WO2022163044A1 - 金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法 - Google Patents

金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法 Download PDF

Info

Publication number
WO2022163044A1
WO2022163044A1 PCT/JP2021/039666 JP2021039666W WO2022163044A1 WO 2022163044 A1 WO2022163044 A1 WO 2022163044A1 JP 2021039666 W JP2021039666 W JP 2021039666W WO 2022163044 A1 WO2022163044 A1 WO 2022163044A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
cooling
mist
steel sheet
hardening
Prior art date
Application number
PCT/JP2021/039666
Other languages
English (en)
French (fr)
Inventor
宗司 吉本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180091643.XA priority Critical patent/CN116745446A/zh
Priority to EP21923050.5A priority patent/EP4257709A4/en
Priority to KR1020237025013A priority patent/KR20230122656A/ko
Priority to US18/273,830 priority patent/US20240301524A1/en
Priority to JP2022506877A priority patent/JP7338783B2/ja
Priority to MX2023008750A priority patent/MX2023008750A/es
Publication of WO2022163044A1 publication Critical patent/WO2022163044A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a metal plate quenching apparatus, a quenching method, and a steel plate manufacturing method that suppress shape defects that occur in a metal plate during quenching in a continuous annealing facility that anneals the metal plate while it is continuously passed.
  • Patent Document 1 discloses a method of mist cooling a metal strip while maintaining film boiling without transition boiling by appropriately controlling the water density of the mist sprayed onto the strip.
  • Patent Document 2 in a cooling zone in a vertical continuous annealing furnace in which the strip is continuously annealed while being transported vertically, water contained in the mist sprayed on the strip drips down on the surface of the strip.
  • a technique for suppressing the generation of temperature unevenness in the width direction of the strip caused by the above is disclosed.
  • Patent Document 3 if the temperature at the Ms point at which the martensitic transformation of the metal plate starts is T Ms (°C), and the temperature at the Mf point at which the martensitic transformation ends is T Mf (°C), then during quenching and quenching is constrained by a pair of constraining rolls provided in the cooling liquid in the range where the temperature of the metal plate is from (T Ms +150) (° C.) to (T Mf ⁇ 150) (° C.). It is
  • JP-A-2000-178658 Japanese Patent Application Laid-Open No. 2009-127060 Japanese Patent No. 6094722
  • the present invention has been made to solve such problems, and it is an object of the present invention to provide a metal plate quenching apparatus, a quenching method, and a steel plate manufacturing method that can suppress shape defects that occur in a metal plate during quenching. aim.
  • the inventors of the present invention have obtained the following knowledge as a result of earnest investigations to solve such problems.
  • structure control is used to cause martensite transformation in the metal sheet during quenching.
  • the greatest stress acts on the steel sheet in the vicinity of the Ms point to the Mf point where transformation expansion occurs during thermal contraction, and the shape collapses.
  • the stronger the cooling the easier it is for the cooling rate to fluctuate.
  • a constraining roll that constrains the metal plate is arranged in the range where the temperature of the metal plate is from the Ms point to the Mf point, so that the amount of warpage is sufficiently reduced.
  • the Ms point is the temperature at which martensitic transformation starts
  • the Mf point is the temperature at which martensitic transformation ends.
  • a cooling fluid injection device provided on the exit side of the soaking zone of the continuous annealing furnace and having a plurality of injection nozzles for injecting mist onto both surfaces of the continuously conveyed metal plate;
  • a hardening apparatus for a metal plate comprising at least a pair of restraint rolls for restraining the metal plate from both sides in a region from a cooling start point to a cooling end point by the cooling fluid injection device.
  • the plurality of jet nozzles are arranged so as to inject the mist onto the metal plate over the entire temperature range from the martensite transformation start temperature to the martensite transformation end temperature of the metal plate, [1] 4.
  • the apparatus for hardening a metal plate according to 1. [3] The metal plate quenching apparatus according to [1] or [2], which includes a draining spray nozzle downstream of the outlet of the cooling fluid injection device. [4] A region in which mist is sprayed onto both surfaces of a continuously conveyed metal plate to cool it, and the temperature of the metal plate during cooling is at least between the martensite transformation start temperature and the martensite transformation end temperature. A method of hardening a metal plate, wherein the metal plate is constrained from both sides. [5] The method of quenching a metal plate according to [4], wherein the mist has a water density of 100 L/m 2 ⁇ min or more and 800 L/m 2 ⁇ min or less.
  • the steel sheet is continuously annealed and further quenched by the metal plate quenching method described in [4] or [5] to produce a high-strength cold-rolled steel sheet, a hot-dip galvanized steel sheet, an electrogalvanized steel sheet, or a hot-dip galvannealed steel sheet.
  • the metal plate quenching apparatus According to the metal plate quenching apparatus, the quenching method, and the steel plate manufacturing method according to the present invention, it is possible to effectively suppress shape defects that occur in the metal plate during quenching.
  • FIG. 1 is a diagram showing an example of a metal plate hardening apparatus and hardening method according to the present invention.
  • FIG. 2 is a diagram showing an example of a system for supplying air and water to a mist ejection nozzle in the metal plate quenching apparatus of the present invention.
  • FIG. 3 is a diagram showing an example of a two-fluid nozzle.
  • FIGS. 4(a) and 4(b) are diagrams showing examples of mist jetting nozzles.
  • FIGS. 5(a) and 5(b) are diagrams showing mist cooling and conventional water quenching by the metal plate quenching apparatus and quenching method of the present invention, respectively.
  • FIG. 6 is a view showing another example of the metal plate hardening apparatus and hardening method of the present invention.
  • FIG. 7 is a graph showing the effect of the metal plate quenching apparatus and quenching method of the present invention in comparison with a comparative example.
  • FIG. 8 is a diagram showing the definition of the amount of warpage of the metal plate in FIG.
  • FIG. 1 is a diagram showing a metal plate hardening apparatus according to one embodiment of the present invention.
  • This hardening apparatus is applied to a cooling facility provided on the exit side of a soaking zone of a continuous annealing furnace.
  • this cooling equipment is installed to transform the austenite phase into martensite during cooling of the steel sheet to obtain the mechanical properties of the final product. Therefore, it has the ability to cool the range including the temperature range from the martensite transformation start temperature to the martensite transformation end temperature.
  • the metal plate quenching apparatus of the present embodiment includes a cooling fluid injection device including a plurality of mist ejection nozzles (ejection nozzles) 2, and a cooling region for restraining the metal plate 1 by the cooling fluid injection device. At least one pair of constraining rolls 3 and a draining spray nozzle 4 are provided.
  • the mist ejection nozzle 2 ejects mist 2a, which is a coolant (cooling fluid), from both sides of a metal plate (for example, a steel plate) 1 that is continuously passed through the metal plate 1 to perform rapid cooling.
  • the constraining roll 3 constrains the metal plate 1 in the area from the cooling start point, which is the inlet of the cooling fluid injection device, to the cooling end point, which is the outlet of the cooling fluid injection device, to prevent deformation.
  • the draining spray nozzle 4 is provided downstream of the outlet of the cooling fluid injection device, and ejects a gas 4a such as air or nitrogen onto the metal plate 1 from the outlet side of the metal plate 1 to discharge dripping water from the metal plate 1. .
  • mist refers to water or liquid in the form of a mist, in which fine droplets having a droplet diameter of about 0.01 ⁇ m to several hundred ⁇ m are suspended in gas.
  • the mist is generated by mixing water and air and injecting the mixture.
  • a sufficient cooling rate can be obtained by blowing air onto the metal plate to be cooled while the water in the form of fine droplets is attached thereto.
  • the cooling rate can be slowed down and stabilized as compared with the case where only water is jetted.
  • the droplet diameter of the mist is 10 ⁇ m or more and 100 ⁇ m or less.
  • mist ejection nozzle 2 for example, a product such as a slit nozzle PSN manufactured by Ikeuchi Co., Ltd. or a knife jet KJIS type (internal mixing type) manufactured by Kyoritsu Gokin Seisakusho Co., Ltd. can be used.
  • FIG. 2 schematically shows a system for supplying air and water to the mist ejection nozzle 2 in the metal plate quenching apparatus of this embodiment.
  • FIG. 3 schematically shows a two-fluid nozzle used as the mist ejection nozzle 2 in this embodiment.
  • the mist is generated by using the two-fluid nozzle shown in FIG. Any material can be used as long as it can be ejected.
  • mist ejection nozzle 2 When a two-fluid nozzle is used as the mist ejection nozzle 2, compressed air sent from a compressor 52 is supplied to the mist ejection nozzle 2 through the compressed air pipe 5, as shown in FIG. Also, water pumped from a water tank 62 by a pump 63 is supplied to the mist ejection nozzle 2 through the water pipe 6 .
  • the opening degrees of the supply valve 51 provided in the compressed air pipe 5 and the supply valve 61 provided in the water pipe 6 and the operation of the pump 63 are controlled by the flow controller 7 .
  • the compressed air and water may be supplied so that the pressure and amount of the compressed air and water supplied to the mist ejection nozzle 2 are within the allowable range according to the specifications of the mist ejection nozzle 2 .
  • a filter may be provided on the side of the mist jetting nozzle 2 rather than the supply valve 61 of the water pipe 6.
  • the air-water volume ratio of the mist jetted from the mist jetting nozzle 2 is less than 50, the adhesion and residue of water on the metal plate 1 become noticeable, and uneven cooling tends to occur.
  • the air-water volume ratio exceeds 1000, the droplet diameter of the mist becomes too fine, and the cooling rate necessary for obtaining the properties required for the metal plate 1 may not be obtained. Therefore, it is preferable to set the air-water volume ratio of the mist ejected from the mist ejection nozzle 2 to 50 to 1,000.
  • the mist ejection nozzles 2 are arranged in 80 rows at intervals of 200 mm in the direction of movement of the steel plate (longitudinal direction of the steel plate).
  • the arrangement of the mist ejection nozzles 2 is not limited to this, as long as they are arranged so as not to cause uneven cooling in the width direction of the metal plate 1 .
  • the nozzle interval I in the direction of movement of the steel plate is set to 100 to 600 mm. , preferably a slit nozzle. If the nozzle interval I in the steel plate traveling direction is less than 100 mm, the mist injection regions of the nozzles may interfere with each other, making it difficult to predict the cooling rate. This is because a sufficient cooling rate may not be obtained.
  • a nozzle 2B having a spot-shaped or conical ejection shape is used as the mist ejection nozzle 2
  • a plurality of nozzles 2B are arranged on the metal plate 1 according to the nozzle standard. are preferably arranged side by side in the width direction.
  • the mist injection areas of the respective nozzles 2B have no gap or overlap sufficiently so that a uniform cooling rate can be obtained in the width direction of the metal plate 1 .
  • mist ejection nozzles 2 may be arranged in a staggered manner, and the inclination angle of the ejection direction of the mist from the mist ejection nozzles 2 with respect to the metal plate 1 and the spread angle of the spray that spreads in a conical shape are the metal to be cooled. You may adjust according to the width
  • the nozzle set in the direction of movement of the steel plate It is preferable to set the interval I between them to be 100 to 600 mm. If the interval I between the nozzle sets in the direction of movement of the steel plate is less than 100 mm, the mist injection regions of the nozzles may interfere with each other, making it difficult to predict the cooling rate. This is because a sufficient cooling rate may not be obtained.
  • the constraining roll 3 is used to cool the metal plate. It is important to constrain 1. Therefore, in the metal plate quenching apparatus and the quenching method of the present embodiment, it is preferable to set the amount of mist for controlling the cooling capacity and the water temperature of the mist as follows.
  • the water density of the mist 2a is set to 100 L/m 2 ⁇ min or more and 800 L/m 2 ⁇ min or more. min or less is preferable. If the water density of the mist 2a is less than 100 L/m 2 ⁇ min, the mechanical properties of the steel sheet cannot be obtained, and the position of the constraining roll becomes long from the cooling start position, resulting in an increase in the size of the equipment.
  • the water density of the mist 2a is more preferably 200 L/m 2 ⁇ min or more and 500 L/m 2 ⁇ min or less.
  • the temperature of the cooling water that constitutes the particles of the mist 2a is preferably higher than 0 ° C. and 60 ° C. or lower from the viewpoint of equipment maintenance and obtaining a sufficient cooling rate, and 10 ° C. or higher and 50 ° C. or lower. is particularly preferred. If the temperature is below 0°C, the equipment may be damaged due to freezing, and if the temperature is higher than 60°C, the cooling rate will be slowed down, and the position of the restraint rolls will be long from the cooling start position, resulting in an increase in the size of the equipment. be.
  • the water contained in the mist 2a falls downward along the metal plate 1 and adversely affects the cooling of the lower part. It can be controlled by injecting 2a or gas 4a upward about 30 degrees.
  • the cooling rate of the metal plate 1 it is desirable to set the cooling rate of the metal plate 1 to 50°C/sec or more and 500°C/sec or less in order to arrange practical and effective constraining rolls according to the cooling capacity. If the cooling rate is less than 50°C/sec, the distance from the cooling start point to the restraint roll becomes long, resulting in an increase in the size of the facility. On the other hand, if it exceeds 500° C./sec, the cooling time from the start of cooling to the arrival of the constraining roll becomes short, and the cooling becomes unstable, and the shape may be disturbed to the extent that it cannot be straightened by the constraining roll.
  • the temperature of the metal plate 1 is in the range from the Ms point to the Mf point.
  • a restraining roll 3 for restraining the metal plate 1 is arranged.
  • the Ms point refers to the temperature at which martensitic transformation of the metal plate 1 starts
  • the Mf point refers to the temperature at which martensitic transformation ends.
  • the temperature at the Ms point and the Mf point can be calculated from the composition of the metal plate 1 .
  • the constraining rolls 3 sandwich the metal plate 1 from the front and back surfaces in order to prevent deformation that may occur during quenching of the metal plate 1 .
  • the pair of restraint rolls 3 are preferably arranged with their central axes shifted in the conveying direction of the metal plate 1 . By displacing the central axis, the binding force of the metal plate 1 can be increased, and the shape correcting force can be enhanced. As an example, it is preferable to arrange the restraint rolls 3 with their respective central axes shifted in the conveying direction by 40 mm or more and 150 mm or less, and more preferably 80 mm or more and 100 mm or less.
  • the pushing amount by one restraining roll 3 is preferably 0 mm or more and 2.5 mm or less when the case where the metal plate 1 is linearly threaded as shown in FIG. It is more preferable to be 0.5 mm or more and 1.0 mm or less.
  • FIGS. 5(a) and 5(b) show a comparison between mist cooling by the metal plate quenching apparatus and quenching method of the present embodiment and conventional water quenching.
  • cooling from the Ms point to the Mf point is performed gently by mist cooling, so that the cooling from the Ms point to the Mf point is faster than the conventional water quenching shown in FIG. 5(b). becomes longer. Therefore, it has been conventionally practiced to flexibly respond to changes in the threading speed and plate thickness of the metal plate 1 by using the constraining rolls 3 in an appropriate temperature range or by increasing or decreasing the number of constraining rolls 3 used for constraining. It is easier than water quenching.
  • the water quenching shown in Fig. 5(b) If the cooling rate is 1500° C./(sec ⁇ mm), the distance L from point Ms to point Mf is 100 mm. On the other hand, in the mist cooling shown in FIG. 5A, the cooling rate is approximately 300° C./(sec ⁇ mm), and the distance L from point Ms to point Mf can be increased to 500 mm.
  • the metal plate 1 is reliably restrained in the temperature range from the Ms point to the Mf point, and the shape is corrected. can be reliably implemented. In addition, it is easy to respond flexibly to unsteady changes in the restraining position, such as changes in the strip threading speed and strip thickness.
  • the shape correction effect of the constraining rolls 3 may not be sufficiently obtained.
  • the distance L from the Ms point to the Mf point exceeds 1000 mm, the martensite transformation becomes insufficient, and desired material properties may not be obtained. Therefore, in order to effectively obtain the effect of shape correction by the constraining rolls 3 in the region from the Ms point to the Mf point, it is preferable to secure a distance L from the Ms point to the Mf point of approximately 200 to 1000 mm.
  • mist 2a may be used over the entire length of the area of the metal plate 1 that requires cooling, including the side of the temperature higher than the Ms point and the side of the temperature lower than the Mf point.
  • the restraint roll 3 In order to prevent the occurrence of roll flaws on the metal plate 1, it is preferable to rotate the restraint roll 3 in the circumferential direction by electric power. Furthermore, in order to adjust the straightening force of the metal plate 1, it is preferable that the restraint rolls 3 can be opened and closed as necessary (the amount of pressing into the metal plate 1 can be controlled).
  • the restraining rolls 3 need only be made of a material that has excellent thermal conductivity and is strong enough to withstand the load when the metal plate 1 is pressed.
  • Examples of the material of the restraint roll 3 include SUS304 or SUS310 defined in Japanese Industrial Standard JIS G4304 "Hot-rolled stainless steel plate and steel strip", or ceramics.
  • each constraining roll is preferably 0 mm or more and 2.5 mm or less, and particularly preferably 0.5 mm or more and 1.0 mm or less.
  • the number of constraining rolls 3 arranged on the front surface and the back surface of the metal plate 1 does not necessarily have to be the same.
  • the same number of restraining rolls 3 are arranged on the front surface and the back surface of the metal plate 1 so as to form a pair, or are arranged on the front surface and the back surface of the metal plate 1. It is preferable that the difference between the number of restraining rolls 3 to be applied is one.
  • the mist 2a and the constraining roll 3 adheres and stays on the constraining roll 3, and the amount of droplets adhering and staying depends on the width direction of the metal plate 1. (that is, in the axial direction of the constraining roll 3).
  • a draining mechanism (not shown) may be provided in the vicinity of the constraining roll 3 to remove droplets adhering to and staying on the constraining roll 3 .
  • an obstacle on the blade, a wiper, an air nozzle, or the like can be used as the draining mechanism.
  • the object of the present invention is to reduce the complex and non-uniform uneven shape that occurs when the structure expands in volume due to martensite transformation occurring during rapid cooling of the steel sheet. , is preferably applied to a method for manufacturing high-strength steel sheets (high-tensile steel).
  • the tensile strength is not particularly limited, it may be 1600 MPa or less as an example.
  • the high-strength steel sheets include high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets, electro-galvanized steel sheets, alloyed hot-dip galvanized steel sheets, and the like.
  • C is 0.04% or more and 0.25% or less
  • Si is 0.01% or more and 2.50% or less
  • Mn is 0.80% or more and 3.70%.
  • P is 0.001% or more and 0.090% or less
  • S is 0.0001% or more and 0.0050% or less
  • Al is 0.005% or more and 0.065% or less, if necessary, at least one of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary , B, and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities.
  • the embodiment of the present invention is not limited to the example of quenching a steel plate, and can be applied to quenching of metal plates in general other than steel plates.
  • composition of the high-strength cold-rolled steel sheet with a tensile strength of 1470 MPa class is, in mass%, C 0.20%, Si 1.0%, Mn 2.3%, P 0.005%, S was set to 0.002%.
  • the temperature at the Ms point of the high-strength cold-rolled steel sheet is 400°C, and the temperature at the Mf point is 300°C. Therefore, as described above, the temperature when passing through the constraining rolls may be set in the range of 400° C. to 300° C., so here it is set to 350° C. as described above.
  • FIG. 8 shows the definition of the amount of warpage. Specifically, the height of the highest position when the steel plate was placed on a horizontal plane was taken as the amount of warpage.
  • Example 1 and 2 of the present invention the amount of warpage of the steel sheet was reduced to the range of 2.0 to 8.0 mm, and was suppressed to 10 mm or less over the entire longitudinal direction.
  • Comparative Examples 1 and 2 the amount of warpage of the steel plate was distributed in the range of 10.0 to 14.0 mm, and the effect of suppressing deformation was insufficient throughout the longitudinal direction.
  • Comparative Example 3 the amount of warpage of the steel plate varied in the range of 4.0 to 14.0 mm, and was not suppressed within the range of 10 mm or less over the entire longitudinal direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

焼入れ時に金属板に発生する形状不良を抑制できる金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法を提供する。 連続焼鈍炉の均熱帯の出側に設けられ、連続的に搬送される金属板の両面にミストを噴射する複数の噴出ノズルを有する冷却流体噴射装置と、前記冷却流体噴射装置による冷却開始点から冷却終了点までの領域の中で前記金属板を両面から拘束する少なくとも一対の拘束ロールを備える金属板の焼入れ装置。

Description

金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法
 本発明は、金属板を連続的に通板しながら焼鈍する連続焼鈍設備において、焼入れ時に金属板に発生する形状不良を抑制する金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法に関する。
 鋼板をはじめとする金属板の製造においては、連続焼鈍設備において、金属板を加熱後に冷却し、相変態を起こさせる等して材質の造り込みを行う。近年、自動車業界では車体の軽量化と衝突安全性の両立を目的として、薄肉化した高強度鋼板(ハイテン)の需要が増している。ハイテンの製造時には、鋼板を急速に冷却する技術が重要となる。この冷却では、一般的に、鋼板の冷却媒体として気体及び水が混合されたミストや、水素等の気体が用いられる。その際、鋼板に反りや波状変形などの面外変形による形状不良が発生し、問題となっている。このような鋼板の焼入れ時における形状不良を防止するために、従来、様々な手法が提案されている。
 例えば、特許文献1には、ストリップに噴霧するミストの水量密度を適正に制御することにより、遷移沸騰させることなく膜沸騰のままで金属ストリップをミスト冷却する手法が開示されている。
 また、特許文献2には、ストリップを上下方向へ搬送しながら連続的に焼鈍する縦型の連続焼鈍炉における冷却ゾーンにおいて、ストリップに噴霧されたミストに含まれる水がストリップの表面を垂れ落ちること等に起因したストリップの幅方向への温度むらの発生を抑制する手法が開示されている。
 さらに、特許文献3には、金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)とすると、急冷焼入れ中の金属板を、金属板の温度が(TMs+150)(℃)から(TMf-150)(℃)である範囲において、冷却液体中に設けられた一対の拘束ロールにより拘束する手法が開示されている。
特開2000-178658号公報 特開2009-127060号公報 特許6094722号公報
 しかしながら、特許文献1及び特許文献2に記載された方法を検証した結果、水量密度制御や幅方向への温度むら抑制だけでは形状不良抑制効果が小さいことが分かった。
 また、特許文献3に記載された方法を検証した結果、鋼板を液体に浸漬させて冷却する手法は強冷却すぎるため冷却速度が変動しやすく、それに起因して拘束ロール通過時の鋼板温度が変動しやすいため、長手方向で大きな反り量の変動が発生する場合があり、改善の余地があった。
 本発明は、このような課題を解決するためになされたものであり、焼入れ時に金属板に発生する形状不良を抑制できる金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法を提供することを目的とする。
 本発明者らは、このような問題を解決すべく鋭意検討を重ねた結果、以下のような知見を得た。金属板の製造方法においては、焼入れ時に、金属板にマルテンサイト変態を起こさせる組織制御が用いられる場合があるが、マルテンサイト変態が起こると組織が体積膨張するため、複雑で不均一な凹凸状の形状になってしまうことがある。マルテンサイト組織を有するような高張力鋼板は、焼入れ時に、熱収縮中に変態膨張が生じるMs点からMf点の近傍で、鋼板に最も大きな応力が働き、形状が崩れる。またこのとき、強冷却であればあるほど冷却速度が変動しやすい。そのため、強冷却になりすぎないミストを使用して冷却した上で、金属板の温度がMs点からMf点である範囲において、金属板を拘束する拘束ロールを配することで、反り量を十分に低減することができる。ここで、Ms点とはマルテンサイト変態が開始する温度のことであり、Mf点とはマルテンサイト変態が終了する温度のことである。
 本発明は、上記のような知見と着想に基づいてなされたものであり、以下のような特徴を有している。
[1] 連続焼鈍炉の均熱帯の出側に設けられ、連続的に搬送される金属板の両面にミストを噴射する複数の噴出ノズルを有する冷却流体噴射装置と、
 前記冷却流体噴射装置による冷却開始点から冷却終了点までの領域の中で前記金属板を両面から拘束する少なくとも一対の拘束ロールを備える金属板の焼入れ装置。
[2] 前記複数の噴出ノズルは、前記金属板のマルテンサイト変態開始温度からマルテンサイト変態終了温度までの温度域の全体で該金属板に前記ミストを噴射するように配置される、[1]に記載の金属板の焼入れ装置。
[3] 前記冷却流体噴射装置の出口部よりも下流側に水切りスプレーノズルを備える、[1]又は[2]に記載の金属板の焼入れ装置。
[4] 連続的に搬送される金属板の両面にミストを噴射して冷却し、該冷却中の前記金属板の温度が少なくともマルテンサイト変態開始温度からマルテンサイト変態終了温度までの間にある領域で、前記金属板を両面から拘束する、金属板の焼入れ方法。
[5] 前記ミストの水量密度を100L/m・min以上800L/m・min以下とする、[4]に記載の金属板の焼入れ方法。
[6] 鋼板を連続焼鈍し、さらに[4]または[5]に記載の金属板の焼入れ方法によって焼入れして、高強度冷延鋼板、溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板のいずれかを製造する鋼板の製造方法。
 本発明に係る金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法によれば、焼入れ時に金属板に発生する形状不良を、効果的に抑制することができる。
図1は、本発明の金属板の焼入れ装置及び焼入れ方法の一例を示す図である。 図2は、本発明の金属板の焼入れ装置における、ミスト噴出ノズルへの空気および水の供給系統の一例を示す図である。 図3は、2流体ノズルの一例を示す図である。 図4(a)および図4(b)は、ミスト噴出ノズルの例を示す図である。 図5(a)および図5(b)はそれぞれ、本発明の金属板の焼入れ装置及び焼入れ方法によるミスト冷却、従来の水焼入れを示す図である。 図6は、本発明の金属板の焼入れ装置及び焼入れ方法の他の一例を示す図である。 図7は、本発明の金属板の焼入れ装置及び焼入れ方法による効果を、比較例と対比して示すグラフである。 図8は、図7における金属板の反り量の定義を示す図である。
 以下、図面を参照して、本発明の金属板の焼入れ装置及び金属板の焼入れ方法並びに鋼板の製造方法の実施形態について、具体的に説明する。
 図1は、本発明の一実施形態に係る金属板の焼入れ装置を示す図である。この焼入れ装置は、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用される。この冷却設備は、冷却対象物である金属板が鋼板である場合、この鋼板の冷却中にオーステナイト相をマルテンサイト変態させ、最終製品の機械的特性を得るために設置されている。そのため、マルテンサイト変態開始温度からマルテンサイト変態終了温度までの温度域を含む範囲を冷却する能力を備えるものである。
 図1に示すように、本実施形態の金属板の焼入れ装置は、複数のミスト噴出ノズル(噴出ノズル)2からなる冷却流体噴射装置と、冷却流体噴射装置による冷却領域で金属板1を拘束する少なくとも一対の拘束ロール3と、水切りスプレーノズル4とを備えている。ミスト噴出ノズル2は、連続的に通板する金属板(例えば、鋼板)1の両面側から金属板1に冷媒(冷却流体)であるミスト2aを噴射し急速冷却を行う。拘束ロール3は、冷却流体噴射装置の入口部となる冷却開始点から出口部となる冷却終了点までの領域の中で金属板1を拘束して変形を防ぐ。水切りスプレーノズル4は、冷却流体噴射装置の出口部よりも下流側に設けられ金属板1の出側から金属板1に空気や窒素等の気体4aを噴射し金属板1の垂れ水を排出する。
 ここで、ミストとは、霧状の水または液体であって、0.01μmから数百μm程度の液滴径を有する微小液滴が気体中に浮遊している状態にあるものをいう。本実施形態では、水と空気とを混合して噴射することにより、上述のミストを発生させる。冷却対象となる金属板には、微小液滴状の水が付着すると同時に空気が吹き付けられることにより、十分な冷却速度を得ることができる。また、水と空気とが混合された状態で金属板に到達するため、水のみを噴射する場合よりも、冷却速度を緩やかにして安定させることができる。
 ここで、ミストの液滴径が10μm未満であると、水滴が蒸発しやすく、十分な冷却速度が得られない場合がある。また、ミストの液滴径が100μmを超えると、水滴状態の水が金属板に付着、残留する場合があり、冷却ムラを生じやすい。よって、ミストの液滴径は10μm以上100μm以下であることが好ましい。
 ミスト噴出ノズル2には、例えば、株式会社いけうち製のスリットノズルPSNや、株式会社共立合金製作所製のナイフジェットKJIS型(内部混合式)等の製品を使用することができる。
 図2に、本実施形態の金属板の焼入れ装置における、ミスト噴出ノズル2への空気および水の供給系統を模式的に示す。また、図3に、本実施形態でミスト噴出ノズル2として用いる2流体ノズルを模式的に示す。本実施形態では、ミスト噴出ノズル2として、図3に示す2流体ノズルを用いてミストを発生させる場合を例に説明するが、ミスト噴出ノズルはこれに限定されず、好適な流量範囲でミストを噴出できるものであればよい。
 ミスト噴出ノズル2として、2流体ノズルを用いる場合は、図2に示すように、コンプレッサー52から圧送される圧縮空気を、圧縮空気配管5を通じてミスト噴出ノズル2に供給する。また、水槽62からポンプ63により圧送される水を、水配管6を通じてミスト噴出ノズル2に供給する。ここで、圧縮空気配管5に設けられる供給バルブ51および水配管6に設けられる供給バルブ61の開度、ならびにポンプ63の動作を、流量制御装置7によって制御する。このようにして、ミスト噴出ノズル2に供給される圧縮空気および水の圧力や量が、ミスト噴出ノズル2の仕様上許容される範囲内となるように、圧縮空気および水を供給すればよい。また、ミスト噴出ノズル2のつまりを避けるために、水配管6の供給バルブ61よりもミスト噴出ノズル2側にフィルターを設けるようにしてもよい。
 ここで、ミスト噴出ノズル2から噴射されるミストの気水体積比が50を下回ると、金属板1への水の付着、残留が顕著になって、冷却ムラを生じやすい。また、気水体積比が1000を超えると、ミストの液滴径が微細になりすぎ、金属板1に要求される特性を得るために必要な冷却速度を得られない場合がある。よって、ミスト噴出ノズル2から噴射されるミストの気水体積比を50~1000とすることが好ましい。
 本実施形態の金属板の焼入れ装置では、ミスト噴出ノズル2は鋼板進行方向(鋼板長手方向)に200mm間隔で80列配置されている。
 しかし、ミスト噴出ノズル2の配置はこれに限定されず、金属板1の幅方向に冷却ムラが発生しないように配置されていればよい。例えば、図4(a)に示すように、ミスト噴出ノズル2として、金属板1の幅よりも広幅のスリットノズル2Aを用いる場合は、鋼板進行方向のノズル間隔Iが100~600mmとなるように、スリットノズルを配置することが好ましい。鋼板進行方向のノズル間隔Iが100mm未満になると、ノズル同士のミスト噴射域が干渉して冷却速度の予測が困難になることがあり、鋼板進行方向のノズル間隔Iがノズル600mmを超えると、十分な冷却速度が得られない場合があるためである。
 また、図4(b)に示すように、ミスト噴出ノズル2として、噴射形状がスポット形状や円錐形状となるノズル2Bを用いる場合は、ノズルの規格に応じて複数本のノズル2Bを金属板1の幅方向に並べて配置することが好ましい。このとき、各ノズル2Bのミスト噴射域が金属板1の幅方向に均一な冷却速度を得られるよう隙間なく、あるいは、十分に重なるようにすることが好ましい。また、図4(b)に示すように、金属板1の幅方向に並べて配置される複数本のノズル2Bを、ヘッダー21に取り付けて用いることが好ましい。
 また、ミスト噴出ノズル2を千鳥状に配置してもよく、ミスト噴出ノズル2からのミストの噴射方向の金属板1に対する傾斜角や、円錐形状に広がる噴霧の広がり角度を、冷却対象とする金属板1の幅等に応じて調整してもよい。
 このように、金属板1の幅方向に均一な冷却能力が得られるように、金属板1の幅方向に並べて配置された複数本のノズルをノズルセットとして用いる場合も、鋼板進行方向のノズルセット間の間隔Iが100~600mmとなるようにすることが好ましい。鋼板進行方向のノズルセット間の間隔Iが100mm未満になると、ノズル同士のミスト噴射域が干渉して冷却速度の予測が困難になる場合があり、ノズルセット間の間隔Iが600mmを超えると、十分な冷却速度が得られない場合があるためである。
 ここで、本発明においては、冷却流体噴射装置(ミスト噴射ノズル)2の冷却能力と拘束ロール3の位置関係により、金属板1の形状が最も乱れる温度域において、拘束ロール3を用いて金属板1を拘束することが重要である。そこで、本実施形態の金属板の焼入れ装置及び焼入れ方法では、冷却能力を制御するミスト量とミストの水温を、下記のように設定することが好ましい。
 まず、金属板1の表面に複数のミスト噴出ノズル2からミスト2aを噴射することで冷却する焼入れ方法を行う場合には、ミスト2aの水量密度を100L/m・min以上800L/m・min以下とすることが好ましい。ミスト2aの水量密度が100L/m・min未満になると、鋼板の機械的性質が得られない上、冷却開始位置から拘束ロールの位置が長距離化し、設備の大型化を招く。また、ミスト2aの水量密度が800L/m・min超になると、冷却開始から拘束ロール到達までの冷却時間が短時間になって冷却が安定せず、拘束ロールで矯正できない程度まで形状が乱れる場合があるためである。
 また、ミスト2aの水量密度は200L/m・min以上500L/m・min以下とすることが更に好ましい。
 また、ミスト2aの粒子を構成する冷却水の温度としては、設備保全と、十分な冷却速度を得る観点から、0℃超60℃以下とすることが好ましく、10℃以上50℃以下とすることが特に好ましい。0℃以下になると凍結により設備破損を招く恐れがあり、60℃より高温になると、冷却速度が遅くなり、冷却開始位置から拘束ロールの位置が長距離化して、設備の大型化を招くためである。
 また、縦型のミスト冷却装置ではミスト2aに含まれる水が金属板1を伝って下方へ落下して下部の冷却に悪影響を与えるので、垂れ水防止対策を施しておくことが好ましく、例えばミスト2aや気体4aを約30度上方に向けて噴射することで制御できる。
 その際、上述の理由により、冷却能力に応じて実用的かつ効果的な拘束ロールを配置するため、金属板1の冷却速度を50℃/sec以上、500℃/sec以下にすることが望ましい。50℃/sec未満になると、冷却開始点から拘束ロールまでの距離が長距離になり、設備の大型化を招く。一方、500℃/sec超になると、冷却開始から拘束ロール到達までの冷却時間が短時間になって冷却が安定せず、拘束ロールで矯正できない程度まで形状が乱れる場合がある。
 このように、ミスト2aを用い、かつ、好適な冷却速度範囲となるように制御することによって、拘束ロール3による形状矯正効果を向上できる。
 本実施形態では、金属板1の表面に複数のミスト噴出ノズル2からミスト2aを噴射することで冷却する焼入れ方法を行う際に、金属板1の温度がMs点からMf点である範囲において、金属板1を拘束する拘束ロール3を配している。ここで、Ms点とは、金属板1のマルテンサイト変態が開始する温度をいい、Mf点とは、マルテンサイト変態が終了する温度をいう。なお、Ms点やMf点の温度は、金属板1の成分組成から算出することができる。
 拘束ロール3は、金属板1の焼入れ時に生じうる変形を防止するために、金属板1を表裏面から挟みつける。一対の拘束ロール3は、中心軸を金属板1の搬送方向にずらして配置することが好ましい。中心軸をずらして配置することで、金属板1の拘束力を増大させ、形状矯正力を高めることができる。一例として、それぞれの中心軸を搬送方向に40mm以上150mm以下ずらして拘束ロール3を配置することが好ましく、80mm以上100mm以下ずらして配置することがさらに好ましい。
 また、拘束ロール3によって金属板1を押し込み、拘束ロール3に金属板1を巻き付けるように通板することが望ましい。金属板1を押し込むことにより、鋼板の矯正力を高めることができるとともに、拘束ロール3の空転を防ぐことができる。1個の拘束ロール3による押し込み量は、図1のように金属板1が直線状に通板される場合を基準(0mm)とした場合に、0mm以上2.5mm以下とすることが好ましく、0.5mm以上1.0mm以下とすることがより好ましい。
 図5(a)および図5(b)に、本実施形態の金属板の焼入れ装置及び焼入れ方法によるミスト冷却と、従来の水焼入れとを、対比して示す。図5(a)に示すように、Ms点からMf点までの冷却を、ミスト冷却により緩やかに実施することで、図5(b)に示す従来の水焼入れよりも、Ms点からMf点までの距離Lが長くなる。したがって、金属板1の通板速度や板厚の変更に柔軟に対応して、拘束ロール3を適切な温度域で用いたり、拘束に供する拘束ロール3の本数を増減させたりすることが、従来の水焼入れよりも容易となる。
 例えば、板厚×通板速度が1.5(m/sec)・mm、Ms点とMf点との温度差が100℃である場合を考えると、図5(b)に示す水焼入れでは、冷却速度が1500℃/(sec・mm)であれば、Ms点からMf点までの距離Lは100mmとなる。これに対し、図5(a)に示すミスト冷却では、冷却速度が300℃/(sec・mm)程度となり、Ms点からMf点までの距離Lを500mmまで拡大できる。そして、Ms点からMf点までの距離L(500mm)の区間に複数本の拘束ロール3を設けることにより、Ms点からMf点までの温度域で確実に金属板1を拘束して、形状矯正を確実に実施できる。また、通板速度や板厚の変更などの非定常な拘束位置の変動にも、柔軟に対応しやすい。
 ここで、図5(a)に示す、本実施形態の金属板の焼入れ装置及び焼入れ方法においてMs点からMf点までの距離Lが200mm未満になると、図5(b)に示す水焼入れの場合と同様に、金属板1の通板速度や板厚の変更に柔軟に対応するのが難しくなる。よって、拘束ロール3による形状矯正効果を十分に得られない場合がある。また、Ms点からMf点までの距離Lが1000mmを超えると、マルテンサイト変態が不十分となり、所望の材料特性を得られない場合がある。よって、Ms点からMf点までの領域で、拘束ロール3による形状矯正効果を効果的に得るためには、Ms点からMf点までの距離Lは200~1000mm程度確保することが好ましい。
 さらに、Ms点よりも高温側、Mf点よりも低温側も含め、金属板1の冷却を必要とする領域の全長にわたってミスト2aを用いてもよい。
 金属板1におけるロール疵の発生を防止するために、電動により拘束ロール3を周方向に回転させることが好ましい。さらに、金属板1の矯正力を調整するために、拘束ロール3は、必要に応じて開閉可能(金属板1に対する押し込み量を制御可能)とすることが好ましい。
 拘束ロール3は、熱伝導率に優れるとともに、金属板1の挟圧時における荷重に耐えられる強度を備えた材質で形成されていればよい。拘束ロール3の材質としては、例えば、日本産業規格JISG4304「熱間圧延ステンレス鋼板及び鋼帯」に規定されるSUS304又はSUS310、若しくはセラミック等が挙げられる。
 次に、図6を用いて、3本以上の拘束ロール3を用いる例について説明する。以下において、一対の拘束ロール3を用いる場合と同様の点については説明を省略することがある。
 図6の例では、金属板1の表裏面を4本(2対)の拘束ロール3によって拘束する。拘束ロールを複数対設ける例においても、拘束ロールを2本(1対)のみ設ける例と同様の理由により、拘束ロールにより金属板1を押し込むことが好ましい。個々の拘束ロールにおける押し込み量は、0mm以上2.5mm以下が好ましく、0.5mm以上1.0mm以下が特に好ましい。金属板1の表面と裏面にそれぞれ配置される拘束ロール3の本数は、必ずしも同一でなくてもよい。ただし、金属板1の両側から均等に拘束力を与えるため、金属板1の表面と裏面に同じ本数の拘束ロール3を、対になるように配置するか、金属板1の表面と裏面に配置される拘束ロール3の本数の差が1本となるようにすることが好ましい。
 拘束ロールを3本以上設ける例では、拘束ロールを2本(1対)のみ設ける例に比べて、冷却時における鋼板の形状矯正力をより高めることができる。特に、変形の起こりやすい高強度の鋼板を冷却する場合であっても、拘束ロールを3本以上設けることにより、冷却時における鋼板の反り等の変形をより抑制することができる。一方で、拘束ロールの数を増やし過ぎると、設備制約上の問題や噴出装置における冷却能が下がるといった問題もあるので、これらの問題を勘案して適宜拘束ロールの数を決定すればよい。
 また、本実施形態のように、ミスト2aによる冷却と拘束ロール3とを併用すると、ミスト2aが拘束ロール3に付着、滞留し、この液滴の付着、滞留量が、金属板1の幅方向(すなわち、拘束ロール3の軸方向)で不均一となることがある。この結果、冷却ムラが発生して、拘束ロール3による形状矯正効果が低減する場合がある。そこで、このような問題を解消するために、拘束ロール3の近傍に、拘束ロール3に付着、滞留する液滴を除去する水切り機構(図示せず)を設けるようにしてもよい。具体的には、水切り機構として、ブレード上の障害物、ワイパー、エアーノズルなどを用いることができる。
 前述のように、本発明は、鋼板の急冷中にマルテンサイト変態が起こって組織が体積膨張する際に発生する複雑で不均一な凹凸状の形状を低減させることを目的としており、本発明は、高強度鋼板(ハイテン)の製造方法に適用することが好ましい。
 より具体的には、引張強度が580MPa以上である鋼板の製造に適用することが好ましい。引張強度の上限は特に制限されないが、一例として1600MPa以下であればよい。
 上記の高強度鋼板(ハイテン)としては、高強度冷延鋼板、およびそれらに表面処理を施した溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板等がある。
 高強度鋼板の組成の具体例として、質量%で、Cが0.04%以上0.25%以下、Siが0.01%以上2.50%以下、Mnが0.80%以上3.70%以下、Pが0.001%以上0.090%以下、Sが0.0001%以上0.0050%以下、sol.Alが0.005%以上0.065%以下、必要に応じて、Cr、Mo、Nb、V、Ni、Cu、及びTiの少なくとも1種以上がそれぞれ0.5%以下、さらに必要に応じて、B、Sbがそれぞれ0.01%以下、残部がFe及び不可避的不純物からなる例が挙げられる。
 尚、本発明の実施形態は、鋼板を急冷する例に限定されるものではなく、鋼板以外の金属板全般の焼入れに適用することができる。
 本発明の金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法を適用して、鋼板の製造試験を行い、その効果を検証したので、これについて説明する。
(本発明例1)
 図1に示した金属板の焼入れ装置を用いて、板厚1.0mm、板幅1000mmの引張強さ1470MPa級の高張力冷延鋼板を、通板速度1.0m/s、焼入れ開始温度800℃、ミストの水量密度400L/m・min、拘束ロール通過時の温度350℃で製造した。
 ここで、引張強さ1470MPa級の高張力冷延鋼板の組成として、質量%で、Cが0.20%、Siが1.0%、Mnが2.3%、Pが0.005%、Sが0.002%とした。
 なお、当該高張力冷延鋼板のMs点の温度は400℃、Mf点の温度は300℃である。したがって、上述したように、拘束ロール通過時の温度は、400℃~300℃の範囲で設定すればよいので、ここでは、上記のように350℃に設定した。
 ここで、拘束ロールの中心軸は通板方向に80mmずらして配置し、拘束ロール3の金属板1への押し込み量は全て0.5mmとした。
(本発明例2)
 図6に示した焼入れ装置を用いて、本発明例1と同様の条件で操業を行った。尚、対向する拘束ロールの中心軸は全て通板方向に80mmずつずらして配置し、拘束ロール3による金属板1への押し込み量は全て0.5mmとした。
(比較例1)
 比較例として、特許文献1に示した冷却装置を用い、その他の条件は、本発明例と同じにして、上記の高張力冷延鋼板を製造した。
(比較例2)
 比較例として、特許文献2に示した冷却装置を用い、その他の条件は、本発明例と同じにして、上記の高張力冷延鋼板を製造した。
(比較例3)
 比較例として、特許文献3に示した冷却装置を用い、その他の条件は、本発明例と同じにして、上記の高張力冷延鋼板を製造した。
 そして、それぞれの場合(本発明例1~2、比較例1~3)について、冷却後の鋼板を長手方向で100mおきに10枚採取し、それぞれの鋼板の反り量を調査した。なお、反り量の定義を図8に示す。具体的には、鋼板を水平面に置いた場合の、最も高い位置の高さを反り量とした。
 本発明例1~2の結果と比較例1~3の結果を図7に示す。
 本発明例1~2では、鋼板の反り量は2.0~8.0mmの範囲に低減しており、長手方向全域で10mm以下にまで抑えられていた。これに対し、比較例1~2では、鋼板の反り量が10.0~14.0mmの範囲に分布しており、長手方向全域で変形抑制効果が不十分であった。また、比較例3では、鋼板の反り量が4.0~14.0mmの範囲にばらついており、長手方向全域で10mm以下の範囲に抑えられていなかった。
 これより、本発明の金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法の有効性が確認された。
 1  金属板
 2(2A、2B)  ミスト噴出ノズル(噴出ノズル)
 2a  ミスト
 21  ヘッダー
 3  拘束ロール
 4  水切りスプレーノズル
 4a  気体
 5  圧縮空気配管
 51  供給バルブ
 52  コンプレッサー
 6  水配管
 61  供給バルブ
 62  水槽
 63  ポンプ
 7  流量制御装置

Claims (6)

  1.  連続焼鈍炉の均熱帯の出側に設けられ、
     連続的に搬送される金属板の両面にミストを噴射する複数の噴出ノズルを有する冷却流体噴射装置と、
     前記冷却流体噴射装置による冷却開始点から冷却終了点までの領域の中で前記金属板を両面から拘束する少なくとも一対の拘束ロールを備える金属板の焼入れ装置。
  2.  前記複数の噴出ノズルは、前記金属板のマルテンサイト変態開始温度からマルテンサイト変態終了温度までの温度域の全体で該金属板に前記ミストを噴射するように配置される、請求項1に記載の金属板の焼入れ装置。
  3.  前記冷却流体噴射装置の出口部よりも下流側に水切りスプレーノズルを備える、請求項1又は2に記載の金属板の焼入れ装置。
  4.  連続的に搬送される金属板の両面にミストを噴射して冷却し、該冷却中の前記金属板の温度が少なくともマルテンサイト変態開始温度からマルテンサイト変態終了温度までの間にある領域で、前記金属板を両面から拘束する、金属板の焼入れ方法。
  5.  前記ミストの水量密度を100L/m・min以上800L/m・min以下とする、請求項4に記載の金属板の焼入れ方法。
  6.  鋼板を連続焼鈍し、さらに請求項4または5に記載の金属板の焼入れ方法によって焼入れして、高強度冷延鋼板、溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板のいずれかを製造する鋼板の製造方法。
PCT/JP2021/039666 2021-01-29 2021-10-27 金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法 WO2022163044A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180091643.XA CN116745446A (zh) 2021-01-29 2021-10-27 金属板的淬火装置及淬火方法、以及钢板的制造方法
EP21923050.5A EP4257709A4 (en) 2021-01-29 2021-10-27 METAL SHEET QUENCHING APPARATUS AND QUENCHING METHOD, AND STEEL SHEET PRODUCTION METHOD
KR1020237025013A KR20230122656A (ko) 2021-01-29 2021-10-27 금속판의 퀀칭 장치 및 퀀칭 방법, 그리고 강판의 제조방법
US18/273,830 US20240301524A1 (en) 2021-01-29 2021-10-27 Quenching apparatus and quenching method for metal sheet, and method for manufacturing steel sheet
JP2022506877A JP7338783B2 (ja) 2021-01-29 2021-10-27 金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法
MX2023008750A MX2023008750A (es) 2021-01-29 2021-10-27 Aparato de temple rapido y metodo de temple rapido para lamina de metal, y metodo para fabricar lamina de acero.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012721 2021-01-29
JP2021-012721 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163044A1 true WO2022163044A1 (ja) 2022-08-04

Family

ID=82654409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039666 WO2022163044A1 (ja) 2021-01-29 2021-10-27 金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法

Country Status (7)

Country Link
US (1) US20240301524A1 (ja)
EP (1) EP4257709A4 (ja)
JP (1) JP7338783B2 (ja)
KR (1) KR20230122656A (ja)
CN (1) CN116745446A (ja)
MX (1) MX2023008750A (ja)
WO (1) WO2022163044A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695573U (ja) * 1979-12-20 1981-07-29
JPS62501300A (ja) * 1984-10-09 1987-05-21 ベルタン・エ・コンパニ 鋼などの板材の連続焼入れ方法及びその焼入れ設備
JP2000178658A (ja) 1998-12-08 2000-06-27 Nippon Steel Corp 金属ストリップの冷却方法
JP2008150685A (ja) * 2006-12-19 2008-07-03 Sumitomo Metal Ind Ltd 冷間圧延鋼板の製造方法、及び製造装置
JP2009127060A (ja) 2007-11-20 2009-06-11 Sumitomo Metal Ind Ltd 冷延鋼板の製造方法
US20160304984A1 (en) * 2013-12-05 2016-10-20 Fives Stein Method and apparatus for continuous thermal treatment of a steel strip
JP6094722B2 (ja) 2014-11-28 2017-03-15 Jfeスチール株式会社 金属板の製造方法および急冷焼入れ装置
JP2019090106A (ja) * 2017-11-15 2019-06-13 Jfeスチール株式会社 急冷焼入れ装置及び急冷焼入れ方法並びに金属板製品の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430332B1 (ko) * 2017-10-31 2022-08-05 제이에프이 스틸 가부시키가이샤 후강판의 제조 설비 및 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695573U (ja) * 1979-12-20 1981-07-29
JPS62501300A (ja) * 1984-10-09 1987-05-21 ベルタン・エ・コンパニ 鋼などの板材の連続焼入れ方法及びその焼入れ設備
JP2000178658A (ja) 1998-12-08 2000-06-27 Nippon Steel Corp 金属ストリップの冷却方法
JP2008150685A (ja) * 2006-12-19 2008-07-03 Sumitomo Metal Ind Ltd 冷間圧延鋼板の製造方法、及び製造装置
JP2009127060A (ja) 2007-11-20 2009-06-11 Sumitomo Metal Ind Ltd 冷延鋼板の製造方法
US20160304984A1 (en) * 2013-12-05 2016-10-20 Fives Stein Method and apparatus for continuous thermal treatment of a steel strip
JP6094722B2 (ja) 2014-11-28 2017-03-15 Jfeスチール株式会社 金属板の製造方法および急冷焼入れ装置
JP2019090106A (ja) * 2017-11-15 2019-06-13 Jfeスチール株式会社 急冷焼入れ装置及び急冷焼入れ方法並びに金属板製品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257709A4

Also Published As

Publication number Publication date
JP7338783B2 (ja) 2023-09-05
EP4257709A4 (en) 2024-04-10
US20240301524A1 (en) 2024-09-12
JPWO2022163044A1 (ja) 2022-08-04
MX2023008750A (es) 2023-08-01
CN116745446A (zh) 2023-09-12
KR20230122656A (ko) 2023-08-22
EP4257709A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
EP2415536B1 (en) Cooling device for hot rolled steel sheet
KR102148266B1 (ko) 급랭 퀀칭 장치 및 급랭 퀀칭 방법
EP3705587A1 (en) Facility and method for producing thick steel sheet
JP2014124634A (ja) 熱延鋼帯の冷却方法および冷却装置
JP6687084B2 (ja) 急冷焼入れ装置及び急冷焼入れ方法並びに金属板製品の製造方法
EP2979769B1 (en) Thick steel plate manufacturing method and manufacturing device
WO2022163044A1 (ja) 金属板の焼入れ装置及び焼入れ方法、並びに鋼板の製造方法
JP5928412B2 (ja) 鋼板の竪型冷却装置、およびそれを用いた溶融亜鉛めっき鋼板の製造方法
JP6870701B2 (ja) 鋼板の冷却方法、鋼板の冷却装置および鋼板の製造方法
WO2021065583A1 (ja) 金属帯急冷装置及び金属帯急冷方法並びに金属帯製品の製造方法
US11230748B2 (en) Method and section for quick cooling of a continuous line for treating metal belts
JP6264464B2 (ja) 厚鋼板の製造設備および製造方法
JP3617473B2 (ja) 溶融亜鉛系めっき鋼板の製造方法
WO2020085352A1 (ja) 焼入れ装置及び焼入れ方法並びに鋼板の製造方法
JP7180636B2 (ja) 金属板の焼入れ装置及び金属板の焼入れ方法並びに鋼板の製造方法
JP6760002B2 (ja) 鋼板の冷却方法
WO2016031169A1 (ja) 厚鋼板の製造方法
WO2020085353A1 (ja) 焼入れ装置及び焼入れ方法並びに鋼板の製造方法
JPH1157838A (ja) レーザー切断性に優れた厚鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506877

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317042706

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021923050

Country of ref document: EP

Effective date: 20230701

ENP Entry into the national phase

Ref document number: 20237025013

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091643.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18273830

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008750

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE