WO2022163026A1 - Press-formed body and production method therefor - Google Patents

Press-formed body and production method therefor Download PDF

Info

Publication number
WO2022163026A1
WO2022163026A1 PCT/JP2021/037864 JP2021037864W WO2022163026A1 WO 2022163026 A1 WO2022163026 A1 WO 2022163026A1 JP 2021037864 W JP2021037864 W JP 2021037864W WO 2022163026 A1 WO2022163026 A1 WO 2022163026A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
molded
mold
molded body
molded article
Prior art date
Application number
PCT/JP2021/037864
Other languages
French (fr)
Japanese (ja)
Inventor
服部真和
鈴木建市
畑澤雄太
御苗裕彦
平田大
杉江舞
Original Assignee
富士高分子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士高分子工業株式会社 filed Critical 富士高分子工業株式会社
Priority to JP2022529650A priority Critical patent/JPWO2022163026A1/ja
Publication of WO2022163026A1 publication Critical patent/WO2022163026A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a press-molded body that minimizes waste material during molding and a method for manufacturing the same.
  • thermosetting resin composition such as silicone rubber
  • methods for molding a thermosetting resin composition include the following methods.
  • Molding An uncured liquid composition is poured into a mold, the mold is closed, and pressure and heat are applied by a heat press to cure the liquid composition.
  • Injection molding An uncured liquid composition is injected from a nozzle into a heated mold on an injection molding machine to fill the mold cavity. After curing, the mold is opened and the molding is removed.
  • Coating molding A separator film such as a polyethylene terephthalate (PET) film is continuously supplied to a coating apparatus, and an uncured liquid composition is applied thereon with a knife coater or the like to a certain thickness, followed by heating. Curing the liquid composition through an oven.
  • PET polyethylene terephthalate
  • Patent Literature 1 proposes stacking and compressing an unvulcanized rubber sheet and a resin film, forming a sheet, and then punching the sheet with a punching blade.
  • Patent Literature 2 proposes punching with a punching die after curing a carbon fiber prepreg sheet.
  • Patent Literature 3 proposes molding a thermally conductive silicone composition into a sheet and curing the sheet.
  • the present invention provides a press-molded article having a good product yield and a method for producing the same, because the resin composition in an uncured state is press-molded so that no burrs are generated and the amount of waste materials is extremely small. offer.
  • the press-molded article of the present invention is a press-molded article containing a thermosetting resin, is press-molded and cured in a mold, and is characterized in that the front surface and the back surface are pressing surfaces.
  • the method for producing a press-molded article of the present invention is the above-described method for producing a press-molded article, in which an uncured thermosetting resin composition is filled into the space in the mold and fitted into the space. It is characterized by press-molding with a pressing plate and curing to form a press-molded body.
  • the resin composition in an uncured state is press-molded, there is no generation of burrs, the amount of waste material is extremely small, and a press-molded article with a good product yield can be provided.
  • the press-molded article of the present invention and the conventional roll-molded article are compared with each other, the press-molded article has high hardness and high thermal conductivity when the amount of the thermally conductive inorganic particles added is the same.
  • the thermal conductivity is high and it is suitable as a TIM (Thermal Interface Material).
  • a plurality of molding dies can be formed on a single mold sheet, and a plurality of moldings can be simultaneously molded. It has the advantage of being mouldable.
  • FIG. 1A to 1D are schematic cross-sectional views showing the steps of manufacturing a press-molded body according to an embodiment of the present invention, wherein FIG. 1A is a pressing step, FIG. 1B is a heat curing step, and FIG. 1C is a mold removing step. 1D shows the step of taking out the compact.
  • FIG. 2A to 2D are schematic cross-sectional views showing the steps of manufacturing a press molded body in another embodiment of the present invention, FIG. 2A is a pressing step, FIG. 2B is a heat curing step, FIG. 2C is a mold removing step, FIG. 2D shows the step of taking out the compact.
  • FIG. 3 is a schematic perspective view of the mold and the pressing plate of the same.
  • FIG. 4A is a schematic perspective view showing a state in which an uncured thermosetting resin composition is filled in the same mold
  • FIG. 4B is a schematic perspective view of a push plate placed thereon.
  • 5A to 5D are schematic cross-sectional views showing manufacturing steps for simultaneously molding a plurality of press-molded bodies in another embodiment of the present invention
  • FIG. 5A is a filling step of an uncured thermosetting resin composition
  • 5B shows a pressing step in which a pressing plate is placed and pressed
  • FIG. 5C shows a heat curing step (pressing tools are omitted)
  • FIG. 5D shows the product after a molding removal step.
  • 6A and 6B are explanatory diagrams showing a method of measuring the thermal conductivity of a sample in one example of the present invention.
  • FIG. 1 is a schematic perspective view showing a state in which an uncured thermosetting resin composition is filled in the same mold
  • FIG. 4B is a schematic perspective view of a push plate placed thereon.
  • FIG. 7 is a schematic cross-sectional explanatory view showing a conventional roll forming method.
  • FIG. 8 is a graph comparing the hardness of Examples 7-10 of the present invention and Comparative Examples 5-8.
  • FIG. 9 is a graph comparing the thermal conductivity of Examples 7-10 of the present invention and Comparative Examples 5-8.
  • FIG. 10 is a graph comparing the hardness of Examples 11-14 of the present invention and Comparative Examples 9-12.
  • FIG. 11 is a graph comparing the thermal conductivity of Examples 11-14 of the present invention and Comparative Examples 9-12.
  • the press molded body of the present invention is manufactured by the following manufacturing steps.
  • (1) Step of Filling Space in Mold with Uncured Thermosetting Resin Composition In the case of manual filling, a tool such as a spatula, spoon, dispenser, bottle, can or tube is used. In the case of automation, a pail, cartridge, tube or the like is filled, and a dispenser is used to apply pressure from a compressor, or a mono pump is used in combination to fill a predetermined amount. There is no waste because it is only necessary to fill the specified amount.
  • the pressing force is preferably 1.6 to 16 N/mm 2 . If the pressure is low, the uncured thermosetting resin composition will not spread throughout the space inside the mold, and if the pressure is too high, the uncured thermally conductive resin composition may overflow from the gap between the mold and the push plate. have a nature. Curing may be performed at room temperature (25° C.) or by heating, but heat curing is preferred in terms of productivity. As an example, in the case of a composition containing an addition-curable organopolysiloxane (silicone polymer), it is preferable to heat the composition at a temperature of 80-120° C. for 1-15 minutes.
  • Preferable materials for the mold and the pressing plate are fluororesin such as polytetrafluoroethylene (PTFE), aluminum, SUS, and other corrosion-resistant metals.
  • PTFE polytetrafluoroethylene
  • aluminum, SUS, and other corrosion-resistant metals are preferable because they are less likely to be thermally deformed.
  • a thickness of 3 to 10 mm is preferred.
  • the mold penetrates in the thickness direction, and is placed on the resin film. As a result, a void can be formed, which is filled with an uncured thermosetting resin composition.
  • a release-treated polyethylene terephthalate (PET) film is preferable. This is because they are not thermally deformed at the heat curing temperature.
  • One or a plurality of the molds are formed on one mold sheet, and when a plurality of molds are formed, it is possible to mold a plurality of molds at the same time.
  • a plurality of molds may have the same or different shapes.
  • multiple molds can be filled with the same or different compositions.
  • molded articles having different thicknesses can be obtained by pressing the composition filled in a plurality of molds with a pressing plate.
  • the press-molded article of the present invention is press-molded and cured in the mold, the front and back surfaces are press surfaces and are free of burrs. This eliminates the need for deburring and trimming.
  • the mold can have various shapes, and the press molded body can also have various shapes. For example, a rectangular shape, a polygonal shape other than a rectangular shape, a circular shape, other irregular shapes, and the like are possible.
  • the press-formed body is preferably flat, at least one of the front surface and the back surface may be provided with a desired shape such as a step or unevenness. This is made possible by giving the push plate and/or the bottom plate a desired shape.
  • the push plate and the bottom plate are flat, the shape is flat.
  • the thickness is preferably 0.5 mm or more and 5 mm or less. When the thickness is within the above range, a molded article with a high yield can be obtained.
  • the press molded body is suitable for a resin molded body, a rubber molded body, a gel molded body, or the like.
  • Thermosetting resins that can be used in the present invention include organopolysiloxane (silicone resin, silicone rubber, silicone gel), epoxy resin, acrylic resin, urethane resin, polyimide resin, polyester resin, phenol resin, unsaturated polyester resin or melamine resin. and acrylic resin.
  • organopolysiloxane silicone resin, silicone rubber, silicone gel
  • silicone resin silicone resin, silicone rubber, silicone gel
  • the press molded body preferably has properties such as thermal conductivity, electrical insulation, conductivity, or electromagnetic wave shielding properties.
  • at least one inorganic particle selected from alumina (aluminum oxide), zinc oxide, silicon oxide, silicon carbide, aluminum nitride, boron nitride, aluminum hydroxide and silica is used as the thermally conductive inorganic particle. It is preferable to have Among these, alumina (aluminum oxide) and aluminum nitride are particularly preferred.
  • the shape of the thermally conductive inorganic particles may be spherical, amorphous (including pulverized or crushed), acicular, plate-like, and the like.
  • Thermally conductive inorganic particles are preferably added in an amount of 100 to 4000 parts by mass, more preferably 500 to 3700 parts by mass, per 100 parts by mass of the thermosetting resin. If it is the said range, thermal conductivity can be made high.
  • the thermal conductivity is preferably 0.8 W/m ⁇ K or more and 20 W/m ⁇ K or less.
  • Such a thermally conductive molding is suitable as a TIM (Thermal Interface Material).
  • the press-molded article of the present invention can have higher hardness and higher thermal conductivity than conventional roll-molded articles.
  • the spherical particles are preferably 100 to 4000 parts by mass, more preferably 200 to 2000 parts by mass, per 100 parts by mass of the thermosetting resin.
  • the pulverized particles are preferably 50 to 2000 parts by mass, more preferably 100 to 900 parts by mass, per 100 parts by mass of the thermosetting resin.
  • Further addition of submicron particles (D50 less than 1 ⁇ m) can similarly increase hardness and thermal conductivity.
  • Submicron particles are preferably 50 to 500 parts by mass, more preferably 100 to 200 parts by mass, per 100 parts by mass of the thermosetting resin.
  • the thermally conductive inorganic particles preferably have an average particle size of 0.1 to 100 ⁇ m.
  • the particle size is measured by measuring the D50 (median diameter) of the cumulative particle size distribution on a volume basis by a laser diffraction light scattering method.
  • this measuring instrument there is, for example, a laser diffraction/scattering particle size distribution analyzer LA-950S2 manufactured by Horiba, Ltd.
  • the thermally conductive inorganic particles are R a Si(OR′) 4-a (where R is an unsubstituted or substituted organic group having 6 to 12 carbon atoms, R′ is an alkyl group having 1 to 4 carbon atoms, a is 0 Alternatively, those surface-treated with the alkoxysilane compound shown in 1) or a partial hydrolyzate thereof can be used. This improves mixability and flowability and facilitates filling of the composition.
  • a conductive substance such as carbon, carbon nanotube, graphite, carbon fiber, silver particles, copper particles, etc. is added.
  • particles containing iron such as ferrite are added.
  • the uncured thermosetting resin composition further contains R a Si(OR′) 4-a (where R is an unsubstituted or substituted alkyl group having 6 to 12 carbon atoms, R′ is a
  • R is an unsubstituted or substituted alkyl group having 6 to 12 carbon atoms
  • R′ is a
  • the alkyl group and a are preferably 0 or 0.1 to 2 parts by mass of the alkoxysilane compound represented by 1). This can reduce the viscosity of the composition.
  • the uncured thermosetting resin composition may optionally contain components other than those mentioned above.
  • heat-resistant improvers such as red iron oxide, titanium oxide, and cerium oxide, flame retardants, and flame retardant aids may be added.
  • Organic or inorganic particle pigments may be added for the purpose of coloring and toning.
  • An alkoxy group-containing silicone may be added as a material added for the purpose of filler surface treatment.
  • the uncured thermosetting resin composition of the present invention may be sheet-molded in advance, cut into an area equal to or smaller than that of the mold, and filled in the space inside the mold. By doing so, the thermosetting resin composition can be easily spread over the entire space in the mold, and moldability can be improved.
  • FIG. 1A to 1D are schematic cross-sectional views showing manufacturing steps of a press molded body in one embodiment of the present invention.
  • the press molding apparatus 1 sets the mold sheet 2 on the base film 3 on the base 17, and heats the uncured heat in the space 7 penetrating in the thickness direction. It shows a process of filling the curable resin composition 4, placing a push plate 5 thereon, and pressing from above the push plate 5 with a press tool 9.
  • the base film 3 is preferably a polyethylene terephthalate (PET) film (release film) having a thickness of about 100 ⁇ m.
  • PET polyethylene terephthalate
  • heating is performed at a temperature of 100° C. for 10 minutes. Heating may be performed by inserting a heater 6 under the PET film 3, or by placing the whole in an oven.
  • the mold removing step of FIG. 1C the formwork sheet 2 of the mold is removed. 8 is a press molded body. 1D, the press tool 9 and the pressing plate 5 are lifted up to take out the press-molded body 8. As shown in FIG.
  • 2A to 2D are schematic cross-sectional views showing steps for manufacturing a press molded body in another embodiment of the present invention.
  • 1A to 1D is that a release film 10 is interposed between the thermosetting resin composition 4 and the push plate 5.
  • FIG. The release film 10 is punched into the same shape as the push plate 5. - ⁇ When the release film 10 is interposed, the press molded body 8 can be easily taken out, and surface deformation and deterioration of the press plate 5 can be prevented.
  • a polyethylene terephthalate (PET) film having a thickness of about 100 ⁇ m, which is the same as the base film, can be used.
  • FIG. 3 is a schematic perspective view of the mold sheet 2 and the push plate 5 of the mold.
  • the formwork sheet 2 and the pressing plate 5 of the molding die are produced simultaneously by using a PTFE sheet with a thickness of 10 mm and punching it out with a press having a Thomson blade.
  • the push plate 5 fits into the space of the mold sheet 2 of the mold.
  • the punched portion becomes the space portion 7 and the molded portion.
  • FIG. 4A is a schematic perspective view showing a state when the uncured thermosetting resin composition 4 is filled in the space 7 of the mold 2
  • FIG. 4B is a schematic perspective view of the push plate 5 placed thereon. be.
  • FIG. 5A to 5D are schematic cross-sectional views showing manufacturing steps for simultaneously molding a plurality of press-molded bodies in another embodiment of the present invention.
  • the formwork sheet 2 of the molding die having spaces 7a to 7c penetrating in the thickness direction is placed on the PET film 3.
  • the uncured thermosetting resin composition 4a-4c is filled in the space of the mold sheet 2 of the molding die, and the pressing plates 5a-5c are placed and pressed (press tool omitted).
  • FIG. 5C shows a heat curing step (press tools and heaters omitted), in which uncured thermosetting resin compositions 4a-4c are press-molded into press-molded bodies 8a-8c, respectively.
  • FIG. 5D shows the step of taking out the compact.
  • Each pressing 8a-8c may differ in thickness and/or type. Of course, they may be the same.
  • FIG. 7 is a schematic cross-sectional explanatory view showing a conventional roll rolling forming method.
  • This roll forming apparatus 20 sandwiches an uncured thermosetting resin composition (compound) 24 between upper and lower polyester films 23a and 23b and rolls it between constant velocity rolls 21a and 21b to obtain a sheet having a predetermined thickness.
  • molding After seed molding, it is cured by a heating device (not shown). 22 is a base plate.
  • the clearance between rolls is 1 to 3 mm
  • the rolling speed is 1 to 2 m/min
  • the effect conditions are 100° C. for 3 to 5 minutes.
  • a comparison between the press molding of the present invention and cutting or punching after sheet molding by conventional roll rolling is as follows.
  • Waste materials Press molding of the present invention does not produce waste materials, but conventional sheet molding followed by cutting or stamping produces waste materials.
  • Molding with Different Thicknesses The press molding of the present invention can be molded in one step, but the conventional cutting or punching after sheet molding requires the steps of sheet preparation and sheet replacement for the number of different thicknesses.
  • Molding of Different Materials The press molding of the present invention can be molded in one step, but conventional cutting or punching after sheet molding requires the steps of sheet preparation and sheet replacement for the number of different materials.
  • the press molding of the present invention can be molded without deformation, but the conventional cut or stamping after sheet molding is too soft and deforms during the sheet replacement process.
  • the press molding of the present invention can mold even a soft raw material having an ASKER hardness of 10 or less without deformation.
  • Generation of burrs The press molding of the present invention does not generate burrs, but the conventional stamping after sheet molding generates burrs.
  • Stability of shape The press molding of the present invention is stable in shape because the sheet does not move, but conventional cutting or punching after sheet molding tends to deform during the sheet replacement process.
  • the press molding of the present invention can be formed in one step, but the conventional method requires a plurality of steps of a sheet forming step and a cutting step, or a sheet forming step and a stamping step.
  • Manufacturing cost The press molding of the present invention is a single process that does not generate waste materials, so the manufacturing cost is low. Cost is high.
  • the thermal conductivity of the press molded body was measured with a hot disk (according to ISO 22007-2). As shown in FIG. 6A, this thermal conductivity measuring device 11 sandwiches a polyimide film sensor 12 between two samples 13a and 13b, applies a constant power to the sensor 12, heats the sensor 12 at a constant temperature, and measures the temperature rise of the sensor 12. Analyze thermal properties.
  • the sensor 12 has a tip 14 with a diameter of 7 mm, and as shown in FIG. 6B, has a double spiral structure of electrodes, and an applied current electrode 15 and a resistance value electrode (temperature measurement electrode) 16 are arranged at the bottom. It is Thermal conductivity is calculated by the following formula (Equation 1). ⁇ Hardness> Measured at Shore 00 specified in ASTM D2240.
  • Example 1 press-formed bodies with different thicknesses were formed at the same time.
  • Raw material components/matrix resin A commercially available two-liquid type organopolysiloxane was used as the addition-curable silicone polymer.
  • One liquid contains an organopolysiloxane base polymer and a platinum-based curing catalyst, and the other liquid contains an organopolysiloxane base polymer and a vulcanizing agent (curing agent).
  • Thermally conductive inorganic particles aluminum oxide (average particle size: 2 ⁇ m, particle shape: crushed, 800 parts by mass per 100 parts by mass of matrix resin) and aluminum oxide (average particle size: 30 ⁇ m, particle shape: spherical, matrix resin: 100 parts by mass) 700 parts by mass per 100 parts by mass of the matrix resin) was added in a ratio of 1500 parts by mass in total per 100 parts by mass of the matrix resin. 2. Mixing The raw ingredients were placed in a planetary mixer and mixed at 23° C. for 10 minutes. Degassing was performed under reduced pressure during or after mixing. The resulting composition was filled into dispensers. 3.
  • Press Molding A polytetrafluoroethylene (PTFE) sheet with a thickness of 10 mm was used to prepare a mold and press plate of the shape shown in FIGS. 5A-B.
  • the press molding apparatus 1 the apparatus shown in FIGS. 1A to 1D was used.
  • the spaces 7a to 7c of the mold 2 were filled with an uncured thermosetting resin composition.
  • the composition was pressed in from a dispenser and filled with different thicknesses of the press-molded body.
  • pressing plates 5a to 5c were placed and pressed with a pressing force of 8 N/mm 2 (press tools omitted). It was cured at 100° C. for 10 minutes in the heat-curing step (press tool and heater are omitted) of FIG.
  • the thickness of the obtained press molded body 8a was 1 mm, the thickness of 8b was 3 mm, and the thickness of 8c was 5 mm. Moreover, the thermal conductivity of each of the press molded bodies 8a to 8c was 4.5 W/m ⁇ K. As described above, flat plate-like press-formed bodies having different thicknesses could be simultaneously formed.
  • Example 2 In this example, different types of press-molded bodies were formed simultaneously.
  • Raw material A • Matrix resin: A commercially available two-liquid type organopolysiloxane was used as the addition-curable silicone polymer. One liquid contains an organopolysiloxane base polymer and a platinum-based curing catalyst, and the other liquid contains an organopolysiloxane base polymer and a vulcanizing agent (curing agent).
  • Thermally conductive inorganic particles aluminum oxide (average particle size: 2 ⁇ m, particle shape: crushed, 100 parts by mass per 100 parts by mass of matrix resin) and silicon oxide (average particle size: 30 ⁇ m, particle shape: spherical, matrix resin: 100 parts by mass) 300 parts by mass per 100 parts by mass of the matrix resin) was added at a rate of 400 parts by mass in total per 100 parts by mass of the matrix resin.
  • Raw material B Aluminum oxide (average particle size: 2 ⁇ m, particle shape: crushed, 400 parts by mass per 100 parts by mass of matrix resin), aluminum oxide (average particle size: 70 ⁇ m, particle shape: spherical, matrix resin: 100 mass parts).
  • Example 7 700 parts by mass per 100 parts by mass of the matrix resin) was added in a ratio of 1500 parts by mass in total per 100 parts by mass of the matrix resin. Except for this, the same procedure as in Example 1 was carried out, and press-formed bodies having the same thickness and different thermal conductivities were obtained.
  • the thickness of each of the press-molded bodies 8a to 8c obtained was 1 mm
  • the thermal conductivity of the press-molded body 8a was 1.4 W/m ⁇ K
  • the thermal conductivity of the pressed body 8b was 2.5 W/m ⁇ K.
  • the thermal conductivity of the press molded body 8c was 4.5 W/m ⁇ K.
  • flat plate-like press-formed bodies having different thermal conductivities could be formed at the same time.
  • Examples 1 and 2 produced press-molded products with good product yield, with no burrs and very little waste material because the uncured resin composition was press-molded. did it.
  • a plurality of molding dies can be formed on a single mold sheet, a plurality of moldings can be molded simultaneously, and press moldings having different thicknesses and physical properties can be molded at the same time.
  • Example 1 spherical particles of different sizes (Examples 3 to 5), a press-molded product obtained by mixing true spherical particles and crushed particles (Example 6), and a rolled compact (Comparative Example 1) 4) were compared.
  • Press moldings of Examples 3 to 6 were carried out in the same manner as in Example 1 except that the compounds having the compositions shown in Table 1 were used and the thickness of the moldings was 3 mm.
  • the apparatus shown in FIG. 7 was used, and the compound having the composition shown in Table 1 was sheet-formed to a thickness of 3 mm. The obtained results are summarized in Table 1.
  • Examples 7-10, Comparative Examples 5-8 hardness and thermal conductivity were compared by changing the compounding ratio of the pulverized particles while keeping the total compounding amount of the thermally conductive inorganic particles the same.
  • the pressing method and rolling method were the same as in Examples 3-6 and Comparative Examples 1-4. The obtained results are summarized in Table 2 and FIGS.
  • the press-formed body has higher hardness and higher thermal conductivity than the rolled-formed body.
  • a press-molded product to which pulverized particles are added in addition to spherical particles has a high thermal conductivity and is suitable as a TIM (Thermal Interface Material).
  • the thermal conductivity of the press-molded body to which submicron particles (D50 less than 1 ⁇ m) were added was high.
  • Example 11-14 Comparative Examples 9-12
  • hardness and thermal conductivity were compared by changing the blending ratio of the total amount of thermally conductive inorganic particles.
  • the pressing method and rolling method were the same as in Examples 3-6 and Comparative Examples 1-4.
  • the obtained results are summarized in Table 3 and FIGS. 10-11.
  • the press molded body has higher hardness and higher thermal conductivity than the rolled molded body.
  • the press-molded article of the present invention is suitable for molded articles such as thermally conductive silicone rubber, gel, and resin, and can be applied to press-molded articles containing thermosetting resins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

This press-formed body 8 contains a thermosetting resin, has been press-formed and cured in a forming mold 2, and comprises a front surface and a back surface which are pressed surfaces. In this production method, an uncured thermosetting resin composition 4 is filled into a space portion 7 within the forming mold 2, pressed with a push plate 5 that fits in the space portion 7, and cured to be turned into the press-formed body 8. A plurality of space portions 7 for the forming mold can be formed in a single form sheet 2; this enables simultaneous casting of a plurality of pieces, and allows formed bodies of different thicknesses and physical properties to be formed simultaneously. Since a resin composition in an uncured state is press-formed, flashing does not occur, extremely little material is wasted, and a press-formed body of excellent product yield is obtained.

Description

押圧成形体及びその製造方法Press molded product and its manufacturing method
 本発明は、成形時の廃棄材料を極力少なくした押圧成形体及びその製造方法に関する。 The present invention relates to a press-molded body that minimizes waste material during molding and a method for manufacturing the same.
 シリコーンゴムなどの熱硬化性樹脂組成物の成形方法としては、次の方法が例示される。
(1)モールド成形:金型中に未硬化の液状組成物を流し込み、金型を締めてから熱プレス機により圧力と熱をかけて液状組成物を硬化させる。
(2)射出成形:射出成形機上の加熱した金型の中にノズルから未硬化の液状組成物を射出して金型のキャビティ内に充填する。硬化後に金型を開けて成型物を取り出す。
(3)コーティング成形:コーティング装置に連続的にセパレータフィルム、例えばポリエチレンテレフタレート(PET)フィルムを供給し、この上に未硬化の液状組成物をナイフコータ等により一定の厚さに塗布してから、加熱炉を通して液状組成物を硬化させる。
(4)シート成形:未硬化の熱硬化性樹脂を含む組成物を、等速ローラなどを用いてロール圧延しシート成形して所定の厚さとし、硬化した後、カットないしはトムソン型などで打ち抜き、バリを除去して所定の成形体とする。
 この中でもシート成形は、汎用性があり、製造コストも安く、実用的には広く使用されている成形法である。
 特許文献1には、未加硫のゴムシートと樹脂フィルムを重ねて圧縮し、シート成形した後に打ち抜き刃で打ち抜くことが提案されている。特許文献2には、炭素繊維プリプレグシートを硬化させた後に打ち抜き型で打ち抜くことが提案されている。特許文献3には、熱伝導性シリコーン組成物をシート状に成形して硬化することが提案されている。
Examples of methods for molding a thermosetting resin composition such as silicone rubber include the following methods.
(1) Molding: An uncured liquid composition is poured into a mold, the mold is closed, and pressure and heat are applied by a heat press to cure the liquid composition.
(2) Injection molding: An uncured liquid composition is injected from a nozzle into a heated mold on an injection molding machine to fill the mold cavity. After curing, the mold is opened and the molding is removed.
(3) Coating molding: A separator film such as a polyethylene terephthalate (PET) film is continuously supplied to a coating apparatus, and an uncured liquid composition is applied thereon with a knife coater or the like to a certain thickness, followed by heating. Curing the liquid composition through an oven.
(4) Sheet molding: A composition containing an uncured thermosetting resin is roll-rolled using a constant velocity roller or the like to form a sheet to a predetermined thickness. Deburring is removed to obtain a desired compact.
Among these, sheet molding is a molding method widely used in practice because of its versatility and low manufacturing cost.
Patent Literature 1 proposes stacking and compressing an unvulcanized rubber sheet and a resin film, forming a sheet, and then punching the sheet with a punching blade. Patent Literature 2 proposes punching with a punching die after curing a carbon fiber prepreg sheet. Patent Literature 3 proposes molding a thermally conductive silicone composition into a sheet and curing the sheet.
特開2012-147856号公報JP 2012-147856 A 特開2009‐172753号公報JP-A-2009-172753 特開2020-189929号公報JP 2020-189929 A
 しかし、従来のシート成形法は、硬化後の樹脂成形シートをカットするかあるいは打ち抜くため、カットの場合は廃棄する部分が生じ、打ち抜きの場合はバリが発生すると同時に、打ち抜く以外の材料は廃棄するため、製品歩留まり上の問題があった。 However, in the conventional sheet molding method, since the cured resin sheet is cut or punched out, some parts are discarded in the case of cutting, and burrs are generated in the case of punching, and at the same time, the material other than the punched material is discarded. Therefore, there was a problem in terms of product yield.
 本発明は前記従来の問題を解決するため、未硬化状態の樹脂組成物を押圧成形するため、バリの発生はなく、廃棄材料も極めて少なく、製品歩留まりの良好な押圧成形体及びその製造方法を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a press-molded article having a good product yield and a method for producing the same, because the resin composition in an uncured state is press-molded so that no burrs are generated and the amount of waste materials is extremely small. offer.
 本発明の押圧成形体は、熱硬化性樹脂を含む押圧成形体であって、成形型内で押圧成形され、硬化されており、表面と裏面が押圧面であることを特徴とする。 The press-molded article of the present invention is a press-molded article containing a thermosetting resin, is press-molded and cured in a mold, and is characterized in that the front surface and the back surface are pressing surfaces.
 本発明の押圧成形体の製造方法は、前記の押圧成形体の製造方法であって、未硬化の熱硬化性樹脂組成物を成形型内の空間部に充填し、前記空間部に嵌合する押し板で押圧成形し、硬化して押圧成形体とすることを特徴とする。 The method for producing a press-molded article of the present invention is the above-described method for producing a press-molded article, in which an uncured thermosetting resin composition is filled into the space in the mold and fitted into the space. It is characterized by press-molding with a pressing plate and curing to form a press-molded body.
 本発明は、未硬化状態の樹脂組成物を押圧成形するため、バリの発生はなく、廃棄材料も極めて少なく、製品歩留まりの良好な押圧成形体を提供できる。また、本発明の押圧成形体と従来の圧延成形体と比較すると、熱伝導性無機粒子の添加量が同一の場合、押圧成形体は成形体の硬さは高く、熱伝導率も高い。とくに球状粒子に加えて粉砕粒子を添加した場合は熱伝導率が高く、TIM(Thermal Interface Material)として好適である。さらに、本発明の押圧成形体の製造方法は、成形型は1枚の型枠シートに複数個形成することができ、複数個同時成型が可能であり、厚さ、物性の異なる成形体を同時に成形できる利点がある。 In the present invention, since the resin composition in an uncured state is press-molded, there is no generation of burrs, the amount of waste material is extremely small, and a press-molded article with a good product yield can be provided. Further, when the press-molded article of the present invention and the conventional roll-molded article are compared with each other, the press-molded article has high hardness and high thermal conductivity when the amount of the thermally conductive inorganic particles added is the same. Especially when pulverized particles are added in addition to spherical particles, the thermal conductivity is high and it is suitable as a TIM (Thermal Interface Material). Furthermore, in the method for producing a press-molded article of the present invention, a plurality of molding dies can be formed on a single mold sheet, and a plurality of moldings can be simultaneously molded. It has the advantage of being mouldable.
図1A-Dは本発明の一実施形態における押圧成形体の製造工程を示す模式的断面図であり、図1Aは押圧工程、図1Bは加熱硬化工程、図1Cは成形型の除去工程、図1Dは成形体取り出し工程を示す。1A to 1D are schematic cross-sectional views showing the steps of manufacturing a press-molded body according to an embodiment of the present invention, wherein FIG. 1A is a pressing step, FIG. 1B is a heat curing step, and FIG. 1C is a mold removing step. 1D shows the step of taking out the compact. 図2A-Dは本発明の別の実施形態における押圧成形体の製造工程を示す模式的断面図であり、図2Aは押圧工程、図2Bは加熱硬化工程、図2Cは成形型の除去工程、図2Dは成形体取り出し工程を示す。2A to 2D are schematic cross-sectional views showing the steps of manufacturing a press molded body in another embodiment of the present invention, FIG. 2A is a pressing step, FIG. 2B is a heat curing step, FIG. 2C is a mold removing step, FIG. 2D shows the step of taking out the compact. 図3は同、成形型と押し板の模式的斜視図である。FIG. 3 is a schematic perspective view of the mold and the pressing plate of the same. 図4Aは同、成形型に未硬化の熱硬化性樹脂組成物を充填したときの状態を示す模式的斜視図、図4Bはその上から載せる押し板の模式的斜視図である。FIG. 4A is a schematic perspective view showing a state in which an uncured thermosetting resin composition is filled in the same mold, and FIG. 4B is a schematic perspective view of a push plate placed thereon. 図5A-Dは本発明の別の実施形態における複数の押圧成形体を同時に成形する製造工程を示す模式的断面図であり、図5Aは未硬化の熱硬化性樹脂組成物の充填工程、図5Bは押し板を載せて押圧する押圧工程、図5Cは加熱硬化工程(プレス具を省略)、図5Dは成形体取り出し工程後の製品を示す。5A to 5D are schematic cross-sectional views showing manufacturing steps for simultaneously molding a plurality of press-molded bodies in another embodiment of the present invention, and FIG. 5A is a filling step of an uncured thermosetting resin composition. 5B shows a pressing step in which a pressing plate is placed and pressed, FIG. 5C shows a heat curing step (pressing tools are omitted), and FIG. 5D shows the product after a molding removal step. 図6A-Bは本発明の一実施例における試料の熱伝導率の測定方法を示す説明図である。6A and 6B are explanatory diagrams showing a method of measuring the thermal conductivity of a sample in one example of the present invention. 図7は従来の圧延成形方法を示す模式的断面説明図である。FIG. 7 is a schematic cross-sectional explanatory view showing a conventional roll forming method. 図8は本発明の実施例7~10及び比較例5~8の硬さを比較したグラフである。FIG. 8 is a graph comparing the hardness of Examples 7-10 of the present invention and Comparative Examples 5-8. 図9は本発明の実施例7~10及び比較例5~8の熱伝導率を比較したグラフである。FIG. 9 is a graph comparing the thermal conductivity of Examples 7-10 of the present invention and Comparative Examples 5-8. 図10は本発明の実施例11~14及び比較例9~12の硬さを比較したグラフである。FIG. 10 is a graph comparing the hardness of Examples 11-14 of the present invention and Comparative Examples 9-12. 図11は本発明の実施例11~14及び比較例9~12の熱伝導率を比較したグラフである。FIG. 11 is a graph comparing the thermal conductivity of Examples 11-14 of the present invention and Comparative Examples 9-12.
 本発明の押圧成形体は、次の製造工程によって製造する。
(1)未硬化の熱硬化性樹脂組成物を成形型内の空間部に充填する工程
 手動で充填する場合はスパチュラ、スプーン、ディスペンサー、ビン、缶、チューブなどの器具を用いて充填する。自動化する場合は、ペール缶、カートリッジ、チューブなどに充填してディスペンサーを使用しコンプレッサーからの圧力、もしくはモーノポンプと併用し所定量充填する。所定量充填するだけで済むので、廃棄物は出ない。
(2)成形工程
 未硬化の熱硬化性樹脂組成物を成形型に充填した後、成形型内の空間部に嵌合する押し板で押圧して成形し、硬化して押圧成形体とする。押圧力は1.6~16N/mmが好ましい。圧力が低いと未硬化の熱硬化性樹脂組成物が成形型内の空間部全体に広がらなく、圧力が高すぎると成形型と押し板の隙間から未硬化の熱伝導性樹脂組成物が溢れる可能性がある。硬化は常温(25℃)でも加熱硬化でもよいが、生産性からすると加熱硬化が好ましい。一例として付加硬化型オルガノポリシロキサン(シリコーンポリマー)を含む組成物の場合、80~120℃の温度で1~15分間加熱するのが好ましい。
The press molded body of the present invention is manufactured by the following manufacturing steps.
(1) Step of Filling Space in Mold with Uncured Thermosetting Resin Composition In the case of manual filling, a tool such as a spatula, spoon, dispenser, bottle, can or tube is used. In the case of automation, a pail, cartridge, tube or the like is filled, and a dispenser is used to apply pressure from a compressor, or a mono pump is used in combination to fill a predetermined amount. There is no waste because it is only necessary to fill the specified amount.
(2) Molding step After filling the molding die with the uncured thermosetting resin composition, it is molded by pressing with a pressing plate fitted in the space in the molding die, and cured to obtain a press-molded body. The pressing force is preferably 1.6 to 16 N/mm 2 . If the pressure is low, the uncured thermosetting resin composition will not spread throughout the space inside the mold, and if the pressure is too high, the uncured thermally conductive resin composition may overflow from the gap between the mold and the push plate. have a nature. Curing may be performed at room temperature (25° C.) or by heating, but heat curing is preferred in terms of productivity. As an example, in the case of a composition containing an addition-curable organopolysiloxane (silicone polymer), it is preferable to heat the composition at a temperature of 80-120° C. for 1-15 minutes.
 成形型及び押し板の材質は、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、アルミニウム、SUS、他の耐腐食性金属などが好ましい。この中でもアルミニウム、SUS、他の耐腐食性金属などは、熱変形しにくいことから好ましい。厚さは3~10mmが好ましい。  Preferable materials for the mold and the pressing plate are fluororesin such as polytetrafluoroethylene (PTFE), aluminum, SUS, and other corrosion-resistant metals. Among these, aluminum, SUS, and other corrosion-resistant metals are preferable because they are less likely to be thermally deformed. A thickness of 3 to 10 mm is preferred.
 前記成形型は厚さ方向に貫通しており、前記成形型を樹脂フィルム上に配置する。これにより空隙部が形成でき、ここに未硬化の熱硬化性樹脂組成物を充填する。樹脂フィルムは一例として離型処理されたポリエチレンテレフタレート(PET)フィルムが好ましい。加熱硬化温度で熱変形しないからである。 The mold penetrates in the thickness direction, and is placed on the resin film. As a result, a void can be formed, which is filled with an uncured thermosetting resin composition. As an example of the resin film, a release-treated polyethylene terephthalate (PET) film is preferable. This is because they are not thermally deformed at the heat curing temperature.
 前記成形型は、1枚の型枠シートに1個又は複数個形成されており、複数個形成されている場合は複数個同時成型が可能である。複数個の成形型は形状が同一又は異なっていてもよい。また、複数個の成形型には、同一又は別の組成物を充填することもできる。さらに、複数個の成形型に充填した組成物を押し板で押圧して厚みの異なる成形体を得ることもできる。 One or a plurality of the molds are formed on one mold sheet, and when a plurality of molds are formed, it is possible to mold a plurality of molds at the same time. A plurality of molds may have the same or different shapes. Also, multiple molds can be filled with the same or different compositions. Furthermore, molded articles having different thicknesses can be obtained by pressing the composition filled in a plurality of molds with a pressing plate.
 本発明の押圧成形体は成形型内で押圧成形され硬化されているため、表面と裏面が押圧面であり、バリがない。これにより、バリ取り及びトリミング処理が不要である。また、成形型は様々な形状とすることができ、押圧成形体も様々な形状にすることが可能である。例えば、矩形、矩形以外の多角形、丸形、それ以外の異形などが可能である。 Since the press-molded article of the present invention is press-molded and cured in the mold, the front and back surfaces are press surfaces and are free of burrs. This eliminates the need for deburring and trimming. Further, the mold can have various shapes, and the press molded body can also have various shapes. For example, a rectangular shape, a polygonal shape other than a rectangular shape, a circular shape, other irregular shapes, and the like are possible.
 前記押圧成形体は、平板状が好ましいが、表面と裏面の少なくとも一方に段差、凹凸などの所望の形状を付けることも可能である。これは、押し板及び/又は底板に所望の形状を付けることにより可能となる。押し板及び底板(底板はフィルムでもよい)が平坦である場合は平板状となる。平板状である場合は、厚みは0.5mm以上5mm以下であるのが好ましい。厚みが前記の範囲であると、歩留まりが高い成形体が得られる。前記押圧成形体は、樹脂成形体、ゴム成形体又はゲル成形体などに好適である。 Although the press-formed body is preferably flat, at least one of the front surface and the back surface may be provided with a desired shape such as a step or unevenness. This is made possible by giving the push plate and/or the bottom plate a desired shape. When the push plate and the bottom plate (the bottom plate may be a film) are flat, the shape is flat. When it is flat, the thickness is preferably 0.5 mm or more and 5 mm or less. When the thickness is within the above range, a molded article with a high yield can be obtained. The press molded body is suitable for a resin molded body, a rubber molded body, a gel molded body, or the like.
 本発明で使用できる熱硬化性樹脂は、オルガノポリシロキサン(シリコーン樹脂、シリコーンゴム、シリコーンゲル)、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂又はメラミン樹脂及びアクリル樹脂などである。この中でもオルガノポリシロキサン(シリコーン樹脂、シリコーンゴム、シリコーンゲル)が好ましい。 Thermosetting resins that can be used in the present invention include organopolysiloxane (silicone resin, silicone rubber, silicone gel), epoxy resin, acrylic resin, urethane resin, polyimide resin, polyester resin, phenol resin, unsaturated polyester resin or melamine resin. and acrylic resin. Among these, organopolysiloxane (silicone resin, silicone rubber, silicone gel) is preferred.
 前記押圧成形体は、熱伝導性、電気絶縁性、導電性又は電磁波シールド性などの特性を有することが好ましい。熱伝導性とするには、熱伝導性無機粒子として、アルミナ(酸化アルミニウム)、酸化亜鉛、酸化ケイ素、炭化ケイ素、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム及びシリカから選ばれる少なくとも一つの無機粒子であるのが好ましい。このうち、アルミナ(酸化アルミニウム)、窒化アルミニウムがとくに好ましい。熱伝導性無機粒子の形状は球状、不定形状(粉砕、破砕を含む)、針状、板状などを添加する。熱伝導性無機粒子は、熱硬化性樹脂100質量部に対して100~4000質量部添加するのが好ましく、より好ましくは500~3700質量部である。前記の範囲であれば、熱伝導性を高くできる。熱伝導率は、0.8W/m・K以上20W/m・K以下が好ましい。このような熱伝導性成形体はTIM(Thermal Interface Material)として好適である。 The press molded body preferably has properties such as thermal conductivity, electrical insulation, conductivity, or electromagnetic wave shielding properties. To make it thermally conductive, at least one inorganic particle selected from alumina (aluminum oxide), zinc oxide, silicon oxide, silicon carbide, aluminum nitride, boron nitride, aluminum hydroxide and silica is used as the thermally conductive inorganic particle. It is preferable to have Among these, alumina (aluminum oxide) and aluminum nitride are particularly preferred. The shape of the thermally conductive inorganic particles may be spherical, amorphous (including pulverized or crushed), acicular, plate-like, and the like. Thermally conductive inorganic particles are preferably added in an amount of 100 to 4000 parts by mass, more preferably 500 to 3700 parts by mass, per 100 parts by mass of the thermosetting resin. If it is the said range, thermal conductivity can be made high. The thermal conductivity is preferably 0.8 W/m·K or more and 20 W/m·K or less. Such a thermally conductive molding is suitable as a TIM (Thermal Interface Material).
 前記熱伝導性無機粒子は球状粒子及び粉砕粒子を含むと、本発明の押圧成形体は従来の圧延成形体に比べて硬さは高く、熱伝導率も高くできる。
 球状粒子は、熱硬化性樹脂100質量部に対して100~4000質量部が好ましく、より好ましくは200~2000質量部である。
 粉砕粒子は、熱硬化性樹脂100質量部に対して50~2000質量部が好ましく、より好ましくは100~900質量部である。
 さらにサブミクロン粒子(D50が1μm未満)を加えると、同様に硬さは高く、熱伝導率も高くできる。サブミクロン粒子は、熱硬化性樹脂100質量部に対して50~500質量部が好ましく、より好ましくは100~200質量部である。
When the thermally conductive inorganic particles include spherical particles and pulverized particles, the press-molded article of the present invention can have higher hardness and higher thermal conductivity than conventional roll-molded articles.
The spherical particles are preferably 100 to 4000 parts by mass, more preferably 200 to 2000 parts by mass, per 100 parts by mass of the thermosetting resin.
The pulverized particles are preferably 50 to 2000 parts by mass, more preferably 100 to 900 parts by mass, per 100 parts by mass of the thermosetting resin.
Further addition of submicron particles (D50 less than 1 μm) can similarly increase hardness and thermal conductivity. Submicron particles are preferably 50 to 500 parts by mass, more preferably 100 to 200 parts by mass, per 100 parts by mass of the thermosetting resin.
 前記熱伝導性無機粒子は、平均粒子径0.1~100μmとするのが好ましい。粒子径の測定はレーザー回折光散乱法により、体積基準による累積粒度分布のD50(メジアン径)を測定する。この測定器としては、例えば堀場製作所社製のレーザー回折/散乱式粒子径分布測定装置LA-950S2がある。
 熱伝導性無機粒子は、RSi(OR’)4-a(但し、Rは炭素数6~12の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物又はその部分加水分解物で表面処理されているものを使用できる。これにより混合性及び流動性が向上し、組成物の充填が容易となる。
The thermally conductive inorganic particles preferably have an average particle size of 0.1 to 100 μm. The particle size is measured by measuring the D50 (median diameter) of the cumulative particle size distribution on a volume basis by a laser diffraction light scattering method. As this measuring instrument, there is, for example, a laser diffraction/scattering particle size distribution analyzer LA-950S2 manufactured by Horiba, Ltd.
The thermally conductive inorganic particles are R a Si(OR′) 4-a (where R is an unsubstituted or substituted organic group having 6 to 12 carbon atoms, R′ is an alkyl group having 1 to 4 carbon atoms, a is 0 Alternatively, those surface-treated with the alkoxysilane compound shown in 1) or a partial hydrolyzate thereof can be used. This improves mixability and flowability and facilitates filling of the composition.
 電気絶縁性とするには導電性物質を加えない。逆に導電性とする場合は、カーボン、ガボーンナノチューブ、グラファイト、炭素繊維、銀粒子、銅粒子などの導電性物質を加える。電磁波シールド性とするには、フェライトなどの鉄を含む粒子を添加する。  In order to make it electrically insulating, no conductive substance is added. Conversely, when making it conductive, a conductive substance such as carbon, carbon nanotube, graphite, carbon fiber, silver particles, copper particles, etc. is added. For electromagnetic wave shielding, particles containing iron such as ferrite are added.
 前記未硬化の熱硬化性樹脂組成物は、さらにRSi(OR’)4-a(但し、Rは炭素数6~12の非置換または置換アルキル基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物を0.1~2質量部含むことが好ましい。これにより、組成物の粘度を下げることができる。 The uncured thermosetting resin composition further contains R a Si(OR′) 4-a (where R is an unsubstituted or substituted alkyl group having 6 to 12 carbon atoms, R′ is a The alkyl group and a are preferably 0 or 0.1 to 2 parts by mass of the alkoxysilane compound represented by 1). This can reduce the viscosity of the composition.
 前記未硬化の熱硬化性樹脂組成物には、必要に応じて前記以外の成分を配合することができる。例えばベンガラ、酸化チタン、酸化セリウムなどの耐熱向上剤、難燃剤、難燃助剤などを添加してもよい。着色、調色の目的で有機或いは無機粒子顔料を添加しても良い。フィラー表面処理などの目的で添加する材料として、アルコキシ基含有シリコーンを添加しても良い。 The uncured thermosetting resin composition may optionally contain components other than those mentioned above. For example, heat-resistant improvers such as red iron oxide, titanium oxide, and cerium oxide, flame retardants, and flame retardant aids may be added. Organic or inorganic particle pigments may be added for the purpose of coloring and toning. An alkoxy group-containing silicone may be added as a material added for the purpose of filler surface treatment.
 本発明の前記未硬化の熱硬化性樹脂組成物は、予めシート成形し、成形型と同一か又は前記成形型より小さい面積にカットし、前記成形型内の空間部に充填しても良い。このようにすると、成形型内の空間部全体に熱硬化性樹脂組成物が広がりやすくなり、成形性を上げることができる。 The uncured thermosetting resin composition of the present invention may be sheet-molded in advance, cut into an area equal to or smaller than that of the mold, and filled in the space inside the mold. By doing so, the thermosetting resin composition can be easily spread over the entire space in the mold, and moldability can be improved.
 以下図面を用いて説明する。以下の図面の説明において、同一符号は同一物を示す。図1A-Dは本発明の一実施形態における押圧成形体の製造工程を示す模式的断面図である。図1Aの押圧工程において、押圧成形装置1は、基台17の上のベースフィルム3の上に成形型の型枠シート2をセットし、厚さ方向に貫通する空間部7に未硬化の熱硬化性樹脂組成物4を充填し、上に押し板5を載せ、押し板5の上からプレス具9とで押圧する工程を示している。ベースフィルム3は厚さが100μm程度のポリエチレンテレフタレート(PET)フィルム(離形フィルム)が好ましい。
 図1Bの加熱硬化工程では、押圧したまま、一例として付加硬化型オルガノポリシロキサン(シリコーンポリマー)を含む成形組成物の場合、100℃の温度で10分間加熱する。加熱はPETフィルム3の下にヒーター6を入れて加熱してもよいし、全体をオーブンに入れてもよい。
 図1Cの成形型の除去工程では、成形型の型枠シート2を除去する。8は押圧成形体である。次いで図1Dの成形体取り出し工程では、プレス具9と押し板5を上に挙げて押圧成形体8を取り出す。
Description will be made below with reference to the drawings. In the following description of the drawings, the same symbols indicate the same items. 1A to 1D are schematic cross-sectional views showing manufacturing steps of a press molded body in one embodiment of the present invention. In the pressing process of FIG. 1A, the press molding apparatus 1 sets the mold sheet 2 on the base film 3 on the base 17, and heats the uncured heat in the space 7 penetrating in the thickness direction. It shows a process of filling the curable resin composition 4, placing a push plate 5 thereon, and pressing from above the push plate 5 with a press tool 9. FIG. The base film 3 is preferably a polyethylene terephthalate (PET) film (release film) having a thickness of about 100 μm.
In the heat-curing step of FIG. 1B, while being pressed, for example, in the case of a molding composition containing an addition-curable organopolysiloxane (silicone polymer), heating is performed at a temperature of 100° C. for 10 minutes. Heating may be performed by inserting a heater 6 under the PET film 3, or by placing the whole in an oven.
In the mold removing step of FIG. 1C, the formwork sheet 2 of the mold is removed. 8 is a press molded body. 1D, the press tool 9 and the pressing plate 5 are lifted up to take out the press-molded body 8. As shown in FIG.
 図2A-Dは本発明の別の実施形態における押圧成形体の製造工程を示す模式的断面図である。図1A-Dと相違する点は、熱硬化性樹脂組成物4と押し板5の間に離形フィルム10を介在させたことである。離形フィルム10は押し板5と同じ形に打ち抜く。離形フィルム10を介在させると、押圧成形体8を取り出しやすくできるとともに、押し板5の表面変形及び劣化を防ぐことができる。離形フィルム10はベースフィルムと同様の厚さが100μm程度のポリエチレンテレフタレート(PET)フィルムを使用できる。 2A to 2D are schematic cross-sectional views showing steps for manufacturing a press molded body in another embodiment of the present invention. 1A to 1D is that a release film 10 is interposed between the thermosetting resin composition 4 and the push plate 5. FIG. The release film 10 is punched into the same shape as the push plate 5. - 特許庁When the release film 10 is interposed, the press molded body 8 can be easily taken out, and surface deformation and deterioration of the press plate 5 can be prevented. As the release film 10, a polyethylene terephthalate (PET) film having a thickness of about 100 μm, which is the same as the base film, can be used.
 図3は成形型の型枠シート2と押し板5の模式的斜視図である。成形型の型枠シート2と押し板5は、厚さ10mmのPTFEシートを使用し、トムソン刃を有するプレス機で打ち抜いて同時に作成する。これにより押し板5は成形型の型枠シート2の空間部と嵌合する。打ち抜かれた部分は空間部7となり、成形部となる。
 図4Aは成形型2の空間部7に未硬化の熱硬化性樹脂組成物4を充填したときの状態を示す模式的斜視図、図4Bはその上から載せる押し板5の模式的斜視図である。
FIG. 3 is a schematic perspective view of the mold sheet 2 and the push plate 5 of the mold. The formwork sheet 2 and the pressing plate 5 of the molding die are produced simultaneously by using a PTFE sheet with a thickness of 10 mm and punching it out with a press having a Thomson blade. As a result, the push plate 5 fits into the space of the mold sheet 2 of the mold. The punched portion becomes the space portion 7 and the molded portion.
FIG. 4A is a schematic perspective view showing a state when the uncured thermosetting resin composition 4 is filled in the space 7 of the mold 2, and FIG. 4B is a schematic perspective view of the push plate 5 placed thereon. be.
 図5A-Dは本発明の別の実施形態における複数の押圧成形体を同時に成形する製造工程を示す模式的断面図である。図5Aに示すように、厚さ方向に貫通する空間部7a-7cを形成した成形型の型枠シート2をPETフィルム3の上に置く。次に、図5Bに示すように、成形型の型枠シート2の空間部に未硬化の熱硬化性樹脂組成物4a-4cを充填し、押し板5a-5cを載せて押圧する(プレス具を省略)。図5Cは加熱硬化工程(プレス具及びヒーターを省略)であり、未硬化の熱硬化性樹脂組成物4a-4cはそれぞれ押圧成形体8a-8cに押圧成形される。図5Dは成形体取り出し工程を示す。それぞれの押圧成形体8a-8cは厚さ及び/又は種類が異なってもよい。もちろん同一であっても構わない。 5A to 5D are schematic cross-sectional views showing manufacturing steps for simultaneously molding a plurality of press-molded bodies in another embodiment of the present invention. As shown in FIG. 5A, the formwork sheet 2 of the molding die having spaces 7a to 7c penetrating in the thickness direction is placed on the PET film 3. As shown in FIG. Next, as shown in FIG. 5B, the uncured thermosetting resin composition 4a-4c is filled in the space of the mold sheet 2 of the molding die, and the pressing plates 5a-5c are placed and pressed (press tool omitted). FIG. 5C shows a heat curing step (press tools and heaters omitted), in which uncured thermosetting resin compositions 4a-4c are press-molded into press-molded bodies 8a-8c, respectively. FIG. 5D shows the step of taking out the compact. Each pressing 8a-8c may differ in thickness and/or type. Of course, they may be the same.
 図7は従来のロール圧延成形方法を示す模式的断面説明図である。このロール圧延成形装置20は、未硬化の熱硬化性樹脂組成物(コンパウンド)24を上下のポリエステルフィルム23a,23bで挟み、等速ロール21a,21b間でロール圧延し、所定の厚さのシートを成形する。シード成形した後は加熱装置(図示省略)で硬化させる。22は基台プレートである。一例として、ロール間クリアランスは1~3mm、圧延速度1~2m/min、効果条件は100℃で3~5分間が好ましい。 FIG. 7 is a schematic cross-sectional explanatory view showing a conventional roll rolling forming method. This roll forming apparatus 20 sandwiches an uncured thermosetting resin composition (compound) 24 between upper and lower polyester films 23a and 23b and rolls it between constant velocity rolls 21a and 21b to obtain a sheet having a predetermined thickness. molding. After seed molding, it is cured by a heating device (not shown). 22 is a base plate. As an example, it is preferable that the clearance between rolls is 1 to 3 mm, the rolling speed is 1 to 2 m/min, and the effect conditions are 100° C. for 3 to 5 minutes.
 本発明の押圧成形と、従来のロール圧延成形によるシート成形後のカット又は打ち抜き成形と比較すると次のようになる。
(1)廃棄材料
 本発明の押圧成形は廃棄材料が出ないが、従来のシート成形後のカット又は打ち抜き成形は廃棄材料が出る。
(2)厚み違いの成形
 本発明の押圧成形は一工程で成形できるが、従来のシート成形後のカット又は打ち抜き成形は厚み違いの数だけシート作成及びシート載せ替え工程が必要である。
(3)異種材料の成形
 本発明の押圧成形は一工程で成形できるが、従来のシート成形後のカット又は打ち抜き成形は材料違いの数だけシート作成及びシート載せ替え工程が必要である。
(4)柔らかい原料(ASKER硬度10以下)
 本発明の押圧成形は変形なく成形可能であるが、従来のシート成形後のカット又は打ち抜き成形は柔らかすぎてシート載せ替え工程で変形する。本発明の押圧成形はASKER硬度10以下の柔らかい原料であっても変形なく成形可能である。
(5)バリの発生
 本発明の押圧成形はバリが発生しないが、従来のシート成形後の打ち抜き成形はバリが発生する。
(6)形状の安定
 本発明の押圧成形は、シートなどの移動がないため形状が安定であるが、従来のシート成形後のカット又は打ち抜き成形はシート載せ替え工程で変形しやすい。
(7)工程数
 本発明の押圧成形は一工程で成形できるが、従来法は、シート成形工程とカット工程、又はシート成形工程と打ち抜き成形工程の複数工程が必要である。
(8)製造コスト
 本発明の押圧成形は廃棄材料が出ず一工程であるため製造コストは安いが、従来のシート成形後のカット又は打ち抜き成形は廃棄材料が出ることと複数工程であるため製造コストは高い。
A comparison between the press molding of the present invention and cutting or punching after sheet molding by conventional roll rolling is as follows.
(1) Waste materials Press molding of the present invention does not produce waste materials, but conventional sheet molding followed by cutting or stamping produces waste materials.
(2) Molding with Different Thicknesses The press molding of the present invention can be molded in one step, but the conventional cutting or punching after sheet molding requires the steps of sheet preparation and sheet replacement for the number of different thicknesses.
(3) Molding of Different Materials The press molding of the present invention can be molded in one step, but conventional cutting or punching after sheet molding requires the steps of sheet preparation and sheet replacement for the number of different materials.
(4) Soft raw material (ASKER hardness of 10 or less)
The press molding of the present invention can be molded without deformation, but the conventional cut or stamping after sheet molding is too soft and deforms during the sheet replacement process. The press molding of the present invention can mold even a soft raw material having an ASKER hardness of 10 or less without deformation.
(5) Generation of burrs The press molding of the present invention does not generate burrs, but the conventional stamping after sheet molding generates burrs.
(6) Stability of shape The press molding of the present invention is stable in shape because the sheet does not move, but conventional cutting or punching after sheet molding tends to deform during the sheet replacement process.
(7) Number of Steps The press molding of the present invention can be formed in one step, but the conventional method requires a plurality of steps of a sheet forming step and a cutting step, or a sheet forming step and a stamping step.
(8) Manufacturing cost The press molding of the present invention is a single process that does not generate waste materials, so the manufacturing cost is low. Cost is high.
 以下実施例を用いて説明する。本発明は実施例に限定されるものではない。各種パラメーターについては下記の方法で測定した。
<熱伝導率>
 押圧成形体の熱伝導率は、ホットディスク(ISO 22007-2準拠)により測定した。この熱伝導率測定装置11は図6Aに示すように、ポリイミドフィルム製センサ12を2個の試料13a,13bで挟み、センサ12に定電力をかけ、一定発熱させてセンサ12の温度上昇値から熱特性を解析する。センサ12は先端14が直径7mmであり、図6Bに示すように、電極の2重スパイラル構造となっており、下部に印加電流用電極15と抵抗値用電極(温度測定用電極)16が配置されている。熱伝導率は以下の式(数1)で算出する。
Figure JPOXMLDOC01-appb-M000001
<硬さ>
 ASTM D2240に規定されているShore 00で測定した。
Examples will be described below. The invention is not limited to the examples. Various parameters were measured by the following methods.
<Thermal conductivity>
The thermal conductivity of the press molded body was measured with a hot disk (according to ISO 22007-2). As shown in FIG. 6A, this thermal conductivity measuring device 11 sandwiches a polyimide film sensor 12 between two samples 13a and 13b, applies a constant power to the sensor 12, heats the sensor 12 at a constant temperature, and measures the temperature rise of the sensor 12. Analyze thermal properties. The sensor 12 has a tip 14 with a diameter of 7 mm, and as shown in FIG. 6B, has a double spiral structure of electrodes, and an applied current electrode 15 and a resistance value electrode (temperature measurement electrode) 16 are arranged at the bottom. It is Thermal conductivity is calculated by the following formula (Equation 1).
Figure JPOXMLDOC01-appb-M000001
<Hardness>
Measured at Shore 00 specified in ASTM D2240.
(実施例1)
 この実施例は厚さの異なる押圧成形体を同時に成形した。
1.原料成分
・マトリックス樹脂:付加硬化型シリコーンポリマーとして、市販の2液タイプのオルガノポリシロキサンを使用した。一方の液にはオルガノポリシロキサンベースポリマーと白金系硬化触媒が含まれており、他方の液にはオルガノポリシロキサンベースポリマーと加硫剤(硬化剤)が含まれている。
・熱伝導性無機粒子:酸化アルミニウム(平均粒子径2μm、粒子形状:破砕状、マトリックス樹脂100質量部に対して800質量部)と酸化アルミニウム(平均粒子径30μm、粒子形状:球状、マトリックス樹脂100質量部に対して700質量部)をマトリックス樹脂100質量部に対して合計で1500質量部となる割合で添加した。
2.混合
 前記原料成分をプラネタリーミキサーに入れ、23℃で10分間混合した。混合中もしくは混合後に減圧脱泡した。得られた組成物はディスペンサーに充填した。
3.押圧成形
 厚さ10mmのポリテトラフルオロエチレン(PTFE)シートを使用して図5A-Bに示す形の成形型と押し板を作成した。押圧成形装置1は図1A-Dに示す装置を用いた。
 成形型2の空間部7a-7cに未硬化の熱硬化性樹脂組成物を充填した。前記組成物はディスペンサーから圧入し、押圧成形体の厚さが異なるように充填した。次に、図5Bに示すように、押し板5a-5cを載せて、押圧力8N/mmで加圧した(プレス具を省略)。図5Cの加熱硬化工程(プレス具及びヒーターを省略)で100℃、10分間硬化させ、図1Dのようにそれぞれの押圧成形体8a-8cを取り出した。得られた押圧成形体8aの厚さは1mm、8bの厚さは3mm、8cの厚さは5mmであった。また、押圧成形体8a-8cの熱伝導率は、いずれも、4.5W/m・Kであった。
 以上のとおり、厚さの異なる平板状の押圧成形体を同時に成形できた。
(Example 1)
In this example, press-formed bodies with different thicknesses were formed at the same time.
1. Raw material components/matrix resin: A commercially available two-liquid type organopolysiloxane was used as the addition-curable silicone polymer. One liquid contains an organopolysiloxane base polymer and a platinum-based curing catalyst, and the other liquid contains an organopolysiloxane base polymer and a vulcanizing agent (curing agent).
・ Thermally conductive inorganic particles: aluminum oxide (average particle size: 2 μm, particle shape: crushed, 800 parts by mass per 100 parts by mass of matrix resin) and aluminum oxide (average particle size: 30 μm, particle shape: spherical, matrix resin: 100 parts by mass) 700 parts by mass per 100 parts by mass of the matrix resin) was added in a ratio of 1500 parts by mass in total per 100 parts by mass of the matrix resin.
2. Mixing The raw ingredients were placed in a planetary mixer and mixed at 23° C. for 10 minutes. Degassing was performed under reduced pressure during or after mixing. The resulting composition was filled into dispensers.
3. Press Molding A polytetrafluoroethylene (PTFE) sheet with a thickness of 10 mm was used to prepare a mold and press plate of the shape shown in FIGS. 5A-B. As the press molding apparatus 1, the apparatus shown in FIGS. 1A to 1D was used.
The spaces 7a to 7c of the mold 2 were filled with an uncured thermosetting resin composition. The composition was pressed in from a dispenser and filled with different thicknesses of the press-molded body. Next, as shown in FIG. 5B, pressing plates 5a to 5c were placed and pressed with a pressing force of 8 N/mm 2 (press tools omitted). It was cured at 100° C. for 10 minutes in the heat-curing step (press tool and heater are omitted) of FIG. The thickness of the obtained press molded body 8a was 1 mm, the thickness of 8b was 3 mm, and the thickness of 8c was 5 mm. Moreover, the thermal conductivity of each of the press molded bodies 8a to 8c was 4.5 W/m·K.
As described above, flat plate-like press-formed bodies having different thicknesses could be simultaneously formed.
(実施例2)
 この実施例は種類の異なる押圧成形体を同時に成形した。
(1)原料A
・マトリックス樹脂:付加硬化型シリコーンポリマーとして、市販の2液タイプのオルガノポリシロキサンを使用した。一方の液にはオルガノポリシロキサンベースポリマーと白金系硬化触媒が含まれており、他方の液にはオルガノポリシロキサンベースポリマーと加硫剤(硬化剤)が含まれている。
・熱伝導性無機粒子:酸化アルミニウム(平均粒子径2μm、粒子形状:破砕状、マトリックス樹脂100質量部に対して100質量部)と酸化ケイ素(平均粒子径30μm、粒子形状:球状、マトリックス樹脂100質量部に対して300質量部)をマトリックス樹脂100質量部に対して合計で400質量部となる割合で添加した。
(2)原料B
 熱伝導性無機粒子を酸化アルミニウム(平均粒子径2μm、粒子形状:破砕状、マトリックス樹脂100質量部に対して400質量部)、酸化アルミニウム(平均粒径70μm、粒子形状:球状、マトリックス樹脂100質量部に対して150質量部)と水酸化アルミニウム(平均粒子径50μm、粒子形状:球状、マトリックス樹脂100質量部に対して200質量部)をマトリックス樹脂100質量部に対して合計で750質量部となる割合で添加した以外は原料Aと同様とした。
(3)原料C
 熱伝導性無機粒子を酸化アルミニウム(平均粒子径2μm、粒子形状:破砕状、マトリックス樹脂100質量部に対して800質量部)と酸化アルミニウム(平均粒子径30μm、粒子形状:球状、マトリックス樹脂100質量部に対して700質量部)をマトリックス樹脂100質量部に対して合計で1500質量部となる割合で添加した以外は原料Aと同様とした。
 これ以外は実施例1と同様に実施し、厚さは同一とし、熱伝導性の異なる押圧成形体とした。
 得られた押圧成形体8a-8cの厚さはいずれも1mm、押圧成形体8aの熱伝導率は1.4W/m・K、押圧成形体8bの熱伝導率は2.5W/m・K、押圧成形体8cの熱伝導率は4.5W/m・Kであった。
 以上のとおり、熱伝導率の異なる平板状の押圧成形体を同時に成形できた。
(Example 2)
In this example, different types of press-molded bodies were formed simultaneously.
(1) Raw material A
• Matrix resin: A commercially available two-liquid type organopolysiloxane was used as the addition-curable silicone polymer. One liquid contains an organopolysiloxane base polymer and a platinum-based curing catalyst, and the other liquid contains an organopolysiloxane base polymer and a vulcanizing agent (curing agent).
・ Thermally conductive inorganic particles: aluminum oxide (average particle size: 2 μm, particle shape: crushed, 100 parts by mass per 100 parts by mass of matrix resin) and silicon oxide (average particle size: 30 μm, particle shape: spherical, matrix resin: 100 parts by mass) 300 parts by mass per 100 parts by mass of the matrix resin) was added at a rate of 400 parts by mass in total per 100 parts by mass of the matrix resin.
(2) Raw material B
Aluminum oxide (average particle size: 2 μm, particle shape: crushed, 400 parts by mass per 100 parts by mass of matrix resin), aluminum oxide (average particle size: 70 μm, particle shape: spherical, matrix resin: 100 mass parts). 150 parts by mass per 100 parts by mass of the matrix resin) and aluminum hydroxide (average particle size: 50 μm, particle shape: spherical, 200 parts by mass per 100 parts by mass of the matrix resin) and 750 parts by mass in total per 100 parts by mass of the matrix resin. It was the same as the raw material A except that it was added at a ratio of
(3) Raw material C
Aluminum oxide (average particle size: 2 μm, particle shape: crushed, 800 parts by mass per 100 parts by mass of matrix resin) and aluminum oxide (average particle size: 30 μm, particle shape: spherical, matrix resin: 100 mass parts) are used as thermally conductive inorganic particles. 700 parts by mass per 100 parts by mass of the matrix resin) was added in a ratio of 1500 parts by mass in total per 100 parts by mass of the matrix resin.
Except for this, the same procedure as in Example 1 was carried out, and press-formed bodies having the same thickness and different thermal conductivities were obtained.
The thickness of each of the press-molded bodies 8a to 8c obtained was 1 mm, the thermal conductivity of the press-molded body 8a was 1.4 W/m·K, and the thermal conductivity of the pressed body 8b was 2.5 W/m·K. , the thermal conductivity of the press molded body 8c was 4.5 W/m·K.
As described above, flat plate-like press-formed bodies having different thermal conductivities could be formed at the same time.
 以上の結果から、実施例1~2は、未硬化状態の樹脂組成物を押圧成形するため、バリの発生はなく、廃棄材料も極めて少なく、製品歩留まりの良好な押圧成形体であることが確認できた。また、成形型は1枚の型枠シートに複数個形成することができ、複数個同時成型が可能であり、厚さ、物性の異なる押圧成形体を同時に成形できることが確認できた。 From the above results, it was confirmed that Examples 1 and 2 produced press-molded products with good product yield, with no burrs and very little waste material because the uncured resin composition was press-molded. did it. In addition, it was confirmed that a plurality of molding dies can be formed on a single mold sheet, a plurality of moldings can be molded simultaneously, and press moldings having different thicknesses and physical properties can be molded at the same time.
(実施例3~6、比較例1~4)
 この実施例は、大きさの異なる真球状粒子同士(実施例3~5)と、真球状粒子と破砕粒子を混合した場合(実施例6)の押圧成形体と、圧延成形体(比較例1~4)の比較をした。
 実施例3~6の押圧成形体は、表1に示す組成のコンパウンドを使用し、成形体の厚さを3mmとした以外は実施例1と同様に実施した。
 比較例1~4の圧延成形は、図7に示す装置を用い、表1に示す組成のコンパウンドでシート成形し、成形体の厚さを3mmとした。
 得られた結果を表1にまとめて示す。
(Examples 3-6, Comparative Examples 1-4)
In this example, spherical particles of different sizes (Examples 3 to 5), a press-molded product obtained by mixing true spherical particles and crushed particles (Example 6), and a rolled compact (Comparative Example 1) 4) were compared.
Press moldings of Examples 3 to 6 were carried out in the same manner as in Example 1 except that the compounds having the compositions shown in Table 1 were used and the thickness of the moldings was 3 mm.
In the roll forming of Comparative Examples 1 to 4, the apparatus shown in FIG. 7 was used, and the compound having the composition shown in Table 1 was sheet-formed to a thickness of 3 mm.
The obtained results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなとおり、熱伝導性無機粒子が真球状の場合は成形方法に関わらず差は見られないが、粉砕粉を混合すると押圧成形体の熱伝導率は向上した。 As is clear from Table 1, when the thermally conductive inorganic particles are spherical, there is no difference regardless of the molding method, but the thermal conductivity of the press molded body is improved by mixing the pulverized powder.
(実施例7~10、比較例5~8)
 この実施例は、熱伝導性無機粒子合計の配合量は同一とし、粉砕粒子の配合比を変化させて、硬さと熱伝導率を比較した。押圧成形方法と圧延成形方法は、実施例3~6、比較例1~4と同様とした。
 得られた結果を表2及び図8~9にまとめて示す。
(Examples 7-10, Comparative Examples 5-8)
In this example, hardness and thermal conductivity were compared by changing the compounding ratio of the pulverized particles while keeping the total compounding amount of the thermally conductive inorganic particles the same. The pressing method and rolling method were the same as in Examples 3-6 and Comparative Examples 1-4.
The obtained results are summarized in Table 2 and FIGS.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2、図8~9から明らかなとおり、押圧成形体は圧延成形体に比べて硬さは高く、熱伝導率も高いことが確認できた。とくに真球状粒子に加えて粉砕粒子を添加した押圧成形体は熱伝導率が高く、TIM(Thermal Interface Material)として好適である。さらにサブミクロン粒子(D50が1μm未満)を加えた押圧成形体の熱伝導率は高かった。 As is clear from Table 2 and FIGS. 8 and 9, it was confirmed that the press-formed body has higher hardness and higher thermal conductivity than the rolled-formed body. In particular, a press-molded product to which pulverized particles are added in addition to spherical particles has a high thermal conductivity and is suitable as a TIM (Thermal Interface Material). In addition, the thermal conductivity of the press-molded body to which submicron particles (D50 less than 1 μm) were added was high.
(実施例11~14、比較例9~12)
 この実施例は、熱伝導性無機粒子合計の配合率を変化させて、硬さと熱伝導率を比較した。押圧成形方法と圧延成形方法は、実施例3~6、比較例1~4と同様とした。
 得られた結果を表3及び図10~11にまとめて示す。
(Examples 11-14, Comparative Examples 9-12)
In this example, hardness and thermal conductivity were compared by changing the blending ratio of the total amount of thermally conductive inorganic particles. The pressing method and rolling method were the same as in Examples 3-6 and Comparative Examples 1-4.
The obtained results are summarized in Table 3 and FIGS. 10-11.
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 表3、図10~11から明らかなとおり、押圧成形体は圧延成形体に比べて硬さは高く、熱伝導率も高いことが確認できた。 As is clear from Table 3 and FIGS. 10 to 11, it was confirmed that the press molded body has higher hardness and higher thermal conductivity than the rolled molded body.
 本発明の押圧成形体は、熱伝導性シリコーンゴム、ゲル、樹脂などの成形体に好適であり、熱硬化性樹脂を含む押圧成形体に適用できる。 The press-molded article of the present invention is suitable for molded articles such as thermally conductive silicone rubber, gel, and resin, and can be applied to press-molded articles containing thermosetting resins.
1 押圧成形装置
2 成形型の型枠シート
3 ベースフィルム
4,4a-4c 未硬化の熱硬化性樹脂組成物
5,5a-5c 押し板
6 ヒーター
7,7a-7c 空間部
8,8a-8c 押圧成形体
9 プレス具
10 離形フィルム
11 熱伝導率測定装置
12 センサ
13a,13b 試料
14 センサの先端
15 印加電流用電極
16 抵抗値用電極(温度測定用電極)
17 基台
20 ロール圧延成形装置
21a,21b ロール
22 基台プレート
23a,23b ポリエステルフィルム
 
1 press molding device 2 mold sheet for forming mold 3 base film 4, 4a-4c uncured thermosetting resin composition 5, 5a-5c push plate 6 heater 7, 7a- 7c space 8, 8a-8c press Molded body 9 Press tool 10 Release film 11 Thermal conductivity measuring device 12 Sensors 13a, 13b Sample 14 Sensor tip 15 Applied current electrode 16 Resistance value electrode (temperature measurement electrode)
17 base 20 roll rolling forming device 21a, 21b roll 22 base plate 23a, 23b polyester film

Claims (17)

  1.  熱硬化性樹脂を含む押圧成形体であって、
     成形型内で押圧成形され、硬化されており、表面と裏面が押圧面であることを特徴とする押圧成形体。
    A press molded body containing a thermosetting resin,
    1. A press-molded article, which is press-molded and cured in a mold, and has a front surface and a back surface as pressing surfaces.
  2.  前記熱硬化性樹脂は、オルガノポリシロキサン、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、メラミン樹脂及びアクリル樹脂から選ばれる群からなる少なくとも一つの樹脂である請求項1に記載の押圧成形体。 The thermosetting resin is at least one resin selected from the group selected from organopolysiloxane, epoxy resin, acrylic resin, urethane resin, polyimide resin, polyester resin, phenol resin, unsaturated polyester resin, melamine resin and acrylic resin. A press-molded body according to claim 1.
  3.  前記押圧成形体は平板であり、厚みが0.5mm以上5mm以下である請求項1又は2に記載の押圧成形体。 The press-molded article according to claim 1 or 2, wherein the press-molded article is a flat plate and has a thickness of 0.5 mm or more and 5 mm or less.
  4.  前記押圧成形体は、樹脂成形体、ゴム成形体及びゲル成形体から選ばれる群からなる少なくとも一つの成形体である請求項1~3のいずれか1項に記載の押圧成形体。 The press-molded body according to any one of claims 1 to 3, wherein the press-molded body is at least one molded body selected from the group consisting of a resin molded body, a rubber molded body and a gel molded body.
  5.  前記押圧成形体は、熱伝導性、電気絶縁性、導電性及び電磁波シールド性から選ばれる群からなる少なくとも一つの特性を有するである請求項1~4のいずれか1項に記載の押圧成形体。 The press-molded body according to any one of claims 1 to 4, wherein said press-molded body has at least one characteristic selected from the group consisting of thermal conductivity, electrical insulation, conductivity and electromagnetic wave shielding properties. .
  6.  前記押圧成形体は熱伝導性があり、その熱伝導率は、0.8W/m・K以上20W/m・K以下である請求項5に記載の押圧成形体。 The press-molded article according to claim 5, wherein the press-molded article has thermal conductivity, and the thermal conductivity thereof is 0.8 W/m·K or more and 20 W/m·K or less.
  7.  前記押圧成形体は、熱硬化性樹脂100質量部に対して熱伝導性無機粒子が100~4000質量部添加されている請求項1~6のいずれか1項に記載の押圧成形体。 The press-molded article according to any one of claims 1 to 6, wherein 100 to 4000 parts by mass of thermally conductive inorganic particles are added to 100 parts by mass of thermosetting resin.
  8.  前記熱伝導性無機粒子は球状粒子及び粉砕粒子を含む請求項7に記載の押圧成形体。 The press-formed body according to claim 7, wherein the thermally conductive inorganic particles include spherical particles and pulverized particles.
  9.  請求項1~8のいずれか1項に記載の押圧成形体の製造方法であって、
     未硬化の熱硬化性樹脂組成物を成形型内の空間部に充填し、前記空間部に嵌合する押し板で押圧成形し、硬化して押圧成形体とすることを特徴とする押圧成形体の製造方法。
    A method for producing a press-molded article according to any one of claims 1 to 8,
    A press-molded article characterized by filling an uncured thermosetting resin composition into a space in a mold, press-molding with a press plate fitted in the space, and curing to obtain a press-molded article. manufacturing method.
  10.  前記成形型は厚さ方向に貫通しており、前記成形型を樹脂フィルム上に配置して成形する請求項9に記載の押圧成形体の製造方法。 The method for manufacturing a press-molded article according to claim 9, wherein the mold penetrates in the thickness direction, and the molding is performed by placing the mold on the resin film.
  11.  前記成形型は、1枚の型枠シートに複数個形成されており、複数個同時成型が可能である請求項8又は10に記載の押圧成形体の製造方法。 The method for manufacturing a press-molded body according to claim 8 or 10, wherein a plurality of said molding dies are formed on one mold sheet, and a plurality of moldings can be simultaneously molded.
  12.  前記複数個の成形型は、形状が同一又は異なる請求項11に記載の押圧成形体の製造方法。 The method for manufacturing a press-molded body according to claim 11, wherein the plurality of molds have the same or different shapes.
  13.  前記複数個の成形型には、同一又は別の熱硬化性樹脂組成物を充填する請求項11又は12に記載の押圧成形体の製造方法。 The method for manufacturing a press-molded body according to claim 11 or 12, wherein the plurality of molds are filled with the same or different thermosetting resin composition.
  14.  前記複数個の成形型に充填した熱硬化性樹脂組成物を押し板で押圧して厚みの異なる成形体を得る請求項11~13のいずれか1項に記載の押圧成形体の製造方法。 The method for producing a press-molded article according to any one of claims 11 to 13, wherein the thermosetting resin composition filled in the plurality of molds is pressed with a pressing plate to obtain molded articles having different thicknesses.
  15.  前記成形型に充填した熱硬化性樹脂組成物と押し板との間に離形フィルムを介在させる請求項9~14のいずれか1項に記載の押圧成形体の製造方法。 The method for producing a press-molded article according to any one of claims 9 to 14, wherein a release film is interposed between the thermosetting resin composition filled in the mold and the pressing plate.
  16.  前記押し板で押圧成形する際の押圧力は1.6~16N/mmである請求項9~15のいずれか1項に記載の押圧成形体の製造方法。 16. The method for producing a press-formed body according to any one of claims 9 to 15, wherein a pressing force in press-molding with the pressing plate is 1.6 to 16 N/mm 2 .
  17.  前記未硬化の熱硬化性樹脂組成物は、予めシート成形し、成形型と同一か又は前記成形型より小さい面積にカットし、前記成形型内の空間部に充填する請求項9~16のいずれか1項に記載の押圧成形体の製造方法。
     
    Any one of claims 9 to 16, wherein the uncured thermosetting resin composition is sheet-molded in advance, cut into an area equal to or smaller than that of the mold, and filled into the space in the mold. 2. A method for producing a press-molded article according to claim 1.
PCT/JP2021/037864 2021-01-27 2021-10-13 Press-formed body and production method therefor WO2022163026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022529650A JPWO2022163026A1 (en) 2021-01-27 2021-10-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-011432 2021-01-27
JP2021011432 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163026A1 true WO2022163026A1 (en) 2022-08-04

Family

ID=82654313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037864 WO2022163026A1 (en) 2021-01-27 2021-10-13 Press-formed body and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2022163026A1 (en)
TW (1) TW202231436A (en)
WO (1) WO2022163026A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343983A (en) * 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk Inorganic powder and its application
JP2015005611A (en) * 2013-06-20 2015-01-08 Towa株式会社 Method and device of compression resin encapsulation of electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343983A (en) * 2004-06-02 2005-12-15 Denki Kagaku Kogyo Kk Inorganic powder and its application
JP2015005611A (en) * 2013-06-20 2015-01-08 Towa株式会社 Method and device of compression resin encapsulation of electronic component

Also Published As

Publication number Publication date
TW202231436A (en) 2022-08-16
JPWO2022163026A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
TWI486310B (en) Zinc oxide particles, a method for producing the same, an exothermic filler, a resin composition, an exothermic grease and an exothermic coating composition
JP6214094B2 (en) Thermally conductive sheet
WO2014010563A1 (en) Method for producing thermally conductive sheet
JP2009094110A (en) Heat dissipation member, its sheet, and its production method
TW201617153A (en) Green molded body manufacturing method and inorganic sintered body manufacturing method
CN108603034B (en) Heat conduction member and method for manufacturing heat conduction member
WO2022163026A1 (en) Press-formed body and production method therefor
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
CN105754350A (en) High-heat-conductivity gel sheet and preparation method thereof
JP6983345B1 (en) Thermally conductive sheet and electronic equipment
CN112166158B (en) Composite particles and method for producing same
KR20180075097A (en) Heat radiated grapheme sheet and manufacturing method thereof
JP7119440B2 (en) Composite sheet manufacturing method
WO2020213606A1 (en) Stereolithographic resin composition, and 3d-printed article
JP2006103099A (en) Method for producing molded article, and molded article
JP2004216756A (en) Mold for molding preform and method for producing fuel cell separator using the preform
WO2023189777A1 (en) Method for producing composite material sheet and device for producing composite material sheet
JP2023111633A (en) Thermally conductive sheet and method for producing the same
CN114402706B (en) Heat sink
JP2023054801A (en) Composite material, heat releasing material and method for manufacturing heat releasing material
CN114467367B (en) Heat sink
WO2021255580A1 (en) Flowable hardenable composition, thermally conductive composition, and electronic heat sink assembly including the same
WO2023189778A1 (en) Composite material sheet
EP4211074A1 (en) Decorated particle, composite material including the same, and methods of making the same
TW202411316A (en) Sheet, base material for printed board, and method for manufacturing sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022529650

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921657

Country of ref document: EP

Kind code of ref document: A1