WO2022163328A1 - 造形履歴監視装置、造形物の製造システム及び造形履歴監視方法 - Google Patents

造形履歴監視装置、造形物の製造システム及び造形履歴監視方法 Download PDF

Info

Publication number
WO2022163328A1
WO2022163328A1 PCT/JP2022/000397 JP2022000397W WO2022163328A1 WO 2022163328 A1 WO2022163328 A1 WO 2022163328A1 JP 2022000397 W JP2022000397 W JP 2022000397W WO 2022163328 A1 WO2022163328 A1 WO 2022163328A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
defect candidate
weld bead
characteristic portion
information
Prior art date
Application number
PCT/JP2022/000397
Other languages
English (en)
French (fr)
Inventor
保人 片岡
栄一 田村
旭則 吉川
碩 黄
伸志 佐藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP22745555.7A priority Critical patent/EP4269013A1/en
Priority to CN202280011852.3A priority patent/CN116829289A/zh
Priority to US18/262,228 priority patent/US20240091885A1/en
Publication of WO2022163328A1 publication Critical patent/WO2022163328A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/207Welded or soldered joints; Solderability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a modeling history monitoring device, a model manufacturing system, and a modeling history monitoring method.
  • Patent Document 1 in welding work, a plurality of visual sensors are used to acquire a plurality of pieces of information about the welding wire projection length, the shape of the molten pool, and the behavior of the welder, and based on these pieces of information, the quality of the welding work is determined. Techniques for determining are disclosed.
  • Patent Document 2 based on the cross-sectional shape acquired by a cross-sectional reading sensor that acquires the two-dimensional cross-sectional shape of the weld bead formed in the groove, when butt welding metal plate materials by high energy density welding There is disclosed a technique for judging the quality of butt welding from the shape of a weld bead that occurs in the joint.
  • a molding history monitoring device for estimating defects from history information when molding a molding by forming a plurality of welding beads in which a filler material is melted and solidified by a torch, shape profile acquisition means for acquiring a shape profile along the extending direction of the existing welding bead; Welding information acquisition means for acquiring welding information during formation of the adjacent weld bead when forming the adjacent weld bead at a position adjacent to the existing weld bead; Based on the shape profile, an angle characteristic portion having a root angle equal to or greater than a threshold value in the existing weld bead is determined, and based on the welding information, the welding characteristic portion of the welding information is determined, and corresponds to the angle characteristic portion.
  • defect candidate extracting means for extracting as a defect candidate by associating the welding characteristic portion to the angle characteristic portion; having Modeling history monitoring device.
  • a manufacturing system for manufacturing a model wherein a weld bead is formed by melting and solidifying a filler material with the torch while moving the torch, and the model is manufactured by forming the model, wherein the manufacturing history described in (1) above.
  • a model manufacturing system comprising a monitoring device.
  • a molding history monitoring method for estimating defects from history information when a molding is molded by forming a plurality of welding beads in which a filler material is melted and solidified by a torch,
  • a shape profile acquisition process for acquiring a shape profile along the extending direction of the existing welding bead;
  • Welding information acquisition processing for acquiring welding information during formation of the adjacent weld bead when forming the adjacent weld bead at a position adjacent to the existing weld bead;
  • Based on the shape profile an angle characteristic portion having a root angle equal to or greater than a threshold value in the existing weld bead is determined, and based on the welding information, the welding characteristic portion of the welding information is determined, and corresponds to the angle characteristic portion.
  • Defect candidate extraction processing for extracting as a defect candidate by associating the welding characteristic portion to the angle characteristic portion; including, A build history monitoring method.
  • the present invention can highly reliably estimate defects in a modeled object in which weld beads are repeatedly formed.
  • FIG. 10A is a schematic cross-sectional view showing a weld bead formed by overlapping, where (A) is a schematic cross-sectional view showing a case where the root angle of the existing weld bead is small, and (B) is a schematic cross-sectional view showing the existing weld bead where the root angle is large. It is a schematic sectional drawing which shows a case.
  • FIG. 10 is a perspective view showing a state of forming adjacent weld beads along an existing weld bead; FIG.
  • FIG. 4 is an explanatory diagram schematically showing the root angle of an existing weld bead and the welding voltage profile of an adjacent weld bead.
  • FIG. 10 is a perspective view showing how a welding bead is formed along an existing welding bead;
  • FIG. 4 is a perspective view for explaining a molten pool formed in a welding bead; It is a figure explaining the change of the shape of a molten pool, (A) is a perspective view of the state in which the swelling part was formed, (B) is a perspective view of the state in which the hollow part was formed.
  • FIG. 1 is a schematic configuration diagram of a model manufacturing system 100 equipped with a model history monitoring apparatus of the present invention.
  • a modeled product manufacturing system 100 having this configuration includes a welding robot 11 , a robot controller 13 , a filler material supply unit 15 , a welding power source 19 , and a control unit 21 .
  • the welding robot 11 is an articulated robot, and a torch 23 is supported on the tip shaft.
  • the position and posture of the torch 23 can be arbitrarily set three-dimensionally within the range of degrees of freedom of the robot arm.
  • the torch 23 holds the filler material (welding wire) M continuously supplied from the filler material supply unit 15 in a state of protruding from the tip of the torch.
  • a torch 23 and a shape sensor 25 are provided on the distal end shaft of the welding robot 11 .
  • the torch 23 has a shield nozzle (not shown) from which shield gas is supplied to the welded portion.
  • the arc welding method may be a consumable electrode type such as coated arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the object to be produced. .
  • a contact tip is arranged inside the shield nozzle, and the contact tip holds the filler material M to which the melting current is supplied.
  • the torch 23 holds the filler material M and generates an arc from the tip of the filler material M in a shield gas atmosphere.
  • the filler material M is fed to the torch 23 by a delivery mechanism (not shown) attached to a robot arm or the like.
  • a weld bead 29 which is a melted and solidified body of the filler material M, is formed on the base plate 27 .
  • the base plate 27 is made of a metal plate such as a steel plate, and is basically larger than the bottom surface (lowermost layer surface) of the modeled object W.
  • the base plate 27 is not limited to a plate-like shape, and may be a block-like or rod-like base.
  • the heat source for melting the filler material M is not limited to the arc described above.
  • a heat source using other methods such as a heating method using both an arc and a laser, a heating method using plasma, a heating method using an electron beam or a laser, or the like may be employed.
  • the amount of heating can be more finely controlled, the state of the welding bead can be maintained more appropriately, and the quality of the model can be further improved.
  • any commercially available welding wire can be used as the filler material M.
  • MAG welding and MIG welding solid wire JIS Z 3312
  • high-strength steel and low-temperature steel arc welding flux-cored wire for mild steel, high-strength steel and low-temperature steel (JIS Z 3313) or the like can be used.
  • An active metal such as titanium can also be used as the filler material M. In that case, it is necessary to create a shielding gas atmosphere in the weld zone in order to avoid oxidation and nitridation due to reaction with the atmosphere during welding.
  • the shape sensor 25 is arranged side by side with the torch 23 and moved together with the torch 23 .
  • This shape sensor 25 is a sensor that measures the shape of the base portion when forming the welding bead 29 .
  • a laser sensor that acquires reflected light of irradiated laser light as height data is used.
  • a three-dimensional shape measuring camera may be used as the shape sensor 25 .
  • the robot controller 13 receives instructions from the control unit 21, drives each part of the welding robot 11, and controls the output of the welding power source 19 as necessary.
  • the control unit 21 is composed of a computer device including a CPU, memory, storage, etc., and executes a drive program prepared in advance or a drive program created under desired conditions to drive each part such as the welding robot 11. As a result, the torch 23 is moved according to the driving program, and the multi-layered object W is formed by laminating the welding beads 29 in multiple layers on the base plate 27 based on the created lamination plan.
  • a database 17 is also connected to the control unit 21 . In this database 17, history information including defect candidates extracted by the control unit 21, which will be described later, is saved and accumulated.
  • the weld bead 29 formed when forming the object W varies in width, height, or both, depending on the material, melting conditions, and the like.
  • the welding bead 29 adjacent to the existing welding bead 29 in the molding of the modeled object W there is a possibility that defects may occur in the overlapping portions of the adjacent welding beads 29 .
  • FIG. 2A and 2B are diagrams showing welding beads formed by overlapping
  • FIG. FIG. 11 is a schematic cross-sectional view showing a case where the root angle ⁇ of a bead 29A is large;
  • the rate of occurrence of defects in the overlapping portion between adjacent welding beads 29 is determined by the welding voltage, welding current, and filler material M when forming the welding bead 29, as well as the root angle ⁇ of the existing welding bead 29A. It fluctuates depending on the welding conditions such as the feeding speed, the feed resistance of the filler material M, the flow rate of the shielding gas, and the flow state of the molten pool.
  • the manufacturing system 100 includes a molding history monitoring device that estimates defects in the adjacent welding beads 29A and 29B as described above.
  • This molding history monitoring device receives measurement results from a shape sensor (shape profile acquisition means) 25 arranged in parallel with the torch 23, welding voltage, welding current, and supply of filler material M when forming the welding bead 29. Defect candidates are extracted based on welding information, which is welding state information such as speed and molten pool flow.
  • the control unit 21 includes welding information acquisition means and defect candidate extraction means. The welding information acquisition means acquires welding information, and the defect candidate extraction means extracts defect candidates. Then, history information including this defect candidate is stored in the database 17 .
  • FIG. 3 is a perspective view showing how a welding bead 29B adjacent to an existing welding bead 29A is formed. As shown in FIG. 3, a welding bead 29B is formed while moving the torch 23 at a position adjacent to the existing welding bead 29A. At this time, the shape sensor 25 in front of the torch 23 measures the shape of the existing weld bead 29A to obtain the shape profile along the extending direction of the weld bead 29A.
  • the welding information acquisition means of the control unit 21 acquires the welding voltage during the formation of the welding bead 29B as welding information.
  • the welding information acquisition means of the control unit 21 monitors and acquires the output of the welding power source 19, for example.
  • Defect candidate extraction process Defect candidates are extracted by the defect candidate extracting means of the control unit 21 . Specifically, first, based on the shape profile of the existing weld bead 29A acquired by the shape sensor 25, the base angle ⁇ on the open side of the existing weld bead 29A is calculated, and this base angle ⁇ is set in advance. A portion that is equal to or greater than the threshold value is determined as an angular characteristic portion Rc. A threshold value of the root angle ⁇ is, for example, 40° at which defects are likely to occur.
  • This welding characteristic portion Wc is a portion where the welding voltage fluctuates greatly.
  • abnormal disturbances in the welding voltage waveform can cause arc disturbances or interruptions, which can adversely affect the fluidity of the molten metal. Therefore, by setting a threshold for an instantaneous fluctuation value, a gradient of fluctuation, etc. based on the past abnormal waveform, a state with a high probability of occurrence of a defect is extracted as a welding characteristic portion Wc.
  • the determined angular characteristic portion Rc and the welding characteristic portion Wc are compared, and the welding characteristic portion Wc corresponding to the angular characteristic portion Rc is extracted as a defect candidate F in association with the angular characteristic portion Rc.
  • the history information acquired for extracting the defect candidate F for example, when the welding bead 29B was formed, the coordinates X, Y, Z, the root angle ⁇ , and the welding voltage V were associated with each other, and the history information was obtained over time (position use the information recorded in
  • FIG. 4 is an explanatory diagram schematically showing the root angle ⁇ of the existing welding bead 29A and the profile of the welding voltage of the adjacent welding bead 29B.
  • the defect candidate extracting means of the control unit 21 determines that the root angle ⁇ of the existing welding bead 29A is equal to or greater than the threshold value as the angle characteristic portion Rc, and the welding voltage of the adjacent welding bead 29B is steady.
  • the welding characteristic portion Wc is defined as the time when the change occurs from the normal transition.
  • the portion where the welding characteristic portion Wc is generated in the angle characteristic portion Rc is extracted as the defect candidate F, and the history information including the defect candidate F (coordinates X, Y, Z, root angle ⁇ and welding voltage V are information for each associated position) is stored in the database 17 .
  • a highly reliable defect candidate F can be extracted by setting a defect candidate F when there is a feature in the welding information of the bead 29B.
  • the model manufacturing system 100 equipped with the model history monitoring device when the model W is modeled, it is possible to easily ascertain a defective portion that may have occurred in the model W. As a result, the defective portion of the modeled object W can be quickly repaired after the modeled object W is modeled.
  • the defect candidate extraction means of the control unit 21 preferably performs an appearance frequency calculation process for calculating the appearance frequency of the defect candidate F in the defect candidate extraction process.
  • an appearance frequency calculation process for calculating the appearance frequency of the defect candidate F in this way, it is possible to estimate the locations of the modeled object W to be precisely inspected based on the appearance frequency of the defect candidate F.
  • the number of appearances during the formation of one welding bead 29, the duration of appearance of the defect candidate, or the like can be used as an index.
  • grouping is performed for forming walls, filling the inside of walls, forming overhangs, etc., and the frequency of occurrence of defect candidates F is calculated for each group. good too.
  • the defect candidate extraction means of the control unit 21 estimates the defect size in the model W from the appearance time of the defect candidate F and the moving speed of the torch 23 based on the appearance frequency of the defect candidate F. preferably.
  • the defect candidate F estimates the defect size in the model W from the appearance time of the defect candidate F and the moving speed of the torch 23 based on the appearance frequency of the defect candidate F. preferably.
  • the defect occurring in the object W can be easily grasped without performing a complicated inspection such as a destructive inspection or an ultrasonic inspection. If the appearance frequency of the defect candidate F continues for a certain length, it can be estimated that a long and narrow defect has appeared. Therefore, when the length of the appearance frequency of this defect candidate F is equal to or greater than a preset threshold value, history information including the defect candidate F may be stored as defect information.
  • the welding voltage is used as the welding information for determining the welding characteristic portion Wc, but the welding information is not limited to the welding voltage.
  • the welding information at least one of the welding voltage, the welding current, the feed rate of the filler material M, the feed resistance of the filler material M, the flow rate of the shielding gas, and the flow state of the molten pool may be used.
  • the welding voltage, the welding current, the feeding speed of the filler material M, and the flow state of the molten pool may be used in combination.
  • FIG. 5 is a perspective view showing how the welding bead 29B is formed along the existing welding bead 29A.
  • a camera 26 for photographing the portion of the molten pool P is arranged side by side with the shape sensor 25 on the torch 23 .
  • the shape sensor 25 measures the shape of the existing welding bead 29A, and the camera 26 photographs the molten pool P of the welding bead 29B, This imaging data is obtained as welding information. Then, based on the welding information made up of this photographed data, for example, a portion where the shape of the molten pool P has greatly changed is determined as a welding characteristic portion Wc. In addition, the data of the area of the molten pool P may be used as the imaging data.
  • FIG. 6 is a perspective view explaining the molten pool P formed in the welding bead 29B.
  • 7A and 7B are diagrams for explaining variations in the shape of the molten pool P.
  • FIG. 7A is a perspective view of a state in which a bulging portion Pb is formed
  • FIG. 7B is a perspective view of a state in which a recessed portion Pk is formed. It is a diagram.
  • FIG. 6 shows a normal-shaped molten pool P.
  • the weld pool P may vary greatly from the normal shape shown in FIG.
  • the molten pool P may be partially swollen to form a bulging portion Pb, and as shown in (B) of FIG.
  • a recessed portion Pk may be generated at .
  • the welding information acquiring means of the control unit 21 determines the portion where the shape of the molten pool P is changed in the welding bead 29B and the bulging portion Pb and the recessed portion Pk are generated as the welding characteristic portion Wc.
  • the defect candidate extracting means of the control unit 21 is based on the angle characteristic portion Rc calculated based on the shape profile of the existing welding bead 29A acquired by the shape sensor 25, and the welding information consisting of the photographed data of the camera 26.
  • the determined welding characteristic portion Wc is compared, and the welding characteristic portion Wc corresponding to the angular characteristic portion Rc is extracted as a defect candidate F in association with the angular characteristic portion Rc.
  • the flow conditions of the molten pool P may be conditions such as temperature and brightness. 23.
  • a molding history monitoring device for estimating defects from history information when molding a molding by forming a plurality of welding beads in which a filler material is melted and solidified by a torch, shape profile acquisition means for acquiring a shape profile along the extending direction of the existing welding bead; Welding information acquisition means for acquiring welding information during formation of the adjacent weld bead when forming the adjacent weld bead at a position adjacent to the existing weld bead; Based on the shape profile, an angle characteristic portion having a root angle equal to or greater than a threshold value in the existing weld bead is determined, and based on the welding information, the welding characteristic portion of the welding information is determined, and corresponds to the angle characteristic portion.
  • defect candidate extracting means for extracting as a defect candidate by associating the welding characteristic portion to the angle characteristic portion;
  • a modeling history monitoring device According to this fabrication history monitoring device, the welding characteristic portion corresponding to the angle characteristic portion having the base angle of the existing welding bead equal to or larger than the threshold value is associated and extracted as the defect candidate.
  • a defect candidate with high reliability can be extracted by selecting a case where the welding information of the adjacent weld bead at the position corresponding to the angle characteristic part where the base angle of the existing weld bead is equal to or greater than the threshold value has a feature as a defect candidate.
  • the welding information acquisition means uses at least one of welding voltage, welding current, feed rate of filler metal, feed resistance of filler metal, flow rate of shielding gas, and molten pool flow condition as the welding information.
  • the modeling history monitoring device according to (1) which is acquired. According to this fabrication history monitoring device, the welding characteristic portion in at least one of the obtained welding information of the welding voltage, the welding current, the feed rate of the filler metal, and the flow state of the molten pool is associated with the angle characteristic portion to determine the defect candidate. By doing so, highly reliable defect candidates can be extracted.
  • defect candidate extracting means estimates a defect size in the modeled object based on the appearance frequency of the defect candidate.
  • this modeling history monitoring device defects occurring in a model can be easily grasped based on the defect size estimated from the appearance frequency of defect candidates without performing complicated inspection such as destructive inspection or ultrasonic inspection. . If the appearance frequency of defect candidates continues for a certain length, it can be estimated that a long and narrow defect has appeared.
  • a modeled article manufacturing system that forms a modeled article by forming a welding bead in which a filler material is melted and solidified by the torch while moving the torch, wherein any one of (1) to (4) A model manufacturing system comprising the model history monitoring device according to any one of the above.
  • this modeled article manufacturing system when a modeled article is modeled, it is possible to easily ascertain a defective portion that may have occurred in the modeled article. As a result, the defective portion of the modeled article can be quickly repaired after the modeled article is modeled.
  • a molding history monitoring method for estimating defects from history information when a molding is molded by forming a plurality of welding beads in which a filler material is melted and solidified by a torch,
  • a shape profile acquisition process for acquiring a shape profile along the extending direction of the existing welding bead;
  • Welding information acquisition processing for acquiring welding information during formation of the adjacent weld bead when forming the adjacent weld bead at a position adjacent to the existing weld bead;
  • Based on the shape profile an angle characteristic portion having a root angle equal to or greater than a threshold value in the existing weld bead is determined, and based on the welding information, the welding characteristic portion of the welding information is determined, and corresponds to the angle characteristic portion.
  • a build history monitoring method comprising: According to this fabrication history monitoring method, the welding characteristic portion corresponding to the angle characteristic portion having the base angle of the existing welding bead equal to or larger than the threshold value is associated and extracted as the defect candidate.
  • a defect candidate with high reliability can be extracted by selecting a case where the welding information of the adjacent weld bead at the position corresponding to the angle characteristic part where the base angle of the existing weld bead is equal to or greater than the threshold value has a feature as a defect candidate.
  • control unit welding information acquisition means, defect candidate extraction means
  • torch shape sensor (shape profile acquisition means) 29, 29A, 29B welding bead 100 manufacturing system (molding history monitoring device)
  • Filler material Defect candidate P Molten pool W Molded object
  • Rc Angle feature Wc Weld feature ⁇ Root angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • General Factory Administration (AREA)

Abstract

既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状センサを有し、制御部は、既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得手段と、形状プロファイルに基づいて、既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、溶接情報に基づいて、溶接情報の溶接特徴部を割り出し、角度特徴部に対応する溶接特徴部を角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出手段と、を有する。

Description

造形履歴監視装置、造形物の製造システム及び造形履歴監視方法
 本発明は、造形履歴監視装置、造形物の製造システム及び造形履歴監視方法に関する。
 特許文献1には、溶接施工において、複数の視覚センサによって溶接ワイヤの突出し長さ、溶融プール形状及び溶接士の挙動に関する複数の情報を取得し、これらの情報に基づいて、溶接施工の良否を判定する技術が開示されている。
 また、特許文献2には、開先内に形成された溶接ビードの2次元断面形状を取得する断面読取センサで取得した断面形状に基づいて、高エネルギー密度溶接による金属板材料を突き合わせ溶接する際に発生する溶接ビードの形状から、突き合わせ溶接の良否を判定する技術が開示されている。
日本国特開2008-110388号公報 日本国特開2008-212944号公報
 ところで、レーザ又はアーク等の熱源を用いて、金属粉体又は金属ワイヤを溶融させて溶着ビードを形成して造形物を造形する積層造形では、溶着ビードを繰り返し積層することで造形物が蓄熱する。また、積層造形では、開先のように両側から支える壁を有する整った下地ではなく、既設の溶着ビードを下地とし、この既設の溶着ビードに沿って次の溶着ビードを形成することとなる。したがって、開先のように両側から支える壁を有する整った下地へ溶接する際の良否判定を行う特許文献1,2の技術を積層造形に適用することは困難である。
 そこで本発明は、溶着ビードを繰り返し形成した造形物の欠陥を、高い信頼性で推定することが可能な造形履歴監視装置、造形物の製造システム及び造形履歴監視方法を提供することを目的とする。
 本発明は下記構成からなる。
(1) トーチによって溶加材を溶融及び凝固させた複数の溶着ビードを形成して造形物を造形する際の履歴情報から欠陥を推定する造形履歴監視装置であって、
 既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状プロファイル取得手段と、
 前記既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、前記隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得手段と、
 前記形状プロファイルに基づいて、前記既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、前記溶接情報に基づいて、前記溶接情報の溶接特徴部を割り出し、前記角度特徴部に対応する前記溶接特徴部を前記角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出手段と、
 を有する、
 造形履歴監視装置。
(2) トーチを移動させながら、前記トーチによって溶加材を溶融及び凝固させた溶着ビードを形成して造形物を造形する造形物の製造システムであって、上記(1)に記載の造形履歴監視装置を備える、造形物の製造システム。
(3) トーチによって溶加材を溶融及び凝固させた複数の溶着ビードを形成して造形物を造形する際の履歴情報から欠陥を推定する造形履歴監視方法であって、
 既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状プロファイル取得処理と、
 前記既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、前記隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得処理と、
 前記形状プロファイルに基づいて、前記既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、前記溶接情報に基づいて、前記溶接情報の溶接特徴部を割り出し、前記角度特徴部に対応する前記溶接特徴部を前記角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出処理と、
 を含む、
 造形履歴監視方法。
 本発明は、溶着ビードを繰り返し形成した造形物の欠陥を、高い信頼性で推定できる。
本発明の実施形態に係る製造システムの模式的な概略構成図である。 オーバーラップさせて形成する溶着ビードを示す図であって、(A)は既設の溶着ビードの根元角が小さい場合を示す概略断面図であり、(B)は既設の溶着ビードの根元角が大きい場合を示す概略断面図である。 既設の溶着ビードに沿って隣接する溶着ビードを形成する様子を示す斜視図である。 既設の溶着ビードの根元角と、隣接して形成する溶着ビードの溶接電圧のプロファイルを模式的に示す説明図である。 既設の溶着ビードに沿って溶着ビードを形成する様子を示す斜視図である。 溶着ビードに形成される溶融池を説明する斜視図である。 溶融池の形状の変動を説明する図であって、(A)は膨出部が形成された状態の斜視図、(B)は窪み部が形成された状態の斜視図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、本発明の造形履歴監視装置を備えた造形物の製造システム100の模式的な概略構成図である。
 本構成の造形物の製造システム100は、溶接ロボット11と、ロボットコントローラ13と、溶加材供給部15と、溶接電源19と、制御部21と、を備える。
 溶接ロボット11は、多関節ロボットであり、先端軸にトーチ23が支持される。トーチ23の位置及び姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。トーチ23は、溶加材供給部15から連続供給される溶加材(溶接ワイヤ)Mをトーチ先端から突出した状態に保持する。この溶接ロボット11の先端軸には、トーチ23とともに形状センサ25が設けられている。
 トーチ23は、不図示のシールドノズルを有し、シールドノズルからシールドガスが溶接部に供給される。アーク溶接法としては、被覆アーク溶接又は炭酸ガスアーク溶接等の消耗電極式、TIG溶接又はプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する造形物に応じて適宜選定される。
 例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ23は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構によりトーチ23に送給される。そして、トーチ23を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート27上に溶加材Mの溶融凝固体である溶着ビード29が形成される。
 ベースプレート27は、鋼板等の金属板からなり、基本的には造形物Wの底面(最下層の面)より大きいものが使用される。このベースプレート27は、板状に限らず、ブロック体又は棒状等、他の形状のベースであってもよい。
 溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビーム又はレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビーム又はレーザにより加熱する場合、加熱量をさらに細かく制御でき、溶着ビードの状態をより適正に維持して、造形物の更なる品質向上に寄与できる。
 溶加材Mは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ(MAG)溶接及びミグ(MIG)溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。
 溶加材Mとしてチタンのような活性金属を用いることもできる。その場合、溶接時に大気との反応による酸化、窒化を回避するため、溶接部をシールドガス雰囲気にすることが必要となる。
 形状センサ25は、トーチ23に並設されており、トーチ23とともに移動される。この形状センサ25は、溶着ビード29を形成する際の下地となる部分の形状を計測するセンサである。この形状センサ25としては、例えば、照射したレーザ光の反射光を高さデータとして取得するレーザセンサが用いられる。なお、形状センサ25としては、3次元形状計測用カメラを用いてもよい。
 ロボットコントローラ13は、制御部21からの指示を受けて、溶接ロボット11の各部を駆動し、必要に応じて溶接電源19の出力を制御する。
 制御部21は、CPU、メモリ、ストレージ等を備えるコンピュータ装置により構成され、予め用意された駆動プログラム、又は所望の条件で作成した駆動プログラムを実行して、溶接ロボット11等の各部を駆動する。これにより、駆動プログラムに応じてトーチ23を移動させ、作成した積層計画に基づいてベースプレート27上に複数層の溶着ビード29を積層することで、多層構造の造形物Wが造形される。また、制御部21には、データベース17が接続されている。このデータベース17には、後述する制御部21によって抽出する欠陥候補を含む履歴情報が保存されて蓄積される。
 ところで、造形物Wを造形する際に形成される溶着ビード29は、材料、溶融時の条件、等に応じて流動性が大きく左右されて幅、高さの一方又は両方が変動する。すると、造形物Wの造形において、既設の溶着ビード29に隣接させて溶着ビード29を形成する際に、隣接する溶着ビード29同士のオーバーラップ部分で欠陥が発生するおそれがある。
 図2は、オーバーラップさせて形成する溶着ビードを示す図であって、(A)は既設の溶着ビード29Aの根元角θが小さい場合を示す概略断面図であり、(B)は既設の溶着ビード29Aの根元角θが大きい場合を示す概略断面図である。
 図2の(A)に示すように、既設の溶着ビード29Aの根元角θが小さい場合では、この既設の溶着ビード29Aにオーバーラップさせて隣接する溶着ビード29Bを形成した際に、これらの溶着ビード29A,29B間での欠陥の発生率が低い。これに対して、図2の(B)に示すように、既設の溶着ビード29Aの根元角θが大きい場合では、この既設の溶着ビード29Aにオーバーラップさせて隣接する溶着ビード29Bを形成した際に、溶融金属が既設の溶着ビード29Aの根元まで十分に流動せず、これらの溶着ビード29A,29B間での欠陥の発生率が高くなる。例えば、既設の溶着ビード29Aの根元角θが40°以上であると、溶着ビード29A,29B間において融合不良による欠陥の発生率が高くなる。
 また、隣接する溶着ビード29同士のオーバーラップ部分での欠陥の発生率は、既設の溶着ビード29Aの根元角θとともに、溶着ビード29を形成する際の溶接電圧、溶接電流、溶加材Mの送給速度、溶加材Mの送給抵抗、シールドガス流量、溶融池の流動状況などの溶接状態によって変動する。
 このため、本実施形態に係る製造システム100は、上記のような隣接する溶着ビード29A,29Bにおける欠陥を推定する造形履歴監視装置を備えている。
 この造形履歴監視装置は、トーチ23に並設された形状センサ(形状プロファイル取得手段)25からの測定結果、及び溶着ビード29を形成する際の溶接電圧、溶接電流、溶加材Mの送給速度、溶融池の流動状況などの溶接状態の情報である溶接情報に基づいて欠陥候補を抽出する。制御部21は、溶接情報取得手段と、欠陥候補抽出手段と、を備えており、溶接情報取得手段が溶接情報を取得し、欠陥候補抽出手段が欠陥候補を抽出する。
そして、この欠陥候補を含む履歴情報をデータベース17へ保存する。
 次に、この造形履歴監視装置による欠陥候補の抽出について説明する。ここでは、既設の溶着ビード29Aに隣接する溶着ビード29Bを形成する際の溶接電圧を溶接情報とする場合について説明する。
(形状プロファイル取得処理)
 図3は、既設の溶着ビード29Aに沿って隣接する溶着ビード29Bを形成する様子を示す斜視図である。
 図3に示すように、既設の溶着ビード29Aの隣接位置でトーチ23を移動させながら溶着ビード29Bを形成する。このとき、トーチ23の前方の形状センサ25によって既設の溶着ビード29Aの形状を計測し、この溶着ビード29Aの延伸方向に沿う形状プロファイルを取得する。
(溶接情報取得処理)
 制御部21の溶接情報取得手段によって、既設の溶着ビード29Aに隣接して溶着ビード29Bを形成する際に、溶着ビード29Bの形成中における溶接電圧を溶接情報として取得する。なお、制御部21の溶接情報取得手段は、例えば、溶接電源19の出力を監視して取得する。
(欠陥候補抽出処理)
 制御部21の欠陥候補抽出手段によって、欠陥候補の抽出を行う。
 具体的には、まず、形状センサ25によって取得された既設の溶着ビード29Aの形状プロファイルに基づいて、この既設の溶着ビード29Aにおける開放側の根元角θを割り出し、この根元角θが予め設定した閾値以上である部分を角度特徴部Rcとして割り出す。この根元角θの閾値としては、例えば、欠陥が生じやすい40°である。
 次に、隣接位置に形成する溶着ビード29Bの形成中に取得した溶接電圧からなる溶接情報に基づいて、溶接情報の溶接特徴部Wcを割り出す。この溶接特徴部Wcとしては、溶接電圧が大きく変動した部分である。例えば、溶接電圧の波形に異常な乱れが生じた場合は、アークの乱れ又は途切れが生じ、溶融金属の流動性に好ましくない影響が生じる可能性がある。そこで、過去の異常波形を基準に瞬間的な変動値、変動の傾き、等に閾値を設けることで、欠陥発生の可能性が高い状態を溶接特徴部Wcとして抽出する。
 そして、割り出した角度特徴部Rcと溶接特徴部Wcとを比較し、角度特徴部Rcに対応する溶接特徴部Wcを角度特徴部Rcに関連付けして欠陥候補Fとして抽出する。
 欠陥候補Fを抽出するために取得する履歴情報としては、例えば、溶着ビード29Bを形成した際に、座標X,Y,Z、根元角θおよび溶接電圧Vを各々対応づけて、経時的(位置毎)に記録された情報を用いる。
 図4は、既設の溶着ビード29Aの根元角θと、隣接して形成する溶着ビード29Bの溶接電圧のプロファイルを模式的に示す説明図である。
 図4に示すように、制御部21の欠陥候補抽出手段は、既設の溶着ビード29Aの根元角θが閾値以上のときを角度特徴部Rcとし、さらに、隣接させる溶着ビード29Bの溶接電圧が定常的な推移から変動したときを溶接特徴部Wcとする。そして、角度特徴部Rcで溶接特徴部Wcが生じている部分を、欠陥候補Fとして抽出し、この欠陥候補Fを含む履歴情報(座標X,Y,Z、根元角θ及び溶接電圧Vを各々対応付けた位置毎の情報)をデータベース17へ保存する。
 以上、説明したように、本実施形態に係る造形履歴監視装置及び造形履歴監視方法によれば、既設の溶着ビード29Aの根元角θが閾値以上の角度特徴部Rcに対応する位置における隣接の溶着ビード29Bの溶接情報に特徴がある場合を欠陥候補Fとすることにより、信頼性の高い欠陥候補Fを抽出できる。
 そして、造形履歴監視装置を備えた造形物の製造システム100によれば、造形物Wを造形する際に、造形物Wに生じているおそれがある欠陥箇所を容易に把握できる。これにより、造形物Wの造形後に、造形物Wの欠陥箇所を迅速に補修できる。
 また、制御部21の欠陥候補抽出手段は、欠陥候補抽出処理において、欠陥候補Fの出現頻度を算出する出現頻度算出処理を行うのが好ましい。このように、欠陥候補Fの出現頻度を算出することで、この欠陥候補Fの出現頻度に基づいて、造形物Wにおける精密に検査すべき箇所を推定できる。この欠陥候補Fの出現頻度の計算としては、一つの溶着ビード29の形成中に出現する回数又は欠陥候補の出現が持続する時間等を指標にできる。また、軌道計画の情報を参照し、壁部を造形する場合、壁部内を充填する場合、オーバーハング部分を形成する場合などにグループ分けし、各グループで欠陥候補Fの出現頻度を算出してもよい。
 さらに、制御部21の欠陥候補抽出手段は、欠陥候補抽出処理において、欠陥候補Fの出現頻度に基づいて、欠陥候補Fの出現時間とトーチ23の移動速度とから造形物Wにおける欠陥サイズを推定するのが好ましい。このように、造形物Wにおける欠陥サイズを推定すれば、破壊検査又は超音波検査などの煩雑な検査を行うことなく、造形物Wに発生した欠陥を容易に把握できる。また、欠陥候補Fの出現頻度が一定の長さ続く場合では、細長い欠陥が出現したと推定でき、ごく短い場合では、微小な欠陥であるかノイズの影響で欠陥候補が出現したと推定できる。したがって、この欠陥候補Fの出現頻度の長さが予め設定した閾値以上である場合に、その欠陥候補Fを含む履歴情報を欠陥情報として保存してもよい。
 なお、上記実施形態では、溶接特徴部Wcを割り出すために溶接電圧を溶接情報とした場合を例示したが、溶接情報としては、溶接電圧に限定されない。溶接情報としては、溶接電圧、溶接電流、溶加材Mの送給速度、溶加材Mの送給抵抗、シールドガス流量、溶融池の流動状況の少なくとも一つを用いればよく、また、これらの溶接電圧、溶接電流、溶加材Mの送給速度、溶融池の流動状況を組み合わせて用いてもよい。
 ここで、溶接情報として溶融池の流動状況を用いる場合を説明する。
 図5は、既設の溶着ビード29Aに沿って溶着ビード29Bを形成する様子を示す斜視図である。
 図5に示すように、溶融池の流動状況を溶接情報として用いる場合、溶融池Pの部分を撮影するカメラ26を形状センサ25とともにトーチ23に並設させる。
 そして、既設の溶着ビード29Aの隣接位置に溶着ビード29Bを形成する際に、形状センサ25によって既設の溶着ビード29Aの形状を計測するとともに、カメラ26によって溶着ビード29Bの溶融池Pを撮影し、この撮影データを溶接情報として取得する。そして、この撮影データからなる溶接情報に基づいて、例えば、溶融池Pの形状が大きく変動した部分を溶接特徴部Wcとして割り出す。なお、撮影データとしては、溶融池Pの面積をデータ化したものを用いてもよい。
 図6は、溶着ビード29Bに形成される溶融池Pを説明する斜視図である。図7は、溶融池Pの形状の変動を説明する図であって、(A)は膨出部Pbが形成された状態の斜視図、(B)は窪み部Pkが形成された状態の斜視図である。
 図6は、通常形状の溶融池Pを示している。溶融池Pは、図6に示す通常の形状に対して、大きく変動する場合がある。例えば、溶融池Pは、図7の(A)に示すように、一部が膨れて膨出部Pbが生じる場合があり、また、図7の(B)に示すように、一部が凹んで窪み部Pkが生じる場合がある。そして、制御部21の溶接情報取得手段は、溶着ビード29Bにおいて溶融池Pの形状が変動して膨出部Pb及び窪み部Pkが生じた部分を溶接特徴部Wcとして割り出す。
 さらに、制御部21の欠陥候補抽出手段は、形状センサ25によって取得された既設の溶着ビード29Aの形状プロファイルに基づいて割り出した角度特徴部Rcと、カメラ26の撮影データからなる溶接情報に基づいて割り出した溶接特徴部Wcとを比較し、角度特徴部Rcに対応する溶接特徴部Wcを角度特徴部Rcに関連付けして欠陥候補Fとして抽出する。
 このように、溶接情報として溶融池Pの流動状況を用いる場合も、取得した溶融池Pの流動状況の溶接情報における溶接特徴部Wcを、角度特徴部Rcに関連付けて欠陥候補Fすることにより、信頼性の高い欠陥候補を抽出できる。
 なお、溶融池Pの流動状況としては、温度、輝度等の状況であってもよく、この場合、溶融池Pの温度を検出する温度センサ、溶融池Pの輝度を検出する輝度センサ等をトーチ23に並設させる。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
(1) トーチによって溶加材を溶融及び凝固させた複数の溶着ビードを形成して造形物を造形する際の履歴情報から欠陥を推定する造形履歴監視装置であって、
 既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状プロファイル取得手段と、
 前記既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、前記隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得手段と、
 前記形状プロファイルに基づいて、前記既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、前記溶接情報に基づいて、前記溶接情報の溶接特徴部を割り出し、前記角度特徴部に対応する前記溶接特徴部を前記角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出手段と、
 を有する、造形履歴監視装置。
 この造形履歴監視装置によれば、既設の溶着ビードの根元角が閾値以上である角度特徴部に対応する溶接特徴部を関連付けして欠陥候補として抽出する。既設の溶着ビードに隣り合う隣接の溶着ビードを形成する場合、既設の溶着ビードの根元角が大きい場合に流動性が不足して欠陥が生じるおそれが大きくなる。したがって、既設の溶着ビードの根元角が閾値以上の角度特徴部に対応する位置における隣接の溶着ビードの溶接情報に特徴がある場合を欠陥候補とすることにより、信頼性の高い欠陥候補を抽出できる。
(2) 前記溶接情報取得手段は、溶接電圧、溶接電流、溶加材の送給速度、溶加材の送給抵抗、シールドガス流量、溶融池の流動状況の少なくとも一つを前記溶接情報として取得する、(1)に記載の造形履歴監視装置。
 この造形履歴監視装置によれば、取得した溶接電圧、溶接電流、溶加材の送給速度、溶融池の流動状況の少なくとも一つの溶接情報における溶接特徴部を、角度特徴部に関連付けて欠陥候補することにより、信頼性の高い欠陥候補を抽出できる。
(3) 前記欠陥候補抽出手段は、前記欠陥候補の出現頻度を算出する出現頻度算出処理を行う、(1)または(2)に記載の造形履歴監視装置。
 この造形履歴監視装置によれば、欠陥候補の出現頻度を算出することで、この出現頻度に基づいて、造形物における精密に検査すべき箇所を推定できる。
(4) 前記欠陥候補抽出手段は、前記欠陥候補の出現頻度に基づいて、前記造形物における欠陥サイズを推定する、(3)に記載の造形履歴監視装置。
 この造形履歴監視装置によれば、破壊検査又は超音波検査などの煩雑な検査を行うことなく、欠陥候補の出現頻度から推定した欠陥サイズに基づいて、造形物に発生した欠陥を容易に把握できる。また、欠陥候補の出現頻度が一定の長さ続く場合では、細長い欠陥が出現したと推定でき、ごく短い場合では、微小な欠陥であるかノイズの影響で欠陥候補が出現したと推定できる。
(5) トーチを移動させながら、前記トーチによって溶加材を溶融及び凝固させた溶着ビードを形成して造形物を造形する造形物の製造システムであって、(1)~(4)のいずれか一つに記載の造形履歴監視装置を備える、造形物の製造システム。
 この造形物の製造システムによれば、造形物を造形する際に、造形物に生じているおそれがある欠陥箇所を容易に把握できる。これにより、造形物の造形後に、造形物の欠陥箇所を迅速に補修できる。
(6) トーチによって溶加材を溶融及び凝固させた複数の溶着ビードを形成して造形物を造形する際の履歴情報から欠陥を推定する造形履歴監視方法であって、
 既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状プロファイル取得処理と、
 前記既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、前記隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得処理と、
 前記形状プロファイルに基づいて、前記既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、前記溶接情報に基づいて、前記溶接情報の溶接特徴部を割り出し、前記角度特徴部に対応する前記溶接特徴部を前記角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出処理と、
 を含む、造形履歴監視方法。
 この造形履歴監視方法によれば、既設の溶着ビードの根元角が閾値以上である角度特徴部に対応する溶接特徴部を関連付けして欠陥候補として抽出する。既設の溶着ビードに隣り合う隣接の溶着ビードを形成する場合、既設の溶着ビードの根元角が大きい場合に流動性が不足して欠陥が生じるおそれが大きくなる。したがって、既設の溶着ビードの根元角が閾値以上の角度特徴部に対応する位置における隣接の溶着ビードの溶接情報に特徴がある場合を欠陥候補とすることにより、信頼性の高い欠陥候補を抽出できる。
(7) 前記溶接情報取得処理において、溶接電圧、溶接電流、溶加材の送給速度、溶加材の送給抵抗、シールドガス流量、溶融池の流動状況の少なくとも一つを前記溶接情報として取得する、(6)に記載の造形履歴監視方法。
 この造形履歴監視方法によれば、取得した溶接電圧、溶接電流、溶加材の送給速度、溶加材の送給抵抗、シールドガス流量、溶融池の流動状況の少なくとも一つの溶接情報における溶接特徴部を、角度特徴部に関連付けて欠陥候補することにより、信頼性の高い欠陥候補を抽出できる。
(8) 前記欠陥候補抽出処理において、前記欠陥候補の出現頻度を算出する出現頻度算出処理を行う、(6)または(7)に記載の造形履歴監視方法。
 この造形履歴監視方法によれば、欠陥候補の出現頻度を算出することで、この出現頻度に基づいて、造形物における精密に検査すべき箇所を推定できる。
(9) 前記欠陥候補抽出処理において、前記欠陥候補の出現頻度に基づいて、前記造形物における欠陥サイズを推定する、(8)に記載の造形履歴監視方法。
 この造形履歴監視方法によれば、破壊検査又は超音波検査などの煩雑な検査を行うことなく、欠陥候補の出現頻度から推定した欠陥サイズに基づいて、造形物に発生した欠陥を容易に把握できる。また、欠陥候補の出現頻度が一定の長さ続く場合では、細長い欠陥が出現したと推定でき、ごく短い場合では、微小な欠陥であるかノイズの影響で欠陥候補が出現したと推定できる。
 なお、本出願は、2021年1月29日出願の日本特許出願(特願2021-13390)に基づくものであり、その内容は本出願の中に参照として援用される。
 21 制御部(溶接情報取得手段、欠陥候補抽出手段)
 23 トーチ
 25 形状センサ(形状プロファイル取得手段)
 29,29A,29B 溶着ビード
100 製造システム(造形履歴監視装置)
 M 溶加材
 F 欠陥候補
 P 溶融池
 W 造形物
 Rc 角度特徴部
 Wc 溶接特徴部
 θ 根元角

Claims (11)

  1.  トーチによって溶加材を溶融及び凝固させた複数の溶着ビードを形成して造形物を造形する際の履歴情報から欠陥を推定する造形履歴監視装置であって、
     既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状プロファイル取得手段と、
     前記既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、前記隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得手段と、
     前記形状プロファイルに基づいて、前記既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、前記溶接情報に基づいて、前記溶接情報の溶接特徴部を割り出し、前記角度特徴部に対応する前記溶接特徴部を前記角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出手段と、
     を有する、
     造形履歴監視装置。
  2.  前記溶接情報取得手段は、溶接電圧、溶接電流、溶加材の送給速度、溶加材の送給抵抗、シールドガス流量、溶融池の流動状況の少なくとも一つを前記溶接情報として取得する、
     請求項1に記載の造形履歴監視装置。
  3.  前記欠陥候補抽出手段は、前記欠陥候補の出現頻度を算出する出現頻度算出処理を行う、
     請求項1に記載の造形履歴監視装置。
  4.  前記欠陥候補抽出手段は、前記欠陥候補の出現頻度を算出する出現頻度算出処理を行う、
     請求項2に記載の造形履歴監視装置。
  5.  前記欠陥候補抽出手段は、前記欠陥候補の出現頻度に基づいて、前記造形物における欠陥サイズを推定する、
     請求項3に記載の造形履歴監視装置。
  6.  前記欠陥候補抽出手段は、前記欠陥候補の出現頻度に基づいて、前記造形物における欠陥サイズを推定する、
     請求項4に記載の造形履歴監視装置。
  7.  トーチを移動させながら、前記トーチによって溶加材を溶融及び凝固させた溶着ビードを形成して造形物を造形する造形物の製造システムであって、
     請求項1~6のいずれか一項に記載の造形履歴監視装置を備える、
     造形物の製造システム。
  8.  トーチによって溶加材を溶融及び凝固させた複数の溶着ビードを形成して造形物を造形する際の履歴情報から欠陥を推定する造形履歴監視方法であって、
     既設の溶着ビードの延伸方向に沿う形状プロファイルを取得する形状プロファイル取得処理と、
     前記既設の溶着ビードに隣り合う位置に隣接の溶着ビードを形成する際に、前記隣接の溶着ビードの形成中における溶接情報を取得する溶接情報取得処理と、
     前記形状プロファイルに基づいて、前記既設の溶着ビードにおける閾値以上の根元角を有する角度特徴部を割り出すとともに、前記溶接情報に基づいて、前記溶接情報の溶接特徴部を割り出し、前記角度特徴部に対応する前記溶接特徴部を前記角度特徴部に関連付けして欠陥候補として抽出する欠陥候補抽出処理と、
     を含む、
     造形履歴監視方法。
  9.  前記溶接情報取得処理において、溶接電圧、溶接電流、溶加材の送給速度、溶加材の送給抵抗、シールドガス流量、溶融池の流動状況の少なくとも一つを前記溶接情報として取得する、
     請求項8に記載の造形履歴監視方法。
  10.  前記欠陥候補抽出処理において、前記欠陥候補の出現頻度を算出する出現頻度算出処理を行う、
     請求項8または請求項9に記載の造形履歴監視方法。
  11.  前記欠陥候補抽出処理において、前記欠陥候補の出現頻度に基づいて、前記造形物における欠陥サイズを推定する、
     請求項10に記載の造形履歴監視方法。
PCT/JP2022/000397 2021-01-29 2022-01-07 造形履歴監視装置、造形物の製造システム及び造形履歴監視方法 WO2022163328A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22745555.7A EP4269013A1 (en) 2021-01-29 2022-01-07 Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
CN202280011852.3A CN116829289A (zh) 2021-01-29 2022-01-07 造型履历监视装置、造型物的制造系统以及造型履历监视方法
US18/262,228 US20240091885A1 (en) 2021-01-29 2022-01-07 Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013390A JP2022116957A (ja) 2021-01-29 2021-01-29 造形履歴監視装置、造形物の製造システム及び造形履歴監視方法
JP2021-013390 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163328A1 true WO2022163328A1 (ja) 2022-08-04

Family

ID=82653385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000397 WO2022163328A1 (ja) 2021-01-29 2022-01-07 造形履歴監視装置、造形物の製造システム及び造形履歴監視方法

Country Status (5)

Country Link
US (1) US20240091885A1 (ja)
EP (1) EP4269013A1 (ja)
JP (1) JP2022116957A (ja)
CN (1) CN116829289A (ja)
WO (1) WO2022163328A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167666A (ja) * 1998-12-04 2000-06-20 Hitachi Ltd 自動溶接及び欠陥補修方法並びに自動溶接装置
WO2001041965A1 (fr) * 1999-12-10 2001-06-14 Kabushiki Kaisha Yaskawa Denki Dispositif de soudage automatique et dispositif de formation professionnelle au soudage
JP2008110388A (ja) 2006-10-31 2008-05-15 Toshiba Corp 溶接作業情報計測方法および装置
JP2008212944A (ja) 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 突き合わせ溶接の良否判定方法および装置
WO2020129618A1 (ja) * 2018-12-19 2020-06-25 パナソニックIpマネジメント株式会社 溶接システム及びそれを用いたワークの溶接方法
JP2020189324A (ja) * 2019-05-23 2020-11-26 株式会社神戸製鋼所 構造体の製造システム及び製造方法
JP2021013390A (ja) 2018-12-21 2021-02-12 日清オイリオグループ株式会社 チョコレートの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167666A (ja) * 1998-12-04 2000-06-20 Hitachi Ltd 自動溶接及び欠陥補修方法並びに自動溶接装置
WO2001041965A1 (fr) * 1999-12-10 2001-06-14 Kabushiki Kaisha Yaskawa Denki Dispositif de soudage automatique et dispositif de formation professionnelle au soudage
JP2008110388A (ja) 2006-10-31 2008-05-15 Toshiba Corp 溶接作業情報計測方法および装置
JP2008212944A (ja) 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 突き合わせ溶接の良否判定方法および装置
WO2020129618A1 (ja) * 2018-12-19 2020-06-25 パナソニックIpマネジメント株式会社 溶接システム及びそれを用いたワークの溶接方法
JP2021013390A (ja) 2018-12-21 2021-02-12 日清オイリオグループ株式会社 チョコレートの製造方法
JP2020189324A (ja) * 2019-05-23 2020-11-26 株式会社神戸製鋼所 構造体の製造システム及び製造方法

Also Published As

Publication number Publication date
US20240091885A1 (en) 2024-03-21
CN116829289A (zh) 2023-09-29
JP2022116957A (ja) 2022-08-10
EP4269013A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7160759B2 (ja) 構造体の製造システム及び製造方法
JP6892371B2 (ja) 積層造形物の製造方法及び製造装置
JP6912636B1 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
JP6978350B2 (ja) ワーク姿勢調整方法、造形物の製造方法及び製造装置
JP2021016885A (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP7193423B2 (ja) 積層造形物の製造方法
WO2022163328A1 (ja) 造形履歴監視装置、造形物の製造システム及び造形履歴監視方法
WO2023281963A1 (ja) 欠陥監視装置、欠陥監視方法、溶接支援システム及び溶接システム
WO2022038960A1 (ja) 積層造形物の製造方法
JP7339215B2 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
JP6859471B1 (ja) 積層造形物の製造方法
JP7355701B2 (ja) 積層造形方法
JP2021126673A (ja) 積層造形物の製造方法
WO2023153105A1 (ja) 学習装置、欠陥判定装置、学習方法、欠陥判定方法、溶接制御装置及び溶接装置
WO2022014202A1 (ja) 積層造形物の製造方法
JP2021059772A (ja) 積層造形物の製造方法及び積層造形物
CN117644327B (zh) 一种自动焊接系统
WO2024004768A1 (ja) 積層造形装置の制御方法及び制御装置並びにプログラム
WO2022091762A1 (ja) 積層計画作成方法
JP2023041373A (ja) 不純物除去方法、及びこれを用いた造形物の製造方法
JP2023010548A (ja) 欠陥監視装置、欠陥監視方法、溶接支援システム及び溶接システム
CN117580674A (zh) 缺陷监视装置、缺陷监视方法、焊接支援系统以及焊接系统
JP2022191920A (ja) 積層計画作成方法
JP2023159678A (ja) 積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置
JP2024058958A (ja) 造形物の製造方法及び積層計画方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011852.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745555

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022745555

Country of ref document: EP

Effective date: 20230727

NENP Non-entry into the national phase

Ref country code: DE