WO2022162964A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022162964A1
WO2022162964A1 PCT/JP2021/013447 JP2021013447W WO2022162964A1 WO 2022162964 A1 WO2022162964 A1 WO 2022162964A1 JP 2021013447 W JP2021013447 W JP 2021013447W WO 2022162964 A1 WO2022162964 A1 WO 2022162964A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
pfc
output terminal
mode
Prior art date
Application number
PCT/JP2021/013447
Other languages
English (en)
French (fr)
Inventor
和明 三野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022578017A priority Critical patent/JPWO2022162964A1/ja
Priority to CN202180089259.6A priority patent/CN116746047A/zh
Publication of WO2022162964A1 publication Critical patent/WO2022162964A1/ja
Priority to US18/219,123 priority patent/US20230353045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/006Supplying electric power to auxiliary equipment of vehicles to power outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power converter that converts AC power and DC power.
  • EVs and PHEVs are equipped with a large-capacity storage battery in the vehicle body, it can be used as a power source to output AC voltage from an AC outlet via a DC-AC inverter, allowing users to use general electronic devices in the vehicle. It is known to enable
  • Patent Document 1 describes a multiphase PFC converter that includes a rectifier circuit using a bridge diode and a plurality of boost chopper circuits.
  • Patent Document 2 describes a plurality of totem-pole bridgeless PFC (power factor correction) converters.
  • JP 2012-90423 A Japanese Patent Publication No. 2016-533147
  • Patent Document 1 Although the PFC converter described in Patent Document 1 is low cost, it is rectified using a diode bridge, so power cannot be transmitted in both directions. Therefore, if an AC outlet is to be provided inside the vehicle, a separate DC-AC inverter is required.
  • the totem pole bridgeless PFC converter described in Patent Document 2 can transmit power in both directions, so there is no need to prepare a separate DC-AC inverter even when an AC outlet is provided, and power conversion efficiency is improved because diodes are not used. can be higher. However, if the number of switching elements increases and expensive switching elements such as SiC and GaN are used, the cost will increase significantly.
  • an object of the present invention is to provide a power conversion device for charging an electric vehicle having a large-capacity storage battery such as an EV or a PHEV, while achieving high efficiency even when charging the storage battery from the electric power system, which is the original purpose. 3.
  • a power conversion device which does not require a separate DC-AC inverter when providing an AC outlet and which can be realized at low cost.
  • a power converter of the present invention includes an AC voltage input terminal, a first PFC converter and a second PFC converter connected to the AC voltage input terminal and connected in parallel with each other, an output of the first PFC converter and a first PFC converter. and a DC voltage output terminal for synthesizing and outputting the outputs of the two PFC converters.
  • the first PFC converter is composed of a diode rectification PFC converter.
  • the second PFC converter consists of a totem pole bridgeless PFC converter.
  • the power conversion device further includes a switch connected to a second PFC side connection line connecting the AC voltage input terminal and the second PFC converter, and an AC voltage output terminal connected to the second PFC side connection line.
  • the power converter converts an AC voltage from an AC voltage input terminal into a DC voltage by controlling the operation of the first PFC converter and the second PFC converter and by controlling the ON/OFF of the switch, and outputs the DC voltage to the DC voltage output terminal.
  • a first mode of outputting from the DC voltage output terminal a second mode of changing the DC voltage from the DC voltage output terminal to an AC voltage and outputting the AC voltage from the AC voltage output terminal, and an AC voltage from the AC voltage input terminal to the AC voltage
  • a direct output mode for output from an output terminal a set of the first mode and the second mode, or a set of the first mode and the direct output mode Run.
  • a non-reversible first PFC converter and a reversible second PFC converter are provided in parallel. This realizes bi-directional power supply of alternating current and direct current.
  • the first PFC converter can be easily constructed at a lower cost than the second PFC converter, and the loss performance is less likely to deteriorate even if the cost is reduced.
  • bi-directional power supply of alternating current and direct current can be realized with low loss and at low cost.
  • FIG. 1 is a diagram showing an example of an application system of a power conversion device according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the converter (power converter) according to the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram showing how the converter is connected when charging the storage battery. 4A to 4G show various waveforms during charging.
  • FIG. 5 is an equivalent circuit diagram showing how the converter is connected when the DC power charged in the storage battery is supplied to the outside from the AC output terminal.
  • FIGS. 6A to 6D show various waveforms when the DC voltage of the storage battery is converted and AC voltage is supplied from the AC output terminal.
  • FIG. 7 is an equivalent circuit diagram of a converter (power converter) according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of an application system of a power conversion device according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the converter (power converter) according to the first embodiment of the present invention.
  • FIG. 8 is an equivalent circuit diagram showing how the converter is connected when charging the storage battery.
  • FIG. 9 is an equivalent circuit diagram showing how the converter is connected when charging the storage battery and supplying the AC voltage at the same time.
  • FIG. 10 is an equivalent circuit diagram showing how the converter is connected when the DC power charged in the storage battery is supplied to the outside from the AC output terminal.
  • FIGS. 11A to 11G show various waveforms during charging with a light load.
  • FIGS. 12A to 12G show various waveforms during charging in both the discontinuous current mode and the continuous current mode.
  • FIG. 1 is a diagram showing an example of an application system of a power conversion device according to an embodiment of the present invention.
  • the converter 10 according to the first embodiment of the present invention is applied to an electric vehicle 90, as shown in FIG.
  • Electric vehicle 90 includes converter 10 , DC-DC converter 91 , storage battery 92 , AC power supply socket 93 , and AC outlet 94 .
  • the converter 10 corresponds to the "power converter” of the present invention
  • the storage battery 92 corresponds to the "DC load” of the present invention.
  • the AC power supply socket 93 is connected to the converter 10.
  • Converter 10 is connected to DC-DC converter 91 and AC outlet 94 .
  • DC-DC converter 91 is connected to storage battery 92 .
  • an external power supply cable 910 is attached to the AC power supply socket 93.
  • a power supply cable 910 is connected to an external charger 900 .
  • the AC power supply socket 93 is supplied with AC voltage from the charger 900 through the power supply cable 910 .
  • the converter 10 has the function of a two-way PFC circuit, converts the AC voltage from the AC power supply socket 93 into DC voltage, and outputs it to the DC-DC converter 91 .
  • the DC-DC converter 91 converts the output voltage from the converter 10 into the charging voltage of the storage battery 92 and outputs it to the storage battery 92 .
  • the storage battery 92 is charged by this charging voltage.
  • the converter 10 Since the converter 10 has the function of a two-way PFC circuit as described above, it converts the DC voltage from the storage battery 92 into AC voltage and transmits it through the AC outlet 94 to the AC load connected to the AC outlet 94 ( For example, electrical appliances), output AC voltage.
  • FIG. 2 is an equivalent circuit diagram of the converter (power converter) according to the first embodiment of the present invention.
  • Converter 10 includes diode bridge DB, inductor L1, inductor L2, inductor L3, switching element Q1, switching element Q2, switching element Q3, switching element Q4, switching element Q5, switching element Q6, diode D1, diode D2, capacitor Co, It has a switch SW1 and a control IC11.
  • Converter 10 also includes an AC input terminal P AC1 , a DC output terminal P DC and an AC output terminal P AC2 .
  • the switching element Q1, switching element Q2, switching element Q5, and switching element Q6 are silicon semiconductor Si-MOSFETs.
  • the switching element Q3 and the switching element Q4 are GaN-FETs of gallium nitride semiconductor.
  • diode bridge DB The AC input terminal of diode bridge DB is connected to AC input terminal PAC1.
  • a Hi-side output terminal of diode bridge DB is connected to one end of inductor L1 and one end of inductor L2.
  • a low-side output terminal of the diode bridge DB is connected to the reference potential line.
  • the reference potential line is connected to the reference potential side of the DC output terminal PDC.
  • the cathode of diode D1 is connected to the other end of inductor L1. Also, the drain of the switching element Q1 is connected to the other end of the inductor L1. The source of switching element Q1 is connected to the reference potential line. The anode of the diode D1 is connected to the high potential side of the DC output terminal PDC.
  • the cathode of diode D2 is connected to the other end of inductor L2. Also, the drain of the switching element Q2 is connected to the other end of the inductor L2. The source of switching element Q2 is connected to the reference potential line. The anode of the diode D2 is connected to the high potential side of the DC output terminal PDC.
  • the inductor L2, switching element Q2, and diode D2 constitute a second boost chopper circuit.
  • the first boost chopper circuit and the second boost chopper circuit correspond to the "first PFC converter" of the present invention.
  • inductor L3 One end of inductor L3 is connected to one terminal of AC input terminal PAC1.
  • the other end of inductor L3 is connected to a node between the drain of switching element Q3 and the source of switching element Q4.
  • the source of switching element Q3 is connected to the reference potential line.
  • the drain of the switching element Q4 is connected to the high potential side of the DC output terminal PDC.
  • a node between the drain of switching element Q5 and the source of switching element Q6 is connected to one terminal of AC input terminal PAC1.
  • the source of switching element Q5 is connected to the reference potential line.
  • the drain of the switching element Q6 is connected to the high potential side of the DC output terminal PDC.
  • These inductor L3, switching element Q3, switching element Q4, switching element Q5, and switching element Q6 constitute a totem pole bridgeless PFC.
  • This totem pole bridgeless PFC corresponds to the "second PFC converter" of the present invention.
  • one phase consisting of the diode bridge DB and the first boost chopper circuit, one phase consisting of the diode bridge DB and the second boost chopper circuit, and one phase consisting of the totem pole bridgeless PFC are connected in parallel. Action is realized. That is, two phases are realized by a diode bridge DB and a boost chopper circuit, and one phase is realized by a totem pole bridgeless PFC.
  • the capacitor Co is connected between the high potential side of the DC output terminal PDC and the reference potential side of the DC output terminal PDC.
  • the control IC 11 is connected to the gates of a plurality of (six in this embodiment) switching elements Q1-Q6, and outputs switching control signals to the plurality of switching elements Q1-Q6.
  • the switching elements Q1-Q6 are driven and controlled by the switching control signal from the control IC11.
  • the switch SW1 is connected between the second PFC side connection line connecting the AC input terminal PAC1 and the totem pole bridgeless PFC and the AC output terminal PAC2 .
  • the switch SW1 controls conduction or disconnection between the second PFC side connection line and the AC output terminal PAC2.
  • FIG. 3 is an equivalent circuit diagram showing how the converter is connected when charging the storage battery.
  • a storage battery 92 is connected to the DC output terminal PDC.
  • a charger 900 is connected to the AC input terminal PAC1.
  • the switch SW1 is controlled to be off. In other words, the switch SW1 is controlled to be open. In this embodiment, the switch SW1 is controlled to be turned off during charging of the storage battery 92, but the switch SW1 may be controlled to be turned on (controlled to be in a conductive state). In this case, the AC voltage can be output from the AC output terminal PAC2 as the storage battery 92 is charged.
  • control IC 11 outputs switching control signals to the plurality of switching elements Q1-Q6. More specifically, the control IC 11 controls switching of the plurality of switching elements Q1 to Q6 so that the first boost chopper circuit, the second boost chopper circuit, and the totem pole bridgeless PFC perform interleaved operation. Output a signal.
  • FIGS. 4A to 4G show various waveforms during charging.
  • FIGS. 4A, 4B, and 4C show examples of waveforms of switching control signals for switching elements Q1, Q2, and Q4, respectively.
  • FIGS. 4(D), 4(E), and 4(F) show examples of inductor current waveforms of inductors L1, L2, and L3.
  • FIG. 4G shows an example of the current waveform of the AC input terminal PAC1. Although the waveforms of switching element Q3, switching element Q5, and switching element Q6 are not shown, the waveform of switching element Q5 is the same as that of switching element Q4, and the waveforms of switching elements Q3 and Q6 are the same as those of switching element Q4. reversed phase.
  • the switching element Q1, the switching element Q2, and the switching element Q4 are turned on with a phase difference of 120°, as shown in FIGS. 4(A) to 4(C).
  • the inductor current IL1 of the inductor L1 of the first boost chopper circuit As a result, as shown in FIGS. 4(D) to 4(F), the inductor current IL1 of the inductor L1 of the first boost chopper circuit, the inductor current IL2 of the inductor L2 of the second boost chopper circuit, and the totem
  • the inductor current IL3 of the inductor L3 of the pole bridgeless PFC also has waveforms with a phase difference of 120°, and the ripple currents superimposed on the DC components are also shifted by 120°.
  • Current Icin at AC input terminal PAC1 is a current obtained by adding inductor current IL1, inductor current IL2, and inductor current IL3. Therefore, since inductor current IL1, inductor current IL2, and inductor current IL3 have a phase difference of 120° from each other as described above, their respective ripple currents act to cancel each other. As a result, as shown in FIG. 4G, the ripple current amplitude of the current Icin of the AC input terminal PAC1 is suppressed.
  • the converter 10 converts the AC voltage input from the AC input terminal P AC1 into a DC voltage and outputs the DC voltage from the DC output terminal P DC .
  • the output DC voltage charges the storage battery 92 .
  • FIG. 5 is an equivalent circuit diagram showing how the converter is connected when the DC power charged in the storage battery is supplied to the outside from the AC output terminal.
  • a storage battery 92 is connected to the DC output terminal PDC.
  • a load 940 is connected to the AC output terminal PAC2 .
  • Load 940 is an AC load.
  • the switch SW1 When the DC power charged in the storage battery 92 is supplied to the outside from the AC output terminal PAC2 , the switch SW1 is turned on. In other words, the switch SW1 is controlled to be conductive.
  • both the first boost chopper circuit and the second boost chopper circuit are unidirectional PFC converters, the DC voltage input from the DC output terminal P DC is converted to AC and output to the AC input terminal P AC1 side. Can not. Therefore, the first boost chopper circuit and the second boost chopper circuit are controlled to stop.
  • the totem pole bridgeless PFC Since the totem pole bridgeless PFC is capable of bi-directional power transmission, it can convert the DC voltage input from the DC output terminal P DC into AC and output it to the AC input terminal P AC1 and the AC output terminal P AC2 . . Therefore, the totem pole bridgeless PFC is driven and controlled.
  • the converter 10 converts the DC voltage input from the DC output terminal P DC into an AC voltage and outputs it from the AC output terminal P AC2 .
  • This output AC voltage is supplied to the load 940 .
  • the switching elements of the totem pole bridgeless PFC are preferably driven at a higher switching frequency than when charging the storage battery 92 .
  • FIGS. 6(A) to 6(D) show various waveforms when converting the DC voltage of the storage battery and supplying the AC voltage from the AC output terminal.
  • FIGS. 6A and 6C show examples of waveforms of switching control signals for the switching element Q4.
  • 6(B) and 6(D) show examples of ripple current waveforms superimposed on the converted alternating current.
  • 6A and 6B show when the switching frequency is high
  • FIGS. 6C and 6D show when the switching frequency is low.
  • the low switching frequency is the same as the switching frequency during charging described above.
  • the high switching frequency is preferably a positive integer multiple of the low switching frequency.
  • the amplitude of the ripple current can be reduced by increasing the switching frequency.
  • GaN-FETs are used only for the switching elements Q3 and Q4 of the totem pole bridgeless PFC, and Si-MOSFETs are used for the other switching elements Q1, Q2, Q5 and Q6.
  • the converter 10 can be configured at a lower cost than using GaN-FETs for all the switching elements Q1-Q6.
  • converter 10 can supply AC power to the load connected to AC output terminal PAC2 while charging storage battery 92 .
  • the converter 10 interleaves the first boost chopper circuit and the second boost chopper circuit.
  • This AC voltage is supplied when the charger 900 has an AC 220V/30A, 6.6 kW output.
  • the converter 10 performs the above-described three-phase power conversion, and the storage battery 92 is charged with the converted direct current.
  • converter 10 drives only one phase of totem pole bridgeless PFC. Therefore, a 2.2 kW output is obtained from the AC output terminal PAC2 .
  • GaN-FETs are used for the switching elements Q3 and Q4 of the totem pole bridgeless PFC, but switching elements using other wide bandgap semiconductors such as SiC-FETs may also be used.
  • FIG. 7 is an equivalent circuit diagram of a converter (power converter) according to a second embodiment of the present invention.
  • the converter 10 according to the second embodiment differs from the converter 10 according to the first embodiment in the connection mode of the switch SW2 and the AC output terminal PAC2 .
  • Other configurations of converter 10A are the same as those of converter 10, and descriptions of similar parts are omitted.
  • AC output terminal PAC2 is directly connected to the second PFC side connection line (connection line connecting AC input terminal PAC1 and totem pole bridgeless PFC).
  • the switch SW2 is inserted in the middle of the second PFC side connection line. More specifically, the switch SW2 is connected between the connection portion between the totem-pole bridgeless PFC and the AC output terminal PAC2 and the AC input terminal PAC1 in the second PFC side connection line.
  • FIG. 8 is an equivalent circuit diagram showing how the converter is connected when charging the storage battery. As shown in FIG. 8, a storage battery 92 is connected to the DC output terminal PDC. A charger 900 is connected to the AC input terminal PAC1.
  • the switch SW2 When charging the storage battery 92, the switch SW2 is controlled to be ON. In other words, the switch SW2 is controlled to be conductive.
  • control IC 11 outputs switching control signals to the plurality of switching elements Q1-Q6. More specifically, the control IC 11 controls switching of the plurality of switching elements Q1 to Q6 so that the first boost chopper circuit, the second boost chopper circuit, and the totem pole bridgeless PFC perform interleaved operation. Output a signal.
  • converter 10A converts an AC voltage input from AC input terminal P AC1 into a DC voltage and outputs the DC voltage from DC output terminal P DC .
  • the output DC voltage charges the storage battery 92 .
  • the harmonic current generated from converter 10A is suppressed by performing the above-described control.
  • FIG. 9 is an equivalent circuit diagram showing how the converter is connected when charging the storage battery and supplying the AC voltage at the same time.
  • a storage battery 92 is connected to the DC output terminal PDC.
  • a charger 900 is connected to the AC input terminal PAC1.
  • a load 940 is connected to the AC output terminal PAC2 .
  • switch SW2 During charging of storage battery 92 and during supply of AC power from AC output terminal PAC2 , switch SW2 is controlled to be off. In other words, the switch SW2 is controlled to be open.
  • Converter 10A charges storage battery 92 with a first boost chopper circuit and a second boost chopper circuit, and totem pole bridgeless PFC serves as an inverter for outputting power of storage battery 92 to AC output terminal PAC2 . Switching control is performed so as to operate. At this time, the converter 10 is better if the first boost chopper circuit and the second boost chopper circuit are interleaved.
  • converter 10A can supply AC power to load 940 connected to AC output terminal PAC2 while charging storage battery 92 .
  • FIG. 10 is an equivalent circuit diagram showing how the converter is connected when the DC power charged in the storage battery is supplied to the outside from the AC output terminal.
  • a storage battery 92 is connected to the DC output terminal PDC.
  • a load 940 is connected to the AC output terminal PAC2 .
  • the switch SW2 When the DC power charged in the storage battery 92 is supplied to the outside from the AC output terminal PAC2 , the switch SW2 is turned off. In other words, the switch SW2 is controlled to be open.
  • the first boost chopper circuit and the second boost chopper circuit are controlled to stop.
  • the totem pole bridgeless PFC is driven and controlled.
  • converter 10A converts the DC voltage input from DC output terminal P DC into AC voltage and outputs the AC voltage from AC output terminal P AC2 .
  • This output AC voltage is supplied to the load 940 .
  • the switching elements of the totem pole bridgeless PFC are preferably driven at a switching frequency higher than the switching frequency when charging the storage battery 92, as in the first embodiment.
  • converter 10A can also drive the first boost chopper circuit and the second boost chopper circuit. That is, converter 10A can generate an AC voltage from the power of storage battery 92 while charging storage battery 92 with the first boost chopper circuit and the second boost chopper circuit, and output the AC voltage from AC output terminal PAC2 . can.
  • a power converter according to a third embodiment of the present invention will be described with reference to the drawings.
  • the converter according to the third embodiment has the same circuit configuration as the converter according to the first embodiment.
  • the converter according to the third embodiment differs from the converter according to the first embodiment in charge control during light load.
  • Other control of the converter according to the third embodiment is the same as that of the converter according to the first embodiment, and the description of the same parts will be omitted.
  • FIGS. 11(A) to 11(G) show various waveforms during charging in the continuous current mode.
  • FIGS. 12A to 12G show various waveforms during charging in both the discontinuous current mode and the continuous current mode.
  • FIGS. 11A, 11B, and 11C show examples of waveforms of switching control signals for switching elements Q1, Q2, and Q4, respectively.
  • FIGS. 11(D), 11(E), and 11(F) show examples of inductor current waveforms of inductors L1, L2, and L3.
  • FIG. 11G shows an example of the current waveform of the AC input terminal PAC1. Although the waveforms of switching element Q3, switching element Q5, and switching element Q6 are not shown, the waveform of switching element Q5 is the same as that of switching element Q4, and the waveforms of switching elements Q3 and Q6 are the same as those of switching element Q4. reversed phase.
  • the converter when the load is light, switches the first boost chopper circuit and the second boost chopper circuit to Operate in critical mode. Also, as shown in FIGS. 11C and 11F, the converter operates the totem-pole bridgeless PFC in the current continuous mode at light load.
  • FIGS. 12A, 12B, and 12C show examples of waveforms of switching control signals for switching elements Q1, Q2, and Q4, respectively.
  • FIGS. 12(D), 12(E), and 12(F) show examples of inductor current waveforms of inductors L1, L2, and L3.
  • FIG. 12G shows an example of the current waveform of the AC input terminal PAC1. Although the waveforms of switching element Q3, switching element Q5, and switching element Q6 are not shown, the waveform of switching element Q5 is the same as that of switching element Q4, and the waveforms of switching elements Q3 and Q6 are the same as those of switching element Q4. reversed phase.
  • the converter when the load is light, switches the first boost chopper circuit and the second boost chopper circuit to Operate in discontinuous current mode. Also, as shown in FIGS. 12(C) and 12(F), the converter operates the totem pole bridgeless PFC in the current continuous mode when the load is light.
  • the converter By performing such control, the converter actively uses the highly efficient totem pole bridgeless PFC for charging when the load is light. As a result, the power conversion efficiency during light load can be improved. Also, as shown in FIGS. 11A and 11B, in this control, the switching elements of the first boost chopper circuit and the second boost chopper circuit are turned on when the current is zero. Thereby, the switching loss of the first boost chopper circuit and the second boost chopper circuit can be reduced, and the power conversion efficiency of the converter can be further improved.
  • the first boost chopper circuit, the second boost chopper circuit, and the totem pole bridgeless PFC perform interleaved operation, so ripple current is suppressed.
  • the switching frequency of the totem pole bridgeless PFC may be tripled when interleaved with the first boost chopper circuit and the second boost chopper circuit. This suppresses ripple current even when the totem-pole bridgeless PFC operates alone.

Abstract

蓄電池(92)の充電時は、スイッチ(SW1)を導通し、並列に接続された第1の昇圧チョッパ回路、第2の昇圧チョッパ回路、および、トーテムポールブリッジレスPFCをインターリーブ動作させ、交流入力端子(PAC1)から入力された交流電圧を直流に変換し、直流出力端子(PDC)から出力する。交流出力端子(PAC2)を用いた交流出力時には、スイッチ(SW1)を導通し、トーテムポールブリッジレスPFCを用いて、蓄電池(92)からの直流電圧を交流に変換し、交流出力端子(PAC2)から出力する。

Description

電力変換装置
 本発明は、交流電力と直流電力とを変換する電力変換装置に関する。
 近年、普及が進みつつある電気自動車(EV)或いはプラグインハイブリッド自動車(PHEV)では、自宅ガレージ等に設置されるAC充電器によって充電される方式が採用されている。充電器の充電プラグにはAC電圧が印加されるので、EVまたはPHEVの車体側には、PFCコンバータが搭載されている。
 また、EVまたはPHEVは、車両本体に大容量の蓄電池を備えるため、それを電力源としてDC-ACインバータを介してACアウトレットからAC電圧を出力できるようにし、ユーザーが車内で一般用電子機器を使えるようにすることが知られている。
 特許文献1には、ブリッジダイオードによる整流回路と、複数の昇圧チョッパ回路とを備えたマルチフェーズPFCコンバータが記載されている。
 特許文献2には、複数のトーテムポールブリッジレスPFC(力率改善)コンバータが記載されている。
特開2012-90423号公報 特表2016-533147号公報
 特許文献1に記載のPFCコンバータでは、低コストであるが、ダイオードブリッジを用いて整流しているため、双方向に電力を伝送することはできない。そのため、車内にACアウトレットを設けようとすると、別途DC-ACインバータが必要になる。
 特許文献2に記載のトーテムポールブリッジレスPFCコンバータでは、双方向に電力を伝送できるので、ACアウトレットを設ける場合にも別途DC-ACインバータを用意する必要がなく、ダイオードを用いないので電力変換効率も高くできる。しかしながら、スイッチング素子の個数が多くなり、SiCやGaN等の高価なスイッチング素子を用いると、大幅なコスト増を招いてしまう。
 したがって、本発明の目的は、EVやPHEV等の大容量の蓄電池を有する電動車両を充電する電力変換装置において、本来の目的である電力系統からの蓄電池への充電時にも高効率を実現しつつ、ACアウトレットを設ける際に別途DC-ACインバータが不要で、且つ、安価に実現する電力変換装置を提供することにある。
 この発明の電力変換装置は、交流電圧入力端子と、交流電圧入力端子に接続され、互いに並列に接続された第1のPFCコンバータおよび第2のPFCコンバータと、第1のPFCコンバータの出力と第2のPFCコンバータの出力を合成して出力する直流電圧出力端子と、を備える。第1のPFCコンバータは、ダイオード整流型PFCコンバータで構成される。第2のPFCコンバータは、トーテムポールブリッジレスPFCコンバータで構成される。電力変換装置は、交流電圧入力端子と第2のPFCコンバータとを接続する第2PFC側接続ラインに接続されるスイッチと、第2PFC側接続ラインに接続される交流電圧出力端子と、さらに備える。電力変換装置は、第1のPFCコンバータおよび第2のPFCコンバータの動作制御とスイッチのオンオフ制御によって、交流電圧入力端子からの交流電圧を直流電圧に変換して該直流電圧を前記直流電圧出力端子から出力する第1態様と、直流電圧出力端子からの直流電圧を交流電圧に変化して該交流電圧を交流電圧出力端子から出力する第2態様と、交流電圧入力端子からの交流電圧を交流電圧出力端子から出力する直結出力態様とのいずれか1つの態様、または、前記第1態様と前記第2態様との組、もしくは、前記第1態様と前記直接出力態様との組から、選択的に実行する。
 この構成では、非可逆の第1のPFCコンバータと、可逆の第2のPFCコンバータとを並列に備える。これにより、交流と直流との双方向での電力供給が実現される。また、第1のPFCコンバータは、第2のPFCコンバータと比較して安価に構成し易く、安価にしても損失性能が劣化し難い。
 この発明によれば、交流と直流との双方向での電力供給を、低損失で、且つ、安価に実現できる。
図1は、本発明の実施形態に係る電力変換装置の適用システムの一例を示す図である。 図2は、本発明の第1の実施形態に係るコンバータ(電力変換装置)の等価回路図である。 図3は、蓄電池の充電時におけるコンバータの接続態様を示す等価回路図である。 図4(A)-図4(G)は、充電時における各種波形を示す。 図5は、蓄電池に充電された直流電力を交流出力端子から外部に供給する時におけるコンバータの接続態様を示す等価回路図である。 図6(A)-図6(D)は、蓄電池の直流電圧を変換して交流出力端子から交流電圧を供給するときにおける各種波形を示す。 図7は、本発明の第2の実施形態に係るコンバータ(電力変換装置)の等価回路図である。 図8は、蓄電池の充電時におけるコンバータの接続態様を示す等価回路図である。 図9は、蓄電池の充電と交流電圧の供給とを同時に行う時におけるコンバータの接続態様を示す等価回路図である。 図10は、蓄電池に充電された直流電力を交流出力端子から外部に供給する時におけるコンバータの接続態様を示す等価回路図である。 図11(A)-図11(G)は、軽負荷の充電時における各種波形を示す。 図12(A)-図12(G)は、電流不連続モードと電流連続モードとの併用での充電時における各種波形を示す。
 [第1の実施形態]
 本発明の第1の実施形態に係る電力変換装置について、図を参照して説明する。
 (適用されるシステムの一例)
 図1は、本発明の実施形態に係る電力変換装置の適用システムの一例を示す図である。
 図1に示すように、例えば、本発明の第1の実施形態に係るコンバータ10は、電気自動車90に適用される。なお、本実施形態のコンバータ10は、電気自動車に限らず、プラグインハイブリット車両にも適用できる。電気自動車90は、コンバータ10、DC-DCコンバータ91、蓄電池92、AC給電ソケット93、および、ACアウトレット94を備える。コンバータ10が、本発明の「電力変換装置」に対応し、蓄電池92が、本発明の「直流型負荷」に対応する。
 AC給電ソケット93は、コンバータ10に接続される。コンバータ10は、DC-DCコンバータ91およびACアウトレット94に接続される。DC-DCコンバータ91は、蓄電池92に接続される。
 概略的には、このシステムでは、蓄電池92を充電する場合、AC給電ソケット93に、外部の給電ケーブル910が装着される。給電ケーブル910は、外部の充電器900に接続されている。これにより、AC給電ソケット93には、給電ケーブル910を通じて、充電器900から交流電圧が供給される。
 コンバータ10は、双方向PFC回路の機能を有しており、AC給電ソケット93からの交流電圧を直流電圧に変換して、DC-DCコンバータ91に出力する。DC-DCコンバータ91は、コンバータ10からの出力電圧を、蓄電池92の充電電圧に変換し、蓄電池92に出力する。蓄電池92は、この充電電圧によって、充電される。
 また、このシステムでは、ACアウトレット94から交流電圧を出力する場合、蓄電池92から直流電圧が供給される。
 コンバータ10は、上述の通り双方向PFC回路の機能を有しているので、蓄電池92からの直流電圧を交流電圧に変換して、ACアウトレット94を通じて、ACアウトレット94に接続された交流型負荷(例えば、電化製品)に、交流電圧を出力する。
 (コンバータ10の構成)
 図2は、本発明の第1の実施形態に係るコンバータ(電力変換装置)の等価回路図である。コンバータ10は、ダイオードブリッジDB、インダクタL1、インダクタL2、インダクタL3、スイッチング素子Q1、スイッチング素子Q2、スイッチング素子Q3、スイッチング素子Q4、スイッチング素子Q5、スイッチング素子Q6、ダイオードD1、ダイオードD2、コンデンサCo、スイッチSW1、および、制御IC11を備える。また、コンバータ10は、交流入力端子PAC1、直流出力端子PDC、および、交流出力端子PAC2を備える。
 スイッチング素子Q1、スイッチング素子Q2、スイッチング素子Q5、および、スイッチング素子Q6は、シリコン半導体のSi-MOSFETである。スイッチング素子Q3およびスイッチング素子Q4は、窒化ガリウム半導体のGaN-FETである。
 ダイオードブリッジDBの交流入力端子は、交流入力端子PAC1に接続される。ダイオードブリッジDBのHi側出力端子は、インダクタL1の一方端およびインダクタL2の一方端に接続される。
 ダイオードブリッジDBのLow側出力端子は、基準電位ラインに接続される。基準電位ラインは、直流出力端子PDCの基準電位側に接続される。
 インダクタL1の他方端には、ダイオードD1のカソードが接続される。また、インダクタL1の他方端には、スイッチング素子Q1のドレインが接続される。スイッチング素子Q1のソースは、基準電位ラインに接続される。ダイオードD1のアノードは、直流出力端子PDCのHi電位側に接続される。これら、インダクタL1、スイッチング素子Q1、および、ダイオードD1によって、第1の昇圧チョッパ回路が構成される。
 インダクタL2の他方端には、ダイオードD2のカソードが接続される。また、インダクタL2の他方端には、スイッチング素子Q2のドレインが接続される。スイッチング素子Q2のソースは、基準電位ラインに接続される。ダイオードD2のアノードは、直流出力端子PDCのHi電位側に接続される。これらインダクタL2、スイッチング素子Q2、および、ダイオードD2によって、第2の昇圧チョッパ回路が構成される。
 そして、第1の昇圧チョッパ回路と第2の昇圧チョッパ回路とが、本発明の「第1のPFCコンバータ」に対応する。
 インダクタL3の一方端は、交流入力端子PAC1の一方端子に接続される。インダクタL3の他方端は、スイッチング素子Q3のドレインとスイッチング素子Q4のソースとのノードに接続される。スイッチング素子Q3のソースは、基準電位ラインに接続される。スイッチング素子Q4のドレインは、直流出力端子PDCのHi電位側に接続される。
 スイッチング素子Q5のドレインとスイッチング素子Q6のソースとのノードは、交流入力端子PAC1の一方端子に接続される。スイッチング素子Q5のソースは、基準電位ラインに接続される。スイッチング素子Q6のドレインは、直流出力端子PDCのHi電位側に接続される。これらインダクタL3、スイッチング素子Q3、スイッチング素子Q4、スイッチング素子Q5、および、スイッチング素子Q6によって、トーテムポールブリッジレスPFCが構成される。このトーテムポールブリッジレスPFCが、本発明の「第2のPFCコンバータ」に対応する。
 そして、これらの構成によって、ダイオードブリッジDBと第1の昇圧チョッパ回路からなる1相、ダイオードブリッジDBと第2の昇圧チョッパ回路からなる1相、および、トーテムポールブリッジレスPFCからなる1相の並列動作が実現される。すなわち、2相がダイオードブリッジDBと昇圧チョッパ回路によって実現され、1相がトーテムポールブリッジレスPFCによって実現される。
 コンデンサCoは、直流出力端子PDCのHi電位側と直流出力端子PDCの基準電位側との間に接続される。
 制御IC11は、複数(本実施形態では6個)のスイッチング素子Q1-Q6のゲートに接続し、複数のスイッチング素子Q1-Q6に対して、スイッチング制御信号を出力する。言い換えれば、複数のスイッチング素子Q1-Q6は、制御IC11からのスイッチング制御信号によって駆動制御される。
 スイッチSW1は、交流入力端子PAC1とトーテムポールブリッジレスPFCとを接続する第2PFC側接続ラインと交流出力端子PAC2との間に接続される。スイッチSW1は、第2PFC側接続ラインと交流出力端子PAC2と間の導通または開放を制御する。
 (蓄電池92を充電するとき(第1態様))
 図3は、蓄電池の充電時におけるコンバータの接続態様を示す等価回路図である。図3に示すように、直流出力端子PDCには、蓄電池92が接続される。また、交流入力端子PAC1には、充電器900が接続される。
 蓄電池92の充電時、スイッチSW1は、オフ制御される。言い換えれば、スイッチSW1は、開放状態に制御される。なお、本実施形態では、蓄電池92の充電時に、スイッチSW1をオフ制御する態様を示したが、スイッチSW1をオン制御(導通状態に制御)してもよい。この場合、蓄電池92の充電とともに、交流出力端子PAC2から交流電圧を出力できる。
 この状態において、制御IC11は、複数のスイッチング素子Q1-Q6に対してスイッチング制御信号を出力する。より具体的には、制御IC11は、第1の昇圧チョッパ回路、第2の昇圧チョッパ回路、および、トーテムポールブリッジレスPFCがインターリーブ動作するように、複数のスイッチング素子Q1-Q6に対してスイッチング制御信号を出力する。
 図4(A)-図4(G)は、充電時における各種波形を示す。図4(A)、図4(B)、図4(C)は、スイッチング素子Q1、Q2、Q4のそれぞれに対するスイッチング制御信号の波形の一例を示す。図4(D)、図4(E)、図4(F)は、インダクタL1、L2、L3のインダクタ電流の波形の一例を示す。図4(G)は、交流入力端子PAC1の電流の波形の一例を示す。なお、スイッチング素子Q3、スイッチング素子Q5、スイッチング素子Q6の波形は図示していないが、スイッチング素子Q5の波形は、スイッチング素子Q4と同じであり、スイッチング素子Q3、Q6の波形は、スイッチング素子Q4と逆相になる。
 蓄電池92の充電時、図4(A)-図4(C)に示すように、スイッチング素子Q1、スイッチング素子Q2、スイッチング素子Q4は、それぞれに位相差120°を持ってオン制御される。これにより、図4(D)-図4(F)に示すように、第1の昇圧チョッパ回路のインダクタL1のインダクタ電流IL1、第2の昇圧チョッパ回路のインダクタL2のインダクタ電流IL2、および、トーテムポールブリッジレスPFCのインダクタL3のインダクタ電流IL3も、互いに120°の位相差を有する波形となり、それぞれの直流成分に重畳するリップル電流も120°ずつずれる。
 交流入力端子PAC1の電流Icinは、インダクタ電流IL1、インダクタ電流IL2、および、インダクタ電流IL3が加算された電流である。したがって、インダクタ電流IL1、インダクタ電流IL2、および、インダクタ電流IL3が上述のように、互いに120°の位相差を有するので、それぞれのリップル電流は相殺されるように作用する。これにより、図4(G)に示すように、交流入力端子PAC1の電流Icinのリップル電流の振幅は抑制される。
 この制御を行うことによって、コンバータ10は、交流入力端子PAC1から入力された交流電圧を直流電圧に変換して直流出力端子PDCから出力する。この出力された直流電圧によって、蓄電池92は充電される。この際、上述の制御が行われることで、コンバータ10から発生する高調波電流やノイズは抑制される。
 (蓄電池92に充電された直流電力を交流出力端子PAC2から外部に供給するとき(第2態様))
 図5は、蓄電池に充電された直流電力を交流出力端子から外部に供給する時におけるコンバータの接続態様を示す等価回路図である。図5に示すように、直流出力端子PDCには、蓄電池92が接続される。また、交流出力端子PAC2には、負荷940が接続される。負荷940は、交流型負荷である。
 蓄電池92に充電された直流電力を交流出力端子PAC2から外部に供給する時、スイッチSW1は、オン制御される。言い換えれば、スイッチSW1は、導通状態に制御される。
 第1の昇圧チョッパ回路および第2の昇圧チョッパ回路は、共に単方向のPFCコンバータであるため、直流出力端子PDCから入力された直流電圧を交流に変換して交流入力端子PAC1側に出力できない。したがって、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路は、停止制御される。
 トーテムポールブリッジレスPFCは、双方向に電力伝送が可能であるため、直流出力端子PDCから入力された直流電圧を交流に変換して交流入力端子PAC1および交流出力端子PAC2側に出力できる。したがって、トーテムポールブリッジレスPFCは、駆動制御される。
 この制御を行うことによって、コンバータ10は、直流出力端子PDCから入力された直流電圧を交流電圧に変換して交流出力端子PAC2から出力する。この出力された交流電圧が負荷940に供給される。
 この際、トーテムポールブリッジレスPFCのスイッチング素子は、蓄電池92を充電するときよりも高いスイッチング周波数で駆動することが好ましい。
 図6(A)-図6(D)は、蓄電池の直流電圧を変換して交流出力端子から交流電圧を供給するときにおける各種波形を示す。図6(A)、図6(C)は、スイッチング素子Q4のに対するスイッチング制御信号の波形の一例を示す。図6(B)、図6(D)は、変換された交流に重畳するリップル電流の波形の一例を示す。図6(A)、図6(B)は、スイッチング周波数が高いときを示し、図6(C)、図6(D)は、スイッチング周波数が低いときを示す。なお、低いスイッチング周波数とは、上述の充電時のスイッチング周波数と同じである。また、高いスイッチング周波数とは、低いスイッチング周波数に対する正の整数倍の周波数であることが望ましい。
 図6(A)、図6(B)に示すように、スイッチング周波数を高くすることによって、リップル電流の振幅を小さくできる。
 これにより、第1の昇圧チョッパ回路、第2の昇圧チョッパ回路を駆動せず、トーテムポールブリッジレスPFCのみを駆動させても、交流電圧に重畳するリプルを抑制できる。
 また、この構成では、トーテムポールブリッジレスPFCのスイッチング素子Q3、Q4のみに、GaN-FETを用い、他のスイッチング素子Q1、Q2、Q5、Q6に、Si-MOSFETを用いている。これにより、全てのスイッチング素子Q1-Q6にGaN-FETを用いるよりも、コンバータ10を安価に構成できる。
 一方、トーテムポールブリッジレスPFCのスイッチング素子Q3、Q4のみに、GaN-FETを用いることによって、逆回復特性や寄生キャパシタンスに起因する損失を抑制できる。したがって、低損失なコンバータ10を実現できる。
 なお、交流入力端子PAC1と交流出力端子PAC2の電圧が同じである場合には、蓄電池92の充電時に、スイッチSW1をオン制御(導通制御)することも可能である。これにより、コンバータ10は、蓄電池92への充電を行いながら、交流出力端子PAC2に接続される負荷に交流電力を供給できる。なお、この際、コンバータ10は、第1の昇圧チョッパ回路と第2の昇圧チョッパ回路とをインターリーブ動作させると、よりよい。
 (利用方法の一例)
 充電器900がAC220V/30A、6.6kW出力の場合、この交流電圧が供給される。コンバータ10は、上述の3相による電力変換を行い、この変換された直流によって、蓄電池92が充電される。
 一方、蓄電池92に充電された電力が交流出力端子PAC2から出力される場合、コンバータ10は、トーテムポールブリッジレスPFCの1相のみを駆動させる。このため、交流出力端子PAC2からは、2.2kW出力が得られる。
 なお、本実施例において、トーテムポールブリッジレスPFCのスイッチング素子Q3およびQ4にGaN-FETを用いて説明したが、SiC-FET等の他のワイドバンドギャップ半導体を用いたスイッチング素子でもよい。
 [第2の実施形態]
 本発明の第2の実施形態に係る電力変換装置について、図を参照して説明する。図7は、本発明の第2の実施形態に係るコンバータ(電力変換装置)の等価回路図である。
 図7に示すように、第2の実施形態に係るコンバータ10は、第1の実施形態に係るコンバータ10に対して、スイッチSW2および交流出力端子PAC2の接続態様において異なる。コンバータ10Aの他の構成は、コンバータ10と同様であり、同様の箇所の説明は省略する。
 コンバータ10Aでは、交流出力端子PAC2は、第2PFC側接続ライン(交流入力端子PAC1とトーテムポールブリッジレスPFCとを接続する接続ライン)に直接接続される。
 スイッチSW2は、第2PFC側接続ラインの途中に挿入されている。より具体的には、スイッチSW2は、第2PFC側接続ラインにおける、トーテムポールブリッジレスPFCと交流出力端子PAC2との接続部と交流入力端子PAC1との間に接続されている。
 (蓄電池92を充電するとき(第1態様))
 図8は、蓄電池の充電時におけるコンバータの接続態様を示す等価回路図である。図8に示すように、直流出力端子PDCには、蓄電池92が接続される。また、交流入力端子PAC1には、充電器900が接続される。
 蓄電池92の充電時、スイッチSW2は、オン制御される。言い換えれば、スイッチSW2は、導通状態に制御される。
 この状態において、制御IC11は、複数のスイッチング素子Q1-Q6に対してスイッチング制御信号を出力する。より具体的には、制御IC11は、第1の昇圧チョッパ回路、第2の昇圧チョッパ回路、および、トーテムポールブリッジレスPFCがインターリーブ動作するように、複数のスイッチング素子Q1-Q6に対してスイッチング制御信号を出力する。
 この制御を行うことによって、コンバータ10Aは、交流入力端子PAC1から入力された交流電圧を直流電圧に変換して直流出力端子PDCから出力する。この出力された直流電圧によって、蓄電池92は充電される。この際、上述の制御が行われることで、コンバータ10Aから発生する高調波電流は抑制される。
 (蓄電池92を充電しながら、交流出力端子PAC2から交流電力を供給する)
 図9は、蓄電池の充電と交流電圧の供給とを同時に行う時におけるコンバータの接続態様を示す等価回路図である。図9に示すように、直流出力端子PDCには、蓄電池92が接続される。また、交流入力端子PAC1には、充電器900が接続される。また、交流出力端子PAC2には、負荷940が接続される。
 蓄電池92の充電時、および、交流出力端子PAC2からの交流電力の供給時、スイッチSW2は、オフ制御される。言い換えれば、スイッチSW2は、開放状態に制御される。
 コンバータ10Aは、第1の昇圧チョッパ回路と第2の昇圧チョッパ回路とによって蓄電池92の充電を行い、トーテムポールブリッジレスPFCは、蓄電池92の電力を交流出力端子PAC2へ出力するためのインバータとして動作するように、スイッチング制御を行う。この際、コンバータ10は、第1の昇圧チョッパ回路と第2の昇圧チョッパ回路とをインターリーブ動作させると、よりよい。
 これにより、コンバータ10Aは、蓄電池92への充電を行いながら、交流出力端子PAC2に接続される負荷940に交流電力を供給できる。
 (蓄電池92に充電された直流電力を交流出力端子PAC2から外部に供給するとき(第2態様))
 図10は、蓄電池に充電された直流電力を交流出力端子から外部に供給する時におけるコンバータの接続態様を示す等価回路図である。図10に示すように、直流出力端子PDCには、蓄電池92が接続される。また、交流出力端子PAC2には、負荷940が接続される。
 蓄電池92に充電された直流電力を交流出力端子PAC2から外部に供給する時、スイッチSW2は、オフ制御される。言い換えれば、スイッチSW2は、開放状態に制御される。
 第1の昇圧チョッパ回路および第2の昇圧チョッパ回路は、停止制御される。トーテムポールブリッジレスPFCは、駆動制御される。
 この制御を行うことによって、コンバータ10Aは、直流出力端子PDCから入力された直流電圧を交流電圧に変換して交流出力端子PAC2から出力する。この出力された交流電圧が負荷940に供給される。
 この際、トーテムポールブリッジレスPFCのスイッチング素子は、第1の実施形態と同様に、蓄電池92を充電するときのスイッチング周波数よりも高いスイッチング周波数で駆動することが好ましい。これにより、第1の昇圧チョッパ回路、第2の昇圧チョッパ回路を駆動せず、トーテムポールブリッジレスPFCのみを駆動させても、負荷940に印加される負荷電流に重畳するリップルを抑制できる。
 なお、この際、コンバータ10Aは、第1の昇圧チョッパ回路、および、第2の昇圧チョッパ回路を駆動させることもできる。すなわち、コンバータ10Aは、第1の昇圧チョッパ回路、および、第2の昇圧チョッパ回路で蓄電池92を充電しながら、蓄電池92の電力から交流電圧を生成し、交流出力端子PAC2から出力することもできる。
 [第3の実施形態]
 本発明の第3の実施形態に係る電力変換装置について、図を参照して説明する。第3の実施形態に係るコンバータは、第1の実施形態に係るコンバータと同じ回路構成を備える。第3の実施形態に係るコンバータは、第1の実施形態に係るコンバータに対して、軽負荷時の充電制御において異なる。第3の実施形態に係るコンバータの他の制御は、第1の実施形態に係るコンバータと同様であり、同様の箇所の説明は省略する。
 図11(A)-図11(G)は、電流連続モードでの充電時における各種波形を示す。図12(A)-図12(G)は、電流不連続モードと電流連続モードとの併用での充電時における各種波形を示す。
 (電流連続モード)
 図11(A)、図11(B)、図11(C)は、スイッチング素子Q1、Q2、Q4のそれぞれに対するスイッチング制御信号の波形の一例を示す。図11(D)、図11(E)、図11(F)は、インダクタL1、L2、L3のインダクタ電流の波形の一例を示す。図11(G)は、交流入力端子PAC1の電流の波形の一例を示す。なお、スイッチング素子Q3、スイッチング素子Q5、スイッチング素子Q6の波形は図示していないが、スイッチング素子Q5の波形は、スイッチング素子Q4と同じであり、スイッチング素子Q3、Q6の波形は、スイッチング素子Q4と逆相になる。
 図11(A)、図11(B)、図11(D)、図11(E)に示すように、軽負荷時には、コンバータは、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路を、臨界モードで動作させる。また、図11(C)、図11(F)に示すように、軽負荷時には、コンバータは、トーテムポールブリッジレスPFCを、電流連続モードで動作させる。
 (電流不連続モードと電流連続モードの併用)
 図12(A)、図12(B)、図12(C)は、スイッチング素子Q1、Q2、Q4のそれぞれに対するスイッチング制御信号の波形の一例を示す。図12(D)、図12(E)、図12(F)は、インダクタL1、L2、L3のインダクタ電流の波形の一例を示す。図12(G)は、交流入力端子PAC1の電流の波形の一例を示す。なお、スイッチング素子Q3、スイッチング素子Q5、スイッチング素子Q6の波形は図示していないが、スイッチング素子Q5の波形は、スイッチング素子Q4と同じであり、スイッチング素子Q3、Q6の波形は、スイッチング素子Q4と逆相になる。
 図12(A)、図12(B)、図12(D)、図12(E)に示すように、軽負荷時には、コンバータは、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路を、電流不連続モードで動作させる。また、図12(C)、図12(F)に示すように、軽負荷時には、コンバータは、トーテムポールブリッジレスPFCを、電流連続モードで動作させる。
 これらの制御により、軽負荷時は、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路には、インダクタ電流IL1、Il2としてリップル電流のみが流れ、トーテムポールブリッジレスPFCには、インダクタ電流IL3として、直流成分にリップル成分が重畳された電流が流れる。
 このような制御を行うことで、コンバータは、軽負荷時には、効率の高いトーテムポールブリッジレスPFCを積極的に用いて、充電を行う。これにより、軽負荷時の電力変換効率を向上できる。また、図11(A)、図11(B)に示すように、この制御では、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路のスイッチング素子は、電流が0の時にターンオンする。これにより、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路のスイッチング損失を低減でき、コンバータの電力変換効率を、さらに向上できる。
 また、この制御では、第1の実施形態と同様に、第1の昇圧チョッパ回路、第2の昇圧チョッパ回路、および、トーテムポールブリッジレスPFCがインターリーブ動作するので、リップル電流が抑制される。
 なお、軽負荷時には、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路を停止させることも可能である。この場合、トーテムポールブリッジレスPFCのスイッチング周波数を高くする方がよい。例えば、トーテムポールブリッジレスPFCのスイッチング周波数を、第1の昇圧チョッパ回路および第2の昇圧チョッパ回路とともにインターリーブ動作する時の3倍にするとよい。これにより、トーテムポールブリッジレスPFCの単独動作であっても、リップル電流が抑制される。
10、10A:コンバータ
11:制御IC
90:電気自動車
91:DC-DCコンバータ
92:蓄電池
93:AC給電ソケット
94:ACアウトレット
900:充電器
910:給電ケーブル
940:負荷
Co:コンデンサ
D1、D2:ダイオード
DB:ダイオードブリッジ
L1、L2、L3:インダクタ
AC1:交流入力端子
AC2:交流出力端子
DC:直流出力端子
Q1、Q2、Q3、Q4、Q5、Q6:スイッチング素子
SW1、SW2:スイッチ

Claims (8)

  1.  交流電圧入力端子と、
     前記交流電圧入力端子に接続され、互いに並列に接続された第1のPFCコンバータおよび第2のPFCコンバータと、
     前記第1のPFCコンバータの出力と前記第2のPFCコンバータの出力を合成して出力する直流電圧出力端子と、
     を備えたコンバータであって、
     前記第1のPFCコンバータは、ダイオード整流型PFCコンバータで構成され、
     前記第2のPFCコンバータは、トーテムポールブリッジレスPFCコンバータで構成され、
     前記交流電圧入力端子と前記第2のPFCコンバータとを接続する第2PFC側接続ラインに接続されるスイッチと、
     前記第2PFC側接続ラインに接続される交流電圧出力端子と、さらに備え、
     前記第1のPFCコンバータおよび前記第2のPFCコンバータの動作制御と前記スイッチのオンオフ制御によって、前記交流電圧入力端子からの交流電圧を直流電圧に変換して該直流電圧を前記直流電圧出力端子から出力する第1態様と、前記直流電圧出力端子からの直流電圧を交流電圧に変化して該交流電圧を前記交流電圧出力端子から出力する第2態様と、前記交流電圧入力端子からの交流電圧を前記交流電圧出力端子から出力する直結出力態様とのいずれか1つの態様、または、前記第1態様と前記第2態様との組、もしくは、前記第1態様と前記直結出力態様との組から、選択的に実行する、
     電力変換装置。
  2.  前記スイッチは、前記第2PFC側接続ラインと前記交流電圧出力端子との間に接続される、
     請求項1に記載の電力変換装置。
  3.  前記スイッチは、前記第2PFC側接続ラインにおける、前記第2のPFCコンバータと前記交流電圧出力端子との接続部と、前記交流電圧入力端子との間に接続されている、
     請求項1に記載の電力変換装置。
  4.  前記第1のPFCコンバータと前記第2のPFCコンバータとは、インターリーブ動作を行う、
     請求項1乃至請求項3のいずれかに記載の電力変換装置。
  5.  前記第2のPFCコンバータに、窒化ガリウム半導体のスイッチング素子を用いる、
     請求項1乃至請求項4のいずれかに記載の電力変換装置。
  6.  前記窒化ガリウム半導体のスイッチング素子は、
     前記第2態様でのスイッチング周波数は、前記第1態様でのスイッチング周波数よりも高い、
     請求項5に記載の電力変換装置。
  7.  前記直流電圧出力端子に接続される直流型負荷が軽負荷のとき、
     前記第1のPFCコンバータを臨界モードまたは電流不連続モードで駆動し、
     前記第2のPFCコンバータを電流連続モードで駆動する、
     請求項1乃至請求項6のいずれかに記載の電力変換装置。
  8.  前記直流電圧出力端子に接続される直流型負荷が軽負荷のとき、
     前記第1のPFCコンバータの駆動を停止し、前記第2のPFCコンバータを駆動して、
     前記第2のPFCコンバータを構成するスイッチング素子のスイッチング周波数を高くする、
     請求項1乃至請求項6のいずれかに記載の電力変換装置。
PCT/JP2021/013447 2021-02-01 2021-03-30 電力変換装置 WO2022162964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022578017A JPWO2022162964A1 (ja) 2021-02-01 2021-03-30
CN202180089259.6A CN116746047A (zh) 2021-02-01 2021-03-30 电力变换装置
US18/219,123 US20230353045A1 (en) 2021-02-01 2023-07-07 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021014116 2021-02-01
JP2021-014116 2021-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/219,123 Continuation US20230353045A1 (en) 2021-02-01 2023-07-07 Power conversion device

Publications (1)

Publication Number Publication Date
WO2022162964A1 true WO2022162964A1 (ja) 2022-08-04

Family

ID=82653071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013447 WO2022162964A1 (ja) 2021-02-01 2021-03-30 電力変換装置

Country Status (4)

Country Link
US (1) US20230353045A1 (ja)
JP (1) JPWO2022162964A1 (ja)
CN (1) CN116746047A (ja)
WO (1) WO2022162964A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205560A (ja) * 1995-01-24 1996-08-09 Toshiba Corp 電力変換装置
JP2012206379A (ja) * 2011-03-29 2012-10-25 Sumitomo Heavy Ind Ltd 射出成形機及び電源コンバータの制御装置
JP2016074516A (ja) * 2014-10-07 2016-05-12 フジテック株式会社 エレベータ制御装置
JP2016187241A (ja) * 2015-03-27 2016-10-27 サンケン電気株式会社 力率改善回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205560A (ja) * 1995-01-24 1996-08-09 Toshiba Corp 電力変換装置
JP2012206379A (ja) * 2011-03-29 2012-10-25 Sumitomo Heavy Ind Ltd 射出成形機及び電源コンバータの制御装置
JP2016074516A (ja) * 2014-10-07 2016-05-12 フジテック株式会社 エレベータ制御装置
JP2016187241A (ja) * 2015-03-27 2016-10-27 サンケン電気株式会社 力率改善回路

Also Published As

Publication number Publication date
CN116746047A (zh) 2023-09-12
JPWO2022162964A1 (ja) 2022-08-04
US20230353045A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US9252625B2 (en) Method and device for charging a battery of an electrical drive using components of the electrical drive
Kabalo et al. State-of-the-art of DC-DC converters for fuel cell vehicles
US8384236B2 (en) Vehicle mounted converter
JP4322250B2 (ja) トランスレス型系統連係電力変換回路
JP4258739B2 (ja) 直流電圧源、特に光電池直流電圧源の電気的な交流電圧を交流電圧に変換する方法
US7746669B2 (en) Bidirectional battery power inverter
JP7241467B2 (ja) 電気自動車またはハイブリッド自動車のための3相または単相充電システム
US5894214A (en) Dual-output boost converter having enhanced input operating range
CN106208641B (zh) 一种交直流复用的电路
JP5855133B2 (ja) 充電装置
US20080205109A1 (en) Energy distribution system for vehicle
US5847949A (en) Boost converter having multiple outputs and method of operation thereof
US10381951B1 (en) Family of modular quasi-resonant inverters
CN111602329B (zh) 变流器部件和这种变流器部件的半导体模块
US11290007B2 (en) Device for coupling electrical grids
WO2012168983A1 (ja) 充電装置
US9209698B2 (en) Electric power conversion device
US10245961B2 (en) Inverter-charger combination
US8064232B2 (en) Power conversion device and power conversion system
JP6742145B2 (ja) 双方向dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
US20230249564A1 (en) Charging device and vehicle
KR20210018598A (ko) 차량용 전력 변환 시스템 및 그 제어 방법
WO2022162964A1 (ja) 電力変換装置
JP6953634B2 (ja) Dc/dcコンバータを備える車両充電器
JPWO2010143304A1 (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180089259.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922973

Country of ref document: EP

Kind code of ref document: A1