WO2022163806A1 - Temperature measurement method, temperature measurement device, and thin film formation method - Google Patents

Temperature measurement method, temperature measurement device, and thin film formation method Download PDF

Info

Publication number
WO2022163806A1
WO2022163806A1 PCT/JP2022/003293 JP2022003293W WO2022163806A1 WO 2022163806 A1 WO2022163806 A1 WO 2022163806A1 JP 2022003293 W JP2022003293 W JP 2022003293W WO 2022163806 A1 WO2022163806 A1 WO 2022163806A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
substrate
phase change
film
temperature measurement
Prior art date
Application number
PCT/JP2022/003293
Other languages
French (fr)
Japanese (ja)
Inventor
健一 石橋
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Publication of WO2022163806A1 publication Critical patent/WO2022163806A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a technique suitable for use in a temperature measuring method, a temperature measuring device, and a thin film forming method.
  • This application claims priority based on Japanese Patent Application No. 2021-014575 filed in Japan on February 1, 2021, the content of which is incorporated herein.
  • thermocouple or thermal resistor is embedded in a substrate such as a silicon wafer, or a thermocouple or thermal resistor is attached to the substrate to manufacture a measurement device. I used a measuring device.
  • the temperature distribution of the stage cannot be confirmed quickly even if a problem caused by the stage heater of the manufacturing apparatus occurs. Furthermore, if the above method is not used to improve productivity, the cause of the defect is estimated based on secondary information such as the film thickness of the film and the uniformity of the surface of the film. , and then confirm the temperature distribution of the stage. In this case, there are problems that the temperature cannot be measured directly and that there is a lot of time loss.
  • Patent Document 1 is a technique for evaluating changes in sheet resistance due to diffusion of implanted ions.
  • the present invention has been made in view of the above circumstances, and will achieve the following objects. 1. To make it possible to measure the substrate temperature distribution in a wider temperature band. 2. To enable simple and accurate measurement of substrate temperature distribution in a temperature range (about 100° C. to 600° C.) commonly used in CVD and PVD. 3. To enable accurate temperature measurement at multiple points over the entire surface of a substrate during processing. 4. To provide a temperature measuring element and a temperature measuring device capable of repeated measurement. 5. To enable accurate temperature measurement in a substrate to be processed during processing. 6. To enable accurate temperature measurement regardless of substrate type. 7. To improve workability for temperature measurement on a substrate to be processed during processing.
  • a temperature measuring method includes heat-treating a temperature-measuring substrate having a layered phase-change film whose physical quantity changes according to a change in temperature (processing temperature measurement heating step), and heat-treating the temperature-measuring substrate.
  • processing temperature measurement heating step After (after the treatment temperature measurement heating step), the physical quantity of the phase-change film is measured to obtain a measured physical quantity (physical quantity measurement step), and the measured physical quantity (measured physical quantity obtained in the physical quantity measurement step);
  • the temperature and temperature distribution of the substrate for temperature measurement in the heat treatment of the substrate for temperature measurement are obtained based on the relationship between the physical quantity and the temperature obtained in advance (temperature calculation step).
  • the physical quantity to be measured and the physical quantity of the relationship may be any one of sheet resistance, optical refractive index, and extinction coefficient.
  • the temperature history in the phase change film may be initialized (initialization step).
  • the phase change film is initialized to initialize the temperature history in the phase change film.
  • a phase change may be caused in the phase change film by heating the change film (initialization heating step) and rapidly cooling the phase change film (phase change rapid cooling step).
  • the phase change film having the temperature history initialized in the heat treatment of the temperature measurement substrate (treatment temperature measurement heating step), the phase change film having the temperature history initialized (initialization step) is provided.
  • a substrate for temperature measurement may be used.
  • the temperature measurement substrate having the phase change film with the temperature history initialized initialization step) may be used repeatedly.
  • the relationship between the physical quantity and the temperature on the surface of the substrate for temperature measurement may be obtained in advance (calibration step).
  • the temperature measurement substrate when obtaining in advance the relationship between the physical quantity and the temperature on the surface of the temperature measurement substrate (calibration step), the temperature measurement substrate is heated to a predetermined reaching temperature.
  • the substrate for temperature measurement is maintained in a constant temperature state (constant temperature heating step), the physical quantity in the phase change film of the temperature measurement substrate is measured (physical quantity measurement step), the temperature measurement substrate is heated to a predetermined reaching temperature, and the temperature measurement substrate is kept in a constant temperature state.
  • the physical quantity and the temperature of the phase change film are obtained from the attained temperature to be maintained (constant temperature heating step) and the measured physical quantity of the phase change film obtained by measuring the physical quantity of the phase change film of the substrate for temperature measurement.
  • the phase-change film is formed of a chalcogenide-based alloy capable of reversibly changing between an amorphous phase and a crystalline phase, and the temperature history is initialized.
  • the heating temperature (initialization heating step) for heating the phase change film is set higher than the temperature range in the heat treatment (treatment temperature measurement heating step) of the temperature measurement substrate on which the phase change film is laminated.
  • the phase change film is formed of an alloy containing two or more selected from Ge, Sb, and Te as main components, and the phase change film is The temperature range in the heat treatment (treatment temperature measurement heating step) of the stacked substrates for temperature measurement may be 100.degree. C. to 600.degree.
  • a temperature measurement device includes a temperature measurement substrate on which a phase change film is laminated.
  • the phase-change film is formed of a chalcogenide-based alloy containing at least two selected from Ge, Sb, and Te, which are materials capable of reversibly changing between an amorphous phase and a crystalline phase. ing. This solved the above problem.
  • the temperature measurement substrate may include a cap film laminated on the phase change film.
  • the temperature measurement device according to one aspect of the present invention may include an insulating film provided between the temperature measurement substrate and the phase change film.
  • a thin film forming method according to an aspect of the present invention performs film formation using a substrate in-plane temperature distribution set based on the temperature measured by the temperature measuring method according to the aspect described above.
  • a thin film forming method according to an aspect of the present invention performs film formation using a substrate in-plane temperature distribution set based on temperatures measured using the temperature measuring device according to the aspect described above.
  • a temperature measurement method includes a processing temperature measurement heating step of heat-treating a temperature measurement substrate having a layered phase change film whose physical quantity changes according to a change in the reached temperature; a physical quantity measuring step of obtaining a measured physical quantity by measuring a physical quantity of the phase change film; and a temperature calculating step of obtaining the temperature and temperature distribution of the substrate for temperature measurement in the step.
  • the measured physical quantity is obtained by measuring the physical quantity at a plurality of locations of the phase change film.
  • the in-plane temperature distribution indicating the temperature change of the substrate by one processing temperature measurement heating step. Therefore, by simply measuring the physical quantity on the film surface at a plurality of locations, it is possible to obtain the temperature distribution at the processing position without the need for other detection devices or other processing steps.
  • no device configuration such as a thermocouple is required. Therefore, it is not necessary to return the pressure of the internal space such as a vacuum chamber, which is a closed space where processing is performed in the processing temperature measurement heating step, to the atmospheric pressure.
  • a substrate for temperature measurement by laminating a phase change film on a substrate having the same structure as the substrate to be processed in the processing temperature measurement heating step.
  • a very detailed and precise temperature distribution can be obtained in processes such as film formation.
  • the above-described temperature measurement can be performed simply by processing a plurality of substrates to be processed and a substrate for temperature measurement mixedly.
  • the temperature can be measured without causing downtime without affecting the chamber by inserting a measuring device or measuring equipment other than the substrate for temperature measurement.
  • the measured physical quantity (measurement result) is compared with the relational physical quantities (for example, sheet resistance, refractive index, extinction coefficient), temperature, and temperature distribution calibration characteristics obtained in advance. This makes it possible to obtain in detail the temperature distribution on the stage of the processing apparatus that processes the substrate. Further, since the temperature can be measured simply by forming a phase change film having the above composition, accurate temperature measurement can be performed regardless of the type of substrate and the type of heat treatment.
  • the temperature measurement substrate having the same configuration as the substrate to be processed can be used for measurement, it is also possible to measure changes in film formation temperature and temperature distribution depending on the substrate and film structure.
  • the phase change film is used for temperature measurement, even after the phase change film is used multiple times, the sensitivity and accuracy of temperature measurement are not degraded, and the accuracy of temperature measurement can be maintained. .
  • the measured physical quantity and the physical quantity of the relationship are any one of sheet resistance, optical refractive index, and extinction coefficient. This makes it possible to obtain detailed temperature distribution on the stage of the processing apparatus that processes the substrate by comparing the measured physical quantity, which is the measurement result of the physical quantity, with the temperature and the calibration characteristics of the temperature distribution.
  • a temperature measurement method further includes an initialization step of initializing temperature history in the phase change film.
  • the temperature history in the phase change film can be initialized in the initialization process. Therefore, the substrate for temperature measurement can be repeatedly used for temperature measurement.
  • the initialization step includes an initialization heating step of heating the phase change film to initialize the temperature history in the phase change film; and a phase change quenching step of causing a phase change (e.g., amorphization) in the phase change film by quenching the phase change film.
  • a phase change e.g., amorphization
  • the phase change film is heated and rapidly cooled to cause a phase change (amorphization), thereby initializing the temperature history in the phase change film. Therefore, the substrate for temperature measurement can be repeatedly used for temperature measurement.
  • the initialized (calibrated) phase-change film has almost no deterioration. Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
  • the initialization temperature of the phase change film and the change in sheet resistance with temperature depend on the composition of the phase change film. Therefore, there is no particular need to calculate the temperature again.
  • the temperature measurement substrate having the phase change film with the temperature history initialized in the initialization step is used in the processing temperature measurement heating step.
  • the substrate for temperature measurement can be repeatedly used for temperature measurement.
  • the initialization process can reset the temperature history of the phase change film, and the temperature characteristic of the phase change film does not substantially change (degrade). Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
  • the temperature measurement substrate having the phase change film with the temperature history initialized by the initialization step is repeatedly used. As a result, accurate temperature measurement results can be maintained in multiple temperature measurements. In addition, it is not necessary to prepare a new substrate for measurement each time the temperature is measured. Therefore, the temperature inspection can be performed quickly, the workability of the temperature inspection can be improved, and the cost can be reduced.
  • a temperature measurement method includes a calibration step of preliminarily obtaining a relationship between a physical quantity and a temperature on the surface of the substrate for temperature measurement.
  • the relationship between the maximum temperature reached and the physical quantity change in the phase change film formed so as to have a predetermined composition is clarified.
  • the calibration step includes a constant temperature heating step of heating the temperature measurement substrate to a predetermined reaching temperature and maintaining a constant temperature state; Deriving the relationship between the physical quantity and the temperature in the phase change film from a physical quantity measuring step of measuring the physical quantity in the changeable film, and from the temperature reached in the constant temperature heating step and the measured physical quantity of the phase change film obtained in the physical quantity measuring step. and a step of creating calibration data. This clarifies the relationship between the highest temperature reached and the change in physical quantity in a phase change film formed so as to have a predetermined composition.
  • the phase-change film is formed of a chalcogenide-based alloy capable of reversibly changing between an amorphous phase and a crystalline phase, and in the initializing heating step A heating temperature is set higher than the temperature range in the processing temperature measurement heating step.
  • the phase change film can be easily initialized multiple times by phase transition only by heating and quenching the phase change film.
  • the temperature characteristics of the phase change film are hardly changed (deteriorated) by the initialization. Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements. Further, since the temperature can be measured simply by forming a phase change film having the composition described above, accurate temperature measurement can be performed regardless of the type of substrate.
  • the phase change film is formed of an alloy containing two or more selected from Ge, Sb, and Te as main components, and the processing temperature measurement heating step
  • the temperature range at is 100°C to 600°C.
  • the phase change film can be easily initialized multiple times by phase transition only by heating and quenching the phase change film.
  • the temperature characteristics of the phase change film are hardly changed (deteriorated) by the initialization. Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
  • the substrate for temperature measurement can be prepared simply by laminating a phase change film having a predetermined composition on a substrate having the same structure as the substrate to be processed.
  • the temperature measurement substrate is heated inside the substrate processing apparatus in the processing temperature measurement heating step. This makes it possible to measure the temperature distribution at the substrate position inside the substrate processing apparatus, that is, the temperature distribution at the actual substrate position during substrate processing.
  • a temperature measurement device includes a temperature measurement substrate on which a phase change film is laminated, and the phase change film is made of a material that can reversibly change between an amorphous phase and a crystalline phase. It is made of a chalcogenide-based alloy containing two or more selected from Ge, Sb, and Te as main components.
  • the temperature measurement substrate includes a cap film laminated on the phase change film.
  • the heat treatment to be temperature-measured in the treatment temperature measurement heating step is a treatment that damages the substrate surface, such as plasma treatment
  • the temperature can be accurately measured without affecting the phase change film. can be done.
  • the resistance value of the cap film is higher than the resistance value of the phase change film compared to the phase change film measured in the physical quantity measurement step, the amount of change in the sheet resistance of the phase change film is not affected by the resistance value of the cap film. can be measured.
  • the cap film is preferably a film whose physical quantity is not changed by heat treatment to such an extent that the measurement is not affected.
  • a temperature measurement device includes an insulating film provided between the temperature measurement substrate and the phase change film.
  • the heat treatment of the phase change film prevents the physical quantity measurement from being affected. can.
  • the heat treatment of the phase change film does not affect the physical quantity measurement. can be prevented. This makes it possible to accurately measure the temperature distribution even with a substrate that does not have a uniform structure. Therefore, it is possible to measure the temperature state distribution in heat treatment even for a substrate having a non-uniform temperature characteristic distribution.
  • a thin film forming method forms a film using a substrate in-plane temperature distribution set based on the temperature measured by the temperature measuring method described above.
  • a thin film forming method forms a film using a substrate in-plane temperature distribution that is set based on temperatures measured using the temperature measuring device described above.
  • the following effects are obtained. It becomes possible to measure the substrate temperature distribution in a wider temperature range. It is possible to easily and accurately measure the substrate temperature distribution in the temperature range (about 100° C. to 600° C.) commonly used in CVD and PVD. It enables accurate temperature measurements at multiple points across the substrate during processing. It is possible to provide a temperature measuring element and a temperature measuring device capable of repeated measurements. Temperature measurement that can be regarded as an accurate temperature in the substrate to be processed during processing becomes possible. Accurate temperature measurement is possible regardless of the substrate type. It is possible to improve the workability of temperature measurement on the substrate being processed.
  • FIG. 1 is a schematic cross-sectional view showing a temperature measuring device according to a first embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view showing an apparatus for measuring temperature in the temperature measuring method according to the first embodiment of the present invention
  • FIG. It is a flow chart which shows the temperature measuring method concerning a 1st embodiment of the present invention.
  • 4 is a graph showing characteristics of a phase change film in the temperature measuring device according to the first embodiment of the invention
  • 4 is a graph showing characteristics of a phase change film in the temperature measuring device according to the first embodiment of the invention
  • It is a schematic cross section showing a temperature measuring device according to a second embodiment of the present invention.
  • It is a schematic cross section showing a temperature measuring device according to a third embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing another example of the temperature measuring device according to the fifth embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing the temperature measuring device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an apparatus for measuring temperature in the temperature measuring method according to the first embodiment.
  • FIG. 3 is a flow chart showing the temperature measurement method according to the first embodiment.
  • FIG. 4 is a graph showing characteristics of the phase change film according to the first embodiment.
  • FIG. 5 is a graph showing characteristics of the phase change film according to the first embodiment.
  • symbol MW is a temperature measuring device.
  • sheet resistance is exemplified as the physical quantity to be measured.
  • 1st Embodiment is not limited to the substrate processing apparatus disclosed below.
  • the temperature measurement method according to the first embodiment uses the temperature measurement substrate MW shown in FIG. 1 as a temperature measurement device to measure the temperature during processing in the device.
  • the substrate MW for temperature measurement according to the first embodiment has a phase change film MW2 and a cap film MW3 laminated on a substrate MW1.
  • the substrate MW1 is a silicon single crystal substrate (silicon wafer).
  • the substrate MW1 according to the first embodiment is a bare silicon wafer.
  • the substrate MW1 according to the first embodiment does not have any ion-implanted regions such as the N region and the P region.
  • no wiring or the like is formed on the substrate MW1 according to the first embodiment.
  • the substrate MW1 may be provided with predetermined regions, wirings, and the like.
  • a phase change film MW2 is formed over the entire surface of the substrate MW1.
  • the phase change film MW2 is a material that can reversibly change between an amorphous phase and a crystalline phase.
  • the phase change film MW2 is, for example, a chalcogenide-based material represented by GST (an alloy layer containing at least two selected from Ge, Sb, and Te as a main component), and a chalcogenide-based material. They are made of similar materials.
  • the GST film has a composition having a phase change region between 100.degree. C. and 600.degree.
  • a GST film is a film whose sheet resistance, optical refractive index, and extinction coefficient change with phase change.
  • the phase change film MW2 according to the first embodiment is formed so as to have the same composition ratio over the entire surface of the phase change film MW2. That is, the phase change film MW2 according to the first embodiment is formed so that the in-plane composition distribution is uniform over the entire surface of the phase change film MW2. Note that the phase change film MW2 according to the first embodiment may be formed so as to have different composition ratios along the surface of the substrate MW1, as will be described later. Also, the phase change film MW2 according to the first embodiment is formed so as to have the same composition ratio over the entire length in the film thickness direction.
  • the phase change film MW2 according to the first embodiment can have a film thickness of 1 nm to 100 ⁇ m, more preferably 10 nm to 1000 nm. If the film thickness of the phase change film MW2 is smaller than the above film thickness range, the sheet resistance may not be accurately detected, which is not preferable. Further, if the film thickness of the phase change film MW2 is larger than the above film thickness range, the manufacturing cost increases, which is not preferable.
  • the phase change film MW2 is composed of a phase change material having a predetermined crystallization temperature. As the temperature increases, portions of the amorphous phase change material crystallize from the amorphous reset state to the crystalline set state. The resistivity between the crystalline set state and the amorphous reset state of the phase change material is different. Thus, when a phase change material changes from an amorphous to a crystalline state due to an increase in temperature, it is stored in this state.
  • the phase change film MW2 is composed of Ge/Sb 2 Te 3 , Ge 2 Sb 1 Te 2 , Ge x Sb y Te z (x is 30% or more, 40% or more) as a GeSbTe (GST) composition.
  • phase change film MW2 Materials of the phase change film MW2 are, for example, nitrogen, silicon, oxygen, silicon dioxide, silicon nitride, copper, silver, gold, aluminum, aluminum oxide, tantalum, tantalum oxide, tantalum nitride, titanium and titanium oxide.
  • a predetermined impurity can be doped into the material of the phase change film MW2.
  • the phase change material forming the phase change film MW2 can be set to the state of the phase change film MW2 so as to have predetermined properties in terms of conductivity, transition temperature, melting temperature, and other properties. can.
  • the cap film MW3 protects the surface of the phase change film MW2.
  • the cap film MW3 has a resistance value that enables sheet resistance measurement by the four-probe method with respect to the phase-change film MW2.
  • the sheet resistance value of the cap film MW3 preferably has a value that does not change due to heat treatment to such an extent that the sheet resistance value does not affect the measurement. Even when the physical quantity to be measured is the refractive index/extinction coefficient, the cap film MW3 is preferably configured so as to enable measurement of the physical quantity without affecting the measurement of the physical quantity.
  • the cap film MW3 is a film that prevents the phase-change film MW2 from adhering to excess substances or from changing the film characteristics of the phase-change film MW2 due to adsorption of excess substances.
  • the cap film MW3 is a film that prevents the phase change film MW2 from being exposed to the outside.
  • the material of the cap film MW3 is, for example, an insulating film such as a doped silicon nitride film, silicon oxide, or polysilicon, or a titanium nitride or titanium oxide film.
  • the film thickness of the cap film MW3 according to the first embodiment can be set within the range of 0.5 nm to 100 nm, more preferably within the range of 1 nm to 50 nm.
  • the temperature measurement method according to the first embodiment is performed in a heat treatment apparatus such as the plasma CVD apparatus 1 as shown in FIG.
  • a heat treatment apparatus such as the plasma CVD apparatus 1 as shown in FIG.
  • the heat treatment apparatus as shown in FIG. 2 is an example of the treatment apparatus. It is also possible to perform the temperature measurement method according to the first embodiment using an apparatus having other configurations.
  • a plasma CVD apparatus 1 includes a first electrode (upper electrode) arranged in the inner space of a vacuum processing tank, and a substrate (object to be processed) placed in the inner space so as to face the first electrode. a second electrode (lower electrode) having a built-in temperature control unit, a shower plate provided on the second electrode side of the first electrode and facing the substrate, and a high frequency of 2 MHz or more with respect to the first electrode.
  • a first power source that applies an alternating voltage
  • a second power source that applies a low-frequency alternating voltage of 100 kHz or more and 1 MHz or less to the second electrode, and a vacuum in the space located between the first electrode and the shower plate.
  • a gas introduction unit for introducing a process gas from the outside of the processing tank and an exhaust device for adjusting the internal space of the vacuum processing tank to a desired pressure are provided.
  • the distance (T/S) between the surface of the second electrode on which the substrate is placed and the surface of the shower plate facing the second electrode is 5 mm or more and 100 mm or less. is.
  • the plasma CVD apparatus 1 includes, as shown in FIG. 2, a processing chamber 101 having a film forming space 2a (inner space) which is a reaction chamber.
  • the processing chamber 101 includes a vacuum chamber 2 (vacuum processing tank), an electrode flange 4 (first electrode, upper electrode), and an insulating flange 81 .
  • An insulating flange 81 is sandwiched between the vacuum chamber 2 and the electrode flange 4 .
  • An opening is formed in the bottom 11 of the vacuum chamber 2 .
  • a strut 25 is inserted through this opening.
  • the pillar 25 is arranged at the bottom of the vacuum chamber 2 .
  • a second electrode 15 (supporting portion, lower electrode) is connected to the tip of the support 25 .
  • the second electrode 15 incorporates a plate-like heater 16 (temperature control section).
  • An exhaust pipe 27 is also connected to the vacuum chamber 2 .
  • a vacuum pump 28 is provided at the tip of the exhaust pipe 27 . The vacuum pump 28 reduces the pressure so that the atmosphere inside the vacuum chamber 2 is in a vacuum state.
  • the column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10 (object to be processed). That is, the second electrode 15 connected to the tip of the support 25 is configured to be vertically movable.
  • a bellows (not shown) is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support 25 .
  • the electrode flange 4 has a top wall 41 and a peripheral wall 43 .
  • the electrode flange 4 is arranged such that the opening is located below the base 10 (substrate) in the vertical direction.
  • a shower plate 5 is attached to the opening of the electrode flange 4 .
  • a space 24 is thereby formed between the electrode flange 4 and the shower plate 5 .
  • the electrode flange 4 has an upper wall 41 facing the shower plate 5 .
  • a gas introduction port 42 is provided in the upper wall 41 .
  • a gas introduction pipe 7 is provided between the process gas supply unit 21 provided outside the processing chamber 101 and the gas introduction port 42 .
  • One end of the gas introduction pipe 7 is connected to the gas introduction port 42 .
  • the other end of the gas introduction pipe 7 is connected to the process gas supply section 21 .
  • a process gas is supplied from the process gas supply section 21 to the space 24 through the gas introduction pipe 7 . That is, the space 24 functions as a gas introduction space into which the process gas is introduced.
  • Each of the electrode flange 4 and the shower plate 5 is made of a conductive material.
  • the electrode flange 4 is electrically connected to an RF power supply 9 (first power supply) provided outside the processing chamber 101 .
  • the RF power supply 9 is a high frequency power supply that applies a high frequency AC voltage of 2 MHz or higher to the electrode flange 4 . That is, the electrode flange 4 and the shower plate 5 are configured as cathode electrodes.
  • a plurality of gas ejection ports 6 are formed in the shower plate 5 . The process gas introduced into the space 24 is jetted from the gas jet port 6 into the film forming space 2a inside the vacuum chamber 2 .
  • a space 24 is a space on the upstream side of the shower plate 5 .
  • the interior of the vacuum chamber 2 is a space on the downstream side of the shower plate 5 .
  • the second electrode 15 is a plate-like member with a flat surface.
  • a substrate 10 is placed on the upper surface of the second electrode 15 .
  • the second electrode 15 functions as a ground electrode, ie an anode electrode.
  • the process gas When the process gas is ejected from the gas ejection port 6 with the substrate 10 placed on the second electrode 15 , the process gas is supplied to the space above the processing surface 10 a of the substrate 10 .
  • a heater 16 is provided inside the second electrode. The heater adjusts the temperature of the second electrode to a predetermined temperature.
  • a plurality of grounds 30 are arranged at approximately equal intervals on the outer periphery of the second electrode 15 so as to connect the second electrode 15 and the vacuum chamber 2 .
  • the ground 30 is made of, for example, a nickel-based alloy or an aluminum alloy.
  • a second power supply 17 is connected to the second electrode 15 .
  • the second power supply 17 is a high frequency power supply that applies a low frequency AC voltage (bias voltage) of 100 kHz to 1 MHz to the second electrode 15 .
  • the second electrode that receives the AC voltage has a negative potential with respect to the plasma space, that is, functions as a cathode to draw ion particles into the substrate 10 when plasma is generated in the film-forming space 2a, so that the ion particles travel straight toward the substrate 10. improve sexuality. As a result, the raw material gas decomposed by the plasma can be smoothly sent toward the substrate, and the film forming speed or the orientation of the thin film is improved.
  • the coverage of the thin film can be improved.
  • the value of the internal stress which is one of the characteristics of the thin film obtained, over a wide range.
  • the value of the internal stress of the thin film is controlled to be within the range of 0 to a positive value (plus), or the value of the internal stress of the thin film is controlled to be within the range of negative value (minus) to 0. can be controlled.
  • the distance (T/S) between the surface 15a of the second electrode 15 on which the substrate 10 is placed and the surface 5a of the shower plate 5 facing the second electrode 15 is It is 15 mm or more and 40 mm or less.
  • the distance (T/S) between the surface 15a of the second electrode 15 on which the substrate 10 is placed and the surface 5a of the shower plate 5 facing the second electrode 15 is 15 mm or more and 40 mm or less, the space in which the process gas introduced between the surfaces 15a and 5a exists is widened. That is, more gas can be introduced into the film forming space 2a, thereby promoting the decomposition of the process gas.
  • film formation can be performed even in a lower temperature range (180° C. or lower) than conventionally (190° C. or higher) while maintaining the film formation rate.
  • the plasma CVD apparatus 1 can set T/S within the range of 15 mm or more and 40 mm or less.
  • film formation can be performed at a lower temperature (for example, 200° C. or lower) than before while maintaining the properties of the obtained film.
  • the vacuum pump 28 is used to reduce the pressure inside the vacuum chamber 2 .
  • the substrate 10 With the inside of the vacuum chamber 2 maintained in vacuum, the substrate 10 is carried into the film forming space 2 a in the vacuum chamber 2 and placed on the second electrode 15 .
  • the second electrode 15 is positioned below inside the vacuum chamber 2 before the substrate 10 is placed. That is, since the distance between the second electrode 15 and the shower plate 5 is large before the substrate 10 is carried in, the substrate 10 can be easily placed on the second electrode 15 using a robot arm (not shown). can be placed.
  • the elevating mechanism is activated, the support 25 is pushed upward, and the substrate 10 placed on the second electrode 15 also moves upward.
  • the distance between the shower plate 5 and the substrate 10 is desirably determined and maintained so that the distance required for proper film formation on the substrate 10 is obtained.
  • the distance between the shower plate 5 and the substrate 10 is kept at a distance suitable for forming a film on the substrate 10 .
  • the distance (T/S) between the surface 15a of the second electrode 15 on which the substrate 10 is placed and the surface 5a of the shower plate 5 facing the second electrode 15 is set within a range of 15 mm to 40 mm. be done.
  • the space in which the introduced process gas exists can be widened. That is, more gas can be introduced into the film forming space 2a, thereby promoting the decomposition of the process gas.
  • the film can be formed at a lower process temperature (for example, 180° C. or less) while maintaining the film formation rate.
  • the process gas is introduced into the first space 24 a from the process gas supply section 21 through the gas introduction pipe 7 and the gas introduction port 42 .
  • tetraethoxysilane abbreviated as TEOS, tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) or monosilane (SiH 4 ) is used as the raw material of the process gas.
  • the deposition rate can be improved by increasing the flow rate of the process gas. That is, high-speed film formation can be realized.
  • the process gas is supplied to the film forming space 2a in the vacuum chamber 2 through the gas ejection port 6 of the shower plate 5. As shown in FIG. At this time, the pressure Pe in the film forming space 2a is reduced by the conductance A of the shower plate 5.
  • the RF power source 9 is activated to apply a high frequency voltage to the electrode flange 4 .
  • the electrode flange 4 is electrically insulated from the vacuum chamber 2 via the insulating flange 81 .
  • the vacuum chamber 2 is grounded.
  • a high-frequency voltage is applied between the shower plate 5 and the second electrode 15 to generate an electric discharge between the shower plate 5 provided on the electrode flange 4 and the processing surface 10a of the substrate 10. Plasma is generated.
  • the process gas is decomposed in the plasma generated in this way, the process gas in a plasma state is obtained, a vapor phase growth reaction occurs on the processing surface 10a of the substrate 10, and a thin film is formed on the processing surface 10a.
  • the raw material gas decomposed by the plasma can be smoothly sent toward the substrate, thereby improving the deposition rate or the orientation of the thin film.
  • the film forming speed [nm/min] for forming the silicon oxide film on the substrate 10 is 80 or more and 360 or less. According to the film forming method according to the first embodiment, it is possible to improve the film forming speed [nm/min] by about 4.5 times, from 80 to 360, only by changing the TEOS flow rate. .
  • the value of the internal stress which is one of the characteristics of the thin film obtained, can be controlled over a wide range. For example, the value of the internal stress of the thin film is controlled to be within the range of 0 to a positive value (plus), or the value of the internal stress of the thin film is controlled to be within the range of negative value (minus) to 0. can be controlled.
  • a substrate for temperature measurement MW which is an example of the temperature measurement apparatus according to the first embodiment, measures the temperature during processing in the plasma CVD apparatus 1 .
  • the substrate 10 being processed is in a vacuum atmosphere or in a plasma atmosphere. Therefore, temperature measurement cannot be performed with such a substrate 10 as it is. Therefore, the temperature measurement substrate MW is used as follows to measure the maximum temperature reached in the substrate 10 during processing.
  • the temperature measurement method according to the first embodiment includes, as shown in FIG. It has a measurement heating process S32, a sheet resistance measurement process S33, a temperature calculation process S34, and a post-process S40.
  • a temperature measurement substrate MW is prepared.
  • the temperature measurement substrate MW has a temperature measurement surface whose surface MWa corresponds to the processing surface 10a of the substrate 10 .
  • the substrate MW for temperature measurement is a substrate MW1 having properties such as heat capacity equivalent to those of the substrate 10 .
  • the composition ratio of the phase change film MW2 is set so as to be within the range in which the assumed temperature can be measured.
  • the Ge atomic percent concentration x is in the range of 10% to 50%
  • the Sb atomic percent concentration y is in the range of 10% to 50%.
  • the Te atomic percent concentration z can be set to be in the range of 20% to 80%.
  • the phase change film MW2 having the composition ratio described above is formed over the entire surface of the substrate MW1. Furthermore, a cap film MW3 having the composition described above is formed over the entire surface of the phase change film MW2.
  • the calibration step S10 shown in FIG. 3 includes a constant temperature heating step S11, a sheet resistance measurement step S12, and a calibration data creation step S13.
  • the temperature measurement substrate MW manufactured in the substrate preparation step S00 is heated with a known heat source such as a constant temperature furnace to maintain a predetermined high temperature state.
  • the constant temperature heating step S11 is a heating step for measuring the temperature-sheet characteristics of the phase change film MW2. After maintaining the high temperature state for a predetermined time, the temperature is lowered and the constant temperature heating step S11 ends.
  • the sheet resistance measurement step S12 shown in FIG. 3 measures the sheet resistance with respect to the temperature heated in the constant temperature heating step S11.
  • the measurement is performed at a large number of points so as to obtain the sheet resistance value of the entire surface of the phase change film MW2 by the four-probe measurement method.
  • measurement can be performed at approximately 120 measurement positions. If necessary, the constant temperature heating step S11 and the sheet resistance measurement step S12 are repeated to measure a large number of sheet resistance values at different temperatures.
  • the temperature-sheet resistance change relationship obtained by repeating the constant temperature heating step S11 and the sheet resistance measurement step S12 is acquired.
  • the obtained data changes according to the sizing ratio of the phase change film MW2, and becomes the calibration data shown in FIG. 4, for example. If necessary, the corresponding calibration data is obtained with the phase change film MW2 having a different composition on the temperature measurement substrate MW.
  • the initialization step S20 shown in FIG. 3 includes an initialization heating step S21 and an amorphization step S22 (phase change step).
  • the phase change film MW2 is heated to a temperature at which the temperature history in the phase change film MW2 can be initialized.
  • the amorphization step S22 shown in FIG. 3 subsequent to the initialization heating step S21, the phase change film MW2 is rapidly cooled to cause a phase change (amorphization). This initializes the temperature history in the phase change film MW2.
  • the heating/quenching method at this time is not limited to the method using a constant temperature bath or the like, and may be a heating/quenching method by directly energizing the substrate MW for temperature measurement.
  • the heating temperature in the initialization heating step S21 is set higher than the measurement temperature in the subsequent steps. That is, the temperature is set higher than the phase change region of 200° C. to 600° C. of the GST film, which is the phase change film MW2. Therefore, the heating temperature in the initialization heating step S21 can be set higher than 600.degree. Also, the heating time in the initializing heating step S21 is preferably set to be between 1 and 1800 seconds so as to enable the phase transition necessary for amorphization.
  • the temperature drop rate in the amorphization step S22 is set as a value that allows amorphization.
  • the heating conditions and rapid cooling conditions in the initialization step S20 depend on the composition of the phase change film MW2.
  • the processing temperature measurement preparation step S31 shown in FIG. 3 is a preparation step that satisfies conditions for temperature measurement. Specifically, it is performed in the same manner as the film forming process in the CVD apparatus 1 .
  • the CVD apparatus 1 according to the first embodiment is an example of embodiments of the present invention, and the embodiments of the present invention are not limited to plasma CVD apparatuses. For example, it can also be applied to thermal ALD equipment, plasma ALD equipment, ALE equipment, PVD equipment, etching equipment, etc., which have similar structures.
  • the vacuum pump 28 is used to reduce the pressure inside the vacuum chamber 2 .
  • the temperature measurement substrate MW is carried into the film formation space 2 a in the vacuum chamber 2 and placed on the second electrode 15 .
  • the temperature measurement substrate MW is placed so that the surface MWa corresponds to the processing surface 10a of the substrate 10 . That is, it is placed so that the phase change film MW2 faces the upper surface.
  • the second electrode 15 is located below the inside of the vacuum chamber 2 before the temperature measurement substrate MW is placed. That is, since the distance between the second electrode 15 and the shower plate 5 is large before the substrate 10 is carried in, the temperature measurement substrate MW can be easily placed on the second electrode 15 using a robot arm. can be placed.
  • the elevating mechanism is activated, the support 25 is pushed upward, and the temperature measurement substrate MW placed on the second electrode 15 is also moved upward.
  • the distance between the shower plate 5 and the temperature measurement substrate MW is determined and maintained so as to satisfy the same conditions as the distance required for film formation.
  • the distance between the shower plate 5 and the substrate MW for temperature measurement is kept equal to the distance suitable for forming a film on the substrate 10 .
  • the process gas is introduced into the first space 24a from the process gas supply unit 21 through the gas introduction pipe 7 and the gas introduction port 42.
  • the process gas is supplied to the film forming space 2a in the vacuum chamber 2 through the gas ejection port 6 of the shower plate 5. As shown in FIG. At this time, the pressure Pe in the film forming space 2a is reduced by the conductance A of the shower plate 5.
  • FIG. 1 As the atmospheric gas, it is preferable to use an inert gas conforming to film formation.
  • Heating is performed in the processing temperature measurement heating step S32 shown in FIG.
  • the RF power supply 9 may be activated to apply a high frequency voltage to the electrode flange 4, as in the case of film formation.
  • the same conditions as those for processing the substrate 10 are set. Specifically, the same heating temperature as the heating temperature for the substrate 10 is set. The same heating time as the heating time for the substrate 10 is set. After the set heating time has passed, the application of the high frequency voltage from the RF power supply 9 is stopped. After that, the temperature measurement substrate MW is unloaded from the vacuum chamber 2 .
  • the sheet resistance of the temperature measurement substrate MW is measured in the same manner as in the sheet resistance measurement step S12.
  • the atmosphere in which the sheet resistance measurement step S12 is performed is preferably an inert gas atmosphere.
  • the sheet resistance measurement step S33 and the sheet resistance measurement step S12 are equivalent in terms of process conditions such as thermal conductivity, molecular weight, or viscosity.
  • the maximum temperature in the processing temperature measurement heating step S32 is calculated. Calculate the temperature reached.
  • the in-plane temperature distribution of the substrate for temperature measurement MW in the film forming process is calculated from the measurement of the sheet resistance.
  • the heating conditions are changed so that the temperature and in-plane uniformity in the film formation on the substrate 10 can be obtained. can be done.
  • the process proceeds to the initialization step S20 to initialize the temperature measurement substrate MW. This makes it possible to repeatedly use the temperature measurement substrate MW for temperature measurement.
  • temperature can be measured using the change in resistance of the phase change film MW2 formed on the substrate MW1, which is a silicon wafer.
  • the temperature can be measured in the phase change region of 100° C. to 600° C. of the GST film, which is the phase change film MW2.
  • the calibration characteristics of the sheet resistance, refractive index, extinction coefficient, and temperature of the phase change film MW2 obtained in advance in the calibration data creation step S13, and the measurement results in the processing temperature measurement heating step S32 Compare with This makes it possible to obtain detailed in-plane temperature distribution of the substrate MW for temperature measurement on the stage (second electrode) 15 . Therefore, it is possible to obtain detailed in-plane temperature distribution corresponding to the substrate 10 on the stage (second electrode) 15 during plasma CVD processing. Further, in the initialization step S20, the phase change film MW2 can be returned to an amorphous state by being heated and then rapidly cooled after use, and repeated use in the temperature measurement substrate MW is also possible.
  • the change in the sheet resistance of the phase change film MW2 of the temperature measurement substrate MW is used to determine the temperature history of the temperature measurement substrate MW. It becomes possible to measure the in-plane temperature distribution.
  • the phase change film MW2 is made amorphous and the temperature history is initialized, so that the temperature measurement substrate MW can be repeatedly used for temperature measurement. Conventionally, a new measuring device was prepared each time a temperature measurement was performed. On the other hand, in the first embodiment, there is no need to prepare a new measuring device, and the workability related to temperature measurement can be improved, and the cost can be reduced.
  • the sheet resistance measurement step S33 by measuring the sheet resistance at a plurality of locations in the phase change film MW2, the in-plane temperature distribution indicating the temperature change of the substrate MW for temperature measurement is obtained by one processing temperature measurement heating step S32. becomes possible. Therefore, by simply measuring the sheet resistance of the phase change film MW2 at a plurality of locations, the temperature distribution at the processing position can be obtained without the need for other detection devices or the like and without the need for other processing steps. It becomes possible.
  • the substrate MW for temperature measurement which has almost the same structure as the substrate 10 to be subjected to plasma CVD processing, is transported to the vacuum chamber 2 in the same procedure as the substrate 10 to be processed, and is processed in the vacuum chamber 2. , temperature measurements can be made.
  • phase change film MW2 by simply laminating the phase change film MW2 on the substrate MW1 having the same structure as the substrate 10 to be processed in the processing temperature measurement heating step S32, it is possible to measure extremely detailed and precise temperature distribution in processing such as film formation. be. In other words, extremely accurate in-plane temperature distribution can be measured at the position where the phase change film MW2 is laminated on the surface of the substrate MW1, that is, at the accurate processing position on the stage (second electrode) 15, which is the film forming position. becomes possible.
  • the temperature measurement substrate MW in a production site where a plurality of substrates 10 are continuously processed, the temperature measurement substrate MW can be mixed in the process of processing a plurality of substrates (substrates to be processed) 10. Temperature measurement processing can be easily performed. Only by this procedure, the film forming space 2a, which is the reaction chamber, is not affected by the introduction of measuring devices other than the substrate MW for temperature measurement into the chamber, and the downtime of the processing device used for actual mass production is reduced. temperature measurements can be made without At the same time, it is possible to perform accurate temperature measurement without reducing productivity in multiple processing of substrates 10 at the manufacturing site.
  • the sheet resistance, refractive index, extinction coefficient, and temperature calibration characteristics of the phase change film MW2 that are measured in advance are compared with the measurement results of the processing temperature measurement heating step S32. This makes it possible to obtain in detail and easily the temperature distribution on the actual stage 15 for processing the substrate 10 .
  • the temperature can be measured only by forming the phase change film MW2 having a predetermined composition on the substrate MW1 as described above. Therefore, it is possible to accurately measure the temperature regardless of the substrate type of the substrate 10 and the type of heat treatment.
  • the substrate to be processed In-plane temperature measurement at 10 can be performed easily and accurately.
  • the temperature can be measured only by forming the phase change film MW2 on the substrate MW1. Therefore, the temperature can be measured using the temperature measurement substrate MW having substantially the same configuration as the object to be processed, that is, the substrate 10 in film formation by the plasma CVD process.
  • the substrate MW1 which is equivalent to the substrate 10 in process, can be used in a specific process in an intermediate process of multiple processes or in a final process of multiple processes.
  • the temperature measurement method according to the first embodiment can be applied to the substrate 10 in which trenches, wirings, doped regions such as PN, etc. are formed, instead of bare wafers.
  • the temperature measurement method is performed as follows. First, as the substrate for temperature measurement MW, a substrate obtained by adding a phase change film MW2 to the substrate MW1 having the same configuration as the trenches, wirings, doped regions such as PN, etc. is prepared. After that, the temperature measurement substrate MW is mixed with a plurality of substrates 10, and the processing is continuously performed. This makes it possible to perform the temperature measurement method described above.
  • the heat treatment for the phase change film MW2 is performed. can be prevented from affecting the sheet resistance measurement.
  • the sheet resistance can be measured by heat-treating the phase change film MW2. can be prevented from affecting This makes it possible to accurately measure the temperature distribution even for the substrate 10 that does not have a uniform structure. Therefore, even if the substrate 10 has a non-uniform temperature characteristic distribution, it is possible to measure the temperature state distribution in the heat treatment.
  • the temperature distribution inside the plasma CVD apparatus 1 can be accurately measured in accordance with the process.
  • the substrate 10 to be processed has non-uniform heat capacity distribution or non-uniform electrical characteristics, it is possible to accurately measure the temperature distribution at the processing position in the plasma CVD apparatus 1. can.
  • the phase change film MW2 is heated and rapidly cooled to cause a phase change (amorphization), thereby initializing the temperature history in the phase change film MW2. Therefore, the temperature measurement substrate MW can be repeatedly used for temperature measurement.
  • the sensitivity and accuracy of temperature measurement can be improved even after the phase-change film has been used for multiple temperature measurements. It is possible to maintain the accuracy of the temperature measurement without deterioration in quality.
  • the change in sheet resistance due to the initialization temperature of the phase change film MW2 and the heating temperature in the process temperature measurement heating step S32 depends on the composition of the phase change film MW2, it is not necessary to calculate the temperature again. That is, it is not necessary to calibrate temperature and sheet resistance for each temperature measurement. In addition, it is not necessary to prepare a new substrate for measurement each time the temperature is measured. Therefore, the temperature can be measured quickly, the workability of the temperature measurement can be improved, and the cost can be reduced.
  • a cap film MW3 is laminated on the phase change film MW2.
  • the heat treatment to be temperature-measured in the treatment temperature measurement heating step S32 is a treatment that damages the surface of the phase-change film MW2, such as plasma treatment, the phase-change film MW2 is not affected and the temperature can be measured accurately. temperature measurement can be performed.
  • the resistance value of the cap film MW3 is sufficiently higher than the resistance value of the phase change film MW2 measured in the sheet resistance measurement step S33, the resistance value of the phase change film MW2 is not affected by the resistance value of the cap film MW3. A change in sheet resistance can be measured.
  • the film formation is performed under the condition that the film formation characteristics are made uniform based on the temperature measured using the substrate for temperature measurement MW, which is a temperature measurement device. membrane can be performed.
  • the in-plane temperature distribution can be made uniform, and the in-plane uniformity of film formation characteristics such as film thickness, resistance value, composition, etc. can be improved.
  • the sheet resistance associated with the phase change was measured in the phase change film MW2, and the measured sheet resistance variation was converted to the temperature variation.
  • the present invention is not limited to such methods. For example, as shown in FIG. 5, it is also possible to measure the amount of change in the optical refractive index or extinction coefficient of the phase change film MW2 and convert this amount of change into the amount of change in temperature.
  • FIG. 4 shows an example of a calibration curve from the relationship between sheet resistance and temperature change in phase change films MW2 having different compositions.
  • each of MW2-1, MW2-2, MW2-3, and MW2-4 indicates phase change film MW2 having a different composition.
  • FIG. 5 shows an example of calibration data (curve) from the relationship between the refractive index (n) and extinction coefficient (k) of the phase change film MW2 at a wavelength of 1550 nm and the temperature change.
  • FIG. 6 is a schematic cross-sectional view showing a temperature measurement substrate, which is an example of the temperature measurement device according to the second embodiment.
  • the second embodiment differs from the above-described first embodiment in terms of the phase change film.
  • the same reference numerals are given to the configurations corresponding to the above-described first and second embodiments, and the description thereof will be omitted.
  • the phase change films MW2a and MW2b, and the cap film MW3 are laminated on the substrate MW1.
  • a phase change film MW2a and a phase change film MW2b are formed over the entire surface of the substrate MW1.
  • the phase-change film MW2a and the phase-change film MW2b are chalcogenide represented by GST (an alloy layer containing Ge, Sb, and Te as main components), which is a material capable of reversibly changing between an amorphous phase and a crystalline phase. and a material similar to a chalcogenide-based material.
  • the GST film has a composition having a phase change region between 100.degree. C. and 600.degree.
  • the GST film changes its sheet resistance and optical refractive index as the phase changes.
  • the composition ratio of phase change film MW2a and the composition ratio of phase change film MW2b are different from each other.
  • the phase change films MW2a and MW2b are formed in different regions of the substrate MW1, respectively, as shown in FIG.
  • the phase change film MW2a and the phase change film MW2b have the same film thickness.
  • the region where the phase change film MW2a is formed and the region where the phase change film MW2b are formed are adjacent to each other.
  • the region where the phase change film MW2a is formed and the region where the phase change film MW2b is formed can also be formed in a state separated from each other.
  • the phase change film MW2a and the phase change film MW2b are made of GST (Ge, Sb , an alloy layer containing Te as a main component), and a material similar to the chalcogenide material.
  • the phase change film MW2a and the phase change film MW2b have different phase change temperatures. That is, the composition ratio of the phase change film MW2a and the composition ratio of the phase change film MW2b are different.
  • the composition ratio of the phase-change film MW2a and the phase-change film MW2b is set so that the heating causes a change in sheet resistance that can be detected at the set measurement temperature.
  • the composition ratio of the phase change film MW2a and the composition ratio of the phase change film MW2b are set based on the temperature-sheet resistance curve shown in FIG.
  • phase change film MW2a and the phase change film MW2b are formed so as to have the same composition ratio throughout their regions.
  • the phase-change film MW2a and the phase-change film MW2b according to the second embodiment are formed so that the in-plane composition distribution is equal over the respective regions.
  • the phase change film MW2a and the phase change film MW2b may be formed so as to have different composition ratios along the surface of the substrate MW1, as will be described later.
  • the phase change film MW2a and the phase change film MW2b are both formed to have the same composition ratio over the entire length in the film thickness direction.
  • the phase change film MW2a and the phase change film MW2b can have a film thickness of 0.5 nm to 1000 ⁇ m, more preferably 1 nm to 1000 nm, like the phase change film MW2 according to the first embodiment.
  • the cap film MW3 according to the second embodiment is laminated over the entire surfaces of the phase change films MW2a and MW2b.
  • the cap film MW3 is laminated over the entire surface of the substrate MW1.
  • the surface of the cap film MW3 is the surface MWa corresponding to the processing surface 10a of the substrate 10 and serving as the temperature measurement surface.
  • the surface of the substrate MW1 has a region where the phase change film MW2a is formed and a region where the phase change film MW2b is formed.
  • the temperature set in each of the regions of the phase change film MW2a and the phase change film MW2b can be detected.
  • the substrate for temperature measurement MW according to the second embodiment can have separate regions capable of measuring different temperatures.
  • different temperatures can be measured in predetermined regions of the substrate 10 . Moreover, different temperatures can be measured simply by setting the compositions of the phase change films MW2a and MW2b formed on the substrate MW1.
  • a relatively high temperature of about 50° C. can be measured at the radial center position of the substrate 10 . Furthermore, it is possible to precisely measure a temperature of about 50° C., which is relatively lower than that at the central position, at the radially outer peripheral position of the substrate 10 .
  • the phase change film MW2a is formed at the center position in the radial direction of the substrate MW for temperature measurement
  • the phase change film MW2b is formed at the outer peripheral position in the radial direction of the substrate MW for temperature measurement.
  • phase change films with different compositions.
  • a phase-change film having different composition ratios in three or more regions can be used to enable measurement of different temperatures in three or more regions.
  • the second embodiment two different temperature measurements are made possible in separate regions, but continuously changing temperatures can be measured.
  • a phase change film having a different composition ratio for each region instead of using a phase change film having a different composition ratio for each region, it is possible to adopt a structure in which the composition ratio changes gradually along the surface of the substrate MW1. In this case, obtaining the temperature-sheet resistance relationship becomes somewhat more complicated in the calibration step S10, but it becomes easier to measure the desired temperature in a specific region.
  • a temperature measuring method, a temperature measuring device, and a thin film forming method according to the third embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 7 is a schematic cross-sectional view showing a temperature measurement substrate as an example of the temperature measurement device according to the third embodiment.
  • the third embodiment differs from the above-described first and second embodiments in terms of the phase change film.
  • the same reference numerals are given to the configurations corresponding to the above-described first and second embodiments and the third embodiment, and the description thereof will be omitted.
  • the phase change film MW2c is partially formed with respect to the substrate MW1.
  • the region where the phase change film MW2c is formed is the temperature measurement region.
  • Other configurations of the temperature measurement substrate MW are the same as those of the substrate 10 processed in the processing temperature measurement heating step S32. Therefore, there is little difference in the configuration other than the portion where temperature measurement is desired, and more accurate temperature measurement can be performed at a specific position.
  • the phase change film MW2c is made of the same material as the phase change film MW2 according to the first embodiment.
  • the phase change film MW2c according to the third embodiment can be formed, for example, only at the center position in the radial direction of the substrate 10 . Alternatively, it can be formed only at the radially outer peripheral position of the substrate 10 .
  • the phase change film MW2c according to the third embodiment can be intermittently formed in a plurality of regions instead of in one place.
  • the composition ratios of the phase change films MW2c formed in the plurality of regions may be the same.
  • the composition ratios of the phase change films MW2c formed in the plurality of regions may be different.
  • the cap film MW3 according to the third embodiment is laminated on the entire surface of the region where the phase change film MW2 is formed and the region where the phase change film MW2 is not formed.
  • the cap film MW3 is laminated over the entire surface of the substrate MW1.
  • the surface of the cap film MW3 is the surface MWa corresponding to the processing surface 10a of the substrate 10 and serving as the temperature measurement surface. Note that the cap film MW3 can also be formed only on the region where the phase change film MW2 is formed and around the region where the phase change film MW2 is formed.
  • the same effects as those of the above-described embodiments can be obtained. Furthermore, in the third embodiment, it is possible to directly measure the temperatures of different materials in the device region on the substrate that will eventually become the device.
  • a temperature measuring method, a temperature measuring device, and a thin film forming method according to the fourth embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 8 is a schematic cross-sectional view showing a temperature measurement substrate as an example of the temperature measurement device according to the fourth embodiment.
  • the fourth embodiment differs from the above-described first to third embodiments in terms of the insulating film.
  • the same reference numerals are assigned to the configurations corresponding to the first to third embodiments and the fourth embodiment, and descriptions thereof will be omitted.
  • an insulating film MW4 is laminated between the substrate MW1 and the phase change film MW2.
  • the insulating film MW4 is formed so that local characteristics do not affect the substrate MW1 when measuring the sheet resistance of the phase change film MW2.
  • the insulating film MW4 is, for example, silicon oxide film, silicon nitride film, hafnium oxide film, hafnium nitride film, silicon carbide oxide, silicon carbide, fluorine-doped silicon oxide, alumina, or aluminum nitride.
  • the insulating film MW4 in the fourth embodiment can have a film thickness of 0.5 nm to 10000 ⁇ m, more preferably 10 nm to 1000 nm.
  • the insulating film MW4 is stacked over the entire surface of the substrate MW1.
  • the substrate MW1 on which the phase change film MW2 is laminated has an in-plane conductivity distribution on the surface of the substrate MW1 that affects the sheet resistance measurement of the phase change film MW2. Even if it does, it is possible to prevent the sheet resistance measurement in the sheet resistance measurement step S33 from being affected. For example, even if the substrate MW1 is not a bare silicon substrate but has wirings, an N region, a P region, etc., the wirings and regions are covered with the insulating film MW4. It is possible to prevent the resistance measurement from being affected.
  • the same effects as those of the above-described embodiments can be obtained. Furthermore, in the fourth embodiment, it is possible to obtain the effect that the measurement can be performed even on a conductive substrate or a conductive film.
  • a temperature measuring method, a temperature measuring device, and a thin film forming method according to a fifth embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 9 is a schematic cross-sectional view showing a temperature measurement substrate as an example of the temperature measurement device according to the fifth embodiment.
  • the fifth embodiment differs from the above-described first to fourth embodiments in terms of the position of the phase change film.
  • the same reference numerals are assigned to the configurations corresponding to those of the first to fourth embodiments described above, and the description thereof is omitted.
  • the phase change film MW2 is opposite to the surface MWa, which is the temperature measurement surface corresponding to the processing surface 10a of the substrate 10 in the substrate MW1. It is formed on the back side which is the position.
  • the cap film MW3 is not formed. This is because the surface on which the phase change film MW2 is formed is not the surface MWa to be the plasma-treated surface, so the plasma does not affect the phase change film MW2. This is because there is no need to protect the phase change film MW2.
  • the measured temperature distribution This is the in-plane temperature distribution on the surface of the substrate MW that is in contact with the stage 15 .
  • the substrate MW1 is a bare wafer made of silicon single crystal
  • the substrate MW1 is, for example, a glass substrate having a thickness of 1 mm or less, it is possible to measure the temperature distribution that can be approximated to the temperature of the surface MWa as it is. In this case, it can be applied to temperature measurement in a vertical processing apparatus in which processing is performed with the processing surface of the substrate 10, which is a glass substrate, parallel to the vertical direction.
  • the temperature measurement substrate MW needs to be of the same size. can also be partially formed in the fifth embodiment.
  • the same effects as those of the above-described embodiments can be obtained. Furthermore, in the fifth embodiment, since heat propagation in the lateral direction by the base material is not mediated, it is possible to obtain an effect that the difference in temperature distribution can be evaluated more remarkably.
  • each configuration of the above-described embodiments can also be arranged on the back surface.
  • the phase change film MW2 is formed on the back surface of the substrate MW1 opposite to the surface MWa serving as the temperature measurement surface corresponding to the processing surface 10a of the substrate 10.
  • the phase change film MW2 an insulating film MW4 is stacked.
  • the cap film MW3 may be formed, or the cap film MW3 may not be formed.

Abstract

In the temperature measurement method of this invention, a temperature measurement substrate, on which a phase-change film a physical quantity of which changes due to a change in the arrival temperature is laminated, is subjected to a heat treatment, after the temperature measurement substrate has been subjected to heat treatment, the physical quantity of the phase-change film is measured to obtain a measured physical quantity, and the temperature and temperature distribution of the temperature measurement substrate in the heat treatment of the temperature measurement substrate are obtained on the basis of the measured physical quantity and a predetermined relationship between the physical quantity and the temperature.

Description

温度測定方法、温度測定装置、及び薄膜形成方法Temperature measuring method, temperature measuring device, and thin film forming method
 本発明は、温度測定方法、温度測定装置、及び薄膜形成方法に用いて好適な技術に関する。
 本願は、2021年2月1日に日本に出願された特願2021-014575号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a technique suitable for use in a temperature measuring method, a temperature measuring device, and a thin film forming method.
This application claims priority based on Japanese Patent Application No. 2021-014575 filed in Japan on February 1, 2021, the content of which is incorporated herein.
 半導体装置や、液晶ディスプレイ、有機ELディスプレイなどのFPD(flat panel display、フラットパネルディスプレイ)などの表示装置等の製造工程においては、基板温度を測定する必要がある。従来の基板温度測定においては、シリコンウェーハなどの基板内に熱電対や熱抵抗体を埋め込む、あるいは、基板に熱電対や熱抵抗体を貼り付けるなどして作成された測定装置を製造し、この測定装置を使用していた。 In the manufacturing process of display devices such as semiconductor devices and FPDs (flat panel displays) such as liquid crystal displays and organic EL displays, it is necessary to measure the substrate temperature. In conventional substrate temperature measurement, a thermocouple or thermal resistor is embedded in a substrate such as a silicon wafer, or a thermocouple or thermal resistor is attached to the substrate to manufacture a measurement device. I used a measuring device.
 これらの手法では、リアルタイムで基板の温度を測定できる一方、測定ポイントが少ない、あるいは、温度を測定する際に真空装置等の内部圧力を大気圧に戻す必要があるなど、作業性が悪いという問題があった。特に、実際の生産に用いられる製造装置に上記の手法を適用する場合では、多くの場合、装置のダウンタイムとして1日以上の時間が必要となる。このような装置のダウンタイムは、温度測定を実施する前の作業に要する時間と、温度測定を実施した後の作業に要する時間とを含む。 Although these methods can measure the temperature of the substrate in real time, the number of measurement points is small, or the internal pressure of the vacuum device, etc. must be returned to the atmospheric pressure when measuring the temperature, resulting in poor workability. was there. In particular, when the above method is applied to manufacturing equipment used in actual production, in many cases, equipment downtime of one day or more is required. Downtime for such equipment includes the time required for operations before temperature measurements are performed and the time required for operations after temperature measurements are performed.
 このため、生産現場では、製造装置のステージヒータに起因する不具合が発生しても、ステージの温度分布を迅速に確認することができないという問題が生じている。
 さらに、生産性を向上しようとして上記の手法を用いない場合には、成膜物の膜厚、成膜物の面の均一性など2次的情報などに基づき、不具合が発生する原因を推定し、その後、ステージの温度分布の確認をおこなうという手法しかない。この場合、温度測定が直接できないという問題や、時間的ロスが多いという問題があった。
For this reason, at the production site, there is a problem that the temperature distribution of the stage cannot be confirmed quickly even if a problem caused by the stage heater of the manufacturing apparatus occurs.
Furthermore, if the above method is not used to improve productivity, the cause of the defect is estimated based on secondary information such as the film thickness of the film and the uniformity of the surface of the film. , and then confirm the temperature distribution of the stage. In this case, there are problems that the temperature cannot be measured directly and that there is a lot of time loss.
 上記の問題を回避する手法として、特許文献1に記載される熱電対を用いない方法が提案されている。特許文献1の技術は、注入イオンの拡散によるシート抵抗の変化を評価する手法である。 As a method for avoiding the above problem, a method that does not use a thermocouple described in Patent Document 1 has been proposed. The technique of Patent Document 1 is a technique for evaluating changes in sheet resistance due to diffusion of implanted ions.
日本国特開2004-39776号公報Japanese Patent Application Laid-Open No. 2004-39776
 しかしながら、特許文献1が開示する技術では、注入イオンが基板内に拡散する現象を使った温度測定がおこなわれるため、測定温度領域が1000℃付近といった高温領域に限定されてしまうという問題があった。
 また、特許文献1の技術では、イオンの拡散を利用するため、温度測定ウェーハを繰り返して使用することはできないという問題があった。
 さらに、温度測定時には、イオン注入をおこなったモニタ用ウェーハを用いることが必要である。このため、モニタ用ウェーハと実際に処理される基板とは、熱容量等の点で異なる場合がある。したがって、生産に用いられる実際の製造装置での処理に応じた正確な温度測定をおこなえないという問題があった。
 さらに、シリコンウェーハ以外の処理対象物に対して処理を行う処理装置においても、温度測定をおこないたいという要求があった。
However, in the technique disclosed in Patent Document 1, temperature measurement is performed using a phenomenon in which implanted ions diffuse into the substrate, so there is a problem that the measurement temperature range is limited to a high temperature range of around 1000°C. .
Moreover, the technique of Patent Document 1 has a problem that the temperature measurement wafer cannot be used repeatedly because it utilizes the diffusion of ions.
Furthermore, when measuring the temperature, it is necessary to use an ion-implanted monitor wafer. Therefore, the monitor wafer and the substrate to be actually processed may differ in terms of heat capacity and the like. Therefore, there is a problem that accurate temperature measurement cannot be performed according to the processing in the actual manufacturing equipment used for production.
Furthermore, there is a demand for temperature measurement even in processing apparatuses that process objects other than silicon wafers.
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しよう。
1.より広い温度帯域における基板温度の分布を測定可能とすること。
2.CVDやPVDで常用する温度領域(100℃~600℃程度)における基板温度の分布を簡便に、かつ、正確に測定可能とすること。
3.処理中の基板において、基板全面にわたる多数点での正確な温度測定を可能とすること。
4.繰り返し測定の可能な温度測定素子、温度測定装置を提供すること。
5.処理中の被処理基板における正確な温度測定を可能とすること。
6.基板種類によらず正確な温度測定を可能とすること。
7.処理中の被処理基板における温度測定に対する作業性を向上すること。
The present invention has been made in view of the above circumstances, and will achieve the following objects.
1. To make it possible to measure the substrate temperature distribution in a wider temperature band.
2. To enable simple and accurate measurement of substrate temperature distribution in a temperature range (about 100° C. to 600° C.) commonly used in CVD and PVD.
3. To enable accurate temperature measurement at multiple points over the entire surface of a substrate during processing.
4. To provide a temperature measuring element and a temperature measuring device capable of repeated measurement.
5. To enable accurate temperature measurement in a substrate to be processed during processing.
6. To enable accurate temperature measurement regardless of substrate type.
7. To improve workability for temperature measurement on a substrate to be processed during processing.
 本発明の一態様に係る温度測定方法は、到達温度の変化によって物理量が変化する相変化膜が積層された温度測定用基板を熱処理し(処理温度測定加熱工程)、前記温度測定用基板を熱処理した後(処理温度測定加熱工程の後)に前記相変化膜の物理量を測定することによって測定物理量を得て(物理量測定工程)、前記測定物理量(物理量測定工程で得られた測定物理量)と、予め求めていた物理量及び温度の関係とに基づいて、前記温度測定用基板の熱処理(処理温度測定加熱工程)における前記温度測定用基板の温度および温度分布を求める(温度算出工程)。
 これにより、上記課題を解決した。
 本発明の一態様に係る温度測定方法においては、前記測定物理量および前記関係の前記物理量は、シート抵抗、光学屈折率、消衰係数のいずれか1つであってもよい。
 本発明の一態様に係る温度測定方法においては、前記相変化膜における温度履歴を初期化してもよい(初期化工程)。
 本発明の一態様に係る温度測定方法においては、前記相変化膜における前記温度履歴を初期化する際(初期化工程)には、前記相変化膜における前記温度履歴を初期化するために前記相変化膜を加熱し(初期化加熱工程)、前記相変化膜を急冷することにより前記相変化膜において相変化を生じさせてもよい(相変化急冷工程)。
 本発明の一態様に係る温度測定方法においては、前記温度測定用基板の熱処理(処理温度測定加熱工程)においては、前記温度履歴が初期化(初期化工程)された前記相変化膜を有する前記温度測定用基板を用いてもよい。
 本発明の一態様に係る温度測定方法においては、前記温度履歴が初期化(初期化工程)された前記相変化膜を有する前記温度測定用基板を繰り返し用いてもよい。
 本発明の一態様に係る温度測定方法においては、前記温度測定用基板の表面における物理量及び温度の関係を予め求めてもよい(較正工程)。
 本発明の一態様に係る温度測定方法においては、前記温度測定用基板の表面における物理量及び温度の関係を予め求める際(較正工程)には、前記温度測定用基板を所定の到達温度まで加熱して恒温状態に維持し(恒温加熱工程)、前記温度測定用基板の前記相変化膜における物理量を測定し(物理量測定工程)、前記温度測定用基板を所定の到達温度まで加熱して恒温状態に維持する到達温度(恒温加熱工程)と、前記温度測定用基板の前記相変化膜における物理量を測定することで得られた前記相変化膜の前記測定物理量とから、前記相変化膜における物理量及び温度の関係を導出してもよい(較正用データ作成工程)。
 本発明の一態様に係る温度測定方法においては、前記相変化膜が、アモルファス相と結晶相との間で可逆的な変化が可能なカルコゲナイド系合金で形成されており、前記温度履歴を初期化するために前記相変化膜を加熱する加熱温度(初期化加熱工程)が、前記相変化膜が積層された前記温度測定用基板の熱処理(処理温度測定加熱工程)における温度範囲よりも高く設定されてもよい。
 本発明の一態様に係る温度測定方法においては、前記相変化膜が、Ge、Sb、Teから選択されたいずれか2つ以上を主成分とする合金で形成されており、前記相変化膜が積層された前記温度測定用基板の熱処理(処理温度測定加熱工程)における温度範囲が、100℃~600℃であってもよい。
 本発明の一態様に係る温度測定装置は、相変化膜が積層された温度測定用基板を備える。前記相変化膜は、アモルファス相と結晶相との間で可逆的な変化が可能な材料であるGe、Sb、Teから選択されたいずれか2つ以上を主成分とするカルコゲナイド系合金で形成されている。
 これにより、上記課題を解決した。
 本発明の一態様に係る温度測定装置においては、前記温度測定用基板は、前記相変化膜に積層されたキャップ膜を備えてもよい。
 本発明の一態様に係る温度測定装置においては、前記温度測定用基板と前記相変化膜との間に設けられた絶縁膜を備えてもよい。
 本発明の一態様に係る薄膜形成方法は、上述した態様に係る温度測定方法によって測定した温度に基づいて設定された基板面内温度分布を用いて成膜を行う。
 本発明の一態様に係る薄膜形成方法は、上述した態様に係る温度測定装置を用いて測定した温度に基づいて設定された基板面内温度分布を用いて成膜を行う。
A temperature measuring method according to an aspect of the present invention includes heat-treating a temperature-measuring substrate having a layered phase-change film whose physical quantity changes according to a change in temperature (processing temperature measurement heating step), and heat-treating the temperature-measuring substrate. After (after the treatment temperature measurement heating step), the physical quantity of the phase-change film is measured to obtain a measured physical quantity (physical quantity measurement step), and the measured physical quantity (measured physical quantity obtained in the physical quantity measurement step); The temperature and temperature distribution of the substrate for temperature measurement in the heat treatment of the substrate for temperature measurement (treatment temperature measurement heating step) are obtained based on the relationship between the physical quantity and the temperature obtained in advance (temperature calculation step).
This solved the above problem.
In the temperature measurement method according to an aspect of the present invention, the physical quantity to be measured and the physical quantity of the relationship may be any one of sheet resistance, optical refractive index, and extinction coefficient.
In the temperature measurement method according to one aspect of the present invention, the temperature history in the phase change film may be initialized (initialization step).
In the temperature measurement method according to one aspect of the present invention, when the temperature history in the phase change film is initialized (initialization step), the phase change film is initialized to initialize the temperature history in the phase change film. A phase change may be caused in the phase change film by heating the change film (initialization heating step) and rapidly cooling the phase change film (phase change rapid cooling step).
In the temperature measurement method according to one aspect of the present invention, in the heat treatment of the temperature measurement substrate (treatment temperature measurement heating step), the phase change film having the temperature history initialized (initialization step) is provided. A substrate for temperature measurement may be used.
In the temperature measurement method according to one aspect of the present invention, the temperature measurement substrate having the phase change film with the temperature history initialized (initialization step) may be used repeatedly.
In the temperature measurement method according to one aspect of the present invention, the relationship between the physical quantity and the temperature on the surface of the substrate for temperature measurement may be obtained in advance (calibration step).
In the temperature measurement method according to one aspect of the present invention, when obtaining in advance the relationship between the physical quantity and the temperature on the surface of the temperature measurement substrate (calibration step), the temperature measurement substrate is heated to a predetermined reaching temperature. The substrate for temperature measurement is maintained in a constant temperature state (constant temperature heating step), the physical quantity in the phase change film of the temperature measurement substrate is measured (physical quantity measurement step), the temperature measurement substrate is heated to a predetermined reaching temperature, and the temperature measurement substrate is kept in a constant temperature state. The physical quantity and the temperature of the phase change film are obtained from the attained temperature to be maintained (constant temperature heating step) and the measured physical quantity of the phase change film obtained by measuring the physical quantity of the phase change film of the substrate for temperature measurement. may be derived (calibration data creation step).
In the temperature measurement method according to one aspect of the present invention, the phase-change film is formed of a chalcogenide-based alloy capable of reversibly changing between an amorphous phase and a crystalline phase, and the temperature history is initialized. The heating temperature (initialization heating step) for heating the phase change film is set higher than the temperature range in the heat treatment (treatment temperature measurement heating step) of the temperature measurement substrate on which the phase change film is laminated. may
In the temperature measurement method according to one aspect of the present invention, the phase change film is formed of an alloy containing two or more selected from Ge, Sb, and Te as main components, and the phase change film is The temperature range in the heat treatment (treatment temperature measurement heating step) of the stacked substrates for temperature measurement may be 100.degree. C. to 600.degree.
A temperature measurement device according to an aspect of the present invention includes a temperature measurement substrate on which a phase change film is laminated. The phase-change film is formed of a chalcogenide-based alloy containing at least two selected from Ge, Sb, and Te, which are materials capable of reversibly changing between an amorphous phase and a crystalline phase. ing.
This solved the above problem.
In the temperature measurement device according to one aspect of the present invention, the temperature measurement substrate may include a cap film laminated on the phase change film.
The temperature measurement device according to one aspect of the present invention may include an insulating film provided between the temperature measurement substrate and the phase change film.
A thin film forming method according to an aspect of the present invention performs film formation using a substrate in-plane temperature distribution set based on the temperature measured by the temperature measuring method according to the aspect described above.
A thin film forming method according to an aspect of the present invention performs film formation using a substrate in-plane temperature distribution set based on temperatures measured using the temperature measuring device according to the aspect described above.
 本発明の一態様に係る温度測定方法は、到達温度の変化によって物理量が変化する相変化膜を積層した温度測定用基板を熱処理する処理温度測定加熱工程と、前記処理温度測定加熱工程の後に前記相変化膜の物理量を測定することによって測定物理量を得る物理量測定工程と、前記物理量測定工程で得られた前記測定物理量と予め求めていた物理量及び温度の関係とに基づいて、前記処理温度測定加熱工程における前記温度測定用基板の温度および温度分布を求める温度算出工程と、を備える。
 これにより、温度測定用基板の相変化膜における物理量の変化から、温度測定用基板における温度履歴を測定することが可能となる。具体的には、処理温度測定加熱工程において得られた最高到達温度の基板面内温度分布を測定することが可能となる。
 ここで、物理量測定工程においては、相変化膜の複数箇所における物理量を測定することで、測定物理量を得る。これにより、一度の処理温度測定加熱工程による、基板の温度変化を示す面内温度分布を得ることが可能となる。したがって、膜面における物理量を複数箇所で測定するだけで、他の検出装置等を必要とせずに、また、他の処理工程を経ることなく処理位置における温度分布を取得することが可能となる。
 また、熱電対等の装置構成を必要としない。このため、処理温度測定加熱工程において処理をおこなう密閉空間である真空チャンバ等の内部空間の圧力を大気圧に戻す必要がない。
 また、処理温度測定加熱工程において処理される基板と同等の構成を有する基板に相変化膜を積層して温度測定用基板を得ることも可能である。この場合、成膜等の処理における極めて詳細かつ精密な温度分布を得ることができる。具体的に、基板表面の相変化膜が積層された位置、すなわち、成膜位置等となる処理位置において、面内温度分布(In-plane temperature distribution)を測定することが可能となる。
 しかも、複数枚の基板を処理する実際の生産現場において、複数枚の被処理基板に温度測定用基板を混在して処理を行うだけで、上述した温度測定をおこなうことができる。さらに、温度測定用基板以外の測定装置や測定機器をチャンバ内に入れる等の影響を与えることなく、ダウンタイムを生じることなく温度測定をおこなうことができる。
 本発明では、予め求めていた関係の物理量(例えば、シート抵抗・屈折率・消衰係数)、温度、および温度分布の校正特性に対して、測定物理量(測定結果)を比較する。これにより、基板を処理する処理装置のステージ上における温度分布を詳細に得ることを可能とする。
 また、上記の組成を有する相変化膜を成膜するだけで温度測定が可能となるため、基板種類および加熱処理の種類によらずに正確な温度測定を可能とすることができる。
 また、被処理基板と同じ構成を有する温度測定基板を用いても測定ができるため、基板、膜構造に依存する成膜温度・温度分布の変化も測定することが可能となる。
 また、相変化膜による温度測定のため、相変化膜を複数回使用した後も、温度測定の感度および正確性がほぼ劣化することがなく、温度測定の正確性を維持することも可能である。
A temperature measurement method according to an aspect of the present invention includes a processing temperature measurement heating step of heat-treating a temperature measurement substrate having a layered phase change film whose physical quantity changes according to a change in the reached temperature; a physical quantity measuring step of obtaining a measured physical quantity by measuring a physical quantity of the phase change film; and a temperature calculating step of obtaining the temperature and temperature distribution of the substrate for temperature measurement in the step.
This makes it possible to measure the temperature history of the temperature measurement substrate from changes in the physical quantity in the phase change film of the temperature measurement substrate. Specifically, it is possible to measure the substrate in-plane temperature distribution of the highest temperature obtained in the process temperature measurement heating step.
Here, in the physical quantity measuring step, the measured physical quantity is obtained by measuring the physical quantity at a plurality of locations of the phase change film. As a result, it is possible to obtain the in-plane temperature distribution indicating the temperature change of the substrate by one processing temperature measurement heating step. Therefore, by simply measuring the physical quantity on the film surface at a plurality of locations, it is possible to obtain the temperature distribution at the processing position without the need for other detection devices or other processing steps.
In addition, no device configuration such as a thermocouple is required. Therefore, it is not necessary to return the pressure of the internal space such as a vacuum chamber, which is a closed space where processing is performed in the processing temperature measurement heating step, to the atmospheric pressure.
It is also possible to obtain a substrate for temperature measurement by laminating a phase change film on a substrate having the same structure as the substrate to be processed in the processing temperature measurement heating step. In this case, a very detailed and precise temperature distribution can be obtained in processes such as film formation. Specifically, it is possible to measure the in-plane temperature distribution at the position where the phase change film is laminated on the substrate surface, that is, at the processing position such as the film formation position.
Moreover, in an actual production site where a plurality of substrates are processed, the above-described temperature measurement can be performed simply by processing a plurality of substrates to be processed and a substrate for temperature measurement mixedly. Furthermore, the temperature can be measured without causing downtime without affecting the chamber by inserting a measuring device or measuring equipment other than the substrate for temperature measurement.
In the present invention, the measured physical quantity (measurement result) is compared with the relational physical quantities (for example, sheet resistance, refractive index, extinction coefficient), temperature, and temperature distribution calibration characteristics obtained in advance. This makes it possible to obtain in detail the temperature distribution on the stage of the processing apparatus that processes the substrate.
Further, since the temperature can be measured simply by forming a phase change film having the above composition, accurate temperature measurement can be performed regardless of the type of substrate and the type of heat treatment.
Moreover, since the temperature measurement substrate having the same configuration as the substrate to be processed can be used for measurement, it is also possible to measure changes in film formation temperature and temperature distribution depending on the substrate and film structure.
In addition, since the phase change film is used for temperature measurement, even after the phase change film is used multiple times, the sensitivity and accuracy of temperature measurement are not degraded, and the accuracy of temperature measurement can be maintained. .
 本発明の一態様に係る温度測定方法においては、前記測定物理量および前記関係の前記物理量は、シート抵抗、光学屈折率、消衰係数のいずれか1つである。
 これにより、物理量の測定結果である測定物理量と、温度および温度分布の校正特性と、を比較することで、基板を処理する処理装置のステージ上における温度分布を詳細に得ることを可能とする。
In the temperature measurement method according to an aspect of the present invention, the measured physical quantity and the physical quantity of the relationship are any one of sheet resistance, optical refractive index, and extinction coefficient.
This makes it possible to obtain detailed temperature distribution on the stage of the processing apparatus that processes the substrate by comparing the measured physical quantity, which is the measurement result of the physical quantity, with the temperature and the calibration characteristics of the temperature distribution.
 本発明の一態様に係る温度測定方法は、前記相変化膜における温度履歴を初期化する初期化工程をさらに備える。
 これにより、初期化工程において、相変化膜における温度履歴を初期化することができる。したがって、温度測定用基板を繰り返して温度測定に用いることが可能となる。
A temperature measurement method according to an aspect of the present invention further includes an initialization step of initializing temperature history in the phase change film.
Thereby, the temperature history in the phase change film can be initialized in the initialization process. Therefore, the substrate for temperature measurement can be repeatedly used for temperature measurement.
 本発明の一態様に係る温度測定方法においては、前記初期化工程は、前記相変化膜における前記温度履歴を初期化するために前記相変化膜を加熱する初期化加熱工程と、前記相変化膜を急冷することにより前記相変化膜において相変化(例えば、アモルファス化)を生じさせる相変化急冷工程とを有する。
 これにより、初期化工程において、相変化膜を加熱および急冷することによって相変化(アモルファス化)を生じさせて、相変化膜における温度履歴を初期化することができる。したがって、温度測定用基板を繰り返して温度測定に用いることが可能となる。
 しかも、初期化(キャリブレーション)された相変化膜は劣化がほぼ無い。このため、複数回の温度測定において、正確な温度測定結果を維持することができる。
 さらに、相変化膜の初期化温度および温度によるシート抵抗の変化は、相変化膜の組成に依存する。このため、再度の温度算出は特段必要ない。
In the temperature measurement method according to an aspect of the present invention, the initialization step includes an initialization heating step of heating the phase change film to initialize the temperature history in the phase change film; and a phase change quenching step of causing a phase change (e.g., amorphization) in the phase change film by quenching the phase change film.
Thus, in the initialization process, the phase change film is heated and rapidly cooled to cause a phase change (amorphization), thereby initializing the temperature history in the phase change film. Therefore, the substrate for temperature measurement can be repeatedly used for temperature measurement.
Moreover, the initialized (calibrated) phase-change film has almost no deterioration. Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
Furthermore, the initialization temperature of the phase change film and the change in sheet resistance with temperature depend on the composition of the phase change film. Therefore, there is no particular need to calculate the temperature again.
 本発明の一態様に係る温度測定方法においては、前記処理温度測定加熱工程において、前記初期化工程において前記温度履歴が初期化された前記相変化膜を有する前記温度測定用基板を用いる。
 これにより、温度測定用基板を繰り返して温度測定に用いることが可能となる。
 しかも、初期化工程により、相変化膜の温度履歴をリセットできる上に、相変化膜の温度特性はほぼ変化(劣化)しない。このため、複数回の温度測定において、正確な温度測定結果を維持することができる。
In the temperature measurement method according to one aspect of the present invention, the temperature measurement substrate having the phase change film with the temperature history initialized in the initialization step is used in the processing temperature measurement heating step.
As a result, the substrate for temperature measurement can be repeatedly used for temperature measurement.
Moreover, the initialization process can reset the temperature history of the phase change film, and the temperature characteristic of the phase change film does not substantially change (degrade). Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
 本発明の一態様に係る温度測定方法においては、前記初期化工程により前記温度履歴が初期化された前記相変化膜を有する前記温度測定用基板を繰り返し用いる。
 これにより、複数回の温度測定において、正確な温度測定結果を維持することができる。
 また、温度測定の度に新たな測定用の基板を用意する必要がない。このため、迅速に温度検査をおこなうことができるとともに、温度検査にかかる作業性を向上し、そのコストを低減することができる。
In the temperature measurement method according to one aspect of the present invention, the temperature measurement substrate having the phase change film with the temperature history initialized by the initialization step is repeatedly used.
As a result, accurate temperature measurement results can be maintained in multiple temperature measurements.
In addition, it is not necessary to prepare a new substrate for measurement each time the temperature is measured. Therefore, the temperature inspection can be performed quickly, the workability of the temperature inspection can be improved, and the cost can be reduced.
 本発明の一態様に係る温度測定方法においては、前記温度測定用基板の表面における物理量及び温度の関係を予め求める較正工程を有する。
 較正工程において、所定の組成を有するように成膜された相変化膜における最高到達温度と物理量変化との関係を明らかにしている。物理量を測定することで物理量の測定結果である測定物理量を得て、測定物理量と較正工程によって得られたデータとを比較するだけで、温度検査における基板面内温度分布を正確に得ることが可能となる。しかも、相変化膜の温度特性はほぼ変化(劣化)しないので、複数回の温度測定において、正確な温度測定結果を維持することができる。
A temperature measurement method according to an aspect of the present invention includes a calibration step of preliminarily obtaining a relationship between a physical quantity and a temperature on the surface of the substrate for temperature measurement.
In the calibration process, the relationship between the maximum temperature reached and the physical quantity change in the phase change film formed so as to have a predetermined composition is clarified. By measuring the physical quantity, it is possible to obtain the measured physical quantity, which is the measurement result of the physical quantity, and simply compare the measured physical quantity with the data obtained by the calibration process to accurately obtain the substrate in-plane temperature distribution in the temperature inspection. becomes. Moreover, since the temperature characteristic of the phase change film does not substantially change (degrade), accurate temperature measurement results can be maintained in a plurality of temperature measurements.
 本発明の一態様に係る温度測定方法においては、前記較正工程は、前記温度測定用基板を所定の到達温度まで加熱して恒温状態に維持する恒温加熱工程と、前記温度測定用基板の前記相変化膜における物理量を測定する物理量測定工程と、前記恒温加熱工程における到達温度と前記物理量測定工程で得られた前記相変化膜の測定物理量とから、前記相変化膜における物理量及び温度の関係を導出する較正用データ作成工程と、を有する。
 これにより、所定の組成を有するように成膜された相変化膜において、最高到達温度と物理量変化との関係を明らかにしている。物理量を測定することで物理量の測定結果である測定物理量を得て、測定物理量と較正工程によって得られたデータとを比較するだけで、温度検査における基板面内温度分布を正確に得ることが可能となる。しかも、相変化膜の温度特性はほぼ変化(劣化)しないので、複数回の温度測定において、正確な温度測定結果を維持することができる。
In the temperature measurement method according to an aspect of the present invention, the calibration step includes a constant temperature heating step of heating the temperature measurement substrate to a predetermined reaching temperature and maintaining a constant temperature state; Deriving the relationship between the physical quantity and the temperature in the phase change film from a physical quantity measuring step of measuring the physical quantity in the changeable film, and from the temperature reached in the constant temperature heating step and the measured physical quantity of the phase change film obtained in the physical quantity measuring step. and a step of creating calibration data.
This clarifies the relationship between the highest temperature reached and the change in physical quantity in a phase change film formed so as to have a predetermined composition. By measuring the physical quantity, it is possible to obtain the measured physical quantity, which is the measurement result of the physical quantity, and simply compare the measured physical quantity with the data obtained by the calibration process to accurately obtain the substrate in-plane temperature distribution in the temperature inspection. becomes. Moreover, since the temperature characteristic of the phase change film does not substantially change (degrade), accurate temperature measurement results can be maintained in a plurality of temperature measurements.
 本発明の一態様に係る温度測定方法においては、前記相変化膜が、アモルファス相と結晶相との間で可逆的な変化が可能なカルコゲナイド系合金で形成されており、前記初期化加熱工程における加熱温度が、前記処理温度測定加熱工程における温度範囲よりも高く設定される。
 これにより、初期化工程において、相変化膜を加熱・急冷することのみで、相転移により複数回相変化膜の初期化を容易におこなうことができる。しかも、初期化によって相変化膜の温度特性はほぼ変化(劣化)しない。このため、複数回の温度測定において、正確な温度測定結果を維持することができる。
 また、上記の組成を有する相変化膜を成膜するだけで温度測定が可能となるため、基板種類によらずに正確な温度測定を可能とすることができる。
In the temperature measurement method according to one aspect of the present invention, the phase-change film is formed of a chalcogenide-based alloy capable of reversibly changing between an amorphous phase and a crystalline phase, and in the initializing heating step A heating temperature is set higher than the temperature range in the processing temperature measurement heating step.
Thus, in the initialization step, the phase change film can be easily initialized multiple times by phase transition only by heating and quenching the phase change film. Moreover, the temperature characteristics of the phase change film are hardly changed (deteriorated) by the initialization. Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
Further, since the temperature can be measured simply by forming a phase change film having the composition described above, accurate temperature measurement can be performed regardless of the type of substrate.
 本発明の一態様に係る温度測定方法においては、前記相変化膜が、Ge、Sb、Teから選択されたいずれか2つ以上を主成分とする合金形成されており、前記処理温度測定加熱工程における温度範囲が、100℃~600℃である。
 これにより、初期化工程において、相変化膜を加熱・急冷することのみで、相転移により複数回相変化膜の初期化を容易におこなうことができる。しかも、初期化によって相変化膜の温度特性はほぼ変化(劣化)しない。このため、複数回の温度測定において、正確な温度測定結果を維持することができる。
 しかも、処理基板と同じ構造を有する基板に、相変化膜を所定の組成を有するように積層するだけで、温度測定用基板を用意することができる。
In the temperature measurement method according to one aspect of the present invention, the phase change film is formed of an alloy containing two or more selected from Ge, Sb, and Te as main components, and the processing temperature measurement heating step The temperature range at is 100°C to 600°C.
Thus, in the initialization step, the phase change film can be easily initialized multiple times by phase transition only by heating and quenching the phase change film. Moreover, the temperature characteristics of the phase change film are hardly changed (deteriorated) by the initialization. Therefore, accurate temperature measurement results can be maintained in multiple temperature measurements.
Moreover, the substrate for temperature measurement can be prepared simply by laminating a phase change film having a predetermined composition on a substrate having the same structure as the substrate to be processed.
 本発明の一態様に係る温度測定方法においては、前記処理温度測定加熱工程において、前記温度測定用基板が基板処理装置の内部で加熱される。
 これにより、基板処理装置の内部における基板位置での温度分布、つまり、基板処理をおこなう際における実際の基板位置における温度分布を測定することが可能となる。
In the temperature measurement method according to one aspect of the present invention, the temperature measurement substrate is heated inside the substrate processing apparatus in the processing temperature measurement heating step.
This makes it possible to measure the temperature distribution at the substrate position inside the substrate processing apparatus, that is, the temperature distribution at the actual substrate position during substrate processing.
 本発明の一態様に係る温度測定装置は、相変化膜が積層された温度測定用基板を備え、前記相変化膜は、アモルファス相と結晶相との間で可逆的な変化が可能な材料であるGe、Sb、Teから選択されたいずれか2つ以上を主成分とするカルコゲナイド系合金で形成されている。 A temperature measurement device according to an aspect of the present invention includes a temperature measurement substrate on which a phase change film is laminated, and the phase change film is made of a material that can reversibly change between an amorphous phase and a crystalline phase. It is made of a chalcogenide-based alloy containing two or more selected from Ge, Sb, and Te as main components.
 本発明の一態様に係る温度測定装置においては、前記温度測定用基板には、前記相変化膜に積層されたキャップ膜を備える。
 これにより、処理温度測定加熱工程において温度測定すべき加熱処理が、プラズマ処理等の基板表面にダメージを与える処理であっても、相変化膜に影響を与えないで、正確な温度測定をおこなうことができる。
 さらに、物理量測定工程で測定される相変化膜に比べて、キャップ膜が相変化膜における抵抗値よりも高ければ、キャップ膜の抵抗値に影響されることなく相変化膜のシート抵抗の変化量を測定することができる。
 なお、キャップ膜は、加熱処理によって物理量が測定に影響を与えない程度に変化しない膜であることが好ましい。
In the temperature measurement device according to one aspect of the present invention, the temperature measurement substrate includes a cap film laminated on the phase change film.
As a result, even if the heat treatment to be temperature-measured in the treatment temperature measurement heating step is a treatment that damages the substrate surface, such as plasma treatment, the temperature can be accurately measured without affecting the phase change film. can be done.
Furthermore, if the resistance value of the cap film is higher than the resistance value of the phase change film compared to the phase change film measured in the physical quantity measurement step, the amount of change in the sheet resistance of the phase change film is not affected by the resistance value of the cap film. can be measured.
It should be noted that the cap film is preferably a film whose physical quantity is not changed by heat treatment to such an extent that the measurement is not affected.
 本発明の一態様に係る温度測定装置は、前記温度測定用基板と前記相変化膜との間に設けられた絶縁膜を備える。
 これにより、相変化膜の積層される基板が、相変化膜における物理量測定に影響を与える導電性分布を有していたとしても、相変化膜に対する加熱処理によって物理量測定に影響を与えることを防止できる。また、例えば、ベアのシリコン基板ではなく、配線、N領域、P領域、絶縁膜等の形成されている基板を用いる場合であっても、相変化膜に対する加熱処理によって物理量測定に影響を与えることを防止できる。これにより、均一な構造ではない基板であっても、正確な温度分布を測定することが可能となる。
 したがって、均一でない温度特性分布を有する基板であっても、加熱処理における温度状態分布を測定することが可能となる。
A temperature measurement device according to an aspect of the present invention includes an insulating film provided between the temperature measurement substrate and the phase change film.
As a result, even if the substrate on which the phase change film is laminated has a conductivity distribution that affects the physical quantity measurement in the phase change film, the heat treatment of the phase change film prevents the physical quantity measurement from being affected. can. Further, for example, even when using a substrate on which wiring, an N region, a P region, an insulating film, etc. are formed instead of a bare silicon substrate, the heat treatment of the phase change film does not affect the physical quantity measurement. can be prevented. This makes it possible to accurately measure the temperature distribution even with a substrate that does not have a uniform structure.
Therefore, it is possible to measure the temperature state distribution in heat treatment even for a substrate having a non-uniform temperature characteristic distribution.
 本発明の一態様に係る薄膜形成方法は、上述した温度測定方法によって測定した温度に基づいて設定された基板面内温度分布を用いて成膜を行う。
 本発明の一態様に係る薄膜形成方法は、上述した温度測定装置を用いて測定した温度に基づいて設定された基板面内温度分布を用いて成膜を行う。
 これにより、基板処理における基板面内温度分布を均一にして、膜厚、抵抗値、組成、等の成膜特性における面内均一性を向上することができる。
 ここで、成膜工程に用いられる基板面内温度分布を、温度測定方法によって測定した温度に基づいて設定する際には、基板処理に応じて形成するプラズマの状態や、供給ガスのガス流、あるいは、処理基板を載置するサセプタにおけるヒータ制御状態などを所定の条件に制御しておこなうことができる。
A thin film forming method according to an aspect of the present invention forms a film using a substrate in-plane temperature distribution set based on the temperature measured by the temperature measuring method described above.
A thin film forming method according to an aspect of the present invention forms a film using a substrate in-plane temperature distribution that is set based on temperatures measured using the temperature measuring device described above.
As a result, the substrate in-plane temperature distribution during substrate processing can be made uniform, and in-plane uniformity in film formation characteristics such as film thickness, resistance value, and composition can be improved.
Here, when setting the substrate in-plane temperature distribution used in the film forming process based on the temperature measured by the temperature measurement method, the state of the plasma formed according to the substrate processing, the gas flow of the supplied gas, Alternatively, the heater control state of the susceptor on which the substrate to be processed is placed can be controlled to a predetermined condition.
 本発明の一態様によれば、以下の効果が得られる。
 より広い温度帯域における基板温度の分布を測定することが可能となる。CVDやPVDで常用する温度領域(100℃~600℃程度)における基板温度の分布を簡便に、かつ、正確に測定することが可能となる。処理中の基板において、基板全面にわたる多数点での正確な温度測定が可能となる。繰り返し測定の可能な温度測定素子、温度測定装置を提供することができる。処理中の被処理基板における正確な温度とみなせる温度測定が可能となる。基板種類によらず正確な温度測定が可能となる。処理中の被処理基板における温度測定に対する作業性を向上することができる。
According to one aspect of the present invention, the following effects are obtained.
It becomes possible to measure the substrate temperature distribution in a wider temperature range. It is possible to easily and accurately measure the substrate temperature distribution in the temperature range (about 100° C. to 600° C.) commonly used in CVD and PVD. It enables accurate temperature measurements at multiple points across the substrate during processing. It is possible to provide a temperature measuring element and a temperature measuring device capable of repeated measurements. Temperature measurement that can be regarded as an accurate temperature in the substrate to be processed during processing becomes possible. Accurate temperature measurement is possible regardless of the substrate type. It is possible to improve the workability of temperature measurement on the substrate being processed.
本発明の第1実施形態に係る温度測定装置を示す模式断面図である。1 is a schematic cross-sectional view showing a temperature measuring device according to a first embodiment of the invention; FIG. 本発明の第1実施形態に係る温度測定方法において温度測定をおこなう装置を示す模式断面図である。1 is a schematic cross-sectional view showing an apparatus for measuring temperature in the temperature measuring method according to the first embodiment of the present invention; FIG. 本発明の第1実施形態に係る温度測定方法を示すフローチャートである。It is a flow chart which shows the temperature measuring method concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る温度測定装置における相変化膜の特性を示すグラフである。4 is a graph showing characteristics of a phase change film in the temperature measuring device according to the first embodiment of the invention; 本発明の第1実施形態に係る温度測定装置における相変化膜の特性を示すグラフである。4 is a graph showing characteristics of a phase change film in the temperature measuring device according to the first embodiment of the invention; 本発明の第2実施形態に係る温度測定装置を示す模式断面図である。It is a schematic cross section showing a temperature measuring device according to a second embodiment of the present invention. 本発明の第3実施形態に係る温度測定装置を示す模式断面図である。It is a schematic cross section showing a temperature measuring device according to a third embodiment of the present invention. 本発明の第4実施形態に係る温度測定装置を示す模式断面図である。It is a schematic cross section showing a temperature measuring device according to a fourth embodiment of the present invention. 本発明の第5実施形態に係る温度測定装置を示す模式断面図である。It is a schematic cross section which shows the temperature measuring device which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る温度測定装置における他の例を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing another example of the temperature measuring device according to the fifth embodiment of the present invention;
 以下、本発明の第1実施形態に係る温度測定方法、温度測定装置、及び薄膜形成方法を、図面に基づいて説明する。
 図1は、第1実施形態に係る温度測定装置を示す模式断面図である。図2は、第1実施形態に係る温度測定方法において温度測定をおこなう装置を示す模式断面図である。図3は、第1実施形態に係る温度測定方法を示すフローチャートである。図4は、第1実施形態に係る相変化膜の特性を示すグラフである。図5は、第1実施形態に係る相変化膜の特性を示すグラフである。図3において、符号MWは、温度測定装置である。
A temperature measuring method, a temperature measuring apparatus, and a thin film forming method according to a first embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing the temperature measuring device according to the first embodiment. FIG. 2 is a schematic cross-sectional view showing an apparatus for measuring temperature in the temperature measuring method according to the first embodiment. FIG. 3 is a flow chart showing the temperature measurement method according to the first embodiment. FIG. 4 is a graph showing characteristics of the phase change film according to the first embodiment. FIG. 5 is a graph showing characteristics of the phase change film according to the first embodiment. In FIG. 3, symbol MW is a temperature measuring device.
 第1実施形態においては、測定する物理量としてシート抵抗を例示している。なお、第1実施形態は、以下に開示される基板処理装置に限定されない。
 第1実施形態に係る温度測定方法は、温度測定装置として図1に示す温度測定用基板MWを用いて、装置内における処理中の温度を測定する。
 第1実施形態に係る温度測定用基板MWは、図1に示すように、基板MW1に、相変化膜MW2と、キャップ膜MW3とが積層されている。
In the first embodiment, sheet resistance is exemplified as the physical quantity to be measured. In addition, 1st Embodiment is not limited to the substrate processing apparatus disclosed below.
The temperature measurement method according to the first embodiment uses the temperature measurement substrate MW shown in FIG. 1 as a temperature measurement device to measure the temperature during processing in the device.
As shown in FIG. 1, the substrate MW for temperature measurement according to the first embodiment has a phase change film MW2 and a cap film MW3 laminated on a substrate MW1.
 基板MW1は、シリコン単結晶基板(シリコンウェーハ)である。第1実施形態に係る基板MW1は、ベアシリコンウェーハである。また、第1実施形態に係る基板MW1には、特にイオン注入された領域、例えば、N領域、P領域等は、形成されていない。また、第1実施形態に係る基板MW1には、配線等も形成されていない。
 なお、後述するように、基板MW1には所定の領域形成、配線等が形成されていることができる。
The substrate MW1 is a silicon single crystal substrate (silicon wafer). The substrate MW1 according to the first embodiment is a bare silicon wafer. In addition, the substrate MW1 according to the first embodiment does not have any ion-implanted regions such as the N region and the P region. Further, no wiring or the like is formed on the substrate MW1 according to the first embodiment.
As will be described later, the substrate MW1 may be provided with predetermined regions, wirings, and the like.
 基板MW1の全面に相変化膜MW2が形成される。
 相変化膜MW2は、アモルファス相と結晶相との間で可逆的な変化が可能な材料である。具体的に、相変化膜MW2は、例えば、GST(Ge、Sb、Teから選択されたいずれか2つ以上を主成分とする合金層)に代表されるカルコゲナイド系材料、および、カルコゲナイド系材料に類似した材料で形成されている。ここで、GST膜は、100℃~600℃に相変化領域を有する組成を有する。GST膜は、相変化に伴ってシート抵抗や光学屈折率や消衰係数が変化する膜である。
A phase change film MW2 is formed over the entire surface of the substrate MW1.
The phase change film MW2 is a material that can reversibly change between an amorphous phase and a crystalline phase. Specifically, the phase change film MW2 is, for example, a chalcogenide-based material represented by GST (an alloy layer containing at least two selected from Ge, Sb, and Te as a main component), and a chalcogenide-based material. They are made of similar materials. Here, the GST film has a composition having a phase change region between 100.degree. C. and 600.degree. A GST film is a film whose sheet resistance, optical refractive index, and extinction coefficient change with phase change.
 第1実施形態に係る相変化膜MW2は、相変化膜MW2の全面で等しい組成比を有するように形成される。つまり、第1実施形態に係る相変化膜MW2は、相変化膜MW2の全面で面内組成分布が等しくなるように形成される。なお、第1実施形態に係る相変化膜MW2は、後述するように、基板MW1の表面に沿った方向で異なる組成比を有するように形成されてもよい。また、第1実施形態に係る相変化膜MW2は、膜厚方向における全長で等しい組成比を有するように形成される。 The phase change film MW2 according to the first embodiment is formed so as to have the same composition ratio over the entire surface of the phase change film MW2. That is, the phase change film MW2 according to the first embodiment is formed so that the in-plane composition distribution is uniform over the entire surface of the phase change film MW2. Note that the phase change film MW2 according to the first embodiment may be formed so as to have different composition ratios along the surface of the substrate MW1, as will be described later. Also, the phase change film MW2 according to the first embodiment is formed so as to have the same composition ratio over the entire length in the film thickness direction.
 また、第1実施形態に係る相変化膜MW2は、膜厚1nm~100μm、より好ましくは、10nm~1000nmとすることができる。上記の膜厚範囲よりも相変化膜MW2の膜厚が小さい場合には、シート抵抗の検出が正確でない場合があり、好ましくない。また、上記の膜厚範囲よりも相変化膜MW2の膜厚が大きい場合には、製造コストが高くなり、好ましくない。 Also, the phase change film MW2 according to the first embodiment can have a film thickness of 1 nm to 100 μm, more preferably 10 nm to 1000 nm. If the film thickness of the phase change film MW2 is smaller than the above film thickness range, the sheet resistance may not be accurately detected, which is not preferable. Further, if the film thickness of the phase change film MW2 is larger than the above film thickness range, the manufacturing cost increases, which is not preferable.
 第1実施形態に係る相変化膜MW2は、所定の結晶化温度を有する相変化材料から構成される。温度が上昇すると、非結晶相変化材料の部分は、非結晶リセット状態から結晶セット状態に結晶化する。相変化材料の結晶セット状態と非結晶リセット状態との間の抵抗率は、異なる。従って、相変化材料は、温度上昇により非結晶から結晶状態に変化すると、この状態で保存される。例えば、相変化膜MW2は、GeSbTe(以下にはGST)組成物として、Ge/SbTe、GeSbTe、GeSbTe(xは30%以上、40%以上)、Ge-SbTe、GeSbTe、GeSbTe(xは約42.9%、yは約20.5%、zは約36.6%)などを例示することができる。
 相変化膜MW2の材料は、例えば、窒素、ケイ素、酸素、二酸化ケイ素、窒化ケイ素、銅、銀、金、アルミニウム、酸化アルミニウム、タンタル、酸化タンタル、窒化タンタル、チタン及びチタン酸化物等である。所定の不純物を相変化膜MW2の材料にドープすることができる。
 これにより、相変化膜MW2を構成する相変化材料は、導電性、転移温度、融解温度、および他の特性の点で、所定の特性を有するように相変化膜MW2の状態に設定することができる。
The phase change film MW2 according to the first embodiment is composed of a phase change material having a predetermined crystallization temperature. As the temperature increases, portions of the amorphous phase change material crystallize from the amorphous reset state to the crystalline set state. The resistivity between the crystalline set state and the amorphous reset state of the phase change material is different. Thus, when a phase change material changes from an amorphous to a crystalline state due to an increase in temperature, it is stored in this state. For example, the phase change film MW2 is composed of Ge/Sb 2 Te 3 , Ge 2 Sb 1 Te 2 , Ge x Sb y Te z (x is 30% or more, 40% or more) as a GeSbTe (GST) composition. , Ge—Sb 2 Te 3 , Ge 2 Sb 1 Te 2 , Ge x Sb y Te z (x is about 42.9%, y is about 20.5%, and z is about 36.6%). be able to.
Materials of the phase change film MW2 are, for example, nitrogen, silicon, oxygen, silicon dioxide, silicon nitride, copper, silver, gold, aluminum, aluminum oxide, tantalum, tantalum oxide, tantalum nitride, titanium and titanium oxide. A predetermined impurity can be doped into the material of the phase change film MW2.
Thereby, the phase change material forming the phase change film MW2 can be set to the state of the phase change film MW2 so as to have predetermined properties in terms of conductivity, transition temperature, melting temperature, and other properties. can.
 キャップ膜MW3は、相変化膜MW2の表面を保護する。キャップ膜MW3は、相変化膜MW2に対して、四深針法によるシート抵抗測定を可能とする抵抗値を有する。キャップ膜MW3のシート抵抗値は、加熱処理によってシート抵抗値が測定に影響を与えない程度に変化しない値を有することが好ましい。測定される物理量が屈折率・消衰係数である場合も、物理量の測定が可能となるように、かつ、物理量の測定に影響を与えないようにキャップ膜MW3が構成されていることが好ましい。
 キャップ膜MW3は、相変化膜MW2に余計な物質が付着したり、あるいは、余計な物質の吸着に起因して相変化膜MW2の膜特性が変化したりしないようにする膜である。また、キャップ膜MW3は、相変化膜MW2が外部に露出しないようにする膜である。キャップ膜MW3の材料は、例えば、ドープされたシリコン窒化膜、酸化シリコン、ポリシリコン等の絶縁膜や、窒化チタン、酸化チタン膜などである。
The cap film MW3 protects the surface of the phase change film MW2. The cap film MW3 has a resistance value that enables sheet resistance measurement by the four-probe method with respect to the phase-change film MW2. The sheet resistance value of the cap film MW3 preferably has a value that does not change due to heat treatment to such an extent that the sheet resistance value does not affect the measurement. Even when the physical quantity to be measured is the refractive index/extinction coefficient, the cap film MW3 is preferably configured so as to enable measurement of the physical quantity without affecting the measurement of the physical quantity.
The cap film MW3 is a film that prevents the phase-change film MW2 from adhering to excess substances or from changing the film characteristics of the phase-change film MW2 due to adsorption of excess substances. The cap film MW3 is a film that prevents the phase change film MW2 from being exposed to the outside. The material of the cap film MW3 is, for example, an insulating film such as a doped silicon nitride film, silicon oxide, or polysilicon, or a titanium nitride or titanium oxide film.
 また、第1実施形態に係るキャップ膜MW3の膜厚は、0.5nm~100nmの範囲内、より好ましくは、1nm~50nmの範囲内とすることができる。 Further, the film thickness of the cap film MW3 according to the first embodiment can be set within the range of 0.5 nm to 100 nm, more preferably within the range of 1 nm to 50 nm.
 第1実施形態に係る温度測定方法は、図2に示すような加熱処理装置、例えば、プラズマCVD装置1においておこなわれる。なお、図2に示すような加熱処理装置は、処理装置としての一例を示している。他の構成を有する装置を用いて第1実施形態に係る温度測定方法を行うことも可能である。 The temperature measurement method according to the first embodiment is performed in a heat treatment apparatus such as the plasma CVD apparatus 1 as shown in FIG. Note that the heat treatment apparatus as shown in FIG. 2 is an example of the treatment apparatus. It is also possible to perform the temperature measurement method according to the first embodiment using an apparatus having other configurations.
 第1実施形態に係るプラズマCVD装置1は、真空処理槽の内部空間に配置された第一電極(上部電極)と、内部空間において第一電極と対向配置され、基体(被処理体)を載置するとともに温度制御部を内蔵した第二電極(下部電極)と、第一電極の第二電極側に設けられ、基体と対向配置されたシャワープレートと、第一電極に対して2MHz以上の高周波交流電圧を印加する第一電源と、第二電極に対して100kHz以上1MHz以下の低周波交流電圧を印加する第二電源と、第一電極とシャワープレートとの間に位置する空間内に、真空処理槽の外部からプロセスガスを導入するガス導入部と、真空処理槽の内部空間を所望の圧力に調整する排気装置と、具備する。
 そして、第1実施形態に係るプラズマCVD装置1では、第二電極において基体を載置する面と、シャワープレートにおいて第二電極と対向する面との間隔(T/S)が、5mm以上100mm以下である。
A plasma CVD apparatus 1 according to the first embodiment includes a first electrode (upper electrode) arranged in the inner space of a vacuum processing tank, and a substrate (object to be processed) placed in the inner space so as to face the first electrode. a second electrode (lower electrode) having a built-in temperature control unit, a shower plate provided on the second electrode side of the first electrode and facing the substrate, and a high frequency of 2 MHz or more with respect to the first electrode A first power source that applies an alternating voltage, a second power source that applies a low-frequency alternating voltage of 100 kHz or more and 1 MHz or less to the second electrode, and a vacuum in the space located between the first electrode and the shower plate. A gas introduction unit for introducing a process gas from the outside of the processing tank and an exhaust device for adjusting the internal space of the vacuum processing tank to a desired pressure are provided.
In the plasma CVD apparatus 1 according to the first embodiment, the distance (T/S) between the surface of the second electrode on which the substrate is placed and the surface of the shower plate facing the second electrode is 5 mm or more and 100 mm or less. is.
 プラズマCVD装置1(プラズマ処理装置)は、図2に示すように、反応室である成膜空間2a(内部空間)を有する処理室101を含む。処理室101は、真空チャンバ2(真空処理槽)と、電極フランジ4(第一電極、上部電極)と、絶縁フランジ81とを含む。絶縁フランジ81は、真空チャンバ2及び電極フランジ4に挟まれている。 The plasma CVD apparatus 1 (plasma processing apparatus) includes, as shown in FIG. 2, a processing chamber 101 having a film forming space 2a (inner space) which is a reaction chamber. The processing chamber 101 includes a vacuum chamber 2 (vacuum processing tank), an electrode flange 4 (first electrode, upper electrode), and an insulating flange 81 . An insulating flange 81 is sandwiched between the vacuum chamber 2 and the electrode flange 4 .
 真空チャンバ2の底部11には、開口部が形成されている。この開口部には支柱25が挿通されている。支柱25は、真空チャンバ2の下部に配置されている。真空チャンバ2の内部において、支柱25の先端には、第二電極15(支持部、下部電極)が接続されている。第二電極15は、板状のヒータ16(温度制御部)が内蔵されている。また、真空チャンバ2には、排気管27が接続されている。排気管27の先端には、真空ポンプ28が設けられている。真空ポンプ28は、真空チャンバ2の内部の雰囲気が真空状態となるように減圧する。 An opening is formed in the bottom 11 of the vacuum chamber 2 . A strut 25 is inserted through this opening. The pillar 25 is arranged at the bottom of the vacuum chamber 2 . Inside the vacuum chamber 2 , a second electrode 15 (supporting portion, lower electrode) is connected to the tip of the support 25 . The second electrode 15 incorporates a plate-like heater 16 (temperature control section). An exhaust pipe 27 is also connected to the vacuum chamber 2 . A vacuum pump 28 is provided at the tip of the exhaust pipe 27 . The vacuum pump 28 reduces the pressure so that the atmosphere inside the vacuum chamber 2 is in a vacuum state.
 また、支柱25は、真空チャンバ2の外部に設けられた昇降機構(不図示)に接続されており、基体10(被処理体)の鉛直方向において上下に移動可能である。つまり、支柱25の先端に接続されている第二電極15は、上下方向に昇降可能に構成されている。また、真空チャンバ2の外部においては、支柱25の外周を覆うようにベローズ(不図示)が設けられている。 In addition, the column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10 (object to be processed). That is, the second electrode 15 connected to the tip of the support 25 is configured to be vertically movable. A bellows (not shown) is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support 25 .
 電極フランジ4は、上壁41と周壁43とを有する。電極フランジ4は、開口部が基体10(基板)の鉛直方向において下方に位置するように配置されている。また、電極フランジ4の開口部には、シャワープレート5が取り付けられている。これにより、電極フランジ4とシャワープレート5との間に空間24が形成されている。
 また、電極フランジ4は、シャワープレート5と対向する上壁41を有する。上壁41には、ガス導入口42が設けられている。
The electrode flange 4 has a top wall 41 and a peripheral wall 43 . The electrode flange 4 is arranged such that the opening is located below the base 10 (substrate) in the vertical direction. A shower plate 5 is attached to the opening of the electrode flange 4 . A space 24 is thereby formed between the electrode flange 4 and the shower plate 5 .
Moreover, the electrode flange 4 has an upper wall 41 facing the shower plate 5 . A gas introduction port 42 is provided in the upper wall 41 .
 また、処理室101の外部に設けられたプロセスガス供給部21とガス導入口42との間には、ガス導入管7が設けられている。ガス導入管7の一端は、ガス導入口42に接続されている。ガス導入管7の他端は、プロセスガス供給部21に接続されている。ガス導入管7を通じて、プロセスガス供給部21から空間24にプロセスガスが供給される。即ち、空間24は、プロセスガスが導入されるガス導入空間として機能する。 A gas introduction pipe 7 is provided between the process gas supply unit 21 provided outside the processing chamber 101 and the gas introduction port 42 . One end of the gas introduction pipe 7 is connected to the gas introduction port 42 . The other end of the gas introduction pipe 7 is connected to the process gas supply section 21 . A process gas is supplied from the process gas supply section 21 to the space 24 through the gas introduction pipe 7 . That is, the space 24 functions as a gas introduction space into which the process gas is introduced.
 電極フランジ4とシャワープレート5の各々は、導電材で構成されている。電極フランジ4は、処理室101の外部に設けられたRF電源9(第一電源)に電気的に接続されている。RF電源9は、電極フランジ4に対して2MHz以上の高周波交流電圧を印加する、高周波電源である。即ち、電極フランジ4、及びシャワープレート5は、カソード電極として構成されている。シャワープレート5には、複数のガス噴出口6が形成されている。空間24内に導入されたプロセスガスは、ガス噴出口6から真空チャンバ2内の成膜空間2aに噴出される。 Each of the electrode flange 4 and the shower plate 5 is made of a conductive material. The electrode flange 4 is electrically connected to an RF power supply 9 (first power supply) provided outside the processing chamber 101 . The RF power supply 9 is a high frequency power supply that applies a high frequency AC voltage of 2 MHz or higher to the electrode flange 4 . That is, the electrode flange 4 and the shower plate 5 are configured as cathode electrodes. A plurality of gas ejection ports 6 are formed in the shower plate 5 . The process gas introduced into the space 24 is jetted from the gas jet port 6 into the film forming space 2a inside the vacuum chamber 2 .
 プロセスガス供給部21からガス導入管7及びガス導入口42を通じて空間24に導入されたプロセスガスは、シャワープレート5のガス噴出口6を通じて、真空チャンバ2の内部に噴出される。
 空間24は、シャワープレート5の上流側の空間である。真空チャンバ2の内部は、シャワープレート5の下流側の空間である。
The process gas introduced into the space 24 from the process gas supply unit 21 through the gas introduction pipe 7 and the gas introduction port 42 is jetted into the vacuum chamber 2 through the gas jet port 6 of the shower plate 5 .
A space 24 is a space on the upstream side of the shower plate 5 . The interior of the vacuum chamber 2 is a space on the downstream side of the shower plate 5 .
 第二電極15は、表面が平坦に形成された板状の部材である。第二電極15の上面には、基体10が載置される。第二電極15は、接地電極、つまりアノード電極として機能する。 The second electrode 15 is a plate-like member with a flat surface. A substrate 10 is placed on the upper surface of the second electrode 15 . The second electrode 15 functions as a ground electrode, ie an anode electrode.
 第二電極15上に基体10が配置された状態で、ガス噴出口6からプロセスガスを噴出させると、プロセスガスは、基体10の処理面10a上の空間に供給される。
 また、第二電極の内部にはヒータ16が設けられている。ヒータによって第二電極の温度が所定の温度に調整される。
When the process gas is ejected from the gas ejection port 6 with the substrate 10 placed on the second electrode 15 , the process gas is supplied to the space above the processing surface 10 a of the substrate 10 .
A heater 16 is provided inside the second electrode. The heater adjusts the temperature of the second electrode to a predetermined temperature.
 第二電極15の外周縁には、第二電極15と真空チャンバ2との間を接続するように複数のアース30が略等間隔で配設されている。アース30は、例えば、ニッケル系合金又はアルミニウム合金などで構成されている。 A plurality of grounds 30 are arranged at approximately equal intervals on the outer periphery of the second electrode 15 so as to connect the second electrode 15 and the vacuum chamber 2 . The ground 30 is made of, for example, a nickel-based alloy or an aluminum alloy.
 第二電極15には、第二電源17が接続されている。この第二電源17は、100kHz以上1MHz以下の低周波交流電圧(バイアス電圧)を第二電極15に印加する、高周波電源である。交流電圧を受ける第二電極は、成膜空間2aにプラズマが生成されるとき、プラズマ空間に対して負電位、すなわちカソードとして機能してイオン粒子を基体10に引き込み、基体10に対するイオン粒子の直進性を向上させる。これによりプラズマで分解された原料ガスを円滑に基体方向に送ることができ、成膜速度あるいは薄膜の配向性が向上する。これにより、高アスペクト比を有する構造(例えば、微細孔)内部に薄膜を形成する場合、薄膜の被覆性(カバレージ)を向上することができる。
 さらに、例えば、成膜速度を変えることなく、バイアスパワーを変化させることにより、得られる薄膜の特性の一つである内部応力の値を広範囲で制御することができる。例えば、薄膜の内部応力の値を0から正の値(プラス)の範囲内となるように制御したり、薄膜の内部応力の値を負の値(マイナス)から0の範囲内となるように制御したりすることができる。
A second power supply 17 is connected to the second electrode 15 . The second power supply 17 is a high frequency power supply that applies a low frequency AC voltage (bias voltage) of 100 kHz to 1 MHz to the second electrode 15 . The second electrode that receives the AC voltage has a negative potential with respect to the plasma space, that is, functions as a cathode to draw ion particles into the substrate 10 when plasma is generated in the film-forming space 2a, so that the ion particles travel straight toward the substrate 10. improve sexuality. As a result, the raw material gas decomposed by the plasma can be smoothly sent toward the substrate, and the film forming speed or the orientation of the thin film is improved. As a result, when a thin film is formed inside a structure having a high aspect ratio (for example, micropores), the coverage of the thin film can be improved.
Furthermore, for example, by changing the bias power without changing the deposition rate, it is possible to control the value of the internal stress, which is one of the characteristics of the thin film obtained, over a wide range. For example, the value of the internal stress of the thin film is controlled to be within the range of 0 to a positive value (plus), or the value of the internal stress of the thin film is controlled to be within the range of negative value (minus) to 0. can be controlled.
 第1実施形態に係るプラズマCVD装置1では、第二電極15において基体10を載置する面15aと、シャワープレート5において第二電極15と対向する面5aとの間隔(T/S)が、15mm以上40mm以下である。
 第1実施形態に係るプラズマCVD装置1によれば、第二電極15において基体10を載置する面15aと、シャワープレート5において第二電極15と対向する面5aとの間隔(T/S)を、15mm以上40mm以下とすることにより、面15aと面5aとの間に導入されたプロセスガスの存在する空間が広くなる。すなわち、成膜空間2aにより多くのガスを導入することができ、これにより、プロセスガスの分解が促進される。本発明の実施形態に係るプラズマCVD装置1では、成膜速度を維持しつつ、従来(190℃以上)より低温域(180℃以下)においても、成膜することができる。
In the plasma CVD apparatus 1 according to the first embodiment, the distance (T/S) between the surface 15a of the second electrode 15 on which the substrate 10 is placed and the surface 5a of the shower plate 5 facing the second electrode 15 is It is 15 mm or more and 40 mm or less.
According to the plasma CVD apparatus 1 according to the first embodiment, the distance (T/S) between the surface 15a of the second electrode 15 on which the substrate 10 is placed and the surface 5a of the shower plate 5 facing the second electrode 15 is is 15 mm or more and 40 mm or less, the space in which the process gas introduced between the surfaces 15a and 5a exists is widened. That is, more gas can be introduced into the film forming space 2a, thereby promoting the decomposition of the process gas. In the plasma CVD apparatus 1 according to the embodiment of the present invention, film formation can be performed even in a lower temperature range (180° C. or lower) than conventionally (190° C. or higher) while maintaining the film formation rate.
 第1実施形態に係るプラズマCVD装置1は、T/Sを、15mm以上40mm以下の範囲内とすることができる。プラズマCVD装置1では、得られる膜の特性を維持しつつ、従来よりも低温(例えば、200℃以下)で成膜を行うことができる。 The plasma CVD apparatus 1 according to the first embodiment can set T/S within the range of 15 mm or more and 40 mm or less. In the plasma CVD apparatus 1, film formation can be performed at a lower temperature (for example, 200° C. or lower) than before while maintaining the properties of the obtained film.
 次に、プラズマCVD装置1を用いて基体10の処理面10aに薄膜を形成する場合について説明する。なお、ここでは、薄膜としてシリコン酸化膜を形成する場合を例に挙げて説明する。 Next, the case of forming a thin film on the processing surface 10a of the substrate 10 using the plasma CVD apparatus 1 will be described. Here, a case where a silicon oxide film is formed as a thin film will be described as an example.
 まず、真空ポンプ28を用いて真空チャンバ2の内部を減圧する。
 真空チャンバ2の内部が真空に維持された状態で、基体10は、真空チャンバ2内の成膜空間2aに搬入され、第二電極15上に載置される。
 ここで、基体10を載置する前は、第二電極15は、真空チャンバ2内の下方に位置している。つまり、基体10が搬入される前においては、第二電極15とシャワープレート5との間隔が広くなっているので、ロボットアーム(不図示)を用いて基体10を第二電極15上に容易に載置することができる。
First, the vacuum pump 28 is used to reduce the pressure inside the vacuum chamber 2 .
With the inside of the vacuum chamber 2 maintained in vacuum, the substrate 10 is carried into the film forming space 2 a in the vacuum chamber 2 and placed on the second electrode 15 .
Here, the second electrode 15 is positioned below inside the vacuum chamber 2 before the substrate 10 is placed. That is, since the distance between the second electrode 15 and the shower plate 5 is large before the substrate 10 is carried in, the substrate 10 can be easily placed on the second electrode 15 using a robot arm (not shown). can be placed.
 基体10が第二電極15上に載置された後には、昇降機構が起動し、支柱25が上方へ押し上げられ、第二電極15上に載置された基体10も上方へ移動する。この動作によって、基体10に対して適切に成膜を行うために必要な間隔になるようにシャワープレート5と基体10との間隔が所望に決定され、この間隔が維持される。ここで、シャワープレート5と基体10との間隔は、基体10上に膜を形成するために適した距離に保持される。 After the substrate 10 is placed on the second electrode 15, the elevating mechanism is activated, the support 25 is pushed upward, and the substrate 10 placed on the second electrode 15 also moves upward. By this operation, the distance between the shower plate 5 and the substrate 10 is desirably determined and maintained so that the distance required for proper film formation on the substrate 10 is obtained. Here, the distance between the shower plate 5 and the substrate 10 is kept at a distance suitable for forming a film on the substrate 10 .
 具体的に、第二電極15において基体10を載置する面15aと、シャワープレート5において第二電極15と対向する面5aとの間隔(T/S)が、15mm~40mmの範囲内に設定される。これにより、導入されたプロセスガスの存在する空間を広くすることができる。すなわち、成膜空間2aにより多くのガスを導入することができ、これにより、プロセスガスの分解が促進される。その結果、従来の温度(190℃以上)よりも低い低温域(180℃以下)においても、効率的に成膜することができる。その結果、成膜速度を維持しつつ、より低温(例えば、180℃以下)のプロセス温度で成膜可能である。 Specifically, the distance (T/S) between the surface 15a of the second electrode 15 on which the substrate 10 is placed and the surface 5a of the shower plate 5 facing the second electrode 15 is set within a range of 15 mm to 40 mm. be done. Thereby, the space in which the introduced process gas exists can be widened. That is, more gas can be introduced into the film forming space 2a, thereby promoting the decomposition of the process gas. As a result, it is possible to efficiently form a film even in a low temperature range (180° C. or lower) lower than the conventional temperature (190° C. or higher). As a result, the film can be formed at a lower process temperature (for example, 180° C. or less) while maintaining the film formation rate.
 その後、プロセスガス供給部21からガス導入管7及びガス導入口42を介して第一空間24aにプロセスガスが導入される。
 特に、第1実施形態では、プロセスガスの原料としてテトラエトキシシラン(略してTEOS、正珪酸四エチル(Si(OC)またはモノシラン(SiH)を用いる。
After that, the process gas is introduced into the first space 24 a from the process gas supply section 21 through the gas introduction pipe 7 and the gas introduction port 42 .
In particular, in the first embodiment, tetraethoxysilane (abbreviated as TEOS, tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) or monosilane (SiH 4 ) is used as the raw material of the process gas.
 これにより、基体10上に、シリコン酸化膜を形成することができる。また、プロセスガスの流量を大きくすることにより、成膜速度を向上することができる。すなわち、高速成膜化を実現することができる。
 続いて、シャワープレート5のガス噴出口6を通って真空チャンバ2内の成膜空間2aにプロセスガスが供給される。
 このとき、成膜空間2aの圧力Peは、シャワープレート5のコンダクタンスAによって減少される。
Thereby, a silicon oxide film can be formed on the substrate 10 . In addition, the deposition rate can be improved by increasing the flow rate of the process gas. That is, high-speed film formation can be realized.
Subsequently, the process gas is supplied to the film forming space 2a in the vacuum chamber 2 through the gas ejection port 6 of the shower plate 5. As shown in FIG.
At this time, the pressure Pe in the film forming space 2a is reduced by the conductance A of the shower plate 5. FIG.
 次に、RF電源9を起動して電極フランジ4に高周波電圧を印加する。
 このとき、電極フランジ4は、絶縁フランジ81を介して真空チャンバ2とは電気的に絶縁されている。また、真空チャンバ2は、接地されている。
 このような構造において、シャワープレート5と第二電極15との間に高周波電圧が印加され、放電が生じ、電極フランジ4に設けられているシャワープレート5と基体10の処理面10aとの間にプラズマが発生する。
Next, the RF power source 9 is activated to apply a high frequency voltage to the electrode flange 4 .
At this time, the electrode flange 4 is electrically insulated from the vacuum chamber 2 via the insulating flange 81 . Also, the vacuum chamber 2 is grounded.
In such a structure, a high-frequency voltage is applied between the shower plate 5 and the second electrode 15 to generate an electric discharge between the shower plate 5 provided on the electrode flange 4 and the processing surface 10a of the substrate 10. Plasma is generated.
 こうして発生したプラズマ内でプロセスガスが分解され、プラズマ状態のプロセスガスが得られ、基体10の処理面10aで気相成長反応が生じ、薄膜が処理面10a上に成膜される。このとき、基体10に第二電源17からバイアス電圧を印加することで、プラズマで分解された原料ガスを円滑に基体方向に送ることができ、成膜速度あるいは薄膜の配向性が向上する。 The process gas is decomposed in the plasma generated in this way, the process gas in a plasma state is obtained, a vapor phase growth reaction occurs on the processing surface 10a of the substrate 10, and a thin film is formed on the processing surface 10a. At this time, by applying a bias voltage from the second power supply 17 to the substrate 10, the raw material gas decomposed by the plasma can be smoothly sent toward the substrate, thereby improving the deposition rate or the orientation of the thin film.
 具体的には、第1実施形態に係る成膜方法では、基体10上にシリコン酸化膜を形成する成膜速度[nm/min]が、80以上360以下である。第1実施形態に係る成膜方法によれば、TEOS流量を変化させるだけで、成膜速度[nm/min]を、80以上360以下と、4.5倍程度まで向上させることも可能となる。また、この範囲内において、バイアスパワーを変化させることで、得られる薄膜の特性の一つである内部応力の値を広範囲で制御することができる。例えば、薄膜の内部応力の値を0から正の値(プラス)の範囲内となるように制御したり、薄膜の内部応力の値を負の値(マイナス)から0の範囲内となるように制御したりすることができる。 Specifically, in the film forming method according to the first embodiment, the film forming speed [nm/min] for forming the silicon oxide film on the substrate 10 is 80 or more and 360 or less. According to the film forming method according to the first embodiment, it is possible to improve the film forming speed [nm/min] by about 4.5 times, from 80 to 360, only by changing the TEOS flow rate. . By changing the bias power within this range, the value of the internal stress, which is one of the characteristics of the thin film obtained, can be controlled over a wide range. For example, the value of the internal stress of the thin film is controlled to be within the range of 0 to a positive value (plus), or the value of the internal stress of the thin film is controlled to be within the range of negative value (minus) to 0. can be controlled.
 第1実施形態に係る温度測定装置の一例である温度測定用基板MWは、プラズマCVD装置1における処理中の温度を測定する。
 ここで、上述したように、処理中の基体10は、真空雰囲気中、あるいは、プラズマ雰囲気中にある。このため、そのような基体10のままでは、温度測定をおこなうことができない。
 そこで、以下のように温度測定用基板MWを用いて、処理中の基体10における最高到達温度を測定する。
A substrate for temperature measurement MW, which is an example of the temperature measurement apparatus according to the first embodiment, measures the temperature during processing in the plasma CVD apparatus 1 .
Here, as described above, the substrate 10 being processed is in a vacuum atmosphere or in a plasma atmosphere. Therefore, temperature measurement cannot be performed with such a substrate 10 as it is.
Therefore, the temperature measurement substrate MW is used as follows to measure the maximum temperature reached in the substrate 10 during processing.
 第1実施形態に係る温度測定方法は、図3に示すように、基板準備工程S00と、較正工程S10(キャリブレーション工程)と、初期化工程S20と、処理温度測定準備工程S31と、処理温度測定加熱工程S32と、シート抵抗測定工程S33と、温度算出工程S34と、後工程S40と、を有する。 The temperature measurement method according to the first embodiment includes, as shown in FIG. It has a measurement heating process S32, a sheet resistance measurement process S33, a temperature calculation process S34, and a post-process S40.
 図3に示す基板準備工程S00においては、温度測定用基板MWを準備する。
 ここで、温度測定用基板MWは、表面MWaが基体10の処理面10aに対応する温度測定面を有する。
 また、温度測定用基板MWは、基体10と同等の熱容量等の特性を有する基板MW1である。
 温度測定用基板MWにおいては、想定される温度測定が可能な範囲内となるように相変化膜MW2の組成比を設定する。例えば、GST膜を構成する組成を示すGeSbTeにおいて、Geの原子パーセント濃度xは、10%~50%の範囲内にあり、Sb原子パーセント濃度yは、10%~50%の範囲内にあり、Te原子パーセント濃度zは、20%~80%の範囲内にあるように設定とすることができる。
In the substrate preparation step S00 shown in FIG. 3, a temperature measurement substrate MW is prepared.
Here, the temperature measurement substrate MW has a temperature measurement surface whose surface MWa corresponds to the processing surface 10a of the substrate 10 .
Further, the substrate MW for temperature measurement is a substrate MW1 having properties such as heat capacity equivalent to those of the substrate 10 .
In the substrate for temperature measurement MW, the composition ratio of the phase change film MW2 is set so as to be within the range in which the assumed temperature can be measured. For example, in Ge x Sb y Te z indicating the composition constituting the GST film, the Ge atomic percent concentration x is in the range of 10% to 50%, and the Sb atomic percent concentration y is in the range of 10% to 50%. range and the Te atomic percent concentration z can be set to be in the range of 20% to 80%.
 基板準備工程S00においては、上述した組成比を有する相変化膜MW2を基板MW1の全面に形成する。さらに、上述した組成を有するキャップ膜MW3を、相変化膜MW2の全面に形成する。 In the substrate preparation step S00, the phase change film MW2 having the composition ratio described above is formed over the entire surface of the substrate MW1. Furthermore, a cap film MW3 having the composition described above is formed over the entire surface of the phase change film MW2.
 図3に示す較正工程S10は、恒温加熱工程S11と、シート抵抗測定工程S12と、較正用データ作成工程S13と、を有する。 The calibration step S10 shown in FIG. 3 includes a constant temperature heating step S11, a sheet resistance measurement step S12, and a calibration data creation step S13.
 図3に示す恒温加熱工程S11は、基板準備工程S00で製造した温度測定用基板MWを、恒温炉など既知の熱源で加熱して、所定の高温状態に維持する。
 ここで、恒温加熱工程S11は、相変化膜MW2の温度-シート特性を測定するための加熱工程である。
 所定の時間、高温状態を維持した後、降温して恒温加熱工程S11を終了する。
In the constant temperature heating step S11 shown in FIG. 3, the temperature measurement substrate MW manufactured in the substrate preparation step S00 is heated with a known heat source such as a constant temperature furnace to maintain a predetermined high temperature state.
Here, the constant temperature heating step S11 is a heating step for measuring the temperature-sheet characteristics of the phase change film MW2.
After maintaining the high temperature state for a predetermined time, the temperature is lowered and the constant temperature heating step S11 ends.
 図3に示すシート抵抗測定工程S12は、恒温加熱工程S11で加熱した温度に対するシート抵抗を測定する。ここで、四深針測定法によって、相変化膜MW2の全面のシート抵抗値を得るように、多数点で測定をおこなう。例えば、Φ300mmウェーハにおいて、120点程度の測定位置において、測定をおこなうことができる。
 必要であれば、上記の恒温加熱工程S11とシート抵抗測定工程S12とを繰り返して、異なる温度に対する多数のシート抵抗値を測定する。
The sheet resistance measurement step S12 shown in FIG. 3 measures the sheet resistance with respect to the temperature heated in the constant temperature heating step S11. Here, the measurement is performed at a large number of points so as to obtain the sheet resistance value of the entire surface of the phase change film MW2 by the four-probe measurement method. For example, in a Φ300 mm wafer, measurement can be performed at approximately 120 measurement positions.
If necessary, the constant temperature heating step S11 and the sheet resistance measurement step S12 are repeated to measure a large number of sheet resistance values at different temperatures.
 図3に示す較正用データ作成工程S13においては、恒温加熱工程S11とシート抵抗測定工程S12とを繰り返して得られた温度-シート抵抗の変化の関係を取得する。
 ここで、得られたデータは、相変化膜MW2の措定比に応じて変化し、例えば、図4に示す較正用データとなる。
 必要であれば、上記の温度測定用基板MWにおいて、異なる組成の相変化膜MW2により、対応する較正用データを取得する。
In the calibration data creation step S13 shown in FIG. 3, the temperature-sheet resistance change relationship obtained by repeating the constant temperature heating step S11 and the sheet resistance measurement step S12 is acquired.
Here, the obtained data changes according to the sizing ratio of the phase change film MW2, and becomes the calibration data shown in FIG. 4, for example.
If necessary, the corresponding calibration data is obtained with the phase change film MW2 having a different composition on the temperature measurement substrate MW.
 図3に示す初期化工程S20は、初期化加熱工程S21と、アモルファス化工程S22(相変化工程)と、を有する。
 図3に示す初期化加熱工程S21においては、相変化膜MW2を加熱して相変化膜MW2における温度履歴を初期化可能な温度まで加熱する。
 図3に示すアモルファス化工程S22においては、初期化加熱工程S21に続いて、相変化膜MW2を急冷することによって相変化(アモルファス化)させる。これにより、相変化膜MW2における温度履歴を初期化する。
 この際の加熱・急冷方法は、恒温槽等を用いる方法に限られず、温度測定用基板MWへの直接通電による加熱・急冷方法でもよい。
The initialization step S20 shown in FIG. 3 includes an initialization heating step S21 and an amorphization step S22 (phase change step).
In the initializing heating step S21 shown in FIG. 3, the phase change film MW2 is heated to a temperature at which the temperature history in the phase change film MW2 can be initialized.
In the amorphization step S22 shown in FIG. 3, subsequent to the initialization heating step S21, the phase change film MW2 is rapidly cooled to cause a phase change (amorphization). This initializes the temperature history in the phase change film MW2.
The heating/quenching method at this time is not limited to the method using a constant temperature bath or the like, and may be a heating/quenching method by directly energizing the substrate MW for temperature measurement.
 初期化工程S20においては、初期化加熱工程S21における、加熱温度が、後工程における測定温度よりも高く設定される。つまり、相変化膜MW2であるGST膜の相変化領域である200℃~600℃よりも高く設定される。したがって、初期化加熱工程S21における、加熱温度は、600℃よりも高く設定されることができる。
 また、初期化加熱工程S21における、加熱時間が、アモルファス化に必要な相転移を可能なように好ましくは1~1800秒の間となるように設定される。
In the initialization step S20, the heating temperature in the initialization heating step S21 is set higher than the measurement temperature in the subsequent steps. That is, the temperature is set higher than the phase change region of 200° C. to 600° C. of the GST film, which is the phase change film MW2. Therefore, the heating temperature in the initialization heating step S21 can be set higher than 600.degree.
Also, the heating time in the initializing heating step S21 is preferably set to be between 1 and 1800 seconds so as to enable the phase transition necessary for amorphization.
 初期化工程S20においては、アモルファス化工程S22における、降温速度が、アモルファス化可能な値として設定される。 In the initialization step S20, the temperature drop rate in the amorphization step S22 is set as a value that allows amorphization.
 ここで、初期化工程S20における加熱条件および急冷条件は、相変化膜MW2の組成に依存する。 Here, the heating conditions and rapid cooling conditions in the initialization step S20 depend on the composition of the phase change film MW2.
 図3に示す処理温度測定準備工程S31は、温度測定可能な条件をみたす準備工程である。具体的には、CVD装置1における成膜工程と同様におこなう。
 ただし、第1実施形態に係るCVD装置1は、本発明の実施形態の一例であり、本発明の実施形態は、プラズマCVD装置に限定されない。例えば、同様の構造を持つ熱ALD装置、プラズマALD装置、ALE装置、PVD装置、エッチング装置などにおいても適用可能である。
The processing temperature measurement preparation step S31 shown in FIG. 3 is a preparation step that satisfies conditions for temperature measurement. Specifically, it is performed in the same manner as the film forming process in the CVD apparatus 1 .
However, the CVD apparatus 1 according to the first embodiment is an example of embodiments of the present invention, and the embodiments of the present invention are not limited to plasma CVD apparatuses. For example, it can also be applied to thermal ALD equipment, plasma ALD equipment, ALE equipment, PVD equipment, etching equipment, etc., which have similar structures.
 まず、真空ポンプ28を用いて真空チャンバ2の内部を減圧する。
 真空チャンバ2の内部の雰囲気が真空状態に維持された状態で、温度測定用基板MWは、真空チャンバ2内の成膜空間2aに搬入され、第二電極15上に載置される。このとき、温度測定用基板MWは、表面MWaが基体10の処理面10aに対応するように載置される。つまり、相変化膜MW2が上面となるように載置される。
 ここで、温度測定用基板MWを載置する前は、第二電極15は、真空チャンバ2の内部の下方に位置している。つまり、基体10が搬入される前においては、第二電極15とシャワープレート5との間隔が広くなっているので、ロボットアームを用いて温度測定用基板MWを第二電極15上に容易に載置することができる。
First, the vacuum pump 28 is used to reduce the pressure inside the vacuum chamber 2 .
While the atmosphere inside the vacuum chamber 2 is maintained in a vacuum state, the temperature measurement substrate MW is carried into the film formation space 2 a in the vacuum chamber 2 and placed on the second electrode 15 . At this time, the temperature measurement substrate MW is placed so that the surface MWa corresponds to the processing surface 10a of the substrate 10 . That is, it is placed so that the phase change film MW2 faces the upper surface.
Here, the second electrode 15 is located below the inside of the vacuum chamber 2 before the temperature measurement substrate MW is placed. That is, since the distance between the second electrode 15 and the shower plate 5 is large before the substrate 10 is carried in, the temperature measurement substrate MW can be easily placed on the second electrode 15 using a robot arm. can be placed.
 基体10が第二電極15上に載置された後には、昇降機構が起動し、支柱25が上方へ押し上げられ、第二電極15上に載置された温度測定用基板MWも上方へ移動する。これによって、成膜を行うために必要な間隔と同じ条件になるようにシャワープレート5と温度測定用基板MWとの間隔が決定され、この間隔が維持される。ここで、シャワープレート5と温度測定用基板MWとの間隔は、基体10上に膜を形成するために適した距離と等しく保持される。 After the substrate 10 is placed on the second electrode 15, the elevating mechanism is activated, the support 25 is pushed upward, and the temperature measurement substrate MW placed on the second electrode 15 is also moved upward. . As a result, the distance between the shower plate 5 and the temperature measurement substrate MW is determined and maintained so as to satisfy the same conditions as the distance required for film formation. Here, the distance between the shower plate 5 and the substrate MW for temperature measurement is kept equal to the distance suitable for forming a film on the substrate 10 .
 その後、プロセスガス供給部21からガス導入管7及びガス導入口42を介して第一空間24aにプロセスガスが導入される。 After that, the process gas is introduced into the first space 24a from the process gas supply unit 21 through the gas introduction pipe 7 and the gas introduction port 42.
 続いて、シャワープレート5のガス噴出口6を通って真空チャンバ2内の成膜空間2aにプロセスガスが供給される。
 このとき、成膜空間2aの圧力Peは、シャワープレート5のコンダクタンスAによって減少される。
 なお、雰囲気ガスとしては、成膜に準じた不活性ガスを用いることが好ましい。
Subsequently, the process gas is supplied to the film forming space 2a in the vacuum chamber 2 through the gas ejection port 6 of the shower plate 5. As shown in FIG.
At this time, the pressure Pe in the film forming space 2a is reduced by the conductance A of the shower plate 5. FIG.
As the atmospheric gas, it is preferable to use an inert gas conforming to film formation.
 図3に示す処理温度測定加熱工程S32において、加熱をおこなう。
 ここでは、成膜時と同様に、RF電源9を起動して電極フランジ4に高周波電圧を印加してもよい。
Heating is performed in the processing temperature measurement heating step S32 shown in FIG.
Here, the RF power supply 9 may be activated to apply a high frequency voltage to the electrode flange 4, as in the case of film formation.
 図3に示す処理温度測定加熱工程S32においては、基体10に対する処理と同じ条件が設定される。具体的に、基体10に対する加熱温度と同じ加熱温度が設定される。基体10に対する加熱時間と同じ加熱時間が設定される。設定された加熱時間が経過した後に、RF電源9からの高周波電圧印加を停止する。
 その後、温度測定用基板MWを真空チャンバ2から搬出する。
In the processing temperature measurement heating step S32 shown in FIG. 3, the same conditions as those for processing the substrate 10 are set. Specifically, the same heating temperature as the heating temperature for the substrate 10 is set. The same heating time as the heating time for the substrate 10 is set. After the set heating time has passed, the application of the high frequency voltage from the RF power supply 9 is stopped.
After that, the temperature measurement substrate MW is unloaded from the vacuum chamber 2 .
 図3に示すシート抵抗測定工程S33において、シート抵抗測定工程S12と同様にして、温度測定用基板MWのシート抵抗を測定する。
 ここでの留意点として、上記シート抵抗測定工程S12が行われる雰囲気は、不活性ガス雰囲気が好ましい。熱伝導率、分子量、または粘性等のプロセス条件の点で、シート抵抗測定工程S33とシート抵抗測定工程S12とがと同等であることに留意する必要がある。
In the sheet resistance measurement step S33 shown in FIG. 3, the sheet resistance of the temperature measurement substrate MW is measured in the same manner as in the sheet resistance measurement step S12.
It should be noted here that the atmosphere in which the sheet resistance measurement step S12 is performed is preferably an inert gas atmosphere. It should be noted that the sheet resistance measurement step S33 and the sheet resistance measurement step S12 are equivalent in terms of process conditions such as thermal conductivity, molecular weight, or viscosity.
 図3に示す温度算出工程S34においては、シート抵抗測定工程S33で測定したシート抵抗の値と、較正用データ作成工程S13で得た温度-シート抵抗の関係から、処理温度測定加熱工程S32における最高到達温度を算出する。
 ここで、相変化膜MW2に対応する図4に示す校正曲線から、シート抵抗の測定より、成膜処理における温度測定用基板MWの面内温度分布を算出する。
In the temperature calculation step S34 shown in FIG. 3, from the sheet resistance value measured in the sheet resistance measurement step S33 and the temperature-sheet resistance relationship obtained in the calibration data creation step S13, the maximum temperature in the processing temperature measurement heating step S32 is calculated. Calculate the temperature reached.
Here, from the calibration curve shown in FIG. 4 corresponding to the phase change film MW2, the in-plane temperature distribution of the substrate for temperature measurement MW in the film forming process is calculated from the measurement of the sheet resistance.
 図3に示す後工程S40において、温度算出工程S34で算出した面内温度分布から、基体10への成膜における温度・面内均一性が得られるように、加熱条件を変化させて、成膜をおこなうことができる。 In the post-process S40 shown in FIG. 3, from the in-plane temperature distribution calculated in the temperature calculation step S34, the heating conditions are changed so that the temperature and in-plane uniformity in the film formation on the substrate 10 can be obtained. can be done.
 なお、図3に示す温度算出工程S34の終了後、引き続き、温度測定用基板MWを温度測定に使用する場合には、初期化工程S20へと進み、温度測定用基板MWの初期化をおこなう。
 これにより、温度測定用基板MWを繰り返して温度測定に用いることが可能となる。
After completion of the temperature calculation step S34 shown in FIG. 3, if the temperature measurement substrate MW is to be used for temperature measurement, the process proceeds to the initialization step S20 to initialize the temperature measurement substrate MW.
This makes it possible to repeatedly use the temperature measurement substrate MW for temperature measurement.
 第1実施形態においては、シリコンウェーハとされる基板MW1上に形成した相変化膜MW2の抵抗の変化を用いた温度測定をおこなうことができる。ここで、相変化膜MW2であるGST膜の相変化領域である100℃~600℃において、温度測定をおこなうことができる。 In the first embodiment, temperature can be measured using the change in resistance of the phase change film MW2 formed on the substrate MW1, which is a silicon wafer. Here, the temperature can be measured in the phase change region of 100° C. to 600° C. of the GST film, which is the phase change film MW2.
 また、第1実施形態においては、予め較正用データ作成工程S13において得られた相変化膜MW2のシート抵抗・屈折率・消衰係数、温度の校正特性と、処理温度測定加熱工程S32における測定結果とを比較する。これにより、ステージ(第二電極)15上の温度測定用基板MWの面内温度分布を詳細に得ることを可能とする。
 したがって、プラズマCVD処理中におけるステージ(第二電極)15上の基体10に対応する面内温度分布を詳細に得ることを可能とする。
 また、初期化工程S20において、使用後に加熱後急冷することで、相変化膜MW2をアモルファス化に戻すことができ、温度測定用基板MWにおける繰り返しの利用も可能である。
Further, in the first embodiment, the calibration characteristics of the sheet resistance, refractive index, extinction coefficient, and temperature of the phase change film MW2 obtained in advance in the calibration data creation step S13, and the measurement results in the processing temperature measurement heating step S32 Compare with This makes it possible to obtain detailed in-plane temperature distribution of the substrate MW for temperature measurement on the stage (second electrode) 15 .
Therefore, it is possible to obtain detailed in-plane temperature distribution corresponding to the substrate 10 on the stage (second electrode) 15 during plasma CVD processing.
Further, in the initialization step S20, the phase change film MW2 can be returned to an amorphous state by being heated and then rapidly cooled after use, and repeated use in the temperature measurement substrate MW is also possible.
 第1実施形態においては、温度測定用基板MWの相変化膜MW2におけるシート抵抗の変化から、温度測定用基板MWにおける温度履歴、具体的には、処理温度測定加熱工程S32における最高到達温度の基板面内温度分布を測定することが可能となる。
 同時に、初期化工程S20において、相変化膜MW2をアモルファス化して温度履歴を初期化することで、温度測定用基板MWを繰り返して温度測定に用いることが可能となる。
 従来では、温度測定をおこなう度に、新しい測定用装置を準備していた。これに対し、第1実施形態においては、新しい測定用装置を準備する必要がなくなり、温度測定に係る作業性を向上するとともに、コストを削減することができる。
In the first embodiment, the change in the sheet resistance of the phase change film MW2 of the temperature measurement substrate MW is used to determine the temperature history of the temperature measurement substrate MW. It becomes possible to measure the in-plane temperature distribution.
At the same time, in the initialization step S20, the phase change film MW2 is made amorphous and the temperature history is initialized, so that the temperature measurement substrate MW can be repeatedly used for temperature measurement.
Conventionally, a new measuring device was prepared each time a temperature measurement was performed. On the other hand, in the first embodiment, there is no need to prepare a new measuring device, and the workability related to temperature measurement can be improved, and the cost can be reduced.
 シート抵抗測定工程S33において、相変化膜MW2における複数箇所のシート抵抗を測定することで、一度の処理温度測定加熱工程S32によって、温度測定用基板MWの温度変化を示す面内温度分布を得ることが可能となる。したがって、相変化膜MW2におけるシート抵抗を複数箇所で測定するだけで、他の検出装置等を必要とせずに、また、他の処理工程を経ることなく、処理位置における温度分布を取得することが可能となる。 In the sheet resistance measurement step S33, by measuring the sheet resistance at a plurality of locations in the phase change film MW2, the in-plane temperature distribution indicating the temperature change of the substrate MW for temperature measurement is obtained by one processing temperature measurement heating step S32. becomes possible. Therefore, by simply measuring the sheet resistance of the phase change film MW2 at a plurality of locations, the temperature distribution at the processing position can be obtained without the need for other detection devices or the like and without the need for other processing steps. It becomes possible.
 また、プラズマCVD処理をおこなう基体10とほぼ同じ構成である温度測定用基板MWを、処理対象である基体10と同様の手順で真空チャンバ2に搬送して真空チャンバ2内で処理を行うだけで、温度測定をおこなうことができる。このため、熱電対等の複雑な装置構成が不要になる。特に、処理装置の外部と連通する必要がある装置構成や測定に対する外乱要因となる余計な装置構成が不要になる。さらに、成膜特性を維持するために清浄度を維持する必要のある真空チャンバ2に対して、汚染源となる可能性のある装置構成などを挿入する必要がない。このため、処理温度測定加熱工程S32において、処理をおこなう密閉空間である真空チャンバ2等の内部空間を汚染することがない。 In addition, the substrate MW for temperature measurement, which has almost the same structure as the substrate 10 to be subjected to plasma CVD processing, is transported to the vacuum chamber 2 in the same procedure as the substrate 10 to be processed, and is processed in the vacuum chamber 2. , temperature measurements can be made. This eliminates the need for a complicated device configuration such as a thermocouple. In particular, there is no need for a device configuration that needs to communicate with the outside of the processing device or an extra device configuration that causes disturbance to the measurement. Furthermore, there is no need to insert a device configuration that may become a source of contamination into the vacuum chamber 2, which must be kept clean in order to maintain film formation characteristics. Therefore, in the processing temperature measurement heating step S32, the internal space such as the vacuum chamber 2, which is a closed space for processing, is not contaminated.
 また、処理温度測定加熱工程S32において処理される基体10と同等の構成となる基板MW1に相変化膜MW2を積層するだけで、成膜等の処理における極めて詳細かつ精密な温度分布を測定可能である。つまり、基板MW1の表面に相変化膜MW2が積層された位置、すなわち、成膜位置となるステージ(第二電極)15上の正確な処理位置において、極めて正確な面内温度分布を測定することが可能となる。 Further, by simply laminating the phase change film MW2 on the substrate MW1 having the same structure as the substrate 10 to be processed in the processing temperature measurement heating step S32, it is possible to measure extremely detailed and precise temperature distribution in processing such as film formation. be. In other words, extremely accurate in-plane temperature distribution can be measured at the position where the phase change film MW2 is laminated on the surface of the substrate MW1, that is, at the accurate processing position on the stage (second electrode) 15, which is the film forming position. becomes possible.
 しかも、第1実施形態においては、複数枚の基体10を連続的に処理する生産現場において、複数枚の基体(被処理基板)10の処理の途中に、温度測定用基板MWを混在するだけで温度測定処理を容易におこなうことができる。この手順だけで、温度測定用基板MW以外の測定装置をチャンバ内に入れるなどの影響を反応室である成膜空間2aに与えることなく、かつ、実際の量産に用いられる処理装置のダウンタイムを生じることなく温度測定をおこなうことができる。
 同時に、製造現場における基体10の複数処理における生産性を低下することなく、正確な温度測定をおこなうことが可能となる。
Moreover, in the first embodiment, in a production site where a plurality of substrates 10 are continuously processed, the temperature measurement substrate MW can be mixed in the process of processing a plurality of substrates (substrates to be processed) 10. Temperature measurement processing can be easily performed. Only by this procedure, the film forming space 2a, which is the reaction chamber, is not affected by the introduction of measuring devices other than the substrate MW for temperature measurement into the chamber, and the downtime of the processing device used for actual mass production is reduced. temperature measurements can be made without
At the same time, it is possible to perform accurate temperature measurement without reducing productivity in multiple processing of substrates 10 at the manufacturing site.
 第1実施形態では、予め測定する相変化膜MW2におけるシート抵抗・屈折率・消衰係数、温度の校正特性と処理温度測定加熱工程S32の測定結果とを比較する。これにより、基体10を処理する実際のステージ15上における温度分布を詳細にかつ簡便に得ることを可能とする。 In the first embodiment, the sheet resistance, refractive index, extinction coefficient, and temperature calibration characteristics of the phase change film MW2 that are measured in advance are compared with the measurement results of the processing temperature measurement heating step S32. This makes it possible to obtain in detail and easily the temperature distribution on the actual stage 15 for processing the substrate 10 .
 また、上記のように所定の組成を有する相変化膜MW2を基板MW1に成膜するだけで温度測定が可能となる。このため、基体10の基板種類および加熱処理の種類によらずに、正確な温度測定を可能とすることができる。つまり、シリコンSiC、窒化シリコン、ガリウムナイトライド、ガリウムヒ素、ガリウムリン、インジウムガリウム、サファイアなどのウェーハ状基板、あるいはガラス基板といった種類の異なる基板を処理する工程のいずれにおいても、処理対象となる基体10における面内温度測定を容易に、かつ正確におこなうことが可能となる。 Also, the temperature can be measured only by forming the phase change film MW2 having a predetermined composition on the substrate MW1 as described above. Therefore, it is possible to accurately measure the temperature regardless of the substrate type of the substrate 10 and the type of heat treatment. In other words, in any of the processes for processing wafer-like substrates such as silicon SiC, silicon nitride, gallium nitride, gallium arsenide, gallium phosphide, indium gallium, sapphire, or different types of substrates such as glass substrates, the substrate to be processed In-plane temperature measurement at 10 can be performed easily and accurately.
 相変化膜MW2を基板MW1に成膜するだけで温度測定が可能となる。このため、被処理対象、つまり、プラズマCVD処理による成膜における基体10とほぼ同じ構成の温度測定用基板MWを用いて温度測定が可能である。 The temperature can be measured only by forming the phase change film MW2 on the substrate MW1. Therefore, the temperature can be measured using the temperature measurement substrate MW having substantially the same configuration as the object to be processed, that is, the substrate 10 in film formation by the plasma CVD process.
 このため、複数工程の途中工程、あるいは、複数工程の終盤の工程における特定の処理において、加工途中の基体10と同等の基板MW1を用いることができる。つまり、ベアウェーハではなく、トレンチ、配線、PN等のドープ領域等が形成された状態である基体10に対する処理であっても、第1実施形態に係る温度測定方法を適用することができる。
 この場合、例えば、次のように温度測定方法が行われる。
 まず、温度測定用基板MWとして、上記のトレンチ、配線、PN等のドープ領域等と同等の構成を有する基板MW1に相変化膜MW2を付加した基板を準備する。その後、この温度測定用基板MWを複数枚の基体10に混在させ、処理を連続しておこなう。これにより、上述した温度測定方法をおこなうことが可能となる。
Therefore, the substrate MW1, which is equivalent to the substrate 10 in process, can be used in a specific process in an intermediate process of multiple processes or in a final process of multiple processes. In other words, the temperature measurement method according to the first embodiment can be applied to the substrate 10 in which trenches, wirings, doped regions such as PN, etc. are formed, instead of bare wafers.
In this case, for example, the temperature measurement method is performed as follows.
First, as the substrate for temperature measurement MW, a substrate obtained by adding a phase change film MW2 to the substrate MW1 having the same configuration as the trenches, wirings, doped regions such as PN, etc. is prepared. After that, the temperature measurement substrate MW is mixed with a plurality of substrates 10, and the processing is continuously performed. This makes it possible to perform the temperature measurement method described above.
 これにより、相変化膜MW2の積層される基体10に対応する基板MW1が、相変化膜MW2におけるシート抵抗測定に影響を与える導電性分布を有していたとしても、相変化膜MW2に対する加熱処理によってシート抵抗測定に影響を与えることを防止できる。また、例えば、ベアのシリコン基板ではなく、配線、N領域、P領域等が形成されている基体10に対応する基板MW1を用いる場合であっても、相変化膜MW2に対する加熱処理によってシート抵抗測定に影響を与えることを防止できる。これにより、均一な構造ではない基体10であっても、正確な温度分布を測定することが可能となる。
 したがって、均一でない温度特性分布を有する基体10であっても、加熱処理における温度状態分布を測定することが可能となる。
As a result, even if the substrate MW1 corresponding to the substrate 10 on which the phase change film MW2 is laminated has a conductivity distribution that affects the sheet resistance measurement in the phase change film MW2, the heat treatment for the phase change film MW2 is performed. can be prevented from affecting the sheet resistance measurement. Further, for example, even if the substrate MW1 corresponding to the substrate 10 on which the wiring, the N area, the P area, etc. are formed is used instead of the bare silicon substrate, the sheet resistance can be measured by heat-treating the phase change film MW2. can be prevented from affecting This makes it possible to accurately measure the temperature distribution even for the substrate 10 that does not have a uniform structure.
Therefore, even if the substrate 10 has a non-uniform temperature characteristic distribution, it is possible to measure the temperature state distribution in the heat treatment.
 さらに、プラズマCVD装置1の内部における温度分布を、当該処理に即して正確に測定することができる。つまり、被処理対象である基体10が、均一でない熱容量分布である場合や、均一でない電気的特性を有する場合であっても、プラズマCVD装置1における正確な処理位置の温度分布を測定することができる。これらにより、製造現場における基板処理における生産性を低下することなく、汚染等の影響を排除して正確な温度測定をおこなうことが可能となる。 Furthermore, the temperature distribution inside the plasma CVD apparatus 1 can be accurately measured in accordance with the process. In other words, even if the substrate 10 to be processed has non-uniform heat capacity distribution or non-uniform electrical characteristics, it is possible to accurately measure the temperature distribution at the processing position in the plasma CVD apparatus 1. can. As a result, it is possible to eliminate the effects of contamination and the like and perform accurate temperature measurement without lowering productivity in substrate processing at the manufacturing site.
 初期化工程S20においては、相変化膜MW2を加熱および急冷することによって相変化(アモルファス化)を生じさせて、相変化膜MW2における温度履歴を初期化することができる。したがって、温度測定用基板MWを繰り返して温度測定に用いることが可能となる。
 また、初期化工程S20による初期化可能な相変化膜MW2を用いて温度測定が可能であるため、相変化膜を複数回の温度測定に使用した後であっても、温度測定の感度および正確性が劣化することがなく、温度測定の正確性を維持することが可能である。
In the initialization step S20, the phase change film MW2 is heated and rapidly cooled to cause a phase change (amorphization), thereby initializing the temperature history in the phase change film MW2. Therefore, the temperature measurement substrate MW can be repeatedly used for temperature measurement.
In addition, since temperature measurement is possible using the phase-change film MW2 that can be initialized by the initialization step S20, the sensitivity and accuracy of temperature measurement can be improved even after the phase-change film has been used for multiple temperature measurements. It is possible to maintain the accuracy of the temperature measurement without deterioration in quality.
 さらに、相変化膜MW2の初期化温度、および、処理温度測定加熱工程S32の加熱温度によるシート抵抗の変化は、相変化膜MW2の組成に依存するので、再度の温度算出は必要ない。つまり、温度とシート抵抗との較正を温度測定ごとに毎回おこなう必要がない。
 また、温度測定の度に新たな測定用の基板を用意する必要がない。このため、迅速に温度測定をおこなうことができるとともに、温度測定にかかる作業性を向上し、そのコストを低減することができる。
Furthermore, since the change in sheet resistance due to the initialization temperature of the phase change film MW2 and the heating temperature in the process temperature measurement heating step S32 depends on the composition of the phase change film MW2, it is not necessary to calculate the temperature again. That is, it is not necessary to calibrate temperature and sheet resistance for each temperature measurement.
In addition, it is not necessary to prepare a new substrate for measurement each time the temperature is measured. Therefore, the temperature can be measured quickly, the workability of the temperature measurement can be improved, and the cost can be reduced.
 相変化膜MW2にキャップ膜MW3が積層されている。これにより、処理温度測定加熱工程S32において温度測定すべき加熱処理が、プラズマ処理等の相変化膜MW2の表面にダメージを与える処理であっても、相変化膜MW2に影響を与えないで、正確な温度測定をおこなうことができる。
 さらに、シート抵抗測定工程S33で測定される相変化膜MW2の抵抗値に比べて、キャップ膜MW3における抵抗値が充分高ければ、キャップ膜MW3の抵抗値に影響されることなく相変化膜MW2のシート抵抗の変化量を測定することができる。
A cap film MW3 is laminated on the phase change film MW2. As a result, even if the heat treatment to be temperature-measured in the treatment temperature measurement heating step S32 is a treatment that damages the surface of the phase-change film MW2, such as plasma treatment, the phase-change film MW2 is not affected and the temperature can be measured accurately. temperature measurement can be performed.
Furthermore, if the resistance value of the cap film MW3 is sufficiently higher than the resistance value of the phase change film MW2 measured in the sheet resistance measurement step S33, the resistance value of the phase change film MW2 is not affected by the resistance value of the cap film MW3. A change in sheet resistance can be measured.
 第1実施形態において、後工程S40における薄膜の形成方法では、温度測定装置である温度測定用基板MWを用いて測定した温度に基づいて、成膜特性が均一化する設定である条件で、成膜を行うことができる。
 これにより、後工程S40における基体10に対する成膜処理において、面内温度分布を均一にして、膜厚、抵抗値、組成、等の成膜特性における面内均一性を向上することができる。
In the first embodiment, in the method of forming a thin film in the post-process S40, the film formation is performed under the condition that the film formation characteristics are made uniform based on the temperature measured using the substrate for temperature measurement MW, which is a temperature measurement device. membrane can be performed.
As a result, in the film forming process on the substrate 10 in the post-process S40, the in-plane temperature distribution can be made uniform, and the in-plane uniformity of film formation characteristics such as film thickness, resistance value, composition, etc. can be improved.
 なお、第1実施形態においては、相変化膜MW2において、相変化に伴うシート抵抗を測定して、測定されたシート抵抗の変化量を温度変化量に換算した。本発明は、このような方法を限定しない。例えば、図5に示すように、相変化膜MW2における光学屈折率または消衰係数の変化量を測定して、この変化量を温度の変化量に換算することもできる。 Note that in the first embodiment, the sheet resistance associated with the phase change was measured in the phase change film MW2, and the measured sheet resistance variation was converted to the temperature variation. The present invention is not limited to such methods. For example, as shown in FIG. 5, it is also possible to measure the amount of change in the optical refractive index or extinction coefficient of the phase change film MW2 and convert this amount of change into the amount of change in temperature.
 なお、図4は、異なる組成を有する相変化膜MW2におけるシート抵抗と温度変化との関係から校正曲線の例を示す。図4において、MW2-1、MW2-2、MW2-3、及びMW2-4の各々は、異なる組成を有する相変化膜MW2を示している。また、図5は、相変化膜MW2における波長1550nmにおける屈折率(n)および消衰係数(k)と温度変化との関係から校正データ(曲線)の例を示す。 Note that FIG. 4 shows an example of a calibration curve from the relationship between sheet resistance and temperature change in phase change films MW2 having different compositions. In FIG. 4, each of MW2-1, MW2-2, MW2-3, and MW2-4 indicates phase change film MW2 having a different composition. Further, FIG. 5 shows an example of calibration data (curve) from the relationship between the refractive index (n) and extinction coefficient (k) of the phase change film MW2 at a wavelength of 1550 nm and the temperature change.
 以下、本発明の第2実施形態に係る温度測定方法、温度測定装置、及び薄膜形成方法を、図面に基づいて説明する。 A temperature measuring method, a temperature measuring device, and a thin film forming method according to the second embodiment of the present invention will be described below with reference to the drawings.
 図6は、第2実施形態に係る温度測定装置の一例である温度測定用基板を示す模式断面図である。第2実施形態は、相変化膜に関する点で、上述した第1実施形態と異なる。上述した第1実施形態と第2実施形態とが対応する構成には同一の符号を付してその説明を省略する。 FIG. 6 is a schematic cross-sectional view showing a temperature measurement substrate, which is an example of the temperature measurement device according to the second embodiment. The second embodiment differs from the above-described first embodiment in terms of the phase change film. The same reference numerals are given to the configurations corresponding to the above-described first and second embodiments, and the description thereof will be omitted.
 第2実施形態に係る温度測定用基板MWにおいては、図6に示すように、基板MW1に、相変化膜MW2aおよび相変化膜MW2bと、キャップ膜MW3とが積層されている。 In the temperature measurement substrate MW according to the second embodiment, as shown in FIG. 6, the phase change films MW2a and MW2b, and the cap film MW3 are laminated on the substrate MW1.
 基板MW1の全面には、相変化膜MW2aおよび相変化膜MW2bが形成されている。相変化膜MW2aおよび相変化膜MW2bは、アモルファス相と結晶相との間で可逆的な変化が可能な材料であるGST(Ge、Sb、Teを主成分とする合金層)に代表されるカルコゲナイド系材料、および、カルコゲナイド系材料に類似した材料で形成されている。ここで、GST膜は、100℃~600℃に相変化領域を有する組成を有する。GST膜は、相変化に伴ってシート抵抗や光学屈折率が変化する。
 相変化膜MW2aの組成比および相変化膜MW2bの組成比は、互いに異なる。
A phase change film MW2a and a phase change film MW2b are formed over the entire surface of the substrate MW1. The phase-change film MW2a and the phase-change film MW2b are chalcogenide represented by GST (an alloy layer containing Ge, Sb, and Te as main components), which is a material capable of reversibly changing between an amorphous phase and a crystalline phase. and a material similar to a chalcogenide-based material. Here, the GST film has a composition having a phase change region between 100.degree. C. and 600.degree. The GST film changes its sheet resistance and optical refractive index as the phase changes.
The composition ratio of phase change film MW2a and the composition ratio of phase change film MW2b are different from each other.
 相変化膜MW2aと相変化膜MW2bとは、図6に示すように、それぞれ、基板MW1の異なる領域に形成されている。相変化膜MW2aと相変化膜MW2bとは、互いに同じ膜厚を有する。
 図6に示す基板MW1において、相変化膜MW2aの形成される領域と、相変化膜MW2bの形成される領域とは、互いに隣接している。相変化膜MW2aの形成される領域と、相変化膜MW2bの形成される領域とは、互いに離間した状態で形成することもできる。
The phase change films MW2a and MW2b are formed in different regions of the substrate MW1, respectively, as shown in FIG. The phase change film MW2a and the phase change film MW2b have the same film thickness.
In the substrate MW1 shown in FIG. 6, the region where the phase change film MW2a is formed and the region where the phase change film MW2b are formed are adjacent to each other. The region where the phase change film MW2a is formed and the region where the phase change film MW2b is formed can also be formed in a state separated from each other.
 相変化膜MW2aと相変化膜MW2bとは、第1実施形態に係る相変化膜MW2と同様に、アモルファス相と結晶相との間で可逆的な変化が可能な材料であるGST(Ge、Sb、Teを主成分とする合金層)に代表されるカルコゲナイド系材料、および、カルコゲナイド系材料に類似した材料で形成されている。 The phase change film MW2a and the phase change film MW2b are made of GST (Ge, Sb , an alloy layer containing Te as a main component), and a material similar to the chalcogenide material.
 相変化膜MW2aと相変化膜MW2bとは、互いに相変化温度が異なる。つまり、相変化膜MW2aの組成比と相変化膜MW2bの組成比とは異なる。加熱により、設定された測定温度を検出可能なシート抵抗の変化を生じるように、相変化膜MW2a及び相変化膜MW2bの組成比が設定される。相変化膜MW2aの組成比と相変化膜MW2bの組成比とは、図4に示す温度-シート抵抗曲線に基づいて、設定される。 The phase change film MW2a and the phase change film MW2b have different phase change temperatures. That is, the composition ratio of the phase change film MW2a and the composition ratio of the phase change film MW2b are different. The composition ratio of the phase-change film MW2a and the phase-change film MW2b is set so that the heating causes a change in sheet resistance that can be detected at the set measurement temperature. The composition ratio of the phase change film MW2a and the composition ratio of the phase change film MW2b are set based on the temperature-sheet resistance curve shown in FIG.
 相変化膜MW2aと相変化膜MW2bとは、それぞれの領域全域で等しい組成比を有するように形成される。また、第2実施形態に係る相変化膜MW2aと相変化膜MW2bとは、それぞれの領域全体で面内組成分布が等しくなるように形成される。なお、相変化膜MW2aと相変化膜MW2bとは、後述するように、その基板MW1の表面に沿った方向で異なる組成比を有するように、それぞれ形成されてもよい。
 また、相変化膜MW2aと相変化膜MW2bとは、いずれも膜厚方向における全長で等しい組成比を有するように形成される。
The phase change film MW2a and the phase change film MW2b are formed so as to have the same composition ratio throughout their regions. In addition, the phase-change film MW2a and the phase-change film MW2b according to the second embodiment are formed so that the in-plane composition distribution is equal over the respective regions. The phase change film MW2a and the phase change film MW2b may be formed so as to have different composition ratios along the surface of the substrate MW1, as will be described later.
Also, the phase change film MW2a and the phase change film MW2b are both formed to have the same composition ratio over the entire length in the film thickness direction.
 相変化膜MW2aと相変化膜MW2bとは、第1実施形態に係る相変化膜MW2と同様に、膜厚0.5nm~1000μm、より好ましくは、1nm~1000nmとすることができる。 The phase change film MW2a and the phase change film MW2b can have a film thickness of 0.5 nm to 1000 μm, more preferably 1 nm to 1000 nm, like the phase change film MW2 according to the first embodiment.
 第2実施形態に係るキャップ膜MW3は、相変化膜MW2aと相変化膜MW2bとの全面に積層されている。キャップ膜MW3は、基板MW1の全面に積層されている。キャップ膜MW3の表面が、基体10の処理面10aに対応する温度測定面とされる表面MWaである。 The cap film MW3 according to the second embodiment is laminated over the entire surfaces of the phase change films MW2a and MW2b. The cap film MW3 is laminated over the entire surface of the substrate MW1. The surface of the cap film MW3 is the surface MWa corresponding to the processing surface 10a of the substrate 10 and serving as the temperature measurement surface.
 第2実施形態においては、基板MW1の表面は、相変化膜MW2aの形成される領域と、相変化膜MW2bの形成される領域とを有する。相変化膜MW2aの領域と相変化膜MW2bの領域のそれぞれで設定された温度を検出することができる。
 これにより、第2実施形態に係る温度測定用基板MWは、異なる温度を測定することの可能な領域を別々に有することができる。
In the second embodiment, the surface of the substrate MW1 has a region where the phase change film MW2a is formed and a region where the phase change film MW2b is formed. The temperature set in each of the regions of the phase change film MW2a and the phase change film MW2b can be detected.
Thereby, the substrate for temperature measurement MW according to the second embodiment can have separate regions capable of measuring different temperatures.
 したがって、基体10における所定の領域において、それぞれ異なる温度を測定することができる。しかも、基板MW1に成膜する相変化膜MW2a、MW2bの組成を設定することたけで、異なる温度を測定することが可能となる。 Therefore, different temperatures can be measured in predetermined regions of the substrate 10 . Moreover, different temperatures can be measured simply by setting the compositions of the phase change films MW2a and MW2b formed on the substrate MW1.
 第2実施形態においては、例えば、基体10の径方向中央位置において50℃程度の比較的高い温度を測定可能とする。さらに、基体10の径方向外側である周縁位置において50℃程度の中央位置より比較的低い温度を精密に測定可能とすることができる。
 この場合、温度測定用基板MWの径方向中央位置に相変化膜MW2aを形成し、温度測定用基板MWの径方向外側である周縁位置に相変化膜MW2bを形成する。
In the second embodiment, for example, a relatively high temperature of about 50° C. can be measured at the radial center position of the substrate 10 . Furthermore, it is possible to precisely measure a temperature of about 50° C., which is relatively lower than that at the central position, at the radially outer peripheral position of the substrate 10 .
In this case, the phase change film MW2a is formed at the center position in the radial direction of the substrate MW for temperature measurement, and the phase change film MW2b is formed at the outer peripheral position in the radial direction of the substrate MW for temperature measurement.
 第2実施形態においては、組成の異なる2つの相変化膜を用いて、2種類の異なる温度測定を可能とした。3以上の領域で異なる組成比を有する相変化膜を用いて、3以上の領域で異なる温度を測定可能とすることができる。 In the second embodiment, two different temperature measurements are made possible by using two phase change films with different compositions. A phase-change film having different composition ratios in three or more regions can be used to enable measurement of different temperatures in three or more regions.
 さらに、第2実施形態においては、別々の領域において2種類の異なる温度測定を可能としたが、連続的に変化する温度を測定可能とすることができる。
 この場合、領域毎に異なる組成比を有する相変化膜を用いる構成ではなく、基板MW1の表面に沿った方向に組成比が徐々に変化する構成とすることもできる。この場合、較正工程S10において、温度-シート抵抗の関係を得ることは多少複雑になるが、所望の温度を特定の領域で測定することが容易となる。
Furthermore, in the second embodiment, two different temperature measurements are made possible in separate regions, but continuously changing temperatures can be measured.
In this case, instead of using a phase change film having a different composition ratio for each region, it is possible to adopt a structure in which the composition ratio changes gradually along the surface of the substrate MW1. In this case, obtaining the temperature-sheet resistance relationship becomes somewhat more complicated in the calibration step S10, but it becomes easier to measure the desired temperature in a specific region.
 以下、本発明の第3実施形態に係る温度測定方法、温度測定装置、及び薄膜形成方法を、図面に基づいて説明する。 A temperature measuring method, a temperature measuring device, and a thin film forming method according to the third embodiment of the present invention will be described below with reference to the drawings.
 図7は、第3実施形態に係る温度測定装置の一例である温度測定用基板を示す模式断面図である。第3実施形態は、相変化膜に関する点で、上述した第1および第2実施形態と異なる。上述した第1および第2実施形態と第3実施形態とが対応する構成には同一の符号を付してその説明を省略する。 FIG. 7 is a schematic cross-sectional view showing a temperature measurement substrate as an example of the temperature measurement device according to the third embodiment. The third embodiment differs from the above-described first and second embodiments in terms of the phase change film. The same reference numerals are given to the configurations corresponding to the above-described first and second embodiments and the third embodiment, and the description thereof will be omitted.
 第3実施形態に係る温度測定用基板MWにおいては、第1および第2実施形態と異なり、図7に示すように、相変化膜MW2cは、基板MW1に対して、部分的に形成されている。第3実施形態に係る温度測定用基板MWにおいては、相変化膜MW2cの形成された領域が温度測定領域である。これ以外の温度測定用基板MWの構成は、処理温度測定加熱工程S32において処理される基体10と同等である。したがって、温度測定をおこないたい部分以外における構成の差が少なく、より正確な温度測定を特定の位置でおこなうことが可能となる。 In the temperature measurement substrate MW according to the third embodiment, unlike the first and second embodiments, as shown in FIG. 7, the phase change film MW2c is partially formed with respect to the substrate MW1. . In the temperature measurement substrate MW according to the third embodiment, the region where the phase change film MW2c is formed is the temperature measurement region. Other configurations of the temperature measurement substrate MW are the same as those of the substrate 10 processed in the processing temperature measurement heating step S32. Therefore, there is little difference in the configuration other than the portion where temperature measurement is desired, and more accurate temperature measurement can be performed at a specific position.
 相変化膜MW2cは、第1実施形態に係る相変化膜MW2と同等の材質からなる膜とされている。
 第3実施形態に係る相変化膜MW2cは、例えば、基体10の径方向中央位置にのみ形成することができる。
 あるいは、基体10の径方向外側である周縁位置のみに形成することもできる。
The phase change film MW2c is made of the same material as the phase change film MW2 according to the first embodiment.
The phase change film MW2c according to the third embodiment can be formed, for example, only at the center position in the radial direction of the substrate 10 .
Alternatively, it can be formed only at the radially outer peripheral position of the substrate 10 .
 さらに、第3実施形態に係る相変化膜MW2cは、一箇所ではなく、複数の領域に断続的に形成することもできる。
 この場合、複数の領域に形成された相変化膜MW2cの組成比は、互いに同じであってもよい。第2実施形態と同様に、複数の領域に形成された相変化膜MW2cの組成比がそれぞれ異なってもよい。
Furthermore, the phase change film MW2c according to the third embodiment can be intermittently formed in a plurality of regions instead of in one place.
In this case, the composition ratios of the phase change films MW2c formed in the plurality of regions may be the same. As in the second embodiment, the composition ratios of the phase change films MW2c formed in the plurality of regions may be different.
 第3実施形態に係るキャップ膜MW3は、相変化膜MW2の形成された領域および相変化膜MW2の形成されていない領域との全面に積層されている。キャップ膜MW3は、基板MW1の全面に積層されている。キャップ膜MW3の表面が、基体10の処理面10aに対応する温度測定面とされる表面MWaである。
 なお、キャップ膜MW3は、相変化膜MW2の形成された領域、および、相変化膜MW2の形成された領域の周囲のみに形成することもできる。
The cap film MW3 according to the third embodiment is laminated on the entire surface of the region where the phase change film MW2 is formed and the region where the phase change film MW2 is not formed. The cap film MW3 is laminated over the entire surface of the substrate MW1. The surface of the cap film MW3 is the surface MWa corresponding to the processing surface 10a of the substrate 10 and serving as the temperature measurement surface.
Note that the cap film MW3 can also be formed only on the region where the phase change film MW2 is formed and around the region where the phase change film MW2 is formed.
 第3実施形態においては、上述した実施形態と同等の効果を奏することができる。さらに、第3実施形態においては、最終的にデバイスとなる基板上のデバイス領域において、互いに異なる材質における温度の直接測定ができるという効果を奏することができる。 In the third embodiment, the same effects as those of the above-described embodiments can be obtained. Furthermore, in the third embodiment, it is possible to directly measure the temperatures of different materials in the device region on the substrate that will eventually become the device.
 以下、本発明の第4実施形態に係る温度測定方法、温度測定装置、及び薄膜形成方法を、図面に基づいて説明する。 A temperature measuring method, a temperature measuring device, and a thin film forming method according to the fourth embodiment of the present invention will be described below with reference to the drawings.
 図8は、第4実施形態に係る温度測定装置の一例である温度測定用基板を示す模式断面図である。第4実施形態は、絶縁膜に関する点で、上述した第1から第3実施形態と異なる。上述した第1から第3実施形態と第4実施形態とが対応する構成には同一の符号を付してその説明を省略する。 FIG. 8 is a schematic cross-sectional view showing a temperature measurement substrate as an example of the temperature measurement device according to the fourth embodiment. The fourth embodiment differs from the above-described first to third embodiments in terms of the insulating film. The same reference numerals are assigned to the configurations corresponding to the first to third embodiments and the fourth embodiment, and descriptions thereof will be omitted.
 第4実施形態に係る温度測定用基板MWにおいては、図8に示すように、基板MW1と相変化膜MW2との間には、絶縁膜MW4が積層されている。
 絶縁膜MW4は、相変化膜MW2におけるシート抵抗測定に際して、基板MW1で局地的な特性が影響しないように形成される。絶縁膜MW4は、例えば、シリコン酸化膜、シリコン窒化膜、ハフニウム酸化膜、ハフニウム窒化膜、炭化シリコン酸化物、炭化シリコン、フッ素ドープシリコン酸化物、アルミナ、窒化アルミニウムとされる。
 また、第4実施形態における絶縁膜MW4は、膜厚0.5nm~10000μm、より好ましくは、10nm~1000nmとすることができる。
 絶縁膜MW4は、基板MW1の全面に積層されている。
In the temperature measurement substrate MW according to the fourth embodiment, as shown in FIG. 8, an insulating film MW4 is laminated between the substrate MW1 and the phase change film MW2.
The insulating film MW4 is formed so that local characteristics do not affect the substrate MW1 when measuring the sheet resistance of the phase change film MW2. The insulating film MW4 is, for example, silicon oxide film, silicon nitride film, hafnium oxide film, hafnium nitride film, silicon carbide oxide, silicon carbide, fluorine-doped silicon oxide, alumina, or aluminum nitride.
Further, the insulating film MW4 in the fourth embodiment can have a film thickness of 0.5 nm to 10000 μm, more preferably 10 nm to 1000 nm.
The insulating film MW4 is stacked over the entire surface of the substrate MW1.
 第4実施形態に係る温度測定用基板MWにおいては、相変化膜MW2の積層される基板MW1が、基板MW1の表面において相変化膜MW2におけるシート抵抗測定に影響を与える面内導電性分布を有していたとしても、シート抵抗測定工程S33におけるシート抵抗測定に影響を与えることを防止できる。
 例えば、ベアのシリコン基板ではなく、配線、N領域、P領域等の形成されている基板MW1であっても、配線や領域が絶縁膜MW4によって覆われているため、シート抵抗測定工程S33におけるシート抵抗測定に影響を与えることを防止できる。
In the temperature measurement substrate MW according to the fourth embodiment, the substrate MW1 on which the phase change film MW2 is laminated has an in-plane conductivity distribution on the surface of the substrate MW1 that affects the sheet resistance measurement of the phase change film MW2. Even if it does, it is possible to prevent the sheet resistance measurement in the sheet resistance measurement step S33 from being affected.
For example, even if the substrate MW1 is not a bare silicon substrate but has wirings, an N region, a P region, etc., the wirings and regions are covered with the insulating film MW4. It is possible to prevent the resistance measurement from being affected.
 第4実施形態においては、上述した実施形態と同等の効果を奏することができる。さらに、第4実施形態においては、導電性基材、導電性膜上でも測定できるという効果を奏することができる。  In the fourth embodiment, the same effects as those of the above-described embodiments can be obtained. Furthermore, in the fourth embodiment, it is possible to obtain the effect that the measurement can be performed even on a conductive substrate or a conductive film.
 以下、本発明の第5実施形態に係る温度測定方法、温度測定装置、及び薄膜形成方法を、図面に基づいて説明する。 A temperature measuring method, a temperature measuring device, and a thin film forming method according to a fifth embodiment of the present invention will be described below with reference to the drawings.
 図9は、第5実施形態に係る温度測定装置の一例である温度測定用基板を示す模式断面図である。第5実施形態は、相変化膜の位置に関する点で、上述した第1から第4実施形態と異なる。上述した第1から第4実施形態と対応する構成には同一の符号を付してその説明を省略する。 FIG. 9 is a schematic cross-sectional view showing a temperature measurement substrate as an example of the temperature measurement device according to the fifth embodiment. The fifth embodiment differs from the above-described first to fourth embodiments in terms of the position of the phase change film. The same reference numerals are assigned to the configurations corresponding to those of the first to fourth embodiments described above, and the description thereof is omitted.
 第5実施形態に係る温度測定用基板MWにおいては、図9に示すように、相変化膜MW2が、基板MW1において基体10の処理面10aに対応する温度測定面とされる表面MWaとは反対位置である裏面に形成されている。
 第5実施形態における温度測定用基板MWにおいては、図9に示すように、キャップ膜MW3が形成されていない。これは、相変化膜MW2が形成されている面がプラズマ処理面となる表面MWaではないため、プラズマが相変化膜MW2には影響しない。これにより、相変化膜MW2を保護する必要がないためである。
In the temperature measurement substrate MW according to the fifth embodiment, as shown in FIG. 9, the phase change film MW2 is opposite to the surface MWa, which is the temperature measurement surface corresponding to the processing surface 10a of the substrate 10 in the substrate MW1. It is formed on the back side which is the position.
In the substrate for temperature measurement MW in the fifth embodiment, as shown in FIG. 9, the cap film MW3 is not formed. This is because the surface on which the phase change film MW2 is formed is not the surface MWa to be the plasma-treated surface, so the plasma does not affect the phase change film MW2. This is because there is no need to protect the phase change film MW2.
 また、相変化膜MW2が形成されている面が、温度測定用基板MWのステージ15に接する面であるため、第5実施形態においては、厳密に言うと、測定される温度分布は、温度測定用基板MWのステージ15に接する面における面内温度分布となる。例えば、基板MW1がシリコン単結晶からなるベアウェーハである場合には、シリコンウェーハの厚さに応じた補正をおこなうことで、被処理面である表面MWaにおける温度分布を測定することも可能である。 Further, since the surface on which the phase change film MW2 is formed is the surface of the temperature measurement substrate MW that contacts the stage 15, strictly speaking, in the fifth embodiment, the measured temperature distribution This is the in-plane temperature distribution on the surface of the substrate MW that is in contact with the stage 15 . For example, when the substrate MW1 is a bare wafer made of silicon single crystal, it is possible to measure the temperature distribution on the surface MWa, which is the surface to be processed, by performing correction according to the thickness of the silicon wafer. .
 また、基板MW1が例えば、1mm以下の厚さであるガラス基板である場合には、ほぼ、表面MWaの温度に近似可能な温度分布をそのまま測定することが可能である。
 この場合、ガラス基板である基体10の処理面を鉛直方向に対して平行にして処理を行う縦型処理の装置における温度測定をおこなう際などに適用することができる。
Further, if the substrate MW1 is, for example, a glass substrate having a thickness of 1 mm or less, it is possible to measure the temperature distribution that can be approximated to the temperature of the surface MWa as it is.
In this case, it can be applied to temperature measurement in a vertical processing apparatus in which processing is performed with the processing surface of the substrate 10, which is a glass substrate, parallel to the vertical direction.
 また、第5実施形態においては、例えば、FPD用の大きなガラス基板である基体10を測定対象とする場合、温度測定用基板MWも同じ大きさとする必要があるが、相変化膜MW2を大型基板に部分的に形成することもできる。 Further, in the fifth embodiment, for example, when the substrate 10, which is a large glass substrate for FPD, is to be measured, the temperature measurement substrate MW needs to be of the same size. can also be partially formed in the
 第5実施形態においては、上述した実施形態と同等の効果を奏することができる。さらに、第5実施形態においては、基材による横方向の熱伝搬を介しないため、温度分布の差をより顕著に評価することができるという効果を奏することができる。 In the fifth embodiment, the same effects as those of the above-described embodiments can be obtained. Furthermore, in the fifth embodiment, since heat propagation in the lateral direction by the base material is not mediated, it is possible to obtain an effect that the difference in temperature distribution can be evaluated more remarkably.
 なお、第5実施形態においては、第2~4実施形態と同様の形状を採用することもできる。具体的には、上述した実施形態の各構成を、裏面に配置することもできる。
 例えば、図10に示すように、相変化膜MW2が、基板MW1において基体10の処理面10aに対応する温度測定面とされる表面MWaとは反対位置である裏面に形成されており、基板MW1と相変化膜MW2との間には、絶縁膜MW4が積層されている。ここで、キャップ膜MW3が形成されてもよく、また、キャップ膜MW3が形成されていないこともできる。
In addition, in the fifth embodiment, shapes similar to those in the second to fourth embodiments can be adopted. Specifically, each configuration of the above-described embodiments can also be arranged on the back surface.
For example, as shown in FIG. 10, the phase change film MW2 is formed on the back surface of the substrate MW1 opposite to the surface MWa serving as the temperature measurement surface corresponding to the processing surface 10a of the substrate 10. and the phase change film MW2, an insulating film MW4 is stacked. Here, the cap film MW3 may be formed, or the cap film MW3 may not be formed.
 また、上述した各実施形態におけるそれぞれの構成を、個別に組み合わせた構成とすることもできる。 In addition, each configuration in each of the above-described embodiments can be individually combined.
1…プラズマCVD装置
MW…温度測定用基板
MW1…基板
MW2、MW2a、MW2b、MW2c…相変化膜
MW3…キャップ膜
MW4…絶縁膜
DESCRIPTION OF SYMBOLS 1...Plasma CVD apparatus MW...Substrate for temperature measurement MW1...Substrates MW2, MW2a, MW2b, MW2c...Phase change film MW3...Cap film MW4...Insulating film

Claims (15)

  1.  到達温度の変化によって物理量が変化する相変化膜が積層された温度測定用基板を熱処理し、
     前記温度測定用基板を熱処理した後に前記相変化膜の物理量を測定することによって測定物理量を得て、
     前記測定物理量と、予め求めていた物理量及び温度の関係とに基づいて、前記温度測定用基板の熱処理における前記温度測定用基板の温度および温度分布を求める、
     温度測定方法。
    heat-treating a substrate for temperature measurement on which a phase-change film whose physical quantity changes according to a change in temperature is laminated;
    Obtaining a measured physical quantity by measuring a physical quantity of the phase change film after heat-treating the substrate for temperature measurement,
    Obtaining the temperature and temperature distribution of the temperature measurement substrate during heat treatment of the temperature measurement substrate based on the measured physical quantity and the previously obtained relationship between the physical quantity and the temperature;
    temperature measurement method.
  2.  前記測定物理量および前記関係の前記物理量は、シート抵抗、光学屈折率、消衰係数のいずれか1つである、
     請求項1に記載の温度測定方法。
    The measured physical quantity and the physical quantity of the relationship are any one of sheet resistance, optical refractive index, and extinction coefficient.
    The temperature measuring method according to claim 1.
  3.  前記相変化膜における温度履歴を初期化する、
     請求項1又は請求項2に記載の温度測定方法。
    initializing the temperature history in the phase change film;
    The temperature measuring method according to claim 1 or 2.
  4.  前記相変化膜における前記温度履歴を初期化する際には、
     前記相変化膜における前記温度履歴を初期化するために前記相変化膜を加熱し、
     前記相変化膜を急冷することにより前記相変化膜において相変化を生じさせる、
     請求項3に記載の温度測定方法。
    When initializing the temperature history in the phase change film,
    heating the phase change film to initialize the temperature history in the phase change film;
    causing a phase change in the phase change film by quenching the phase change film;
    The temperature measuring method according to claim 3.
  5.  前記温度測定用基板の熱処理においては、前記温度履歴が初期化された前記相変化膜を有する前記温度測定用基板を用いる、
     請求項3又は請求項4に記載の温度測定方法。
    In the heat treatment of the temperature measurement substrate, the temperature measurement substrate having the phase change film with the temperature history initialized is used.
    The temperature measuring method according to claim 3 or 4.
  6.  前記温度履歴が初期化された前記相変化膜を有する前記温度測定用基板を繰り返し用いる、
     請求項3又は請求項4に記載の温度測定方法。
    repeatedly using the temperature measurement substrate having the phase change film with the temperature history initialized;
    The temperature measuring method according to claim 3 or 4.
  7.  前記温度測定用基板の表面における物理量及び温度の関係を予め求める、
     請求項1から請求項6のいずれか一項に記載の温度測定方法。
    Obtaining in advance a relationship between a physical quantity and a temperature on the surface of the substrate for temperature measurement;
    The temperature measuring method according to any one of claims 1 to 6.
  8.  前記温度測定用基板の表面における物理量及び温度の関係を予め求める際には、
     前記温度測定用基板を所定の到達温度まで加熱して恒温状態に維持し、
     前記温度測定用基板の前記相変化膜における物理量を測定し、
     前記温度測定用基板を所定の到達温度まで加熱して恒温状態に維持する到達温度と、前記温度測定用基板の前記相変化膜における物理量を測定することで得られた前記相変化膜の前記測定物理量とから、前記相変化膜における物理量及び温度の関係を導出する、
     請求項7に記載の温度測定方法。
    When determining in advance the relationship between the physical quantity and the temperature on the surface of the substrate for temperature measurement,
    heating the substrate for temperature measurement to a predetermined temperature and maintaining a constant temperature;
    measuring a physical quantity in the phase change film of the substrate for temperature measurement;
    The measurement of the phase-change film obtained by measuring the attained temperature for heating the temperature-measuring substrate to a predetermined attained temperature and maintaining it in a constant temperature state, and measuring the physical quantity of the phase-change film of the temperature-measuring substrate. deriving the relationship between the physical quantity and the temperature in the phase change film from the physical quantity;
    The temperature measurement method according to claim 7.
  9.  前記相変化膜が、アモルファス相と結晶相との間で可逆的な変化が可能なカルコゲナイド系合金で形成されており、
     前記温度履歴を初期化するために前記相変化膜を加熱する加熱温度が、前記相変化膜が積層された前記温度測定用基板の熱処理における温度範囲よりも高く設定される、
     請求項4に記載の温度測定方法。
    wherein the phase change film is formed of a chalcogenide alloy capable of reversibly changing between an amorphous phase and a crystalline phase;
    A heating temperature for heating the phase change film to initialize the temperature history is set higher than a temperature range in heat treatment of the temperature measurement substrate on which the phase change film is laminated.
    The temperature measuring method according to claim 4.
  10.  前記相変化膜が、Ge、Sb、Teから選択されたいずれか2つ以上を主成分とする合金で形成されており、
     前記相変化膜が積層された温度測定用基板の熱処理における温度範囲が、100℃~600℃である、
     請求項9に記載の温度測定方法。
    wherein the phase change film is made of an alloy containing two or more selected from Ge, Sb, and Te as main components;
    The temperature range in the heat treatment of the substrate for temperature measurement on which the phase change film is laminated is 100° C. to 600° C.
    The temperature measuring method according to claim 9.
  11.  相変化膜が積層された温度測定用基板を備え、
     前記相変化膜は、アモルファス相と結晶相との間で可逆的な変化が可能な材料であるGe、Sb、Teから選択されたいずれか2つ以上を主成分とするカルコゲナイド系合金で形成されている、
     温度測定装置。
    Equipped with a substrate for temperature measurement on which a phase change film is laminated,
    The phase-change film is formed of a chalcogenide-based alloy containing at least two selected from Ge, Sb, and Te, which are materials capable of reversibly changing between an amorphous phase and a crystalline phase. ing,
    Temperature measuring device.
  12.  前記温度測定用基板は、前記相変化膜に積層されたキャップ膜を備える、
     請求項11に記載の温度測定装置。
    The temperature measurement substrate comprises a cap film laminated on the phase change film,
    A temperature measurement device according to claim 11 .
  13.  前記温度測定用基板と前記相変化膜との間に設けられた絶縁膜を備える、
     請求項11又は請求項12に記載の温度測定装置。
    an insulating film provided between the temperature measurement substrate and the phase change film;
    The temperature measuring device according to claim 11 or 12.
  14.  請求項1から請求項10のいずれか一項に記載の温度測定方法によって測定した温度に基づいて設定された基板面内温度分布を用いて成膜を行う、
     薄膜形成方法。
    Film formation using a substrate in-plane temperature distribution set based on the temperature measured by the temperature measurement method according to any one of claims 1 to 10,
    Thin film forming method.
  15.  請求項11から請求項13のいずれか一項に記載の温度測定装置を用いて測定した温度に基づいて設定された基板面内温度分布を用いて成膜を行う、
     薄膜形成方法。
    Film formation using a substrate in-plane temperature distribution set based on the temperature measured using the temperature measuring device according to any one of claims 11 to 13,
    Thin film formation method.
PCT/JP2022/003293 2021-02-01 2022-01-28 Temperature measurement method, temperature measurement device, and thin film formation method WO2022163806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-014575 2021-02-01
JP2021014575 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022163806A1 true WO2022163806A1 (en) 2022-08-04

Family

ID=82653505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003293 WO2022163806A1 (en) 2021-02-01 2022-01-28 Temperature measurement method, temperature measurement device, and thin film formation method

Country Status (2)

Country Link
TW (1) TW202240136A (en)
WO (1) WO2022163806A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208524A (en) * 1999-01-13 2000-07-28 Tokyo Electron Ltd Method for measuring temperature of semiconductor wafer for temperature monitor
JP2002289614A (en) * 2001-03-26 2002-10-04 Nec Corp Methods for evaluating dielectric film, calibrating temperature of thermal treatment equipment, and manufacturing semiconductor memory device
JP2003022981A (en) * 2001-05-31 2003-01-24 Chartered Semiconductor Mfg Ltd Method for controlling and/or correcting rtp low temperature operation by using refractory metal silicidation phase transition temperature point
JP2005333032A (en) * 2004-05-20 2005-12-02 Tokyo Electron Ltd Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
JP2007046091A (en) * 2005-08-09 2007-02-22 Canon Inc Temperature control device in vacuum vessel, and thin film deposition method
US20100254425A1 (en) * 2007-06-29 2010-10-07 International Business Machines Corporation Phase change material based temperature sensor
JP2012094875A (en) * 2005-04-01 2012-05-17 Lam Research Corporation Accurate temperature measurement for semiconductor application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208524A (en) * 1999-01-13 2000-07-28 Tokyo Electron Ltd Method for measuring temperature of semiconductor wafer for temperature monitor
JP2002289614A (en) * 2001-03-26 2002-10-04 Nec Corp Methods for evaluating dielectric film, calibrating temperature of thermal treatment equipment, and manufacturing semiconductor memory device
JP2003022981A (en) * 2001-05-31 2003-01-24 Chartered Semiconductor Mfg Ltd Method for controlling and/or correcting rtp low temperature operation by using refractory metal silicidation phase transition temperature point
JP2005333032A (en) * 2004-05-20 2005-12-02 Tokyo Electron Ltd Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
JP2012094875A (en) * 2005-04-01 2012-05-17 Lam Research Corporation Accurate temperature measurement for semiconductor application
JP2007046091A (en) * 2005-08-09 2007-02-22 Canon Inc Temperature control device in vacuum vessel, and thin film deposition method
US20100254425A1 (en) * 2007-06-29 2010-10-07 International Business Machines Corporation Phase change material based temperature sensor

Also Published As

Publication number Publication date
TW202240136A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
JP2981102B2 (en) Method for manufacturing thin film transistor
CN110709964B (en) Process integration method for adjusting resistivity of nickel silicide
TWI362063B (en)
JP5357240B2 (en) Aminovinylsilane for CVD and ALD SiO2 films
KR100934169B1 (en) Improved process for deposition of semiconductor films
EP1899498B1 (en) Method for manufacturing flat substrates
US20170051402A1 (en) Susceptor and substrate processing apparatus
US7923357B2 (en) Method for forming poly-silicon film
JPH06283454A (en) Method for deposition of silicon nitride thin film at high deposition speed on large-area glass substrate by cvd
US20110223694A1 (en) Method of manufacturing silicon carbide semiconductor device
US7884010B2 (en) Wiring structure and method for fabricating the same
KR20110086083A (en) Semiconductor storage element manufacturing method and sputter device
WO2011056710A2 (en) Thin film transistors having multiple doped silicon layers
KR100733443B1 (en) Silicon member and method of manufacturing the same
TWI782094B (en) Methods and apparatus for filling substrate features with cobalt
US20050006556A1 (en) In situ substrate holder leveling method and apparatus
WO2022163806A1 (en) Temperature measurement method, temperature measurement device, and thin film formation method
TWI690077B (en) Display apparatus and apparatus and method of manufacturing the display apparatus
Shen et al. Fabrication of a low resistivity tantalum nitride thin film
US9846084B2 (en) Vacuum heat treatment apparatus
US10950448B2 (en) Film quality control in a linear scan physical vapor deposition process
JP2000058529A (en) Chemical vapor deposition device and manufacture of semiconductor device
CN112820795A (en) Amorphous silicon material resistivity adjusting method
JP2010236040A (en) Film deposition system
KR100657138B1 (en) Temperature correction method of CVD TiN apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746025

Country of ref document: EP

Kind code of ref document: A1