WO2022164273A1 - 전지셀 제조 장치 및 전지셀 제조 방법 - Google Patents

전지셀 제조 장치 및 전지셀 제조 방법 Download PDF

Info

Publication number
WO2022164273A1
WO2022164273A1 PCT/KR2022/001631 KR2022001631W WO2022164273A1 WO 2022164273 A1 WO2022164273 A1 WO 2022164273A1 KR 2022001631 W KR2022001631 W KR 2022001631W WO 2022164273 A1 WO2022164273 A1 WO 2022164273A1
Authority
WO
WIPO (PCT)
Prior art keywords
jig
sealing
battery cell
pocket portion
pocket
Prior art date
Application number
PCT/KR2022/001631
Other languages
English (en)
French (fr)
Inventor
장석호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220012372A external-priority patent/KR20220109341A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22746299.1A priority Critical patent/EP4117070A4/en
Priority to US17/922,693 priority patent/US20230163342A1/en
Priority to CN202280003433.5A priority patent/CN115428210A/zh
Publication of WO2022164273A1 publication Critical patent/WO2022164273A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell manufacturing apparatus and a battery cell manufacturing method, and more particularly, to a battery cell manufacturing apparatus and a battery cell manufacturing method with reduced electrolyte loss and uniform quality.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self-discharge rate has been used and is widely used.
  • a secondary battery pouch is mainly used as a packaging material for packaging such a secondary battery, and the pouch is generally a pouch film having a structure of an outer layer, an adhesive layer, an aluminum layer, an adhesive layer, and an inner layer.
  • the pouch-type secondary battery may be damaged in various processes, for example, in the process of sealing the outer peripheral surface of the pouch after the electrode assembly is embedded in the pouch, there is a problem that some of the electrolyte in the pouch is pushed out to the outer peripheral surface.
  • FIG. 1 is a flowchart showing a conventional battery cell manufacturing process.
  • FIG. 2 is a view showing a battery cell after the pre-sealing step of FIG. 1 .
  • FIG. 3 is a view showing a battery cell after the sealing step of FIG. 1 .
  • the conventional battery cell manufacturing process includes a pre-sealing step ( S10 ) and a sealing step ( S20 ).
  • the pre-sealing step ( S10 ) is a step of forming the pre-sealing part 12 at the end of the outer peripheral surface 11 of the battery cell 10 .
  • the sealing step S20 the sealing part 15 is performed by the first sealing tool 51 and the second sealing tool 55 with respect to the outer peripheral surface 11 of the battery cell 10 . ) is formed.
  • the pre-sealing unit 12 prevents some of the electrolyte in the pouch from leaking to the outside before the sealing step (S20).
  • the pocket portion 11p may be formed between the pre-sealing portion 12 and the central portion of the battery cell 10 on the outer peripheral surface 11 of the battery cell 10 .
  • a portion of the electrolyte solution in the pouch may be included in the pocket portion 11p.
  • the sealing step ( S20 ) is performed in a state in which the electrolyte in the pocket part 11p is not sufficiently removed, so that the pre-sealing part 12 and the sealing part 15 are not sufficiently removed. ), the electrolyte may remain in the pocket portion (11p) located between the. That is, some of the electrolyte to be included in the battery cell 10 may be lost, and there is a problem in that the quality of the battery cell 10 is also not uniform. Accordingly, there is a need to develop a battery cell manufacturing apparatus and a battery cell manufacturing method with reduced electrolyte loss and uniform quality.
  • the problem to be solved by the present invention relates to a battery cell manufacturing apparatus and a battery cell manufacturing method with reduced electrolyte loss and uniform quality.
  • a pocket part and a pre-sealing part are formed on the outer peripheral surface of the battery case Among them, including a jig for pressing the pocket portion, wherein the jig includes a first jig positioned above the pocket portion and a second jig positioned below the pocket portion, wherein the first jig and the second jig are Compression and release of the pocket portion are repeated at least once to compress the pocket portion.
  • the jig may extend along the pocket portion.
  • the width of the jig may be equal to or smaller than the length of the pocket portion.
  • At least one of the first jig and the second jig may have a surface in contact with the pocket part covered with a soft member.
  • the soft member may be formed of a polyoxymethylene (POM) pad.
  • POM polyoxymethylene
  • the bottom portion of the soft member facing the pocket portion may have a structure in which a thickness is changed.
  • the bottom portion of the soft member has a first end and a second end, from the first end adjacent to the pre-sealing portion toward the second end farther from the pre-sealing portion compared to the first end, the soft member
  • the thickness may be reduced.
  • a sealing tool including a first sealing tool positioned at an upper portion and a second sealing tool positioned below the pocket portion with respect to the pocket portion, wherein the sealing tool seals at least a portion of the pocket portion compressed by the jig.
  • a sealing part may be formed on the outer peripheral surface of the battery case.
  • the width of the sealing tool may be equal to or smaller than the width of the jig.
  • a pocket part and a pre-sealing part are formed on the outer peripheral surface of the battery case pre-sealing step; and a crimping step of pressing and compressing the pocket part with a jig, wherein the jig includes a first jig positioned above the pocket part and a second jig positioned below the pocket part, wherein the crimping step includes the first Compression and release of the pocket portion of the jig and the second jig may be repeated at least once.
  • the pressing step may be repeated until the thickness of the pocket is similar to the thickness of the end of the outer peripheral surface of the battery case.
  • the method may further include a sealing step performed after the pressing step, wherein at least a portion of the pocket portion is heat-sealed by a sealing tool to form a sealing portion on an outer circumferential surface of the battery case.
  • the pocket portion before sealing the pocket portion formed on the outer circumferential surface of the battery case, the pocket portion is pressed with a jig, the electrolyte loss amount is reduced, and the quality is uniform.
  • 1 is a flowchart showing a conventional battery cell manufacturing process.
  • FIG. 2 is a view showing a battery cell after the pre-sealing step of FIG. 1 .
  • FIG. 3 is a view showing a battery cell after the sealing step of FIG. 1 .
  • FIG. 4 is a flowchart illustrating a battery cell manufacturing process according to an embodiment of the present invention.
  • FIG. 5 is a view showing a battery cell after the pre-sealing step of FIG. 4 .
  • 6 to 8 are views each showing a battery cell in a process in which the pressing step of FIG. 4 is repeated.
  • FIG. 9 is a view showing a battery cell after the compression step of FIG.
  • FIG. 10 is a view showing a battery cell after the sealing step of FIG.
  • FIG. 11 is a view showing a modified example of the battery cell manufacturing apparatus shown in FIG.
  • FIG. 4 is a flowchart illustrating a battery cell manufacturing process according to an embodiment of the present invention.
  • FIG. 5 is a view showing a battery cell after the pre-sealing step of FIG. 4 .
  • an apparatus for manufacturing a battery cell is an apparatus for manufacturing a battery cell including a battery case 100 in which an electrode assembly and an electrolyte are embedded, the battery case ( Among the pocket portion 110p and the pre-sealing portion 120 formed on the outer peripheral surface 110 of 100 , a jig 300 for pressing the pocket portion 110p is included.
  • the jig 300 includes a first jig 310 positioned above the pocket portion 110p and a second jig 350 positioned below the pocket portion 110p. More specifically, the first jig 310 and the second jig 350 may be formed of the same material and shape. However, the present invention is not limited thereto, and may be appropriately deformed according to the shape of the battery case 100 .
  • first jig 310 and the second jig 350 may perform upward and downward movement, respectively.
  • one of the first jig 310 and the second jig 350 is fixed in a state in contact with the pocket portion 110p, and the other one may perform upward and downward movement.
  • the present invention is not limited thereto, and may be appropriately deformed according to the shape of the battery case 100 .
  • the jig 300 may extend along the pocket portion 110p.
  • the width of the jig 300 may extend along the pocket portion 110p.
  • the width of the jig 300 may be equal to or smaller than the length of the pocket portion 110p.
  • the jig 300 can relatively uniformly press the pocket portion 110p, and the quality of the battery cell can be further improved.
  • a surface of at least one of the first jig 310 and the second jig 350 in contact with the pocket portion 110p may be covered with the soft member 310P.
  • a surface of the first jig 310 in contact with the pocket portion 110p may be covered with a soft member.
  • the soft member 310P may be formed of a polyoxymethylene (POM) pad.
  • POM polyoxymethylene
  • the soft member 310P is not limited thereto, and any material that can be sufficiently compressed without damaging the pocket portion 110p may be applied.
  • a surface of a part of the jig 300 in contact with the pocket portion 110p is covered with a soft member 310P, so that the pocket portion 110p is mutually connected to each other. It can be compressed evenly without overlapping portions, and it is possible to prevent sealing defects such as wrinkles when sealing some of the compressed pocket portions 110p afterward.
  • 6 to 8 are views each showing a battery cell in a process in which the pressing step of FIG. 4 is repeated.
  • the first jig 310 and the second jig 350 may compress and release the pocket portion 110p at least once to compress the pocket portion 110p. More specifically, referring to FIG. 5 , the first jig 310 and the second jig 350 may move toward the pocket portion 110p, respectively. Also, referring to FIG. 6 , the first jig 310 and the second jig 350 may contact the pocket portion 110p. Here, at least a portion of the electrolyte included in the pocket portion 110p may move toward the inside of the battery case 100 .
  • the first jig 310 and the second jig 350 may move again with respect to the compressed pocket portion 110p, thereby compressing the pocket portion 110p again.
  • the remaining part of the electrolyte included in the pocket portion 110p may move toward the inside of the battery case 100 . If necessary, as shown in FIGS. 7 and 8 , as the first jig 310 and the second jig 350 move, compression and release of the pocket portion 110p may be repeated several times.
  • the jig 300 may move the electrolyte contained in the pocket portion 110p toward the inside of the battery case 100 , and thus the battery case 100 . ) can reduce the amount of electrolyte loss.
  • the jig 300 may be repeatedly compressed and released with respect to the pocket portion 110p, the electrolyte remaining in the pocket portion 110p may be minimized, and the quality of the battery cell may be further improved.
  • FIG. 9 is a view showing a battery cell after the compression step of FIG. 10 is a view showing a battery cell after the sealing step of FIG.
  • the above-described battery cell manufacturing apparatus may further include a sealing tool 500 together with the jig 300 .
  • the sealing tool 500 includes a first sealing tool 510 located above the pocket portion 110p and a second sealing tool 550 located below the pocket portion 110p.
  • the first sealing tool 510 and the second sealing tool 550 heat-seal at least a portion of the pocket portion 110p compressed by the jig 300 to thereby heat the outer peripheral surface 110 of the battery case 100 .
  • a sealing part 150 may be formed there.
  • the sealing tool 500 minimizes the electrolyte contained in the pocket part 110p positioned between the pre-sealing part 130 and the sealing part 150 .
  • the battery case 100 may be sealed. That is, in the battery case 100 , the loss of electrolyte may be reduced, and the quality of the battery cell may also be improved.
  • first sealing tool 510 and the second sealing tool 550 may be formed of the same material and shape.
  • the present invention is not limited thereto, and may be appropriately deformed according to the shape of the battery case 100 .
  • first sealing tool 510 and the second sealing tool 550 may perform upward and downward movements, respectively.
  • one of the first sealing tool 510 and the second sealing tool 550 is fixed while in contact with the pocket portion 110p, and the other one may perform upward and downward movement.
  • the present invention is not limited thereto, and may be appropriately deformed according to the shape of the battery case 100 .
  • the width of the sealing tool 500 may be the same as or smaller than the width of the jig 300 .
  • the sealing tool 500 may be disposed adjacent to the interior of the battery case 100 and close to.
  • the sealing tool 500 can form the sealing part 150 at a position close to the inside of the battery case 100 in the pocket part 110p. , it is possible to prevent some of the electrolyte in the battery case 100 from leaking to the outer peripheral surface 110 of the battery case 100 in the subsequent charging/discharging process of the battery cell, and the quality of the battery cell can also be improved.
  • a method for manufacturing a battery cell is a method for manufacturing a battery cell including a battery case 100 in which an electrode assembly and an electrolyte are embedded in a receiving part, a pre-sealing step (S100), a pressing step (S200), and a sealing step (S300).
  • the pre-sealing step ( S100 ) may be a step of forming the pre-sealing part 120 on the outer peripheral surface 110 of the battery case 100 .
  • the pre-sealing part 120 may be formed by heat-sealing upper and lower portions of the outer peripheral surface 110 of the battery case 100 using a pre-sealing tool (not shown).
  • a portion of the outer peripheral surface 110 of the battery case 100 is sealed by the pre-sealing step (S100), so that the electrolyte in the battery case 100 is It may not leak to the outside.
  • the pre-sealing part 120 may be formed at a position spaced apart from the inside of the battery case 100 by a predetermined distance even on the outer peripheral surface 110 of the battery case 100 .
  • a pocket part 110p may be formed between the inside of the battery case 100 and the pre-sealing part 120 .
  • the pocket portion 110p may contain at least a portion of the electrolyte in the battery case 100 as described above.
  • the compression step S200 may be a step in which compression is performed on the pocket portion 110p of the outer circumferential surface 110 of the battery case 100 . More specifically, the pressing step ( S200 ) may be performed by the above-described first jig 310 and second jig 350 . In addition, in the compression step ( S200 ), compression and release of the pocket portion 110p of the first jig 310 and the second jig 350 may be repeated at least once.
  • At least a portion of the electrolyte contained in the pocket portion 110p may move toward the inside of the battery case 100 by the pressing step ( S200 ).
  • the pressing step ( S200 ) may be repeated until the thickness of the pocket portion 110p is similar to the thickness of the end of the outer peripheral surface 110 of the battery case 100 .
  • the thickness of the end of the outer circumferential surface 110 of the battery case 100 may mean the sum of the thicknesses of the pouch film of the upper case and the pouch film of the lower case constituting the battery case 100 .
  • the timing at which the repetition of the pressing step ( S200 ) ends is not limited thereto, and may be appropriately adjusted according to the production model or process conditions of the battery cell 100 .
  • the pressing step (S200) may be repeated until it reaches the above-described thickness, and the battery case 100 is added to the electrolyte contained in the pocket portion 110p. ) can be sufficiently moved inside. That is, the electrolyte remaining in the pocket portion 110p may be minimized, and the quality of the battery cell may be further improved.
  • a sealing step ( S300 ) may be performed after the pressing step ( S200 ).
  • the sealing step ( S300 ) may be a step in which at least a portion of the pocket portion 110p is heat-sealed by the above-described sealing tool 500 to form the sealing portion 150 on the outer circumferential surface of the battery case.
  • the sealing step ( S300 ) may heat-seal the pocket portion 110p in a state in which the electrolyte contained in the pocket portion 110p is minimized. That is, in the sealing step (S300), the battery case 100 can be sealed with the sealing part 150 in a state in which the loss of electrolyte inside the battery case 100 is reduced, further improving the quality of the battery cell. can be
  • FIG. 11 is a view showing a modified example of the battery cell manufacturing apparatus shown in FIG.
  • the bottom portion of the soft member 310P ′ facing the pocket portion 110p may have a structure in which the thickness changes.
  • the bottom portion of the soft member 310P ′ may have a first end P1 and a second end P2 , and from the first end P1 adjacent to the pre-sealing unit 200 , in contrast to the first end P1 .
  • the thickness of the soft member 310P' may decrease toward the second end P2 farther from the pre-sealing part 200 .
  • the bottom portion of the soft member 310P in contact with the pocket portion 110p has a structure in which the thickness is changed, in particular, a structure in which the thickness decreases as it moves away from the pre-sealing portion 200, thereby compressing the pocket portion 110p.
  • the electrolyte can be moved much more efficiently toward the inside of the battery case 100 . Accordingly, the electrolyte remaining in the pocket portion 110p may be minimized, and the quality of the battery cell may be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 전지셀 제조 장치는, 전극 조립체 및 전해액이 내장되어 있되, 외주면에 포켓부 및 프리 실링부가 형성되어 있는 전지 케이스를 포함하는 전지셀을 제조하는 장치에서, 상기 포켓부를 가압하는 지그를 포함하고, 상기 지그는 상기 포켓부를 기준으로 상부에 위치하는 제1 지그와 하부에 위치하는 제2 지그를 포함하고, 상기 제1 지그 및 상기 제2 지그의 상기 포켓부에 대한 압착 및 해제가 적어도 1회 반복되어, 상기 포켓부를 압착시킨다.

Description

전지셀 제조 장치 및 전지셀 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2021년 01월 28일자 한국 특허 출원 제10-2021-0012232호 및 2022년 01월 27일자 한국 특허 출원 제10-2022-0012372호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지셀 제조 장치 및 전지셀 제조 방법에 관한 것으로, 보다 구체적으로는 전해액 손실량이 저감되고, 품질이 균일화된 전지셀 제조 장치 및 전지셀 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전률이 낮은 리튬 이차 전지가 사용화되어 널리 사용되고 있다.
이러한 이차 전지를 포장하는 외장재로 이차 전지용 파우치가 주로 사용되며, 상기 파우치는 외부층, 접착층, 알루미늄층, 접착층, 및 내부층의 구조로 이루어진 파우치 필름인 것이 일반적이다. 다만, 파우치형 이차 전지는 다양한 공정에서 손상될 수 있으며, 일 예로 전극 조립체가 파우치 내에 내장된 이후 파우치의 외주면이 밀봉되는 과정에서, 파우치 내 전해액 중 일부가 외주면으로 밀려나오는 문제가 있다.
도 1은 종래의 전지셀 제조 공정을 나타내는 순서도이다. 도 2는 도 1의 프리 실링 단계 이후의 전지셀을 나타내는 도면이다. 도 3은 도 1의 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 1을 참조하면, 종래의 전지셀 제조 공정은 프리 실링 단계(S10) 및 실링 단계(S20)를 포함한다. 도 2를 참조하면, 프리 실링 단계(S10)는 전지셀(10)의 외주면(11)의 단부에 프리 실링부(12)를 형성하는 단계이다. 또한, 도 2 및 도 3을 참조하면, 실링 단계(S20)는 전지셀(10)의 외주면(11)에 대해 제1 실링툴(51) 및 제2 실링툴(55)에 의해 실링부(15)가 형성되는 단계이다.
여기서, 프리 실링부(12)는 실링 단계(S20) 이전에 파우치 내 전해액 중 일부가 외부로 누액되는 것을 방지한다. 그러나, 프리 실링 단계(S10)에 의해, 전지셀(10)의 외주면(11)에서 프리 실링부(12)와 전지셀(10)의 중심부 사이에 포켓부(11p)가 형성될 수 있다. 특히, 포켓부(11p) 내에는 파우치 내 전해액 중 일부가 포함되어 있을 수 있다.
그러나, 도 3을 참조하면, 종래의 전지셀 제조 공정에서, 실링 단계(S20)가포켓부(11p) 내 전해액이 충분히 제거되지 않은 상태에서 수행되어, 프리 실링부(12)와 실링부(15) 사이에 위치하는 포켓부(11p)에 전해액이 남아있을 수 있다. 즉, 전지셀(10) 내에 포함되어야 하는 전해액 중 일부가 손실될 수 있고, 전지셀(10)의 품질 또한 균일화되지 못하는 문제가 있다. 이에 따라, 전해액 손실량이 저감되고, 품질이 균일화된 전지셀 제조 장치 및 전지셀 제조 방법을 개발할 필요가 있다.
본 발명의 해결하고자 하는 과제는, 전해액 손실량이 저감되고, 품질이 균일화된 전지셀 제조 장치 및 전지셀 제조 방법에 관한 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지셀 제조 장치로서, 전극 조립체 및 전해액이 내장되어 있는 전지 케이스를 포함하는 전지셀을 제조하는 장치에서, 상기 전지 케이스의 외주면에 형성되어 있는 포켓부 및 프리 실링부 중에서, 상기 포켓부를 가압하는 지그를 포함하고, 상기 지그는 상기 포켓부를 기준으로 상부에 위치하는 제1 지그와 하부에 위치하는 제2 지그를 포함하고, 상기 제1 지그 및 상기 제2 지그의 상기 포켓부에 대한 압착 및 해제가 적어도 1회 반복되어, 상기 포켓부를 압착시킨다.
상기 지그는 상기 포켓부를 따라 연장되어 있을 수 있다.
상기 지그의 폭은 상기 포켓부의 길이와 동일하거나 이보다 작을 수 있다.
상기 제1 지그 및 상기 제2 지그 중 적어도 하나는 상기 포켓부와 접하는 면이 연질 부재로 커버되어 있을 수 있다.
상기 연질 부재는 POM(Polyoxymethylene) 패드로 이루어질 수 있다.
상기 포켓부와 마주보는 상기 연질 부재 바닥부는 두께가 변하는 구조를 가질 수 있다.
상기 연질 부재 바닥부는 제1 단부와 제2 단부를 가지고, 상기 프리 실링부에 인접한 상기 제1 단부로부터, 상기 제1 단부 대비하여 상기 프리 실링부로부터 멀리 떨어진 상기 제2 단부로 갈수록 상기 연질 부재의 두께가 감소할 수 있다.
상기 포켓부를 기준으로 상부에 위치하는 제1 실링툴과 하부에 위치하는 제2 실링툴을 포함하는 실링툴을 더 포함하고, 상기 실링툴은 상기 지그에 의해 압착되어 있는 상기 포켓부 중 적어도 일부를 열융착하여, 상기 전지 케이스의 외주면에 실링부를 형성할 수 있다.
상기 실링툴의 폭은 상기 지그의 폭과 동일하거나, 이보다 작을 수 있다.
본 발명의 다른 일 실시예에 따른 전지셀 제조 방법으로서, 전극 조립체 및 전해액이 내장되어 있는 전지 케이스를 포함하는 전지셀을 제조하는 방법에서, 상기 전지 케이스의 외주면에 포켓부 및 프리 실링부를 형성하는 프리 실링 단계; 및 상기 포켓부를 지그로 가압하여 압착시키는 압착 단계를 포함하고, 상기 지그는 상기 포켓부를 기준으로 상부에 위치하는 제1 지그와 하부에 위치하는 제2 지그를 포함하고, 상기 압착 단계는 상기 제1 지그 및 상기 제2 지그의 상기 포켓부에 대한 압착 및 해제가 적어도 1회 반복될 수 있다.
상기 압착 단계는 상기 포켓부의 두께가 상기 전지 케이스의 외주면의 단부의 두께와 유사해질 때까지 반복될 수 있다.
상기 압착 단계 이후에 수행되는 실링 단계를 더 포함하고, 상기 실링 단계는 실링툴에 의해 상기 포켓부 중 적어도 일부가 열융착되어, 상기 전지 케이스의 외주면에 실링부가 형성될 수 있다.
본 발명의 실시예에 따른 전지셀 제조 장치 및 전지셀 제조 방법은, 전지 케이스의 외주면에 형성되어 있는 포켓부를 실링하기 전에, 상기 포켓부를 지그로 가압하여, 전해액 손실량이 저감되고, 품질이 균일화될 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래의 전지셀 제조 공정을 나타내는 순서도이다.
도 2는 도 1의 프리 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 3은 도 1의 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 전지셀 제조 공정을 나타내는 순서도이다.
도 5는 도 4의 프리 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 6 내지 도 8은 도 4의 압착 단계가 반복되는 공정에서의 전지셀을 각각 나타내는 도면이다.
도 9는 도 4의 압착 단계 이후의 전지셀을 나타내는 도면이다.
도 10은 도 4의 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 11은 도 5에 도시한 전지셀 제조 장치의 변형예를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 4는 본 발명의 일 실시예에 따른 전지셀 제조 공정을 나타내는 순서도이다. 도 5는 도 4의 프리 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 전지셀 제조 장치는, 전극 조립체 및 전해액이 내장되어 있는 전지 케이스(100)를 포함하는 전지셀을 제조하는 장치로서, 전지 케이스(100)의 외주면(110)에 형성되어 있는 포켓부(110p) 및 프리 실링부(120) 중에서, 포켓부(110p)를 가압하는 지그(300)를 포함한다.
여기서, 지그(300)는 포켓부(110p)를 기준으로 상부에 위치하는 제1 지그(310)와 하부에 위치하는 제2 지그(350)를 포함한다. 보다 구체적으로, 제1 지그(310)와 제2 지그(350)는 서로 동일한 재질 및 형상으로 이루어질 수 있다. 다만, 이에 제한되지 아니하고, 전지 케이스(100)의 형상에 따라 적절하게 변형될 수 있다.
또한, 제1 지그(310) 및 제2 지그(350)는 각각 상승 및 하강 이동을 수행할 수 있다. 다른 예로, 제1 지그(310) 및 제2 지그(350) 중 하나가 포켓부(110p)와 접하는 상태에서 고정되어 있고, 나머지 하나가 상승 및 하강 이동을 수행할 수 있다. 다만, 이에 제한되지 아니하고, 전지 케이스(100)의 형상에 따라 적절하게 변형될 수 있다.
또한, 지그(300)는 포켓부(110p)를 따라 연장되어 있을 수 있다. 다르게 말하면, 지그(300)의 폭은 포켓부(110p)를 따라 연장되어 있을 수 있다. 일 예로, 지그(300)의 폭은 포켓부(110p)의 길이와 동일하거나 이보다 작을 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 장치에서, 지그(300)는 포켓부(110p)에 대해 비교적 균일하게 가압할 수 있고, 전지셀의 품질 또한 더욱 향상될 수 있다.
또한, 본 실시예의 지그(300)에서, 제1 지그(310) 및 제2 지그(350) 중 적어도 하나가 포켓부(110p)와 접하는 면이 연질 부재(310P)로 커버되어 있을 수 있다. 일 예로, 도 5를 참조하면, 제1 지그(310)에서 포켓부(110p)와 접하는 면이 연질 부재로 커버되어 있을 수 있다.
일 예로, 연질 부재(310P)는 POM(Polyoxymethylene) 패드로 이루어질 수 있다. 다만, 연질 부재(310P)는 이에 제한되지 아니하며, 포켓부(110p)를 손상시키지 않으면서 충분히 압착시킬 수 있는 소재라면 적용 가능하다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 장치에서, 지그(300)중 일부가 포켓부(110p)와 접하는 면이 연질 부재(310P)로 커버되어 있어, 포켓부(110p)가 서로 겹치는 부분 없이 고르게 압착될 수 있고, 이후 압착되어 있는 포켓부(110p) 중 일부에 대해 실링 시 주름 등과 같은 실링 불량이 발생되는 것을 방지할 수 있다.
도 6 내지 도 8은 도 4의 압착 단계가 반복되는 공정에서의 전지셀을 각각 나타내는 도면이다.
본 실시예의 지그(300)에서, 제1 지그(310) 및 제2 지그(350)는 포켓부(110p)에 대한 압착 및 해제가 적어도 1회 반복되어 포켓부(110p)를 압착시킬 수 있다. 보다 구체적으로, 도 5를 참조하면, 제1 지그(310) 및 제2 지그(350)는 포켓부(110p)를 향해 각각 이동할 수 있다. 또한, 도 6을 참조하면, 제1 지그(310) 및 제2 지그(350)는 포켓부(110p)와 접할 수 있다. 여기서, 포켓부(110p)에 포함된 전해액 중 적어도 일부는 전지 케이스(100)의 내부를 향해 이동할 수 있다.
또한, 도 7 및 도 8을 참조하면, 제1 지그(310) 및 제2 지그(350)는 압착되어 있는 포켓부(110p)에 대해서 다시 이동하여, 포켓부(110p)를 재차 압착시킬 수 있다. 여기서, 포켓부(110p)에 포함된 전해액 중 나머지 일부가 전지 케이스(100)의 내부를 향해 이동할 수 있다. 필요에 따라, 도 7 및 도 8과 같이, 제1 지그(310) 및 제2 지그(350)의 이동에 따라, 포켓부(110p)에 대한 압착 및 해제가 수차례 반복될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 장치에서, 지그(300)는 포켓부(110p)에 포함된 전해액이 전지 케이스(100)의 내부를 향해 이동시킬 수 있어, 전지 케이스(100) 내 전해액의 손실량을 저감시킬 수 있다. 또한, 지그(300)는 포켓부(110p)에 대해 반복적으로 압착 및 해제될 수 있어, 포켓부(110p)에 남아 있는 전해액이 최소화될 수 있고, 전지셀의 품질 또한 더욱 향상될 수 있다.
도 9는 도 4의 압착 단계 이후의 전지셀을 나타내는 도면이다. 도 10은 도 4의 실링 단계 이후의 전지셀을 나타내는 도면이다.
도 9 및 도 10을 참조하면, 본 발명의 다른 일 실시예에 따른 전지셀 제조 장치에서, 상술한 전지셀 제조 장치는 지그(300)와 함께 실링툴(500)을 더 포함할 수 있다.
여기서, 실링툴(500)은 포켓부(110p)를 기준으로 상부에 위치하는 제1 실링툴(510)과 하부에 위치하는 제2 실링툴(550)을 포함한다. 여기서, 제1 실링툴(510) 및 제2 실링툴(550)는 지그(300)에 의해 압착되어 있는 포켓부(110p) 중 적어도 일부를 열융착하여, 전지 케이스(100)의 외주면(110)에 실링부(150)를 형성할 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 장치에서, 실링툴(500)은 프리 실링부(130)와 실링부(150) 사이에 위치하는 포켓부(110p) 내에 포함된 전해액이 최소화된 상태에서 전지 케이스(100)가 밀봉될 수 있다. 즉, 전지 케이스(100)는 전해액의 손실량이 저감될 수 있고, 전지셀의 품질 또한 향상될 수 있다.
또한, 제1 실링툴(510)과 제2 실링툴(550)은 서로 동일한 재질 및 형상으로 이루어질 수 있다. 다만, 이에 제한되지 아니하고, 전지 케이스(100)의 형상에 따라 적절하게 변형될 수 있다.
또한, 제1 실링툴(510)과 제2 실링툴(550)은 각각 상승 및 하강 이동을 수행할 수 있다. 다른 예로, 제1 실링툴(510)과 제2 실링툴(550) 중 하나가 포켓부(110p)와 접하는 상태에서 고정되어 있고, 나머지 하나가 상승 및 하강 이동을 수행할 수 있다. 다만, 이에 제한되지 아니하고, 전지 케이스(100)의 형상에 따라 적절하게 변형될 수 있다.
또한, 실링툴(500)의 폭은 지그(300)의 폭과 동일하거나, 이보다 작을 수 있다. 일 예로, 포켓부(110p)에 대해, 실링툴(500)은 전지 케이스(100)의 내부와 가까운 위치에 인접하게 배치될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 장치에서, 실링툴(500)은 포켓부(110p)에서 전지 케이스(100)의 내부와 가까운 위치에 실링부(150)를 형성시킬 수 있어, 추후 전지셀의 충방전 과정에서 전지 케이스(100) 내 전해액 중 일부가 전지 케이스(100)의 외주면(110)으로 누액되는 것을 방지할 수 있고, 전지셀의 품질 또한 향상될 수 있다.
도 4를 참조하면, 본 발명의 다른 일 실시예에 따른 전지셀 제조 방법은, 전극 조립체 및 전해액이 수납부에 내장되는 전지 케이스(100)를 포함하는 전지셀을 제조하는 방법으로서, 프리 실링 단계(S100), 압착 단계(S200), 및 실링 단계(S300)을 포함한다.
도 4 및 도 5를 참조하면, 프리 실링 단계(S100)는 전지 케이스(100)의 외주면(110)에서 프리 실링부(120)를 형성하는 단계일 수 있다. 여기서, 프리 실링부(120)는 프리 실링툴(미도시됨)에 의해 전지 케이스(100)의 외주면(110)의 상하부를 열융착하여 형성될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 방법에서, 프리 실링 단계(S100)에 의해 전지 케이스(100)의 외주면(110) 중 일부가 밀봉되어 있어, 전지 케이스(100) 내 전해액이 외부로 누액되지 않을 수 있다.
또한, 프리 실링부(120)는 전지 케이스(100)의 외주면(110)에서도, 전지 케이스(100)의 내부로부터 소정의 거리만큼 이격되어 있는 위치에서 형성될 수 있다. 특히, 전지 케이스(100)의 외주면은, 전지 케이스(100)의 내부와 프리 실링부(120) 사이에 포켓부(110p)가 형성되어 있을 수 있다. 여기서, 포켓부(110p)는 상술한 바와 같이, 전지 케이스(100) 내 전해액 중 적어도 일부가 포함되어 있을 수 있다.
도 4, 및 도 6 내지 도 8을 참조하면, 압착 단계(S200)는 전지 케이스(100)의 외주면(110) 중 포켓부(110p)에 대해 압착이 수행되는 단계일 수 있다. 보다 구체적으로, 압착 단계(S200)는 상술한 제1 지그(310) 및 제2 지그(350)에 의해 수행될 수 있다. 또한, 압착 단계(S200)는 제1 지그(310) 및 제2 지그(350)의 포켓부(110p)에 대한 압착 및 해제가 적어도 1회 반복될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 방법에서, 압착 단계(S200)에 의해 포켓부(110p)에 포함되어 있는 전해액 중 적어도 일부가 전지 케이스(100) 내부를 향해 이동할 수 있다.
일 예로, 압착 단계(S200)는 포켓부(110p)의 두께가 전지 케이스(100)의 외주면(110)의 단부의 두께와 유사해질 때까지 반복될 수 있다. 여기서, 전지 케이스(100)의 외주면(110)의 단부의 두께는 전지 케이스(100)를 구성하는 상부 케이스의 파우치 필름과 하부 케이스의 파우치 필름의 두께의 합을 의미할 수 있다. 다만, 압착 단계(S200)의 반복이 종료되는 시점이 이에 한정되는 것은 아니며, 전지셀(100)의 생산 모델 혹은 공정 조건 등에 따라 적절하게 조절될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 방법에서, 압착 단계(S200)가 상술한 두께에 도달할 때까지 반복될 수 있어, 포켓부(110p) 내에 포함된 전해액에 전지 케이스(100) 내부로 충분히 이동될 수 있다. 즉, 포켓부(110p)에 남아 있는 전해액이 최소화될 수 있고, 전지셀의 품질 또한 더욱 향상될 수 있다.
또한, 도 4, 도 9, 및 도 10을 참조하면, 압착 단계(S200) 이후에 실링 단계(S300)가 수행될 수 있다. 여기서, 실링 단계(S300)는 상술한 실링툴(500)에 의해 포켓부(110p) 중 적어도 일부가 열융착되어, 상기 전지 케이스의 외주면에 실링부(150)가 형성되는 단계일 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 전지셀 제조 방법에서, 실링 단계(S300)는 포켓부(110p) 내에 포함된 전해액이 최소화된 상태에서 포켓부(110p)를 열융착 시킬 수 있다. 즉, 실링 단계(S300)에서, 전지 케이스(100)는 전지 케이스(100)의 내부에 전해액의 손실량이 저감되어 있는 상태에서 실링부(150)로 밀봉될 수 있어, 전지셀의 품질도 더욱 향상될 수 있다.
도 11은 도 5에 도시한 전지셀 제조 장치의 변형예를 나타내는 도면이다.
도 11을 참고하면, 본 실시예의 지그(300)에서, 제1 지그(310) 및 제2 지그(350) 중 적어도 하나가 포켓부(110p)와 접하는 면이 연질 부재(310P)로 커버되어 있을 수 있다. 이때, 포켓부(110p)와 마주보는 연질 부재(310P’) 바닥부는 두께가 변하는 구조를 가질 수 있다. 연질 부재(310P’) 바닥부는 제1 단부(P1)와 제2 단부(P2)를 가질 수 있고, 프리 실링부(200)에 인접한 제1 단부(P1)로부터, 제1 단부(P1) 대비하여 프리 실링부(200)로부터 멀리 떨어진 제2 단부(P2)로 갈수록 연질 부재(310P’)의 두께가 감소할 수 있다.
본 실시예에 따라 포켓부(110p)와 접하는 연질 부재(310P) 바닥부가 두께가 변하는 구조, 특히 프리 실링부(200)로부터 멀어짐에 따라 두께가 감소하는 구조를 가짐으로써, 포켓부(110p) 압착 시 전해액이 전지 케이스(100) 내부를 향해 훨씬 효율적으로 이동시킬 수 있다. 이에 따라, 포켓부(110p)에 남아 있는 전해액이 최소화될 수 있고, 전지셀의 품질 또한 더욱 향상될 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명]
100: 전지 케이스
110: 전지 케이스의 외주면
110p: 포켓부
120: 프리 실링부
150: 실링부
300: 지그
500: 실링툴

Claims (12)

  1. 전극 조립체 및 전해액이 내장되어 있는 전지 케이스를 포함하는 전지셀을 제조하는 장치에서,
    상기 전지 케이스의 외주면에 형성되어 있는 포켓부 및 프리 실링부 중에서, 상기 포켓부를 가압하는 지그를 포함하고,
    상기 지그는 상기 포켓부를 기준으로 상부에 위치하는 제1 지그와 하부에 위치하는 제2 지그를 포함하고,
    상기 제1 지그 및 상기 제2 지그의 상기 포켓부에 대한 압착 및 해제가 적어도 1회 반복되어, 상기 포켓부를 압착시키는 전지셀 제조 장치.
  2. 제1항에서,
    상기 지그는 상기 포켓부를 따라 연장되어 있는 전지셀 제조 장치.
  3. 제2항에서,
    상기 지그의 폭은 상기 포켓부의 길이와 동일하거나 이보다 작은 전지셀 제조 장치.
  4. 제1항에서,
    상기 제1 지그 및 상기 제2 지그 중 적어도 하나는 상기 포켓부와 접하는 면이 연질 부재로 커버되어 있는 전지셀 제조 장치.
  5. 제4항에서,
    상기 연질 부재는 POM(Polyoxymethylene) 패드로 이루어지는 전지셀 제조 장치.
  6. 제4항에서,
    상기 포켓부와 마주보는 상기 연질 부재 바닥부는 두께가 변하는 구조를 갖는 전지셀 제조 장치.
  7. 제6항에서,
    상기 연질 부재 바닥부는 제1 단부와 제2 단부를 가지고,
    상기 프리 실링부에 인접한 상기 제1 단부로부터, 상기 제1 단부 대비하여 상기 프리 실링부로부터 멀리 떨어진 상기 제2 단부로 갈수록 상기 연질 부재의 두께가 감소하는 전지셀 제조 장치.
  8. 제1항에서,
    상기 포켓부를 기준으로 상부에 위치하는 제1 실링툴과 하부에 위치하는 제2 실링툴을 포함하는 실링툴을 더 포함하고,
    상기 실링툴은 상기 지그에 의해 압착되어 있는 상기 포켓부 중 적어도 일부를 열융착하여, 상기 전지 케이스의 외주면에 실링부를 형성하는 전지셀 제조 장치.
  9. 제8항에서,
    상기 실링툴의 폭은 상기 지그의 폭과 동일하거나, 이보다 작은 전지셀 제조 장치.
  10. 전극 조립체 및 전해액이 내장되어 있는 전지 케이스를 포함하는 전지셀을 제조하는 방법에서,
    상기 전지 케이스의 외주면에 포켓부 및 프리 실링부를 형성하는 프리 실링 단계; 및
    상기 포켓부를 지그로 가압하여 압착시키는 압착 단계를 포함하고,
    상기 지그는 상기 포켓부를 기준으로 상부에 위치하는 제1 지그와 하부에 위치하는 제2 지그를 포함하고,
    상기 압착 단계는 상기 제1 지그 및 상기 제2 지그의 상기 포켓부에 대한 압착 및 해제가 적어도 1회 반복되는 전지셀 제조 방법.
  11. 제10항에서,
    상기 압착 단계는 상기 포켓부의 두께가 상기 전지 케이스의 외주면의 단부의 두께와 유사해질 때까지 반복되는 전지셀 제조 방법.
  12. 제10항에서,
    상기 압착 단계 이후에 수행되는 실링 단계를 더 포함하고,
    상기 실링 단계는 실링툴에 의해 상기 포켓부 중 적어도 일부가 열융착되어, 상기 전지 케이스의 외주면에 실링부가 형성되는 전지셀 제조 방법.
PCT/KR2022/001631 2021-01-28 2022-01-28 전지셀 제조 장치 및 전지셀 제조 방법 WO2022164273A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22746299.1A EP4117070A4 (en) 2021-01-28 2022-01-28 BATTERY CELL MANUFACTURING DEVICE AND BATTERY CELL MANUFACTURING METHOD
US17/922,693 US20230163342A1 (en) 2021-01-28 2022-01-28 Battery Cell Manufacturing Device and Battery Cell Manufacturing Method
CN202280003433.5A CN115428210A (zh) 2021-01-28 2022-01-28 电池单元制造设备和电池单元制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210012232 2021-01-28
KR10-2021-0012232 2021-01-28
KR10-2022-0012372 2022-01-27
KR1020220012372A KR20220109341A (ko) 2021-01-28 2022-01-27 전지셀 제조 장치 및 전지셀 제조 방법

Publications (1)

Publication Number Publication Date
WO2022164273A1 true WO2022164273A1 (ko) 2022-08-04

Family

ID=82653720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001631 WO2022164273A1 (ko) 2021-01-28 2022-01-28 전지셀 제조 장치 및 전지셀 제조 방법

Country Status (4)

Country Link
US (1) US20230163342A1 (ko)
EP (1) EP4117070A4 (ko)
CN (1) CN115428210A (ko)
WO (1) WO2022164273A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286471A (ja) * 2005-04-01 2006-10-19 Nissan Motor Co Ltd 電池の製造方法及び電池
KR20140086907A (ko) * 2012-12-28 2014-07-08 주식회사 엘지화학 이차 전지의 파우치 케이스 실링 장치 및 실링 방법
KR101742303B1 (ko) * 2014-10-28 2017-05-31 주식회사 엘지화학 전지셀의 제조방법
KR20180128573A (ko) * 2017-05-24 2018-12-04 현대자동차주식회사 쇼트 방지형 전고체 전지의 제조 방법
KR20190046990A (ko) * 2016-09-23 2019-05-07 닛산 지도우샤 가부시키가이샤 필름 외장 전지의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771866B2 (en) * 2010-03-30 2014-07-08 Samsung Sdi Co., Ltd. Pouch type secondary battery and the fabrication method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286471A (ja) * 2005-04-01 2006-10-19 Nissan Motor Co Ltd 電池の製造方法及び電池
KR20140086907A (ko) * 2012-12-28 2014-07-08 주식회사 엘지화학 이차 전지의 파우치 케이스 실링 장치 및 실링 방법
KR101742303B1 (ko) * 2014-10-28 2017-05-31 주식회사 엘지화학 전지셀의 제조방법
KR20190046990A (ko) * 2016-09-23 2019-05-07 닛산 지도우샤 가부시키가이샤 필름 외장 전지의 제조 방법
KR20180128573A (ko) * 2017-05-24 2018-12-04 현대자동차주식회사 쇼트 방지형 전고체 전지의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117070A4 *

Also Published As

Publication number Publication date
EP4117070A4 (en) 2024-08-28
EP4117070A1 (en) 2023-01-11
US20230163342A1 (en) 2023-05-25
CN115428210A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2019045329A1 (ko) 2단계의 실링 과정을 포함하는 파우치형 전지의 사이드부 실링 방법
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
WO2019078453A1 (ko) 균열 방지 구조를 포함하는 파우치형 전지케이스 및 이의 제조방법
WO2021025337A1 (ko) 이차전지의 가스 제거 장치 및 이를 이용한 가스 제거 방법
WO2019107814A1 (ko) 파우치 성형 방법 및 장치
WO2021085931A1 (ko) 순차 가압 포메이션 지그 및 이를 이용한 포메이션 방법
WO2019078447A1 (ko) 균열을 방지하기 위한 파우치형 이차전지용 실링 블록, 이를 사용하여 제조되는 파우치형 전지케이스 및 파우치형 전지케이스의 실링 방법
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2022035124A1 (ko) 이차전지용 실링장치
WO2022164273A1 (ko) 전지셀 제조 장치 및 전지셀 제조 방법
WO2021091097A1 (ko) 벤팅 유도부가 형성된 파우치형 전지케이스 제조방법 및 상기 방법에 의해 제조된 파우치형 전지케이스
WO2013032082A1 (ko) 대용량 이차전지
WO2023149729A1 (ko) 파우치형 이차전지 실링부의 폴딩장치 및 폴딩방법
WO2022108335A1 (ko) 이차전지 및 그 제조방법
WO2021125654A1 (ko) 유연한 입력부가 마련한 원통형 이차전지
WO2021125454A1 (ko) 이차전지용 케이스 및 이차전지
WO2023068656A1 (ko) 가스 흡착제가 개재된 파우치를 포함하는 이차전지 및 그의 제조방법
WO2024005583A1 (ko) 이차전지 제조 장치 및 제조 방법
WO2022139427A1 (ko) 전지셀 및 이의 제조 장치
WO2024054021A1 (ko) 파우치형 전지셀의 포메이션 방법
WO2022145895A1 (ko) 파우치형 전지케이스 실링장치 및 이에 의한 파우치형 이차전지 실링방법
WO2024135989A1 (ko) 파우치형 이차 전지의 실링 장치 및 파우치형 이차 전지의 실링 방법
WO2024177363A1 (ko) 이차전지 실링장치
WO2022098094A1 (ko) 파우치의 폴딩장치
WO2023282610A1 (ko) 파우치 실링장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022746299

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE