WO2022163670A1 - 多能性幹細胞から卵巣組織を分化させる培養技術 - Google Patents

多能性幹細胞から卵巣組織を分化させる培養技術 Download PDF

Info

Publication number
WO2022163670A1
WO2022163670A1 PCT/JP2022/002752 JP2022002752W WO2022163670A1 WO 2022163670 A1 WO2022163670 A1 WO 2022163670A1 JP 2022002752 W JP2022002752 W JP 2022002752W WO 2022163670 A1 WO2022163670 A1 WO 2022163670A1
Authority
WO
WIPO (PCT)
Prior art keywords
agonist
cells
culturing
culture
medium
Prior art date
Application number
PCT/JP2022/002752
Other languages
English (en)
French (fr)
Inventor
克彦 林
剛史 吉野
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2022163670A1 publication Critical patent/WO2022163670A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0006Modification of the membrane of cells, e.g. cell decoration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a culture technique for regenerating ovarian tissue from pluripotent stem cells.
  • the germ cell line is the only cell line that supports the survival of a species.
  • the ovum has a role of starting development and leading early development, and plays an extremely important and temporary role.
  • Non-Patent Document 1 Patent Documents 1 and 2
  • functional A method for regenerating healthy eggs has been reported
  • Patent Document 3 transplantation into the body of a mouse is used for meiosis and folliculogenesis to obtain mature oocytes, and oocytes are not completely matured by in vitro culture.
  • the object of the present invention is to construct an oocyte production system independent of living tissue by inducing the differentiation of pluripotent stem cells into ovarian somatic tissue.
  • epiblast-like cells differentiated from pluripotent stem cells were cultured in the presence of a BMP agonist and a Wnt agonist, and then treated with a BMP agonist, retinoic acid, and SHH. It was found that ovarian somatic cells are well cultured by culturing in the presence of an agonist and FGF inhibitor.
  • oocytes can be produced without using any biological tissue. .
  • a method for producing ovarian somatic tissue in vitro from pluripotent stem cells comprising: (a) culturing epiblast-like cells differentiated from pluripotent stem cells in the presence of a BMP agonist and a Wnt agonist to induce early mesoderm; (b) culturing the early mesoderm in the presence of a BMP agonist, retinoic acid, an SHH agonist and an FGF inhibitor to induce intermediate mesoderm; method including.
  • a method of producing a GV stage oocyte comprising: (d) ovarian somatic tissue obtained by the method according to any one of items 1 to 5 and primordial germ cells are cultured under conditions that eliminate the influence of estrogen or factors having functions similar to estrogen to form a secondary follicle comprising an oocyte, a granulosa cell layer, and a capsular cell layer; (e) partially severing the bond between the granulosa cell layer and the capsular cell layer in the secondary follicle formed in step (d); (f) culturing the oocyte, the granulosa cell layer, and the capsule cell layer that constitute the secondary follicle in a medium containing a polymer compound, thereby transforming the oocyte into a GV stage oocyte; and a step of differentiating.
  • a method of producing a GV stage oocyte comprising: (D) obtaining an ovarian somatic cell tissue by the method according to any one of items 1 to 5; (E) culturing the ovarian somatic tissue and primordial germ cells under conditions that eliminate the influence of estrogen or factors with estrogen-like functions; forming a secondary follicle comprising a stratum; (F) partially severing the bond between the granulosa cell layer and the capsular cell layer in the secondary follicle formed in step (E); (G) culturing the oocyte, the granulosa cell layer, and the capsule cell layer that constitute the secondary follicle in a medium containing a polymer compound, thereby transforming the oocyte into a GV stage oocyte; A method comprising: differentiating.
  • [Section 7] Item 7. The method according to item 6, wherein the polymer compound is at least one compound selected from the group consisting of polyvinylpyrrolidone, ficoll, hydroxypropylmethylcellulose, and serum albumin.
  • [Section 8A] A method for producing an egg, (g) A method comprising the step of resuming meiosis by subjecting GV-stage oocytes obtained by the method of Item 6 or 7 to in vitro maturation culture.
  • [Section 8B] A method for producing an egg, (H) obtaining GV stage oocytes by the method according to item 6 or 7; (I) in vitro maturation culture of the GV stage oocytes to resume meiosis.
  • ovarian somatic tissue can be induced to differentiate from pluripotent stem cells. Furthermore, by culturing the obtained ovarian somatic cells and oocytes separately induced from pluripotent stem cells, ova can be produced without using any living tissue.
  • T-GFP and PDGFRA are positive in the early mesoderm. It can be seen that 2-day culture, in which both T-GFP and PDGFRA are positive, is preferable.
  • This is a FACS analysis of Osr1-GFP and Foxf1-tdTomato in (1) in Examples. Since Osr1 is a marker for intermediate mesoderm (IMM) and Foxf1 is a marker for lateral plate mesoderm (LPM), Osr1-positive and Foxf1-negative conditions are preferred.
  • FIG. 10 is a Q-PCR analysis result showing the expression level of each marker when the concentrations of retinoic acid, SHH, and PD0325901 are changed in (2) in Examples.
  • FIG. 10 shows the number of Gata4-positive and weakly Osr1-positive cells when the concentrations of retinoic acid, SHH, and PD0325901 were varied in (2) in Examples.
  • FIG. 4 is a fluorescence analysis result showing in vitro culture of secondary follicles in (6) in the example. It is a fluorescence analysis result which shows the maturation to the ovum in (7) in an Example. Oocyte-cumulus cell complexes (COCs) before and after culture are shown. It is a neonate obtained from FOSCLs in (8) in the example. It is a living mouse in which a neonate has matured in (8) in Examples. A new individual was born from the living mice whose neonates had matured in (8) in the example.
  • COCs Oocyte-cumulus cell complexes
  • pluripotent stem cell refers to a cell that has both pluripotency that can differentiate into various cells existing in the body and self-renewal ability that can proliferate while maintaining an undifferentiated state. Any cell that is induced to be an epiblast-like cell for use in the invention is included.
  • pluripotent stem cells include, but are not limited to, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ cells (EG cells), spermatogonial stem cells (GS cells), bone marrow Muse cells and the like isolated from leaf cells can be mentioned.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • EG cells embryonic germ cells
  • GS cells spermatogonial stem cells
  • bone marrow Muse cells bone marrow Muse cells and the like isolated from leaf cells can be mentioned.
  • the pluripotent stem cells listed above can be obtained by known methods.
  • the pluripotent stem cells used in the present invention are derived from mammals.
  • mammals include mice, rats, humans, monkeys, dogs, pigs, cows, cats, goats, sheep, rabbits, guinea pigs, hamsters, etc., preferably mice.
  • ES cells used to induce differentiation of epiblast-like cells can be obtained by known methods. For example, it can be established by collecting an inner cell mass in a blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on fibroblast-derived feder cells.
  • iPS cells used to induce differentiation of epiblast-like cells may be derived from primary cultured somatic cells collected from donors of target animals, or may be derived from established cell lines.
  • somatic cells used for iPS cells may be derived from either ectodermal or endoderm cells.
  • iPS cells can be obtained by known methods. Specifically, for example, Okita K. et al, "Generation of germline-competent induced pluripotent stem cells.” Nature 448, 313-317 (2007), Hamanaka S. et al., “Generation of germline-competent rat induced pluripotent stem cells” PLoS One 6(7), e22008 (2011), Ohnuki M. et al., “Generation and characterization of human induced pluripotent stem cells.” Curr Protoc Stem Cell Biol. Jun Chapter 4: Unit 4A.2, (2009), etc., can be used as a reference.
  • an epiblast-like cell refers to cells derived from pluripotent stem cells and having properties equivalent to those of epiblast cells before gastrulation. More specifically, an epiblast-like cell (EpiLC) is defined as a cell that has either or both of the following characteristics. (1) Increased expression of at least one gene selected from Fgf5, Wnt3 and Dnmt3b compared to pluripotent stem cells before induction of differentiation. (2) reduction in expression of at least one gene selected from Gata4, Gata6, Sox17 and Blimp1, compared to pluripotent stem cells before induction of differentiation;
  • basal medium for inducing differentiation in (a) above examples include ⁇ MEM medium, Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, minimum essential medium (MEM), and GMEM.
  • Medium Eagle MEM Medium, Dulbecco's Modified Eagle Medium (DMEM), Glasgow MEM Medium, Improved MEM Zinc Option Medium, IMDM Medium, Medium 199 Medium, DMEM/F12 Medium, StemPro-34SFM Medium, Ham Medium, RPMI 1640 Medium, HTF Medium , Fischer's medium, and mixed medium thereof, etc., but are not limited thereto.
  • the medium may be a serum-containing medium or a serum-free medium.
  • a serum-free medium is preferably used.
  • Serum-free medium means a medium that does not contain any untreated or unpurified serum, and includes medium containing purified blood-derived components or animal tissue-derived components (such as growth factors). Concentration of serum (e.g., fetal bovine serum (FBS), human serum, etc.) is 0-20%, preferably 0-5%, more preferably 0-2%, most preferably 0% (ie serum-free) is. SFM may include any serum replacement.
  • Serum substitutes include, for example, albumin (e.g., lipid-rich albumin, albumin substitutes such as recombinant albumin, plant starch, dextran and protein hydrolysates, etc.), transferrin (or other iron transporters), fatty acids, insulin. , collagen precursors, trace elements, 2-mercaptoethanol, 3′-thioglycerol, or equivalents thereof.
  • albumin e.g., lipid-rich albumin, albumin substitutes such as recombinant albumin, plant starch, dextran and protein hydrolysates, etc.
  • transferrin or other iron transporters
  • fatty acids fatty acids
  • insulin e.g., collagen precursors, trace elements, 2-mercaptoethanol, 3′-thioglycerol, or equivalents thereof.
  • KSR KnockOut Serum Replacement
  • Glutamax Glutamax and the like are included. These can be used individually by 1 type or in combination of 2 or more types.
  • the medium contains a BMP agonist and a Wnt agonist as essential supplements of the basal medium.
  • BMP agonists include, for example, BMP family proteins. Examples include BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP9, BMP10, BMP11, BMP12, BMP13, BMP14, BMP15, etc. Among these, BMP4 is particularly preferred.
  • the concentration of the BMP agonist is preferably 0.01 ng/ml or higher, more preferably 0.1 ng/ml or higher. Also, the concentration of the BMP agonist is preferably 10 ng/mL or less, more preferably 5 ng/mL or less, and particularly preferably 2 ng/mL or less.
  • Wnt agonists include Wnt family proteins, Frizzled receptor activators, inhibitors of endogenous Wnt antagonists, inhibitors of intracellular ⁇ -catenin inhibitors, inhibitors of intracellular ⁇ -catenin degradation, and the like. GSK-3 ⁇ inhibitors are preferred, and CHIR99021 is particularly preferred.
  • the Wnt agonist concentration is preferably 3 ⁇ M or higher, more preferably 5 ⁇ M or higher, and particularly preferably 10 ⁇ M or higher. Also, the Wnt agonist concentration is preferably 50 ⁇ M or less, more preferably 20 ⁇ M or less.
  • the medium may contain other known additives.
  • Additives are not particularly limited, but examples include growth factors, polyamines, minerals, sugars (e.g., glucose, etc.), organic acids (e.g., pyruvic acid, lactic acid, etc.), amino acids (e.g., non-essential amino acids (NEAA), L- glutamine, etc.), reducing agents (e.g., 2-mercaptoethanol, etc.), vitamins (e.g., ascorbic acid, d-biotin, etc.), steroids, antibiotics (e.g., streptomycin, penicillin, etc.), buffering agents (e.g., HEPES, etc.) , nutritional additives (eg, B27 supplement, N2 supplement, StemPro-Nutrient Supplement, etc.). These can be used individually by 1 type or in combination of 2 or more types. Each additive is preferably contained within a known concentration range.
  • the culturing step of inducing early mesoderm from epiblast-like cells is performed, for example, by seeding epiblast-like cells in a known cell non-adhesive or low-adhesive culture vessel and culturing them. be able to.
  • Culture conditions are not limited to the following, but can be performed, for example, in an atmosphere of 1-10% CO 2 /99-90% air.
  • the culture temperature is about 30-40°C, preferably about 37°C.
  • the culture period is less than 4 days, preferably about 2 days (eg 48 ⁇ 12 hours, preferably 48 ⁇ 6 hours).
  • step (b) A step of culturing the early mesoderm obtained in step (a) in the presence of a BMP agonist, retinoic acid, an SHH agonist and an FGF inhibitor to induce intermediate mesoderm.
  • a BMP agonist, retinoic acid, an SHH agonist and an FGF inhibitor to induce intermediate mesoderm.
  • step (b) As the differentiation-inducing basal medium in step (b) above, the basal medium and serum or serum substitutes exemplified for use in step (a) are similarly used.
  • BMP agonist, retinoic acid, SHH agonist and FGF inhibitor are included as essential additives in the basal medium in step (b) above.
  • BMP agonists include, for example, BMP family proteins. Examples include BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP9, BMP10, BMP11, BMP12, BMP13, BMP14, BMP15, etc. Among these, BMP4 is particularly preferred.
  • the concentration of the BMP agonist is preferably 0.01 ng/ml or higher, more preferably 0.1 ng/ml or higher. Also, the concentration of the BMP agonist is preferably 10 ng/mL or less, more preferably 5 ng/mL or less, and particularly preferably 2 ng/mL or less.
  • the concentration of retinoic acid is preferably 0.1 ⁇ M or higher, more preferably 1 ⁇ M or higher, and preferably 10 ⁇ M or lower, more preferably 5 ⁇ M or lower.
  • An SHH agonist is a substance that activates the Sonic hedgehog pathway and inhibits Wnt signaling, preferably SHH (Sonic hedgehog).
  • SHH agonist concentration is preferably 1 ng/mL or higher, more preferably 10 ng/mL or higher. Also, it is preferably 300 ng/mL or less, more preferably 50 ng/mL or less.
  • An FGF inhibitor is an inhibitor of fibroblast growth factor (FGF), preferably PD0325901.
  • the concentration of the FGF inhibitor is preferably 0.1 ⁇ M or higher, more preferably 0.5 ⁇ M or higher, and is preferably 10 ⁇ M or lower, more preferably 5 ⁇ M or lower.
  • step (a) As other additives used in the basal medium in step (b) above, the other additives exemplified for use in step (a) are similarly used.
  • the Wnt agonist is preferably not contained in step (b). Addition of a Wnt agonist in step (b) inhibits intermediate mesoderm formation.
  • culture conditions for inducing early mesoderm into intermediate mesoderm are not limited to the following, but may be performed, for example, in an atmosphere of 1 to 10% CO 2 /99 to 90% air. can.
  • the culture temperature is about 30-40°C, preferably about 37°C.
  • the culture period is less than 3 days, preferably about 2 days (eg 48 ⁇ 12 hours, preferably 48 ⁇ 6 hours).
  • step (c) A step of culturing the intermediate mesoderm obtained in step (b) in the presence of a BMP agonist and an FGF agonist to induce ovarian somatic tissue.
  • a BMP agonist and an FGF agonist to induce ovarian somatic tissue.
  • step (c) As the differentiation-inducing basal medium in step (c) above, the basal medium and serum or serum substitutes exemplified for use in step (a) are similarly used.
  • a BMP agonist and an FGF agonist are preferably contained as additives to the basal medium in step (c) above.
  • BMP agonists include substances that activate BMPs or BMP signaling pathways, such as BMP family proteins. Examples include BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP9, BMP10, BMP11, BMP12, BMP13, BMP14, BMP15, etc. Among these, BMP4 is particularly preferred.
  • the concentration of the BMP agonist is preferably 0.01 ng/ml or higher, more preferably 1 ng/ml or higher. Also, the concentration of the BMP agonist is preferably 100 ng/mL or less, more preferably 30 ng/mL or less.
  • FGF agonists include substances that activate FGF or FGF signaling pathways, such as FGF family proteins. Examples thereof include FGF9, bFGF, FGF2, FGF4, etc. Among these, FGF9 is preferred.
  • the concentration of the FGF agonist is preferably 0.01 ng/ml or higher, more preferably 0.1 ng/ml or higher. Also, the concentration of the FGF agonist is preferably 100 ng/mL or less, more preferably 10 ng/mL or less.
  • step (c) As other additives used in the basal medium in step (c) above, the other additives exemplified for use in step (a) are similarly used.
  • culture conditions for inducing intermediate mesoderm into ovarian somatic tissue are not limited to the following, but are performed in an atmosphere of 1-10% CO 2 /99-90% air, for example. can be done.
  • the culture temperature is about 30-40°C, preferably about 37°C.
  • the culture period is less than 4 days, preferably about 2 days (eg 48 ⁇ 12 hours, preferably 48 ⁇ 6 hours).
  • ovarian somatic tissue refers to cells derived from pluripotent stem cells and having characteristics equivalent to those of fetal ovarian somatic cells. It has the characteristic of differentiating into More specifically, ovarian somatic tissue is defined as cells with the following properties: (1) Increased gene expression of Nr5a1 compared to epiblast-like cells. Therefore, the induction of differentiation into ovarian somatic tissue can be confirmed, for example, by analyzing the expression level of marker genes for ovarian somatic tissue.
  • the present invention also provides a reagent kit for inducing differentiation from pluripotent stem cells to ovarian somatic tissue.
  • the kit of the present invention can contain a BMP agonist, Wnt agonist, retinoic acid, SHH agonist, FGF inhibitor, or a combination thereof.
  • it is a kit containing all of the BMP agonist, Wnt agonist, retinoic acid, SHH agonist, and FGF inhibitor.
  • the kit can also contain other reagents, tools such as wells, etc. necessary for culture.
  • step (d) culturing the ovarian somatic tissue obtained in step (c) and primordial germ cells under conditions that eliminate the influence of estrogen or factors having estrogen-like functions to form secondary follicles;
  • Process The present invention uses the ovarian somatic cell tissue obtained in step (c), and "(d) oxidizes the ovarian somatic cell tissue and primordial germ cells to the effect of estrogen or a factor having a function similar to estrogen. culturing under exclusion conditions to form secondary follicles".
  • primordial germ cells are cells that are scheduled to differentiate into germ cells, and refer to cells that differentiate into ova or sperm via oogonia or spermatogonia.
  • a primordial germ cell may be derived from a living organism, or may be a primordial germ cell-like cell (PGCLC) differentiated from a pluripotent stem cell.
  • PPCLC primordial germ cell-like cell
  • the "primordial germ cell” used in the present invention also includes primary oocytes that have progressed in development from primordial germ cells and have started meiosis. Also included are living body-derived primordial germ cells or pluripotent stem cell-derived primordial germ cell-like cells whose genes have been modified using genetic engineering techniques.
  • Non-Patent Document 1 Hayashi K. et al., "Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. "Cell, Aug 19, 146(4), 519-32 (2011), etc.
  • step (d) it is preferable to carry out a culture step of producing aggregates composed of primordial germ cells and ovarian somatic tissue obtained in step (c).
  • a method for producing an aggregate consisting of primordial germ cells and ovarian somatic tissue obtained in step (c) is described, for example, by K. Hayashi, O. Hikabe, Y. Obata, Y. Hirao, Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat Protoc 12, 1733-1744 (2017)., Patent Document 3, Non-Patent Document 5, and the like.
  • GK15 medium containing Retinoic Acid and Y27632 (15% KSR, 1xGlutaMax, 1x penicillin/streptomycin (100 U/ml Penicillin and 0.1 mg/ml streptomycin), 100 ⁇ M 2-mercaptoethanol, 1 ⁇ M Retinoic Acid, 10 ⁇ M Y27632 in GMEM).
  • the primordial germ cells and the ovarian somatic cell tissue obtained in step (c) are mixed, aggregated, and cultured in the added medium). It is preferable to use a low-adsorption culture dish for culture.
  • the culture period for forming aggregates can be 1-4 days, preferably 2 days.
  • the ratio of the primordial germ cells and the ovarian somatic tissue obtained in step (c) when mixed is as long as the produced aggregates form secondary follicles and form functional GV-stage oocytes.
  • the cell number ratio of pluripotent stem cell-derived PGCLCs and gonadal-derived somatic cells is preferably 1:5 or more and 1:40 or less. It is more preferably 1:15 or more and 1:25 or less.
  • culturing under "conditions that eliminate the influence of estrogen or factors having functions similar to estrogen” includes culturing in the presence of an “estrogen inhibitor.”
  • the "estrogen inhibitor” used in the present invention has an action that can inhibit the activation of the estrogen receptor.
  • estrogen inhibitors are not limited to those mentioned above, and can be used as long as they have the effect of inhibiting the activation of estrogen receptors and are capable of differentiating primordial germ cells into functional oocytes. can do.
  • the estrogen inhibitor is preferably added at a timing prior to oocyte cyst collapse and/or primordial follicle formation.
  • the concentration of the estrogen inhibitor is preferably added to the medium in the range of 0.01-50 ⁇ M, more preferably in the range of 0.1-10 ⁇ M.
  • the basal medium exemplified for use in step (a) is similarly used, to which serum or alternative serum is added.
  • concentration of serum eg, fetal bovine serum (FBS), human serum, etc.
  • FBS fetal bovine serum
  • human serum etc.
  • culture under "conditions that eliminate the influence of estrogen or factors with estrogen-like functions” includes culture in a serum-free medium.
  • Serum-free medium means a medium that does not contain any untreated or unpurified serum, and includes medium containing purified blood-derived components or animal tissue-derived components (such as growth factors). SFM is similarly used in the basal medium exemplified for use in step (a), and may optionally contain alternative serum.
  • Serum substitutes include, for example, SPS (Serum Protein Substitute), KSR (KnockOut Serum Replacement), SSS (serum substitute supplement), etc. These may be used alone or in combination of two or more. can. SPS or KSR is preferred.
  • the concentration of replacement serum is preferably in the range of 5% to 20%, more preferably 10%.
  • the period for culturing using a serum-free medium be a period during which oocyte cyst disintegration and primordial follicle formation are completed.
  • the primordial germ cells in step (d) they can be cultured using a serum-free medium throughout.
  • culture can also be performed by appropriately switching from a serum medium to a serum-free medium. It should be noted that, for culturing during a period in which no serum-free medium is used, it is preferable to use a medium obtained by adding serum such as FBS to the basal medium exemplified for use in step (a).
  • step (a) other additives exemplified for use in step (a) are similarly used as other additives used in the basal medium in step (d).
  • culture conditions for inducing secondary follicles are not limited to the following, but can be performed, for example, in an atmosphere of 1-10% CO 2 /99-90% air.
  • the culture temperature is about 30-40°C, preferably about 37°C.
  • the culturing period is preferably 11 to 25 days counting from the start of culturing of the aggregates prepared in advance.
  • the culture period in step (d) varies depending on the animal species from which the primordial germ cells to be cultured are derived, but it is preferable to use the period until the primordial germ cells form secondary follicles in vivo as a guideline.
  • step (e) a step of partially cutting the bond between the granulosa cell layer and the capsule cell layer among the oocytes, the granulosa cell layer, and the capsule cell layer that constitute the formed secondary follicle;
  • the present invention relates to the secondary follicles obtained in step (d), "(e) oocytes, granulosa cell layers, and capsule cell layers that constitute the formed secondary follicles, granulosa cells "partially severing the bond between the layer and the capsular cell layer.”
  • the method of step (e) can be performed, for example, with reference to Patent Document 3 and the like.
  • the secondary follicle obtained by the culture in step (d) has a structure in which the oocyte is surrounded by a layer of granulosa cells, and the layer of granulosa cells is further surrounded by a layer of capsular cells.
  • step (e) the bond between the follicle-forming granulosa cell layer and the capsular cell layer is partially cut.
  • Enzyme treatment and/or physical treatment can be used to partially cut the bond between the granulosa cell layer and the capsule cell layer.
  • a preferred method is to cleave the bond by combining an enzyme treatment and a physical treatment.
  • collagenase For enzymatic treatment, commercially available collagenase can be dissolved and diluted in a known medium.
  • the basal medium exemplified for use in step (a) is similarly used.
  • Collagenase includes, for example, type I collagenase, type II collagenase, type III collagenase, type IV collagenase, type V collagenase, type VI collagenase, type VII collagenase, etc.
  • Type I collagenase is preferably used.
  • the concentration of collagenase is preferably 0.05-0.5%. Preferably it is 0.1%.
  • the temperature is preferably in the range of 30-40°C, more preferably 37°C.
  • the treatment time is preferably 2 to 15 minutes.
  • Partial cutting of the bond between the granulosa cell layer and the capsule cell layer may be performed with reference to a state in which the whole or part of the capsule cell layer is detached from the follicle.
  • the treatment for severing the bond between the granulosa cell layer and the capsule cell layer is preferably performed on the 0th to 7th day of starting the follicle culture, and more preferably on the 2nd to 4th day of the culture. preferable.
  • the treatment for cutting the bond between the granulosa cell layer and the capsule cell layer is not performed immediately, and pre-culture for about 1 to 3 days is performed, so that the follicles become inserts. It is preferable because it adheres to the membrane and is stable.
  • the medium used for such preculture the same medium as the medium used in the following step (f) can be used.
  • GDF9 and/or BMP15 can be added to the medium used for preculture. Addition of these compounds to the medium used for preculture of secondary follicles can further promote the proliferation of granulosa cells.
  • GDF9 and BMP15 can be added to ⁇ MEM at a ratio of 10-20 ng/ml, preferably 15 ng/ml.
  • step (f) culturing the oocyte, the granulosa cell layer, and the capsule cell layer that constitute the secondary follicle in a medium containing a polymer compound, thereby transforming the oocyte into a GV stage oocyte;
  • step (e) using the secondary follicles obtained in step (e), "(f) oocytes, granulosa cell layers, and capsule cell layers constituting the secondary follicles, It further comprises a step of differentiating said oocytes into GV-stage oocytes by culturing in a medium containing a polymer compound.
  • the method of step (f) can be performed, for example, with reference to Patent Document 3 and the like.
  • the medium used for the in vitro culture of secondary follicles of the present invention is a basal medium supplemented with a polymer compound.
  • the basal medium exemplified for use in step (a) is similarly used.
  • the basal medium may optionally contain, for example, fetal bovine serum (FBS), follicle stimulating hormone (FSH), and the like.
  • the polymer compound used in the present invention those used for culturing secondary follicles can be widely used.
  • it should be easily soluble in water, have extremely low cytotoxicity, should not have the property of destabilizing the pH of the culture solution during culture, and should also have stable initial characteristics for a long period of time. It is preferable to use a polymer compound that satisfies conditions such as being maintained.
  • the viability of oocytes is not impaired, somatic cells such as granulosa cells and capsule cells around the oocytes do not fall off, and the structure centered on the oocyte is preserved.
  • Examples include synthetic polymers, polysaccharide polymers, proteins, proteoglycans, and the like.
  • synthetic polymers include polyvinylpyrrolidone (PVP; molecular weight of about 360,000) and polyvinyl alcohol (PVA; molecular weight of about 70,000 to 100,000).
  • polysaccharide polymers examples include dextran, hydroxyethylated starch, derivatives of cellulose compounds (e.g., hydroxypropyl methylcellulose), Ficoll (molecular weight: 400,000) (Ficoll (registered trademark)), a synthetic polymer of sucrose, hyaluronic acid, chondroitin sulfate, and the like. glycosaminoglycans and the like.
  • proteins include serum albumin (molecular weight: about 69,000).
  • chondroitin sulfate proteoglycan etc. are mentioned as a proteoglycan. These can be used individually by 1 type or in combination of 2 or more types.
  • Particularly preferred polymer compounds in the present invention include, but are not limited to, PVP, Ficoll (registered trademark), hydroxypropylmethylcellulose, and serum albumin.
  • the concentration of the polymer compound to be added can be, for example, within the range of about 1-12% (w/v), preferably 1-8% (w/v), more preferably 1-8% (w/v), relative to the basal medium. can be 1-4% (w/v), most preferably about 2% (w/v).
  • the secondary follicle culture period in step (f) is preferably the period until the oocyte in the secondary follicle forms a functional GV stage oocyte, for example, 12 to 16 hours. Daily culture is preferred.
  • step (g) Step of resuming meiosis by subjecting GV-stage oocytes obtained in step (f) to in vitro maturation culture. g) in vitro maturation culture of the GV stage oocytes obtained in step (f) to resume meiosis".
  • step (g) GV-stage oocytes can be matured into ova by carrying out a commonly used culture method for in vitro maturation of immature oocytes.
  • the term "egg” refers to an egg that has reached meiosis second metaphase (MII stage) and has stopped at the MII stage.
  • the ova obtained in the present invention can be functional ova.
  • a functional ovum refers to an ovum that has the ability to develop into a normal individual through fertilization with a sperm or the like, and that the individual has the ability to leave a normal next generation.
  • the oocyte-cumulus cell complexes are usually collected from the culture dish after culturing for oocyte development, and the maturation medium is added to the maturation medium. and then transferred to the final maturation medium.
  • the basal medium exemplified for use in step (a) is likewise used.
  • Sodium pyruvate, antibiotics, gonadotropins, growth factors, serum, follicular fluid and the like are added to the basal medium as appropriate. These can be used individually by 1 type or in combination of 2 or more types.
  • the ova obtained in this way can be used for normal in vitro fertilization, as well as for the production of parthenogenetic embryos, recipient ova in the production of cloned animals, and the like.
  • ES cells used for the induction of ES cell ovarian somatic tissues are ES cell lines established from mouse blastocysts with the following genetic background.
  • ⁇ T-GFP mESCs B6D2F1 female and T nEGFP-CreERT2/- male
  • ⁇ Osr1-GFP mESCs for knock-in of Foxf1-tdTomato B6D2F1 female and Osr1-GFP male
  • ⁇ Osr1-GFP mESCs for knock-in of Gata4 -CFP C57Bl/6J female and Osr1-GFP male
  • 129X1/Svj female and Nr5a1-hCD271 male ICR mice, C57Bl/6J mice, 129X1/Svj mice, and B6D2F1 mice were all purchased from Japan S
  • the ES cells used to induce PGCLCs are ES cell lines established from blastocysts of mice transfected with Blimp1-mVenus and Stella-ECFP (BVSC) (the Jackson Laboratory).
  • Blimp1 is a PGC-like cell (PGCLC) marker gene
  • Stella is a PGCLC and oocyte marker gene.
  • the karyotype of the ES cells used in this example is female cells having 40 chromosomes (38XX).
  • ES cells used for induction into PGCLC were grown under feeder-free conditions using N2B27 medium containing 2i (PD0325901, 0.4 ⁇ M: Stemgent, San Diego, CA; CHIR99021, 3 ⁇ M: Stemgent) and LIF (1000 u/ml). It was cultured for 2 days under low temperature (5% CO 2 , 95% air, 37° C.). ES/iPS cells were then cultured using human plasma-derived fibronectin-coated culture dishes and N2B27 medium containing Activin (20 ng/ml), bFGF (12 ng/ml), and KSR (1%). They were differentiated into epiblast-like cells (EpiLC) by culturing for days.
  • N2B27 medium containing 2i PD0325901, 0.4 ⁇ M: Stemgent, San Diego, CA; CHIR99021, 3 ⁇ M: Stemgent
  • LIF 1000 u/ml
  • ES/iPS cells were then cultured using human plasma-derived
  • the resulting EpiLC was composed of BMP4 (500 ng/ml; R&D Systems), LIF (1000 u/ml; Invitrogen), SCF (100 ng/ml; R&D Systems), and EGF (50 ng/ml; R&D Systems).
  • GK15 serum-free medium
  • GMEM Invitrogen
  • NUNC low-adsorption 96-well culture dish
  • Each EpiLC obtained was cultured in BMP4 (R&D Systems), CHIR99021 (R&D Systems), and serum-free medium (GK7.5; 7.5% KSR, 0.1 mM NEAA, GMEM (Invitrogen) containing 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2 mM L-glutamine) and low-adsorption 96-well culture dishes (NUNC) were used for culture.
  • NUNC low-adsorption 96-well culture dishes
  • Concentrations of BMP4 to be added were 1 ng/ml, 3 ng/ml and 10 ng/ml, and concentrations of CHIR99021 to be added were 3 ⁇ M, 8 ⁇ M and 14 ⁇ M. The results are shown in FIGS. 1-3. From these results, the optimal concentrations of BMP4 and CHIR99021 were determined to be 1 ng/ml and 14 ⁇ M, respectively.
  • the concentration of PD0325901 was examined at 0 ⁇ M and 1 ⁇ M. The results are shown in FIGS. 4 and 5. FIG. Based on these results, the optimal concentrations of Retinoic Acid, SHH, and PD0325901 were determined to be 3 ⁇ M, 30 ng/ml, and 1 ⁇ M, respectively.
  • FACS analysis was performed using an anti-hCD271 antibody to select Nr5A1-hCD271-positive FOSLCs. As shown in FIG. 6, it is found to be similar to E12.5 (12.5-day-old ICR mouse gonadal somatic cells).
  • GK15 medium (15% KSR, 0.1 mM NEAA, 1 nM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 100 U/ml penicillin, 0.1 mg/ml in GMEM) containing Retinoic Acid (1 ⁇ M) and Y27632 (10 ⁇ M) streptomycin and 2 mM L-glutamine), PGCLC 5 ⁇ 10 3 cells/well and FOSLCs were cultured at 7.5 ⁇ 10 4 cells/well and 10 ⁇ 10 4 cells/well for 2 days. As a control, 12.5-day-old ICR mouse gonadal somatic cells (7.5 ⁇ 10 4 cells/well) were used and cultured with PGCLC under the same conditions.
  • IVD- ⁇ MEM medium containing BMP2 (150 ng/ml; Peprotech) and Retinoic Acid (100 nM) (2% fetal calf serum (FCS), 150 ⁇ M ascorbic acid, 2 mM L-glutamine, 100 U for ⁇ MEM) /ml penicillin, 0.1 mg/ml streptomycin, and medium supplemented with 55 ⁇ M 2-mercaptoethanol) for 3 days.
  • BMP2 150 ng/ml
  • Retinoic Acid 100 nM
  • FCS fetal calf serum
  • IVD-SP medium containing BMP2 (150 ng/ml; Peprotech) and Retinoic Acid (100 nM) (StemPro-34 SFM (Life technologies) with 10% FCS, 150 ⁇ M ascorbic acid, 2 mM GlutaMax, 100 U /ml penicillin, 0.1 mg/ml streptomycin, and 55 ⁇ M 2-mercaptoethanol), and cultured.
  • BMP2 150 ng/ml
  • Retinoic Acid 100 nM
  • FCS 150 ⁇ M ascorbic acid
  • 2 mM GlutaMax 100 U /ml penicillin, 0.1 mg/ml streptomycin, and 55 ⁇ M 2-mercaptoethanol
  • Isolated secondary follicles obtained by culture were physically isolated using tungsten on Transwell-Col. Isolated secondary follicles were cultured in IVG- ⁇ MEM medium (5% FCS, 2% polyvinylpyrrolidone (Sigma), 150 ⁇ M ascorbic acid, 2 mM L-glutamine, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 100 ⁇ M 2- mercaptoethanol, 55 ⁇ g/ml sodium pyruvate, and 0.1IU/ml FSH) was further added with GDF9 and BMP15 (both 15ng/ml), cultured on Transwell-Col for 2 days did.
  • IVG- ⁇ MEM medium 5% FCS, 2% polyvinylpyrrolidone (Sigma), 150 ⁇ M ascorbic acid, 2 mM L-glutamine, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 100 ⁇ M 2- mercaptoethanol, 55 ⁇ g/ml sodium
  • the medium was changed to IVG- ⁇ MEM medium without GDF9 and BMP15, and culture was performed.
  • IVG- ⁇ MEM medium 1.5 mL of IVG- ⁇ MEM medium was added to cover the follicles.
  • the secondary follicles were treated with 0.1% type I collagenase for 5 minutes at room temperature to partially detach the granulosa cell layer and the capsule cell layer. Thereafter, the cells were continuously cultured on Transwell-Col using the above IVG- ⁇ MEM medium (GDF9 and BMP15 were not added). As a result, we were able to isolate COCs from secondary follicles that had developed on the 12th day of culture using glass capillaries. The course of culture is shown in FIG.
  • Oocyte maturation by in vitro culture (IVM)> The COCs obtained in (6) were added to IVM medium ( ⁇ MEM supplemented with 5% FCS, 25 ⁇ g/ml sodium pyruvate, 1x penicillin/streptomycin, 0.1 IU/ml FSH, 4 ng/ml EGF, and 1.2 IU/ml hCG). and cultured for 16 hours (Fig. 10). After that, the cumulus cells were dissociated from the oocytes with hyaluronidase, and the first polar body released was confirmed as MII oocytes, which were used for in vitro fertilization.
  • IVM medium ⁇ MEM supplemented with 5% FCS, 25 ⁇ g/ml sodium pyruvate, 1x penicillin/streptomycin, 0.1 IU/ml FSH, 4 ng/ml EGF, and 1.2 IU/ml hCG.

Abstract

本発明の課題は、多能性幹細胞から卵巣体細胞組織へと分化誘導させることにより、生体組織に依存しない卵子産生系を構築することである。 多能性幹細胞から分化したエピブラスト様細胞を、BMPアゴニスト及びWntアゴニスト存在下で培養し、その後BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤存在下で培養することにより、卵巣体細胞組織へと分化誘導できる。

Description

多能性幹細胞から卵巣組織を分化させる培養技術
 [関連出願の相互参照]
 本出願は、2021年1月26日に出願された、日本国特許出願第2021-010090号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。本発明は、多能性幹細胞から卵巣組織を再生する培養技術に関する。
 生殖細胞系列は、種の存続を支える唯一の細胞系列である。そして、生殖細胞のうちの卵子は、発生をスタートさせ初期発生をけん引する役割を有しており、きわめて重要かつ一時的な役割を担っている。
 これまで、マウスを用いた研究によりES細胞、iPS細胞から、体外培養で始原生殖細胞様細胞を作出する方法(非特許文献1、特許文献1、2)、及び始原生殖細胞様細胞から機能的な卵子を再生する方法が報告されている(特許文献3)。しかし、非特許文献1においては、減数分裂、卵胞形成を遂行させ、成熟卵子を得るためにマウス体内への移植を用いており、完全に体外培養で卵子を成熟させていない。
 また、特許文献3の方法では、体外培養で卵子を成熟させているものの、卵子を育てる卵巣体細胞(卵胞)を生体から採取する必要があった。このため、卵巣組織の採取に困難なヒトを含めた様々な動物において、卵子の再生をすることは困難であった。
 このように、現段階において、生体組織を使用することなく、無限に増える多能性幹細胞の使用のみで機能的な卵子の作製に成功した例はない。生体組織を使用することなく、機能的な卵子を作製できれば、複雑な生殖細胞の分化メカニズムの解明、及び体外培養で作られる配偶子を用いた個体の作成も可能になる。そのため、生体細胞を一切使用しない、機能的な卵子の作製技術が望まれていた。
国際公開WO2012/020687号 国際公開WO2014/133194号 国際公開WO2017/047799号
 本発明の課題は、多能性幹細胞から卵巣体細胞組織へと分化誘導させることにより、生体組織に依存しない卵子産生系を構築することである。
 上記課題を解決すべく、発明者らは鋭意研究を重ねた結果、多能性幹細胞から分化したエピブラスト様細胞を、BMPアゴニスト及びWntアゴニスト存在下で培養し、その後BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤存在下で培養することにより、卵巣体細胞が良好に培養されることを見出した。
 さらに、本発明者らは、得られた卵巣体細胞と、多能性幹細胞から別途誘導した卵母細胞を培養することにより、生体組織を一切使用しなくとも、卵子の作製ができることを見出した。
 本発明はこれらの知見に基づいて完成されたものであり、以下に示す広い態様の発明を含むものである。
[項1]
 多能性幹細胞から、in vitroで卵巣体細胞組織を製造する方法であって、
(a)多能性幹細胞から分化したエピブラスト様細胞を、BMPアゴニスト及びWntアゴニストの存在下で培養して初期中胚葉を誘導する工程と、
(b)前記初期中胚葉を、BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤の存在下で培養して中間中胚葉を誘導する工程と、
を含む方法。
[項2]
(c)前記中間中胚葉を、BMPアゴニスト及びFGFアゴニストの存在下で培養して卵巣体細胞組織を誘導する工程
をさらに含む項1に記載の方法。
[項3]
前記BMPアゴニストがBMP4であり、前記WntアゴニストがCHIR99021である、項1又は2に記載の方法。
[項4]
前記BMPアゴニストがBMP4であり、SHHアゴニストがSHHであり、前記FGF阻害剤がPD0325901である、項1~3のいずれか1項に記載の方法。
[項5]
前記FGFアゴニストがFGF9である、項2~4のいずれか1項に記載の方法。
[項6A]
GV期卵母細胞を製造する方法であって、
(d)項1~5のいずれか1項に記載の方法により得られる卵巣体細胞組織と、始原生殖細胞とをエストロジェン、又はエストロジェンと類似の機能を有する因子の影響を排除する条件下で培養して、卵母細胞、顆粒膜細胞層、及び莢膜細胞層を含む二次卵胞を形成させる工程と、
(e)工程(d)で 形成した二次卵胞における顆粒膜細胞層と莢膜細胞層との間の結合を部分的に切断する工程と、
(f)前記二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び莢膜細胞層を、高分子化合物を含む培地で培養することにより、前記卵母細胞をGV期卵母細胞へと分化する工程と、を含む、方法。
[項6B]
GV期卵母細胞を製造する方法であって、
(D)項1~5のいずれか1項に記載の方法により卵巣体細胞組織を得る工程と、
(E)前記卵巣体細胞組織と、始原生殖細胞とをエストロジェン、又はエストロジェンと類似の機能を有する因子の影響を排除する条件下で培養して卵母細胞、顆粒膜細胞層、及び莢膜細胞層を含む二次卵胞を形成させる工程と、
(F)工程(E)で 形成した二次卵胞における顆粒膜細胞層と莢膜細胞層との間の結合を部分的に切断する工程と、
(G)前記二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び莢膜細胞層を、高分子化合物を含む培地で培養することにより、前記卵母細胞をGV期卵母細胞へと分化する工程と、 を含む、方法。
[項7]
項6に記載の方法であって、前記高分子化合物が、ポリビニルピロリドン、フィコール、ヒドロキシプロピルメチルセルロース、及び血清アルブミンからなる群より選択される少なくとも一つの化合物である方法。
[項8A]
卵子の作出方法であって、
(g)項6又は7に記載の方法により得られるGV期卵母細胞を体外成熟培養することで減数分裂を再開させる工程
を含む、方法。
[項8B]
卵子の作出方法であって、
(H)項6又は7に記載の方法によりGV期卵母細胞を得る工程と、
(I)前記GV期卵母細胞を体外成熟培養することで減数分裂を再開させる工程と
を含む、方法。
[項9]
項1~5のいずれか1項に記載の方法により得られる卵巣体細胞組織。
[項10]
項6又は7に記載の方法により得られるGV期卵母細胞。
[項11]
項8に記載の方法により得られる卵子。
[項12]
多能性幹細胞を、in vitroで卵巣体細胞組織に分化するためのキットであって、BMPアゴニスト、Wntアゴニスト、レチノイン酸、SHHアゴニスト、FGF阻害剤、又は、それらの組み合わせを含む、キット。
 本発明によれば、多能性幹細胞から卵巣体細胞組織を分化誘導することができる。また、得られた卵巣体細胞と、多能性幹細胞から別途誘導した卵母細胞とを培養することにより、生体組織を一切使用しなくとも、卵子の作製をすることができる。
実施例中の(1)における、T-GFPとPDGFRAのFACS解析の結果である。培養2日後(上段)と4日後(下段)で比較している。初期中胚葉ではT-GFPとPDGFRAが両方陽性となるため、T-GFPとPDGFRAが両方陽性である、2日間培養が好ましいことがわかる。 実施例中の(1)における、Osr1-GFPとFoxf1-tdTomatoでのFACS解析である。Osr1は中間中胚葉(IMM)のマーカーであり、Foxf1は側板中胚葉(LPM)のマーカーであるため、Osr1陽性、Foxf1陰性の条件が好ましい。 実施例中の(1)における、BMP4とCHIR99021の濃度を変えた際の、各マーカーの発現量を示す。IMMのマーカー値が高く、沿軸中胚葉(PM)及びLPMのマーカーが低くなる条件が好ましい。 実施例中の(2)における、レチノイン酸、SHH、PD0325901の濃度を変えた際の、各マーカーの発現量を示すQ-PCR分析結果である。いずれのマーカーも生殖腺体細胞前駆体のマーカーであるため、高値となる条件が好ましい。 実施例中の(2)における、レチノイン酸、SHH、PD0325901の濃度を変えた際の、Gata4陽性かつOsr1弱陽性の細胞数を示す。Gata4陽性かつOsr1弱陽性の細胞数が多くなる条件が好ましい。 実施例中の(3)における、E12.5とFOSCLsの二次元UMAPプロットである。 実施例中の(5)における二次卵胞形成時の培養の様子を示す。E12.5あるいはFOSLCsと、PGCLCsを共に培養した。FxT:Foxl2-tdTomato、SC:stella-CFP、BV:Blimp1-mVenus 実施例中の(5)における二次卵胞形成時の培養における、自己組織化の様子を示す、免疫蛍光法分析結果である。 実施例中の(6)における二次卵胞の体外培養を示す、蛍光分析結果である。 実施例中の(7)における卵子への成熟を示す、蛍光分析結果である。培養前後の卵母細胞―卵丘細胞複合体(COC)を示している。 実施例中の(8)における、FOSCLsから得られた新生仔である。 実施例中の(8)における、新生仔が成熟した生体マウスである。 実施例中の(8)における、新生仔が成熟した生体マウス同士から、新たな個体が誕生した。
 本明細書において、単数形(a, an, the)は、本明細書で別途明示がある場合又は文脈上明らかに矛盾する場合を除き、単数と複数を含むものとする。
<多能性幹細胞からの、卵巣体細胞組織の製造>
 本明細書において、「多能性幹細胞」とは、生体に存在する様々な細胞に分化可能である多能性と、未分化状態を保持したまま増殖できる自己再生能を併せ持つ細胞であり、本発明で使用されるエピブラスト様細胞に誘導される任意の細胞が包含される。多能性幹細胞としては、特に限定されないが、例えば、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖細胞(EG細胞)、精子幹細胞(GS細胞)、骨髄間葉系細胞から単離されるMuse細胞等を挙げることができる。上記に列挙した多能性幹細胞は、それぞれ公知の方法により得ることができる。
 なお、本発明に使用される多能性幹細胞は、哺乳動物に由来するものを用いる。哺乳動物の例としては、マウス、ラット、ヒト、サル、イヌ、ブタ、ウシ、ネコ、ヤギ、ヒツジ、ウサギ、モルモット、ハムスター等が挙げられるが、好ましくはマウスである。
 本発明において、エピブラスト様細胞を分化誘導するために用いられるES細胞は、公知の方法により得ることができる。例えば、対象動物の受精卵の胚盤胞の中にある内部細胞塊を採取し、当該内部細胞塊を線維芽細胞に由来するフェダー細胞上で培養することによって樹立できる。
 本発明において、エピブラスト様細胞を分化誘導するために用いられるiPS細胞は、対象動物のドナーから採取した体細胞の初代培養細胞由来であっても良く、樹立細胞株由来であっても良い。また、iPS細胞に用いる体細胞は、原則的には外胚葉系、内胚葉系のいずれの胚葉系細胞由来のものであっても良い。iPS細胞は、公知の方法により得ることができる。具体的には、例えば、Okita K. et al, "Generation of germline-competent induced pluripotent stem cells." Nature 448, 313-317 (2007)、Hamanaka S. et al., "Generation of germline-competent rat induced pluripotent stem cells" PLoS One 6(7), e22008 (2011)、Ohnuki M. et al., "Generation and characterization of human induced pluripotent stem cells." Curr Protoc Stem Cell Biol. Jun Chapter 4: Unit 4A.2, (2009)等を参考にして行うことができる。
 また、本明細書において「エピブラスト様細胞(EpiLC)」とは、多能性幹細胞に由来する、原腸陥入前のエピブラスト細胞と同等の特性を有する細胞である。より詳細には、エピブラスト様細胞(EpiLC)は、以下の特性のいずれか又は両方を有する細胞として定義される。
(1)分化誘導前の多能性幹細胞と比較して、Fgf5、Wnt3及びDnmt3bから選択される少なくとも一つの遺伝子発現の上昇。
(2)分化誘導前の多能性幹細胞と比較して、Gata4、Gata6、Sox17及びBlimp1から選択される少なくとも一つの遺伝子発現の低下。
 ES細胞、iPS細胞からエピブラスト様細胞を分化誘導する方法は、公知の方法、例えば、特許文献1、Cell 146, 519-532 (2011)、 Science 338, 971-975 (2012)等を参考にして行うことができる。
(a) 多能性幹細胞から分化したエピブラスト様細胞を、BMPアゴニスト及びWntアゴニストの存在下で培養して初期中胚葉を誘導する工程
 本発明の方法は、「(a)多能性幹細胞から分化したエピブラスト様細胞を、BMPアゴニスト及びWntアゴニストの存在下で培養して初期中胚葉を誘導する工程」を含む。
 上記(a)での分化誘導用基本培地としては、例えば、αMEM培地、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、GMEM培地、Eagle MEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、StemPro-34SFM培地、ハム培地、RPMI 1640培地、HTF培地、Fischer's培地、及びこれらの混合培地等が挙げられるが、これらに限定されない。
 培地は、血清含有培地であっても、無血清培地であっても良い。無血清培地が好ましく使用される。無血清培地(SFM)とは、未処理又は未精製の血清をいずれも含まない培地を意味し、精製された血液由来成分又は動物組織由来成分(増殖因子等)を含有する培地が挙げられる。血清(例えば、ウシ胎児血清(FBS)、ヒト血清等)の濃度は、0~20%、好ましくは0~5%、より好ましくは0~2%、最も好ましくは0%(すなわち、無血清)である。SFMは任意の血清代替物を含んでもよい。血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン、組換えアルブミン等のアルブミン代替物、植物デンプン、デキストラン及びタンパク質加水分解物等)、トランスフェリン(又は他の鉄輸送体)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオグリセロールあるいはこれらの均等物等が挙げられる。また、KnockOut Serum Replacement(KSR)、Glutamax等が挙げられる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。
 培地は、基本培地の必須添加物として、BMPアゴニスト及びWntアゴニストを含有する。
 BMPアゴニストとしては、例えば、BMPファミリータンパク質等が挙げられる。例えば、BMP2、BMP3、BMP4、BMP5、BMP6、BMP7、BMP8a、BMP8b、BMP9、BMP10、BMP11、BMP12、BMP13、BMP14、BMP15等が挙げられ、この中でも特に、BMP4が好ましい。BMPアゴニストの濃度は、好ましくは0.01ng/mL以上、より好ましくは0.1ng/ml以上である。また、BMPアゴニストの濃度は、好ましくは10ng/mL以下、より好ましくは5ng/mL以下、特に好ましくは2ng/ml以下である。
 Wntアゴニストとしては、Wntファミリータンパク質、Frizzled受容体活性化物質、内在性Wntアンタゴニストの阻害剤、細胞内β-カテニン抑制物質の阻害剤、細胞内β-カテニン分解の阻害剤等が挙げられる。好ましくはGSK-3β阻害剤であり、特に好ましくはCHIR99021である。Wntアゴニストの濃度は、好ましくは3μM以上、より好ましくは5μM以上であり、特に好ましくは10μM以上である。また、Wntアゴニストの濃度は、好ましくは50μM以下、より好ましくは20μM以下である。
 培地は、その他公知の添加物を含んでもよい。添加物は特に限定されないが、例えば、成長因子、ポリアミン、ミネラル、糖(例えば、グルコース等)、有機酸(例えば、ピルビン酸、乳酸等)、アミノ酸(例えば、非必須アミノ酸(NEAA)、L-グルタミン等)、還元剤(例えば、2-メルカプトエタノール等)、ビタミン(例えば、アスコルビン酸、d-ビオチン等)、ステロイド、抗生物質(例えば、ストレプトマイシン、ペニシリン等)、緩衝剤(例えば、HEPES等)、栄養添加物(例えば、B27 supplement、N2 supplement、StemPro-Nutrient Supplement等)を挙げることができる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。各添加物は公知の濃度範囲で含まれることが好ましい。
 工程(a)の培養において、エピブラスト様細胞から初期中胚葉を誘導する培養工程は、例えば公知の細胞非接着性又は低接着性培養器にエピブラスト様細胞を播種し、培養することにより行うことができる。培養条件は以下に限定されないが、例えば、1~10% CO2/99~90%大気の雰囲気下で行うことができる。培養温度は約30~40℃であり、好ましくは約37℃である。培養期間は4日未満、好ましくは約2日間(例えば、48±12時間、好ましくは48±6時間)である。
(b) 工程(a)により得られる初期中胚葉を、BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤の存在下で培養して中間中胚葉を誘導する工程
 また、本発明は、上記工程(a)により得られた初期中胚葉を用いて、「(b)前記初期中胚葉を、BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤の存在下で培養して中間中胚葉を誘導する工程」をさらに含む。
 上記工程(b)での分化誘導用基本培地としては、工程(a)で使用するために例示した基本培地及び血清又は血清代替物が同様に使用される。
 上記工程(b)での基本培地の必須添加物として、BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤を含有する。
 BMPアゴニストとは、例えば、BMPファミリータンパク質等が挙げられる。例えば、BMP2、BMP3、BMP4、BMP5、BMP6、BMP7、BMP8a、BMP8b、BMP9、BMP10、BMP11、BMP12、BMP13、BMP14、BMP15等が挙げられ、この中でも特に、BMP4が好ましい。BMPアゴニストの濃度は、好ましくは0.01ng/mL以上、より好ましくは0.1ng/ml以上である。また、BMPアゴニストの濃度は、好ましくは10ng/mL以下、より好ましくは5ng/mL以下、特に好ましくは2ng/ml以下である。
 レチノイン酸の濃度は、好ましくは0.1μM以上、より好ましくは1μM以上であり、また、好ましくは10μM以下、より好ましくは5μM以下である。
 SHHアゴニストとは、ソニックヘッジホッグ・パスウェイを活性化し、Wntシグナル伝達を阻害する物質であり、好ましくはSHH(Sonic hedgehog)である。SHHアゴニストの濃度は、好ましくは1ng/mL以上、より好ましくは10ng/mL以上である。また、好ましくは300ng/mL以下であり、より好ましくは50ng/mL以下である。
 FGF阻害剤とは、線維芽細胞増殖因子(FGF)の阻害剤であり、好ましくはPD0325901である。FGF阻害剤の濃度は、好ましくは0.1μM以上、より好ましくは0.5μM以上、であり、また、好ましくは10μM以下、より好ましくは5μM以下である。
 上記工程(b)での基本培地に用いられるその他の添加剤としては、工程(a)で使用するために例示したその他の添加剤が同様に使用される。
 また、工程(b)においては、Wntアゴニストを好ましくは含有しない。工程(b)でのWntアゴニストの追加は中間中胚葉の形成を阻害する。
 工程(b)の培養において、初期中胚葉を中間中胚葉へと誘導する培養条件は、以下に限定されないが、例えば、1~10% CO2/99~90%大気の雰囲気下で行うことができる。培養温度は約30~40℃であり、好ましくは約37℃である。培養期間は3日未満、好ましくは約2日間(例えば、48±12時間、好ましくは48±6時間)である。
(c) 工程(b)により得られる中間中胚葉を、BMPアゴニスト及びFGFアゴニストの存在下で培養して卵巣体細胞組織を誘導する工程
 本発明は、上記工程(b)により得られた中間中胚葉を用いて、「(c)前記中間中胚葉を、BMPアゴニスト及びFGFアゴニストの存在下で培養して卵巣体細胞組織を誘導する工程」をさらに含む。
 上記工程(c)での分化誘導用基本培地としては、工程(a)で使用するために例示した基本培地及び血清又は血清代替物が同様に使用される。
 上記工程(c)での基本培地の添加物として、好ましくはBMPアゴニスト及びFGFアゴニストを含有する。
 BMPアゴニストとしては、BMP又はBMPシグナル伝達経路を活性化する物質が挙げられ、例えば、BMPファミリータンパク質等が挙げられる。例えば、BMP2、BMP3、BMP4、BMP5、BMP6、BMP7、BMP8a、BMP8b、BMP9、BMP10、BMP11、BMP12、BMP13、BMP14、BMP15等が挙げられ、この中でも特に、BMP4が好ましい。BMPアゴニストの濃度は、好ましくは0.01ng/mL以上、より好ましくは1ng/ml以上である。また、BMPアゴニストの濃度は、好ましくは100ng/mL以下、より好ましくは30ng/mL以下である。
 FGFアゴニストとしては、FGF又はFGFシグナル伝達経路を活性化する物質が挙げられ、例えば、FGFファミリータンパク質等が挙げられる。例えば、FGF9、bFGF、FGF2、FGF4等が挙げられ、この中でも、FGF9が好ましい。FGFアゴニストの濃度は、好ましくは0.01ng/mL以上、より好ましくは0.1ng/ml以上である。また、FGFアゴニストの濃度は、好ましくは100ng/mL以下、より好ましくは10ng/mL以下である。
 上記工程(c)での基本培地に用いられるその他の添加剤としては、工程(a)で使用するために例示したその他の添加剤が同様に使用される。
 工程(c)の培養において、中間中胚葉を卵巣体細胞組織へと誘導する培養条件は、以下に限定されないが、例えば、1~10% CO2/99~90%大気の雰囲気下で行うことができる。培養温度は約30~40℃であり、好ましくは約37℃である。培養期間は4日未満、好ましくは約2日間(例えば、48±12時間、好ましくは48±6時間)である。
 本明細書において「卵巣体細胞組織」とは、多能性幹細胞に由来する、胎仔の卵巣体細胞と同等の特性を有する細胞であり、将来、卵胞を形成する顆粒膜細胞、莢膜細胞等へと分化する特性を有する。より詳細には、卵巣体細胞組織は、以下の特性を有する細胞として定義される。
(1)エピブラスト様細胞と比較して、Nr5a1の遺伝子発現の上昇。
 よって、卵巣体細胞組織への分化誘導は、例えば、卵巣体細胞組織のマーカー遺伝子の発現レベルを分析することにより確認できる。
 また、本発明は、多能性幹細胞から卵巣体細胞組織への分化誘導用試薬キットも提供する。なお、本発明のキットには、BMPアゴニスト、Wntアゴニスト、レチノイン酸、SHHアゴニスト、FGF阻害剤、又は、それらの組み合わせを含むことができる。好ましくは、BMPアゴニスト、Wntアゴニスト、レチノイン酸、SHHアゴニスト、FGF阻害剤のすべてを含むキットである。また、キットには培養に必要なその他の試薬、ウェル等の器具等を含むこともできる。
(d) 工程(c)により得られる卵巣体細胞組織と、始原生殖細胞とをエストロジェン、又は、エストロジェンと類似の機能を有する因子の影響を排除する条件下で培養して二次卵胞を形成させる工程
 本発明は、工程(c)により得られる卵巣体細胞組織を用いて、「(d)卵巣体細胞組織と、始原生殖細胞とをエストロジェン、又は、エストロジェンと類似の機能を有する因子の影響を排除する条件下で培養して二次卵胞を形成させる工程」をさらに含む。
 本明細書において、「始原生殖細胞」とは、生殖細胞へ分化する予定の細胞であり、卵原細胞又は精原細胞を経て卵子又は精子へと分化する細胞をいう。始原生殖細胞は、生体由来のものであっても、多能性幹細胞より分化した始原生殖細胞様細胞(primordial germ cell like cell:PGCLC)であってもよい。本発明に用いられる「始原生殖細胞」には、始原生殖細胞より発生段階が進み、減数分裂を開始した一次卵母細胞も含まれる。また、生体由来の始原生殖細胞又は多能性幹細胞由来の始原生殖細胞様細胞であって、当該細胞の遺伝子を遺伝子工学の手法を用いて改変した細胞も含まれる。
 多能性幹細胞、特にiPS細胞、ES細胞から始原生殖細胞を分化誘導する方法は、例えば非特許文献1、Hayashi K. et al., "Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells." Cell, Aug 19, 146(4), 519-32 (2011)等を参考にして行うことができる。
 また、工程(d)の前に、始原生殖細胞と工程(c)により得られる卵巣体細胞組織 とからなる凝集塊を作製する培養工程を行うことが好ましい。始原生殖細胞と工程(c)により得られる卵巣体細胞組織とからなる凝集塊を作製する方法は、例えば、K. Hayashi, O. Hikabe, Y. Obata, Y. Hirao, Reconstitution of mouse oogenesis in a dish from  pluripotent stem cells. Nat Protoc 12, 1733-1744 (2017).、特許文献3、非特許文献5等を参考にして行うことができる。例えば、Retinoic Acid及びY27632を含有するGK15培地(GMEMに15%KSR、1xGlutaMax、1x penicillin/streptomycin(100 U/ml Penicillin及び0.1 mg/ml streptomycin)、100μM 2-mercaptoethanol、1μM Retinoic Acid、10μM Y27632を添加した培地)中で、始原生殖細胞と工程(c)により得られる卵巣体細胞組織とを混合し凝集させて培養することで実施することができる。培養には低吸着の培養皿を用いることが好ましい。例えば、凝集塊を作製するための培養期間を1~4日とすることができ、好ましくは2日である。
 また、始原生殖細胞と工程(c)により得られる卵巣体細胞組織との混合時の割合は、作製された凝集塊が二次卵胞を形成し、機能的なGV期卵母細胞を形成する限りにおいて限定されないが、例えばマウスの場合においては、多能性幹細胞由来PGCLCと生殖巣由来の体細胞との細胞数の比を、1:5以上1:40以下とすることが好ましい。より好ましくは1:15以上1:25以下である。
 本明細書において、「エストロジェン、又は、エストロジェンと類似の機能を有する因子の影響を排除する条件下」での培養には、「エストロジェン阻害剤」の存在下で培養することが含まれる。本発明に使用する「エストロジェン阻害剤」とは、エストロジェンのレセプターの活性化を阻害できる作用を有するものであり、例えば、エストロジェンレセプターのアンタゴニスト、ICI 182,780((7R,9S,13S,14S,17S)-7-(9-(4,4,5,5,5-Pentafluoropentylsulfinyl)nonyl)-7,8,9,11,12,13,14,15,16,17-decahydro-13-methyl-6H-cyclopenta[a]phenanthrene-3,17-diol)、タモキシフェンクエン酸塩、4-ヒドロキシタモキシフェン、MPP(4-[1-(4-hydroxyphenyl)-4-methyl-5-[4-[2-(1-piperidinyl)ethoxy]phenyl]-1H-pyrazol-3-yl]-phenol)、PHTPP (4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol)、G15((3aS,4R,9bR)-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline)等、を使用することができる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。この中でも特に、ICI 182,780が好ましい。また、エストロジェン阻害剤としては、上記のものに限定されず、エストロジェンレセプターの活性化を阻害できる作用を有し、かつ、始原生殖細胞を機能的な卵母細胞へ分化可能なものである限り使用することができる。なおエストロジェン阻害剤の添加は、卵母細胞シスト崩壊及び/又は原始卵胞が形成されるより前のタイミングで添加することが好ましい。また、前記凝集塊の作製の開始時点から「エストロジェン、又は、エストロジェンと類似の機能を有する因子の影響を排除する条件下」で培養する必要はなく、少なくとも卵母細胞シスト崩壊及び/又は原始卵胞が形成される時期に「エストロジェン、又は、エストロジェンと類似の機能を有する因子の影響を排除する条件下」で培養することが好ましい。
 エストロジェン阻害剤の濃度としては、0.01~50μMの範囲で培地に添加することが好ましく、0.1~10μMの範囲がより好ましい。
 工程(d)での分化誘導用基本培地としては、工程(a)で使用するために例示した基本培地が同様に使用され、これに血清、又は代替血清が添加される。血清(例えば、ウシ胎児血清(FBS)、ヒト血清等)の濃度は、0.1~20%、好ましくは2~10%である。
 また、「エストロジェン、又は、エストロジェンと類似の機能を有する因子の影響を排除する条件下」での培養には、無血清培地での培養が含まれる。無血清培地(SFM)とは、未処理又は未精製の血清をいずれも含まない培地を意味し、精製された血液由来成分又は動物組織由来成分(増殖因子等)を含有する培地が挙げられる。SFMは、工程(a)で使用するために例示した基本培地が同様に使用され、任意の代替血清を含んでもよい。代替血清としては、例えば、SPS(Serum Protein Substitute)、KSR(KnockOut Serum Replacement)、SSS(serum substitute supplement)等が挙げられ、これらは1種単独で、又は2種以上を組み合わせて使用することができる。好ましくはSPSあるいはKSRである。代替血清の濃度としては、5%~20%の範囲で培地に添加することが好ましく、10%がより好ましい。
 また、無血清培地を用いて培養を行う期間は、卵母細胞シストの崩壊と原始卵胞の形成が完了する期間とすることが好ましい。工程(d)における始原生殖細胞の培養期間中、終始無血清培地を用いて培養することもできる。また、適宜血清培地から無血清培地へ切り替えて培養することもできる。なお、無血清培地を用いない期間の培養には、工程(a)で使用するために例示した基本培地にFBS等の血清を添加した培地を用いて培養することが好ましい。
 また、工程(d)での基本培地に用いられるその他の添加剤としては、工程(a)で使用するために例示したその他の添加剤が同様に使用される。
 工程(d)の培養において、二次卵胞へと誘導する培養条件は、以下に限定されないが、例えば、1~10% CO2/99~90%大気の雰囲気下で行うことができる。培養温度は約30~40℃であり、好ましくは約37℃である。培養期間は予め作製した凝集塊の培養開始から数えて11~25日間培養することが好ましい。なお、工程(d)の培養期間は、培養する始原生殖細胞の由来する動物種等により異なるが、始原生殖細胞が生体内で二次卵胞を形成するまでの期間を目安とすることが好ましい。
(e) 形成した二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び、莢膜細胞層のうち、顆粒膜細胞層と莢膜細胞層との間の結合を部分的に切断する工程
 本発明は、工程(d)により得られる二次卵胞に対し、「(e)形成した二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び、莢膜細胞層のうち、顆粒膜細胞層と莢膜細胞層との間の結合を部分的に切断する工程」をさらに含む。工程(e)の方法は、例えば特許文献3等を参考にして行うことができる。
 工程(d)の培養により得られた二次卵胞は、卵母細胞の周りを顆粒膜細胞の層が取り囲み、さらに顆粒膜細胞の層を莢膜細胞の層が取り囲む構造をしている。工程(e)においては、卵胞を形成している顆粒膜細胞層と莢膜細胞層との結合を部分的に切断する。
 顆粒膜細胞層と莢膜細胞層との結合を部分的に切断するには、酵素処理及び/又は物理的処理により行うことができる。好ましくは、酵素処理と物理的処理を組みあわせて当該結合を切断する方法である。
 酵素処理としては、市販のコラゲナーゼを公知の培地で溶解・希釈して行うことができる。なお、工程(e)での分化誘導用基本培地としては、工程(a)で使用するために例示した基本培地が同様に使用される。コラゲナーゼとしては例えば、I型コラゲナーゼ、II型コラゲナーゼ、III型I型コラゲナーゼ、IV型コラゲナーゼ、V型コラゲナーゼ、VI型コラゲナーゼ、VII型コラゲナーゼ等が挙げられ、I型コラゲナーゼを用いることが好ましい。コラゲナーゼの濃度は、0.05~0.5%が好ましい。好ましくは0.1%である。温度は30~40℃の範囲が好ましく、より好ましくは37℃である。処理時間は2~15分が好ましい。
 また、物理的処理としては、例えば、ガラスキャピラリーあるいはピペットマンを用いたピペッティングにより行うことができる。顆粒膜細胞層と莢膜細胞層との結合の部分的な切断は、莢膜細胞層の全体あるいは一部が卵胞から剥離された状態を目安に行えばよい。
 顆粒膜細胞層と莢膜細胞層との結合を切断するための処理は、卵胞の培養開始0日目~7日目に行うことが好ましく、培養2日目~4日目で行うのがより好ましい。なお、二次卵胞の単離後すぐに顆粒膜細胞層と莢膜細胞層との結合を切断するための処理を行わず、1日~3日程度の前培養を行うことで、卵胞がインサートメンブレンに接着して安定するため好ましい。なお、このような前培養に用いる培地は、下記工程(f)に用いる培地と同様の培地を用いることができる。なお、好ましい実施形態として、前培養に用いる培地に対してGDF9及び/又はBMP15を添加することができる。これらの化合物を二次卵胞の前培養に用いる培地に添加することで、顆粒膜細胞の増殖をより促進することができる。例えば、αMEMに対してGDF9及びBMP15を10~20ng/ml、好ましくは15ng/mlの割合で添加することができる。
(f) 前記二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び、莢膜細胞層を、高分子化合物を含む培地で培養することにより、前記卵母細胞をGV期卵母細胞へと分化する工程
 本発明は、工程(e)により得られる二次卵胞を用いて、「(f)前記二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び、莢膜細胞層を、高分子化合物を含む培地で培養することにより、前記卵母細胞をGV期卵母細胞へと分化する工程」をさらに含む。工程(f)の方法は、例えば特許文献3等を参考にして行うことができる。
 本発明の二次卵胞の体外培養に用いられる培地には、基本培地に対して高分子化合物を添加した培地を使用する。なお、工程(f)での分化誘導用基本培地としては、工程(a)で使用するために例示した基本培地が同様に使用される。基本培地には、高分子化合物のほか、例えば、ウシ胎仔血清(Fetal bovine serum; FBS)、卵胞刺激ホルモン(Follicle Stimulating Hormone; FSH)等を基本培地に適宜含有させてもよい。
 本発明において使用される高分子化合物としては、二次卵胞の培養に用いられるものを、広く使用することができる。特に、水に溶解しやすいこと、細胞毒性が極めて低いこと、培養中に培養液のpH等を不安定にさせる性質を有さないこと、また、その他にも初期の特性が長期間安定して維持されること、等の条件を満たす高分子化合物が好ましい。また、培養に使用した際、卵母細胞の生存性を損なわないこと、卵母細胞周囲の顆粒膜細胞、莢膜細胞等の体細胞が脱落しないこと、かつ卵母細胞を中心とした構造を失わないこと(不規則で広範な細胞増殖が起こらないこと)等の条件を満たすものであり、機能的な卵母細胞への分化に影響がない化合物が好ましい。例えば、合成ポリマー、多糖ポリマー、タンパク質、プロテオグリカン等が挙げられる。例えば合成ポリマーとしては、ポリビニルピロリドン(PVP;分子量約36万)、ポリビニルアルコール(PVA;分子量約7万~10万)等が挙げられる。多糖ポリマーとしては、デキストラン、ヒドロキシエチル化デンプン、セルロース化合物の誘導体(例えばヒドロキシプロピルメチルセルロース)、スクロースの合成ポリマーであるフィコール(分子量40万)(Ficoll(登録商標))、ヒアルロン酸、コンドロイチン硫酸等のグリコサミノグリカン等が挙げられる。タンパク質としては血清アルブミン(分子量約6.9万)等が挙げられる。また、プロテオグリカンとしてはコンドロイチン硫酸プロテオグリカン等が挙げられる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。
 なお、本発明において特に好ましい高分子化合物としては、限定されるものではないが、PVP、フィコール(Ficoll(登録商標))、ヒドロキシプロピルメチルセルロース、血清アルブミンが挙げられる。
 添加する高分子化合物の濃度は、例えば、基本培地に対して約1~12%(w/v)の範囲内で使用することができ、好ましくは1~8%(w/v)、より好ましくは1~4%(w/v)、最も好ましくは約2%(w/v)とすることができる。
 なお、工程(f)における二次卵胞の培養期間は、二次卵胞内の卵母細胞が機能的なGV期卵母細胞を形成するまでの期間を目安とすることが好ましく、例えば12~16日間培養することが好ましい。
(g) 工程(f)により得られるGV期卵母細胞を体外成熟培養することで減数分裂を再開させる工程
 本発明は、工程(f)により得られるGV期卵母細胞を用いて、「(g)工程(f)により得られるGV期卵母細胞を体外成熟培養することで減数分裂を再開させる工程」をさらに含む。工程(g)の工程では、一般に使用されている未成熟卵母細胞を体外成熟させるための公知の培養方法を行うことにより、GV期卵母細胞を卵子に成熟させることができる。
 なお、本明細書で「卵子」とは、減数分裂第二分裂中期(MII期)に至り、MII期で停止した状態の卵子をいう。また、本発明において得られる卵子は機能的な卵子でありうる。ここで、機能的な卵子とは、精子との受精等により、正常な個体へと発生する能力を有し、かつ、当該個体が正常な次世代を残す能力を有する卵子を言う。
 GV期卵母細胞から卵子へと成熟させる工程では、通常、卵母細胞の発育のための培養を終えた培養皿から卵母細胞―卵丘細胞複合体(COC)を回収し、成熟用培地で洗浄した後、最終的な成熟用培地に移すことで行う。成熟用培地としては、工程(a)で使用するために例示した基本培地が同様に使用される。基本培地には、ピルビン酸ナトリウム、抗生物質、性腺刺激ホルモン、成長因子、血清、卵胞液等が適宜添加される。これらは1種単独で、又は2種以上を組み合わせて使用することができる。
 このようにして得られた卵子は、通常の体外受精に用いることができるほか、単為発生胚の作製、クローン動物作出におけるレシピエント卵子等に用いることができる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれに限定されるものではない。
<材料>
ES細胞
 卵巣体細胞組織(FOSLCs)の誘導に用いたES細胞は、以下の遺伝的背景を有するマウスの胚盤胞より樹立したES細胞株である。
・T-GFP mESCs (B6D2F1 female and TnEGFP-CreERT2/- male)・Osr1-GFP mESCs for knock-in of Foxf1-tdTomato (B6D2F1 female and Osr1-GFP male)・Osr1-GFP mESCs for knock-in of Gata4-CFP (C57Bl/6J female and Osr1-GFP male)・Nr5a1-hCD271 mESCs for knock-in of Foxl2-tdTomato (129X1/Svj female and Nr5a1-hCD271 male)
(なお、ICRマウス、C57Bl/6Jマウス、 129X1/Svjマウス、及びB6D2F1マウスはいずれもJapan SLCから購入したものであり、TnEGFP-CreERT2/-マウス、Osr1-GFPマウス、Nr5a1-hCD271マウスはC57Bl/6Jマウス由来である。)
<多能性幹細胞から始原生殖細胞様細胞(PGCLCs)への誘導>
 多能性幹細胞から始原生殖細胞様細胞(PGCLCs)への誘導は、特許文献3、Hayashi K. et al., "Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells." Cell, Aug 19, 146(4), 519-32 (2011)に記載の方法に従って行った。
 PGCLCsの誘導に用いたES細胞は、Blimp1-mVenus及びStella-ECFP(BVSC)が遺伝子導入されたマウス(the Jackson Laboratory)の胚盤胞より樹立したES細胞株である。なお、Blimp1はPGC様細胞(PGCLC)のマーカー遺伝子であり、StellaはPGCLC及び卵母細胞のマーカー遺伝子である。また、本実施例に用いたES細胞の核型は40本の染色体(38XX)を有する雌の細胞である。
 PGCLCへの誘導に用いるES細胞は、2i (PD0325901, 0.4μM: Stemgent, San Diego, CA; CHIR99021, 3μM: Stemgent)及びLIF (1000 u/ml)を含むN2B27培地を用いて、フィーダーフリーの条件下で2日間培養した(5%CO2、95%空気、37℃)。次いで、ヒト血漿由来フィブロネクチンでコーティングした培養皿と、Activin (20 ng/ml)、bFGF (12 ng/ml)、及び、KSR (1%)を含むN2B27培地とを用いてES/iPS細胞を2日間培養することによりエピブラスト様細胞(EpiLC)に分化させた。得られたEpiLCは、BMP4 (500 ng/ml; R&D Systems)、LIF (1000 u/ml; Invitrogen)、SCF (100 ng/ml; R&D Systems)、及び、EGF (50 ng/ml; R&D Systems)を含む無血清培地(GK15; 15% KSR、0.1mM NEAA、1mM sodium pyruvate、0.1mM 2-mercaptoethanol、100U/ml penicillin、0.1mg/ml streptomycin、及び2mM L-glutamineを含有するGMEM (Invitrogen))、並びに、低吸着96well培養皿(NUNC)を用いて浮遊状態で6日間培養を行い、PGCLCへ分化誘導した。
<(1)ES細胞から初期中胚葉への誘導>
 各ES細胞からエピブラスト様細胞の誘導は、<多能性幹細胞から始原生殖細胞様細胞(PGCLCs)への誘導>に記載のエピブラスト様細胞への分化と同様の方法にて実施した。得られたそれぞれのEpiLC は、BMP4 (R&D Systems)、CHIR99021 (R&D Systems)、及び、EGF (50 ng/ml; R&D Systems)を含む無血清培地(GK7.5; 7.5% KSR、0.1mM NEAA、1mM sodium pyruvate、0.1mM 2-mercaptoethanol、100U/ml penicillin、0.1mg/ml streptomycin、及び2mM L-glutamineを含有するGMEM (Invitrogen))、並びに、低吸着96well培養皿(NUNC)を用いて培養を行い、初期中胚葉への分化誘導条件を検討した。各EpiLCは3×104cells/wellで培養した。培養期間は2日間と4日間で検討した。上記BMP4の添加濃度は、1ng/ml、3ng/ml、10ng/mlの各濃度で検討し、上記CHIR99021の添加濃度は、3μM、8μM、14μMの各濃度でそれぞれ検討した。結果を図1~図3に示す。これらの結果から、BMP4とCHIR99021の最適濃度をそれぞれ1ng/ml、14μMと決定した。
<(2)初期中胚葉から中間中胚葉への誘導>
 (1)にて見出された最適条件にて43-45時間培養後(培養開始2日目)、培地を、BMP4(1ng/ml; R&D Systems)、Retinoic Acid (3μM; Sigma)、SHH(30ng/ml; R&D Systems) 、PD0325901(1μM; Stemgent)、及び、EGF (50 ng/ml; R&D Systems)を含む無血清培地GK7.5に変えて培養を行い、中間中胚葉への分化誘導条件を検討した。上記Retinoic Acidの濃度は0μM、0.3μM、3μMの各濃度で検討した。上記SHHの濃度は0ng/ml、30ng/mlの各濃度で検討した。培養期間は2日間で検討した。上記PD0325901の濃度は0μM、1μMの各濃度で検討した。結果を図4、図5に示す。これらの結果から、Retinoic Acid、SHH、PD0325901の最適濃度をそれぞれ、3μM、30ng/ml、1μMと決定した。
<(3)中間中胚葉から卵巣体細胞組織(FOSLCs)への誘導>
 (1)における最適条件にて43-45時間培養した後に、(2)における最適条件で47-49時間後(培養開始4日目)、培地を、BMP4(20ng/ml; R&D Systems)、及び、FGF9(2ng/ml; Peprotech)を含む無血清培地GK7.5に変えてさらに2日間培養を行い、FOSLCsへと分化誘導した。
 その後、抗hCD271抗体を用いてFACS解析を行い、Nr5A1-hCD271陽性のFOSLCsを選別した。図6の通り、E12.5(12.5日齢のICRマウスの生殖腺体細胞)と類似していることがわかる。
<(4)卵巣体細胞組織(FOSLCs)と始原生殖細胞様細胞(PGCLCs)との凝集培養>
 Hayashi K. et al., "Reconstitution of mouse oogenesis in a dish from pluripotent stem cells." Nat Protoc 12, 1733-1744 (2017).に記載の方法を参考に、培養開始5日目のFOSLCsと、PGCLCsとの培養を行った。PGCLCsとFOSLCsを、Retinoic Acid(1μM)、及びY27632 (10μM) を含むGK15培地(GMEMに15%KSR、0.1mM NEAA、1nM sodium pyruvate、0.1mM 2-mercaptoethanol、100U/ml penicillin、0.1mg/ml streptomycin、2mM L-glutamineを混和したもの)中で、PGCLC 5×103cells/wellに対してFOSLCsが7.5×104cells/well及び10×104cells/wellの条件で2日間培養した。また、対照として、12.5日齢のICRマウスの生殖腺体細胞7.5×104cells/wellを用い、同様の条件でPGCLCと培養した。
<(5)二次卵胞の作製>
 (4)の後、BMP2(150ng/ml; Peprotech)及びRetinoic Acid(100nM)を含むIVD-αMEM培地(αMEMに対して2% 胎仔牛血清(FCS)、150μM ascorbic acid、2mM L-glutamine、100U/ml penicillin、0.1mg/ml streptomycin、及び、55μM 2-mercaptoethanolを添加した培地)で3日間培養した。培養4日目に、BMP2(150ng/ml; Peprotech)及びRetinoic Acid(100nM)を含むIVD-SP培地(StemPro-34 SFM (Life technologies)に対して10% FCS、150μM ascorbic acid、2mM GlutaMax、100U/ml penicillin、0.1mg/ml streptomycin、及び、55μM 2-mercaptoethanolを添加した培地)に変更し、培養を行った。培養5日目に、BMP2及びRetinoic Acidを培地を添加していないIVD-SP培地を用いて、培養を継続した。培養7~10日目の間、ICI182780(500nM)を添加したIVD-SP培地を用いた。二次卵胞を形成するための培養は、Transwell-Col上で行い、計23日間行った。経過を図7、図8に示す。図7により、培養日数の経過とともに自己組織化が進行することがわかる。培養21日目に卵母細胞マーカーであるStellaが強く発現していることが確認された。
<(6)二次卵胞の培養(IVG)>
 (5)にて得られた二次卵胞を下記のように体外培養することで卵母細胞-卵丘細胞複合体(COC)の作製を試みた。
 培養により得られた二次卵胞は、Transwell-Col上でタングステンを用いて物理的に単離した。単離した二次卵胞はIVG-αMEM培地(αMEMに対して5% FCS、2% polyvinylpyrrolidone(Sigma)、150μM ascorbic acid、2mM L-glutamine、100U/ml penicillin、0.1mg/ml streptomycin、100μM 2-mercaptoethanol、55μg/ml sodium pyruvate、及び、0.1IU/ml FSHを混和したもの)に対して、GDF9とBMP15をさらに添加(ともに15ng/ml)した培地を用いて、Transwell-Col上で2日間培養した。培養2日目に、GDF9とBMP15を除いた、IVG-αMEM培地変更し、培養を行った。培養3日目に、卵胞を覆うようにIVG-αMEM培地を1.5mL追加した。培養4日目に二次卵胞を、0.1% I型コラゲナーゼで、室温で5分間コラゲナーゼ処理を行い、顆粒膜細胞層と莢膜細胞層との結合を部分的に切り離した。その後、継続して上記IVG-αMEM培地(ただし、GDF9とBMP15は無添加)を用いて、Transwell-Col上で培養した。その結果、培養12日目における発育した二次卵胞よりCOCsをガラスキャピラリーにより単離することができた。培養の経過を図9に示す。
<(7)体外培養による卵子への成熟(IVM)>
 (6)により得られたCOCsをIVM培地(αMEMに5%FCS、25μg/ml sodium pyruvate、1x penicillin/streptomycin、0.1IU/ml FSH、4ng/ml EGF、1.2IU/ml hCGを添加したもの)に移して16時間培養した(図10)。その後、卵丘細胞をヒアルロニダーゼで卵子から解離させて第一極体の放出を確認したものをMII卵子として体外受精に用いた。
<(8)対外成熟した卵子の体外受精、及び胚移植>
 (7)にて得られたMII卵子はHTF培地(ARK Resourse)中で精子と共培養した。約6時間後に受精卵を新しいHTF培地に移動し、16時間培養した。培養後2細胞期に達した胚をICRの偽妊娠0.5日目の卵管に移植した。
 移植後19日目に帝王切開により新生仔を取得した(図11)。得られた新生児は里親により哺乳され、成体にまで発育させた。その結果、得られた新生仔は外見上、正常な成体に発育した(図12)。さらに、成体に発育したマウスは、性成熟後、雌雄ともに次の世代を誕生させることに成功した(図13)。このように多能性幹細胞由来のFOSLCsを用いた場合であっても、本発明の対外培養方法により、機能的なGV期卵母細胞及び卵子が得られることが確かめられた。

Claims (12)

  1. 多能性幹細胞から、in vitroで卵巣体細胞組織を製造する方法であって、
    (a)多能性幹細胞から分化したエピブラスト様細胞を、BMPアゴニスト及びWntアゴニストの存在下で培養して初期中胚葉を誘導する工程と、
    (b)前記初期中胚葉を、BMPアゴニスト、レチノイン酸、SHHアゴニスト及びFGF阻害剤の存在下で培養して中間中胚葉を誘導する工程と、
    を含む方法。
  2. (c)前記中間中胚葉を、BMPアゴニスト及びFGFアゴニストの存在下で培養して卵巣体細胞組織を誘導する工程
    をさらに含む請求項1に記載の方法。
  3. 前記BMPアゴニストがBMP4であり、前記WntアゴニストがCHIR99021である、請求項1又は2に記載の方法。
  4. 前記BMPアゴニストがBMP4であり、SHHアゴニストがSHHであり、前記FGF阻害剤がPD0325901である、請求項1~3のいずれか1項に記載の方法。
  5. 前記FGFアゴニストがFGF9である、請求項2~4のいずれか1項に記載の方法。
  6. GV期卵母細胞を製造する方法であって、
    (d)請求項1~5のいずれか1項に記載の方法により得られる卵巣体細胞組織と、始原生殖細胞とをエストロジェン、又はエストロジェンと類似の機能を有する因子の影響を排除する条件下で培養して、卵母細胞、顆粒膜細胞層、及び莢膜細胞層を含む二次卵胞を形成させる工程と、
    (e)工程(d)で 形成した二次卵胞における顆粒膜細胞層と莢膜細胞層との間の結合を部分的に切断する工程と、
    (f)前記二次卵胞を構成する卵母細胞、顆粒膜細胞層、及び莢膜細胞層を、高分子化合物を含む培地で培養することにより、前記卵母細胞をGV期卵母細胞へと分化する工程と、を含む、方法。
  7. 請求項6に記載の方法であって、前記高分子化合物が、ポリビニルピロリドン、フィコール、ヒドロキシプロピルメチルセルロース、及び血清アルブミンからなる群より選択される少なくとも一つの化合物である方法。
  8. 卵子の作出方法であって、
    (g)請求項6又は7に記載の方法により得られるGV期卵母細胞を体外成熟培養することで減数分裂を再開させる工程
    を含む、方法。
  9. 請求項1~5のいずれか1項に記載の方法により得られる卵巣体細胞組織。
  10. 請求項6又は7に記載の方法により得られるGV期卵母細胞。
  11. 請求項8に記載の方法により得られる卵子。
  12. 多能性幹細胞を、in vitroで卵巣体細胞組織に分化するためのキットであって、BMPアゴニスト、Wntアゴニスト、レチノイン酸、SHHアゴニスト、FGF阻害剤、又は、それらの組み合わせを含む、キット。
PCT/JP2022/002752 2021-01-26 2022-01-26 多能性幹細胞から卵巣組織を分化させる培養技術 WO2022163670A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-010090 2021-01-26
JP2021010090A JP2022114012A (ja) 2021-01-26 2021-01-26 多能性幹細胞から卵巣組織を分化させる培養技術

Publications (1)

Publication Number Publication Date
WO2022163670A1 true WO2022163670A1 (ja) 2022-08-04

Family

ID=82653407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002752 WO2022163670A1 (ja) 2021-01-26 2022-01-26 多能性幹細胞から卵巣組織を分化させる培養技術

Country Status (2)

Country Link
JP (1) JP2022114012A (ja)
WO (1) WO2022163670A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047799A1 (ja) * 2015-09-17 2017-03-23 学校法人東京農業大学 始原生殖細胞を機能的に成熟した卵母細胞へと分化させる培養方法
WO2018216743A1 (ja) * 2017-05-25 2018-11-29 国立大学法人京都大学 中間中胚葉細胞から腎前駆細胞への分化誘導方法、および多能性幹細胞から腎前駆細胞への分化誘導方法
WO2019098349A1 (ja) * 2017-11-17 2019-05-23 国立大学法人京都大学 尿管芽様組織誘導方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047799A1 (ja) * 2015-09-17 2017-03-23 学校法人東京農業大学 始原生殖細胞を機能的に成熟した卵母細胞へと分化させる培養方法
WO2018216743A1 (ja) * 2017-05-25 2018-11-29 国立大学法人京都大学 中間中胚葉細胞から腎前駆細胞への分化誘導方法、および多能性幹細胞から腎前駆細胞への分化誘導方法
WO2019098349A1 (ja) * 2017-11-17 2019-05-23 国立大学法人京都大学 尿管芽様組織誘導方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHINO TAKASHI, SUZUKI TAKAHIRO, NAGAMATSU GO, YABUKAMI HARUKA, IKEGAYA MIKA, KISHIMA MAMI, KITA HARUKA, IMAMURA TAKUYA, NAKASHIM: "Generation of ovarian follicles from mouse pluripotent stem cells", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 373, no. 6552, 16 July 2021 (2021-07-16), US , XP055955053, ISSN: 0036-8075, DOI: 10.1126/science.abe0237 *

Also Published As

Publication number Publication date
JP2022114012A (ja) 2022-08-05

Similar Documents

Publication Publication Date Title
JP6905714B2 (ja) 始原生殖細胞を機能的に成熟した卵母細胞へと分化させる培養方法
JP5227318B2 (ja) 細胞増殖培地
US8431395B2 (en) Pluripotent cells from rat and other species
JP5128946B2 (ja) 胚性幹細胞のフィーダー非依存性長期培養
JP4314372B2 (ja) 精巣細胞由来多能性幹細胞の製造方法
AU2006203588A1 (en) Method of making embryoid bodies from primate embryonic stem cells
US20120178160A1 (en) Cultivation Of Primate Embryonic Stem Cells
AU2013221839A1 (en) Feeder-free method for culture of bovine and porcine spermatogonial stem cells
Zhang et al. Retinol (vitamin A) maintains self‐renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis
JP2009502124A (ja) 生殖系列幹細胞の療法的再プログラミング
US20110044954A1 (en) Methods of producing germ-like cells and related therapies
WO2015125926A1 (ja) 栄養膜幹細胞の樹立及び維持方法
WO2022163670A1 (ja) 多能性幹細胞から卵巣組織を分化させる培養技術
JP2016214138A (ja) 栄養膜外胚葉様構造体及びその製造方法
KR101626660B1 (ko) 포유동물의 난소로부터 추정 줄기세포를 수득하는 방법
JP2019083793A (ja) 卵巣由来幹細胞の減数分裂誘導法
JP2024006674A (ja) 精巣体細胞様細胞の製造方法、精巣体細胞様細胞、精子の形成方法、中期中胚葉様細胞を精巣体細胞様細胞に分化誘導する方法、精巣体細胞様細胞の製造用培地サプリメント、及び精巣体細胞様細胞の製造用培地キット
WO2024024742A1 (ja) 霊長類の胎児卵巣細胞から卵胞を誘導する体外培養法
Yuan-yi et al. Research progress on in vitro culture of animal spermatogonial stem cells.
CN117412668A (zh) 家畜体外育种系统和方法
CN116096860A (zh) 来自延迟胚胎的哺乳动物牲畜多能干细胞系
Thansa Novel approaches to the isolation of farm animal embryonic stem cells
Gonzalez Molecular mechanisms controlling human embryonic stem cell self-renewal and differentiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745890

Country of ref document: EP

Kind code of ref document: A1