WO2022163074A1 - Vehicle-mounted exhaust gas analysis device and exhaust gas analysis method - Google Patents

Vehicle-mounted exhaust gas analysis device and exhaust gas analysis method Download PDF

Info

Publication number
WO2022163074A1
WO2022163074A1 PCT/JP2021/042012 JP2021042012W WO2022163074A1 WO 2022163074 A1 WO2022163074 A1 WO 2022163074A1 JP 2021042012 W JP2021042012 W JP 2021042012W WO 2022163074 A1 WO2022163074 A1 WO 2022163074A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
engine
opening
state
additional
Prior art date
Application number
PCT/JP2021/042012
Other languages
French (fr)
Japanese (ja)
Inventor
謙次 近藤
伸宜 奥井
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2022578066A priority Critical patent/JPWO2022163074A1/ja
Publication of WO2022163074A1 publication Critical patent/WO2022163074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state

Definitions

  • the present invention relates to a vehicle-mounted exhaust gas analyzer and an exhaust gas analysis method.
  • a reflux passage is provided to return part of the exhaust gas flowing through the sampling passage from the downstream side to the upstream side.
  • Some have a so-called reflux dilution mechanism that returns the exhaust gas that has flowed into the reflux passage to the sampling passage as a dilution gas.
  • test vehicle is an idling stop vehicle or a hybrid vehicle
  • idling stop vehicle even if the engine is stopped during idling stop or electric drive
  • sampling is continued, and particulate matter in the atmosphere is led to the analyzer and measured, resulting in loss of measurement accuracy.
  • the present invention has been made to solve the above-mentioned problems at once, and the main purpose is to enable accurate analysis of particulate matter contained in exhaust gas emitted from idling stop vehicles and hybrid vehicles. This is an issue.
  • the vehicle-mounted exhaust gas analyzer includes a sampling channel through which exhaust gas from an engine flows, an analyzer connected to the sampling channel for analyzing the exhaust gas, and an upstream of the analyzer in the sampling channel.
  • a diluter provided in the sampling channel, a return path that branches from a branch point set between the analyzer and the diluter in the sampling flow path and joins the diluter, and is provided in the return path, a pump that guides part of the exhaust gas from the branch point to the diluter; an additional flow path that is connected to the return flow path or the sampling flow path and through which additional gas from which particulate matter has been removed flows; an opening/closing mechanism provided in a flow path; an engine information acquisition unit that acquires ON/OFF information that is information relating to ON/OFF of the engine; and whether the engine is in the ON state or the OFF state based on the ON/OFF information.
  • an engine state determination unit for determining whether the engine is in the ON state, the opening/closing mechanism is closed when the engine state determination unit determines that the engine is in the ON state, and the engine state determination unit determines that the engine is in the OFF state and an opening/closing control unit that opens the opening/closing mechanism when the determination is made.
  • the opening/closing control unit opens the opening/closing mechanism for the additional flow path, so that particulate matter
  • the additional gas from which the gas has been removed can be led from the additional flow path to the analyzer via the return flow path or the sampling flow path.
  • the additional flow path is provided with an additional flow path filter that traps particulate matter.
  • the opening/closing control section opens the opening/closing mechanism, it is preferable that the total flow rate of the additional gas flowing through the additional flow path is guided to the analyzer. In this case, even if the engine is switched from the ON state to the OFF state and the opening/closing mechanism is opened, the additional gas introduced into the additional flow path will not flow back to the tail pipe of the test vehicle, and measurement accuracy can be ensured. .
  • the analysis gas flow rate which is the flow rate of the gas introduced into the analyzer
  • a first flow rate in a state where the opening/closing control unit closes the opening/closing mechanism.
  • an additional flow rate which is the flow rate of the additional gas flowing through the additional flow path, is controlled to the first flow rate when the opening/closing control unit opens the opening/closing mechanism.
  • the additional flow path flowing through the additional flow path is maintained in a state in which the opening/closing control section opens the opening/closing mechanism.
  • a portion of the gas preferably flows back through the sampling channel from the diluter.
  • the opening/closing control section is configured to open the opening/closing mechanism after a predetermined first waiting time has elapsed from the time of the switching. is preferred. In this case, the introduction of additional gas to the analyzer can be stopped until the exhaust gas remaining in the tail pipe or sampling flow path is guided to the analyzer, thereby further improving the measurement accuracy.
  • the opening/closing control unit controls the opening/closing It is preferably arranged to close the mechanism.
  • the analyzer analyzes particulate matter in the exhaust gas
  • the return passage is provided with a return passage filter that captures the particulate matter. I can list what I have.
  • the return path filter is provided upstream of the pump in the return path. With such a configuration, it is possible to reduce the flow of particulate matter into the pump, and prevent pump failure.
  • the additional flow path is connected between the pump and the return path filter in the return path.
  • an exhaust gas analysis method includes a sampling channel through which exhaust gas from an engine flows; an analyzer connected to the sampling channel for analyzing the exhaust gas; a diluter provided; a return path branched from a branch point set downstream of the diluter in the sampling flow path and connected to the diluter; and a pump for guiding a part of the exhaust gas to the diluter, and an exhaust gas analysis method using a vehicle-mounted exhaust gas analyzer, wherein an additional flow path through which an additional gas from which particulate matter has been removed flows is defined as the return flow path.
  • the method is characterized in that an opening/closing mechanism connected to the sampling channel and provided in the additional channel is closed when the engine is in an ON state and opened when the engine is in an OFF state.
  • FIG. 1 is a schematic diagram showing how the vehicle-mounted exhaust gas analyzer of the present embodiment is used.
  • the schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of the same embodiment.
  • FIG. 2 is a schematic diagram showing the principle of the analyzer of the same embodiment; 4 is a flowchart for explaining the operation of the vehicle-mounted exhaust gas analyzer of the embodiment; FIG. 4 is a schematic diagram for explaining the flow rate of gas flowing through the vehicle-mounted exhaust gas analyzer of the same embodiment.
  • the schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment.
  • the schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment.
  • the schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment.
  • the vehicle-mounted exhaust gas analyzer 100 of the present embodiment is, as shown in FIG. 1, mounted on a test vehicle VH such as an idling stop vehicle or a hybrid vehicle including a plug-in system.
  • VH such as an idling stop vehicle or a hybrid vehicle including a plug-in system.
  • the vehicle-mounted exhaust gas analyzer 100 includes an exhaust gas sampling device 1 that samples the exhaust gas emitted from the engine E, and an analyzer X that analyzes the sampled exhaust gas.
  • the exhaust gas sampling device 1 samples the exhaust gas from the engine E when the engine E is ON (driving state), and stops sampling the exhaust gas when the engine E is OFF (stopped state). Exhaust gas is intermittently sampled.
  • the exhaust gas sampling device 1 has an exhaust gas sampling flow path L1 provided with a sampling probe (not shown) at one end thereof. A part or all of the flue gas is sampled.
  • a part of the sampling flow path L1 here is configured by a heating tube unit called a hot hose, and is configured to guide the sampled exhaust gas to the analyzer X while heating or maintaining it at a predetermined temperature. .
  • the analyzer X is connected to the other end of the sampling flow path L1 and analyzes the particulate matter contained in the exhaust gas. is X.
  • condensation nucleus counter As an example of the particle counting mechanism, as shown in Fig. 3, one called a condensation nucleus counter (CPC) can be mentioned.
  • This CPC is led to a heating section A1 containing an organic gas such as isopropyl alcohol or butanol, and then cooled in a condensation section A2 so that the organic gas is condensed and attached to the particulate matter in the exhaust gas to grow into a large diameter.
  • the grown particulate matter is discharged from the slit A3, and the emitted particles are counted by the laser beam R.
  • a critical orifice type constant flow rate means (not shown) is provided downstream of the CPC as a flow rate controller, and a constant flow rate of gas flows through the CPC.
  • the exhaust gas sampling device 1 of this embodiment further includes a dilution mechanism 10 that dilutes the sampled exhaust gas.
  • the dilution mechanism 10 samples a portion of the exhaust gas flowing through the sampling flow path L1, removes particulate matter (measurement target) contained in the exhaust gas to obtain a diluted gas, and then returns the diluted gas to the sampling flow path L1. , so-called reflux type.
  • the dilution mechanism 10 branches from a branch point L1a set on the sampling flow path L1, merges with a confluence point L1b set on the sampling flow path L1, and dilutes the exhaust gas flowing through the sampling flow path L1. It has a reflux channel L2 that returns a part of the sampling channel L1 from the downstream side to the upstream side.
  • a diluter MIX is provided at the junction L1b, and a branch point L1a is set between the diluter MIX and the analyzer X.
  • the return path L2 is provided with a pump P for circulating the fluid flowing through the return path L2.
  • a first return path filter F1 (hereinafter also referred to as first filter F1) that captures particulate matter contained in the exhaust gas may be provided.
  • a flow rate control for controlling the flow rate of the diluent gas flowing from the return path L2 into the diluent MIX is provided downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX.
  • a vessel 11 is provided downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX.
  • the flow controller 11 here is a venturi as a constant flow means, but a mass flow controller, a flow control valve, or the like, for example, may be used.
  • a second return path filter F2 (hereinafter also referred to as a second filter F2) that traps particulate matter may be provided downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX, in order to prevent the diluent gas flowing into the diluter MIX from containing particulate matter such as dust from the pump.
  • the second filter F2 here is provided between the pump P and the flow rate controller 11, but may be provided between the flow rate adjustment device 11 and the diluter MIX.
  • a dehumidifier 12 for reducing the humidity of the diluent gas flowing into the diluter MIX may be provided downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX. .
  • the dehumidifier 12 here is provided between the pump P and the second filter F2. , or may be provided upstream of the pump P.
  • the vehicle-mounted exhaust gas analyzer 100 of the present embodiment is connected to the upstream of the pump P in the return path L2, the additional flow path L3 through which the additional gas from which the particulate matter has been removed flows, and the additional flow path L3.
  • the control device 20 for controlling the opening/closing mechanism V1 to open or close is further provided.
  • the "additional gas from which particulate matter has been removed” here is not limited to gas from which particulate matter has been completely (all) removed, and is not limited to gas in which particulate matter is at least less than that in the atmosphere. It is a concept that includes the gas that has been discharged.
  • the additional flow path L3 is connected to the upstream side (negative pressure side) of the pump P in the return flow path L2 at the other end. is provided with a return path filter F3 (hereinafter also referred to as a third filter F3) that captures particulate matter contained in the atmosphere.
  • the third filter F3 here is provided upstream of the opening/closing mechanism V1, but may be provided downstream of the opening/closing mechanism V1.
  • the additional flow path L3 is provided with a flow rate adjustment valve V2 as a flow controller for adjusting the additional flow rate, which is the flow rate of the atmosphere. becomes a constant flow rate.
  • a flow rate controller a mass flow controller, a plurality of venturis connected in parallel in a switchable manner, or the like may be used.
  • the opening/closing mechanism V1 switches between an open state in which the atmosphere after particulate matter has been removed by the third filter F3 is supplied as additional gas from the additional flow path L3 to the return flow path L2, and a closed state in which the supply is stopped.
  • an opening/closing valve such as a solenoid valve that is operated by a control signal from the control device 20 here.
  • the control device 20 physically includes a CPU, an internal memory, an input/output interface, etc., and the CPU and other components work together based on the gas supply program stored in the internal memory. Accordingly, as shown in FIG. 2, at least the functions of an engine information acquisition section 21, an engine state determination section 22, and an opening/closing control section 23 are exhibited.
  • control device 20 In the following, the specific operation of the control device 20 will be described with reference to FIGS.
  • the engine information acquisition unit 21 acquires ON/OFF information, which is information regarding ON/OFF of the engine (S1).
  • This ON/OFF information is information indicating whether the engine E is in the ON state or the OFF state.
  • the engine state itself (ON state or OFF state) output from the OBD is indicated. is a signal.
  • Other ON/OFF information includes the engine speed output from the OBD, the number of engine rotation signal pulses, the fuel injection amount, etc., and the exhaust gas flow rate, which can be obtained separately from the information from the OBD. Concentrations of various components and the like can be mentioned.
  • the engine state determination unit 22 determines whether the engine is ON or OFF based on the ON/OFF information acquired by the engine information acquisition unit 21 (S2). Specifically, the engine state determination unit 22 determines that the engine is in the ON state when the engine speed, which is the ON/OFF information, is greater than a predetermined value (for example, zero), and determines that the engine speed is the predetermined value. If it is less than or equal to (for example, zero), it is determined that the engine is in the OFF state.
  • the ON state is the engine state of the test vehicle VH when the engine is driven
  • the OFF state is the engine state of the test vehicle VH when idling is stopped or when the test vehicle is electrically driven.
  • the opening/closing control section 23 is configured to control the opening/closing mechanism based on the determination result of the engine state determination section 22. Specifically, the engine state determination section 22 turns on the engine. If it is determined that the engine is in the OFF state, the opening/closing mechanism V1 is closed (S3), and if the engine state determination unit 22 determines that the engine is in the OFF state, the opening/closing mechanism V1 is opened (S4).
  • the opening/closing control unit 23 determines whether the engine state is changed from the ON state to the OFF state at the time of the switching, that is, when the engine state determination unit 22 determines the engine state.
  • the opening/closing mechanism V1 is opened after a predetermined first standby time has elapsed from the point of time when switching to .
  • This first standby time is the time required for the exhaust gas remaining in the tail pipe of the test vehicle VH or the sampling flow path L1 to be guided to the analyzer X when the engine E is switched from the ON state to the OFF state, or set longer than the time.
  • the opening/closing control unit 23 is operated at the time when the engine state is switched, that is, at the time when the engine state determination unit 22 switches from the OFF state to the ON state.
  • the opening/closing mechanism V1 is closed after a predetermined second waiting time has passed since the closing. This second standby time is the time required for the exhaust gas from the engine E to reach the branch point L1a set on the sampling flow path L1 at the time when the engine E is switched from the OFF state to the ON state, or the time is set shorter than
  • control device 20 determines whether or not to end the analysis based on, for example, whether an analysis end signal has been input (S5), and if the analysis is to be continued, returns to S2 to determine the engine state again.
  • a first flow rate A (hereinafter referred to as analysis gas flow rate A) that is the flow rate of the analysis gas
  • a second flow rate B (hereinafter referred to as supply flow rate B) that is the flow rate of the gas supplied to the diluter MIX from the return path L2.
  • the supply flow rate B at the time of exhaust gas analysis is the supply flow rate of the diluent gas supplied from the reflux path L2 to the diluter MIX.
  • the third flow rate C (hereinafter referred to as mixed gas flow rate C), which is the flow rate of the mixed gas composed of the exhaust gas and the dilution gas flowing from the diluter to the branch point L1a, is It is the total flow rate of the gas flow rate A and the supply flow rate B. Since the analysis gas flow rate A and the supply flow rate B are constant as described above, the mixed gas flow rate C is also controlled at a constant flow rate.
  • a fourth flow rate D (hereinafter referred to as sampling flow rate D), which is the flow rate of the gas sampled from one end of the sampling flow path L1, is the flow rate of the difference between the mixed gas flow rate C and the supply flow rate B.
  • sampling flow rate D which is the flow rate of the difference between the mixed gas flow rate C and the supply flow rate B.
  • the analysis gas flow rate A is set to 1 and the diluent gas flow rate B is set to 4, for example, as shown in FIG. 5(a).
  • the mixed gas flow rate C is 5, which is the sum of the analysis gas flow rate A and the diluent gas flow rate B
  • the sampling flow rate D is 1, which is the mixed gas flow rate C minus the diluent gas flow rate B.
  • the exhaust gas sampled from one end of the sampling flow path L1 is diluted five times by the dilution gas and is led to the analyzer X.
  • the flow rate controller is provided not only in the downstream of the analyzer X and the return path L2, but also in the additional flow path L3.
  • a fifth flow rate (hereinafter referred to as The additional flow rate E) also becomes a constant flow rate.
  • the flow rate control valve V2 which is a flow rate controller provided in the additional flow path L3, controls the additional flow rate E to be equal to or higher than the analysis gas flow rate A guided to the analyzer X when the engine E is ON. , and is controlled to a first flow rate equal to the analysis gas flow rate A in this embodiment.
  • the additional flow rate E since the air is drawn by the pump P, the additional flow rate E is smaller than the supply flow rate B.
  • the sixth flow rate (hereinafter referred to as the branch flow rate F), which is the flow rate of the gas branched from the branch point L1a of the sampling flow path L1 to the return flow path L2, is 3, which is obtained by subtracting the additional flow rate E from the supply flow rate B. .
  • the mixed gas flow rate C becomes 4, which is the sum of the analysis gas flow rate A and the branch flow rate F.
  • the total flow rate (additional flow rate E) of the additional gas (atmosphere) flowing through the additional flow path L3 is guided to the analyzer X, and flows backward from the return flow path L2 toward the test vehicle VH via the diluter MIX.
  • the reverse flow rate G is substantially zero.
  • the mixed gas flowing through the return path L2 is composed only of the atmosphere introduced from the additional flow path L3 into the return path L2. Additional gas not included (atmosphere) will be introduced.
  • the gas substantially free of particulate matter means not only a gas that does not contain any particulate matter, but also a gas containing an extremely small amount of particulate matter that does not affect the measurement results of the analyzer X. It is a concept that also includes gases containing substances.
  • the opening/closing control unit 23 switches the additional flow path L3. Since the opening/closing mechanism V1 is opened, the air introduced into the additional flow channel L3 is guided to the analyzer X through the return flow channel L2 in a state where particulate matter is removed by the additional flow channel filter F3. As a result, when the engine is switched from the ON state to the OFF state, the particulate matter is measured by the analyzer X without stopping the equipment downstream of the diluter MIX, such as the sampling pump of the analyzer X. As a result, it is possible to accurately analyze particulate matter contained in exhaust gases emitted from idling stop vehicles and hybrid vehicles.
  • the opening/closing mechanism V1 when the opening/closing mechanism V1 is opened by the opening/closing control unit 23, the total flow rate of the atmosphere flowing through the additional flow path L3 is guided to the analyzer X, so that the engine E Even if the ON state is switched to the OFF state and the opening/closing mechanism is opened, the atmosphere introduced into the additional flow path L3 does not flow back to the tail pipe of the test vehicle VH, and the measurement accuracy can be ensured.
  • the opening/closing control unit 23 opens the opening/closing mechanism V1 after the predetermined first waiting time has elapsed from the point of time when the engine E is switched from the ON state to the OFF state.
  • the introduction of air into analyzer X can be stopped until exhaust gas remaining in the tail pipe or sampling flow path is led to analyzer X immediately after switching to the OFF state, further improving measurement accuracy. I can plan.
  • the opening/closing mechanism V1 of the additional flow path L3 is closed immediately after the engine is switched from the OFF state to the ON state, for example, the atmosphere in the tail pipe is led to the analyzer X, and particles contained in the atmosphere Induce measurement errors due to substances such as
  • the opening/closing control unit 23 switches the opening/closing control unit 23 after the predetermined second waiting time has elapsed from the switching time. Since it is configured to close the mechanism V1, the measurement error mentioned above can be reduced.
  • the additional flow path L3 is connected between the pump P and the first filter F1 in the return flow path L2, particulate matter from the exhaust gas is present at the connection point of the additional flow path L3 during the analysis of the exhaust gas.
  • the captured diluent gas flows, and contamination of the additional flow path L3 can be reduced.
  • the dehumidifier 12 is provided downstream of the pump P in the return path L2, the calibration gas and the purge gas can be dried and flowed, thereby suppressing condensation of moisture contained in these gases. can do.
  • the present invention is not limited to the above embodiments.
  • connection point of the additional flow path L3 was between the first filter F1 and the pump P in the above embodiment, but as shown in FIG. It may be between the first filter F1.
  • the connection point of the additional channel L3 is between the diluter MIX and the branch point L1a in the sampling channel L1 (this is a concept including the diluter MIX and the branch point L1a). may be connected to the additional flow path L3.
  • the connection point of the additional flow path L3 may be downstream of the pump P in the return flow path L2.
  • FIG. 7 if a pumping means B is provided in the additional flow path L3, the connection point of the additional flow path L3 may be downstream of the pump P in the return flow path L2.
  • connection point of the additional flow path L3 can be the upstream side of the diluter MIX in the sampling flow path L1. Alternatively, it may be between the branch point L1a and the analyzer X as shown in FIG. 8(b).
  • the vehicle-mounted exhaust gas analyzer 100 does not necessarily require the venturi as the flow controller 11, the second filter F2, the dehumidifier 12, and the flow control valve V2 as the flow controller. Instead, as shown in FIG. 9, one, a plurality, or all of them may be omitted. In this case, the first filter F1 may be provided upstream or downstream of the pump P in the return path L2.
  • the third filter F3 which is an additional flow path filter
  • the gas from which particulate matter has been removed from the atmosphere is flowed into the additional flow path L3 as an additional gas.
  • a gas from which particulate matter has been removed in advance from a gas source such as a gas cylinder may be supplied as the additional gas to the additional gas flow path L3.
  • the third filter F is unnecessary.
  • the total flow rate of the air flowing through the additional flow path L3 is introduced to the analyzer X in a state where the opening/closing control unit 23 opens the opening/closing mechanism V1.
  • the opening/closing control unit 23 opens the opening/closing mechanism V1
  • part of the air flowing through the additional flow path L3 flows backward from the diluter MIX through the sampling flow path L1 toward the test vehicle VH.
  • the analyzer X is not limited to the CPC for measuring the number of particles of particulate matter contained in the exhaust gas, and may be one that measures the amount of particulate matter (PM).
  • the analyzer X may analyze various components contained in the exhaust gas, such as carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOX), and hydrocarbons (HC).
  • an analyzer for analyzing these components may be provided separately from the analyzer X of the above embodiment. In this case, if an exhaust gas cleaning device such as a scrubber is provided instead of the first filter F1 or the second filter F2 of the above embodiment, the exhaust gas introduced into the recirculation path L2 is supplied to the diluter MIX as a dilution gas. can do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To make it possible to accurately analyze particulate matter included in exhaust gas emitted from stop-start vehicles and hybrid vehicles, including plug-in types, this invention is made to comprise a recirculation path L2 that branches from a branching point L1a provided between an analyzer X that is provided in a sample flow path L1 through which exhaust gas from an engine E flows and a diluter MIX and joins with the diluter MIX, a pump P provided in the recirculation path L2, an additional flow path L3 that is connected to the recirculation path L2 and leads to the atmosphere, a filter F3 provided in the additional flow path L3, an opening and closing mechanism V1 provided in the additional flow path L3, an engine information acquisition unit 21 for acquiring on/off information for the engine E, an engine state determination unit 22 for determining whether the engine E is on or off, and an opening and closing control unit 23 for closing the opening and closing mechanism V1 if a determination is made that the engine E is on and opening the opening and closing mechanism V1 if a determination is made that the engine E is off.

Description

車載型排ガス分析装置及び排ガス分析方法On-vehicle exhaust gas analyzer and exhaust gas analysis method
 本発明は、車載型排ガス分析装置及び排ガス分析方法に関するものである。 The present invention relates to a vehicle-mounted exhaust gas analyzer and an exhaust gas analysis method.
 従来の車載型排ガス分析装置としては、特許文献1に示すように、サンプリング流路を流れる排ガスの一部を下流側から上流側に戻す還流路を備え、この還流路にフィルタを設けることで、還流路に流入した排ガスを希釈ガスとしてサンプリング流路に戻す、所謂還流式希釈機構を備えたものがある。 As a conventional vehicle-mounted exhaust gas analyzer, as shown in Patent Document 1, a reflux passage is provided to return part of the exhaust gas flowing through the sampling passage from the downstream side to the upstream side. Some have a so-called reflux dilution mechanism that returns the exhaust gas that has flowed into the reflux passage to the sampling passage as a dilution gas.
 かかる車載型排ガス分析装置を用いてエンジンの排ガスに含まれる粒子状物質を計測する場合、試験車両がアイドリングストップ車両やハイブリッド車両であると、アイドリングストップ時や電動駆動時にエンジンが停止しているにもかかわらずサンプリングを続けてしまい、大気中の粒子状物質が分析計に導かれて計測され、測定精度が損なわれる。 When measuring particulate matter contained in engine exhaust gas using such an on-vehicle exhaust gas analyzer, if the test vehicle is an idling stop vehicle or a hybrid vehicle, even if the engine is stopped during idling stop or electric drive In spite of this, sampling is continued, and particulate matter in the atmosphere is led to the analyzer and measured, resulting in loss of measurement accuracy.
 一方、エンジンの停止時にサンプリングを止める方法としては、例えば分析計のサンプリングポンプを停止させることが考えられるが、この場合、次のエンジンの稼動時にサンプリングポンプを動かしたとしても、すぐには安定状態とならず、エンジンの稼働直後の測定精度が損なわれる。 On the other hand, as a method of stopping sampling when the engine is stopped, for example, it is possible to stop the sampling pump of the analyzer. Otherwise, the measurement accuracy immediately after the engine is started is impaired.
特表2014-526679号公報Japanese Patent Application Publication No. 2014-526679
 そこで、本願発明は、上述した問題を一挙に解決すべくなされたものであり、アイドリングストップ車両やハイブリッド車両から排出される排ガスに含まれる粒子状物質を精度良く分析できるようにすることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems at once, and the main purpose is to enable accurate analysis of particulate matter contained in exhaust gas emitted from idling stop vehicles and hybrid vehicles. This is an issue.
 すなわち本発明に係る車載型排ガス分析装置は、エンジンからの排ガスが流れるサンプリング流路と、前記サンプリング流路に接続されて前記排ガスを分析する分析計と、前記サンプリング流路における前記分析計の上流に設けられた希釈器と、前記サンプリング流路における前記分析計及び前記希釈器の間に設定された分岐点から分岐して前記希釈器に合流する還流路と、前記還流路に設けられて、前記分岐点から前記希釈器に前記排ガスの一部を導くポンプと、前記還流路又は前記サンプリング流路に接続されるとともに、粒子状物質が除去された追加ガスが流れる追加流路と、前記追加流路に設けられた開閉機構と、前記エンジンのON/OFFに関する情報であるON/OFF情報を取得するエンジン情報取得部と、前記ON/OFF情報に基づいて、前記エンジンがON状態かOFF状態かを判断するエンジン状態判断部と、前記エンジン状態判断部により前記エンジンがON状態であると判断された場合に、前記開閉機構を閉じ、前記エンジン状態判断部により前記エンジンがOFF状態であると判断された場合に、前記開閉機構を開く開閉制御部とを備えることを特徴とするものである。 That is, the vehicle-mounted exhaust gas analyzer according to the present invention includes a sampling channel through which exhaust gas from an engine flows, an analyzer connected to the sampling channel for analyzing the exhaust gas, and an upstream of the analyzer in the sampling channel. a diluter provided in the sampling channel, a return path that branches from a branch point set between the analyzer and the diluter in the sampling flow path and joins the diluter, and is provided in the return path, a pump that guides part of the exhaust gas from the branch point to the diluter; an additional flow path that is connected to the return flow path or the sampling flow path and through which additional gas from which particulate matter has been removed flows; an opening/closing mechanism provided in a flow path; an engine information acquisition unit that acquires ON/OFF information that is information relating to ON/OFF of the engine; and whether the engine is in the ON state or the OFF state based on the ON/OFF information. an engine state determination unit for determining whether the engine is in the ON state, the opening/closing mechanism is closed when the engine state determination unit determines that the engine is in the ON state, and the engine state determination unit determines that the engine is in the OFF state and an opening/closing control unit that opens the opening/closing mechanism when the determination is made.
 このように構成された車載型排ガス分析装置によれば、エンジン状態判断部によりエンジンがOFF状態であると判断された場合に、開閉制御部が追加流路の開閉機構を開くので、粒子状物質が除去された追加ガスを追加流路から還流路又はサンプリング流路を介して分析計に導くことができる。
 これにより、エンジンのON状態からOFF状態に切り替わった場合に、例えば分析計のサンプリングポンプなど希釈器よりも下流側の機器を止めることなく、粒子状物質が分析計で計測されてしまうことを防ぐことができ、その結果、アイドリングストップ車両やハイブリッド車両から排出される排ガスに含まれる粒子状物質を精度良く分析することが可能となる。
According to the vehicle-mounted exhaust gas analyzer configured in this manner, when the engine state determination unit determines that the engine is in the OFF state, the opening/closing control unit opens the opening/closing mechanism for the additional flow path, so that particulate matter The additional gas from which the gas has been removed can be led from the additional flow path to the analyzer via the return flow path or the sampling flow path.
As a result, when the engine is switched from the ON state to the OFF state, particulate matter is prevented from being measured by the analyzer without stopping equipment downstream of the diluter, such as the sampling pump of the analyzer. As a result, it is possible to accurately analyze particulate matter contained in exhaust gases emitted from idling stop vehicles and hybrid vehicles.
 簡易な構成によって追加ガスを粒子状物質が除去されたものとするためには、前記追加流路に粒子状物質を捕捉する追加流路用フィルタが設けられていることが好ましい。 In order to remove particulate matter from the additional gas with a simple configuration, it is preferable that the additional flow path is provided with an additional flow path filter that traps particulate matter.
 エンジンON状態からOFF状態に切り替わって開閉機構を開いた場合に、仮に追加流路に導入される追加ガスが試験車両のテールパイプに逆流すると、テールパイプに残存する粒子状物質の濃度が薄まってしまい、その後、エンジンがON状態に切り替わった際に測定誤差を招来する。
 そこで、前記開閉制御部が前記開閉機構を開いた状態において、前記追加流路を流れる前記追加ガスの全流量が前記分析計に導かれることが好ましい。
 これならば、エンジンがON状態からOFF状態に切り替わって開閉機構が開かれても、追加流路に導入された追加ガスが試験車両のテールパイプに逆流せず、測定精度を担保することができる。
If the engine is switched from ON to OFF and the opening/closing mechanism is opened, if the additional gas introduced into the additional flow path flows back into the tail pipe of the test vehicle, the concentration of the particulate matter remaining in the tail pipe will decrease. This leads to measurement errors when the engine is subsequently turned on.
Therefore, in a state where the opening/closing control section opens the opening/closing mechanism, it is preferable that the total flow rate of the additional gas flowing through the additional flow path is guided to the analyzer.
In this case, even if the engine is switched from the ON state to the OFF state and the opening/closing mechanism is opened, the additional gas introduced into the additional flow path will not flow back to the tail pipe of the test vehicle, and measurement accuracy can be ensured. .
 逆流を確実に防ぐための具体的な実施態様としては、前記開閉制御部が前記開閉機構を閉じた状態において、前記分析計に導入されるガスの流量である分析ガス流量が第1流量に制御されており、前記開閉制御部が前記開閉機構を開いた状態において、前記追加流路を流れる前記追加ガスの流量である追加流量が、前記第1流量に制御されている態様を挙げることができる。 As a specific embodiment for reliably preventing backflow, the analysis gas flow rate, which is the flow rate of the gas introduced into the analyzer, is controlled to a first flow rate in a state where the opening/closing control unit closes the opening/closing mechanism. and an additional flow rate, which is the flow rate of the additional gas flowing through the additional flow path, is controlled to the first flow rate when the opening/closing control unit opens the opening/closing mechanism. .
 また、エンジンの停止時に大気の粒子状物質が分析計に導かれてしまうことをより確実に防ぐためには、前記開閉制御部が前記開閉機構を開いた状態において、前記追加流路を流れる前記追加ガスの一部が前記希釈器から前記サンプリング流路を逆流することが好ましい。 Further, in order to more reliably prevent atmospheric particulate matter from being led to the analyzer when the engine is stopped, the additional flow path flowing through the additional flow path is maintained in a state in which the opening/closing control section opens the opening/closing mechanism. A portion of the gas preferably flows back through the sampling channel from the diluter.
 測定精度のさらなる向上を図るためには、エンジンがON状態からOFF状態に切り替わった直後は、テールパイプやサンプリング流路に残存する排ガスを分析計に導くことが望まれる。
 そこで、前記エンジンがON状態からOFF状態に切り替わった場合に、その切り替わった時点から所定の第1待機時間が経過した後、前記開閉制御部が、前記開閉機構を開くように構成されていることが好ましい。
 これならば、テールパイプやサンプリング流路に残存する排ガスを分析計に導くまでの間は、分析計への追加ガスの導入を止めておくことができるので、測定精度のさらなる向上を図れる。
In order to further improve the measurement accuracy, it is desirable to guide the exhaust gas remaining in the tail pipe or the sampling flow path to the analyzer immediately after the engine is switched from the ON state to the OFF state.
Therefore, when the engine is switched from the ON state to the OFF state, the opening/closing control section is configured to open the opening/closing mechanism after a predetermined first waiting time has elapsed from the time of the switching. is preferred.
In this case, the introduction of additional gas to the analyzer can be stopped until the exhaust gas remaining in the tail pipe or sampling flow path is guided to the analyzer, thereby further improving the measurement accuracy.
 エンジンがOFF状態からON状態に切り替わった直後に追加流路の開閉機構を閉じてしまうと、例えばテールパイプ内の大気が分析計に導かれてしまい、その大気に含まれる粒子状物質による測定誤差を招来する。
 そこで、かかる測定誤差を低減するためには、前記エンジンがOFF状態からON状態に切り替わった場合に、その切り替わった時点から所定の第2待機時間が経過した後、前記開閉制御部が、前記開閉機構を閉じるように構成されていることが好ましい。
If the opening/closing mechanism of the additional flow path is closed immediately after the engine is switched from OFF to ON, air inside the tail pipe, for example, will be led to the analyzer, resulting in measurement errors due to particulate matter contained in the air. to invite
Therefore, in order to reduce such a measurement error, when the engine is switched from the OFF state to the ON state, after a predetermined second waiting time has elapsed from the time of the switching, the opening/closing control unit controls the opening/closing It is preferably arranged to close the mechanism.
 本発明のより具体的な構成としては、前記分析計が、前記排ガス中の粒子状物質を分析するものであり、前記還流路には、粒子状物質を捕捉する還流路用フィルタが設けられているものを挙げることができる。 As a more specific configuration of the present invention, the analyzer analyzes particulate matter in the exhaust gas, and the return passage is provided with a return passage filter that captures the particulate matter. I can list what I have.
 前記還流路用フィルタが、前記還流路における前記ポンプの上流に設けられていることが好ましい。
 このような構成であれば、ポンプに粒子状物質が流れ込むことを低減することができ、ポンプの故障を防ぐことができる。
It is preferable that the return path filter is provided upstream of the pump in the return path.
With such a configuration, it is possible to reduce the flow of particulate matter into the pump, and prevent pump failure.
 前記追加流路が、前記還流路における前記ポンプと前記還流路用フィルタとの間に接続されていることが好ましい。
 このような構成であれば、排ガス分析時において、追加流路の接続箇所には排ガスから粒子状物質が捕捉されてなる希釈ガスが流れることになり、追加流路の汚れを低減することができる。
It is preferable that the additional flow path is connected between the pump and the return path filter in the return path.
With such a configuration, at the time of exhaust gas analysis, the diluent gas in which particulate matter is captured from the exhaust gas flows through the connection point of the additional flow path, and contamination of the additional flow path can be reduced. .
 また、本発明に係る排ガス分析方法は、エンジンからの排ガスが流れるサンプリング流路と、前記サンプリング流路に接続されて前記排ガスを分析する分析計と、前記サンプリング流路における前記分析計の上流に設けられた希釈器と、前記サンプリング流路における前記希釈器の下流に設定された分岐点から分岐して前記希釈器に接続された還流路と、前記還流路に設けられて、前記分岐点から前記希釈器に前記排ガスの一部を導くポンプと、を備える車載型排ガス分析装置を用いた排ガス分析方法であって、粒子状物質が除去された追加ガスが流れる追加流路を、前記還流路又は前記サンプリング流路に接続し、前記追加流路に設けられた開閉機構を、前記エンジンがON状態の場合に閉じ、前記エンジンがOFF状態の場合に開くことを特徴とする方法である。
 このような排ガス分析方法であれば、上述した車載型排ガス分析装置と同様の作用効果を得ることができる。
Further, an exhaust gas analysis method according to the present invention includes a sampling channel through which exhaust gas from an engine flows; an analyzer connected to the sampling channel for analyzing the exhaust gas; a diluter provided; a return path branched from a branch point set downstream of the diluter in the sampling flow path and connected to the diluter; and a pump for guiding a part of the exhaust gas to the diluter, and an exhaust gas analysis method using a vehicle-mounted exhaust gas analyzer, wherein an additional flow path through which an additional gas from which particulate matter has been removed flows is defined as the return flow path. Alternatively, the method is characterized in that an opening/closing mechanism connected to the sampling channel and provided in the additional channel is closed when the engine is in an ON state and opened when the engine is in an OFF state.
With such an exhaust gas analysis method, it is possible to obtain the same effects as those of the vehicle-mounted exhaust gas analyzer described above.
 このように構成した本発明によれば、アイドリングストップ車両やハイブリッド車両から排出される排ガスに含まれる粒子状物質を精度良く分析することができる。 According to the present invention configured in this manner, it is possible to accurately analyze particulate matter contained in exhaust gases emitted from idling stop vehicles and hybrid vehicles.
本実施形態の車載型排ガス分析装置の使用態様を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing how the vehicle-mounted exhaust gas analyzer of the present embodiment is used. 同実施形態の車載型排ガス分析装置の構成を示す模式図。The schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of the same embodiment. 同実施形態の分析計の原理を示す模式図。FIG. 2 is a schematic diagram showing the principle of the analyzer of the same embodiment; 同実施形態の車載型排ガス分析装置の動作を説明するためのフローチャート。4 is a flowchart for explaining the operation of the vehicle-mounted exhaust gas analyzer of the embodiment; 同実施形態の車載型排ガス分析装置を流れるガス流量を説明するための模式図。FIG. 4 is a schematic diagram for explaining the flow rate of gas flowing through the vehicle-mounted exhaust gas analyzer of the same embodiment. その他の実施形態の車載型排ガス分析装置の構成を示す模式図。The schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment. その他の実施形態の車載型排ガス分析装置の構成を示す模式図。The schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment. その他の実施形態の車載型排ガス分析装置の構成を示す模式図。The schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment. その他の実施形態の車載型排ガス分析装置の構成を示す模式図。The schematic diagram which shows the structure of the vehicle-mounted exhaust-gas analyzer of other embodiment.
100・・・車載型排ガス分析装置
1  ・・・排ガスサンプリング装置
L1 ・・・サンプリング流路
L2 ・・・還流路
X  ・・・分析計
10 ・・・希釈機構
MIX・・・希釈器
P  ・・・ポンプ
F1 ・・・第1のフィルタ
11 ・・・流量制御器
L3 ・・・追加流路
V1 ・・・開閉機構
20 ・・・制御装置
DESCRIPTION OF SYMBOLS 100... Vehicle-mounted exhaust gas analyzer 1... Exhaust gas sampling apparatus L1... Sampling flow path L2... Recirculation path X... Analyzer 10... Dilution mechanism MIX... Diluter P... - Pump F1... First filter 11... Flow controller L3... Additional channel V1... Opening/closing mechanism 20... Control device
 以下に本発明に係る車載型排ガス分析装置の一実施形態について図面を参照して説明する。 An embodiment of a vehicle-mounted exhaust gas analyzer according to the present invention will be described below with reference to the drawings.
 本実施形態の車載型排ガス分析装置100は、図1に示すように、アイドリングストップ車両やプラグイン方式を含むハイブリッド車両等の試験車両VHに搭載される車載型のものである。 The vehicle-mounted exhaust gas analyzer 100 of the present embodiment is, as shown in FIG. 1, mounted on a test vehicle VH such as an idling stop vehicle or a hybrid vehicle including a plug-in system.
 具体的に車載型排ガス分析装置100は、図2に示すように、エンジンEから排出される排ガスをサンプリングする排ガスサンプリング装置1と、サンプリングされた排ガスを分析する分析計Xとを備えている。 Specifically, as shown in FIG. 2, the vehicle-mounted exhaust gas analyzer 100 includes an exhaust gas sampling device 1 that samples the exhaust gas emitted from the engine E, and an analyzer X that analyzes the sampled exhaust gas.
 排ガスサンプリング装置1は、エンジンEのON状態(駆動状態)においては該エンジンからの排ガスをサンプリングし、エンジンEのOFF状態(停止状態)は排ガスのサンプリングを停止するものであり、換言すれば、排ガスを間欠サンプリングするものである。具体的に排ガスサンプリング装置1は、一端部に図示しないサンプリングプローブが設けられた排ガスサンプリング流路L1を有し、このサンプリングプローブを例えばテールパイプ近傍のサンプリング箇所に取り付けることで、エンジンEから排出された排ガスの一部又は全部をサンプリングするものである。ここでのサンプリング流路L1は、一部がホットホースと称させる加熱管ユニットにより構成されており、採取した排ガスを所定の温度に加熱又は維持しながら分析計Xに導けるように構成されている。 The exhaust gas sampling device 1 samples the exhaust gas from the engine E when the engine E is ON (driving state), and stops sampling the exhaust gas when the engine E is OFF (stopped state). Exhaust gas is intermittently sampled. Specifically, the exhaust gas sampling device 1 has an exhaust gas sampling flow path L1 provided with a sampling probe (not shown) at one end thereof. A part or all of the flue gas is sampled. A part of the sampling flow path L1 here is configured by a heating tube unit called a hot hose, and is configured to guide the sampled exhaust gas to the analyzer X while heating or maintaining it at a predetermined temperature. .
 分析計Xは、サンプリング流路L1の他端部に接続されて、排ガスに含まれる粒子状物質を分析するものであり、ここでは粒子状物質の粒子数(PN)を計測する粒子数計測機構Xである。 The analyzer X is connected to the other end of the sampling flow path L1 and analyzes the particulate matter contained in the exhaust gas. is X.
 粒子数計測機構の一例としては、図3に示すように、凝縮核計数器(CPC)と称されるものを挙げることができる。このCPCは、イソプロピルアルコールやブタノールなどの有機ガスを含む加熱部A1に導き、その後、凝縮部A2で冷却することによって、排ガス中の粒子状物質に有機ガスを凝縮付着させて大きな径に成長させ、成長した粒子状物質をスリットA3から排出して、出てきた粒子をレーザ光Rにて計数するものである。このCPCの下流には、流量制御器として図示しない臨界オリフィス型の定流量手段が設けられており、CPCには一定流量のガスが流れる。 As an example of the particle counting mechanism, as shown in Fig. 3, one called a condensation nucleus counter (CPC) can be mentioned. This CPC is led to a heating section A1 containing an organic gas such as isopropyl alcohol or butanol, and then cooled in a condensation section A2 so that the organic gas is condensed and attached to the particulate matter in the exhaust gas to grow into a large diameter. , the grown particulate matter is discharged from the slit A3, and the emitted particles are counted by the laser beam R. A critical orifice type constant flow rate means (not shown) is provided downstream of the CPC as a flow rate controller, and a constant flow rate of gas flows through the CPC.
 かかる粒子数計測機Xを用いる場合、排ガスに含まれる粒子状物質同士が凝集することを防ぐべく、排ガスを希釈してから粒子数計測機に導く必要がある。なお、排ガスに含まれる粒子状物質とは異なる成分を分析する分析計Xにおいても、種々の理由で排ガスを希釈する必要が生じることがある。 When using such a particle number counter X, it is necessary to dilute the exhaust gas before introducing it to the particle number counter in order to prevent the particulate matter contained in the exhaust gas from aggregating. Note that even in the analyzer X that analyzes components other than the particulate matter contained in the exhaust gas, it may be necessary to dilute the exhaust gas for various reasons.
 そこで、本実施形態の排ガスサンプリング装置1は、図2に示すように、サンプリングした排ガスを希釈する希釈機構10をさらに備えている。 Therefore, as shown in FIG. 2, the exhaust gas sampling device 1 of this embodiment further includes a dilution mechanism 10 that dilutes the sampled exhaust gas.
 希釈機構10は、サンプリング流路L1を流れる排ガスの一部をサンプリングし、その排ガスに含まれる粒子状物質(計測対象)を取り除いて希釈ガスとした後、その希釈ガスをサンプリング流路L1に戻す、所謂還流式のものである。 The dilution mechanism 10 samples a portion of the exhaust gas flowing through the sampling flow path L1, removes particulate matter (measurement target) contained in the exhaust gas to obtain a diluted gas, and then returns the diluted gas to the sampling flow path L1. , so-called reflux type.
 具体的にこの希釈機構10は、サンプリング流路L1上に設定された分岐点L1aから分岐して、サンプリング流路L1上に設定された合流点L1bに合流し、サンプリング流路L1を流れる排ガスの一部をサンプリング流路L1の下流側から上流側に戻す還流路L2を有するものである。本実施形態では、合流点L1bには希釈器MIXが設けられており、この希釈器MIXと分析計Xとの間に分岐点L1aが設定されている。 Specifically, the dilution mechanism 10 branches from a branch point L1a set on the sampling flow path L1, merges with a confluence point L1b set on the sampling flow path L1, and dilutes the exhaust gas flowing through the sampling flow path L1. It has a reflux channel L2 that returns a part of the sampling channel L1 from the downstream side to the upstream side. In this embodiment, a diluter MIX is provided at the junction L1b, and a branch point L1a is set between the diluter MIX and the analyzer X. FIG.
 還流路L2には、当該還流路L2に流れる流体を循環させるためのポンプPが設けられており、このポンプPの上流、すなわちポンプPと分岐点L1aとの間には、ポンプPの故障等を防ぐべく、排ガスに含まれる粒子状物質を捕捉する第1の還流路用フィルタF1(以下、第1のフィルタF1ともいう)が設けられていても良い。 The return path L2 is provided with a pump P for circulating the fluid flowing through the return path L2. In order to prevent this, a first return path filter F1 (hereinafter also referred to as first filter F1) that captures particulate matter contained in the exhaust gas may be provided.
 また、還流路L2におけるポンプPの下流、すなわちポンプPと希釈器MIXとの間には、還流路L2から希釈器MIXに流入する希釈ガスの流量である希釈ガス流量を制御するための流量制御器11が設けられている。ここでの流量制御器11は、定流量手段としてのベンチュリであるが、例えばマスフローコントローラや流量調整弁等を用いても構わない。 Further, downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX, a flow rate control for controlling the flow rate of the diluent gas flowing from the return path L2 into the diluent MIX is provided. A vessel 11 is provided. The flow controller 11 here is a venturi as a constant flow means, but a mass flow controller, a flow control valve, or the like, for example, may be used.
 さらに、還流路L2におけるポンプPの下流、すなわちポンプPと希釈器MIXとの間には、希釈器MIXに流入する希釈ガスに例えばポンプの粉塵等の粒子状物質が含まれることを防ぐべく、粒子状物質を捕捉する第2の還流路用フィルタF2(以下、第2のフィルタF2ともいう)が設けられていても良い。ここでの第2のフィルタF2は、ポンプPと流量制御器11との間に設けられているが、流量調整機器11と希釈器MIXとの間に設けても良い。 Furthermore, downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX, in order to prevent the diluent gas flowing into the diluter MIX from containing particulate matter such as dust from the pump, A second return path filter F2 (hereinafter also referred to as a second filter F2) that traps particulate matter may be provided. The second filter F2 here is provided between the pump P and the flow rate controller 11, but may be provided between the flow rate adjustment device 11 and the diluter MIX.
 加えて、還流路L2におけるポンプPの下流、すなわちポンプPと希釈器MIXとの間には、希釈器MIXに流入する希釈ガスの湿度を低減するための除湿器12が設けられていても良い。ここでの除湿器12は、ポンプPと第2のフィルタF2との間に設けられているが、第2のフィルタF2と流量制御器11との間や、流量制御器11と希釈器MIXとの間に設けられていても良いし、ポンプPの上流に設けられていても良い。 In addition, a dehumidifier 12 for reducing the humidity of the diluent gas flowing into the diluter MIX may be provided downstream of the pump P in the return path L2, that is, between the pump P and the diluter MIX. . The dehumidifier 12 here is provided between the pump P and the second filter F2. , or may be provided upstream of the pump P.
 そして、本実施形態の車載型排ガス分析装置100は、還流路L2におけるポンプPの上流に接続されるとともに、粒子状物質が除去された追加ガスが流れる追加流路L3と、この追加流路L3に設けられた開閉機構V1とをさらに備えており、この実施形態では開閉機構V1を開状態又は閉状態に制御する制御装置20をさらに備えている。なお、ここでいう「粒子状物質が除去された追加ガス」とは、粒子状物質が完全に(全て)除去されているガスに限らず、粒子状物質が少なくとも大気に比べて少ない程度まで除去されたガスも含む概念である。 The vehicle-mounted exhaust gas analyzer 100 of the present embodiment is connected to the upstream of the pump P in the return path L2, the additional flow path L3 through which the additional gas from which the particulate matter has been removed flows, and the additional flow path L3. In this embodiment, the control device 20 for controlling the opening/closing mechanism V1 to open or close is further provided. It should be noted that the "additional gas from which particulate matter has been removed" here is not limited to gas from which particulate matter has been completely (all) removed, and is not limited to gas in which particulate matter is at least less than that in the atmosphere. It is a concept that includes the gas that has been discharged.
 追加流路L3は、一端部からこの実施形態では大気が導入されて、他端部が還流路L2におけるポンプPの上流側(負圧側)に接続されたものであり、この追加流路L3には大気に含まれる粒子状物質を捕捉する還流路用フィルタF3(以下、第3のフィルタF3ともいう)が設けられている。ここでの第3のフィルタF3は、開閉機構V1の上流に設けられているが、開閉機構V1の下流に設けても良い。 In this embodiment, the additional flow path L3 is connected to the upstream side (negative pressure side) of the pump P in the return flow path L2 at the other end. is provided with a return path filter F3 (hereinafter also referred to as a third filter F3) that captures particulate matter contained in the atmosphere. The third filter F3 here is provided upstream of the opening/closing mechanism V1, but may be provided downstream of the opening/closing mechanism V1.
 また、追加流路L3には、大気の流量である追加流量を調整するための流量制御器たる流量調整弁V2が設けられており、追加流路L3から還流路L2に供給される大気の流量は一定流量となる。なお、この流量制御器としては、マスフローコントローラや切り替え可能に並列接続された複数のベンチュリ等を用いても構わない。 Further, the additional flow path L3 is provided with a flow rate adjustment valve V2 as a flow controller for adjusting the additional flow rate, which is the flow rate of the atmosphere. becomes a constant flow rate. As this flow rate controller, a mass flow controller, a plurality of venturis connected in parallel in a switchable manner, or the like may be used.
 開閉機構V1は、第3のフィルタF3により粒子状物質を取り除いた後の大気が追加ガスとして追加流路L3から還流路L2に供給される開状態と、その供給を停止する閉状態とに切り替わるものであり、ここでは制御装置20からの制御信号により動作する電磁弁等の開閉バルブである。 The opening/closing mechanism V1 switches between an open state in which the atmosphere after particulate matter has been removed by the third filter F3 is supplied as additional gas from the additional flow path L3 to the return flow path L2, and a closed state in which the supply is stopped. , which is an opening/closing valve such as a solenoid valve that is operated by a control signal from the control device 20 here.
 制御装置20は、物理的にはCPU、内部メモリ、入出力インターフェースなどを備えたものであり、前記内部メモリに格納されたガス供給プログラムに基づいて、CPU及びその他の構成要素が協働することにより、図2に示すように、エンジン情報取得部21、エンジン状態判断部22、及び開閉制御部23としての機能を少なくとも発揮するものである。 The control device 20 physically includes a CPU, an internal memory, an input/output interface, etc., and the CPU and other components work together based on the gas supply program stored in the internal memory. Accordingly, as shown in FIG. 2, at least the functions of an engine information acquisition section 21, an engine state determination section 22, and an opening/closing control section 23 are exhibited.
 以下では、上述した各機能の説明を兼ねて、制御装置20の具体的な動作について、図4及び図5を参照しながら説明する。 In the following, the specific operation of the control device 20 will be described with reference to FIGS.
 まず、エンジンEの排ガス分析が開始されると、エンジン情報取得部21が、エンジンのON/OFFに関する情報であるON/OFF情報を取得する(S1)。このON/OFF情報は、エンジンEがON状態であるかOFF状態であるかを示す情報であり、この実施形態では例えばOBDから出力されるエンジン状態そのもの(ON状態であるかOFF状態)を示す信号である。なお、その他のON/OFF情報としては、OBDから出力されるエンジン回転数、エンジン回転信号パルス数、燃料噴射量などや、OBDからの情報とは別に取得可能な例えば排ガス流量、排ガスに含まれる種々の成分の濃度などを挙げることができる。 First, when exhaust gas analysis of the engine E is started, the engine information acquisition unit 21 acquires ON/OFF information, which is information regarding ON/OFF of the engine (S1). This ON/OFF information is information indicating whether the engine E is in the ON state or the OFF state. In this embodiment, for example, the engine state itself (ON state or OFF state) output from the OBD is indicated. is a signal. Other ON/OFF information includes the engine speed output from the OBD, the number of engine rotation signal pulses, the fuel injection amount, etc., and the exhaust gas flow rate, which can be obtained separately from the information from the OBD. Concentrations of various components and the like can be mentioned.
 次いで、エンジン状態判断部22は、エンジン情報取得部21により取得されたON/OFF情報に基づいて、エンジンがON状態かOFF状態かを判断する(S2)。具体的にこのエンジン状態判断部22は、ON/OFF情報たるエンジン回転数が所定値(例えば、ゼロ)よりも大きい場合にはエンジンがON状態であると判断し、エンジン回転数が前記所定値以下(例えば、ゼロ)である場合にはエンジンがOFF状態であると判断する。なお、ON状態は試験車両VHのエンジン駆動時のエンジン状態であり、OFF状態は試験車両VHのアイドリングストップ時や電動駆動時のエンジン状態である。 Next, the engine state determination unit 22 determines whether the engine is ON or OFF based on the ON/OFF information acquired by the engine information acquisition unit 21 (S2). Specifically, the engine state determination unit 22 determines that the engine is in the ON state when the engine speed, which is the ON/OFF information, is greater than a predetermined value (for example, zero), and determines that the engine speed is the predetermined value. If it is less than or equal to (for example, zero), it is determined that the engine is in the OFF state. The ON state is the engine state of the test vehicle VH when the engine is driven, and the OFF state is the engine state of the test vehicle VH when idling is stopped or when the test vehicle is electrically driven.
 そして、本実施形態では開閉制御部23が、エンジン状態判断部22の判断結果に基づいて開閉機構を制御するように構成されており、具体的には、エンジン状態判断部22によりエンジンがON状態であると判断された場合は開閉機構V1を閉じ(S3)、エンジン状態判断部22によりエンジンがOFF状態であると判断された場合は開閉機構V1を開く(S4)。 In this embodiment, the opening/closing control section 23 is configured to control the opening/closing mechanism based on the determination result of the engine state determination section 22. Specifically, the engine state determination section 22 turns on the engine. If it is determined that the engine is in the OFF state, the opening/closing mechanism V1 is closed (S3), and if the engine state determination unit 22 determines that the engine is in the OFF state, the opening/closing mechanism V1 is opened (S4).
 より具体的に説明すると、ここでの開閉制御部23は、エンジンがON状態からOFF状態に切り替わった場合、その切り替わった時点、すなわちエンジン状態判断部22によるエンジン状態の判断がON状態からOFF状態に切り替わった時点から所定の第1待機時間が経過した後に、開閉機構V1を開くように構成されている。
 この第1待機時間は、エンジンEがON状態からOFF状態に切り替わった時点で試験車両VHのテールパイプやサンプリング流路L1に残存する排ガスが分析計Xに導かれるのに要する時間、又は、その時間よりも長く設定されている。
More specifically, when the engine is switched from the ON state to the OFF state, the opening/closing control unit 23 determines whether the engine state is changed from the ON state to the OFF state at the time of the switching, that is, when the engine state determination unit 22 determines the engine state. The opening/closing mechanism V1 is opened after a predetermined first standby time has elapsed from the point of time when switching to .
This first standby time is the time required for the exhaust gas remaining in the tail pipe of the test vehicle VH or the sampling flow path L1 to be guided to the analyzer X when the engine E is switched from the ON state to the OFF state, or set longer than the time.
 また、ここでの開閉制御部23は、エンジンがOFF状態からON状態に切り替わった場合に、その切り替わった時点、すなわちエンジン状態判断部22によるエンジン状態の判断がOFF状態からON状態に切り替わった時点から所定の第2待機時間が経過した後に、開閉機構V1を閉じるように構成されている。
 この第2待機時間は、エンジンEがOFF状態からON状態に切り替わった時点でエンジンEからの排ガスがサンプリング流路L1上に設定された分岐点L1aに到達するまでに要する時間、又は、その時間よりも短く設定されている。
Further, when the engine is switched from the OFF state to the ON state, the opening/closing control unit 23 is operated at the time when the engine state is switched, that is, at the time when the engine state determination unit 22 switches from the OFF state to the ON state. The opening/closing mechanism V1 is closed after a predetermined second waiting time has passed since the closing.
This second standby time is the time required for the exhaust gas from the engine E to reach the branch point L1a set on the sampling flow path L1 at the time when the engine E is switched from the OFF state to the ON state, or the time is set shorter than
 その後、制御装置20は、例えば分析終了信号が入力されているか否かにより分析を終了するかを判断し(S5)、分析を続ける場合には、再びS2のエンジン状態の判断に戻る。 After that, the control device 20 determines whether or not to end the analysis based on, for example, whether an analysis end signal has been input (S5), and if the analysis is to be continued, returns to S2 to determine the engine state again.
[開閉機構V1の閉状態]
 続いて、エンジンがON状態であると判断されて、開閉制御部23が開閉機構V1を閉じている場合のガスの流れを説明する。
[Closed State of Opening/Closing Mechanism V1]
Next, gas flow when it is determined that the engine is ON and the opening/closing control unit 23 closes the opening/closing mechanism V1 will be described.
 上述したように、分析計Xの下流や還流路L2に流量制御器が設けられているので、開閉機構V1の閉状態においては、図5(a)に示すように、分析計Xに導かれる分析ガスの流量である第1流量A(以下、分析ガス流量Aという)や、還流路L2から希釈器MIXに供給される流れるガスの流量である第2流量B(以下、供給流量Bという)は、一定流量となる。なお、排ガス分析時における供給流量Bは、還流路L2から希釈器MIXに供給される希釈ガスの供給流量である。 As described above, since the flow rate controller is provided downstream of the analyzer X and the return path L2, the flow is led to the analyzer X as shown in FIG. 5(a) when the opening/closing mechanism V1 is closed. A first flow rate A (hereinafter referred to as analysis gas flow rate A) that is the flow rate of the analysis gas, and a second flow rate B (hereinafter referred to as supply flow rate B) that is the flow rate of the gas supplied to the diluter MIX from the return path L2. is a constant flow rate. Note that the supply flow rate B at the time of exhaust gas analysis is the supply flow rate of the diluent gas supplied from the reflux path L2 to the diluter MIX.
 ここで、図5(a)に示すように、希釈器から分岐点L1aまでを流れる排ガス及び希釈ガスからなる混合ガスの流量である第3流量C(以下、混合ガス流量Cという)は、分析ガス流量A及び供給流量Bを合算した流量である。そして、上述したように分析ガス流量A及び供給流量Bが一定流量であることから、混合ガス流量Cも一定流量に制御されることになる。
 また、サンプリング流路L1の一端部からサンプリングされるガスの流量である第4流量D(以下、サンプリング流量Dという)は、混合ガス流量C及び供給流量Bの差分の流量である。そして、混合ガス流量C及び供給流量Bが一定流量であるから、サンプリング流量Dも一定流量に制御されることになる。
Here, as shown in FIG. 5A, the third flow rate C (hereinafter referred to as mixed gas flow rate C), which is the flow rate of the mixed gas composed of the exhaust gas and the dilution gas flowing from the diluter to the branch point L1a, is It is the total flow rate of the gas flow rate A and the supply flow rate B. Since the analysis gas flow rate A and the supply flow rate B are constant as described above, the mixed gas flow rate C is also controlled at a constant flow rate.
A fourth flow rate D (hereinafter referred to as sampling flow rate D), which is the flow rate of the gas sampled from one end of the sampling flow path L1, is the flow rate of the difference between the mixed gas flow rate C and the supply flow rate B. FIG. Since the mixed gas flow rate C and the supply flow rate B are constant, the sampling flow rate D is also controlled to be constant.
 より具体的に説明するべく、図5(a)に示すように、例えば分析ガス流量Aを1、希釈ガス流量Bを4に設定した場合を考える。この場合、混合ガス流量Cは、分析ガス流量Aと希釈ガス流量Bとの合算である5となり、サンプリング流量Dは、混合ガス流量Cから希釈ガス流量Bを差し引いた1となる。その結果、サンプリング流路L1の一端側からサンプリングされた排ガスは、希釈ガスにより5倍に希釈されて分析計Xへと導かれることになる。 For a more specific explanation, consider a case where the analysis gas flow rate A is set to 1 and the diluent gas flow rate B is set to 4, for example, as shown in FIG. 5(a). In this case, the mixed gas flow rate C is 5, which is the sum of the analysis gas flow rate A and the diluent gas flow rate B, and the sampling flow rate D is 1, which is the mixed gas flow rate C minus the diluent gas flow rate B. As a result, the exhaust gas sampled from one end of the sampling flow path L1 is diluted five times by the dilution gas and is led to the analyzer X.
[開閉機構V1の開状態]
 次に、エンジンがOFF状態であると判断されて、開閉制御部23が開閉機構V1を開いている場合のガスの流れを説明する。
[Open state of opening/closing mechanism V1]
Next, gas flow when it is determined that the engine is in the OFF state and the opening/closing control unit 23 opens the opening/closing mechanism V1 will be described.
 上述したように、分析計Xの下流や還流路L2のみならず、追加流路L3に流量制御器が設けられているので、開閉機構V1の開状態においては、図5(b)に示すように、分析ガス流量Aや供給流量Bのみならず、追加流路L3から還流路L2に供給される追加ガス(すなわち、粒子状物質が除去された大気)の流量である第5流量(以下、追加流量Eという)も一定流量となる。 As described above, the flow rate controller is provided not only in the downstream of the analyzer X and the return path L2, but also in the additional flow path L3. In addition to the analysis gas flow rate A and the supply flow rate B, a fifth flow rate (hereinafter referred to as The additional flow rate E) also becomes a constant flow rate.
 本実施形態では、追加流路L3に設けられている流量制御器たる流量調整弁V2は、追加流量Eを、エンジンEのON状態において分析計Xに導かれる分析ガス流量A以上に制御するものであり、この実施形態では分析ガス流量Aと等しい第1流量に制御する。なお、この実施形態では、ポンプPにより大気を引いているので、追加流量Eは供給流量Bよりも小さくなる。 In this embodiment, the flow rate control valve V2, which is a flow rate controller provided in the additional flow path L3, controls the additional flow rate E to be equal to or higher than the analysis gas flow rate A guided to the analyzer X when the engine E is ON. , and is controlled to a first flow rate equal to the analysis gas flow rate A in this embodiment. In addition, in this embodiment, since the air is drawn by the pump P, the additional flow rate E is smaller than the supply flow rate B.
 より具体的に説明するべく、図5(b)に示すように、上述した排ガス分析時と同じく、分析ガス流量Aを1、供給流量Bを4に設定した場合において、追加流量Eを分析ガス流量Aと等しい1に設定した場合について考える。 In order to explain more specifically, as shown in FIG. 5B, as in the case of the exhaust gas analysis described above, when the analytical gas flow rate A is set to 1 and the supply flow rate B is set to 4, the additional flow rate E is set to the analytical gas Consider the case where the flow rate is set to 1, which is equal to A.
 この場合、まずサンプリング流路L1の分岐点L1aから還流路L2に分岐するガスの流量である第6流量(以下、分岐流量Fという)は、供給流量Bから追加流量Eを差し引いた3となる。これにより、混合ガス流量Cは、分析ガス流量Aと分岐流量Fとの合算である4となる。このことから、追加流路L3を流れる追加ガス(大気)の全流量(追加流量E)が分析計Xに導かれることになり、還流路L2から希釈器MIXを経て試験車両VHに向かって逆流する逆流流量Gは実質的に0となる。 In this case, the sixth flow rate (hereinafter referred to as the branch flow rate F), which is the flow rate of the gas branched from the branch point L1a of the sampling flow path L1 to the return flow path L2, is 3, which is obtained by subtracting the additional flow rate E from the supply flow rate B. . As a result, the mixed gas flow rate C becomes 4, which is the sum of the analysis gas flow rate A and the branch flow rate F. As a result, the total flow rate (additional flow rate E) of the additional gas (atmosphere) flowing through the additional flow path L3 is guided to the analyzer X, and flows backward from the return flow path L2 toward the test vehicle VH via the diluter MIX. The reverse flow rate G is substantially zero.
 そして、この場合に還流路L2を流れる混合ガスは、追加流路L3から還流路L2に導入される大気のみによって構成されることとなり、その結果、分析計Xには粒子状物質が実質的に含まれていない追加ガス(大気)が導かれることとなる。なお、ここでいう粒子状物質が実質的に含まれていないガスとは、粒子状物質を全く含まないガスのみならず、分析計Xの測定結果に影響を及ぼさない程度の極微量の粒子状物質が含まれるガスも含む概念である。 In this case, the mixed gas flowing through the return path L2 is composed only of the atmosphere introduced from the additional flow path L3 into the return path L2. Additional gas not included (atmosphere) will be introduced. Note that the gas substantially free of particulate matter here means not only a gas that does not contain any particulate matter, but also a gas containing an extremely small amount of particulate matter that does not affect the measurement results of the analyzer X. It is a concept that also includes gases containing substances.
 このように構成された本実施形態に係る車載型排ガス分析装置100によれば、エンジン状態判断部22によりエンジンがOFF状態であると判断された場合に、開閉制御部23が追加流路L3の開閉機構V1を開くので、この追加流路L3に導入される大気が、追加流路用フィルタF3により粒子状物質を取り除いた状態で、還流路L2を介して分析計Xに導かれる。
 これにより、エンジンのON状態からOFF状態に切り替わった場合に、例えば分析計Xのサンプリングポンプなど希釈器MIXよりも下流側の機器を止めることなく、粒子状物質が分析計Xで計測されてしまうことを防ぐことができ、その結果、アイドリングストップ車両やハイブリッド車両から排出される排ガスに含まれる粒子状物質を精度良く分析することが可能となる。
According to the vehicle-mounted exhaust gas analyzer 100 according to the present embodiment configured as described above, when the engine state determination unit 22 determines that the engine is in the OFF state, the opening/closing control unit 23 switches the additional flow path L3. Since the opening/closing mechanism V1 is opened, the air introduced into the additional flow channel L3 is guided to the analyzer X through the return flow channel L2 in a state where particulate matter is removed by the additional flow channel filter F3.
As a result, when the engine is switched from the ON state to the OFF state, the particulate matter is measured by the analyzer X without stopping the equipment downstream of the diluter MIX, such as the sampling pump of the analyzer X. As a result, it is possible to accurately analyze particulate matter contained in exhaust gases emitted from idling stop vehicles and hybrid vehicles.
 ここで、エンジンEがON状態からOFF状態に切り替わって開閉機構V1を開いた場合に、仮に追加流路L3に導入される大気が試験車両VHのテールパイプに逆流してしまうと、テールパイプに残存する粒子状物質の濃度が薄まってしまい、その後、エンジンEがON状態に切り替わった際に測定誤差を招来する。
 これに対して、本実施形態の構成であれば、開閉制御部23が開閉機構V1を開いた状態において、追加流路L3を流れる大気の全流量が分析計Xに導かれるので、エンジンEがON状態からOFF状態に切り替わって開閉機構が開かれても、追加流路L3に導入された大気が試験車両VHのテールパイプに逆流せず、測定精度を担保することができる。
Here, when the engine E is switched from the ON state to the OFF state and the opening/closing mechanism V1 is opened, if the atmosphere introduced into the additional flow path L3 flows back into the tail pipe of the test vehicle VH, the tail pipe The concentration of the remaining particulate matter is diluted, which leads to measurement errors when the engine E is subsequently turned on.
On the other hand, in the configuration of the present embodiment, when the opening/closing mechanism V1 is opened by the opening/closing control unit 23, the total flow rate of the atmosphere flowing through the additional flow path L3 is guided to the analyzer X, so that the engine E Even if the ON state is switched to the OFF state and the opening/closing mechanism is opened, the atmosphere introduced into the additional flow path L3 does not flow back to the tail pipe of the test vehicle VH, and the measurement accuracy can be ensured.
 さらに、エンジンEがON状態からOFF状態に切り替わった場合に、その切り替わった時点から所定の第1待機時間が経過した後、開閉制御部23が開閉機構V1を開くので、エンジンEがON状態からOFF状態に切り替わった直後にテールパイプやサンプリング流路に残存する排ガスを分析計Xに導くまでの間は、分析計Xへの大気の導入を止めておくことができ、測定精度のさらなる向上を図れる。 Furthermore, when the engine E is switched from the ON state to the OFF state, the opening/closing control unit 23 opens the opening/closing mechanism V1 after the predetermined first waiting time has elapsed from the point of time when the engine E is switched from the ON state to the OFF state. The introduction of air into analyzer X can be stopped until exhaust gas remaining in the tail pipe or sampling flow path is led to analyzer X immediately after switching to the OFF state, further improving measurement accuracy. I can plan.
 一方、エンジンがOFF状態からON状態に切り替わった直後に追加流路L3の開閉機構V1を閉じてしまうと、例えばテールパイプ内の大気が分析計Xに導かれてしまい、その大気に含まれる粒子状物質による測定誤差を招来する。
 これに対して、本実施形態構成であれば、エンジンEがOFF状態からON状態に切り替わった場合に、その切り替わった時点から所定の第2待機時間が経過した後、開閉制御部23が、開閉機構V1を閉じるように構成されているので、上述した測定誤差を低減することができる。
On the other hand, if the opening/closing mechanism V1 of the additional flow path L3 is closed immediately after the engine is switched from the OFF state to the ON state, for example, the atmosphere in the tail pipe is led to the analyzer X, and particles contained in the atmosphere Induce measurement errors due to substances such as
On the other hand, in the configuration of the present embodiment, when the engine E is switched from the OFF state to the ON state, the opening/closing control unit 23 switches the opening/closing control unit 23 after the predetermined second waiting time has elapsed from the switching time. Since it is configured to close the mechanism V1, the measurement error mentioned above can be reduced.
 そのうえ、追加流路L3が、還流路L2におけるポンプPと第1のフィルタF1との間に接続されているので、排ガス分析時において、追加流路L3の接続箇所には排ガスから粒子状物質が捕捉されてなる希釈ガスが流れることになり、追加流路L3の汚れを低減することができる。 Moreover, since the additional flow path L3 is connected between the pump P and the first filter F1 in the return flow path L2, particulate matter from the exhaust gas is present at the connection point of the additional flow path L3 during the analysis of the exhaust gas. The captured diluent gas flows, and contamination of the additional flow path L3 can be reduced.
 加えて、還流路L2におけるポンプPの下流に除湿器12を設けているので、校正ガスやパージガスをドライにして流すことができるので、これらのガスに含まれる水分が結露してしまうことを抑制することができる。 In addition, since the dehumidifier 12 is provided downstream of the pump P in the return path L2, the calibration gas and the purge gas can be dried and flowed, thereby suppressing condensation of moisture contained in these gases. can do.
 なお、本発明は前記実施形態に限られるものではない。 The present invention is not limited to the above embodiments.
 例えば、前記実施形態では、追加流路L3の接続箇所が、前記実施形態では第1のフィルタF1とポンプPとの間であったが、図6(a)に示すように、分岐点L1aと第1のフィルタF1との間であっても良い。
 また、図6(b)に示すように、追加流路L3の接続箇所は、サンプリング流路L1における希釈器MIXと分岐点L1aとの間(希釈器MIXや分岐点L1aを含む概念である)に追加流路L3を接続しても良い。
 さらには、図7に示すように、追加流路L3に圧送手段Bを設ければ、追加流路L3の接続箇所は、還流路L2におけるポンプPの下流であっても良い。
 加えて、図8(a)に示すように、追加流路L3に圧送手段Bを設ければ、追加流路L3の接続箇所は、サンプリング流路L1における希釈器MIXの上流側であっても良いし、図8(b)に示すように、分岐点L1aと分析計Xとの間であっても良い。
For example, in the above embodiment, the connection point of the additional flow path L3 was between the first filter F1 and the pump P in the above embodiment, but as shown in FIG. It may be between the first filter F1.
Further, as shown in FIG. 6B, the connection point of the additional channel L3 is between the diluter MIX and the branch point L1a in the sampling channel L1 (this is a concept including the diluter MIX and the branch point L1a). may be connected to the additional flow path L3.
Furthermore, as shown in FIG. 7, if a pumping means B is provided in the additional flow path L3, the connection point of the additional flow path L3 may be downstream of the pump P in the return flow path L2.
In addition, as shown in FIG. 8(a), if the pressure-feeding means B is provided in the additional flow path L3, the connection point of the additional flow path L3 can be the upstream side of the diluter MIX in the sampling flow path L1. Alternatively, it may be between the branch point L1a and the analyzer X as shown in FIG. 8(b).
 加えて、本発明に係る車載型排ガス分析装置100としては、前記実施形態で述べた流量制御器11たるベンチュリ、第2のフィルタF2、除湿器12、流量制御器たる流量調整弁V2は必ずしも必要ではなく、図9に示すように、これらのうちの1つ又は複数又は全部を設けていない構成としても良い。この場合、第1のフィルタF1は、還流路L2におけるポンプPの上流に設けられていても良いし、下流に設けられていても良い。 In addition, the vehicle-mounted exhaust gas analyzer 100 according to the present invention does not necessarily require the venturi as the flow controller 11, the second filter F2, the dehumidifier 12, and the flow control valve V2 as the flow controller. Instead, as shown in FIG. 9, one, a plurality, or all of them may be omitted. In this case, the first filter F1 may be provided upstream or downstream of the pump P in the return path L2.
 また、前記実施形態では追加流路L3に追加流路用フィルタたる第3のフィルタF3を設けることで、大気から粒子状物質を除去したガスを追加ガスとして追加流路L3に流していたが、例えばガスボンベ等のガス源から予め粒子状物質を除去したガスを追加ガスとして追加ガス流路L3に流しても良い。この場合は、第3のフィルタFは不要である。 Further, in the above-described embodiment, by providing the third filter F3, which is an additional flow path filter, in the additional flow path L3, the gas from which particulate matter has been removed from the atmosphere is flowed into the additional flow path L3 as an additional gas. For example, a gas from which particulate matter has been removed in advance from a gas source such as a gas cylinder may be supplied as the additional gas to the additional gas flow path L3. In this case, the third filter F is unnecessary.
 さらに、本発明に係る車載型排ガス分析装置100としては、前記実施形態では、開閉制御部23が開閉機構V1を開いた状態において、追加流路L3を流れる大気の全流量が分析計Xに導かれる構成を取り上げたが、開閉制御部23が開閉機構V1を開いた状態において、追加流路L3を流れる大気の一部が希釈器MIXからサンプリング流路L1を試験車両VHに向かって逆流するように構成されていても良い。
 これならば、エンジンEの停止時に大気の粒子状物質が分析計Xに導かれてしまうことをより確実に防ぐことができ、逆流する流量を僅かな流量に制御することで、測定誤差をも抑えることができる。
Furthermore, in the vehicle-mounted exhaust gas analyzer 100 according to the present invention, in the above-described embodiment, the total flow rate of the air flowing through the additional flow path L3 is introduced to the analyzer X in a state where the opening/closing control unit 23 opens the opening/closing mechanism V1. However, when the opening/closing control unit 23 opens the opening/closing mechanism V1, part of the air flowing through the additional flow path L3 flows backward from the diluter MIX through the sampling flow path L1 toward the test vehicle VH. may be configured to
With this, it is possible to more reliably prevent atmospheric particulate matter from being led to the analyzer X when the engine E is stopped, and by controlling the backflow flow rate to a small flow rate, measurement errors can be minimized. can be suppressed.
 さらに加えて、分析計Xは、排ガスに含まれる粒子状物質の粒子数を測定するCPCに限らず、粒子状物質の量(PM)を測定するものであっても良い。
 また、分析計Xは、一酸化炭素(CO)、二酸化炭素(CO2)、窒素酸化物(NOX)、炭化水素(HC)等、排ガスに含まれる種々の成分を分析するものであっても良いし、これらの成分を分析する分析計を前記実施形態の分析計Xとは別に設けても良い。この場合は、前記実施形態の第1のフィルタF1又は第2のフィルタF2の代わりに、スクラバ等の排ガス洗浄装置を設ければ、還流路L2に導入した排ガスを希釈ガスとして希釈器MIXに供給することができる。
In addition, the analyzer X is not limited to the CPC for measuring the number of particles of particulate matter contained in the exhaust gas, and may be one that measures the amount of particulate matter (PM).
Also, the analyzer X may analyze various components contained in the exhaust gas, such as carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOX), and hydrocarbons (HC). However, an analyzer for analyzing these components may be provided separately from the analyzer X of the above embodiment. In this case, if an exhaust gas cleaning device such as a scrubber is provided instead of the first filter F1 or the second filter F2 of the above embodiment, the exhaust gas introduced into the recirculation path L2 is supplied to the diluter MIX as a dilution gas. can do.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications are possible without departing from the spirit of the present invention.
 このように構成された本発明によれば、アイドリングストップ車両やプラグイン方式を含むハイブリッド車両から排出される排ガスに含まれる粒子状物質を精度良く分析することができる。 According to the present invention configured in this manner, it is possible to accurately analyze particulate matter contained in exhaust gases emitted from hybrid vehicles including idling stop vehicles and plug-in type vehicles.

Claims (11)

  1.  エンジンからの排ガスが流れるサンプリング流路と、
     前記サンプリング流路に接続されて前記排ガスを分析する分析計と、
     前記サンプリング流路における前記分析計の上流に設けられた希釈器と、
     前記サンプリング流路における前記分析計及び前記希釈器の間に設定された分岐点から分岐して前記希釈器に合流する還流路と、
     前記還流路に設けられて、前記分岐点から前記希釈器に前記排ガスの一部を導くポンプと、
     前記還流路又は前記サンプリング流路に接続されるとともに、粒子状物質が除去された追加ガスが流れる追加流路と、
     前記追加流路に設けられた開閉機構と、
     前記エンジンのON/OFFに関する情報であるON/OFF情報を取得するエンジン情報取得部と、
     前記ON/OFF情報に基づいて、前記エンジンがON状態かOFF状態かを判断するエンジン状態判断部と、
     前記エンジン状態判断部により前記エンジンがON状態であると判断された場合に、前記開閉機構を閉じ、前記エンジン状態判断部により前記エンジンがOFF状態であると判断された場合に、前記開閉機構を開く開閉制御部とを備える、車載型排ガス分析装置。
    a sampling channel through which exhaust gas from the engine flows;
    an analyzer connected to the sampling channel for analyzing the exhaust gas;
    a diluter provided upstream of the analyzer in the sampling channel;
    a return path branching from a branch point set between the analyzer and the diluter in the sampling path and joining the diluter;
    a pump provided in the return path for guiding a portion of the exhaust gas from the branch point to the diluter;
    an additional channel connected to the return channel or the sampling channel and through which an additional gas from which particulate matter has been removed flows;
    an opening/closing mechanism provided in the additional channel;
    an engine information acquisition unit that acquires ON/OFF information that is information relating to ON/OFF of the engine;
    an engine state determination unit that determines whether the engine is in an ON state or an OFF state based on the ON/OFF information;
    The opening/closing mechanism is closed when the engine state determination unit determines that the engine is in the ON state, and the opening/closing mechanism is closed when the engine state determination unit determines that the engine is in the OFF state. An in-vehicle exhaust gas analyzer, comprising an opening/closing control unit for opening.
  2.  前記追加流路に粒子状物質を捕捉する追加流路用フィルタが設けられている、請求項1記載の車載型排ガス分析装置。 The vehicle-mounted exhaust gas analyzer according to claim 1, wherein the additional channel is provided with an additional channel filter for trapping particulate matter.
  3.  前記開閉制御部が前記開閉機構を開いた状態において、前記追加流路を流れる前記追加ガスの全流量が前記分析計に導かれる、請求項1又は2記載の車載型排ガス分析装置。 3. The vehicle-mounted exhaust gas analyzer according to claim 1 or 2, wherein in a state in which the opening/closing control section opens the opening/closing mechanism, the total flow rate of the additional gas flowing through the additional flow path is guided to the analyzer.
  4.  前記開閉制御部が前記開閉機構を閉じた状態において、前記分析計に導入されるガスの流量である分析ガス流量が第1流量に制御されており、
     前記開閉制御部が前記開閉機構を開いた状態において、前記追加流路を流れる前記追加ガスの流量である追加流量が、前記第1流量に制御されている、請求項1乃至3のうち何れか一項に記載の車載型排ガス分析装置。
    In a state in which the opening/closing control unit closes the opening/closing mechanism, an analysis gas flow rate, which is a flow rate of the gas introduced into the analyzer, is controlled to a first flow rate,
    4. Any one of claims 1 to 3, wherein an additional flow rate, which is a flow rate of the additional gas flowing through the additional flow path, is controlled to the first flow rate in a state in which the opening/closing control section opens the opening/closing mechanism. 1. The vehicle-mounted exhaust gas analyzer according to 1 above.
  5.  前記開閉制御部が前記開閉機構を開いた状態において、前記追加流路を流れる前記追加ガスの一部が前記希釈器から前記サンプリング流路を逆流する、請求項1又は2記載の車載型排ガス分析装置。 3. The vehicle-mounted exhaust gas analysis according to claim 1, wherein part of the additional gas flowing through the additional flow path flows backward from the diluter through the sampling flow path when the opening/closing control section opens the opening/closing mechanism. Device.
  6.  前記エンジンがON状態からOFF状態に切り替わった場合に、その切り替わった時点から所定の第1待機時間が経過した後、前記開閉制御部が、前記開閉機構を開くように構成されている、請求項1乃至5のうち何れか一項に記載の車載型排ガス分析装置。 The opening/closing control section is configured to open the opening/closing mechanism after a predetermined first waiting time has elapsed from the point in time when the engine is switched from the ON state to the OFF state. 6. The vehicle-mounted exhaust gas analyzer according to any one of 1 to 5.
  7.  前記エンジンがOFF状態からON状態に切り替わった場合に、その切り替わった時点から所定の第2待機時間が経過した後、前記開閉制御部が、前記開閉機構を閉じるように構成されている、請求項1乃至6のうち何れか一項に記載の車載型排ガス分析装置。 The opening/closing control unit is configured to close the opening/closing mechanism when the engine is switched from the OFF state to the ON state after a predetermined second waiting time has elapsed from the time of the switching. 7. The vehicle-mounted exhaust gas analyzer according to any one of 1 to 6.
  8.  前記分析計が、前記排ガス中の粒子状物質を分析するものであり、
     前記還流路には、粒子状物質を捕捉する還流路用フィルタが設けられている、請求項1乃至7のうち何れか一項に記載の車載型排ガス分析装置。
    The analyzer analyzes particulate matter in the exhaust gas,
    8. The vehicle-mounted exhaust gas analyzer according to claim 1, wherein said return path is provided with a return path filter for trapping particulate matter.
  9.  前記還流路用フィルタが、前記還流路における前記ポンプの上流に設けられている、請求項8記載の車載型排ガス分析装置。 The vehicle-mounted exhaust gas analyzer according to claim 8, wherein the return path filter is provided upstream of the pump in the return path.
  10.  前記追加流路が、前記還流路における前記ポンプと前記還流路用フィルタとの間に接続されている、請求項9記載の車載型排ガス分析装置。 The vehicle-mounted exhaust gas analyzer according to claim 9, wherein the additional flow path is connected between the pump and the return path filter in the return path.
  11.  エンジンからの排ガスが流れるサンプリング流路と、前記サンプリング流路に接続されて前記排ガスを分析する分析計と、前記サンプリング流路における前記分析計の上流に設けられた希釈器と、前記サンプリング流路における前記希釈器の下流に設定された分岐点から分岐して前記希釈器に接続された還流路と、前記還流路に設けられて、前記分岐点から前記希釈器に前記排ガスの一部を導くポンプと、を備える車載型排ガス分析装置を用いた排ガス分析方法であって、
     粒子状物質が除去された追加ガスが流れる追加流路を、前記還流路又は前記サンプリング流路に接続し、
     前記追加流路に設けられた開閉機構を、前記エンジンがON状態の場合に閉じ、前記エンジンがOFF状態の場合に開く、排ガス分析方法。
    a sampling channel through which exhaust gas from an engine flows; an analyzer connected to the sampling channel for analyzing the exhaust gas; a diluter provided upstream of the analyzer in the sampling channel; a reflux path branched from a branch point set downstream of the diluter and connected to the diluter; and a reflux path provided in the reflux path to guide part of the exhaust gas from the branch point to the diluter. An exhaust gas analysis method using an in-vehicle exhaust gas analyzer comprising a pump,
    connecting an additional channel through which an additional gas from which particulate matter has been removed flows to the reflux channel or the sampling channel;
    An exhaust gas analyzing method, wherein an opening/closing mechanism provided in the additional flow path is closed when the engine is in an ON state and is opened when the engine is in an OFF state.
PCT/JP2021/042012 2021-01-27 2021-11-16 Vehicle-mounted exhaust gas analysis device and exhaust gas analysis method WO2022163074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578066A JPWO2022163074A1 (en) 2021-01-27 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-010877 2021-01-27
JP2021010877 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163074A1 true WO2022163074A1 (en) 2022-08-04

Family

ID=82653092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042012 WO2022163074A1 (en) 2021-01-27 2021-11-16 Vehicle-mounted exhaust gas analysis device and exhaust gas analysis method

Country Status (2)

Country Link
JP (1) JPWO2022163074A1 (en)
WO (1) WO2022163074A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261938A (en) * 2009-04-07 2010-11-18 Horiba Ltd Particle count measuring system
JP2014526679A (en) * 2011-09-12 2014-10-06 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for the detection of the concentration of aerosols in hot gases, in particular exhaust gases of internal combustion engines
JP2016212084A (en) * 2015-04-30 2016-12-15 株式会社堀場製作所 Exhaust gas measurement apparatus and exhaust gas measurement method
JP2017062255A (en) * 2016-11-28 2017-03-30 株式会社堀場製作所 Exhaust gas analysis system and exhaust gas analysis method
JP2019086492A (en) * 2017-11-10 2019-06-06 株式会社ベスト測器 Exhaust gas analysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261938A (en) * 2009-04-07 2010-11-18 Horiba Ltd Particle count measuring system
JP2014526679A (en) * 2011-09-12 2014-10-06 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for the detection of the concentration of aerosols in hot gases, in particular exhaust gases of internal combustion engines
JP2016212084A (en) * 2015-04-30 2016-12-15 株式会社堀場製作所 Exhaust gas measurement apparatus and exhaust gas measurement method
JP2017062255A (en) * 2016-11-28 2017-03-30 株式会社堀場製作所 Exhaust gas analysis system and exhaust gas analysis method
JP2019086492A (en) * 2017-11-10 2019-06-06 株式会社ベスト測器 Exhaust gas analysis device

Also Published As

Publication number Publication date
JPWO2022163074A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US10921220B2 (en) Intelligent bag filling for exhaust sampling system
JP4246867B2 (en) Exhaust gas analysis system
US9074512B2 (en) Exhaust gas analyzing system and exhaust gas analyzing method
US7647811B2 (en) Solid particle counting system with valve to allow reduction of pressure pulse at particle counter when vacuum pump is started
KR101767271B1 (en) Exhaust gas analyzing system
US7647810B2 (en) Solid particle counting system with flow meter upstream of evaporation unit
US20190242786A1 (en) Gas feed unit for an exhaust-gas analysis unit for the measurement of exhaust gases of internal combustion engines
JP2011242194A (en) Exhaust gas measuring instrument and method for collecting exhaust gas
JP4925489B1 (en) Gas analyzer
JP2010276473A (en) Exhaust gas measurement system
WO2022163074A1 (en) Vehicle-mounted exhaust gas analysis device and exhaust gas analysis method
US10767542B2 (en) Exhaust gas sampling apparatus, exhaust gas analysis system, exhaust gas sampling method, and exhaust gas sampling program
JP2010139340A (en) Exhaust gas measuring device
JP2010139281A (en) Instrument for measuring exhaust gas
JP7461951B2 (en) Exhaust gas analyzer, gas supply method, and exhaust gas sampling device
JP3434192B2 (en) Exhaust gas analyzer and modal mass analysis method by gas tracing method using the same
JP2000180364A (en) Gas analyser
JP2010281668A (en) Exhaust gas measuring system
JPH03218436A (en) Device for measuring smoke particles in exhaust gas of car
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
JP3992121B2 (en) Exhaust gas dilution sampling device
JP2006214949A (en) Instrument for measuring exhaust gas
WO2023063139A1 (en) Exhaust gas sampling device, exhaust gas analysis system, exhaust gas sampling method, and program for exhaust gas sampling device
JP4319471B2 (en) Sample gas concentration meter
WO2022064889A1 (en) Gas analysis device and gas analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923079

Country of ref document: EP

Kind code of ref document: A1