WO2022163796A1 - Thermoplastic elastomer composition and method for producing same, and molded article - Google Patents

Thermoplastic elastomer composition and method for producing same, and molded article Download PDF

Info

Publication number
WO2022163796A1
WO2022163796A1 PCT/JP2022/003230 JP2022003230W WO2022163796A1 WO 2022163796 A1 WO2022163796 A1 WO 2022163796A1 JP 2022003230 W JP2022003230 W JP 2022003230W WO 2022163796 A1 WO2022163796 A1 WO 2022163796A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
elastomer composition
resin
styrene
polyurethane
Prior art date
Application number
PCT/JP2022/003230
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 知野
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2022163796A1 publication Critical patent/WO2022163796A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a thermoplastic elastomer composition and a method for producing the same.
  • the present invention also relates to a molded article using the thermoplastic elastomer composition.
  • thermoplastic elastomer composition is an industrially extremely useful material because it melts at a processing temperature during molding and can be molded by a well-known resin molding method.
  • thermoplastic elastomers have been widely used in various applications such as automobile parts, household appliance parts, medical parts, and daily necessities.
  • thermoplastic elastomer compositions with excellent flexibility and moldability have been proposed so that they can be applied to various uses.
  • a thermoplastic polyurethane elastomer (b) a polymer block (A) mainly composed of a vinyl aromatic compound and a conjugated diene polymer or a vinyl aromatic compound and a conjugated diene A (A)-(B) or (A)-(B)-(A) block copolymer consisting of a random copolymer block (B) with or a vinyl aromatic consisting of a vinyl aromatic compound and a conjugated diene
  • a thermoplastic elastomer composition containing (A)-(B)-(C) block copolymer consisting of tapered blocks (C) in which group compounds gradually increase, and (C) 0 to 98% by weight of a polyolefin polymer.
  • Patent Document 2 (A) polyurethane elastomer: 100 parts by weight; A thermoplastic elastomer composition is proposed containing 10-40 weight percent ⁇ -olefin comonomer having 1 carbon atom and 10-900 weight parts of a metallocene polyolefin copolymerized with ethylene.
  • Patent Document 3 proposes a styrene-based thermoplastic elastomer composition characterized by containing a styrene-based block copolymer (A), polypropylene (B), and a polyurethane-based thermoplastic elastomer (C).
  • thermoplastic elastomer composition there is a trade-off relationship between resistance to compression set and fluidity during melt molding.
  • Patent Documents 1 to 3 a thermoplastic elastomer composition is obtained by kneading polyurethane with another resin such as polyolefin.
  • polyurethane polyurethane
  • an object of the present invention is to provide a thermoplastic elastomer composition that has excellent resistance to compression set and excellent fluidity during melt molding.
  • the inventors of the present invention have made intensive studies to solve the above problems, and found that the content of a specific polyurethane-based resin in a thermoplastic elastomer composition containing a specific polyurethane-based resin and a polyolefin-based thermoplastic resin is adjusted. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
  • thermoplastic elastomer composition comprising a polyurethane resin and a polyolefin thermoplastic resin
  • the polyurethane resin is a reaction product of a polymer containing two or more hydroxyl groups and/or amino groups and a polyisocyanate containing two or more isocyanate groups, and the number of hydroxyl groups and/or amino groups of the polymer and the polyisocyanate At least one of the number of isocyanate groups of is 3 or more
  • a thermoplastic elastomer composition is provided in which the content of the polyurethane resin is 0.1% by mass or more and 60% by mass or less with respect to the total amount of the thermoplastic elastomer composition.
  • the polyurethane-based resin has a three-dimensional network structure, and the polyolefin-based thermoplastic resin is infiltrated into the three-dimensional network structure of the polyurethane-based resin.
  • thermoplastic elastomer composition further contains a styrenic block copolymer.
  • the styrenic block copolymer is a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a styrene-isoprene-butadiene-styrene block copolymer, a styrene- At least one selected from the group consisting of ethylene-butylene-styrene block copolymers, styrene-ethylene-propylene-styrene block copolymers, and styrene-ethylene-ethylene-propylene-styrene block copolymers. preferable.
  • thermoplastic elastomer composition preferably further contains process oil.
  • the process oil is preferably paraffin oil.
  • the polymer is preferably a hydrocarbon-based polymer.
  • the hydrocarbon-based polymer is preferably polybutadiene and/or hydrogenated products thereof.
  • the polyolefin thermoplastic resin is preferably polyethylene and/or polypropylene.
  • thermoplastic elastomer composition (i) mixing a polymer containing at least two or more hydroxyl groups and/or amino groups with a polyolefin thermoplastic resin to obtain a mixture; (ii) further adding a polyisocyanate containing two or more isocyanate groups to the resulting mixture and allowing it to react to form a polyurethane-based resin; including Provided is a method for producing a thermoplastic elastomer composition, wherein at least one of the number of hydroxyl groups and/or amino groups in the polymer and the number of isocyanate groups in the polyisocyanate is 3 or more.
  • thermoplastic elastomer composition there is provided a molded article using the above thermoplastic elastomer composition.
  • thermoplastic elastomer composition that is excellent in resistance to compression set and fluidity during melt molding. Further, according to the present invention, it is possible to provide a method for producing such a thermoplastic elastomer composition. Furthermore, according to the present invention, it is possible to provide a molded article using such a thermoplastic elastomer composition.
  • thermoplastic elastomer composition contains a specific resin component and may further contain additives.
  • the thermoplastic elastomer composition is excellent in resistance to compression set and fluidity during melt molding, and is therefore suitable for rubber parts for automobiles, machinery, electricity and houses, especially for automobile interiors and house interiors.
  • Each component contained in the thermoplastic elastomer composition will be described in detail below.
  • thermoplastic elastomer composition contains at least a polyurethane resin and a polyolefin thermoplastic resin as resin components, and may further contain a styrene block copolymer. Each resin component will be described in detail below.
  • polyurethane resin Polyurethane-based resins in the present invention are polyurethane, polyurea, and polyurethaneurea.
  • a polyurethane resin is a reaction product of a polymer containing two or more hydroxyl groups and/or amino groups (primary and secondary) and a polyisocyanate containing two or more isocyanate groups, and the hydroxyl groups and/or At least one of the number of amino groups (primary and secondary) and the number of isocyanate groups of the polyisocyanate is 3 or more.
  • Such a polyurethane resin preferably has a three-dimensional network structure.
  • the resulting polyurethane-based resin is three-dimensionally bonded, and other resin components, plasticizers, and the like can be introduced into the three-dimensional network structure of the polyurethane-based resin.
  • the glass transition point of the polyurethane-based resin is preferably 25° C. or lower so that the composition containing the polyurethane-based resin becomes a thermoplastic elastomer.
  • a hydrocarbon polymer containing two or more hydroxyl groups and/or amino groups is preferably used as the polymer containing two or more hydroxyl groups and/or amino groups for synthesis of the polyurethane resin.
  • Hydrocarbon polymers containing two or more hydroxyl groups include polyester polyols, polyether polyols, polycarbonate polyols, polybutadiene polyols and hydrogenated products thereof, acrylic polyols, polymer polyols, and the like. Among these, polybutadiene polyol and hydrogenated products thereof are preferred because of their low polarity.
  • Hydrocarbon polymers containing two or more amino groups include low molecular weight amines such as diethylenetriamine (DETA) and triethylenetetramine (TETA), or aliphatic urea and diethyltoluene diamine (DETDA ), dimethylthiotoluenediamine (DMTDA), or N,N'-di(sec.butyl)-aminobiphenylmethane (DBMDA), polyetheramine, polyoxypropylenediamine, triethyleneglycoldiamine, trimethylolpropane poly(oxypropylene)triamine, glycerylpoly(oxypropylene)triamine, polyethyleneimine and the like.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • DETDA diethyltoluene diamine
  • DMTDA dimethylthiotoluenediamine
  • DBMDA N,N'-di(sec.butyl)-aminobiphenylmethane
  • the number average molecular weight (Mn) of the polymer containing two or more hydroxyl groups and/or amino groups (primary and secondary) is preferably 500 or more and 100000 or less, more preferably 800 or more and 50000 or less, It is more preferably 1000 or more and 10000 or less.
  • the number average molecular weight (Mn) of the polymer can be determined by a so-called gel permeation chromatography (GPC) method. If the number average molecular weight (Mn) of the polymer is within the above numerical range, a thermoplastic elastomer composition having excellent fluidity during melt molding can be obtained.
  • a commercial product may be used as the polymer containing two or more hydroxyl groups.
  • Commercially available products include, for example, CrayValley brand names "Krasol HLBHP3000”, “Krasol LBHP3000”, “Krasol LBH3000”, “Krasol HLBHP2000”, “Krasol LBHP2000”, “Krasol LBH2000”, “Polybd Lbd, HPtolbd R45" R45V", “Polybd R20LM”; trade names "G-1000", “G-2000”, “G-3000”, “GI-1000", “GI-2000”, “GI-3000” manufactured by Nippon Soda Co., Ltd. ; Trade name “PPG3000” manufactured by Wako Pure Chemical Industries, Ltd., etc. can be used.
  • a commercial product may be used as the polymer containing two or more amino groups.
  • Commercially available products include, for example, Jeffamine D series, Jeffamine ED series, Jeffamine EDR series, Jeffamine T series, Elastamine RT series manufactured by HUNTSMAN, USA; 1000 or the like can be used.
  • Polyisocyanate Polyisocyanates containing two isocyanate groups used for synthesis of polyurethane resins include, for example, 4,4′-diphenylmethane diisocyanate (monomeric/polymeric MDI), tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), Aromatic diisocyanates such as naphthalene diisocyanate (NDI); Alicyclic diisocyanates; aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHMDI), 1,5-pentamethylene diisocyanate (PDI), and the like.
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI tolylene diisocyanate
  • XDI xylylene diisocyanate
  • Aromatic diisocyanates such as naphthalene diisocyanate (
  • polyisocyanates containing three or more isocyanate groups include aliphatic polyhydric alcohol adducts, burettes, and isocyanurates of these diisocyanates.
  • the aliphatic polyhydric alcohol used in the adduct preferably has 2 to 5 carbon atoms, such as trimethylolpropane and glycerin. These polyisocyanates may be used singly or in combination of two or more.
  • a commercially available product may be used as the polyisocyanate.
  • Commercially available products include, for example, Mitsui Chemicals' product names "Takenate D-110N, D-120N", “Takenate 500, 600", “Fortimo H6XDI”, “Stabio PDI”, “Stabio 370N, 376N”, and “Takenate D-170N”. , D-131N”, etc., trade names manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd. “Cosmonate MDI, PH, LK, LL”, “Cosmonate MDI, M-50, 100, 200”, “Actocol TL, DL, ML , EDL, EPL, DN” and the like can be used.
  • the blending amount of the polymer and the polyisocyanate is preferably 0.2 or more and 5.0 or less, and preferably 0.5 or more, of the isocyanate groups of the polyisocyanate per one hydroxyl group and/or amino group of the polymer. It is preferably 3.0 or less, and preferably 0.7 or more and 2.0 or less. When the blending amount of the polymer and the polyisocyanate is within the above range, the reactivity becomes good.
  • the content of the polyurethane resin is 0.1% by mass or more and 60% by mass or less, preferably 0.5% by mass or more and 55% by mass or less, more preferably 1 It is more than mass % and below 50 mass %.
  • a thermoplastic elastomer composition having excellent resistance to compression set and excellent fluidity during melt molding can be obtained.
  • polyolefin thermoplastic resin Polyolefin-based thermoplastic resins are not particularly limited, and conventionally known polyolefins can be used. Examples of polyolefins include ethylene, propylene, butene-1, pentene-1, 2-methylbutene-1, 3-methylbutene-1, hexene-1, 3-methylpentene-1, 4-methylpentene-1, 3, 3-dimethylbutene-1, heptene-1, methylhexene-1, dimethylpentene-1, trimethylbutene-1, ethylpentene-1, octene-1, methylpentene-1, dimethylhexene-1, trimethylpentene-1, Ethylhexene-1, methylethylpentene-1, diethylbutene-1, ptopyrpentene-1, decene-1, methylnonene-1, dimethyloctene-1, trimethylheptene-1, ethylocten
  • polyethylene and polypropylene are preferred.
  • These polyolefins may be used singly or in combination of two or more.
  • Such a polyolefin-based thermoplastic resin preferably penetrates into the three-dimensional network structure of the polyurethane-based resin to provide a thermoplastic elastomer composition having excellent resistance to compression set and excellent fluidity during melt molding. be able to.
  • the content of the polyolefin thermoplastic resin is preferably 5 parts by mass or more and 3000 parts by mass or less, more preferably 10 parts by mass or more and 2000 parts by mass or less, and still more preferably It is 20 parts by mass or more and 1500 parts by mass or less.
  • a thermoplastic elastomer composition having excellent resistance to compression set and excellent fluidity during melt molding can be obtained.
  • the thermoplastic elastomer composition preferably contains a styrenic block copolymer.
  • the styrene-based block copolymer is preferably infiltrated into the three-dimensional network structure of the polyurethane-based resin.
  • a plasticizer such as the process oil described below
  • the "styrenic block copolymer” may be a copolymer having a styrene block structure at any site.
  • Styrenic block copolymers include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-isoprene-butadiene-styrene block copolymer (SIBS), Styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), etc. .
  • SBS, SEBS, SIS and SEEPS are more preferred, and SBS, SEBS and SEEPS are more preferred.
  • the styrene content of the styrenic block copolymer is preferably 10 to 70% by mass, more preferably 15 to 65% by mass. If the styrene content is within the above range, the balance between thermoplasticity and rubber elasticity will be good.
  • the styrene content in the styrenic block copolymer can be measured by a method based on the IR method described in JIS K6239 (published in 2007).
  • the weight average molecular weight (Mw) of the styrenic block copolymer is preferably 30,000 or more and 1,000,000 or less, more preferably 100,000 or more and 800,000 or less, from the viewpoint of mechanical strength and the like. More preferably, it is 200,000 or more and 700,000 or less.
  • the number average molecular weight (Mn) is preferably 10,000 or more and 600,000 or less, more preferably 50,000 or more and 550,000 or less, and further preferably 100,000 or more and 500,000 or less.
  • the dispersity (Mw/Mn) of the molecular weight distribution is preferably 5 or less, more preferably 1-3.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution dispersity (Mw/Mn) can be determined by a so-called gel permeation chromatography (GPC) method.
  • a commercially available product may be used as the styrene-based block copolymer.
  • Commercially available products include, for example, trade names “G1633”, “D1101”, “DX410", “G1651” and “D1111” manufactured by Kraton; trade names “4055”, “4077” and “4099” manufactured by Kuraray. Asahi Kasei Co., Ltd. product names "H1053” and “H1051”; Li Chang Ying (LCY) product names "GP3501", “GP3502”, “GP3527”, “GP3411”, “GP9901”, “GP7533”, “GP7551” etc. can be used.
  • the content of the styrene block copolymer is preferably 1 part by mass or more and 3000 parts by mass or less, more preferably 30 parts by mass or more and 2000 parts by mass or less, relative to 100 parts by mass of the polyolefin thermoplastic resin. More preferably, it is 50 parts by mass or more and 1000 parts by mass or less. If the content of the styrenic block copolymer is within the above range, the fluidity during melt molding can be improved.
  • thermoplastic elastomer composition contains a plasticizer as an optional additive.
  • a plasticizer it is preferable to use a process oil from the viewpoint that the fluidity during melt molding can be further improved.
  • a process oil is preferable to use a styrene-based block copolymer together as a resin component in order to suppress bleeding of the process oil.
  • the process oil is preferably impregnated into the three-dimensional network structure of the polyurethane-based resin in order to suppress bleeding.
  • Such "process oil” is not particularly limited, and known process oils can be used as appropriate. oil) and the like. As such process oil, a commercially available one may be used as appropriate.
  • paraffin oil is preferred because it has a higher compatibility with elastomers and is capable of suppressing yellowing due to thermal deterioration at a higher level.
  • the paraffin oil suitable as such process oil is not particularly limited, and known paraffin oils (for example, those described in paragraphs [0153] to [0157] of JP-A-2017-57323). Can be used as appropriate.
  • paraffin oil the oil is subjected to a correlation ring analysis (ndM ring analysis) in accordance with ASTM D3238-85, and the number of paraffin carbon atoms is the percentage of the total number of carbon atoms (paraffin part: CP), the percentage of the number of naphthene carbons to the total number of carbons (naphthene part: CN), and the percentage of the number of aromatic carbons to the total number of carbons (aromatic part: CA), respectively.
  • CP total number of carbon atoms
  • the paraffin oil preferably has a kinematic viscosity at 40° C.
  • the paraffin oil preferably has an aniline point of 0° C. to 150° C., more preferably 10 to 145° C., measured by the U-tube method in accordance with JIS K2256 (published in 2013). It is more preferably 15 to 145°C.
  • the content of the process oil is preferably 100 parts by mass or more and 1000 parts by mass or less, more preferably 150 parts by mass or more and 900 parts by mass or less, and still more preferably It is 200 mass parts or more and 800 mass parts or less. If the content of the process oil is within the above range, it is possible to obtain a thermoplastic elastomer composition that is excellent in fluidity during melt molding while suppressing bleeding.
  • thermoplastic elastomer composition may contain any other additive besides the additives mentioned above.
  • additives include reinforcing agents (types of fillers: silica, carbon black, etc.), fillers into which amino groups are introduced, amino group-containing compounds other than the amino group-introduced fillers, and metal elements.
  • antioxidants antioxidants, antioxidants, pigments (dyes), plasticizers other than the above process oils, thixotropic agents, UV absorbers, flame retardants, solvents, surfactants (including leveling agents), deodorants (baking soda, etc.), dispersant, dehydrating agent, antirust agent, adhesion imparting agent, antistatic agent, filler other than clay, lubricant, slip agent, light stabilizer, conductivity imparting agent, antibacterial agent, neutralizing agent, Various additives such as softeners, fillers, colorants, thermally conductive fillers, etc. can be included.
  • thermoplastic elastomer composition comprises the steps of (i) mixing a polymer containing two or more hydroxyl groups and/or amino groups with a polyolefin thermoplastic resin to obtain a mixture; further adding a polyisocyanate containing two or more isocyanate groups to the resulting mixture and allowing it to react to form a polyurethane resin. Each step will be described in detail below.
  • Step (i) a polymer containing at least two hydroxyl groups and/or amino groups, a polyolefin thermoplastic resin, and, if necessary, a styrenic block copolymer, a plasticizer, other additives, etc. Mix to obtain a mixture.
  • the mixing conditions are not particularly limited, and can be appropriately set according to the type of resin component used. Polymers containing two or more hydroxyl groups and/or amino groups, polyolefin thermoplastic resins, styrenic block copolymers, plasticizers, and other additives are described in [Thermoplastic elastomer composition] above. It is as detailed in the column.
  • step (ii) a polyisocyanate containing two or more isocyanate groups is added to the mixture obtained in step (i) and reacted to form a polyurethane resin. It is preferable to form a polyurethane resin having a three-dimensional network structure by such a reaction.
  • the reaction conditions are not particularly limited, and can be appropriately set according to the type of resin component used.
  • the two or more polyisocyanates are as described in detail in the section [Thermoplastic elastomer composition] above.
  • thermoplastic elastomer composition at least one of the number of hydroxyl groups and/or amino groups of the polymer added in step (i) and the number of isocyanate groups of the polyisocyanate added in step (ii) is 3 or more. It is possible to three-dimensionally bond a polyurethane resin, which is a reaction product of a polymer and a polyisocyanate, and allow other resin components, a plasticizer, and the like to enter the three-dimensional network structure of the polyurethane resin. Furthermore, by adjusting the content of the polyurethane-based resin in the thermoplastic elastomer composition to a specific ratio, bleeding can be suppressed even when paraffin oil is used as the plasticizer.
  • the molded article of the present invention is obtained using the above thermoplastic elastomer composition. Since the thermoplastic elastomer composition of the present invention is excellent in resistance to compression set and fluidity during melt molding, the molded articles obtained are useful for automotive, mechanical, electrical, and residential rubber parts, especially automotive interiors. Suitable for housing interiors.
  • polyolefin thermoplastic resin 1 high-den
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1, except that 30.0 g of polyolefin thermoplastic resin 2 (block polypropylene, manufactured by SunAllomer, trade name: PM970A) was added instead of polyolefin thermoplastic resin 1. prepared the product.
  • polyolefin thermoplastic resin 2 block polypropylene, manufactured by SunAllomer, trade name: PM970A
  • Example 3 20.0 g of hydrocarbon polymer 1, 8.0 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 24.0 g was premixed and put into the pressure kneader, and the addition amount of polyolefin thermoplastic resin 1 was changed to 4.0 g, and the addition amount of anti-aging agent was changed to 0.0 g.
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • paraffin oil manufactured by ENEOS, trade name: 300HV-S (J)
  • Example 4 10.0 g of hydrocarbon polymer 1, 12.0 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 36.0 g was premixed and put into the pressure kneader, and the addition amount of polyolefin thermoplastic resin 1 was changed to 6.0 g, and the addition amount of anti-aging agent was changed to 0.0 g.
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • paraffin oil manufactured by ENEOS, trade name: 300HV-S (J)
  • Example 5 5.0 g of hydrocarbon polymer 1, 12.0 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 36.0 g was premixed and put into the pressure kneader, and the addition amount of polyolefin thermoplastic resin 1 was changed to 6.0 g, and the addition amount of anti-aging agent was changed to 0.0 g.
  • a thermoplastic elastomer composition was prepared in the same manner as in Example 3, except that the amount was changed to 0602 g and the amount of polyisocyanate 1 (glycerin HXDI) was changed to 1.181 g.
  • Example 6 1.1 g of hydrocarbon polymer 1, 13.2 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 39.6 g was premixed and put into the pressure kneader, and the amount of polyolefin thermoplastic resin 1 added was changed to 6.6 g, and the amount of anti-aging agent added was changed to 0.6 g.
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • paraffin oil manufactured by ENEOS, trade name: 300HV-S (J)
  • Example 7 0.6 g of hydrocarbon polymer 1, 14.4 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 43.2 g was premixed and put into the pressure kneader, and the added amount of polyolefin thermoplastic resin 1 was changed to 7.2 g, and the added amount of anti-aging agent was changed to 0.2 g. 0656 g, and polyisocyanate 1 (glycerin HXDI) was changed to 0.142 g, in the same manner as in Example 3 to prepare a thermoplastic elastomer composition.
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • paraffin oil manufactured by ENEOS, trade name: 300HV-S (J)
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • paraffin oil manufactured by ENEOS, trade name: 300HV-S (J)
  • a thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the added amount of was changed to 0.976 g and the added amount of the antioxidant was changed to 0.0650 g.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that Polyisocyanate 1 was not added and the amount of antioxidant added was changed to 0.641 g.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 1, except that the amount of added was changed to 0.0644 g.
  • thermoplastic elastomer composition was prepared in the same manner as in Comparative Example 2, except that 21.0 g of polyolefin thermoplastic resin 2 was added instead of polyolefin thermoplastic resin 1.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount of added was changed to 0.0647 g.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount of added was changed to 0.0646 g.
  • Tables 1 and 2 show the formulations of the thermoplastic elastomer compositions prepared in Examples 1-14 and Comparative Examples 1-5. The amount of each component in the table is based on 100 parts by mass of the hydrocarbon polymer. Also, the physical properties of the thermoplastic elastomer composition were evaluated with respect to the following items. Evaluation results are shown in Tables 1 and 2.
  • thermoplastic elastomer composition obtained in each example and comparative example was measured by the ATR method using an FTIR spectrophotometer (manufactured by Thermo Scientific, trade name: NICOLET is10), and the isocyanate group of the polyisocyanate was measured. confirmed the disappearance of In Tables 1 and 2, " ⁇ " indicates that the disappearance of the isocyanate group was confirmed, and "-" indicates that it was not measured.
  • thermoplastic elastomer composition obtained in each example and comparative example was used to form a sheet for use in evaluating the properties of the composition as follows. First, using a pressure press with a water cooling function, 43 g of a thermoplastic elastomer composition was put into a mold measuring 15 cm long, 15 cm wide and 2 mm thick, and heated at 200° C. for 3 minutes before pressing ( preheated), then pressurized (hot press) under the conditions of temperature: 200 ° C., working pressure: 20 MPa, pressurizing time: 5 minutes, and then water cooling under the conditions of working pressure: 20 MPa, pressurizing time: 2 minutes.
  • thermoplastic elastomer composition was taken out from the mold to obtain a sheet for measurement with a thickness of 2 mm.
  • the appearance of the obtained sheet was visually evaluated according to the following criteria, and Tables 1 and 2 show the evaluation results of the sheet formability.
  • Evaluation criteria ⁇ : There was no problem with the appearance of the sheet.
  • x A large number of cracks occurred in the appearance of the sheet.
  • indicates good thermoplasticity, and " ⁇ " indicates poor thermoplasticity.
  • thermoplastic elastomer composition obtained in each example and comparative example bleeding of the resin component and plasticizer was confirmed as follows. Specifically, a disk with a diameter of 15 mm was punched out from the above sheet, left on paper for 24 hours, and the size of the mark left on the paper (the amount of oil absorbed) was compared. Bleeding was evaluated according to the following criteria, and the evaluation results are shown in Tables 1 and 2. [Evaluation criteria] 5: No trace remained. 4: A thin trace smaller than a circle with a diameter of 15 mm remained. 3: A trace having a size approximately equal to a circle with a diameter of 15 mm remained. 2: A trace of a circle with a diameter of 20 mm remained. 1: A trace of a circle with a diameter of 20 mm or more remained. In addition, if it is 3 points or more, there is no practical problem, and it can be said that it is a pass.
  • JIS-E hardness Using the sheets for each measurement obtained as described above, the JIS-E hardness of the thermoplastic elastomer composition was measured as follows. Specifically, the JIS-E hardness is measured using a type E durometer (durometer E hardness tester: trade name "Type E durometer GSD-721K” manufactured by Teclock) under a temperature condition of 20 ⁇ 5°C. Measurement of hardness based on JIS K6253-3 (published in 2012) for 5 measurement points (5 measurement points) on the surface of each sheet for measurement (6 sheets stacked, thickness 10 mm or more). gone. The E hardness was determined by determining the average value of hardness at each measurement point (average value of 5 points).
  • the compression set (compression set) was determined as follows. First, the sheet for measurement was heated at 125° C. for 30 minutes to remove residual molding strain. After that, the sheet for measurement was punched out into a disc shape of 29 mm in diameter, and seven discs were superimposed to prepare a sample having a height (thickness) of 12.5 ⁇ 0.5 mm. Using the sample obtained in this way, compress it by 25% with a special jig, leave it at 70 ° C. for 22 hours, release the compression, leave it at room temperature for 30 minutes, and then set it to compression set (unit: % ) was measured according to JIS K6262 (published in 2013). As a compression device, a trade name "vulcanized rubber compression set tester SCM-1008L" manufactured by Dumbbell Co., Ltd. was used. In addition, in Tables 1 and 2, "X" indicates that the measurement is not possible.
  • melt flow rate (MFR, unit: g / 10 minutes) was measured in accordance with B method described in JIS K6922-2 (published in 2010). ) was measured. That is, using each of the thermoplastic elastomer compositions described above, a melt flow rate measuring device manufactured by Toyo Seiki Seisakusho under the trade name "Melt Indexer G-01" was used, and 3 g of the thermoplastic elastomer composition was placed in the furnace body of the device. After the addition, the temperature was raised to 230° C.
  • Example 1 when high-density polyethylene was used as the polyolefin thermoplastic resin and the content of polyurethane was adjusted to 51% by mass, a good thermoplastic elastomer was obtained.
  • Example 2 when block polypropylene was used as the thermoplastic polyolefin resin and the polyurethane content was adjusted to 51% by mass, a good thermoplastic elastomer was obtained.
  • Example 3 to 7 by adding a styrenic block copolymer and paraffin oil, thermoplastic elastomers with reduced hardness and improved fluidity were obtained.
  • Example 8 when polybutadiene with hydroxyl groups on both ends was used to synthesize polyurethane, a good thermoplastic elastomer was obtained.
  • Example 10 when polypropylene glycol was used to synthesize polyurethane, a good thermoplastic elastomer was obtained, but the bleeding was somewhat large.
  • Example 11 when polybutadiene with hydroxyl groups on both ends having Mn: 1430, 1,2-V: 90.1%, t-1,4: 9.9% was used to synthesize polyurethane, a good thermoplastic elastomer was obtained. was gotten.
  • Example 12 when polybutadiene with hydroxyl groups on both ends having Mn: 2980, 1,2-V: 90.6%, t-1,4: 9.4% was used to synthesize polyurethane, a good thermoplastic elastomer was obtained. was gotten. In Example 13, a good thermoplastic elastomer was obtained by synthesizing polyurethane using hydrogenated polybutadiene with hydroxyl groups on both ends. In Example 14, polyurea was synthesized using polyoxypropylene diamine and a good thermoplastic elastomer was obtained. In Comparative Example 1, when the polybutadiene with both hydrogenated hydroxyl groups was added without adding the polyisocyanate, the thermoplastic elastomer had high fluidity, but bleeding occurred.
  • Comparative Example 2 high-density polyethylene was used and the polyurethane content was adjusted to 67% by weight, and the elastomer did not exhibit thermoplasticity.
  • Comparative Example 3 block polypropylene was used and the polyurethane content was adjusted to 67% by weight, and the elastomer did not exhibit thermoplastic properties.
  • Comparative Example 4 when HXDI, a bifunctional isocyanate, was used to synthesize polyurethane, the thermoplastic elastomer bleed significantly.
  • Comparative Example 5 when a polyurethane was synthesized using a bifunctional isocyanate, XDI, the thermoplastic elastomer bleed significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[Problem] To provide a thermoplastic elastomer composition that has excellent fluidity during melt-molding and excellent resistance with respect to compression permanent set. [Solution] The thermoplastic elastomer composition according to the present invention is characterized by containing a polyurethane-based resin and a polyolefin-based thermoplastic resin, and is characterized in that the polyurethane-based resin is a reaction product between a polymer having two or more hydroxyl groups and/or amino groups and a polyisocyanate having two or more isocyanate groups, the quantity of hydroxyl groups and/or amino groups in the polymer and/or the quantity of isocyanate groups in the polyisocyanate is at least three, and the contained amount of the polyurethane-based resin is 0.1-60 mass% with respect to the total amount of the thermoplastic elastomer composition.

Description

熱可塑性エラストマー組成物およびその製造方法ならびに成形体THERMOPLASTIC ELASTOMER COMPOSITION, METHOD FOR PRODUCING SAME, AND MOLDED PRODUCT
 本発明は、熱可塑性エラストマー組成物およびその製造方法に関する。また、本発明は、当該熱可塑性エラストマー組成物を用いてなる成形体にも関する。 The present invention relates to a thermoplastic elastomer composition and a method for producing the same. The present invention also relates to a molded article using the thermoplastic elastomer composition.
 熱可塑性エラストマー組成物は、その成形加工時に加工温度で溶融し、周知の樹脂成形法で成形することが可能であることから、産業上極めて有用な材料である。従来、自動車部品、家電部品、医療部品、日用品等の様々な用途に、熱可塑性エラストマーが多く利用されている。 A thermoplastic elastomer composition is an industrially extremely useful material because it melts at a processing temperature during molding and can be molded by a well-known resin molding method. BACKGROUND ART Conventionally, thermoplastic elastomers have been widely used in various applications such as automobile parts, household appliance parts, medical parts, and daily necessities.
 近年では、様々な用途に適用できるように、柔軟性と成形性に優れる熱可塑性エラストマー組成物が提案されている。例えば、特許文献1では、(イ)熱可塑性ポリウレタンエラストマー1~98重量%、(ロ)ビニル芳香族化合物を主体とする重合体ブロック(A)と共役ジエン重合体もしくはビニル芳香族化合物と共役ジエンとのランダム共重合体ブロック(B)とからなる(A)-(B)もしくは(A)-(B)-(A)ブロック共重合体、またはビニル芳香族化合物と共役ジエンとからなりビニル芳香族化合物が漸増するテーパーブロック(C)とからなる(A)-(B)-(C)ブロック共重合体と、(ハ)ポリオレフィン系重合体0~98重量%を含有する熱可塑性エラストマー組成物が提案されている。特許文献2では、(A)ポリウレタンエラストマー:100重量部と、(B)密度が0.86~0.94、分子量分布(Mw/Mn)が1.5~5.0である、3~12個の炭素原子を有する10~40重量%のα-オレフィンコモノマーと、エチレンとの共重合メタロセンポリオレフィン:10~900重量部とを含有する熱可塑性エラストマー組成物が提案されている。特許文献3では、スチレン系ブロック共重合体(A)、ポリプロピレン(B)、およびポリウレタン系熱可塑性エラストマー(C)を含有することを特徴とするスチレン系熱可塑性エラストマー組成物が提案されている。 In recent years, thermoplastic elastomer compositions with excellent flexibility and moldability have been proposed so that they can be applied to various uses. For example, in Patent Document 1, (a) 1 to 98% by weight of a thermoplastic polyurethane elastomer, (b) a polymer block (A) mainly composed of a vinyl aromatic compound and a conjugated diene polymer or a vinyl aromatic compound and a conjugated diene A (A)-(B) or (A)-(B)-(A) block copolymer consisting of a random copolymer block (B) with or a vinyl aromatic consisting of a vinyl aromatic compound and a conjugated diene A thermoplastic elastomer composition containing (A)-(B)-(C) block copolymer consisting of tapered blocks (C) in which group compounds gradually increase, and (C) 0 to 98% by weight of a polyolefin polymer. is proposed. In Patent Document 2, (A) polyurethane elastomer: 100 parts by weight; A thermoplastic elastomer composition is proposed containing 10-40 weight percent α-olefin comonomer having 1 carbon atom and 10-900 weight parts of a metallocene polyolefin copolymerized with ethylene. Patent Document 3 proposes a styrene-based thermoplastic elastomer composition characterized by containing a styrene-based block copolymer (A), polypropylene (B), and a polyurethane-based thermoplastic elastomer (C).
特開平8-157685号公報JP-A-8-157685 特開2001-234056号公報JP-A-2001-234056 特開2009-126965号公報JP 2009-126965 A
 ここで、熱可塑性エラストマー組成物においては、圧縮永久歪に対する耐性および溶融成形時の流動性はトレードオフの関係にある。特許文献1~3では、ポリウレタンと、ポリオレフィン等の他の樹脂とを混練して熱可塑性エラストマー組成物を得ているが、前記ポリウレタンは二次元構造であり、圧縮永久歪に対する耐性および溶融成形時の流動性の両方をバランス良く向上できていなかった。 Here, in a thermoplastic elastomer composition, there is a trade-off relationship between resistance to compression set and fluidity during melt molding. In Patent Documents 1 to 3, a thermoplastic elastomer composition is obtained by kneading polyurethane with another resin such as polyolefin. However, it was not possible to improve both liquidity in a well-balanced manner.
 したがって、本発明の目的は、圧縮永久歪に対する耐性および溶融成形時の流動性に優れる熱可塑性エラストマー組成物を提供することである。 Accordingly, an object of the present invention is to provide a thermoplastic elastomer composition that has excellent resistance to compression set and excellent fluidity during melt molding.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定のポリウレタン系樹脂とポリオレフィン系熱可塑性樹脂を含む熱可塑性エラストマー組成物において、特定のポリウレタン系樹脂の含有量を調節することにより、上記課題を解決できることを見出して、本発明を完成するに至った。 The inventors of the present invention have made intensive studies to solve the above problems, and found that the content of a specific polyurethane-based resin in a thermoplastic elastomer composition containing a specific polyurethane-based resin and a polyolefin-based thermoplastic resin is adjusted. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
 すなわち、本発明の一態様によれば、
 ポリウレタン系樹脂と、ポリオレフィン系熱可塑性樹脂とを含む、熱可塑性エラストマー組成物であって、
 前記ポリウレタン系樹脂が、2以上の水酸基および/またはアミノ基を含有するポリマーと2以上のイソシアネート基を含有するポリイソシアネートの反応生成物であり、前記ポリマーの水酸基および/またはアミノ基数および前記ポリイソシアネートのイソシアネート基数の少なくともいずれかが3以上であり、
 前記ポリウレタン系樹脂の含有量が、前記熱可塑性エラストマー組成物の全量に対して0.1質量%以上60質量%以下である、熱可塑性エラストマー組成物が提供される。
That is, according to one aspect of the present invention,
A thermoplastic elastomer composition comprising a polyurethane resin and a polyolefin thermoplastic resin,
The polyurethane resin is a reaction product of a polymer containing two or more hydroxyl groups and/or amino groups and a polyisocyanate containing two or more isocyanate groups, and the number of hydroxyl groups and/or amino groups of the polymer and the polyisocyanate At least one of the number of isocyanate groups of is 3 or more,
A thermoplastic elastomer composition is provided in which the content of the polyurethane resin is 0.1% by mass or more and 60% by mass or less with respect to the total amount of the thermoplastic elastomer composition.
 本発明の態様においては、前記ポリウレタン系樹脂が、三次元網目構造を有し、前記ポリオレフィン系熱可塑性樹脂が、前記ポリウレタン系樹脂の三次元網目構造中に浸入されていることが好ましい。 In the aspect of the present invention, it is preferable that the polyurethane-based resin has a three-dimensional network structure, and the polyolefin-based thermoplastic resin is infiltrated into the three-dimensional network structure of the polyurethane-based resin.
 本発明の態様においては、前記熱可塑性エラストマー組成物がスチレン系ブロック共重合体をさらに含むことが好ましい。 In the aspect of the present invention, it is preferable that the thermoplastic elastomer composition further contains a styrenic block copolymer.
 本発明の態様においては、前記スチレン系ブロック共重合体が、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン-ブチレン-スチレンブロック共重合体、スチレン‐エチレン‐プロピレン-スチレンブロック共重合体、およびスチレン‐エチレン‐エチレン‐プロピレン-スチレンブロック共重合体からなる群から選択される少なくとも1種であることが好ましい。 In an aspect of the present invention, the styrenic block copolymer is a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a styrene-isoprene-butadiene-styrene block copolymer, a styrene- At least one selected from the group consisting of ethylene-butylene-styrene block copolymers, styrene-ethylene-propylene-styrene block copolymers, and styrene-ethylene-ethylene-propylene-styrene block copolymers. preferable.
 本発明の態様においては、前記熱可塑性エラストマー組成物がプロセスオイルをさらに含むことが好ましい。 In the aspect of the present invention, the thermoplastic elastomer composition preferably further contains process oil.
 本発明の態様においては、前記プロセスオイルがパラフィンオイルであることが好ましい。 In the aspect of the present invention, the process oil is preferably paraffin oil.
 本発明の態様においては、前記ポリマーが炭化水素系ポリマーであることが好ましい。 In the aspect of the present invention, the polymer is preferably a hydrocarbon-based polymer.
 本発明の態様においては、前記炭化水素系ポリマーがポリブタジエンおよび/またはその水添物であることが好ましい。 In the aspect of the present invention, the hydrocarbon-based polymer is preferably polybutadiene and/or hydrogenated products thereof.
 本発明の態様においては、前記ポリオレフィン系熱可塑性樹脂が、ポリエチレンおよび/またはポリプロピレンであることが好ましい。 In the aspect of the present invention, the polyolefin thermoplastic resin is preferably polyethylene and/or polypropylene.
 本発明の他の態様によれば、
 上記の熱可塑性エラストマー組成物の製造方法であって、
 (i)少なくとも、2以上の水酸基および/またはアミノ基を含有するポリマーとポリオレフィン系熱可塑性樹脂を混合して、混合物を得る工程と、
 (ii)得られた混合物に2以上のイソシアネート基を含有するポリイソシアネートをさらに添加して、反応させ、ポリウレタン系樹脂を形成する工程と、
を含み、
 前記ポリマーの水酸基および/またはアミノ基数および前記ポリイソシアネートのイソシアネート基数の少なくともいずれかが3以上である、熱可塑性エラストマー組成物の製造方法が提供される。
According to another aspect of the invention,
A method for producing the thermoplastic elastomer composition,
(i) mixing a polymer containing at least two or more hydroxyl groups and/or amino groups with a polyolefin thermoplastic resin to obtain a mixture;
(ii) further adding a polyisocyanate containing two or more isocyanate groups to the resulting mixture and allowing it to react to form a polyurethane-based resin;
including
Provided is a method for producing a thermoplastic elastomer composition, wherein at least one of the number of hydroxyl groups and/or amino groups in the polymer and the number of isocyanate groups in the polyisocyanate is 3 or more.
 本発明の他の態様によれば、上記の熱可塑性エラストマー組成物を用いてなる、成形体が提供される。 According to another aspect of the present invention, there is provided a molded article using the above thermoplastic elastomer composition.
 本発明によれば、圧縮永久歪に対する耐性および溶融成形時の流動性に優れる熱可塑性エラストマー組成物を提供することができる。また、本発明によれば、このような熱可塑性エラストマー組成物の製造方法を提供することができる。さらに、本発明によれば、このような熱可塑性エラストマー組成物を用いてなる成形体を提供することができる。 According to the present invention, it is possible to provide a thermoplastic elastomer composition that is excellent in resistance to compression set and fluidity during melt molding. Further, according to the present invention, it is possible to provide a method for producing such a thermoplastic elastomer composition. Furthermore, according to the present invention, it is possible to provide a molded article using such a thermoplastic elastomer composition.
[熱可塑性エラストマー組成物]
 本発明の熱可塑性エラストマー組成物は、特定の樹脂成分を含むものであり、さらに添加剤を含んでもよい。当該熱可塑性エラストマー組成物は、圧縮永久歪に対する耐性および溶融成形時の流動性に優れるため、自動車、機械、電気、および住宅用のゴム部品、特に自動車内装・住宅内装用として好適である。以下、熱可塑性エラストマー組成物に含まれる各成分について詳細に説明する。
[Thermoplastic elastomer composition]
The thermoplastic elastomer composition of the present invention contains a specific resin component and may further contain additives. The thermoplastic elastomer composition is excellent in resistance to compression set and fluidity during melt molding, and is therefore suitable for rubber parts for automobiles, machinery, electricity and houses, especially for automobile interiors and house interiors. Each component contained in the thermoplastic elastomer composition will be described in detail below.
[樹脂成分]
 熱可塑性エラストマー組成物は、樹脂成分として、少なくとも、ポリウレタン系樹脂およびポリオレフィン系熱可塑性樹脂を含み、スチレン系ブロック共重合体をさらに含んでもよい。以下、各樹脂成分について詳細に説明する。
[Resin component]
The thermoplastic elastomer composition contains at least a polyurethane resin and a polyolefin thermoplastic resin as resin components, and may further contain a styrene block copolymer. Each resin component will be described in detail below.
(ポリウレタン系樹脂)
 本発明におけるポリウレタン系樹脂とは、ポリウレタン、ポリウレア、ポリウレタンウレアである。ポリウレタン系樹脂は、2以上の水酸基および/またはアミノ基(1級、2級)を含有するポリマーと2以上のイソシアネート基を含有するポリイソシアネートの反応生成物であり、前記ポリマーの水酸基および/またはアミノ基(1級、2級)数および前記ポリイソシアネートのイソシアネート基数の少なくともいずれかが3以上である。このようなポリウレタン系樹脂は、三次元網目構造を有することが好ましい。このような組み合わせで反応させることで、得られるポリウレタン系樹脂は三次元的に結合して、ポリウレタン系樹脂の三次元網目構造中に他の樹脂成分や可塑剤等を浸入させることができる。また、当該ポリウレタン系樹脂を配合した組成物が熱可塑性エラストマーとなるように、ポリウレタン系樹脂のガラス転移点は25℃以下であることが好ましい。
(polyurethane resin)
Polyurethane-based resins in the present invention are polyurethane, polyurea, and polyurethaneurea. A polyurethane resin is a reaction product of a polymer containing two or more hydroxyl groups and/or amino groups (primary and secondary) and a polyisocyanate containing two or more isocyanate groups, and the hydroxyl groups and/or At least one of the number of amino groups (primary and secondary) and the number of isocyanate groups of the polyisocyanate is 3 or more. Such a polyurethane resin preferably has a three-dimensional network structure. By reacting in such a combination, the resulting polyurethane-based resin is three-dimensionally bonded, and other resin components, plasticizers, and the like can be introduced into the three-dimensional network structure of the polyurethane-based resin. Further, the glass transition point of the polyurethane-based resin is preferably 25° C. or lower so that the composition containing the polyurethane-based resin becomes a thermoplastic elastomer.
(2以上の水酸基および/またはアミノ基を含有するポリマー)
 ポリウレタン系樹脂の合成に用いる2以上の水酸基および/またはアミノ基を含有するポリマーとしては、2以上の水酸基および/またはアミノ基を含有する炭化水素系ポリマーを用いることが好ましい。2以上の水酸基を含有する炭化水素系ポリマーとしては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオールおよびその水添物、ならびにアクリルポリオール、ポリマーポリオール等が挙げられる。これらの中でも、低極性であることから、ポリブタジエンポリオールおよびその水添物が好ましい。2以上のアミノ基(1級、2級)を含有する炭化水素系ポリマーとしては、ジエチレントリアミン(DETA)、トリエチレンテトラアミン(TETA)などの低分子量アミン、または脂肪族尿素およびジエチルトルエンジアミン(DETDA)のエーテルアミン、ジメチルチオトルエンジアミン(DMTDA)、またはN,N’-di(sec.butyl)-アミノビフェニルメタン(DBMDA)、ポリエーテルアミン、ポリオキシプロピレンジアミン、トリエチレングリコールジアミン、トリメチロールプロパンポリ(オキシプロピレン)トリアミン、グリセリルポリ(オキシプロピレン)トリアミン、ポリエチレンイミン等が挙げられる。
(Polymer containing two or more hydroxyl groups and/or amino groups)
A hydrocarbon polymer containing two or more hydroxyl groups and/or amino groups is preferably used as the polymer containing two or more hydroxyl groups and/or amino groups for synthesis of the polyurethane resin. Hydrocarbon polymers containing two or more hydroxyl groups include polyester polyols, polyether polyols, polycarbonate polyols, polybutadiene polyols and hydrogenated products thereof, acrylic polyols, polymer polyols, and the like. Among these, polybutadiene polyol and hydrogenated products thereof are preferred because of their low polarity. Hydrocarbon polymers containing two or more amino groups (primary, secondary) include low molecular weight amines such as diethylenetriamine (DETA) and triethylenetetramine (TETA), or aliphatic urea and diethyltoluene diamine (DETDA ), dimethylthiotoluenediamine (DMTDA), or N,N'-di(sec.butyl)-aminobiphenylmethane (DBMDA), polyetheramine, polyoxypropylenediamine, triethyleneglycoldiamine, trimethylolpropane poly(oxypropylene)triamine, glycerylpoly(oxypropylene)triamine, polyethyleneimine and the like.
 2以上の水酸基および/またはアミノ基(1級、2級)を含有するポリマーの数平均分子量(Mn)は、500以上100000以下であることが好ましく、800以上50000以下であることがより好ましく、1000以上10000以下であることがさらに好ましい。なお、ポリマーの数平均分子量(Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。ポリマーの数平均分子量(Mn)が上記数値範囲内であれば、溶融成形時の流動性に優れる熱可塑性エラストマー組成物を得ることができる。 The number average molecular weight (Mn) of the polymer containing two or more hydroxyl groups and/or amino groups (primary and secondary) is preferably 500 or more and 100000 or less, more preferably 800 or more and 50000 or less, It is more preferably 1000 or more and 10000 or less. Incidentally, the number average molecular weight (Mn) of the polymer can be determined by a so-called gel permeation chromatography (GPC) method. If the number average molecular weight (Mn) of the polymer is within the above numerical range, a thermoplastic elastomer composition having excellent fluidity during melt molding can be obtained.
 2以上の水酸基を含有するポリマーとしては市販品を用いてもよい。市販品としては、例えば、CrayValley社製の商品名「Krasol HLBHP3000」、「Krasol LBHP3000」、「Krasol LBH3000」、「Krasol HLBHP2000」、「Krasol LBHP2000」、「Krasol LBH2000」、「Polybd R45HTLO」、「Polybd R45V」、「Polybd R20LM」;日本曹達社製の商品名「G-1000」、「G-2000」、「G-3000」、「GI-1000」、「GI-2000」、「GI-3000」;和光純薬社製の商品名「PPG3000」等を用いることができる。 A commercial product may be used as the polymer containing two or more hydroxyl groups. Commercially available products include, for example, CrayValley brand names "Krasol HLBHP3000", "Krasol LBHP3000", "Krasol LBH3000", "Krasol HLBHP2000", "Krasol LBHP2000", "Krasol LBH2000", "Polybd Lbd, HPtolbd R45" R45V", "Polybd R20LM"; trade names "G-1000", "G-2000", "G-3000", "GI-1000", "GI-2000", "GI-3000" manufactured by Nippon Soda Co., Ltd. ; Trade name "PPG3000" manufactured by Wako Pure Chemical Industries, Ltd., etc. can be used.
 2以上のアミノ基を含有するポリマーとしては市販品を用いてもよい。市販品としては、例えば、米国HUNTSMAN(ハンツマン)社製のジェファーミンDシリーズ、ジェファーミンEDシリーズ、ジェファーミンEDRシリーズ、ジェファーミンTシリーズ、エラスタミンRTシリーズ、日本触媒社製のエピオンSPシリーズ、P-1000等を用いることができる。 A commercial product may be used as the polymer containing two or more amino groups. Commercially available products include, for example, Jeffamine D series, Jeffamine ED series, Jeffamine EDR series, Jeffamine T series, Elastamine RT series manufactured by HUNTSMAN, USA; 1000 or the like can be used.
(ポリイソシアネート)
 ポリウレタン系樹脂の合成に用いる2つのイソシアネート基を含有するポリイソシアネートとしては、例えば、4,4’-ジフェニルメタンジイソシアネート(モノメリック・ポリメリックMDI)、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ナフタレンジイソシアネート(NDI)等の芳香族ジイソシアネート;メチレンビス(4-シクロヘキシルイソシアネート)(HMDI)、イソホロンジイソシアネート(IPDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(HXDI)、ノルボルネンジイソシアネート(NBDI)等の脂環式ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHMDI)、1,5-ペンタメチレンジイソシアネート(PDI)等の脂肪族ジイソシアネート等が挙げられる。3つ以上のイソシアネート基を含有するポリイソシアネートとしては、これらのジイソシアネートの脂肪族多価アルコールのアダクト体、ビュレット体、イソシアヌレート体等が挙げられる。アダクト体に用いる脂肪族多価アルコールとしては、炭素数が2~5であることが好ましく、例えば、トリメチロールプロパンやグリセリンが挙げられる。これらのポリイソシアネートは、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(polyisocyanate)
Polyisocyanates containing two isocyanate groups used for synthesis of polyurethane resins include, for example, 4,4′-diphenylmethane diisocyanate (monomeric/polymeric MDI), tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), Aromatic diisocyanates such as naphthalene diisocyanate (NDI); Alicyclic diisocyanates; aliphatic diisocyanates such as hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHMDI), 1,5-pentamethylene diisocyanate (PDI), and the like. Examples of polyisocyanates containing three or more isocyanate groups include aliphatic polyhydric alcohol adducts, burettes, and isocyanurates of these diisocyanates. The aliphatic polyhydric alcohol used in the adduct preferably has 2 to 5 carbon atoms, such as trimethylolpropane and glycerin. These polyisocyanates may be used singly or in combination of two or more.
 ポリイソシアネートとしては市販品を用いてもよい。市販品としては、例えば、三井化学社製の商品名「タケネートD-110N、D-120N」「タケネート500、600」「フォルティモH6XDI」「スタビオPDI」「スタビオ370N、376N」、「タケネートD-170N、D-131N」等、三井化学SKCポリウレタン社製の商品名「コスモネートMDI,PH,LK,LL」、「コスモネートMDI,M-50,100,200」、「アクトコールTL,DL,ML、EDL,EPL,DN」等を用いることができる。 A commercially available product may be used as the polyisocyanate. Commercially available products include, for example, Mitsui Chemicals' product names "Takenate D-110N, D-120N", "Takenate 500, 600", "Fortimo H6XDI", "Stabio PDI", "Stabio 370N, 376N", and "Takenate D-170N". , D-131N”, etc., trade names manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd. “Cosmonate MDI, PH, LK, LL”, “Cosmonate MDI, M-50, 100, 200”, “Actocol TL, DL, ML , EDL, EPL, DN" and the like can be used.
 ポリマーとポリイソシアネートの配合量は、ポリマーの水酸基および/またはアミノ基1個に対して、ポリイソシアネートのイソシアネート基が0.2個以上5.0個以下であることが好ましく、0.5個以上3.0個以下であることが好ましく、0.7個以上2.0個以下であることが好ましい。ポリマーとポリイソシアネートの配合量が上記範囲内であると、反応性が良好となる。 The blending amount of the polymer and the polyisocyanate is preferably 0.2 or more and 5.0 or less, and preferably 0.5 or more, of the isocyanate groups of the polyisocyanate per one hydroxyl group and/or amino group of the polymer. It is preferably 3.0 or less, and preferably 0.7 or more and 2.0 or less. When the blending amount of the polymer and the polyisocyanate is within the above range, the reactivity becomes good.
 ポリウレタン系樹脂の含有量は、熱可塑性エラストマー組成物の全量に対して0.1質量%以上60質量%以下であり、好ましくは0.5質量%以上55質量%以下であり、より好ましくは1質量%以上50質量%以下である。ポリウレタン系樹脂の含有量が上記範囲内であれば、圧縮永久歪に対する耐性および溶融成形時の流動性に優れる熱可塑性エラストマー組成物を得ることができる。 The content of the polyurethane resin is 0.1% by mass or more and 60% by mass or less, preferably 0.5% by mass or more and 55% by mass or less, more preferably 1 It is more than mass % and below 50 mass %. When the content of the polyurethane-based resin is within the above range, a thermoplastic elastomer composition having excellent resistance to compression set and excellent fluidity during melt molding can be obtained.
(ポリオレフィン系熱可塑性樹脂)
 ポリオレフィン系熱可塑性樹脂としては、特に限定されず、従来公知のポリオレフィンを用いることができる。ポリオレフィンとしては、例えば、エチレン、プロピレン、ブテン-1、ペンテン-1、2-メチルブテン-1、3-メチルブテン-1、ヘキセン-1、3-メチルペンテン-1、4-メチルペンテン-1、3,3-ジメチルブテン-1、ヘプテン-1、メチルヘキセン-1、ジメチルペンテン-1、トリメチルブテン-1、エチルペンテン-1、オクテン-1、メチルペンテン-1、ジメチルヘキセン-1、トリメチルペンテン-1、エチルヘキセン-1、メチルエチルペンテン-1、ジエチルブテン-1、プトピルペンテン-1、デセン-1、メチルノネン-1、ジメチルオクテン-1、トリメチルヘプテン-1、エチルオクテン-1、メチルエチルヘプテン-1、ジエチルヘキセン-1、ドデセン-1およびヘキサドデセン-1等のα-オレフィンの単独重合体、あるいは、これらα-オレフィンの任意の二種以上を原料モノマーとする共重合体を挙げることができる。これらの中でも、ポリエチレンおよびポリプロピレンが好ましい。これらのポリオレフィンは、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。このようなポリオレフィン系熱可塑性樹脂は、ポリウレタン系樹脂の三次元網目構造中に浸入されていることが好ましく、圧縮永久歪に対する耐性および溶融成形時の流動性に優れる熱可塑性エラストマー組成物を提供することができる。
(polyolefin thermoplastic resin)
Polyolefin-based thermoplastic resins are not particularly limited, and conventionally known polyolefins can be used. Examples of polyolefins include ethylene, propylene, butene-1, pentene-1, 2-methylbutene-1, 3-methylbutene-1, hexene-1, 3-methylpentene-1, 4-methylpentene-1, 3, 3-dimethylbutene-1, heptene-1, methylhexene-1, dimethylpentene-1, trimethylbutene-1, ethylpentene-1, octene-1, methylpentene-1, dimethylhexene-1, trimethylpentene-1, Ethylhexene-1, methylethylpentene-1, diethylbutene-1, ptopyrpentene-1, decene-1, methylnonene-1, dimethyloctene-1, trimethylheptene-1, ethyloctene-1, methylethylheptene-1 , diethylhexene-1, dodecene-1 and hexadodecene-1, and copolymers of any two or more of these α-olefins as raw material monomers. Among these, polyethylene and polypropylene are preferred. These polyolefins may be used singly or in combination of two or more. Such a polyolefin-based thermoplastic resin preferably penetrates into the three-dimensional network structure of the polyurethane-based resin to provide a thermoplastic elastomer composition having excellent resistance to compression set and excellent fluidity during melt molding. be able to.
 ポリオレフィン系熱可塑性樹脂の含有量は、ポリウレタン系樹脂100質量部に対して、好ましくは5質量部以上3000質量部以下であり、より好ましくは10質量部以上2000質量部以下であり、さらに好ましくは20質量部以上1500質量部以下である。ポリオレフィン系熱可塑性樹脂の含有量が上記範囲内であれば、圧縮永久歪に対する耐性および溶融成形時の流動性に優れる熱可塑性エラストマー組成物を得ることができる。 The content of the polyolefin thermoplastic resin is preferably 5 parts by mass or more and 3000 parts by mass or less, more preferably 10 parts by mass or more and 2000 parts by mass or less, and still more preferably It is 20 parts by mass or more and 1500 parts by mass or less. When the content of the polyolefin-based thermoplastic resin is within the above range, a thermoplastic elastomer composition having excellent resistance to compression set and excellent fluidity during melt molding can be obtained.
(スチレン系ブロック共重合体)
 熱可塑性エラストマー組成物は、スチレン系ブロック共重合体を含むことが好ましい。スチレン系ブロック共重合体は、ポリウレタン系樹脂の三次元網目構造中に浸入されていることが好ましい。本発明においては、熱可塑性エラストマー組成物に下記プロセスオイル等の可塑剤とともにスチレン系ブロック共重合体を配合することで、組成物中にプロセスオイルが含浸して、ブリードを抑制することができる。その結果、溶融成形時の流動性に優れる熱可塑性エラストマー組成物を得ることができる。
(Styrene-based block copolymer)
The thermoplastic elastomer composition preferably contains a styrenic block copolymer. The styrene-based block copolymer is preferably infiltrated into the three-dimensional network structure of the polyurethane-based resin. In the present invention, by blending a styrenic block copolymer together with a plasticizer such as the process oil described below into the thermoplastic elastomer composition, the composition is impregnated with the process oil, and bleeding can be suppressed. As a result, a thermoplastic elastomer composition having excellent fluidity during melt molding can be obtained.
 本発明において「スチレン系ブロック共重合体」とは、いずれかの部位にスチレンブロック構造を有するコポリマーであればよい。スチレン系ブロック共重合体としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体(SIBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)等が挙げられる。これらの中でも、SBS、SEBS、SIS、およびSEEPSがより好ましく、SBS、SEBS、およびSEEPSがさらに好ましい。これらのスチレン系ブロック共重合体は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
In the present invention, the "styrenic block copolymer" may be a copolymer having a styrene block structure at any site. Styrenic block copolymers include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-isoprene-butadiene-styrene block copolymer (SIBS), Styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), etc. . Among these, SBS, SEBS, SIS and SEEPS are more preferred, and SBS, SEBS and SEEPS are more preferred. These styrenic block copolymers may be used singly or in combination of two or more.
 また、スチレン系ブロック共重合体のスチレン含有量は、好ましくは10~70質量%であり、より好ましくは15~65質量%である。このようなスチレン含有量が上記範囲内であれば、熱可塑性とゴム弾性のバランスが良好となる。なお、スチレン系ブロック共重合体中のスチレン含有量は、JIS K6239(2007年発行)に記載のIR法に準拠した方法により測定できる。 In addition, the styrene content of the styrenic block copolymer is preferably 10 to 70% by mass, more preferably 15 to 65% by mass. If the styrene content is within the above range, the balance between thermoplasticity and rubber elasticity will be good. The styrene content in the styrenic block copolymer can be measured by a method based on the IR method described in JIS K6239 (published in 2007).
 スチレン系ブロック共重合体の重量平均分子量(Mw)は、機械的強度等の観点から、Mwは3万以上100万以下であることが好ましく、10万以上80万以下であることがより好ましく、20万以上70万以下であることがさらに好ましい。また、数平均分子量(Mn)は、1万以上60万以下であることが好ましく、5万以上55万以下であることがより好ましく、10万以上50万以下であることがさらに好ましい。さらに、分子量分布の分散度(Mw/Mn)は、5以下であることが好ましく、1~3であることがより好ましい。なお、このような重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。 The weight average molecular weight (Mw) of the styrenic block copolymer is preferably 30,000 or more and 1,000,000 or less, more preferably 100,000 or more and 800,000 or less, from the viewpoint of mechanical strength and the like. More preferably, it is 200,000 or more and 700,000 or less. The number average molecular weight (Mn) is preferably 10,000 or more and 600,000 or less, more preferably 50,000 or more and 550,000 or less, and further preferably 100,000 or more and 500,000 or less. Furthermore, the dispersity (Mw/Mn) of the molecular weight distribution is preferably 5 or less, more preferably 1-3. The weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution dispersity (Mw/Mn) can be determined by a so-called gel permeation chromatography (GPC) method.
 スチレン系ブロック共重合体としては、市販品を用いてもよい。市販品としては、例えば、クレイトン社製の商品名「G1633」、「D1101」、「DX410」、「G1651」、「D1111」;クラレ社製の商品名「4055」、「4077」、「4099」、;旭化成社製の商品名「H1053」、「H1051」;李長英(LCY)社製の商品名「GP3501」、「GP3502」、「GP3527」、「GP3411」、「GP9901」、「GP7533」、「GP7551」等を用いることができる。 A commercially available product may be used as the styrene-based block copolymer. Commercially available products include, for example, trade names "G1633", "D1101", "DX410", "G1651" and "D1111" manufactured by Kraton; trade names "4055", "4077" and "4099" manufactured by Kuraray. Asahi Kasei Co., Ltd. product names "H1053" and "H1051"; Li Chang Ying (LCY) product names "GP3501", "GP3502", "GP3527", "GP3411", "GP9901", "GP7533", "GP7551" etc. can be used.
 スチレン系ブロック共重合体の含有量は、ポリオレフィン系熱可塑性樹脂100質量部に対して、好ましくは1質量部以上3000質量部以下であり、より好ましくは30質量部以上2000質量部以下であり、さらに好ましくは50質量部以上1000質量部以下である。スチレン系ブロック共重合体の含有量が上記範囲内であれば、溶融成形時の流動性を向上することができる。 The content of the styrene block copolymer is preferably 1 part by mass or more and 3000 parts by mass or less, more preferably 30 parts by mass or more and 2000 parts by mass or less, relative to 100 parts by mass of the polyolefin thermoplastic resin. More preferably, it is 50 parts by mass or more and 1000 parts by mass or less. If the content of the styrenic block copolymer is within the above range, the fluidity during melt molding can be improved.
[添加剤]
(可塑剤)
 熱可塑性エラストマー組成物は、任意の添加剤として、可塑剤を含む。可塑剤としては、溶融成形時の流動性をより向上させることが可能となるといった観点から、プロセスオイルを用いることが好ましい。熱可塑性エラストマー組成物にプロセスオイルを配合する場合、プロセスオイルのブリードを抑制するために、樹脂成分としてスチレン系ブロック共重合体を併用することが好ましい。さらに、プロセスオイルは、ブリードを抑制するために、ポリウレタン系樹脂の三次元網目構造中に浸入されていることが好ましい。このような「プロセスオイル」としては、特に制限されず、公知のプロセスオイルを適宜使用することができ、例えば、パラフィンオイル(パラフィン系オイル)、ナフテンオイル(ナフテン系オイル)、アロマオイル(アロマ系オイル)等が挙げられる。このようなプロセスオイルとしては、市販のものを適宜使用してもよい。
[Additive]
(Plasticizer)
The thermoplastic elastomer composition contains a plasticizer as an optional additive. As the plasticizer, it is preferable to use a process oil from the viewpoint that the fluidity during melt molding can be further improved. When blending a process oil into the thermoplastic elastomer composition, it is preferable to use a styrene-based block copolymer together as a resin component in order to suppress bleeding of the process oil. Furthermore, the process oil is preferably impregnated into the three-dimensional network structure of the polyurethane-based resin in order to suppress bleeding. Such "process oil" is not particularly limited, and known process oils can be used as appropriate. oil) and the like. As such process oil, a commercially available one may be used as appropriate.
 また、このようなプロセスオイルの中でも、エラストマーとの間でより高い相溶性が得られるとともに、熱劣化による黄変をより高度な水準で抑制することが可能であるという観点からは、パラフィンオイルが特に好ましい。また、このようなプロセスオイルとして好適なパラフィンオイルとしては特に制限されず、公知のパラフィンオイル(例えば、特開2017-57323号公報の段落[0153]~段落[0157]に記載のもの等)を適宜使用できる。なお、このようなパラフィンオイルとしては、そのオイルに対して、ASTM D3238-85に準拠した相関環分析(n-d-M環分析)を行って、パラフィン炭素数の全炭素数に対する百分率(パラフィン部:CP)、ナフテン炭素数の全炭素数に対する百分率(ナフテン部:CN)、および、芳香族炭素数の全炭素数に対する百分率(芳香族部:CA)をそれぞれ求めた場合において、パラフィン炭素数の全炭素数に対する百分率(CP)が60%以上であることが好ましい。また、前記パラフィンオイルは、JIS K 2283(2000年発行)に準拠して測定される、40℃における動粘度が5mm/s~1000mm/sのものであることが好ましく、10~900mm/sであることがより好ましく、15~800mm/sであることが更に好ましい。動粘度を上記範囲内とすることで、本発明の熱可塑性エラストマー組成物の流動性をより向上させることが可能となる。さらに、前記パラフィンオイルは、JIS K2256(2013年発行)に準拠したU字管法により測定されるアニリン点が0℃~150℃であることが好ましく、10~145℃であることがより好ましく、15~145℃であることが更に好ましい。アニリン点を上記範囲内とすることで、エラストマー成分の間により高い相溶性が得られる。なお、これらの動粘度およびアニリン点の測定方法はそれぞれ特開2017-57323号公報の段落[0153]~段落[0157]に記載されている方法を採用できる。また、このようなプロセスオイルの調製方法は特に制限されず、公知の方法を適宜採用できる。また、このようなプロセスオイルとしては、市販品を使用してもよい。 In addition, among such process oils, paraffin oil is preferred because it has a higher compatibility with elastomers and is capable of suppressing yellowing due to thermal deterioration at a higher level. Especially preferred. In addition, the paraffin oil suitable as such process oil is not particularly limited, and known paraffin oils (for example, those described in paragraphs [0153] to [0157] of JP-A-2017-57323). Can be used as appropriate. In addition, as such paraffin oil, the oil is subjected to a correlation ring analysis (ndM ring analysis) in accordance with ASTM D3238-85, and the number of paraffin carbon atoms is the percentage of the total number of carbon atoms (paraffin part: CP), the percentage of the number of naphthene carbons to the total number of carbons (naphthene part: CN), and the percentage of the number of aromatic carbons to the total number of carbons (aromatic part: CA), respectively. of the total number of carbon atoms (CP) is preferably 60% or more. The paraffin oil preferably has a kinematic viscosity at 40° C. of 5 mm 2 /s to 1000 mm 2 /s, measured according to JIS K 2283 (published in 2000), preferably 10 to 900 mm 2 . /s, more preferably 15 to 800 mm 2 /s. By setting the kinematic viscosity within the above range, it is possible to further improve the fluidity of the thermoplastic elastomer composition of the present invention. Furthermore, the paraffin oil preferably has an aniline point of 0° C. to 150° C., more preferably 10 to 145° C., measured by the U-tube method in accordance with JIS K2256 (published in 2013). It is more preferably 15 to 145°C. By setting the aniline point within the above range, higher compatibility can be obtained between the elastomer components. In addition, the methods described in paragraphs [0153] to [0157] of Japanese Patent Application Laid-Open No. 2017-57323 can be adopted as the methods for measuring these kinematic viscosities and aniline points. Moreover, the method for preparing such process oil is not particularly limited, and a known method can be appropriately adopted. Moreover, you may use a commercial item as such a process oil.
 プロセスオイルの含有量は、スチレン系ブロック共重合体100質量部に対して、好ましくは100質量部以上1000質量部以下であり、より好ましくは150質量部以上900質量部以下であり、さらに好ましくは200質量部以上800質量部以下である。プロセスオイルの含有量が上記範囲内であれば、ブリードを抑制しながら、溶融成形時の流動性に優れる熱可塑性エラストマー組成物を得ることができる。 The content of the process oil is preferably 100 parts by mass or more and 1000 parts by mass or less, more preferably 150 parts by mass or more and 900 parts by mass or less, and still more preferably It is 200 mass parts or more and 800 mass parts or less. If the content of the process oil is within the above range, it is possible to obtain a thermoplastic elastomer composition that is excellent in fluidity during melt molding while suppressing bleeding.
(他の添加剤)
 熱可塑性エラストマー組成物は、上述の添加剤以外に、任意の他の添加剤を含んでもよい。他の添加剤としては、補強剤(充填剤の一種:例えばシリカ、カーボンブラック等)、アミノ基を導入してなる充填剤、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物、老化防止剤、酸化防止剤、顔料(染料)、前記プロセスオイル以外の可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、消臭剤(重曹等)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、クレイ以外のフィラー、滑剤、スリップ剤、光安定剤、導電性付与剤、防菌剤、中和剤、軟化剤、充填材、着色剤、熱伝導性充填材などの各種の添加剤を含有することができる。
(other additives)
The thermoplastic elastomer composition may contain any other additive besides the additives mentioned above. Other additives include reinforcing agents (types of fillers: silica, carbon black, etc.), fillers into which amino groups are introduced, amino group-containing compounds other than the amino group-introduced fillers, and metal elements. Compounds, antioxidants, antioxidants, pigments (dyes), plasticizers other than the above process oils, thixotropic agents, UV absorbers, flame retardants, solvents, surfactants (including leveling agents), deodorants (baking soda, etc.), dispersant, dehydrating agent, antirust agent, adhesion imparting agent, antistatic agent, filler other than clay, lubricant, slip agent, light stabilizer, conductivity imparting agent, antibacterial agent, neutralizing agent, Various additives such as softeners, fillers, colorants, thermally conductive fillers, etc. can be included.
[熱可塑性エラストマー組成物の製造方法]
 本発明の熱可塑性エラストマー組成物の製造方法は、(i)2以上の水酸基および/またはアミノ基を含有するポリマーとポリオレフィン系熱可塑性樹脂を混合して、混合物を得る工程と、(ii)得られた混合物に2以上のイソシアネート基を含有するポリイソシアネートをさらに添加して、反応させ、ポリウレタン系樹脂を形成する工程とを含むものである。以下、各工程について詳述する。
[Method for producing thermoplastic elastomer composition]
The method for producing a thermoplastic elastomer composition of the present invention comprises the steps of (i) mixing a polymer containing two or more hydroxyl groups and/or amino groups with a polyolefin thermoplastic resin to obtain a mixture; further adding a polyisocyanate containing two or more isocyanate groups to the resulting mixture and allowing it to react to form a polyurethane resin. Each step will be described in detail below.
(工程(i))
 工程(i)では、少なくとも2以上の水酸基および/またはアミノ基を含有するポリマーとポリオレフィン系熱可塑性樹脂、さらに、必要に応じてスチレン系ブロック共重合体、可塑剤、および他の添加剤等を混合して、混合物を得る。混合条件は特に限定されず、用いる樹脂成分の種類等に応じて適宜、設定することができる。なお、2以上の水酸基および/またはアミノ基を含有するポリマー、ポリオレフィン系熱可塑性樹脂、スチレン系ブロック共重合体、可塑剤、および他の添加剤については、上記の[熱可塑性エラストマー組成物]の欄で詳述した通りである。
(Step (i))
In step (i), a polymer containing at least two hydroxyl groups and/or amino groups, a polyolefin thermoplastic resin, and, if necessary, a styrenic block copolymer, a plasticizer, other additives, etc. Mix to obtain a mixture. The mixing conditions are not particularly limited, and can be appropriately set according to the type of resin component used. Polymers containing two or more hydroxyl groups and/or amino groups, polyolefin thermoplastic resins, styrenic block copolymers, plasticizers, and other additives are described in [Thermoplastic elastomer composition] above. It is as detailed in the column.
(工程(ii))
 工程(ii)では、工程(i)で得られた混合物に2以上のイソシアネート基を含有するポリイソシアネートを添加し、反応させて、ポリウレタン系樹脂を形成する。このような反応により、三次元網目構造を有するポリウレタン系樹脂を形成することが好ましい。反応条件は特に限定されず、用いる樹脂成分の種類等に応じて適宜、設定することができる。なお、2以上のポリイソシアネートについては、上記の[熱可塑性エラストマー組成物]の欄で詳述した通りである。
(Step (ii))
In step (ii), a polyisocyanate containing two or more isocyanate groups is added to the mixture obtained in step (i) and reacted to form a polyurethane resin. It is preferable to form a polyurethane resin having a three-dimensional network structure by such a reaction. The reaction conditions are not particularly limited, and can be appropriately set according to the type of resin component used. The two or more polyisocyanates are as described in detail in the section [Thermoplastic elastomer composition] above.
 熱可塑性エラストマー組成物の製造方法においては、工程(i)で添加したポリマーの水酸基および/またはアミノ基数および工程(ii)で添加したポリイソシアネートのイソシアネート基数の少なくともいずれかが3以上であることで、ポリマーとポリイソシアネートの反応生成物であるポリウレタン系樹脂を三次元的に結合させ、ポリウレタン系樹脂の三次元網目構造中に他の樹脂成分や可塑剤等を浸入させることができる。さらに、熱可塑性エラストマー組成物中のポリウレタン系樹脂含有量を特定割合に調節することで、可塑剤としてパラフィンオイルを用いたとしてもブリードを抑制することができる。 In the method for producing a thermoplastic elastomer composition, at least one of the number of hydroxyl groups and/or amino groups of the polymer added in step (i) and the number of isocyanate groups of the polyisocyanate added in step (ii) is 3 or more. It is possible to three-dimensionally bond a polyurethane resin, which is a reaction product of a polymer and a polyisocyanate, and allow other resin components, a plasticizer, and the like to enter the three-dimensional network structure of the polyurethane resin. Furthermore, by adjusting the content of the polyurethane-based resin in the thermoplastic elastomer composition to a specific ratio, bleeding can be suppressed even when paraffin oil is used as the plasticizer.
[成形体]
 本発明の成形体は、上記の熱可塑性エラストマー組成物を用いて得られるものである。本発明の熱可塑性エラストマー組成物は、圧縮永久歪に対する耐性および溶融成形時の流動性に優れるため、得られた成形体は、自動車、機械、電気、および住宅用のゴム部品、特に自動車内装・住宅内装用として好適である。
[Molded body]
The molded article of the present invention is obtained using the above thermoplastic elastomer composition. Since the thermoplastic elastomer composition of the present invention is excellent in resistance to compression set and fluidity during melt molding, the molded articles obtained are useful for automotive, mechanical, electrical, and residential rubber parts, especially automotive interiors. Suitable for housing interiors.
 以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
<熱可塑性エラストマー組成物の製造>
[実施例1]
 炭化水素系ポリマー1(水添両末端水酸基ポリブタジエン、Mn=3100、CrayValley社製、商品名:Krasol HLBHP3000)25.0g、ポリオレフィン系熱可塑性樹脂1(高密度ポリエチレン、日本ポリエチレン社製、商品名:HJ590N)30.0g、および老化防止剤(ADEKA社製、商品名AO-50)0.0061gを180℃に加熱した加圧ニーダーに投入し、50rpmで3分間素練りして可塑化させた混合物を得た。その後、得られた混合物にポリイソシアネート1(グリセリンHXDI(官能基数3)、NCO含量:10.9質量%、三井化学社製、商品名:D-120N)5.906gをゆっくり滴下した。滴下後4分間混練し、熱可塑性エラストマー組成物を調製した。
<Production of thermoplastic elastomer composition>
[Example 1]
Hydrocarbon-based polymer 1 (hydrogenated polybutadiene with hydroxyl groups at both ends, Mn = 3100, manufactured by CrayValley, trade name: Krasol HLBHP3000) 25.0 g, polyolefin thermoplastic resin 1 (high-density polyethylene, manufactured by Nippon Polyethylene Co., Ltd., trade name: HJ590N) 30.0 g and an anti-aging agent (manufactured by ADEKA, trade name AO-50) 0.0061 g were put into a pressure kneader heated to 180 ° C. and masticated for 3 minutes at 50 rpm to plasticize the mixture. got After that, 5.906 g of polyisocyanate 1 (glycerin HXDI (functional group number: 3), NCO content: 10.9% by mass, manufactured by Mitsui Chemicals, trade name: D-120N) was slowly added dropwise to the resulting mixture. After dropping, the mixture was kneaded for 4 minutes to prepare a thermoplastic elastomer composition.
[実施例2]
 ポリオレフィン系熱可塑性樹脂1の代わりに、ポリオレフィン系熱可塑性樹脂2(ブロックポリプロピレン、サンアロマー社製、商品名:PM970A)30.0gを添加した以外は、実施例1と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 2]
A thermoplastic elastomer composition was prepared in the same manner as in Example 1, except that 30.0 g of polyolefin thermoplastic resin 2 (block polypropylene, manufactured by SunAllomer, trade name: PM970A) was added instead of polyolefin thermoplastic resin 1. prepared the product.
[実施例3]
 炭化水素系ポリマー1を20.0g、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS、LCY社製、商品名:GP7533)8.0gとパラフィンオイル(ENEOS社製、商品名:300HV-S(J))24.0gを予め混ぜたものを、前記加圧ニーダーに投入し、さらに、ポリオレフィン系熱可塑性樹脂1の添加量を4.0gに変更し、老化防止剤の添加量を0.0608gに変更し、ポリイソシアネート1(グリセリンHXDI)4.725gに変更した以外は、実施例1と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 3]
20.0 g of hydrocarbon polymer 1, 8.0 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 24.0 g was premixed and put into the pressure kneader, and the addition amount of polyolefin thermoplastic resin 1 was changed to 4.0 g, and the addition amount of anti-aging agent was changed to 0.0 g. A thermoplastic elastomer composition was prepared in the same manner as in Example 1, except that the amount of polyisocyanate 1 (glycerin HXDI) was changed to 4.725 g.
[実施例4]
 炭化水素系ポリマー1を10.0g、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS、LCY社製、商品名:GP7533)12.0gとパラフィンオイル(ENEOS社製、商品名:300HV-S(J))36.0gを予め混ぜたものを、前記加圧ニーダーに投入し、さらに、ポリオレフィン系熱可塑性樹脂1の添加量を6.0gに変更し、老化防止剤の添加量を0.0664gに変更し、ポリイソシアネート1(グリセリンHXDI)2.363gに変更した以外は、実施例3と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 4]
10.0 g of hydrocarbon polymer 1, 12.0 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 36.0 g was premixed and put into the pressure kneader, and the addition amount of polyolefin thermoplastic resin 1 was changed to 6.0 g, and the addition amount of anti-aging agent was changed to 0.0 g. A thermoplastic elastomer composition was prepared in the same manner as in Example 3, except that the amount of polyisocyanate 1 (glycerin HXDI) was changed to 2.363 g.
[実施例5]
 炭化水素系ポリマー1を5.0g、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS、LCY社製、商品名:GP7533)12.0gとパラフィンオイル(ENEOS社製、商品名:300HV-S(J))36.0gを予め混ぜたものを、前記加圧ニーダーに投入し、さらに、ポリオレフィン系熱可塑性樹脂1の添加量を6.0gに変更し、老化防止剤の添加量を0.0602gに変更し、ポリイソシアネート1(グリセリンHXDI)1.181gに変更した以外は、実施例3と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 5]
5.0 g of hydrocarbon polymer 1, 12.0 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 36.0 g was premixed and put into the pressure kneader, and the addition amount of polyolefin thermoplastic resin 1 was changed to 6.0 g, and the addition amount of anti-aging agent was changed to 0.0 g. A thermoplastic elastomer composition was prepared in the same manner as in Example 3, except that the amount was changed to 0602 g and the amount of polyisocyanate 1 (glycerin HXDI) was changed to 1.181 g.
[実施例6]
 炭化水素系ポリマー1を1.1g、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS、LCY社製、商品名:GP7533)13.2gとパラフィンオイル(ENEOS社製、商品名:300HV-S(J))39.6gを予め混ぜたものを、前記加圧ニーダーに投入し、さらに、ポリオレフィン系熱可塑性樹脂1の添加量を6.6gに変更し、老化防止剤の添加量を0.0608gに変更し、ポリイソシアネート1(グリセリンHXDI)0.26gに変更した以外は、実施例3と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 6]
1.1 g of hydrocarbon polymer 1, 13.2 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 39.6 g was premixed and put into the pressure kneader, and the amount of polyolefin thermoplastic resin 1 added was changed to 6.6 g, and the amount of anti-aging agent added was changed to 0.6 g. A thermoplastic elastomer composition was prepared in the same manner as in Example 3, except that the content was changed to 0,608 g and polyisocyanate 1 (glycerin HXDI) was changed to 0.26 g.
[実施例7]
 炭化水素系ポリマー1を0.6g、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS、LCY社製、商品名:GP7533)14.4gとパラフィンオイル(ENEOS社製、商品名:300HV-S(J))43.2gを予め混ぜたものを、前記加圧ニーダーに投入し、さらに、ポリオレフィン系熱可塑性樹脂1の添加量を7.2gに変更し、老化防止剤の添加量を0.0656gに変更し、ポリイソシアネート1(グリセリンHXDI)0.142gに変更した以外は、実施例3と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 7]
0.6 g of hydrocarbon polymer 1, 14.4 g of styrene-ethylene-butadiene-styrene block copolymer (SEBS, manufactured by LCY, trade name: GP7533) and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 43.2 g was premixed and put into the pressure kneader, and the added amount of polyolefin thermoplastic resin 1 was changed to 7.2 g, and the added amount of anti-aging agent was changed to 0.2 g. 0656 g, and polyisocyanate 1 (glycerin HXDI) was changed to 0.142 g, in the same manner as in Example 3 to prepare a thermoplastic elastomer composition.
[実施例8]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー2(両末端水酸基ポリブタジエン、Mn=3200、CrayValley社製、商品名:Krasol LBHP3000)10.0g、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS、LCY社製、商品名:GP7533)12.0gとパラフィンオイル(ENEOS社製、商品名:300HV-S(J))36.0gを予め混ぜたものを、前記加圧ニーダーに投入し、さらに、ポリオレフィン系熱可塑性樹脂1の添加量を6.0gに変更し、さらに、ポリイソシアネート1の添加量を2.466gに変更し、老化防止剤の添加量を0.0665gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 8]
Instead of hydrocarbon-based polymer 1, hydrocarbon-based polymer 2 (polybutadiene with both hydroxyl groups, Mn = 3200, manufactured by CrayValley, trade name: Krasol LBHP3000) 10.0 g, styrene-ethylene-butadiene-styrene block copolymer ( SEBS, manufactured by LCY, trade name: GP7533) 12.0 g and paraffin oil (manufactured by ENEOS, trade name: 300HV-S (J)) 36.0 g were premixed and charged into the pressure kneader, Furthermore, the addition amount of the polyolefin thermoplastic resin 1 was changed to 6.0 g, the addition amount of the polyisocyanate 1 was changed to 2.466 g, and the addition amount of the antioxidant was changed to 0.0665 g. A thermoplastic elastomer composition was prepared in the same manner as in Example 4.
[実施例9]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー3(水添両末端水酸基ポリブタジエン、Mn=2100、CrayValley社製、商品名:Krasol HLBHP2000)10.0gを添加し、さらに、ポリイソシアネート1の添加量を3.486gに変更し、老化防止剤の添加量を0.0676gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 9]
Instead of the hydrocarbon polymer 1, 10.0 g of the hydrocarbon polymer 3 (hydrogenated polybutadiene with both hydroxyl groups, Mn=2100, manufactured by CrayValley, trade name: Krasol HLBHP2000) was added, and polyisocyanate 1 was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount was changed to 3.486 g and the addition amount of the antioxidant was changed to 0.0676 g.
[実施例10]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー4(ポリプロピレングリコール、Mn=3000、和光純薬社製、商品名:PPG3000)3.0gを添加し、さらに、SEBSの添加量を14.4gに変更し、パラフィンオイルの添加量を43.2gに変更し、ポリオレフィン系熱可塑性樹脂1の添加量を7.2gに変更し、ポリイソシアネート1の添加量を0.771gに変更し、老化防止剤の添加量を0.0686gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 10]
Instead of hydrocarbon polymer 1, 3.0 g of hydrocarbon polymer 4 (polypropylene glycol, Mn=3000, manufactured by Wako Pure Chemical Industries, Ltd., trade name: PPG3000) was added, and the amount of SEBS added was changed to 14.4 g. , the amount of paraffin oil added was changed to 43.2 g, the amount of polyolefin thermoplastic resin 1 added was changed to 7.2 g, the amount of polyisocyanate 1 added was changed to 0.771 g, and anti-aging A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount of the agent added was changed to 0.0686 g.
[実施例11]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー5(両末端水酸基ポリブタジエン、Mn=1430、日本曹達社製、商品名:G-1000)10.0gを添加し、さらに、ポリイソシアネート1の添加量を2.604gに変更し、老化防止剤の添加量を0.0667gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 11]
Instead of hydrocarbon polymer 1, 10.0 g of hydrocarbon polymer 5 (polybutadiene with both hydroxyl groups, Mn = 1430, manufactured by Nippon Soda Co., Ltd., trade name: G-1000) was added, and polyisocyanate 1 was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount was changed to 2.604 g and the addition amount of the antioxidant was changed to 0.0667 g.
[実施例12]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー6(両末端水酸基ポリブタジエン、Mn=2980、日本曹達社製、商品名:G-3000)10.0gを添加し、さらに、ポリイソシアネート1の添加量を1.099gに変更し、老化防止剤の添加量を0.0652gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 12]
Instead of hydrocarbon polymer 1, 10.0 g of hydrocarbon polymer 6 (polybutadiene with both hydroxyl groups, Mn = 2980, manufactured by Nippon Soda Co., Ltd., trade name: G-3000) was added, and polyisocyanate 1 was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount was changed to 1.099 g and the addition amount of the antioxidant was changed to 0.0652 g.
[実施例13]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー7(水添両末端水酸基ポリブタジエン、Mn=3100、日本曹達社製、商品名:GI-3000)10.0gを添加し、さらに、ポリイソシアネート1の添加量を0.976gに変更し、老化防止剤の添加量を0.0650gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[実施例14]
 炭化水素系ポリマー1の代わりに、炭化水素系ポリマー8(ポリオキシプロピレンジアミン、Mn=2056、ハンツマン社製、商品名:ジェファーミンD-2000)9.0gを添加し、さらに、SEBSの添加量を10.8gに変更し、パラフィンオイルの添加量を32.4gに変更し、ポリオレフィン系熱可塑性樹脂1の添加量を5.4gに変更し、ポリイソシアネート1の添加量を6.747gに変更し、老化防止剤の添加量を0.0644gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Example 13]
Instead of hydrocarbon polymer 1, hydrocarbon polymer 7 (hydrogenated both hydroxyl end polybutadiene, Mn = 3100, manufactured by Nippon Soda Co., Ltd., trade name: GI-3000) 10.0 g was added, and polyisocyanate 1 was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the added amount of was changed to 0.976 g and the added amount of the antioxidant was changed to 0.0650 g.
[Example 14]
Instead of hydrocarbon polymer 1, 9.0 g of hydrocarbon polymer 8 (polyoxypropylene diamine, Mn=2056, manufactured by Huntsman, trade name: Jeffamine D-2000) was added, and the amount of SEBS added was increased. was changed to 10.8 g, the amount of paraffin oil added was changed to 32.4 g, the amount of polyolefin thermoplastic resin 1 was changed to 5.4 g, and the amount of polyisocyanate 1 was changed to 6.747 g. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount of antioxidant added was changed to 0.0644 g.
[比較例1]
 ポリイソシアネート1を添加せず、さらに、老化防止剤の添加量を0.641gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Comparative Example 1]
A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that Polyisocyanate 1 was not added and the amount of antioxidant added was changed to 0.641 g.
[比較例2]
 炭化水素系ポリマー1の添加量を35.0gに変更し、ポリオレフィン系熱可塑性樹脂1の添加量を21.0gに変更し、ポリイソシアネート1の添加量を8.269gに変更し、老化防止剤の添加量を0.0644gに変更した以外は、実施例1と同様にして、熱可塑性エラストマー組成物を調製した。
[Comparative Example 2]
The amount of hydrocarbon-based polymer 1 was changed to 35.0 g, the amount of polyolefin-based thermoplastic resin 1 was changed to 21.0 g, the amount of polyisocyanate 1 was changed to 8.269 g, and an anti-aging agent was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 1, except that the amount of added was changed to 0.0644 g.
[比較例3]
 ポリオレフィン系熱可塑性樹脂1の代わりにポリオレフィン系熱可塑性樹脂2を21.0g添加した以外は、比較例2と同様にして、熱可塑性エラストマー組成物を調製した。
[Comparative Example 3]
A thermoplastic elastomer composition was prepared in the same manner as in Comparative Example 2, except that 21.0 g of polyolefin thermoplastic resin 2 was added instead of polyolefin thermoplastic resin 1.
[比較例4]
 ポリイソシアネート1の代わりに、ポリイソシアネート2(HXDI(官能基数2)、NCO含量:43.3質量%、三井化学社製、商品名:タケネート600)を0.595g添加し、さらに、老化防止剤の添加量を0.0647gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Comparative Example 4]
Instead of polyisocyanate 1, 0.595 g of polyisocyanate 2 (HXDI (functional group number 2), NCO content: 43.3% by mass, manufactured by Mitsui Chemicals, trade name: Takenate 600) was added, and an anti-aging agent was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount of added was changed to 0.0647 g.
[比較例5]
 ポリイソシアネート1の代わりに、ポリイソシアネート3(XDI(官能基数2)、NCO含量:44.7質量%、三井化学社製、商品名:タケネート500)を0.576g添加し、さらに、老化防止剤の添加量を0.0646gに変更した以外は、実施例4と同様にして、熱可塑性エラストマー組成物を調製した。
[Comparative Example 5]
Instead of polyisocyanate 1, 0.576 g of polyisocyanate 3 (XDI (functional group number 2), NCO content: 44.7% by mass, manufactured by Mitsui Chemicals, trade name: Takenate 500) was added, and an anti-aging agent was added. A thermoplastic elastomer composition was prepared in the same manner as in Example 4, except that the amount of added was changed to 0.0646 g.
<物性評価>
 実施例1~14および比較例1~5で調製した熱可塑性エラストマー組成物の配合を表1および2に示した。なお、表中の各成分の配合量は、炭化水素系ポリマーを100質量部とした場合の値を示した。また、熱可塑性エラストマー組成物の物性を下記の項目について評価した。評価結果を表1および2に示した。
<Physical property evaluation>
Tables 1 and 2 show the formulations of the thermoplastic elastomer compositions prepared in Examples 1-14 and Comparative Examples 1-5. The amount of each component in the table is based on 100 parts by mass of the hydrocarbon polymer. Also, the physical properties of the thermoplastic elastomer composition were evaluated with respect to the following items. Evaluation results are shown in Tables 1 and 2.
<IR(赤外分光分析)測定>
 各実施例および比較例で得られた各熱可塑性エラストマー組成物を、FTIR分光光度計(Thermo Scientific社製、商品名:NICOLET is10)を用いて、ATR法で測定を行い、ポリイソシアネートのイソシアネート基の消失を確認した。表1および2において、イソシアネート基の消失が確認されたものを「○」、未測定のものを「-」とした。
<IR (infrared spectroscopic analysis) measurement>
Each thermoplastic elastomer composition obtained in each example and comparative example was measured by the ATR method using an FTIR spectrophotometer (manufactured by Thermo Scientific, trade name: NICOLET is10), and the isocyanate group of the polyisocyanate was measured. confirmed the disappearance of In Tables 1 and 2, "○" indicates that the disappearance of the isocyanate group was confirmed, and "-" indicates that it was not measured.
(測定用のシートの成形)
 各実施例および比較例で得られた各熱可塑性エラストマー組成物を用いて、以下のようにして、組成物の特性の評価に使用するためのシートを成形した。まず、水冷冷却機能付の加圧プレス機を用い、縦15cm、横15cm、厚み2mmの大きさの金型に熱可塑性エラストマー組成物43gを入れて、加圧前に200℃で3分間加熱(予熱)し、次いで、温度:200℃、使用圧力:20Mpa、加圧時間:5分の条件で加圧(熱プレス)した後、使用圧力:20MPa、加圧時間:2分の条件で水冷冷却プレスを更に行い、前記金型から熱可塑性エラストマー組成物を取り出して、厚み2mmの測定用のシートを得た。得られたシートの外観を目視で下記の基準で評価し、シート成形性の評価結果を表1および2に示した。
[評価基準] 
 ○:シートの外観に問題が無かった。
 ×:シートの外観にヒビ割れが多数発生していた。
 なお、「○」は熱可塑性が良好であり、「×」は熱可塑性が乏しいと言える。
(Molding of sheet for measurement)
Each thermoplastic elastomer composition obtained in each example and comparative example was used to form a sheet for use in evaluating the properties of the composition as follows. First, using a pressure press with a water cooling function, 43 g of a thermoplastic elastomer composition was put into a mold measuring 15 cm long, 15 cm wide and 2 mm thick, and heated at 200° C. for 3 minutes before pressing ( preheated), then pressurized (hot press) under the conditions of temperature: 200 ° C., working pressure: 20 MPa, pressurizing time: 5 minutes, and then water cooling under the conditions of working pressure: 20 MPa, pressurizing time: 2 minutes. Further pressing was performed, and the thermoplastic elastomer composition was taken out from the mold to obtain a sheet for measurement with a thickness of 2 mm. The appearance of the obtained sheet was visually evaluated according to the following criteria, and Tables 1 and 2 show the evaluation results of the sheet formability.
[Evaluation criteria]
◯: There was no problem with the appearance of the sheet.
x: A large number of cracks occurred in the appearance of the sheet.
In addition, it can be said that "○" indicates good thermoplasticity, and "×" indicates poor thermoplasticity.
(ブリード)
 各実施例および比較例で得られた各熱可塑性エラストマー組成物を用いて、以下のようにして、樹脂成分および可塑剤のブリードを確認した。具体的には、上記シートから直径15mmの円盤を打ち抜いて、紙の上において24時間放置し、紙に残った跡の大きさ(吸収されたオイル量)を比較した。ブリードを下記の基準で評価し、評価結果を表1および2に示した。
[評価基準] 
 5:跡が残らなかった。
 4:直径15mmの円よりも小さい跡が薄く残った。
 3:直径15mmの円とほぼ同等の大きさの跡が残った。
 2:直径20mmの大きさの円の跡が残った。
 1:直径20mm以上の大きさの円の跡が残った。
 なお、3点以上であれば、実用上問題無く、合格と言える。
(bleed)
Using each thermoplastic elastomer composition obtained in each example and comparative example, bleeding of the resin component and plasticizer was confirmed as follows. Specifically, a disk with a diameter of 15 mm was punched out from the above sheet, left on paper for 24 hours, and the size of the mark left on the paper (the amount of oil absorbed) was compared. Bleeding was evaluated according to the following criteria, and the evaluation results are shown in Tables 1 and 2.
[Evaluation criteria]
5: No trace remained.
4: A thin trace smaller than a circle with a diameter of 15 mm remained.
3: A trace having a size approximately equal to a circle with a diameter of 15 mm remained.
2: A trace of a circle with a diameter of 20 mm remained.
1: A trace of a circle with a diameter of 20 mm or more remained.
In addition, if it is 3 points or more, there is no practical problem, and it can be said that it is a pass.
(JIS-E硬度)
 上述のようにして得られた各測定用のシートを用いて、以下のようにして、熱可塑性エラストマー組成物のJIS-E硬度を測定した。具体的には、JIS-E硬度の測定にはタイプEデュロメータ(デュロメータE硬度計:テクロック社製の商品名「タイプEデュロメータGSD-721K」)を用いて、20±5℃の温度条件下、前記測定用の各シート(6枚重ね・厚み10mm以上)の表面の5箇所の測定点(5点の測定箇所)に対して、JIS K6253-3(2012年発行)に準拠した硬度の測定を行った。各測定点の硬度の平均値(5点の平均値)を求めることによりE硬度を求めた。
(JIS-E hardness)
Using the sheets for each measurement obtained as described above, the JIS-E hardness of the thermoplastic elastomer composition was measured as follows. Specifically, the JIS-E hardness is measured using a type E durometer (durometer E hardness tester: trade name "Type E durometer GSD-721K" manufactured by Teclock) under a temperature condition of 20 ± 5°C. Measurement of hardness based on JIS K6253-3 (published in 2012) for 5 measurement points (5 measurement points) on the surface of each sheet for measurement (6 sheets stacked, thickness 10 mm or more). gone. The E hardness was determined by determining the average value of hardness at each measurement point (average value of 5 points).
(圧縮永久歪)
 上述のようにして得られた各測定用のシートを用いて、以下のようにして、圧縮永久歪(C-Set)を求めた。まず、上記測定用のシートを125℃で30分間加熱し、残留している成形歪を取り除いた。その後上記測定用のシートを直径29mmの円盤状に打ち抜いて7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにしてサンプルを調製した。このようにして得られたサンプルを用い、専用治具で25%圧縮し、70℃で22時間静置した後、圧縮を開放し、室温で30分静置後、圧縮永久歪(単位:%)をJIS K6262(2013年発行)に準拠して測定した。なお、圧縮装置としてはダンベル社製の商品名「加硫ゴム圧縮永久歪試験器 SCM-1008L」を用いた。なお、表1および2においては、測定不可を「×」とした。
(compression set)
Using the sheets for each measurement obtained as described above, the compression set (C-Set) was determined as follows. First, the sheet for measurement was heated at 125° C. for 30 minutes to remove residual molding strain. After that, the sheet for measurement was punched out into a disc shape of 29 mm in diameter, and seven discs were superimposed to prepare a sample having a height (thickness) of 12.5±0.5 mm. Using the sample obtained in this way, compress it by 25% with a special jig, leave it at 70 ° C. for 22 hours, release the compression, leave it at room temperature for 30 minutes, and then set it to compression set (unit: % ) was measured according to JIS K6262 (published in 2013). As a compression device, a trade name "vulcanized rubber compression set tester SCM-1008L" manufactured by Dumbbell Co., Ltd. was used. In addition, in Tables 1 and 2, "X" indicates that the measurement is not possible.
(流動性)
 各実施例および比較例で得られた各熱可塑性エラストマー組成物を用いて、JIS K6922-2(2010年発行)に記載のB法に準拠してメルトフローレート(MFR、単位:g/10分)を測定した。すなわち、上記の各熱可塑性エラストマー組成物を用い、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に熱可塑性エラストマー組成物を3g添加した後、温度を230℃にして5分間保持した後、230℃に維持しつつ、1.2kg、2.16kg、5kg、10kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部(直径1mmの開口部)から、10分間あたりに流出する質量(g)を測定(前記炉体内において温度を230℃にして5分間保持した後、荷重を開始してから流出する熱可塑性エラストマー組成物の質量の測定を開始する)することにより求めた。表1および2においては、未測定のものを「-」、流動性が高すぎて測定不可のものを「×」、流動性が低すぎて測定不可のものを「××」とした。
(Liquidity)
Using each thermoplastic elastomer composition obtained in each example and comparative example, the melt flow rate (MFR, unit: g / 10 minutes) was measured in accordance with B method described in JIS K6922-2 (published in 2010). ) was measured. That is, using each of the thermoplastic elastomer compositions described above, a melt flow rate measuring device manufactured by Toyo Seiki Seisakusho under the trade name "Melt Indexer G-01" was used, and 3 g of the thermoplastic elastomer composition was placed in the furnace body of the device. After the addition, the temperature was raised to 230° C. and held for 5 minutes, and then while maintaining the temperature at 230° C., the load was applied to 1.2 kg, 2.16 kg, 5 kg, and 10 kg, and connected to the lower part of the furnace body. Measure the mass (g) that flows out per 10 minutes from the opening of a cylindrical orifice member with a diameter of 1 mm and a length of 8 mm (opening with a diameter of 1 mm) (in the furnace body, the temperature is set to 230 ° C. and held for 5 minutes. After that, the measurement of the mass of the outflowing thermoplastic elastomer composition is started after the load is started). In Tables 1 and 2, "-" indicates unmeasured, "X" indicates too high fluidity to measure, and "XX" indicates too low fluidity to measure.
 実施例1では、ポリオレフィン系熱可塑性樹脂として高密度ポリエチレンを使用して、ポリウレタンの含有量を51質量%に調節したところ、良好な熱可塑性エラストマーが得られた。
 実施例2では、ポリオレフィン系熱可塑性樹脂としてブロックポリプロピレンを使用して、ポリウレタンの含有量を51質量%に調節したところ、良好な熱可塑性エラストマーが得られた。
 実施例3~7では、スチレン系ブロック共重合体およびパラフィンオイルを添加することにより、低硬度化できて、流動性も改善した熱可塑性エラストマーが得られた。
 実施例8では、両末端水酸基ポリブタジエンを使用してポリウレタンを合成したところ、良好な熱可塑性エラストマーが得られた。
 実施例9では、Mn=2,100の水添両末端水酸基ポリブタジエンを使用してポリウレタン系樹脂を合成したところ、良好な熱可塑性エラストマーが得られた。
 実施例10では、ポリプロピレングリコールを使用してポリウレタンを合成したところ、良好な熱可塑性エラストマーが得られたが、ブリードがやや大きかった。
 実施例11では、Mn:1430,1,2-V:90.1%,t-1,4:9.9%の両末端水酸基ポリブタジエンを使用してポリウレタンを合成したところ、良好な熱可塑性エラストマーが得られた。
 実施例12では、Mn:2980,1,2-V:90.6%,t-1,4:9.4%の両末端水酸基ポリブタジエンを使用してポリウレタンを合成したところ、良好な熱可塑性エラストマーが得られた。
 実施例13では、水添両末端水酸基ポリブタジエンを使用してポリウレタンを合成したところ、良好な熱可塑性エラストマーが得られた。
 実施例14では、ポリオキシプロピレンジアミンを使用してポリウレアを合成したところ、良好な熱可塑性エラストマーが得られた。
 比較例1では、ポリイソシアネートを添加せずに、水添両末端水酸基ポリブタジエンを添加した場合、熱可塑性エラストマーの流動性は高いが、ブリードしてしまった。
 比較例2では、高密度ポリエチレンを使用して、ポリウレタンの含有量を67質量%に調節したところ、エラストマーは熱可塑性を示さなかった。
 比較例3では、ブロックポリプロピレンを使用して、ポリウレタンの含有量を67質量%に調節したところ、エラストマーは熱可塑性を示さなかった。
 比較例4では、2官能イソシアネートのHXDIを使用してポリウレタンを合成したところ、熱可塑性エラストマーはブリードが大きかった。
 比較例5では、2官能イソシアネートのXDIを使用してポリウレタンを合成したところ、熱可塑性エラストマーはブリードが大きかった。
In Example 1, when high-density polyethylene was used as the polyolefin thermoplastic resin and the content of polyurethane was adjusted to 51% by mass, a good thermoplastic elastomer was obtained.
In Example 2, when block polypropylene was used as the thermoplastic polyolefin resin and the polyurethane content was adjusted to 51% by mass, a good thermoplastic elastomer was obtained.
In Examples 3 to 7, by adding a styrenic block copolymer and paraffin oil, thermoplastic elastomers with reduced hardness and improved fluidity were obtained.
In Example 8, when polybutadiene with hydroxyl groups on both ends was used to synthesize polyurethane, a good thermoplastic elastomer was obtained.
In Example 9, a good thermoplastic elastomer was obtained by synthesizing a polyurethane-based resin using a hydrogenated double-hydroxy-terminated polybutadiene of Mn=2,100.
In Example 10, when polypropylene glycol was used to synthesize polyurethane, a good thermoplastic elastomer was obtained, but the bleeding was somewhat large.
In Example 11, when polybutadiene with hydroxyl groups on both ends having Mn: 1430, 1,2-V: 90.1%, t-1,4: 9.9% was used to synthesize polyurethane, a good thermoplastic elastomer was obtained. was gotten.
In Example 12, when polybutadiene with hydroxyl groups on both ends having Mn: 2980, 1,2-V: 90.6%, t-1,4: 9.4% was used to synthesize polyurethane, a good thermoplastic elastomer was obtained. was gotten.
In Example 13, a good thermoplastic elastomer was obtained by synthesizing polyurethane using hydrogenated polybutadiene with hydroxyl groups on both ends.
In Example 14, polyurea was synthesized using polyoxypropylene diamine and a good thermoplastic elastomer was obtained.
In Comparative Example 1, when the polybutadiene with both hydrogenated hydroxyl groups was added without adding the polyisocyanate, the thermoplastic elastomer had high fluidity, but bleeding occurred.
In Comparative Example 2, high-density polyethylene was used and the polyurethane content was adjusted to 67% by weight, and the elastomer did not exhibit thermoplasticity.
In Comparative Example 3, block polypropylene was used and the polyurethane content was adjusted to 67% by weight, and the elastomer did not exhibit thermoplastic properties.
In Comparative Example 4, when HXDI, a bifunctional isocyanate, was used to synthesize polyurethane, the thermoplastic elastomer bleed significantly.
In Comparative Example 5, when a polyurethane was synthesized using a bifunctional isocyanate, XDI, the thermoplastic elastomer bleed significantly.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  ポリウレタン系樹脂と、ポリオレフィン系熱可塑性樹脂とを含む、熱可塑性エラストマー組成物であって、
     前記ポリウレタン系樹脂が、2以上の水酸基および/またはアミノ基を含有するポリマーと2以上のイソシアネート基を含有するポリイソシアネートの反応生成物であり、前記ポリマーの水酸基および/またはアミノ基数および前記ポリイソシアネートのイソシアネート基数の少なくともいずれかが3以上であり、
     前記ポリウレタン系樹脂の含有量が、前記熱可塑性エラストマー組成物の全量に対して0.1質量%以上60質量%以下である、熱可塑性エラストマー組成物。
    A thermoplastic elastomer composition comprising a polyurethane resin and a polyolefin thermoplastic resin,
    The polyurethane resin is a reaction product of a polymer containing two or more hydroxyl groups and/or amino groups and a polyisocyanate containing two or more isocyanate groups, and the number of hydroxyl groups and/or amino groups of the polymer and the polyisocyanate At least one of the number of isocyanate groups of is 3 or more,
    A thermoplastic elastomer composition, wherein the content of the polyurethane resin is 0.1% by mass or more and 60% by mass or less with respect to the total amount of the thermoplastic elastomer composition.
  2.  前記ポリウレタン系樹脂が、三次元網目構造を有し、前記ポリオレフィン系熱可塑性樹脂が、前記ポリウレタン系樹脂の三次元網目構造中に浸入されている、請求項1に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 1, wherein the polyurethane-based resin has a three-dimensional network structure, and the polyolefin-based thermoplastic resin is infiltrated into the three-dimensional network structure of the polyurethane-based resin.
  3.  スチレン系ブロック共重合体をさらに含む、請求項1または2に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 1 or 2, further comprising a styrenic block copolymer.
  4.  前記スチレン系ブロック共重合体が、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン-ブチレン-スチレンブロック共重合体、スチレン‐エチレン‐プロピレン-スチレンブロック共重合体、およびスチレン‐エチレン‐エチレン‐プロピレン-スチレンブロック共重合体からなる群から選択される少なくとも1種である、請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。 The styrene block copolymer is a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a styrene-isoprene-butadiene-styrene block copolymer, a styrene-ethylene-butylene-styrene block copolymer. Any one of claims 1 to 3, which is at least one selected from the group consisting of polymers, styrene-ethylene-propylene-styrene block copolymers, and styrene-ethylene-ethylene-propylene-styrene block copolymers. A thermoplastic elastomer composition according to claim 1.
  5.  プロセスオイルをさらに含む、請求項1~4のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 4, further comprising process oil.
  6.  前記プロセスオイルがパラフィンオイルである、請求項5に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 5, wherein the process oil is paraffin oil.
  7.  前記ポリマーが炭化水素系ポリマーである、請求項1~6のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 6, wherein the polymer is a hydrocarbon polymer.
  8.  前記炭化水素系ポリマーがポリブタジエンおよび/またはその水添物である、請求項7に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 7, wherein the hydrocarbon-based polymer is polybutadiene and/or hydrogenated products thereof.
  9.  前記ポリオレフィン系熱可塑性樹脂が、ポリエチレンおよび/またはポリプロピレンである、請求項1~8のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 8, wherein the polyolefin-based thermoplastic resin is polyethylene and/or polypropylene.
  10.  請求項1~9のいずれか一項に記載の熱可塑性エラストマー組成物の製造方法であって、
     (i)少なくとも、2以上の水酸基および/またはアミノ基を含有するポリマーとポリオレフィン系熱可塑性樹脂を混合して、混合物を得る工程と、
     (ii)得られた混合物に2以上のイソシアネート基を含有するポリイソシアネートをさらに添加して、反応させ、ポリウレタン系樹脂を形成する工程と、
    を含み、
     前記ポリマーの水酸基および/またはアミノ基数および前記ポリイソシアネートのイソシアネート基数の少なくともいずれかが3以上である、熱可塑性エラストマー組成物の製造方法。
    A method for producing the thermoplastic elastomer composition according to any one of claims 1 to 9,
    (i) mixing a polymer containing at least two or more hydroxyl groups and/or amino groups with a polyolefin thermoplastic resin to obtain a mixture;
    (ii) further adding a polyisocyanate containing two or more isocyanate groups to the resulting mixture and allowing it to react to form a polyurethane-based resin;
    including
    A method for producing a thermoplastic elastomer composition, wherein at least one of the number of hydroxyl groups and/or amino groups in the polymer and the number of isocyanate groups in the polyisocyanate is 3 or more.
  11.  請求項1~9のいずれか一項に記載の熱可塑性エラストマー組成物を用いてなる、成形体。 A molded article using the thermoplastic elastomer composition according to any one of claims 1 to 9.
PCT/JP2022/003230 2021-01-29 2022-01-28 Thermoplastic elastomer composition and method for producing same, and molded article WO2022163796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013725A JP2022117168A (en) 2021-01-29 2021-01-29 Thermoplastic elastomer composition and method for producing the same, and molded article
JP2021-013725 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163796A1 true WO2022163796A1 (en) 2022-08-04

Family

ID=82653471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003230 WO2022163796A1 (en) 2021-01-29 2022-01-28 Thermoplastic elastomer composition and method for producing same, and molded article

Country Status (3)

Country Link
JP (1) JP2022117168A (en)
TW (1) TW202239863A (en)
WO (1) WO2022163796A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184367A (en) * 1992-12-17 1994-07-05 Regurusu:Kk Polymer alloy
JPH1034843A (en) * 1996-07-26 1998-02-10 Tosoh Corp Laminate and application thereof
JP2001253980A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer
JP2003335917A (en) * 2002-05-20 2003-11-28 Kuraray Co Ltd Thermoplastic elastomer composition
JP2017206588A (en) * 2016-05-16 2017-11-24 Jxtgエネルギー株式会社 Thermoplastic elastomer composition and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184367A (en) * 1992-12-17 1994-07-05 Regurusu:Kk Polymer alloy
JPH1034843A (en) * 1996-07-26 1998-02-10 Tosoh Corp Laminate and application thereof
JP2001253980A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer
JP2003335917A (en) * 2002-05-20 2003-11-28 Kuraray Co Ltd Thermoplastic elastomer composition
JP2017206588A (en) * 2016-05-16 2017-11-24 Jxtgエネルギー株式会社 Thermoplastic elastomer composition and method for producing the same

Also Published As

Publication number Publication date
JP2022117168A (en) 2022-08-10
TW202239863A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
CA1258144A (en) Compatibilized blends of acrylic ester copolymer rubber
EP2588534B1 (en) Polymer compositions
EP0209874B2 (en) Hydrogenated block copolymer compositions
CN102159626B (en) Novel elastomer material, and method for obtaining same
WO2002090433A1 (en) Thermoplastic elastomer composition
KR100875406B1 (en) Process for preparing thermoplastic elastomer composition
JP2013122055A (en) Thermoplastic polyolefin composition having improved melt viscosity and method of making the same
EP0212831B1 (en) Moldable elastomeric copolymer compositions
TW201728733A (en) Thermoplastic elastomer composition, member, weather seal, and corner member for weather seal
CN110603273B (en) Modified block copolymer, method for producing modified block copolymer, and resin composition
KR100843124B1 (en) Powdered resin composition for slush molding and molded articles
WO2022163796A1 (en) Thermoplastic elastomer composition and method for producing same, and molded article
US20070276094A1 (en) Thermoplastic polyolefin compositions having improved adhesion to polymer foams and/or coatings and methods of making and using the same
JP5241558B2 (en) Electron beam crosslinkable elastomer composition and method for producing molded article
JP3503339B2 (en) Thermoplastic elastomer composition
JP4067935B2 (en) Composition for thermoplastic foam and foam
JP4522728B2 (en) Thermoplastic polymer composition
JP2004059636A (en) Thermoplastic polymer composition
JP4522729B2 (en) Thermoplastic elastomer composition
JPH05171002A (en) Elastomer composition excellent in scratch resistance
JPS60123524A (en) Composition for polymer
EP4269489A1 (en) Thermoplastic elastomer composition and molded body
KR20230168831A (en) Foam composition for light weight shoes midsole having high durability
KR20220161904A (en) Foam composition for shoes midsole having excellent durability
JPH05320442A (en) Propylene polymer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746015

Country of ref document: EP

Kind code of ref document: A1