, a rack, a first sliding device, a second sliding device, a swing hydraulic cylinder and a hydraulic system;
  • the two first sliding devices are distributed in the upper casing, each of the first sliding devices
  • a swing hydraulic cylinder is slidably installed on the sliding device, the output shaft of the swing hydraulic cylinder is directly or indirectly connected with the ultrasonic impact device, and the hydraulic system is used for synchronously controlling the rotation of the two swing hydraulic cylinders
  • the sliding device is installed in the casing, a rack is slidably installed on each of the second sliding devices, an external gear is installed at the output end of the driving device, and the external gear is respectively meshed with two of the racks; each of the teeth A bearing is installed in one end of the bar, the output shaft of the swing hydraulic cylinder passes through the bearing, and the swing hydraulic cylinder moves synchronously through the synchronous movement of the rack.
  • the ultrasonic impact device includes an impact head, a horn and a transducer; the transducer is directly or indirectly connected to the output shaft of the swing hydraulic cylinder, and the horn is installed at the bottom of the transducer, An impact head is installed at the end of the horn, the first hydraulic cylinder makes the impact head contact the high pair of the transmission pile, and the impact head is rotated around the center of the transmission pile through a synchronizing device.
  • the control system controls the laser device to perform laser impact, where the ⁇ T expression is:
  • S is the center distance of two described transfer piles
  • ⁇ i is the angle between the impact head and the workpiece surface during the ith impact, 1 ⁇ i ⁇ n;
  • R is the transfer pile
  • L is the total length of the ultrasonic impact device
  • VL is the propagation velocity of the laser shock wave in the workpiece
  • V U1 is the propagation velocity of ultrasonic shock wave inside the workpiece and in the transfer pile;
  • V U2 is the propagation velocity of the ultrasonic shock wave in the horn and the vibrating head.
  • the material of the transmission pile is the same as or similar to that of the workpiece, so as to avoid the refraction of the ultrasonic shock wave during the propagation process.
  • an electromagnetic device is installed on the rack for locking the position of the rack on the second sliding device.
  • a method for strengthening a real-time coupling strengthening device of a laser shock wave and an ultrasonic shock wave comprising the following steps:
  • the laser device emits laser light to preheat the workpiece
  • the control system controls the synchronization device to rotate the two ultrasonic impact devices synchronously, so that the included angle between the ultrasonic impact device and the surface of the workpiece is ⁇ 1 ;
  • Adjust the center distance of the two transmission piles adjust the height of the transmission piles through the first hydraulic cylinder, and move the two ultrasonic impact devices synchronously toward each other through the synchronizing device, so that the impact head of the ultrasonic impact device is in contact with the transmission pile and pressed tightly;
  • the transfer pile is brought into contact with the workpiece and compressed
  • the surface of the workpiece is covered with a constraint layer
  • the control system controls the laser device to perform laser shock, so as to realize real-time coupling strengthening of the laser shock wave and the ultrasonic shock wave.
  • the laser shock wave and the ultrasonic shock wave real-time coupling strengthening device of the present invention realizes the dynamic control of the ultrasonic wave direction and the position of the wave front by adjusting the initial time, rotation angle and speed of the ultrasonic shock device, and then compensates for the ultrasonic wave and the laser shock wave.
  • the propagation velocity difference is finally realized in real-time coupling of laser shock wave and ultrasonic shock wave.
  • the laser shock wave and ultrasonic shock wave real-time coupling strengthening device can form a continuous atomic dense area on the laser shock wave propagation path, significantly increase the shock wave pressure amplitude and duration in the material, and increase the material plastic deformation and residual compressive stress. Amplitude, and then improve the metal material strengthening or forming processing effect.
  • the present invention increases the control range of the shock wave pressure amplitude, space and time distribution in the material through the real-time coupling of the laser and the ultrasonic shock wave, thereby expanding the control range of the metal material strengthening or forming processing effect.
  • FIG. 1 is a three-dimensional diagram of the real-time coupling strengthening device for laser shock wave and ultrasonic shock wave according to the present invention.
  • Fig. 2 is the front view of the real-time coupling strengthening device of laser shock wave and ultrasonic shock wave according to the present invention
  • FIG. 3 is a schematic structural diagram of the synchronization device according to the present invention.
  • FIG. 4 is a schematic diagram of the installation of the ultrasonic impact device according to the present invention.
  • FIG. 5 is a top view of FIG. 3 .
  • FIG. 6 is a left side view of FIG. 3 .
  • FIG. 7 is a schematic diagram of the real-time coupling strengthening process of the laser shock wave and the ultrasonic shock wave according to the present invention.
  • FIG. 8 is a schematic diagram of a processing path for real-time coupling and strengthening of laser shock waves and ultrasonic shock waves according to the present invention.
  • Figure 9 is a graph of residual stress in the surface direction of the 2024-T351 aluminum alloy workpiece after strengthening in different ways.
  • Figure 10 is the residual stress diagram in the depth direction of the 2024-T351 aluminum alloy workpiece after strengthening in different ways.
  • Figure 11 is a schematic diagram of the periodic change of atoms inside the material.
  • the laser shock wave and ultrasonic shock wave real-time coupling strengthening device includes a synchronization device, a laser device, an ultrasonic shock device, a working platform and a control system;
  • the working platform includes The upper casing 6, the first hydraulic cylinder 5, the second hydraulic cylinder 12, the limit slide rail 3 and the base 13, the workpiece 1 is clamped on the fixture platform 10, and the mobile platform 11 and the base 13 are installed in sequence from top to bottom, which can be Realize the linear motion of workpiece 1 in the X-axis and Y-axis directions.
  • the upper casing 6 is supported on the base 13 by the second hydraulic cylinder 12 ; the supporting beam 9 is installed on the bottom of the upper casing 6 by the second hydraulic cylinder 12 , and the two supporting beams 9 pass through the sliding pair and the limit
  • the slide rails 3 are connected, and the limit slide rails 3 are installed on the bottom of the upper casing 6 through the first hydraulic cylinder 5; any one of the support beams 9 is provided with a transfer pile 4; the two support beams 9 are respectively independent or Together, they move in the limit slide rail 3 through the actuator.
  • the transmission pile 4 is in point contact with the impact head 32, and the transmission pile 4 is made of the same material as the workpiece 1, so as to avoid the reduction of coupling accuracy caused by the refraction of the ultrasonic shock wave during the propagation process.
  • Two of the ultrasonic impact devices are installed in the upper casing 6, and the two ultrasonic impact devices are connected through a synchronizing device for synchronous movement and synchronous rotation of the ultrasonic impact devices; the laser device is used to generate a laser beam The surface of the workpiece 1 is irradiated through the upper casing 6 ; the control system controls the laser device to delay the laser impact with the ultrasonic impact device, so as to realize real-time coupling.
  • the two ultrasonic impact devices are installed on the left and right sides of the upper casing 6 , and the difference between the left ultrasonic impact device and the right-left ultrasonic impact device is described below.
  • the synchronizing device includes a driving device, a rack, a first sliding device, a second sliding device, a swing hydraulic cylinder 25 and a hydraulic system;
  • the sliding devices are distributed in the upper casing 6, and a swing hydraulic cylinder 25 is slidably installed on each of the first sliding devices.
  • the output shaft of the swing hydraulic cylinder 25 is directly or indirectly connected to the ultrasonic impact device.
  • the hydraulic system is used for The rotation of the two swinging hydraulic cylinders 25 is controlled synchronously; the two second sliding devices are installed in the housing 6, and a rack is slidably installed on each of the second sliding devices, and the output end of the driving device is installed outside Gear 19, the external gear 19 meshes with the two racks respectively; a bearing 24 is installed in one end of each rack, and the output shaft of the swing hydraulic cylinder 25 passes through the bearing 24 and moves synchronously through the rack The swing hydraulic cylinders 25 are moved synchronously.
  • the hydraulic system includes a tank and hydraulic pump 38 for providing hydraulic energy.
  • the motor 18 is installed on the inner side of the bottom of the casing 6 and the external gear 19 is installed on the motor shaft 20 of the motor 18. It is connected and fixed with the upper pulley 27 , the upper pulley 27 is installed on the upper second sliding rail 17 , the upper second sliding rail 17 is connected and fixed with the inner top of the housing 6 , and limiters 23 are installed on both sides of the upper second sliding rail 17 .
  • the lower rack 21' is connected and fixed with the lower pulley 27', the lower pulley 27' is installed on the lower second sliding rail 17', the second sliding rail 17' is connected and fixed with the inner bottom of the housing 6 and on both sides of the second sliding rail 17' Install the stopper 23.
  • the external gear 19 can synchronously drive the upper rack 21 and the lower rack 21' to move linearly.
  • the ends of the upper rack 21 and the lower rack 21' are provided with mounting holes, in which the bearings 24 are installed, the inner ring of the bearing 24 is equipped with a second connecting shaft 39, the upper rack 21 and the upper pulley 27 or the lower rack 21
  • the connection with the lower pulley 27' is provided with an electromagnetic device 22, which is used to activate the electromagnetic device 22 for fixing the upper rack 21 or the lower rack 21 after the position adjustment of the upper rack 21 or the lower rack 21' is completed. ', to prevent movement due to vibration or misuse.
  • the two swinging hydraulic cylinders 25 are located on the left and right sides of the upper casing 6 .
  • each swinging hydraulic cylinder 25 is connected with a ball slide block 26 through a thread.
  • the ball slide block 26 is installed on the first guide rail 14 .
  • a second connecting shaft 39 is installed, the second connecting shaft 39 is connected to one end of the connecting rod 16 through the inner ring of the bearing 24 , and the other end of the connecting rod 16 is connected to the ultrasonic impact device through the first connecting shaft 29 .
  • the left ultrasonic impact device and the right-left ultrasonic impact device have the same structure, only the installation position is different.
  • the left ultrasonic impact device includes the impact head 32, the horn 33 and the transducer.
  • the top of the transducer 28 is connected with the connecting rod 16 through the first connecting shaft 29 , the horn 33 is installed at the bottom of the transducer 28 , and the impact head 32 is installed at the end of the horn 33 .
  • the optical path duct 30 is installed in the housing 6 , the bottom of the optical path duct 30 is provided with an optical lens 31 for waterproofing, and the optical path duct 30 is coaxial with the laser 7 .
  • the control system controls the laser device to perform laser impact, where the ⁇ T expression is:
  • S is the center distance of two described transfer piles 4.
  • ⁇ i is the angle between the impact head 32 and the surface of the workpiece 1 during the i-th impact, 1 ⁇ i ⁇ n;
  • ⁇ i+1 is the angle between the impact head 32 and the surface of the workpiece 1 during the i+1th impact, 1 ⁇ i ⁇ n;
  • R is the transfer pile 4
  • L is the total length of the ultrasonic impact device
  • ⁇ T i is the working time of the ultrasonic impact device during the i-th impact
  • ⁇ T i+1 is the working time of the ultrasonic impact device at the i+1th impact
  • VL is the propagation velocity of the laser shock wave in the workpiece 1;
  • V U1 is the propagation velocity of ultrasonic shock wave inside the workpiece and in the transfer pile;
  • V U2 is the propagation velocity of the ultrasonic shock wave in the horn and the vibrating head.
  • the laser shock wave of the present invention and the strengthening method of the ultrasonic shock wave real-time coupling strengthening device comprise the steps:
  • S04 Use the computer 2 to control the translation of the support beam 9, so that the left and right transmission piles 4 are displaced to appropriate positions, and the first hydraulic cylinder 5 is compressed to drive the transmission piles 4 to move upward for a certain distance.
  • the mobile platform 11 moves at a constant speed along the positive direction of the X-axis to complete a single linear processing path, and then moves to the Y-axis at a constant speed and translates to the next processing path, until the real-time coupling strengthening of the laser shock wave and the ultrasonic shock wave in the preset area is completed;
  • the real-time coupling strengthening device of laser shock wave and ultrasonic shock wave can realize the real-time coupling of laser shock wave and ultrasonic shock wave, form a continuous atomic dense area on the propagation path of laser shock wave, and significantly increase the shock wave pressure amplitude in the material. value and duration, thereby increasing the plastic deformation of the material surface and the amplitude of residual compressive stress.
  • the real-time coupling strengthening device of laser shock wave and ultrasonic shock wave is used.
  • the specific process is as follows:
  • ⁇ T is calculated as follows:
  • the emission process of ultrasonic shock wave and laser shock wave is as follows:
  • the 2024-T351 aluminum alloy sheet is subjected to wire cutting processing, and processed into a block workpiece with a size of 20mm ⁇ 20mm ⁇ 2mm.
  • the workpiece 1 is cleaned with alcohol, and the surface to be treated is ground, polished, and affixed with black tape in sequence.
  • Use the computer 2 to control the rotation angle of the double-sided impact head 32 to make it reach the initial angle.
  • the support beam 9 is controlled to move so that the left and right transmission piles 4 are horizontally displaced to a suitable position, and the first hydraulic cylinder 5 is compressed to lift the transmission piles 4 upward for a certain distance.
  • the computer 2 is used to control the motor 18 , so that the double-sided impact heads 32 move horizontally toward each other and contact and compress the transfer pile 4 .
  • the second hydraulic cylinder 12 is controlled to be compressed, so that the impact head 32 and the transmission pile 4 are lowered as a whole until they come into contact with the workpiece 1 for compression. Water from the water gun 8 is processed according to the launching process.
  • the impact head 32 is restored to the initial angle, and the axis moving platform 11 moves in a straight line at a constant speed in the positive direction of the X axis at a speed of 1.5mm/s.
  • the machining path is shown in Figure 5. This cycle continues until the preset path is completed. Turn off the laser, lift the impact head 32 and the transfer pile 4 to the initial position, take out the workpiece 1, and end the strengthening work.
  • the average residual compressive stress of the main strengthening area on the sample surface is about 200 MPa, as shown in Figure 9; after the real-time coupling and strengthening of the laser shock wave and ultrasonic shock wave, the The average value of the residual compressive stress in the main strengthening area is about 140MPa, as shown in Figure 10, compared with the former, the residual stress is greatly improved, and the residual stress can obtain a large residual compressive stress in the surface direction.
  • Figure 10 is the residual stress diagram in the depth direction of the 2024-T351 aluminum alloy workpiece after strengthening in different ways.
  • the maximum residual compressive stress generated on the surface of the sample is about 220MPa, and there is a small amount of residual tensile stress inside the material at a depth of 0.75-1.5mm; the real-time coupling of laser shock wave and ultrasonic shock wave strengthens
  • the maximum residual compressive stress on the surface of the sample is about 235MPa, which is greatly improved compared to the former, and the change of residual stress in the depth direction is relatively stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种激光冲击波和超声冲击波实时耦合强化装置,包括同步装置、激光装置、超声冲击装置、工作平台和控制系统;上壳体(6)通过第二液压缸(12)支撑在底座(13)上;支承梁(9)通过第二液压缸(12)安装在上壳体(6)底部,限位滑轨(3)通过第一液压缸(5)安装在上壳体(6)底部;2个超声冲击装置通过同步装置连接,用于超声冲击装置同步移动和同步转动;激光装置用于产生激光束穿过上壳体(6)所述照射在工件(1)表面;控制系统控制所述激光装置延时于超声冲击装置进行激光冲击。该发明调节超声冲击装置的起始时间、旋转角度与速度,实现超声波方向与波阵面位置的动态控制,实现激光冲击波和超声冲击波实时耦合。

Description

一种激光冲击波和超声冲击波实时耦合装置及方法 技术领域
本发明涉及激光加工技术领域,特别涉及一种实现激光冲击波和超声冲击波实时耦合的装置及方法。
背景技术
激光冲击技术,利用纳秒脉冲激光与材料相互作用产生的冲击波,实现金属材料表面强化与成形加工。但单一激光束诱导的冲击波压力幅值低、时间短,导致零件表面残余压应力幅值低、晶粒细化程度低,强化/成形效果及其可控性较差。
中国发明专利提出了一种振动辅助激光冲击处理金属构件的表面强化方法,该发明专利将激光冲击强化技术与振动时效处理相结合,使表层晶粒细化、内部残余应力均匀化。但存在以下缺点:(1)采用激振器对试样整体进行时效处理,无法实现局部区域强化处理;(2)激光冲击与振动时效分开,无法改善激光冲击波压力幅值低、时间短的技术缺陷,塑性变形与残余压应力低,强化效果较差。
中国发明专利提出了一种用于同轴超声辅助激光喷丸强化的超声振动装置,该发明专利实现了超声振动波和激光冲击波同轴传播,促进材料的动态再结晶行为,使材料表面获得超细晶粒。该发明虽然实现了超声冲击波和激光冲击波的同轴传播,但由于激光冲击波传播速度远高于超声冲击波的传播速度,因此该发明无法实现激光冲击波与超声冲击波的实时耦合,因此无法改善激光冲击波压力幅值低、时间短的技术缺陷,塑性变形与残余压应力较低。
中国发明专利提出了一种获取超细晶表层的超声辅助激光喷丸方法,该方法利用超声诱导高频振动波,在激光冲击波传播路径上形成周期性原子密集区域和疏松区域,促进材料晶粒细化,形成超细晶表层。该发明可以在激光冲击波传播路径上形成原子密集区域和疏松区域,促进晶粒细化,但存在以下缺点:(1)无法弥补激光冲击波与超声冲击波的传播速度差,不能实现激光冲击波与超声冲击波实时耦合,导致激光冲击波路径上存在周期性的原子疏松区;(2)原子疏松区会降低激光冲击波压力幅值,虽可以促进晶粒细化,但会降低塑性变形与残余压应力,进而削弱强化效果。
中国发明专利提出了一种中空激光冲击和超声协同强化抗疲劳装置及加工方法,该发明专利通过施加超声振动防止激光喷丸强化后冲击区域产生凹凸不平,超声振动与激光冲击波相互作用,可以在材料表面形成合理的残余压应力分布。但是该发明无法弥补激光冲击波与超声冲击波的传播速度差,不能实现激光冲击波与超声冲击波实时耦合,无法改善激光冲击 波压力幅值低、时间短的技术缺陷,塑性变形与残余压应力较低。
发明内容
针对现有技术无法弥补激光冲击波与超声冲击波的传播速度差、不能实现激光冲击波与超声冲击波实时耦合的技术缺陷,本发明提供了一种激光冲击波和超声冲击波实时耦合强化装置及方法,通过调节超声冲击装置的起始时间、旋转角度与速度,实现超声波方向与波阵面位置的动态控制,进而弥补超声波与激光冲击波的传播速度差,最终实现激光冲击波和超声冲击波实时耦合,有效改善激光冲击波压力幅值低、时间短的技术缺陷,进而增加金属材料组织/应力强化或成形加工效果。
本发明是通过以下技术手段实现上述技术目的的。
一种激光冲击波和超声冲击波实时耦合强化装置,包括同步装置、激光装置、超声冲击装置、工作平台和控制系统;
所述工作平台包括上壳体、第一液压缸、第二液压缸、限位滑轨和底座,所述底座上装夹可水平移动的工件,所述上壳体通过第二液压缸支撑在底座上;所述支承梁通过第二液压缸安装在上壳体底部,2个所述支承梁通过滑动副与限位滑轨连接,所述限位滑轨通过第一液压缸安装在上壳体底部;任一所述支承梁上设有传递桩;2个所述超声冲击装置安装在上壳体内,且2个所述超声冲击装置通过同步装置连接,用于所述超声冲击装置同步移动和同步转动;所述激光装置用于产生激光束穿过上壳体所述照射在工件表面;所述控制系统控制所述激光装置延时于超声冲击装置进行激光冲击,用于实现实时耦合。
进一步,所述同步装置包括驱动装置、齿条、第一滑动装置、第二滑动装置、摆动液压缸和液压系统;2个所述第一滑动装置分布在上壳体内,每个所述第一滑动装置上滑动安装摆动液压缸,所述摆动液压缸的输出轴直接或间接与超声冲击装置连接,所述液压系统用于同步控制2个所述摆动液压缸的转动;2个所述第二滑动装置安装在壳体内,每个所述第二滑动装置上滑动安装齿条,所述驱动装置输出端安装外齿轮,所述外齿轮分别与2个所述齿条啮合;每个所述齿条一端内安装轴承,所述摆动液压缸的输出轴穿过轴承,通过齿条的同步移动使所述摆动液压缸同步移动。
进一步,所述超声冲击装置包括冲击头、变幅杆和换能器;所述换能器直接或者间接与所述摆动液压缸的输出轴传动连接,所述换能器底部安装变幅杆,所述变幅杆末端安装冲击头,通过第一液压缸使冲击头与传递桩高副接触,通过同步装置使冲击头绕传递桩圆心转动。
进一步,设所述冲击头与工件表面之间初始夹角为α 1,冲击头与工件表面之间终止夹角为α n,冲击头在初始夹角与终止夹角之间冲击n次,在超声冲击装置工作△T时间后,所述控制系统控制所述激光装置进行激光冲击,其中△T表达式为:
Figure PCTCN2021075282-appb-000001
Figure PCTCN2021075282-appb-000002
其中:S为两个所述传递桩的中心距;
α i为第i次冲击时所述冲击头与工件表面之间夹角,1<i≤n;
R为所述传递桩;
L为超声冲击装置的总长度;
V L为激光冲击波在工件中的传播速度;
V U1为超声冲击波在工件内部和传递桩中的传播速度;
V U2为超声冲击波在变幅杆和振动头中的传播速度。
进一步,所设冲击头旋转角速度ω的表达式为:
Figure PCTCN2021075282-appb-000003
进一步,所述传递桩的材质与工件相同或近似,用于避免超声冲击波在传播过程中发生折射。
进一步,所述齿条上安装电磁装置,用于锁定齿条在第二滑动装置上的位置。
一种的激光冲击波和超声冲击波实时耦合强化装置的强化方法,包括如下步骤:
激光装置发出激光对工件进行预热;
所述控制系统控制同步装置使2个所述超声冲击装置同步转动,用于使超声冲击装置与工件表面夹角为α 1
调节2个传递桩的中心距离,通过第一液压缸调节传递桩高度和通过同步装置使2个所述超声冲击装置同步相向移动,使超声冲击装置的冲击头与传递桩接触并且压紧;
通过控制第二液压缸压缩,使传递桩与工件接触并且压紧;
工件表面覆盖约束层;
控制所述超声冲击装置释放超声冲击波,摆动液压缸使所述超声冲击装置转动,所述超声冲击装置在转动范围内释放n次超声冲击波;
在超声冲击装置工作△T时间后,所述控制系统控制所述激光装置进行激光冲击,实现激光冲击波和超声冲击波实时耦合强化。
本发明的有益效果在于:
1.本发明所述的激光冲击波和超声冲击波实时耦合强化装置,通过调节超声冲击装置的 起始时间、旋转角度与速度,实现超声波方向与波阵面位置的动态控制,进而弥补超声波与激光冲击波的传播速度差,最终实现激光冲击波和超声冲击波实时耦合。
2.本发明所述的激光冲击波和超声冲击波实时耦合强化装置,可在激光冲击波传播路径上形成连续原子密集区,显著增加材料内冲击波压力幅值与持续时间,增加材料塑性变形与残余压应力幅值,进而改善金属材料强化或成形加工效果。
3.本发明通过激光和超声冲击波的实时耦合,增加了材料内冲击波压力幅值、空间与时间分布的调控范围,进而扩大了金属材料强化或成形加工效果的调控范围。
附图说明
图1为本发明所述的激光冲击波和超声冲击波实时耦合强化装置三维图。
图2为本发明所述的激光冲击波和超声冲击波实时耦合强化装置主视图
图3为本发明所述的同步装置的结构示意图。
图4为本发明所述的超声冲击装置安装示意图。
图5为图3的俯视图。
图6为图3的左视图。
图7为本发明所述的激光冲击波和超声冲击波实时耦合强化的过程示意图。
图8为本发明所述的激光冲击波和超声冲击波实时耦合强化的加工路径示意图。
图9为不同方式强化后2024-T351铝合金工件表面方向残余应力图。
图10为不同方式强化后2024-T351铝合金工件深度方向残余应力图。
图11为材料内部原子周期性变化示意图。
图中:
1-工件;2-计算机;3-限位滑轨;4-传递桩;5-第一液压缸;6-壳体;7-激光器;8-水枪;9-支承梁;10-夹具平台;11-移动平台;12-第二液压缸;13-底座;14-第一导轨;15-支架;16-连杆;17-上部第二滑轨;17’-下部第二滑轨;18-电机;19-外齿轮;20-电机轴;21-上齿条;21’-下齿条;22-电磁装置;23-限位器;24-轴承;25-摆动液压缸;26-滚珠滑块;27-上滑轮;27’-下滑轮;28-换能器;29-第一连接轴;30-光路管道;31-光学镜片;32-冲击头;33-变幅杆;38-液压泵;39-第二连接轴。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例一
如图1、图2和图3所示,本发明所述的的激光冲击波和超声冲击波实时耦合强化装置, 包括同步装置、激光装置、超声冲击装置、工作平台和控制系统;所述工作平台包括上壳体6、第一液压缸5、第二液压缸12、限位滑轨3和底座13,工件1装夹于夹具平台10上,由上往下依次安装移动平台11、底座13,可实现工件1在X轴、Y轴方向上的直线运动。
所述上壳体6通过第二液压缸12支撑在底座13上;所述支承梁9通过第二液压缸12安装在上壳体6底部,2个所述支承梁9通过滑动副与限位滑轨3连接,所述限位滑轨3通过第一液压缸5安装在上壳体6底部;任一所述支承梁9上设有传递桩4;2个所述支承梁9分别单独或者共同通过执行机构在限位滑轨3内移动。其中传递桩4与冲击头32为点接触,且传递桩4选用与工件1相同的材料,避免超声冲击波在传播过程中发生折射导致耦合精度降低。
2个所述超声冲击装置安装在上壳体6内,且2个所述超声冲击装置通过同步装置连接,用于所述超声冲击装置同步移动和同步转动;所述激光装置用于产生激光束穿过上壳体6所述照射在工件1表面;所述控制系统控制所述激光装置延时于超声冲击装置进行激光冲击,用于实现实时耦合。本实施例中2个所述超声冲击装置安装在上壳体6内左右2侧,下面有左超声冲击装置和右左超声冲击装置区别叙述。
如图3、图4、图5和图6所示,所述同步装置包括驱动装置、齿条、第一滑动装置、第二滑动装置、摆动液压缸25和液压系统;2个所述第一滑动装置分布在上壳体6内,每个所述第一滑动装置上滑动安装摆动液压缸25,所述摆动液压缸25的输出轴直接或间接与超声冲击装置连接,所述液压系统用于同步控制2个所述摆动液压缸25的转动;2个所述第二滑动装置安装在壳体6内,每个所述第二滑动装置上滑动安装齿条,所述驱动装置输出端安装外齿轮19,所述外齿轮19分别与2个所述齿条啮合;每个所述齿条一端内安装轴承24,所述摆动液压缸25的输出轴穿过轴承24,通过齿条的同步移动使所述摆动液压缸25同步移动。液压系统包括油箱和液压泵38,用于提供液压能。
实施例具体结构如下:电机18安装于外壳6底部内侧并且电机18的电机轴20上安装外齿轮19,所述外齿轮19上下对称安装上齿条21和下齿条21’,上齿条21与上滑轮27连接固定,上滑轮27安装于上部第二滑轨17上,上部第二滑轨17与外壳6内侧顶部连接固定且上部第二滑轨17两侧安装限位器23。下齿条21’与下滑轮27’连接固定,下滑轮27’安装于下部第二滑轨17’上,第二滑轨17’与外壳6内侧底部连接固定且第二滑轨17’两侧安装限位器23。外齿轮19可以同步驱动上齿条21和下齿条21’直线运动。上齿条21和下齿条21’的末端设有安装孔,孔中均安装轴承24,轴承24的内圈内装有第二连接轴39,上齿条21与上滑轮27或者下齿条21’与下滑轮27’的连接处分别设有电磁装置22,用于在上齿条21或下齿条21’位置调整完毕后,启动电磁装置22用于固定上齿条21或下齿条21’, 防止因为震动或者误操作而移动。2个摆动液压缸25位于上壳体6内左右2侧,每个摆动液压缸25底部通过螺纹连接滚珠滑块26,滚珠滑块26安装于第一导轨14上,摆动液压缸25的输出端安装第二连接轴39,第二连接轴39穿过轴承24的内圈与连杆16一端连接,连杆16另一端通过第一连接轴29与超声冲击装置连接。
左超声冲击装置和右左超声冲击装置结构相同,仅仅安装位置存在差异,下面以左超声冲击装置为例叙述,所述左超声冲击装置包括冲击头32、变幅杆33和换能器,换能器28顶部通过第一连接轴29与连杆16连接,换能器28底部安装变幅杆33,变幅杆33末端安装冲击头32。
如图4所示,所述的激光器和光路系统,光路管道30安装于外壳6中,光路管道30底部安装有光学镜片31用于防水,且光路管道30与激光器7同轴。
设所述冲击头32与工件1表面之间初始夹角为α 1,冲击头32与工件1表面之间终止夹角为α n,冲击头32在初始夹角与终止夹角之间冲击n次,在超声冲击装置工作△T时间后,所述控制系统控制所述激光装置进行激光冲击,其中△T表达式为:
Figure PCTCN2021075282-appb-000004
Figure PCTCN2021075282-appb-000005
所设冲击头旋转角速度ω的表达式为:
Figure PCTCN2021075282-appb-000006
其中:S为两个所述传递桩4的中心距;
α i为第i次冲击时所述冲击头32与工件1表面之间夹角,1<i≤n;
α i+1为第i+1次冲击时所述冲击头32与工件1表面之间夹角,1<i≤n;
R为所述传递桩4;
L为超声冲击装置的总长度;
△T i为第i次冲击时超声冲击装置工作时间;
△T i+1为第i+1次冲击时超声冲击装置工作时间;
V L为激光冲击波在工件1中的传播速度;
V U1为超声冲击波在工件内部和传递桩中的传播速度;
V U2为超声冲击波在变幅杆和振动头中的传播速度。
如图7和图8所示,本发明所述的激光冲击波和超声冲击波实时耦合强化装置的强化方 法,包括如下步骤:
S01:对工件1进行预处理;
S02:打开计算机2,开启激光器7进行预热,将工件1装夹在夹具平台10上;在X方向和Y方向调整移动平台11,使工件1处于加工起始位置;
S03:使用计算机2控制摆动液压缸25带动连杆16旋转,直至左右两侧冲击头32与水平面成夹角α 1
S04:使用计算机2控制支承梁9平移,使左右两传递桩4位移至合适位置,第一液压缸5压缩,带动传递桩4向上运动一定距离。控制电机18,使电机轴20带动齿轮19逆时针旋转,使两直齿条相向移动,直至冲击头32与传递桩4接触并且以合适压力压紧;
S05:通过计算机控制第二液压缸12压缩,使冲击头32与传递桩4整体下降,直至传递桩4与工件1接触,以合适压力压紧;
S06:水枪8出水覆盖工件表面,换能器28启动释放超声冲击波,摆动液压缸25使连杆16旋转带动冲击头32在设定时间△t内由初始角度α 1运动至最终角度α n,超声冲击波加载△T(单位μs)后激光器7释放激光,结束后冲击头32回复原角度,完成单点强化;
S07:移动平台11沿X轴正方向匀速移动,完成单条直线加工路径,随即向Y轴移匀速平移至下一个加工路径,直至完成预设区域的激光冲击波和超声冲击波实时耦合强化;
S08:关闭激光器7,冲击头32和传递桩4抬升至初始位置,取出工件1,结束强化工作。
如图11所示,本发明所述的激光冲击波和超声冲击波实时耦合强化装置可以实现激光冲击波与超声冲击波的实时耦合,在激光冲击波传播路径上形成连续原子密集区,显著增加材料内冲击波压力幅值与持续时间,进而增加材料表层塑性变形与残余压应力幅值。
实施例二
以厚度为2mm的2024-T351铝合金板材为例,使用激光冲击波和超声冲击波实时耦合强化装置,具体过程如下:
△T的计算如下:
设所述冲击头32与工件1表面之间初始夹角为α 1=30°,设所述冲击头32与工件1表面之间终止夹角为α 3=22°,n=3,即冲击头32在初始夹角与终止夹角之间冲击3次,取中间值得出α 2=26°。计算△T i
对于超声冲击波在铝合金工件和传递桩中的传播速度V U1,取近似值6320m/s;
对于超声冲击波在不锈钢变幅杆和振动头中的传播速度V U2,取近似值5900m/s;
对于激光冲击波在铝合金工件中的传播速度V L,取近似值6380m/s;
对于尺寸20mm×20mm×2mm的块状工件,取S=12mm;
当α 1=30°时,△T 1=18.135μs;
当α 2=26°时,△T 2=18.180μs;
当α 3=22°时,△T 3=18.226μs;
因为α 1>α 3,因此△T=MIN(△T 1、△T 1、△T 1)=△T 1
ω 1=0.247rad/s
ω 2=0.242rad/s
超声冲击波和激光冲击波的发射流程为:
在α 1位置发射第一次超声冲击波,在△t 1=△T 2—△T 1时间内以ω 1转动至α 2并发射第二次超声冲击波,在△t 2=△T 3—△T 2时间内以ω 1转动至α 3并发射第三次超声冲击波,在△T 1后发射激光。
全过程的加工:
将2024-T351铝合金板材进行线切割处理,加工成为尺寸20mm×20mm×2mm的块状工件。切割后使用酒精对工件1进行清洗,将待处理表面依次进行打磨、抛光、贴黑胶带。打开激光器7进行预热处理。将工件1牢固安装在夹具平台上10,调整移动平台11,使工件1待处理区域12mm*12mm的起点位于激光器7中心正下方。使用计算机2控制双侧冲击头32转动角度,使之到达初始角度。控制支承梁9移动,使左右两传递桩4水平位移至合适位置,第一液压缸5压缩,使传递桩4向上抬升一定距离。使用计算机2控制电机18,使双侧冲击头32相向水平移动与传递桩4接触压紧。控制第二液压缸12压缩,使冲击头32与传递桩4整体下降直至与工件1接触压紧。水枪8出水,按照发射流程进行处理。完成后冲击头32还原至初始角度,轴移动平台11以1.5mm/s速度往X轴正方向匀速直线移动,当单条路径结束后,向Y轴匀速直线移动1.5mm,开始下一路径加工,加工路径如图5所示。如此循环直至完成预设的路径。关闭激光器,将冲击头32和传递桩4抬升至初始位置,取出工件1,结束强化工作。
非实时耦合的激光冲击波和超声冲击波协同强化后,试样表面的主要强化区域的残余压应力平均值约为200MPa,如图9所示;激光冲击波和超声冲击波实时耦合强化后,试样表面的主要强化区域的残余压应力平均值约为140MPa,如图10所示,相较于前者有较大提升,残余应力在表面方向上均可获得较大残余压应力。
图10是不同方式强化后2024-T351铝合金工件深度方向残余应力图。非实时耦合的激光冲击波和超声冲击波协同强化后,试样表面产生的残余压应力最大值约为220MPa,在0.75~1.5mm深度处材料内部存在少量残余拉应力;激光冲击波和超声冲击波实时耦合强化后,试样表面的残余压应力最大值约为235MPa,相对于前者有着较大提升,残余应力在深度方向 上的变化较为稳定,相较于非实时耦合的激光冲击波和超声冲击波强化,其在各个深度上试样均可获得较大的残余压应力,并且有效的释放试样中因单独激光喷丸所产生的残余拉应力,使工件的疲劳寿命显著提升。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (8)

  1. 一种激光冲击波和超声冲击波实时耦合强化装置,其特征在于,包括同步装置、激光装置、超声冲击装置、工作平台和控制系统;
    所述工作平台包括上壳体(6)、第一液压缸(5)、第二液压缸(12)、限位滑轨(3)和底座(13),所述底座(13)上装夹可水平移动的工件(1),所述上壳体(6)通过第二液压缸(12)支撑在底座(13)上;所述支承梁(9)通过第二液压缸(12)安装在上壳体(6)底部,2个所述支承梁(9)通过滑动副与限位滑轨(3)连接,所述限位滑轨(3)通过第一液压缸(5)安装在上壳体(6)底部;任一所述支承梁(9)上设有传递桩(4);2个所述超声冲击装置安装在上壳体(6)内,且2个所述超声冲击装置通过同步装置连接,用于所述超声冲击装置同步移动和同步转动;所述激光装置用于产生激光束穿过上壳体(6)所述照射在工件(1)表面;所述控制系统控制所述激光装置延时于超声冲击装置进行激光冲击,用于实现实时耦合。
  2. 根据权利要求1所述的激光冲击波和超声冲击波实时耦合强化装置,其特征在于,所述同步装置包括驱动装置、齿条、第一滑动装置、第二滑动装置、摆动液压缸(25)和液压系统;2个所述第一滑动装置分布在上壳体(6)内,每个所述第一滑动装置上滑动安装摆动液压缸(25),所述摆动液压缸(25)的输出轴直接或间接与超声冲击装置连接,所述液压系统用于同步控制2个所述摆动液压缸(25)的转动;2个所述第二滑动装置安装在壳体(6)内,每个所述第二滑动装置上滑动安装齿条,所述驱动装置输出端安装外齿轮(19),所述外齿轮(19)分别与2个所述齿条啮合;每个所述齿条一端内安装轴承(24),所述摆动液压缸(25)的输出轴穿过轴承(24),通过齿条的同步移动使所述摆动液压缸(25)同步移动。
  3. 根据权利要求2所述的激光冲击波和超声冲击波实时耦合强化装置,其特征在于,所述超声冲击装置包括冲击头(32)、变幅杆(33)和换能器;所述换能器直接或者间接与所述摆动液压缸(25)的输出轴传动连接,所述换能器底部安装变幅杆(33),所述变幅杆(33)末端安装冲击头(32),通过第一液压缸(5)使冲击头(32)与传递桩(4)高副接触,通过同步装置使冲击头(32)绕传递桩(4)圆心转动。
  4. 根据权利要求3所述的激光冲击波和超声冲击波实时耦合强化装置,其特征在于,设所述冲击头(32)与工件(1)表面之间初始夹角为α 1,冲击头(32)与工件(1)表面之间终止夹角为α n,冲击头(32)在初始夹角与终止夹角之间冲击n次,在超声冲击装置工作△T时间后,所述控制系统控制所述激光装置进行激光冲击,其中△T表达式为:
    Figure PCTCN2021075282-appb-100001
    Figure PCTCN2021075282-appb-100002
    其中:S为两个所述传递桩(4)的中心距;
    α i为第i次冲击时所述冲击头(32)与工件(1)表面之间夹角,1<i≤n;
    R为所述传递桩(4);
    L为超声冲击装置的总长度;
    V L为激光冲击波在工件(1)中的传播速度;
    V U1为超声冲击波在工件内部和传递桩中的传播速度;
    V U2为超声冲击波在变幅杆和振动头中的传播速度。
  5. 根据权利要求4所述的激光冲击波和超声冲击波实时耦合强化装置,其特征在于,所设冲击头旋转角速度ω的表达式为:
    Figure PCTCN2021075282-appb-100003
  6. 根据权利要求1所述的激光冲击波和超声冲击波实时耦合强化装置,其特征在于,所述传递桩(4)的材质与工件(1)相同或近似,用于避免超声冲击波在传播过程中发生折射。
  7. 根据权利要求2所述的激光冲击波和超声冲击波实时耦合强化装置,其特征在于,所述齿条上安装电磁装置(22),用于锁定齿条在第二滑动装置上的位置。
  8. 一种根据权利要求2所述的激光冲击波和超声冲击波实时耦合强化装置的强化方法,其特征在于,包括如下步骤:包括如下步骤:
    激光装置发出激光对工件(1)进行预热;
    所述控制系统控制同步装置使2个所述超声冲击装置同步转动,用于使超声冲击装置与工件(1)表面夹角为α 1
    调节2个传递桩(4)的中心距离,通过第一液压缸(5)调节传递桩(4)高度和通过同步装置使2个所述超声冲击装置同步相向移动,使超声冲击装置的冲击头(32)与传递桩(4)接触并且压紧;
    通过控制第二液压缸(12)压缩,使传递桩(4)与工件(1)接触并且压紧;
    工件(1)表面覆盖约束层;
    控制所述超声冲击装置释放超声冲击波,摆动液压缸(25)使所述超声冲击装置转动,所述超声冲击装置在转动范围内释放n次超声冲击波;
    在超声冲击装置工作△T时间后,所述控制系统控制所述激光装置进行激光冲击,实现激光冲击波和超声冲击波实时耦合强化。
PCT/CN2021/075282 2021-02-03 2021-02-04 一种激光冲击波和超声冲击波实时耦合装置及方法 WO2022165709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110150074.3 2021-02-03
CN202110150074.3A CN112899467B (zh) 2021-02-03 2021-02-03 一种激光冲击波和超声冲击波实时耦合装置及方法

Publications (1)

Publication Number Publication Date
WO2022165709A1 true WO2022165709A1 (zh) 2022-08-11

Family

ID=76121872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075282 WO2022165709A1 (zh) 2021-02-03 2021-02-04 一种激光冲击波和超声冲击波实时耦合装置及方法

Country Status (3)

Country Link
US (1) US11692236B2 (zh)
CN (1) CN112899467B (zh)
WO (1) WO2022165709A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198084A (zh) * 2022-07-29 2022-10-18 江苏大学 一种超声辅助激光喷丸复合强化的设备及方法
CN115449619B (zh) * 2022-08-22 2024-04-30 武汉理工大学 一种超声冲击装置的柔性控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203393190U (zh) * 2013-07-09 2014-01-15 南京中科煜宸激光技术有限公司 一种激光超声波喷丸淬火复合加工装置
DE102016203649A1 (de) * 2016-03-07 2017-09-07 MTU Aero Engines AG Mikroschmieden bei einem generativen Herstellungsverfahren
CN108796206A (zh) * 2018-06-20 2018-11-13 江苏大学 一种激光冲击和超声振动的复合曲面强化装置及方法
CN109852785A (zh) * 2017-11-30 2019-06-07 天津大学 一种用于细化风电轴承激光表面重熔晶粒的超声冲击装置与方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399371B2 (en) * 2004-04-16 2008-07-15 Nippon Steel Corporation Treatment method for improving fatigue life and long-life metal material treated by using same treatment
US9649722B2 (en) * 2013-03-15 2017-05-16 Illinois Institute Of Technology Ultrasound-assisted water-confined laser micromachining
CN107254581B (zh) * 2017-05-04 2018-10-09 江苏大学 一种激光冲击和超声振动挤压协同强化装置及方法
CN107812942A (zh) * 2017-11-01 2018-03-20 西北工业大学 一种双超声辅助激光增材制造装置及方法
CN207900455U (zh) * 2018-01-19 2018-09-25 佛山科学技术学院 一种超声辅助激光焊接装置
CN108660307B (zh) * 2018-04-16 2020-05-05 江苏大学 一种振动辅助激光冲击处理金属构件的表面强化方法
CN109226720B (zh) * 2018-08-20 2021-02-12 江苏大学 一种基于激光冲击和超声振动复合的半固态金属塑性加工方法及装置
CN110512071B (zh) * 2019-08-28 2021-01-15 江苏大学 一种中空激光冲击和超声协同强化抗疲劳装置及加工方法
CN110484914B (zh) * 2019-09-03 2021-05-18 大连理工大学 一种随动超声辅助直接激光沉积陶瓷增强金属基复合材料的装置及方法
CN110804692B (zh) * 2019-10-08 2021-08-03 江苏大学 一种用于同轴超声辅助激光喷丸强化的超声振动装置
CN112475609B (zh) * 2020-12-09 2022-03-25 湖南大学 一种超声辅助激光焊接变形抑制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203393190U (zh) * 2013-07-09 2014-01-15 南京中科煜宸激光技术有限公司 一种激光超声波喷丸淬火复合加工装置
DE102016203649A1 (de) * 2016-03-07 2017-09-07 MTU Aero Engines AG Mikroschmieden bei einem generativen Herstellungsverfahren
CN109852785A (zh) * 2017-11-30 2019-06-07 天津大学 一种用于细化风电轴承激光表面重熔晶粒的超声冲击装置与方法
CN108796206A (zh) * 2018-06-20 2018-11-13 江苏大学 一种激光冲击和超声振动的复合曲面强化装置及方法

Also Published As

Publication number Publication date
US11692236B2 (en) 2023-07-04
CN112899467B (zh) 2022-02-15
US20220243299A1 (en) 2022-08-04
CN112899467A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022165709A1 (zh) 一种激光冲击波和超声冲击波实时耦合装置及方法
US11110513B2 (en) Combined ultrasonic micro-forging device for improving microstructure and mechanical properties of additive manufactured metal parts, and a related additive manufacturing method
CN107520538B (zh) 一种激光间接冲击微成形的装置及方法
US11542571B2 (en) Laser shock and supersonic vibration extrusion co-strengthening device and method
CN107378234B (zh) 超声振动辅助高速冲击压力焊接金属箔板的装置及方法
CN108796206B (zh) 一种激光冲击和超声振动的复合曲面强化装置及方法
CN108660307B (zh) 一种振动辅助激光冲击处理金属构件的表面强化方法
CN110760668B (zh) 一种获取超细晶表层的超声辅助激光喷丸方法
JPH0613725B2 (ja) 金属基層の物性を変える方法と装置
JP2003504212A (ja) レーザピーニングによる金属の輪郭成形
WO2014110864A1 (zh) 金属构件残余应力的局部调控方法和系统
CN110512071B (zh) 一种中空激光冲击和超声协同强化抗疲劳装置及加工方法
CN110643996A (zh) 一种微轧制和超声波辅助的激光熔覆装置
CN101289733A (zh) 激光辅助预应力喷丸成形-强化复合方法
CN113145861B (zh) 一种金属构件增材制造同步锤击形性控制装置与方法
CN109923221A (zh) 超声波内壁击打系统的击打位置控制装置
CN114406463A (zh) 超高强度钢随焊超声辅助激光焊接系统及方法
CN113862664A (zh) 一种脉冲电流复合能场辅助激光熔覆的方法和装置
CN108715926B (zh) 一种超声波冲击装置
CN105817517A (zh) 一种薄壁管件局部胀形的激光冲击装置及方法
US7147726B2 (en) Mechanical method for generating nanostructures and mechanical device for generating nanostructures
CN109234518A (zh) 一种平板件预应力激光冲击强化的方法和装置
JP2004169100A (ja) 超音波ショットピーニング処理機および超音波ショットピーニング処理装置
CN114959219A (zh) 一种长薄板试验件超声喷丸强化装置
CN103343189A (zh) 一种组合式激光冲击强化厚板的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923734

Country of ref document: EP

Kind code of ref document: A1